
PARAMETRICINSTABILITIESOFROTOR-SUPPORTSYSTEMS
WITHAPPLICATIONTOINDUSTRIALVENTILATORS

Zdzislaw Parszewski, Janusz Krodkiewski,
and Krzysztof Marynowski

Politechnika _odzka
_odz, Poland 90245

SUMMARY

Rotor-support systems interaction with parametric excitation is considered
for both unequal principal shaft stiffnesses (generators) and off-set disc
rotors (ventilators). Instability regions and types of instability are com-
puted in the first case, and parametric resonances in the second case. Com-
puted and experimental results are compared for laboratory machinemodels.
A field case study of parametric vibrations in industrial ventilators is re-
ported. Computedparametric resonances are confirmed in field measurements,
and someindustrial failures are explained. Also the dynamic influence and
gyroscopic effect of supporting structures are shownand computed.

INTRODUCTION

With growing rotor speeds or machine capacities the influence of support-
ing structures on stability and critical speeds is of increasing importance,
specially when somerotor parameters are variable. This is often the case in
machines used in mining and power generating industries, for example, large
generators, industrial ventilators, and turbopumps. The unequal rotor princi-
pal stiffnesses in the first instance and unequal principal momentsof inertia
of the ventilator disc in the second instance, with the flexible anisotropic
support interaction, cause the parametric effect.

A 120-MWgenerator of Dolmel-Wroc_awproduction is shownin figure I.
Its rotor is of 9.157 m length, with a span of 6.858 m between bearings. The
wiring slots distribution gives rise to small unequality of the rotor principal
stiffnesses kx,ky. Twotypes of mine ventilators are shownin figure 2:
large ventilator No. I of the type SIaM(fig. 2(a)) of nominal output of
320 m/min, and universal ventilator No. II of type FKD-30 (fig. 2(b)). The
first has an overhang shaft of full length 0.908 m. The disc is between bear-
ings in the second ventilator with a shaft of 0.773 m length. Production errors
cause the unequality of principal momentsof inertia of the disc.

GENERALTHEORY

The rotor-support system can be considered as two connected and dynamically
interacting subsystems. One (rotor) is a discrete parametric system (fig. 3,
bold lines). The second is nonparametric, contains the whole supporting struc-
ture, and is usually very complicated. A receptance (impedance) matrix is hence
used for description of its dynamic behavior. Its elements can then be mea-
sured if not calculated. All (usually infinity) but the connecting coordinates
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of the supporting structure can be eliminated (ref. 6) from the equations of

motion of the systems, giving their general matrix form

(t)

Here all the matrices are of the order equal to the sum of the number of de-

grees of freedom of the parametric subsystem (rotor) and the number of connect-

ing coordinates. In the cases considered, for instance, the last number is

four (fig. 2); _r and Yu are, respectively, real and imaginary parts of the

dynamic impedances of the supporting structure along the connecting coordinates;

G, P, and Q are force vectors. For an offset disc mounted flexibly (fig. 4)

or for a rotor of different principal stiffnesses (the two cases are here con-

nected only formally), the equations are

For a rotor of different principal stiffnesses

M(t)=M ; C(t)=C; K(t)=K+_.{Ecos_t*" Fsin _t) (2a)

For an offset disc and circular shaft

M_t)=M+ d(t); C(t)=C* Z*c(t) ; K(t)=K+ d(t) (2b)

where
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where S_q,... Bn_ are the first and second moments of the rotor mass with re-

spect to the coordinate planes _q_ connected with the rotor; D_, Dq, D_ are
corresponding deviation moments; and

Finally

B" _.IBm,j* BI,;) (8)

(9)

where _ and 8 are the arguments of the solutions

x=eJ_t:_Caisin t+ bi cos t)
I--O

(to)

of the homogenous part of equation (I) at stability limits.

