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SANTA BAIIBAM, CALIFORNIA 93106

June 17, 1980

Dr. David L. Peterson
NASA-Ames Research Center
Mail Stop 242-4
Moffett Field, CA 94035

Dear Dave:

The purpose of this letter is to arovide a semi-annual report of
our activities under NASA Grant MSG-2377. The period covered by the
report will be from October 1, 1979 to March 30, 1980, the six months
immediately proceeding our second year renewal on April 1. The semi-
annual report is submitted in fulfillment of our responsibilities as
described in "NASA Provisions for Research Grants." My letter of
December 10, 1979, serving formally as a report of activities during
the July 1 to September 30, 1979 interval, also discusses some of
the activities which have occurred in the October to December time
period. Although I will refer to these activities in this report,
I will emphasize activities occurring after the first of the year.

Publications. I am very pleased to announce that during this
period three manuscripts have been placed in the publication process.
The first of these, entitled "The Use of Prior Probabilities in Maximum
Likelihood Classification of Remotely Sensed Data," was enclosed with
my letter of December 10. This manuscript has, within the past few
weeks, been accepted for publication in Remote Sensing of Environment.
Since the manuscript was accepted without revision, it should appear
essentially the same as the copy which you possess.

The remaining two manuscripts are in symposium proceedings. The
first of these is "Incorporating Collateral Data in Landsat Classifica-
tion and Modeling Procedures," which will appear in the Proceedings
of the Fourteenth International Symposium on Remote Sensing fthe
Environment. The second is "A Logit classifier for Multi-Image Data,"
which will appear in the Proceedings IEEE Workshop on Picture Data
Description. I enclose copies as specified in the grant provisions.
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Travel. In March, 1980, my research associate, Mr. Curtis
Woodcock, and I attended an informal meeting of California researchers
involved in forestry applications of remote sensing at California
Polytechnic Institute and State University, San Luis Obispo. At
your invitation, we briefed the group on some of our current forestry
work as well as the implications of our research concerning the incor-
poration of collateral data into Landsat processing systems. We
enJoyed this constructive opportunity to share research ideas with
investigators working on similar applications.

Grant travel funds were also used to support a side trip from
Denver,, Colorado to Fort Collins in December, 1979, to allow me to
confer with Dr. James A. Smith, of the School of Forestry, concerning
spectrkil modeling and possible Joint research in exploring the role
of collateral information in the remote sensing process.

Although not during the time period covered by this report, I
also attended the Fourteenth International Symposium on Remote Sensing
of the Environment, held in San Jose., Costa Rica, in April, 1980. At
this meeting, I had many productive exchanges with remote sensing
researchers, and was allowed the opportunity to present the results
of our first year's work in this grant. I should also mention that,
as a result of discussions at that meeting, I have been invited to
present a seminar concerning the use of collateral information in
remote sensing at the Canada Centre for Remote Sensing (CCRS) in late
June. Travel and per diem expenses for this trip will be reimbursed
by CCRS.

Technical Progress. During this reporting period, we made sub-
stantial progress in three research topics. The first of these is the
survey of quantitative techniques available for merging categoricdl
and continuous variables, and the assessment of the utility of these
techniques for remote sensing applications. This survey was completed,
and the results are summarized in the first part of the San Jose pre-
print (attached). The second area of progress concerns the further
application of prior probabilities in the context of a time-dependent
land use classification system. Again, the results are summarized in
the' San Jose preprint.
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Perhaps some of our most exciting work concerned the development
and application of the logit model to remote sensing. This model does
not rely on multivariate normal assumptions, and allows probability
of class membership to be predicted as a function of any array of
independent variables, either categorical or continuous in nature.
Further, the logit model may be formulated in a linear or curvilinear
fashion, depending on the application. Our research in this area is
summarized in the attached preprint, "A Logit Classifier for Multi-
Image Data."

Software. During the reporting period, we have also developed two
new software items. The first of these is a program which fits a logit
model to a set of calibration data which are input to the program.
Although existing programs are available for logit modeling, none of
these were suitable for the data which were available. The second
software item was a new VICAR program, PROBMAPS, which accepts images
of independent variables, input in MSS format, as well as the calibra-
tion parameters for the logit model, and produces a set of output images
recording the probability of membership of each pixel for each class as
predicted by the logit model. Both of these programs are quite specific
to the logit model application, but both have been coded in universal
FORTRAN so that they can be compiled at other institutions. We will
be happy to make t;iis software available to you at NASA-Ames or to any
other users as well.

Future Plans. Our plans for the coming research period have not
been completely formalized at this time. I hope to be able to pursue
most or all of the following research topics:

1. modeling uni , jersal soil loss for a pixel based on landform,
land use, rainfall, and topographic parameters

2. improved rainfall runoff modeling on a pixel-by-pixel basis
for use in hydrologic modeling;

3. further exploration of the logit model including its ability
to simulate various nonnormal distributions and perform as
a classifier of remotely sensed data; and,

4. continue the exploration of time-sequential classification
of land use in Ventura County.

This concludes my semi-annual report.

Sincerely yours,

Alan H. Strahler
Principal Investigator
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A new classifier for multi-ima ge databases
uses maximum likelihood estimation of parameters
fitting a logit model to training data. A logit
is the natural lo garithm of a probability ratio:

e,g., In (P /Po), As an example, a linear logit
classiricatlion model for a sim p le two-class case
based on four Landsat channels is:

ln(^=) = Ro+8t(LS4)+62(LSS)+33(LS6)+04(LS7)

where P1 °,ind P;. are probabilities that the pixel
belongs to class z and ?, respectively, ^a,,,a4
are calibration constants, and LS4 ... LS' and'
the four Landsat channels for bands 4 through 7.

Compared with usual Bayesian maximum like-
lihood classification, the logit classifier has
certain distinct advanta ges. It is nonparame-
tric, in that multivariate normality is not as-
sumed. The model ma y be s pecified in linear or
curvilinear forms as appropriate. Further; the
model can incor porate categorical information in
the form of dummy variables, and can therefore
be used to merge continuously measured image
data with categorical col1aterial data in a
sinale classification step,

Introduction

The Bayes maximum likelihood classifier (PiLC)
is the most commonly used decision rule fer dis-
crete classification with Landsat derived data.
Such a classifier uses the Ba;-es decision rule to
assign pixels to the class with highest probability,
given the observed vector of sner.tral measurements
and the prior distribution of classes. To find
this probability, the Bayes MLC requires an esti-
mate of the conditional probability of occurrence
of the observed vector of MSS data given that it is
associated with a specified class. This estimate
has traditionally been obtained by assuming that
the observed measurement vectors were Gaussian, or
normal; therefore, the best estimate is a measure
of the probability density value of the multivari-
ate normal distribution for the class evaluated at
the observation.

With four channels of Landsat spectral data,
the Bayes maximum likelihood classifier has achieved
good classificatio n, accuracies in many cases.
Classification accuracies have been further boosted
b y the inclusion of collateral data as additional
logical channels or as indexes to sets of prior
probabilities in the case of categorical collateral

variables, i Further increases in classification
accurac y will undoubtedly result from more optimal
spectral channels and improved techniques of in-
corporating collateral data.

However, it is very likely that the spectral
reflectt!nces from some classes in many applications
are not normally distributed, In this situation,
even with the ideal s pectral "windows" and precise
and relevant collateral data, the Bayes MLC will
reach an asymptotic accuracy limit that will be
less than optimal, In fact, for classes that de-
viate from normality, classification accuracies
could be significantly less than optimal.

Furthermore, each of the two previously men-
tioned techniques of increasing accuracy by input
of collateral data to the Bayes classifier has
critical limitations. The Bayes MLC can only
accept measurement variables which are continuously
distributed, and this requires continuous measure-
ment (or at least discrete measurement with a
large number of discrete steps). Consequently,
the collateral channel in the direct input approach
can utilize onl y data which are measured on the
interval or ratio scale. This requirement elimi-
nates many potentially useful databases, such as
soils maps, geologic maps, political boundaries,
census tracts, etc, And when collateral informa-
tion is incorporated through the mechanism of
prior probabilities, the calculation of the prior
probabilities usually requires a sophisticated
sampling design.

One solution to these problems is to use a
statistical technique that predicts probabilities
of categorical membershi p with no distribution
assumptions. One such technique, called the logit
regression model, has been widel y used in the
social sciences for the last twenty years. The
logit regression model generates predicted proba-
bilities that all sum to one for a specified suite
of classes, and the classification can be awarded
to the category with the highest predicted p roba-
bility. Further, predictor variables may be con-
tinuous or categorical; the model may be specified
in linear or curvilinear forms; and the assumption
of multivariate normality is not required.

,his paper has the following components:
1. a review of the mathematics of the Bayes MLC;
2, an examination of the sources of classification

error due to non-normal distributions;



3. an examination of the problems encountered with
utilizing collatera l data;

4, development and ex position of the lonit regres-
sion model, with an em phasis on its ability to
act as a nonoarametric classifier,

S. a descript ion of planned research which will
compare the classification accuracies of the
logit regression model and the Sayes MLC for a
land use/land cover classification example: and

6. presentation of an exam ple of the use of linear
logit model in a remote sensing application.

