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SYSTEM FOR SPACE SHUTTLE ORBITER

R. Prabhakaran*and Paul A. Cooper

Langley Research Center

SUMMARY

The thermal protection system (TPS) of the space shuttle orbiter vehicle,

consisting of ceramic tile/adhesive/strain isolation pad/adhesive/aluminum

substructure, was modeled photoelastically. A highly sensitive photoelastic

material was used in the models to show the nature of the stress-transfer

between the strain isolation pad (SIP) and the ceramic tile through the RTV-

adhesive layer. Isochromatic fringe patterns were obtained for models sub-

jected to tension and combined tension and bending.

Tests indicated that the load-transfer between the SIP and the photo-

elastic material occurred at discrete locations causing stress concentrations

in the photoelastic material. Stress concentration factors of the order of

1.9 were measured, but as the observed photoelastic response was an integrated

effect through the model thickness, the local stress concentration factors at

the SIP/tile interface could be even higher.
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Norfolk, VA
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INTRODUCTION

The space shuttle orbiter vehicle is basically an aluminum structure in-

sulated from reentry heat over much of its surface by reusable ceramic tiles

bonded to nylon felt pads using a room temperature vulcanizing adhesive RTV 560.

The tile/pad assemblage is in turn bonded to the aluminum structure again using

RTV 560. The pads have low shear stiffness and act as strain isolation pads

(SIP) isolating the brittle tiles from thermal and mechanical strains in the

aluminum structure. The flatwise ultimate tensile strengths of the ceramic
7

tiles, the SIP, and the total thermal protection system (TPS), i.e. ceramic

tile/RTV/SIP/RTV/aluminum have been determined experimentally. Figure I, taken

from reference i, shows the various components of a flatwise tension test of

the TPS. It was found by Rockwell that the ultimate strength of the individual

components, the ceramic tile, RTV, and SIP considerably exceeded the ultimate

strength of the combined system as shown in Table i. When the TPS was tested

as a system in flatwise tension, failure generally occurred in the tile at the

tile/SIP interface as shown in Figure 2. The SIP is composed of a mat of fibers

lying in a plane and held together by discrete bundles of transverse fibers as

shown in the scanning electron photomicrograph in Figure 3, taken from reference

2. These transverse fiber bundles are composed of inplane fibers pulled through

the mat by barbed needles during manufacture of the pad. The reduced strength

of the system was attributed to stress concentrations at the SIP/tile interface

caused by discrete load transfer across the SIP occurring mainly at the fiber

bundles. The ceramic tile is highly brittle and is unable to reduce stress

concentrations through local yielding but instead fractures when the local

stresses become excessive.

i
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A series of photoelastlctests were performedto show that the SIP does

indeed transferload to adjacentstructureat discretepoints causing stress

Concentrationswhich the interveninglayer of RTV 560 adhesiveis not stiff

enough to redistribute. An indicationof the severityof the stress concen-

trationsexpectedis also obtained. This paper presents the resultsof the

tests.

PHOTOELASTIC MODELS

To evaluate the tendency of the SIP to transfer load at discrete points,

a series of experimental models configured as shown in Figure 4 were fabri-

cated with photoelastically sensitive material, in place of ceramic tile,

bonded using RTV 560 to the SIP. The SIP/photoelastic material system bonded

on opposing surfaces to aluminum loading plates is tested in tension in a load

frame located between the polarizer and analyzer of a white light transmission

polariscope. As seen from the failure stress levels of Table I, the load levels

and resultant stress levels of interest are quite low and dictate the use of

highly sensitive photoelastic model material. A commercially available sheet

material, PSM-4*, with an elastic modulus of 6900 kPa (I000 psi) and a stress-

fringe value of 17.5 kPa-cm/fringe (I psi-in/fringe) was selected. Since the

RTV 560 bonds at room temperature, residual bonding stresses were not notice-

able at zero applied load conditions and compensation for residual stresses was

not required.

Two model sizes were fabricated. One with 15.2 cm (6 inch) length shown

in Figure 4 had six tapped holes in the base where threaded rods were installed

to support dead weights distributed to provide either uniform tensile loads or

* Marketed by Photoelastic, Inc.
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a combination of tension and moment loading to the SIP. The second model had a

7.6 cm (3 inch) length and had three tapped holes available to support the dead

weight loads. Since the extensional modulus of the photoelastic material is

well below that of the ceramic tile and the constraints at the tile are dis-

placement constraints, the stress distribution across the photoelastic material

is not necessarily the same as that which occurs in the actual tile; however,

the local stress concentrations observed at the SIP/model interface should be

representative of that which occurs in the actual tile/SIP interface. Two SIP

thicknesses, 0.41 cm (.160 inch) and 0.23 cm (.090 inch) are currently used in

the TPS and pads of both thicknesses were tested. Results were similar for

both and only results from the 0.41 cm (.160 inch) thickness SIP are presented.

RESULTS

A typical light-field isochromatic fringe pattern is shown in Figure 5.

The photoelastic model was 15.2 cm (6 inch) long and was bonded to 0.41 cm

(0.160 inch) thick SIP. The model was loaded symmetrically, with weights sus-

pended at two locations, under a total force of 45N (i0 lb. force).