Instability

The conditions of existence of steady solutions (i0), giving the boundary

equations in the stability region, in the equivalent forms for odd or even

numerals i, are
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Consecutive approximations are shown with broken lines in equation (ii). The

first approximation is
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-- 0 (12)

The instabilities occur in the vicinity of circular frequencies

kj + Xk
n = i, 2, 3, (13)

@jk = n

The width of the instability region depends on _ and damping C. Here Xj

are the natural frequencies of the system, being the roots of equation (12) at

zero parametric excitation (_ = 0) and no damping (C = 0, Yu = 0).

Resonance Speeds

Forced vibrations analysis gives for the resonance speeds

and 6)

(2n- l)_cr = _i(_cr)_
and

=2n C0cr z (_cr)

_cr (refs. 3

(14)

Here is the axial natural circular frequency of the system.

LABORATORY MODEL TESTS AND COMPUTATIONS

Computations were done for a laboratory model (fig. 5) and compared with

the tests results.

Generator Model - Instabilities

The instability regions were computed for the model with the shaft of dif-

ferent principal stiffnesses kx, _ and rotor block between bearing (no disc 5

in fig. 5). The determinants (12) give equations of instability region bound-

aries in the form IW(_,@)I = 0. Their roots _i,8i define the stability

limits. An example of computed results is given in figure 6. This diagram

corresponds to the second-order combined instability region 0.5(8xi + @yl)

around point N (fig. 6). The solutions of the equation

lw = o
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for zero parametric excitation (e = 0) and no damping (C = 0, Yu = 0) are
straight lines

intersecting at point N (fig. 6). For finite parametric excitation the lines
curve and do not intersect, separating in the direction 8 for frequencies
sums i/n(kj + kk) or in the direction _ for their differences I/n(%j - %k).
Hence there are no instabilities (also with no damping) corresponding to the
frequency differences. The curves in figure 6 correspond to constant values of
the determinant, and its zero values (denoted with the crosses) give the in-
stability region. They approach each other with increasing damping and, over
its limiting value, instability disappears. This was traced with changing
shaft length AL, and computedand experimental results are compared in fig-
ure 7. Corresponding oscillograms for the x and y directions are given in
figure 8. The instability region discussed here is denoted by 1 in the insta-
bility regions diagram (fig. 9). There are computed instability regions (with
the type of instability) shownin figure 9 and against them the observed experi-
mental instabilities shownwith the crosses.

Ventilator Model - ResonanceSpeeds

Analysis of forced vibrations was done for the model with circular shaft
and the disc 5 (fig. 5) slightly offset. Hence BD_and B_ are not equal
and Sn_,... , D_ as well as disbalance forces P and Q are not zero, but
e = 0. Graphical solution of equation (i) for the laboratory model is given in
figure i0. The continuous curved lines are the computednatural frequency
curves. Abscissas of their points of intersection with the straight lines

= _ (principal), k = 2_, k = 3_... give the parametric resonance speeds, with
one, two, three, ... vibration cycles per one revolution. Computedvalues of
i0 resonance speeds (taken from diagram, fig. I0) in s-I are

= 20, = 36, _ = 46 _ = 58, = 82,crl _cr2 cr3 ' cr4 _cr5

= 99, = 108 = 112 = 140 = 175cr6 _cr7 ' _cr8 ' mcr9 ' _crl0

Experimental resonance diagrams measured for the right support (fig. 5) are
given in figure ii as continuous broken and dotted lines for the directions
y, x, z, respectively. They comparewell with the computedvalues from fig-
ure i0. The vibrations recorded for speeds close to resonance, numberedin the
diagrams (figs. i0 and Ii) are shownin figure 12. It can be seen that close
to resonance speed of the type n_cr = _i(_cr) vibrations of frequency n_ domi-
nate. Comparisonof figures I0, ii, and 12 shows good consistency of theoreti-
cal and experimental results.
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FIELD CASE STUDY

The above results were applied in field studies of vibrations of industrial

ventilators that developed repeated failures (shaft breakages). These were

ventilators No. II of the type FKI>-30 (fig. 2(b)) mentioned in the INTRODUCTION.