TIIL ayis-Maximum Likelihood Classifier

Hack<^rnund

In the past ten years, maximum likelihood
classification has found wide application in the
field of remote sensing. Based oil multivariate
normal distribution theory, the maximum likelihood
classification algorithm has been in use for ap pli-

cations in the social sciences since the late
1940's. Providing a probabilistic method for • rec-

ognizing similarities between individual measure-
ments and predefined standards, the algorithm found
increasing use in the field of pattern recognition
,it 	 following decades. ,' I t" In remote sensing
development or'rulti-spectral digital images of
land areas from aircraft or spacecraft nrovided the

opportunity to use the maximum likelihood criterion
in producing thematic classification mans of large
areas for such purposes as land use/land cover de-
termination and natural cultivated land inventory, "

Derivation of the Bayes MLC

In order tounderstand the difference between
a classification awarded oil 	 basis of lonit-gen-
erated predicted probabilities and posterior proba-
bilities derived from the Bayes MLC, it will be
hel p ful to briefly review the mathematics of the
Baves maximum likelihood decision rule. In the
multivariate remote sensing ap plication, it is
assumed that each observation	 (pixel) consists of
a set o f measurements on ; variables (channels).
Through the selection of training sites, a set of
observations which correspond to a class is identi-
fied -- that is, a set of similar objects charac-
terized by a vector of means on measurement vari-
ables and a variance-covariance matrix describing
the interrelationships among the measurement vari-
ables which are characteristic of the class, Al-
though the parametric i;nan vector and dispersion
matrix for the class remain unknown, they are esti-
mated by the sample means and dispersion matrix
associated with the object sample.

Multivariate normal statistical theory de-
scribes the conditional probability that an obser-
vation	 will occur, given that it belongs to a
class	 as the following function:

PI.Y^l - (2n)_r'^Yy^l-rgt1_12(^ uk)'^ -r (.1 -u ) (1)

(Please refer to Table 1 for a descrintion of the
mathematical symbols). As app lied in a maximum
likelihood decision rule, expression (1) allows the
calculation of the conditional probability that an

observation is a member of each of `- classes, How-
ever, the actual orobability desired is the poste-
rior probability rra,,jll it can be shown`' that:

This expression leads to the decision rule:

Choose - which minimizes

inID;.&+( .Y-m,)'D"1(X-mt.)-2l li p twA.1,	 (3)

In usual practice the prior probabilities	 are
assumed equal, or ri j..1=1 /:? where R is the number of
classes. In this case, the last term in expression
(3) is constant over all ^ classes, and need not be
considered in the decision rule, This equal priors
decision rule is used in the currently distributed
versions of LARSYS and VICAR, two imaqe processing
systems authored respectively by the Laboratory for
Applications of Remote Sensing at Pr..rdue University
and the Jet Pro pulsion Laboratory of California
Institute of Technology at Pasadena,

Classification Accuracy and the Assum ption of Nor-Ana

In a typical supervised classification, train-
inq sites are selected by tine analyst to typify
each class. Histograms of spectral values for
classes are inspected for multivariate normality,
and when a class actually consists of several dis-
tinctive sianatures, training sites are reaggre-
gated into subclasses, each of which is aporoxima-
tely multivariate normal, In this way, a set of
multivariate normal disnersion patterns are defined
for the desired classes, It is important to real-
ize that such dis persions, because they are se-
lected to be as "pure" as possible, are probably
underdispersed with respect to the true information
class. This effect produces a diffic!flty in the
classification of mixed pixels. Since the MLC
model does not provide for mixed pixels, the impli-
cit assumption is that mixed pixels are to be clas-
sified according to the most probable signature
match, the components of the signature which are
reflected front 	 less important classes contained
within the pixel are thus regarded as random noise,
The mixed pixel, then, is typically classified by
comparing probability densities within the tails of
overlapping multivariate normal distributions. The
accurate classification of mixed p ixels under MLC
thus requires a good fit of the tails to multivari-
ate normality; however, it is obvious that the
selection of training sites for purity will of
necessity produce a poor fit in the tails. And,
mixed pixels will constitute a large portion of the
scene -- up to forty percent in some agricultural

applications^(p, Hall, oersonal communications),

This reasoning naturally leads to the consi-
deration of nonparametric classifiers. Brooner et
al.' compared the Bayes MLC to a classifier which
used PIYkaO as directly estimated by a sampling
procedure, "and reported a four oercent increase in
classification sccurncy over MLC, However, direct
estimates of P{Y^wr,l re q uire more data as well as

i
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vesting with r-dimensional table storage problem.
The logit model, discussed in the following pages,
provides an alternative which should require fewer
data to calibrate and can, by virtue of its curvi-
linear modeling, approximate the real distribution
without assuming multivariate normality.

Problems with Incorporating Prior Probabilities

As shown earlier, the Bayes MLC can easily be
modified to take into account prior probabilities
which describe how likely a class is to occur in
the population of observations as a whole, The
Prior probability itself is simply an estimate of
the proportion of pixels which will fail into a
particular class. These prior probabilities are
sometimes termed weights, since the modified cla
sification rule will tend to weight more heavil^
those classes with higher prior probabilities.
Strahler l showed via simplified numerical examples
how these different weights can affect the decision
of the Bayes MLC. As the prior probability P(w,,l
in expression (3) becomes large and approaches 1,
its logarithm will go to zero and the classifica-
tion decision will effectively be made with ex-

pression (1),

However, since this possibility and 01
others must sum to one, the prior probabilities of
the remaining classes will be small numbers, thus
increasing the value of the expression. Since the
classifications is ararded to the class with the
smallest value, the effect will be to force classi-
fication into the class with high probability.
Therefore, the more extreme are the values of the
prior probabilities, the less important are the
actual observation values Z.

Strahler ► has demonstrated how prior proba-
bilities can be used as a mechanism to incorporate
collateral data in categorical from into the Bayes
MLC. His mechanism uses a set of prior probabili-
ties estimated for each collateral Categgory by .ar
external sampling procedure, with the classifica-
tion algorithm accessing the appropriate set of
probabilities contingent upon the collateral cate-
gory of the pixel, In this fashion, categorical
collateral information is merged with multivariate
normal information concerning the spectral signa-
tures. Although this approach was proven effective
for a forestry application, l estimations of the sets
of prior probabilities may require considerable
data collection, depending on the number of classes
and collateral categories. In addition, multivari-
ate normality of signatures is assumed, and the
comments of preceding paragraphs apply. In con-
trast, use of the logit classification model allows
categorical and continuous information to be mixed
freely through the mechanism of dummy variables,
And, again, the model can be fitted in a linear or
curvilinear fashion as desired, avoiding the
assumption of multivariate normality. Thus, the
logit model offers a more natural, straightforward
way of incorporating categorical variables into
the classification procedure.

The Logit Regression Model

Linear Modelino of Probabilities

The most commonly used predictive multivariate
statistical technique is probably ordinary least
squares (OLS) regression, The prediction, or esti-
mated value of the dependent variable, is a func-
tion of the vector of estimated betas (i£) in combi-
nation with the vector of observed independent
variables (;(). The betas are estimated in such a
way that tho variance about the least squares re-
gression line is minimized,

When usad to model probabilities, OLS regres-
sion has one major drawback: although probabili
ties are constrained to lie within tae range of 0
to 1, the predictions generated from such u model
are unbounded and may take values from minus infin-

ity to plus infinity. Thus, the predictions may
lie outside the meaningful range of probability,
Further, the probability of each class must be
modeled separately, and there is no constraint to
ensure that all probabilities must sum to one.

One solution to the boundinq problem is to
specify that

0 s P,; e 1
(where P, is the probability of observing a speci-
fied cla§s or category of the dependent variable),
In the case of ordinary least squares regression
model,

Y^, = so + AIL-1 + gzX..n.

The simplest way to satisfy this condition is to

impose the following arbitrary definition of P^:

1, P, is equal to 0 if Y,, is less than n;
2. p : is equal to Y, if Y. is equal to or between.

O^and 1,
3. P, is equal to I i f Y; is greater than 1:

and use straightforward ordinary least squares
estimation of the regression parameters, This
solution is often referred to as the linear proba-
bility model. Unfortunately, although it appears
to be a simple solution to the predicted probabili-
ties problem, the model has a number of serious
l, imitati%ns which are discussed by Domencich and
McFadden.. Again, the probabilities are not con-
strained to sum to one.

The Lout Model

The simplest, yet most statistically sound,
solution to the probability problem (within a re-
gression framework) is the logit transformation.
In this transformation, the ratio between the Pro-
bability that an observation or pixel i belongs to
a class P 1 and the probability that it does not
belong to P 1 is expressed as a logistic function:

P,., 1	 g1X	
(y)



where p is a vector of parameters and is a vector
of observations on inde pendent variablds. Taking
the natural logarithm of this expression,

The left-hand quantity is referred to as a icgit.
Note that when Xf is zero, the ratio will be 1,
indicating equal probability. As .?a varies posi-

tively or negatively, the ratio will shift accord-
ingly.