The fringe patterns near the SIP/PSM-4 interface and the PSM-4/aluminum

interface are quite different. The fringe loops near the interface between

the SIP and the PSM-4 clearly show that stress transfer occurs at discrete

points. The number of fringe loops per unit length of interface gives an idea

of the number of load transfer Sites. While the number of fringe loops per

interface length is not a constant, it indicates an average spacing of about

0.3 cm (I/8 inch) between adjacent fringe loops. This appears to be of the

same order of magnitude as the average distance between two neighboring trans-

verse load-carrying fiber bundles. A notable feature of the fringe loops, when
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viewed in white light, is that not all of them indicate an increasing fringe

order; the fringe order decreases inside some of the fringe loops, indicating

the lack of or reduced load transfer in some local regions. In the fringe

loops for which the fringe order is increasing towards the center of the loop,

_he maximum fringe order measured varies from one loop to another.

The fringe pattern of Figure 5 shows a fringe order of about 1.5 over most

of the length of the model, midway between the two interfaces which is equiva-

lent to 41.4 kPa (6 psi). By comparison, the nominal applied stress is 46.2

kPa (6.7 psi). Some of the fringes at the SIP/PSM-4 interface are marked with

their orders. Near the middle of the interface, a reduced fringe order of 0.5

occurs at two locations. A higher order of 2.5 is present at a few locations

on the interface. By photoelastic compensation techniques, the maximum fringe

order at any of the fringe loops was measured to be 3.25. This indicates a

maximum interface stress, in the PSM-4, of 89.7 kPa (13 psi). Based on the

average stress in the PSM-4 of 46.2 kPa (6.7 psi), this is equivalent to a

maximum measured stress concentration factor of 1.94. However, based on an

average stress in the SIP, which has a smaller cross-sectional area than the

PSM-4, of 55.2 kPa (8 psi), the maximum measured stress concentration factor

is 1.62. These values were typical for the different photoelastic models

tested. It should be noted, however, that the model is 0.64 cm (1/4 inch)

thick and the observed photoelastic response is an integrated effect through

the thickness. The actual local stress concentration factor at a fiber bundle

Gould be higher than that measured.

It is interesting to note that the fringe order at the ends of the inter-

face between the PSM-4 and the aluminum is higher than in any other region,

reaching 3.5. This stress concentration is not unexpected but is a function

5
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of the differential stiffness of the materials at the interface and would be

different for ceramic tiles bonded to aluminum.

A Light-field isochromatic fringe pattern for the same photoelastic model

subjected to combined moment and tension is shown in Figure 6. A load of 22.5N

(5 lb. force) was applied at the right while there was no load at the left.

While the photoelastic fringe pattern is unsymmetrical, due to the unsymmetrical

loading, the general features of this pattern are similar to those described

before.

The gradual development of the isochromatic fringesunder increasing

symmetrical and unsymmetrical loads is shown in Figures 7 and 8, respectively,

for a 7.6 cm (3 inch) long model.

CONCLUSIONS

The ceramic tile thermal protection system of the space shuttle orbiter

vehicle was modeled photoelastically to determine the nature of the load trans-

fer between the strain isolation pad and the ceramic tile through the RTV 560

adhesive layer. The photoelastic results indicate that load transferoccurs at

discrete locations and that the intervening RTV 560 adhesive layer cannot pre-

vent stress concentrations from occurring in adjacent material. The photo-

elastic models showed that local stress concentrations at the tile/SIP inter-

face can be expected to be at least 1.9 times the average stress in the tile.
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TABLE1

AVERAGEULTIMATETENSILESTRENGTHOFTPSCOMPONENTSANDFULLSYSTEM

LOADEDINTHEDIRECTIONNORMALTOTHEBONDEDSURFACES

KPA PSI

LI900CERAMICRSI 165,5 24*
,160INCHSIP 288,2 41"8
RTV560ADHESIVE 3309, 480
RTV/LI900RSI/RTVi,160SIP/RTV 80,7 11,7

LI2200RSI 413,6 60
,090INCHSIP 468,8 68
RTV560ADHESIVE 3309 480
RTV/LI2200RSI/RTV/,090SIP/RTV 197,9 28,7

* VALUESOBTAINEDFROMINTERNALROCKWELLINTERNATIONALDOCUMENTATION,



Figure i. - Photographs illustrating sequential stages of specimen fabrication.



Figure 2 - Failure surface following transverse tension loading of specimen failing

proof test acoustic criteria.



(a) Uncoated SIP face, 13X. (b) Dimple in SIP face_ 425X.

RTV Transfer Coating ---Transverse Fiber Bundle

-_ 3 mm (0.12 in.) .....

(C) Cross section of SIP showing fiber/transfer coal_ interface.

Figure 3 Photomicrographs of strain isolation pad (SIP).
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Figure 4 Photoelastic tile model.



Figure 5 Light-field Isochromatic Fringe Pattern Under Tension.



Figure 6 Light-field Isochromatic Fringe Pattern Under Combined Tension
and Bending Moment.
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Figure 7 Development of Isochromatic Fringes Under Increasing Tension.
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Figure 8 Development of Isochromatic Fringes Under Increasing Tension
and Bending Moment.
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