Analysis

The model of the ventilator consists of two subsystems: the discretized

rotor (fig. 13) described in table i and the supporting structure containing

the ventilator body with bearings and foundation (fig. 14). The supporting

structure, for its dynamic interaction with the rotor, was dynamically defined

with its receptance matrix along the connecting coordinates Xl, Yl, x2, Y2

Cxlxl Cxlx2 Cxlyl Cxly2

Cx2xl Cx2x2 Cx2yl Cx2y2

Cylxl Cylx2 Cylyl Cyly2

Cy2xl Cy2x2 Cy2yl Cy2y2

= _C[ ie] (15)

The receptances Cik were measured on site. The measuring scheme is given in

figure 15. The notations in figure 15 are i - ventilator type II, 2 - electro-

dynamic exciter, 3 - displacement pickup, 4 - generator, 5 - vibration measuring

apparatus, 6 - two-ray cathode oscilloscope, 7 - frequency meter, 8 - phase

meter, 9 - ammeter.

The exciting force was measured indirectly (by current measurement). Re-

ceptance diagrams are given in figure 16. Because of symmetry all the cross

receptances for the perpendicular directions are zero. The other equal pairs

are denoted cii , cii. , , where i = I, 2. On the basis of the re-
ceptance matrix _15) the Cijx' Cijyimpedance (dynamic stiffness) matrix

-i
[Yik ] = [Cik]

was calculated and introducted in the computing program. Forced vibrations

were found as partial solutions of equation (I) for the case of equal rotor

stiffnesses by application of the small-parameter method. Their analysis gives

the formulas (14) for the resonance speeds. Graphical solution is given in

figure 17. The frequency lines are the solutions of the homogenous part of

equation (i). With the approximation used, there are computed two principal

resonance speeds (in s-l), 344 and 280; two subharmonic ones of second order

(of two cycles of vibration per revolution), 172 and 142; and two of third

order, 114 and 94.
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Experimental Measurement on Site

An experimental resonance test was made on site (in the mine) in the ven-

tilator II in working condition. The measuring arrangement is shown in fig-

ure 18. Here 1 denotes the ventilator tested; 2 denotes the dc motor; 3 de-

notes the transformer displacement transducer; 4 denotes the vibration measur-

ing apparatus; 5 the cathode ray oscilloscope; and 6 the frequency meter.

The resonance diagram for the supports for the practically allowed speed

range from approximately 1200 to 2100 rpm is given in figure 19. The two ob-

served subharmonic resonances, 138 and 174 s-l, are in this speed range; both

of second order are very close to the corresponding computed values, 142 and
172 s-I .

CONCLUSIONS

The second-order subharmonic of frequency 142 s-I coincided with the nomi-

nal working speed of ventilator II, which was below 1500 rpm. Hence it was the

second-order parametric resonance that was responsible for the shaft breakages.

Supporting structure appreciably lowers critical speeds. The gyroscopic effect

was also considered and computed. It is specially visible in the ventilators

with the overhang rotor. The frequency diagram for that type of ventilator,

designated No. I in the INTRODUCTION, is given in figure 20. Important

gyroscopic-effect influence is visible. It was the principal resonance at

144 s-I that was responsible for the failures in those ventilators with nominal

working speed below 1500 rpm.
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Fig.5 Scheme of model stand

I-DC motor,2-elastic coupling,

3-shaft, 4-rotor mass, 5-disc, 6-ball

bearing, 7-anls otroplc bearing,

8-flat springs, 9-inductive sensor,

10-piezo-electric sensors, 11-re-

corder, 12-recorder tape, 13-ele-

ctrodynamic exciter, 14-generator

of harmonic vibration, 15-cathode

oscilloscope •

Fig .6
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