The ratio, under the constraint that the numer-
ator and denominator must sum to one, determines
the two probabilities uniquely, Expression (4)
can be solved explicitly for PiI

P. , s - 	(6)

And, if P ;• is defined as 1-P I , it is easy to show
that

Although expressions (4) and (5) show the
Product 4 Y as a linear function, he .^ vector may
contain ;sowers and cross products in the case of a
curvilinear model. An example is (elemental nota-
tion);

P.
ln(-	 ):;as ? 1 . 1 + ^	 + '^1,1 :iI +,3 ;,;: ? +R la,^.'116

1- P,
	($)

for the bivariate case.

Unlike the conventional regression models, the
logistic and linear logic regression models require
either a weighted least squares (l'1LS) procedure or
a maximum likelihood procedure to estimate the
calibration parameters (betas). The choice between
the two methods depends upon whether or not the

samp le under investigation includes repeated ob-
servations for each combination of values of the
explanatory variables, If so, WLS is appropriate;
however, remote sensing applications rarely have
repeated observations. Consequently, the method
of maximum likelihood is the preferred method,
A number of authors present the details of this
method, which is discussed briefly in a following
section." , ' ,1 '?, 11,1.'

Maximum likelihood estimation of logit model
parameters has many other attractive features.
Provided that the sample data are not multicol-
linear, a unique maximum likelihood estimator can
be obtained even in relatively small samples.
Also, the mathematical pro perties of the likelihood
function allow for efficient com p uter p rograms to
produce the parameter estimates. These estimates
are consistent and are the best possible estimates
in very large sam ples, The disadvantages of the
procedure are that it involvPS numerical optimi-
zation and therefore more com putation, and that it

requires more calibration data than MCC because of
the larger number of parameters which need to be
estimated.

The followin g is an example that uses contin-
uous and categorical explanatory variables to esti -
mate

in ( 
P
"'` )o y id +D 1 dz	

(g)

where P., ,/(1-P; ) is the ratio of 
the 

Proba bil ity
thatthat pilot	 is ` A^t of class 1, Y

	

tinuously measured variable on MM 	 (MSS or con-
tinuous collateral data), and 0, is a dumm y variable

that is equal to one if a categorical variable is

true at pixel f and zero if it is not, Given the
logit ratio, simple algebra will extract the value
of P,It is straightforward to add more con-
tinuot,sl and categorical ex p lanatory variables.

Estimating the Regression Parameters

In order to calculate the lo g it ratio in the
preceding formula, it is necessary to obtain esti-
mates of the regression parameters. The first steo
is to specify the model in terms of a likelihood
function. If the trainin q observations are thought
of as independent trials, then the likelihood of
the outcome of these trials (for the two-class case
described above) is=

,i	 n

L '	 1 Pti ,1	 (1-P.w,il	 (10)
+1

where observations .'=1 to n i are those in which the
observed dependent variable was a member of class '1
and '. =ni + 1 to n are the observations in which the
dependent variable was not a member of class 1.
Substituting from the definitions of P.- i and 1-P,.,,
in expressions (G) and (7), the result ,s

ni

L = TI	 `s^	 II	1 	 (11)
., = t	 ,^^i. =ni +1 1+r

As s pecified, the likelihood depends upon a
set of unknown parameters, the betas. These para-
meters are estimated by choosing those values which
maximize the preceding likelihood formula for the
given set of training data. Rather than maximize
the likelihood itself, it is computationally sim-
pler to maximize the logarithm of the likelihood, or

n	 aii
In L = e ^l.t- ,: 1n(1+o), 	(12.)

p=i'	 =1

To maximize this expression it is not possible to
set the partial derivatives of in (L) with respect
to the betas to zero, and solve simultaneously for
the betas in a direct fashion. Instead, the solu -
tion must be obtained by iteratively recalculatinq
in L for successive estimates of betas until the
partial derivatives conver ge upon zero.

(7)

(5) wit Exam le

Vii)



Momoth National Forest Test Site Location
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There are several mathematical techni ques for
iteratively converging the first partial dpriva-
tives to zero. One well-known techni que is the
11owton-Raphson Method, which calculates deltas
(amount of change) fur the betas by forming the
matrix of second partial derivatives, inverting it,
and postmulti plying it by the vector of the first
partial derivatives. That is,

where	 is the vector of calculated deltas, "" 1 is
the inverted second partial derivative matrix, and
is the vector of first partial derivatives. The

deltas are subtracted from the betas, and the sec-
ond partial derivative matrix and first Partial
derivatives are recalculated with the new betas,
The process continues until the vector of first
partial derivatives has converged u pon zero, at
which point the most likely vector of betas has
been identified.

Given these maximum likelihood estimates of
the betas, the last step in a logic model classifi-
cation sequence is to use ex pressions (6) and (7)
to calculate the vector of probabilities for each
p ixel and award the classification to the category
with the largest predicted probability.

Polychotomous Logit Re regssion

The preceding examule, although conceptually
straightforwari, is not applicable when there are
more than two categories to be predicted, The
dichotomous logit can be easily extended to the
polychotomous logit. Now, instead of two catego- 	 Figure 1. Index map showing locatior+ of area
rigs of interest; there are ? possible categories.	 modeled in Klamath National sorest.

The model now becomes:

	

_ 

	
(13)

L,a 
,

ty a

where P,	 is the probability that pixel :' belongs
0 the vCR category,

Because of the constraint that the probabili-
ties must sum to one, only -1 sets of betas and
probability ratios need to be determined. Intro-
ducing this constraint on the .7th class, it is
easy to show algebraically that

Imo - t

	

P,, + , = 1-Z P. 	 _ 1+ ,---- _ 1-1 -a--^;	 (14)

This constraint can also be introduced by taking
^.,= D, which produces an identical ex pression from
substitution into expression (13),

For estimates of the betas, the maximum like-
lihood estimation procedure, described above for
the two-class case, is generalized to the R-class
case in a straightforward manner,

Proportion Estimation

Although the discussion above has stressed the
use of the logic model for classification, it may
also be used for proportion estimation. Nelepka

et all' and Woodcock et a1! 4 have both discussed
this problem using underlying assumptions of multi-
variate normality, The loqit model p rovides an
alternative which does not assume multivariate nor-
3nality and estimates proportions directly. As in
classification, either linear or curvilinear models
may be selected, and ce gegorical variables may be
readily utilized as well. The difference between
application of the logic model as a classifier and
as a proportion estimator lies in the nature of the
calibration data. For the classifier, training
observations of .r vectors (for pixel ') are each
individually labeled' with a single class-, in the
case of proportion estimation, each observation
contains the observed Pro portions of classes and
the associated measurement vectors, These Pro por-
tions constitute wei g hts, and it is easy to show
that the likelihood function becomes (as in the two-
class case):

In (L)	 , rL?.,z3i'

-	 ln(1 + v	 ")
=1

where 3: is the proportion for the 'th observa-
tion for'class P, and .^, is the observation weight
(which, as a constant, is eliminated in differen-
tiation of the fraction),

^.	 , ,>



Applicr`ion xample

At the present time, the logit-based classi-
fier has not been tested, althou gh a logit model
has been used in a forestry remote sensing problem
of proportion estimation, This use is summarized
in the paragra phs below. For this application, a
linear logic model was devised and fitted to forest
species compositional data for northern California,
predicting the proportion of timber volume for each

of five coniferous tree s pecies at each pixel based
on registered terrain data quantifyin g elevation,
slope, and aspect. This research utilizes the
Video Image Communication and Retrieval (VICAR)
system and the Image Based Information System
(IBIS) resident at the University of California,
Santa Barbara, VICAR/IBIS develo ped at the Jet
Propulsion Laboratory (JPL^ at Pasadena, California,
is a Job control languag e which permits the sequen-
tial linking and execution of a vast array of
Fortran and Assembler routines in a batch environ-
ment, In addition to extensive usage of existinq
VICAR/IBIS routines, new VICAR and non-VICAR soft-
ware were developed and/or modified as required for
this application.

Logit modeling of species pro portions used

data derived from the Klamath National Forest, lo-
cated in northern California (Figure 1;, Ranging
;n relief frow 500 to 8,000 feet, the Forest in-
eludes 2,600 square miles of rugged terrain in the
Siskiyou, Scott Bar, and Salmon Mountains, Little
of the area is developed beyond management for
timber yield, livestock production, and recreation.
A wide variety of distinctive vegetative types is
present in the area, Forest vegetation includes
such coniferous species as noble, red, white, and
douglas firs, ponderosa pine, and incense cedar,
as well as several oaks, and typical species of
chaparral, Thus, the topographic and vegetational
characteristics of the area are well differentiated.
Within the Klamath National Forest, a study area
including most of the Ooosenest Range was selected
for logic modeling of species com position from
terrain features. This area was chnsen because
calibration data and Landsat imaoco were readily
available for it,

Digital Terrain Model

The logit model	 this forestry application
requires preparation of digital terrain data,
These data, obtained from the National Cartogra-
phic Information Center, in Reston, Virginia, are
derived from processing of 1:250,000 contour maps,
and include elevations at .every point on a grid of
approximately 65 m-spacing. Although the data are
comparable in scale to a Landsat image, the eleva-
tion values are quite generalized because they are
produced from small kale contour maps by interpo-
lation.

Slope angle and slope aspect channels can be

produced using the elevation data of the regis-
tered terrain image. Although a number of slope
and aspect generatir,g algorithms are known, the
simplest is the fitting of a least squares .plane
through each pixel and its four nearest neighbors
and the calculation of the downslooe angle and

direction of the plane. Slope as pect was trans-
formed from a coding of zero to 2665 representing 0'
to 3529 to a cosine function shifted by 4§'. Thi s
function, proposed by Hartung and Lloyd," contrasts
northeast-facing slopes, which present a favorable
cool, moist growing environment, with hot, dry
southwest-facing slopes. Although t he Function is
defined ecologically, it also simulates Lambertian
reflectance from alight source placed in the north-
east, and thus the as pect image shown in Figure 2
gives the strung visual impression of relief.

Logit Model

The logic model fitted is

where P,, is the probability that a board-foot of
timber Volume will be drawn from one of five species
1, , P	 is the probability that the board-foot will
not 5e drawn from species k, w is elevation (com-
pressed to 0-255 range), A is aspect transformed as

,.,described above, o is slope angle, and ^s 1 ;,	 ,(^q,y,
are the estimated regression constants, P)oie that
five equations, one for each sp rcies, actually com-
prise the model. The model was calibrated using 73
measurements of timber volume prepared by the U. S,
Forest Service and located within two subregions of
the Coosenest range, These samples are probably not
representative of the entire area modeled, but serve
for the demonstration purposes of this research.
Each sample was located on 1.15,840 scale color air
photos and transferred to Band 5 of a registered
Landsat linage to obtain the line and sample coordi-
nates of the sample point, The coordinates were
then used to extract elevation and aspect values for
the sample from the registered elevation and aspect
images, The coefficients for the model were fitted
by a nonlinear optimization algorithm employing the
Newton-Raphson method described above,

Given the constantsproduced by this pt,ocedure,
the probability images were created using the new
VICAR program "PROBMAPS." PROBMAPS, written soeci-
fically for this a pplication, calculates the pro-
bability of species s- for each pixel ^ using the
following expressions

a_

r	 -- 5 6df r

J=1

PROBMAPS then scales each probability so that the
range 0=255 represents 0 to 1, PROBMAPS output
images for this example are shown in Figure 2.
Brightness values represent that probabilities occur-
rence for douglas fir, ponderosa pine, white fir,
and red fir, with probabilities scales to range
from black (0,) to white (1.0), The incense cedar
image has been contrast stretched for display pur-
poses, and presents a probability range of 0. to ,3
from black to white. The probability images re pre-
sent maximum likelihood estimates of species Pronor-
tions; they appear reasonable in light of the known
ecological preferences of the species, but their
accuracies remain to be determined.

a



Fiqure 2. Clockwise from unner left: cosine function of slone v;oN .	 enhahility ims'les of cnniferous
forest species red fir; white f ir; incense cedar; ponde rosa nine; and iouglas f ir; for Goosenest test area
within Klamath National Forest. For nrobability imanes, only area within Forest boundar y is shown.
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Term	 Definition

Although Of loait classifier appears to have
so l 't unicut adyantagor	 ^r ,rtiventionAl maximum
likelDood classificatioo; x-ether work will be
necessary to prove its yOue for remote sensing
applications. Topics to be investigated include.

1. Model Specification.  for what shapes of non-
normal- ^ff _st_r ut on are linear models a ppro-
priate? Under what conditions are curvilineal
models necessary? Could a stepwise procedure,
analogous to polynomial curve fitting, be
devised for model calibration? Since it is
possible to obtain assym ptot^ic estimates of
the standard error of each beta, could the
stepwise procedure droo individual terms from
the model which are not significantly differ-
ent from zero?
Accurac . How well are probabilities pre
O`ct—OaTCan a confidence limit be placed on
the predicted probability? Monte Carlo meth-
ods may be hel pful here, How does accuracy
intRract with distribution shape?

a= Further An tscat'efns. 'he logit model needs
tpFe xerc se on a real classification Pro-
blem and compared with conventional MLC,
t^lhich is more accurate? Which consumes more
computational resources? Do categorical vari-
ables present any special problems?

These questions anti others will be the subject
of future research in the application o r the logic
model to the remote sensinn problem.

Table 1. Nom Cation

Term	 0efInIOon

Number of measurement variables used to
characterize each object or observation,

A - dimensional random vector.

Vector of measurements on - variables
associated with the •'th 6 ect or obser-
vation,

Probability that a	 dimensional random
vector will	 take on observed values.:;,

Member of the *!th set of classes w; o'.-=l,
2,....,	 .,

Probability that an observation will be
a member of class wy; prior probability
of class	 a.,.

n,? ,,^P Probab i lity density value associated
with an observation vector ^ as evalu-
ated for class .^.

(;^) Probability density value times prior
probability for observation vector Y
evaluated for class

a p, Parametric mean vector associated with
the Pth class,

7. Parametric r by * dispersion (variance-
covariance)' matrix associated with the
kith class,

D. ,. by rt di spersion matrix associated with
a sample of observations belonging to the
Pth class-, taken as an estimator of c.,.

Summation si gn, add together 411 occur-
rences of ,1 from 1 to

Product sign, multi ply together all occur-
rences of a from l to n..

t	 Estimated vector of regression parameters.

m , Mean vector associated with a sample of
observations belonging to the Pth class;
token as an estimator of -P.
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Collateral data, here defined as preexisting spatial information in the fora of a map, pro-
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A number of existing statistical techniques can be used to merge spec-
tral image data with collateral information, including regression, ANDVA,
.dA[WA, ANOOVA, MANCOVA, discriminant analysis, mad=n likelihood classi-
fication with or without prior probabilities, contingency table analysis,
and logit modeling. The choice of an appropriate t:achnioue depends upon
the nature of input and autput variables -- contim:ous, discrete, or cate-
gorical -- and the appropriate model -- paramstria or nonp=zm= c.

Logit modslin is a very versatile technique which is well adapted to
remote sensing application. The logic, which is the natural logarithm of
an odds ratio for two states of an output categorical variable, is predicted
by a linear or c=vilirrear function of continuous or categorical input vari-
ables. Since the logit models probabilities or proportions, it can be used
directly as a classifier or indirectly as an ' estizzior of prior probabili-
ties for conventional maximum likelihood classification with prior

	
babil-

ities. The logit model is onparametri"c, a featura which makes it 	 hly
desirable when used to mergs disparate types of collateral data. The dis-
advantages -^f the logit model are that. more calibration (training) data are
required to fit the model, and that fitting requires an iterative nonlinear
aptimizaticn procedure. A logit model. was dr .,ised azd fitted to forest
species compositional data for northern California, predicting the propor-
tion of timber volume in each of five species at each pixel based on regis-
tered terrain data quantifying elevation and slope aspect.

Another versatile tool is maxi-m likelihood classification with prior
probab:-11,ties. By making prior probabilities conditional on a collateral
data cluniel, the information contained within the chz=l can be conveyed
to the math= likelihood algorithm. An example is in land use, in which
a previous classification and an externally devised transition probability
matrix are used together with new image data to produce an updated classi-
fication consistent with the observed pattern of change. This technique
has relevance for monitoring urban expmnsion and the impact of forest
clearing :n -.ovelcping nations.

Viewed in a broad context, the problem of combining image data and spatial collateral data
into a predicted output map or image is actually a problem of combining continuous and categori-
cal. variables in a modeling framework capable of producing continuous or categorical. oatputs.
At the University of California, Santa Barbara, %, SA-supported research (grant NSG-2377) is cur-
rently underway to identify existing models and procedures for spatial modeling and to apply
them to selected datasets to demonstrate their applicability in a remote sensing situation.



cessed image, or set of observations at grid coordinate locations;can be combined with Landsat
or other remotely sensed digital imagery to enhance classification accuracy or to construct
models which predict spatial patterns of ground phenomena, Collateral informatioa can be either
continuous or categorical in nature. Examples are elevation, slope, or aspect channels obtained
from a digital terrain model (continuous); and rock Vpe, soil type, crop ttyyppoa, or land use
(Categox^cal). Image data, with which collateral information are to be combit>.d, are typically
eontiranoue in nature, although values msyba quanoized into discrete gray tone levels fcr data
processing applications. Desired outputs may also be either categorical or continuous.
of classification constitutes a discrete or cacegorical output, whereas such outputs as percent
bare ground, timber volume, soil loss, or forage cover are continuous in character.

Figure 1 presentsappropriate techniques for the merging of continuous, categorical and
mb,ad (both continuous and categorical) datasets to produce either continuous or categorical out-
puts. Continuous output models, including regression, analysis of variance, and analysis of co-
variance, are all mathematically related and based an least squares algebra, Categorical output
models are more diverse and include variance maximizing techniques such as discriminant analysis
as well as the ncnparsmecric methods of contingency table analysis and logic modeling. Maydm=
likelihood classification may be viewed as a special case of logit modeling in which the input
variables are assumed to be normally distributed. Notaparametric and mmdnm likelihood techni-
ques, because they produce proobabilities of classification as an output, also have the advantage
that they can be adjusted for prior probabilities. Because many present remote sassing applica-
tions call for categorical classification, these latter methods are probably most useful in cam-
biasing continuous image data with categorical and continuous types of collateral data.

Demonstrations of a selected set of these techniques are planned and under current develop-
mat; their ctazent status is discussed in following sections. Several or these examples have
important implications for rennte sassing in developing nations. In one application, logit
modeling is used to fie a model which describes the probability of occurrence of various forest
species given elevation and slope aspect values obtained from a registered digital terrain model.
Once obtained, these probabilities can be used as prior probabilities in a maxima likelihood
classification of a Landsat image with registered terrain data for r n.-ral vegetatirm units.
This technique could facilitate the accurate identification of forest types in complex tropical
upland environments.

In another a mple, land use classification Zor change detection monitoring is improved by
a contingency table-analytic technique which quantifies the probabilities of change for each
land use type during the fixed time interval. This technique has important implications for many
developing nations, especially in Central. America, where urban expansion is iqucting .agricul-
teral: land, and forest clearing for agriculture is impacting large natural environments. Addi-
tional examples are being developed, focused an Landsat , and collateral datasets obtained for an
area of Ventura County, California.

2. STATISTICAL TEC11cT qM

Figure 1 identifies a set of statistical techniques which are relevant for conbisning colla-
teral data in the context of Landsat modeling and classification. The teclaniges can be seen as
a double level hierarchy, ranging from continuously measured independent variables in the first
column to categorically measured independent 'variables in the last column. In the first row,
the dependent variables Are are continuous in nature, and in the second row the dependent variables
are categorical. Continuous variables are measured on interval or ratio scales, whereas categori-
cal variables are measured at namdnal or ordinal scales. Categorical variables can be of three
types:

(a) dichotomous (e.g., presence or absence, yes or no)
(b) unordered polychotomous (e.g., land uses; agriculture, urban, forest, etc.)
(c) ordered polychotomous (e.g., low runoff, medium, and high runoff)

The statistical techniques in the first row have been thoroughly documented and are commonly used
in social science (Blalock, 1972; Graybill, 1961; Morrison, 1967; Winer-, ,. 1971: Hmmver,"
there has been relatively little work in the area of applying these approaches to remote sensing.
The second ray of the figure describes techniques which are generally less well known, but also
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include mud= likelihood calssification as caama ly carried ou= in remote sensing, Thee remain-
ing portions of this section discuss the theory and remote sensing application of the techniques
identified in Figure 1.

2.1 CA\LJ UM RESMM VAPJAHLE

The statistical techniques of the first row of Figure 1 she= one thing in common - they
are all different forms of that basic Baser regression model. Consequently, the theory and
application of the different types of regression in row one will be very siadlar. Call (a) will
be examined in detail, and except where explicitly specified, the analysis can be extended to
cells (b) and (c).

2.1,1 =.. (a) -- CONrM=S E ANMRY VeRLIMES. The most curly used method in this cell
is regression, which predicts a continuously measured response variable from continuously Mus-
ured explanatory variables. The model (in vector notation) can be written:

' +
where r is the vector of observed dependent variables, 9 is the vac-tor of unknown parameters, .r

is the vector of observed independent variables, and a is the vector of errors. (Table I des-
crib" the symbols used in this paper.) Typically, the vector a is unh:uxan, and Host be esti-
mated from a dataset for which both response and explanatory variables are observed. This esti-
matiun is done by the process of ordinary least squares regression (OL.S). OLS regression fi*ads
the slope and the intercept of a Line rusting t 	 n,^g d=ough the data which mi	 the variance of
E(Y-Y) 2 , or the sum of the squared differences between the observed Y and the predicted Y. The
vector of predicted Y value is calculated by:

The regression is accomplished by defining the quantitq° q'°equal to 
It 

(Y Y) takiaR _the, first
partial derivatives of q with respect to the values in the vector d and setting these partials
equal to zero. By definition of a pan'ital derivative, a miniatm has been found.

The best statistic for measuring the strength of the regression is R2' There are several
ways of calculating R2, but the following is conceptually the simplest. The residual sum of
squares (R,55) or the total amount of variance in tha model not explained by the regression is
calculated by;

n

.4SS	 E (Yi - Y^) 2

i- 1

The RSS, when divided by the total corrected sum of squares in .Y (written ' TSS), gives the propor-
tion of unexplained variance to total variance. R 2, or the proportion of explained variance, is
obtained by subtracting this ratio from one:

R2 ^ 
1 -,RSS

TSS

One example of row regression could be used within the context of' rging L andsat and col-
lateral data is biamesr modeling. 'the regression example used for cell (a) is restricted to
continuously measured independent variables. For sia42icity, only one spectral channel and one
collateral data source are used, adding other chmmis and other collateral data sources is a
straightforward procedure. A basic linear model could be:

5Z - ao + 'Ai OISSi) + 8 2(raini)

where B. is the predicted biaws for pixel i, MSS. is observed multispectral scanner data (as
single $and, or multiband ratio or transform) for ^iwl i, rain. is observed rainfall on pixel
i, and the vector of betas (0 0 ...9 4) are the estimated regressionn parameters,

Regression models are applied as a two stage process. First, the model must be calibrated
(estimate the vector of 8 1 s) by regressing the observed independent variables on the observed
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dependent variable. In this e .̂ . 1e, biomass • data are required frasr a- sufficientnumber or
pixels to give a representative sample of the Londsat image to be modeled. The locations of
data points are then "rubber-sheeted" to a geometrically corrected 'Landsat image, and the linked
bianess and MSS data is directly accessed by a statistical software package such as the Statis-
tical Analysis System (SAS), to calculate the betas and R 2 . Secondly, if R'4 is statistically
significant (i.e „ the calculated betas explain a ijfi,tini°icant portion of the total variance in

 the model is extended as a predictor to othe r, piv.tL. where the dependent variable has not
hsen observed. 'This, in effect, constitutes a m L d4l or- biomass predicted try surface reflectance
and measured rainfall.

2.1.2 CELL (b) -- M, = EOLVNATORY VApTAmM . This cell includes conventional regression
models which are similar to those of cell (a) but also include a mixture of continuous and cate-
gorical explanatory variables, Such models are cacao in social science research, the categori-
cal explanatory variables often being termed "dummy" variables. It can be sham that the mare
familiar statistical. `est Analysis or Covariance (ANCOVA) is a straightforward extension of OLS
regression with dummy variables (variables that assume values of 1 or 0 depending on the presence
or absence of the qualitative variable being mearured),

As an example, the model used in cell (a) will be extended to cell (b). In this cell we
are able to include data measured categorically -- for example, soil type which can be observed
in two states, referred to as class 1 and class 2. The model now becanes:

9. ^0 + iI NSSi) + 9 2 (mi"i) + 93D,; + hDa2

where the Womass for pi^l is predicted by the variables used in cell (a) in combination with
the dumny variable terms d 4D,.

i
^ and i 4D,; 2 . If the observed soil type for pixel i is class 1,

then the categorical. beta ;;ii will be"used is 83, whereas if the: soil type is class 2, then 94
will be used. This is accomplished by defining DyI equal to I if the soil type in pixel i is
class 1 and 0 otherwise and by defining D,i2 equal to 1 if the soil type is class 2 and O otherwise.
It. is a relatively siapl.e task for e xpand this model tar inaludr several (polychotwrus) soil types
or to include other categorical data.

When t,^um is more than one interval scale dependent variable, the model is called MANNA,
or Multivariate Analysis of Covariance. In this model, all of the independent variables are
regressed against each of the dependent variables, with separate a 2s and F ratios calculated for
each dependent variable. An exacple of this is:

fi:-,3j - So + i l (MSSi) + 92(raini) + i 3D;l + a4Di2w

where Hi is predicted biamass for pixel i, Si is predicted soil loss for pixel i, and the-other
variables remain as is the preceding example. 1%=VA can be seen as. a device to test mere than
one ANCOVA model in the same statistical analysis.

2.1.3 CELL (c) -- CA=RICAL EMANATORY VARIAMM. The extended regression model examined in
cell (b) is also applicable here. When the explanatory variables are all measured on the ordinal
or nomdnal scales, the model is usually called Analysis of Variance (ANOVA). All that is neces-
sary to move from cell (b) to (c) is to exclude from the analysis all explanatory variables that
are Lwasured on the interval or ratio level. As an e xmmple of ANOVA, the biomass model would be
writtem!

ai - A  + SIDiI + 3 2D•i2 + R3Di3 + ^4Di4

Here, it and d: refer to two different soil types and 43 and 94 refer to rainfall that has been
categorized into two levels (high and low). It would be possible to categorize MSS data for use
in such a model, but there is considerable information loss. Consequently, the ANOVA or MAMVA
(Multivariate analysis of Variance) model is not likely to be as useful as the ANCOVA or I1ANI'MA
model.

2.2 CATEOORICAL RESPONSE VARIAMS

The first three cells have dealt with Landsat ISS data and continuous dependent collateral
variables as predictors in various statistical =dels of physical phenomena. The last three
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cells, in which the dependent variable is categorical, 'open up maw ways of utilizing collateral
data within the Landsat structure. With categorical data and with the appropriate statistical
techniques (see Figure 1) it is possible to:

1) model physical and social phenomena that are best represented in discrete steps -- low,
medium, high (soil erosion, fire baurd, btumrss, housing quality, municipal. services,
etc.);

2) classify the dependent variable into nominal groupings (land use, vegetation com unity
type, etc.);

3) create predicted probabilities that the dependent variable will assume particular cat11-
Sories end use
tion with other data ((us^uallly MS) in x Bs)malan meodm:n likelihood

	conj
lihhood classifier. 	

usc

Unlike the first raw of Figure 1, the second row includes five different statistical. twltrd-
qua„e. For purposes of modeling with landsat under the constraints of the second raw, 11audm m
Likelihood Classification 0,1L) with Prior Probabilities is the most important method. 'Maxi.,
m>on likelihood' is a statistical property of an Astimator, and, used in its proper way, ia^Use
that an estimator has the highest probability of producing the data which were used for litrra-
tion. However, its use in remote sensing implies a particular decision rule 01C) possessing
this property, which is discussed below. Our research has shown that the inclusion of collateral

deny probabilities to MC offers a simple and effective way of combining collateral and

The key to the use of priar probabilities is the logit regression model, which takes col-
lateral data (continuous or categorical) and gene rates predicted probabilities. These predicted
probabilities can be used as,a direct classifier (i.e., the piwel is classified into the mate
gory that has the highest probability), but the most likely usage of these predicted probabili-
ties is as input to the 11Z decision: rule, in which they serve as weights. Since the logit re-
gression model is probably the least fzdlari of the statistical. techniques to remote sensing
research, and since it is applicabla in a%-x eell - in " the bottom raw, it will be explored with
the most derail.

Diserimirmt Analysis is similar in its usage to maximum likelihood with prior probabilities
but because of its computational complexity it has not been used often in the remote sensing ccn
text. Camequently, it will be only briefly discussed. l2ni-Square Analysis, which is the tra-
ditional analysis used on contingency tables (all variables are categorical) is by definition
not compatible with interval or ratio scale remotely sensed data. It is s imilar to AIDVA,
except that the output is categorical.

2.2.1 CELL (d) -- CCTJTIIV MS ELANATURY VARIAB LES. ?n the past ten years, maximum likelihood
classification has found wide application in the field of remote sensing. Based on multivariate
normal distribution theory, the d .0 algoritha has been in use for applications in the social
sciences since the late 1940 ' s. Providing a probabilistic method for recognizing similarities
between individual measurements and predefined standards, the algorithm found increasing use in
the field of pattern recognition in the folloudw

.
decAdes:(Chow, 1957; Saba tyen," .1962; "Nilssca,

1965). In remote sensing, the development of matispectral scanning technology to produce
layered multispectral digital images of land areas from aircraft or spacecraft provided the
opportunity to use the mexLm= likelihood classifier in producing thematic classification mars
of large areas for such purposes as land use /land cover determination and natural cultivated
land inventory (Schell, 1972; Reeves et al., 1915).

Before presenting a practical example, it will be helpful to briefly review the mathematics
of the nmdumi likelihood decision rule. In the multivariate remote sensing application, it is
assumed that each observation X (pixel) consists of a set of measurements on p variables (chan-
nels). Through some external procedure a set of observations which correspond to a class is
identified » that is, a set of similar objects characterized by a vector of mum on messure-
ment variables and a variance-covariance matrix describing the interrelationships among the
measurement variables which are characteristic of the class. Although the parametric mean vec-
tor and dispersion matrix for the class remain =known, they are estimated by the sample means
and dispersion matrix associated with the object sample.

Multivariate normal statistical theory describes the probability that an observation X will
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occur, given that it belongs to a class k, as the following fnnct.',.on:

,-k (Xf) - (2n) -'V t^^' eC1 - Ilk)'	 (X - uk)

As applied in a mndmum Likelihood decision stile, the previous expression a11owo the calculation
of the probability that an observation is a member of each of k classes. The observation (pixel)
is then assigned to the class for which the probability density value is greatest. Since the
log of the probability is a monotonic increasing function of the probability, the decision can
be made by comparing values for each class as calculated from the right hand side of equation,

A simplified remote sensing claacificaticn rule using 
maximum 

likelihood (Tatsucka, 1971;
Strdhler, 1980) with k possible categorical classes and p clnan<nels of MSS input datasets is to
choose the k (class) which minimi_as

Fl,k(X,j) - lnlDkl +	 - mWr1k_ I OV ark),
This expression is derived from the preceding one by taking the natural logarithm aid deleting
term which are constant for all classes.

Interval or ratio level collateral data can be incorporated as extra "logical" channels
within this model, One successful forestry application was achieved by the creation of a tax-
ture cho nel which was synthesized from Landsat Band-5 by taking the standard deviation of den-
sity values within a 3 by 3 moving window, scaling this value, associating it with the center
piaoel of the 3 by 3 window, and returniisg it in fanage fotmnat (as a fifth channel). Values in
the texttm a cluesrmel describe the variatic ion image tome within the i me-diate area of each pixel.
High values are characteristic of edges and boand^aries, whereas lower values describe more uni-
form areas, this technique was shown to signific^tly increase classification accuracies for a
number of species-specific forest cover types in northern California (Strabler, 1979, 1979)..
Strahler (1978) demonstrated how to input collateral information in the form of elevation data
anci slope aspect (irt combination with a texture channel) as separate "logical" channels, increas-
ing the classification accuracy by 27 percent,

2.2:1.1 Lceit Re=essiion. In extending the conventional regression models adopted in cells
(a), (b), and c to the orebiems of cell (d), two difficulties are encountered. (For details
see Wrigley, 1976, p. 8-9 1977b; p. L-13). First, a comventional regression model with a
categorical response variable will violate the constant error variance or hoauscedasticity
assumption.%bile this problem does not result in biased or inconsistent parameter estimates,
it does result in a loss of efficiency and gives rise to serious problems if conventional infer-
ential tests are used. Secondly, a conventional. regression modal with a categorical response
variable may generate predictions which are seriously deficient. It can be shown that the pre-
dicted values of the response variable in such a model are best interpreted as predicted proba-
bilities. The problem is that although probabilities are constrained to lie within the range
of 0 to 1, the predictions generated from such a model are unbounded and any take values from
misaus infinity to plus infinity. Thus, the predictions may lie outside the meaningful range of
vrobability and may be inconsistent with the probability interpretation that was just presented.
The simplest yet most statistically sound solution to the probability problem (within a regres
sion frkewotit) is the logit transformation, in which the probability P i is modeled as

Pi . s^Y

l+eY

and the probability of "not P2" is:

1 + e--

where 9x is the vector product of betas multiplied by row vector of Vs (obser:r,-d explanatory
variables), Although these two equations are nonlinear models, it is a simple matter to rewrite
them as
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The logit transformation is achieved by taking the natural logarithm ofof the preceding formula,
which yields

P.

in	 6X
1 Pi ^-

This transformation has the prop ty of increasing from minus infinity to plus infinity as P;
increases from 0 to 1. Once efficient estimators are calciAlated for the betas, simple algebra
will extract the value of P.. tv method can be generalized to '^ classes, in which there are
k - 1 logits of the form L

ln(), ln(p},...,ln(pl)

Fach logit must be modeled separately, producing k - 1 sets of betas. As in the binary case
described above, algebra will extract the values of the probabilities from the k 1 logits pre-
dicted for an observation along with the constraint that all probabilities must sum to one.

Unlike the conventional regression models of the previous cells, all of which can be effi-
ciently estimated by the ordinary least squares (CIS) method, the logistic and linear logit re
gression models appropriate for the problems_of cell (d) require either a weighted least squares
(CIS) estimation procedure or a maximum likelihoodlikelihood procedure. The choice betwem the two methods

whetherdepends upon ether the calibration data include repeated observations for each combination of
values of the explanatory variables (in the case of WiS) or not (in the case of maxi=m likeli-
hood). Since such repl.icatio o are unlikely in calibration of the 	 modeldel for remotely
sensed data, 

maximum
	 estimation is preferred. (Note that here the term "amandarem

likelihood" refers to a param=eter estim =ation method different from multivariate normal MW.)
The maximum Likelihood solution to the calibration of the logit model has many attractive features.
It can be shown that provided the sample data are not multicollinear, a unique maximum likelihood.
estimator can be obtained even in relatively small samples. Also, the mathematical properties
of the likelihood function allow for efficient 	 programs to produce the parameter esti-
mates, and these estimates are consistent and are the best possible estimates in very large sam-
ples. The disadvantages of the procedure are that it involves numerical optimization and there-
fore more costly computation, and that it is a less familiar statistical technique. For a de-
scription of the procedure used to calculate such maximum likelihood estimates, see Cox (1970,
P, 87), Mantel and Brown (1973, p. 654-5), Wrigley (1975, p. 191-3), Domemcich and ,acFadden (1975,
p. 110-12) and Schmidt and Strauss (1975a, p. 404-5).

'there are two ways the logit model can be used within the context of remote sensing. The
first is to act directly as a nonparametric classifier (i.e., to classify a ptcel into the class
h4wing the highest predicted probability). The second is to use collateral data in a logit model
to predict prior probabilities and irgn them to a 1W decision rule which accepts prior proba-
bilities. this approach effectively crebines a normparametric logit model for collateral data
with a parametric MX model; it will be discussed in a following section. The following example
of the logit model involves the direct classification of Lind use by MSS and terrain data. The
model is

in 
Pi 1

1 Pi t 	
sa + 9 1 0=25i) + a2(3zoPai)

-
where Pi t is the probability that pixel i is class 1 and the following terns indicate linear cos-
binacion of spectral and collateral data. If desired, the model can easily be expanded to all
four bands and all the continuous collateral variables relevant to the classification.

2.2.1.2 Discriminant Anal ysis. Discriminant analysis is a multivariate technique used to
produce sets of unco	 t it=Mns which separate observations most efficiently into predesig-
nated groups. A discriminant model, or classification criteron, is developed, the values of
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which define groups for the observations. This individual observation is classified into one of
the previously defined groups by a measure of generalized squared distance.

This technique requires some difficult computation. Deriving the classification criteria
requires extracting ei	 tors from the nonsym acric W

_ 
1 B matrix, where B and W are respec-

tively, the beamen and within groups sums of squares and cressptoducts matrices. The mathe
matics of this process are beyond the scope of the paper (please refer to Tatsu *A, 1971; Cooley
and Lahnes, 1971) The tecnqique is helpful in the social scidnces for identifying variables
which do the best ,job of separating classes, but is not usually used to process new data for
classification. Further, the technique assumes t'h%t all classes possess an identical dispersion
matrix, an assumption unlikely to characterize remotely sensed data.

2.2.2 CELL (a) -- MIXED E'SF'LItd =Y VARIABLES. Conceptually no new problems are encountered in
moving from cell (d) to cell (e); categorical explanatory variables are included through dunmy
variables. The logit model has high potential for application in raaote sensing. Since it is
capable of incorporating both bcntinmus and discrete input data and gsneraring probabilities
either directly for classification or as input as a collateral data set of probabilities to MW
(Strahler, 1979), In other words, interval level measured data such as rainfall, elevation,
slope, etc, (no matter what its varianca-covariance) can be combined with discrete data such as
soil type, previously classified land use, census tracts, etc., in a nonparamietrie, logit frame-
work and the result will be a discrete output such as a Land use map, a soil erodibility map
(divided into discrete levels) or other special use maps.

The logic =del. as in the previous call, c= be easily extended to cell (a). Again, Land
use could be predicted by

In . 
Dil	

= pq + 91(band5i) + WOZopei) + 93Di1 + i4Di2
1 _ r'i 1

where Pit is the probability of land use '1' for pixel iover the probability of all the land
uses that are not '1', band5i is the MS value for pixel i, olopeti is slope of the pixel, and
^i1 is a dutamy variable with a value of 0 if the previous Land use on pixel i was class 1 and 0
otherwise and Die has the value 1, if the land use on pixel i was class 2 and 0 otherwise.

Proceeding paragraphs have referred to the use of prior probabilities in modifyirg the out-
coca of a MW, Since tta prior probabilities can be modeled to reflect both continuous and cate-
gorical input data, and the input of MLC is a categorical cllssification, this teccnique is ap-
propriate to discussion of cell (e). Prior probabiLi.ties are incorporated into the classifica-
tion through the msntipulation of the Law of Conditional Probability. The acutal derivation of
the prior probability is beyond the scope of this paper (see Strahler, 1980). The modified
decision rule is to choose k which minimLm

F2,k (Xd - InIDk 1-+ (Xj - mk) 'Dk 1 (Yj - mk) ZW(e0

where the only difference bc+njeea this formula and the one presented in cell (d) is the probabil-
ity twin, -21aP(ek). This f'(vm of the decision rule is usually attributed to Tatsucka and
Tie ®ezt (1954; Tat:.,,voka, 1971) .

It is important to understand how this decision rule behaves with different prior probabil-
ities. If the prior probabilityP(ep) is versyy small, than its natural logarithm will be a large
negative nuaber; when multiplied by -2, it will become a large positive number and thus Fz, k for
such a class will never be minimal. Therefore, setting a very smell prior probability will
effectively move a class from the output classification. Note that this effect will occur even
if the observation vector X. is coincident with class mean vector mk . In such a case, the quad-
ratic product distance iuncii.an (Xj - mk)'Dk l (Xj - mk) goes to zero, but the prior probability
term -2lnP(ek) can still be large. Thus it is entirely possible that the observation will be
clsssified into a different class, one for which the distance function is quite large.

As the prior probability P(ay) becomes large and approaches 1, its logarithm will go to
zero and F2ik will approach F 1i p for that class. Since this probabiliVi and all others moist sum
to one, however, the prior probabilities of the remaining classes will be small nuabers and their
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Values of F2i k will ba greatly augmented. The effect will be to force classification into the
class with high probability . Therefore, the mare extreme are the values of the prior probabili-
ties, the less important are &A actual observations values Xa

For a mimarical example of how prior probabilities can affect the decision of the mudaum
likelihood classifier, please refer to Strahler, 1980, There are so many potential applications
of prior probabilities and the mandmmse likelihood decision rule that it would be counterproduc-
tive to list then all. In general, a44 data that is relevant to a classification model can now
be incorporated and this process has ban shown to significantly increase classification accura-
cies (Strahler, 1978; Strahler, 1980).

The versar lit7 of the prior probability techniques camas about when the priors are allowed
to vary on a pi`cel-by-pixelbasis. The priors for a pixel may be determined by a logit or other
model, or by using a set of class -conditional prior probabilities estimated by sampling, Because
the priors are computed separately, it is possible to mix any sort of modal estimating prior pro-
babilities with a multivariate normal = algorithm which is known to be well suited to most
spectral data. Thus, the technique allows easy, flexible merging of collateral data, used ro
predict the priors, with continuous image data. These points are discussed in more length in
Strahler (1978).

2.2.3 CELL (f) - CATEGORICAL EXPLA=ORY VARIAEL$S. Data that falls into this level has been
traditionally analyzed by contingency table analysis with Chi-Square methods. But statistically
speaking, it is a simple matter to extend the logit model of cell (e) to cell (f) through the
use or dummy variables. For data that only come in nominal or ordinal levels, the logit model
offers new and important insights into the data (Wrigley, 1979; Theil, 1970; Grizzle, Starmer
and Koch, 1969; Koch et al., 1971, 1,972, 1976a, 1977; Landis and Koch. 1977, Iahnen and Koch,
1974x, 1914b). As in earlier discussion, the logit model can serve directly as a nonparamstiic
classifier, using only categorical var iables input as dummy variables. In this farm, the logit
model is equivalent to a log linear model of a contingency table; such models are discussed fully
in such texts as Bishop ec al. (1975).

The categorical logic model is formulated irr the example below:

^1i
12n	 p0 + 61D 1i + d2D2i

1 - Pli

where there are two output categories -- 1 and not 1 — which are modeled by categories of soil
type as described in cell (e). Thu classifier simply assigns the output pixel to the class with
the higher probability.

3. APPLICATIONS

Two statistical modeling tec^aziques, logit modeling and maximum likelihood classification
with prior probabilities, were selected for feather investigation in the context of a real appli-
cation. A linear logit model ,was devised and fitted to forest species compositional data for
northern California, predicting the proportion of timber volume for each of five coniferous spe-
cies at each pixel based on registered terrain data quantifying elevation and slope aspect.
Mlaximam likelihood classification with prior probabilities was tested in Ventura County, Cali-
fornia in a land use application. A previous Landsat classification and an externally devised
transition probability matrix were used together with new Landsat image data to produce an up-
dated classification consistent with the; observed pattern of dump.

Throughout this research we have utilized the Video Image C m dnicaticn and Retrieval
(VICAR) system and the Image Based Information System (IBIS) resident at UCSB. VICAR/ISIS, de-
veloped at the Jet Propulsion Laboratory (JPL) at Pasadena, California, USA, is a job control
language which permits the sequential linking and execution of a vast array of Fortran and
Assedoler routines in a batch environment. In addition to extensive usage of existing VICWIBIS
routines, new VICAR and non-VICAR software were developed and/or codified as required for the
purposes of this research.

3.1 LXIT DNMEIMC OF SPECIES PROPORTIONS
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Logit modeling of species proportions used data derived from the Klamath National Forest,
located in northern California, USA, (Figure 2). Ranging in relief from 500 to 8,000 feet, the
Forest includes 2,600 square miles of rugged wrain in the SL%kiyou, Scott Bar, and Salmon
^i mains. Little of the area is developed beyo.td management for timber yield, livestock produc-
tion, and recreation. A wide variety of distiwtive vegetative types is present in the area.
Forest vegetation includes such coidfercus species as noble. red, white, and douglas firs, pca-
dorosa pine, and incense cedar, as well as several oaks, and typical species of chaparral. 'Thus,
the topographic and ingetational characteristics of the area are well differentiated. Within the
Klamath National Forest, a study area including Host of the Goos ►amt Range was selected for

omlogit modeling of species cogosition fr terrain features. This area was chosen because cali-
bration data and Landsat images were readily available for it,

The logo model devised for thisforestry application requires preparation of digital tar

^inia.
data.

USA,are^derived from fromt Naofi 
1
0,000 ccoontow mps and includa elevations at

evasy point on a grid of approximately   6 	 spacing. Although the 	 are ccaparable in scale
to a Landsat image, the elevation values are quite generalized because they are produced from
small scale contour maps by interpolation (Figure 4).

Sloes angle and slope aspect channels can be produced using the elevation data of the regis-
tered terrain image. Although a number of slope mead aspect generating algorithms are kmmn,
the simplest is the fitting of a least squares plane hra each pixel and its fo= nearest
neighbors and the calculation of the downslope Angle aid Section of the plans. Slope angle is
obtained relative to the mmwic range of the elevation c1haintnel and image grid spacing, and azi-
moth is determined with respect to the re^ctanngulac image grid. These chasnnals are best generated
directly during the preproeeASing of the original. terrain data. At that time, slope angles and
aspects can be calculatad from half-word absolute elevations arrayed in a north-south east-west
grid.

The slope aspect image (Figun:s 5) consisted initially of gray taus densities between 0
(black) and 255 (white) which indicated the azimuth o,` slope orientation, ranging cloaluise from
0° to 359°. These values were then, transformed according to the function below;

newden - 3.0 + 126.0*(1.0 + cos(.024933275*(oZdden - 26.1)))

when olddon-symbolizes the old (azimuth-keyed) gray tone pixel density value, neuden symbolizes
its tramformad value, and the argument of the cosine £unties is expressed in radians. This
.unction trwisforms density values according to an orientation proposed by I&Jar=&g and Lloyd
(1969). Since northeast slopes present the most fsvorable growing anvironment, and southwest
slopes the least favorable, with northwest and southeast slopes or neutral character, the den
sity tone azl=ths were, resealed by a cosine function with 3 representing due northeast and 255
representing An southwest. Neutral slopes, oriented northwest or southwest, thus received den
sity tomes now 128. Flat pixels were coded with zeroes. The function also corrects automati-
cally far the 12° skew of the Landsat image.

The logi.t model fitted is shown below;

Pk
ln(p_k)	 il )k + i 2,kE + i3,k4 + 94,kS, k - 1,5

when Pk. is the probability that the board-foot of timber volums.will be drawn from one of five
species k, P,k is the probability that the board-foot will not be drawn from species k, E is ele-
vation (compressed to 0-255 range), A is aspect transformed as described above, S is slope angle,
and A l , k , ... , d4.k are the estimated regression constants. Noce that five equations, one for each
species, actually comprise the model. The model w&s calibrated using 73 measurennetncs of timber
volume prepared by the U. S. Forest Service and located within two subregions of the Coosenest
range. These samples are probably not representative of the entire area modeled, but serve for
the detmnstraticn purposes of this research. Each sample oats located an 1;15,840 scale color
air photos amid tranferred to Band 5 of the Landsat images to obtain the line and sample coordi-
nates of the sample point. The coordinateg.-.Tre then used to extract elevation and as pect values
for the sample from the registered elevation and aspect images. The coefficients for the mndel
were fitted` by a nonlinear optimization algorithm employing the Newton-Raphscn nathod to select
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coefficis= with mmdamm likelihood.

Ginvenn the constants produced by the procedure discussed above, the probability images were
,xeated using the new VICAR progr

am
 "PRDBMAPS," MWAPS, written specifically for this appli-

cation, calculates the probability of species k for each pixel using the following expression;

Q'n
PkI ` S'	

where
Qrc •	 01,k + z,kE + 83 , '+ r,ks)

/,-14 f
PROS,fAPS than scales each probability so that the range 0-255 represents 0. to 1. PRD3 APS out-
put images for this example are shown in Figures 6-10, Brightness values in Figures 6-9 repre-
sent probabilities or occurrence for douglas fir, ponderosa pine, white fir, and red fir, re
spectively, with probabilities scaled to range #am black (0,) to white (1.0), Figise 10, incesslse
cedar, has been contrast stretched for display purposes, and presents a probability range of 0.
to ,3 from black to white. The probability images represent max m m likelihood estimates of
species proportions; they appear reasonable in 13^ t of the known ecological pr^Atcances of the
species, but their accuracies remain to be detezadned.

The probability images produced by PPOWAPS can be thought of as predictions of the proper
tion of the timber volume expected for wAcit species at each pixel. This view implies a conti:nu-
ous mixture of species, constacly varying in response to elevation and slope aspect, An alter-
native view is that forest stands are monospeci.fic, and that each pixel is dominated by a parti-
cular species or forest cover tape. in such a case, the modeled ;mluas are probabilities tinait
the pixel will be dominated by a particular species or stand type, and it is therefore appropri-
ate to produce a single output image indicatdzig the type with highest probability for each pixel.
In this way, the logit model can serve as a nonparametsic classifier. The probabilities can also
be viewed as prior probabilities, and input to = of an image using spectral data. This pro-
cechae amounts to mixing a notnparamet::ic model for collateral data terrain channels) with a
parametric model for spectral data (Landsat channels),

3.2 LUM USE Q.A:'SL''ZGTMN USIM TWMITICN MBA SUMS

An additional objective of our research was to apply the method of mmdmnm likelihood classi-
fication with prior probabilities to a land use/land cover classification. (see sections 2.2.1 and
2.2.2). In this ema ple, land use/land cover maps far two 7^-minute quadrangles in Ventura
County, California, U.S.A., were obtained from photointerpretation of high-level U-2 aircraft
imagery for the years 1973 and 1976. These maps, with inherent accuracies considerably him
than, those of landsat classificati=, were used as "ground truth" to construct a matrix of tran-
sition probabilities, showizug the probability of change of classification for each land use/land
cover type to isch other type in the three year interval. With a 1976 Landsat image as input data,
we planned to carry out K4 of each pixel using the 1973 U-2 derived cover class as a collateral
data dumnal indexing the transition probabilities appropriate to the 1973 .over class. The
resulting classification was to be compared with the 1976 U-2 derived map to evaluate the accuracy
of the technique. At present, we have used image overlay tecirdques to create the transition
probability matrix, but the classifications using t,^'tr, transition probability matrix have not been
carried out.

3.2.1. PROCEMIRE. Using the Jet Propulsion Lab's (JPL) Manage Based Information System (IBIS) and
a coordinate digitizer, it is possible to m^;e image data in digital form with other t ypes of
geographic data. The IBIS is essentially a fine-mesh grid information system which is cowatible
with the handling and storing of digital image data. By allowing a user to overlay thematic map
and digital. Landsat data (or pertinent Iandoat-derived data) with IBIS, it is possible to derive
the values that comprise the transition probability ma=in, as well as deter adne the accuracy of
the thematic Latndsat classification data.

Prior to IBIS processing, the two "ground truth" Land use/Land cover maps for the two
quadrangle study area were prepared through photoi:nterpretation of WA highs-altitude color infra-
red imagery with additional ground checks. A coordinate digitizer board was used to convert the
maps to a series of digital coordinates. Polygons of thematic land cover categories were captured
by digitizing overlapping line segments that cemprise such polygons, Polygon centroids were also
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digitized and assigned an appropriate land use/land cover label for later use in converting the
polygonal data to raster (image base) forte.

The digitized line 
segment 

data ware processed using IBIS as follows. A codified version
of the IBIS program POLYCEN converted the coordinate digicizar sogmt data into ppool^ygons in
the fora of an MIS graphics file. Following this reformaatNng, the program POMM , rigidly
rotated the polygons to conform with the Ii,dsat data for the test s33..ta. POLYM was'used to
convert the polyEn, data into raster form (fine-mesa grid), The result was an imsge of ras-
t6rized polyam irarders rerresenting the edgu to thmtic land cover units.

The next phase in the IBIS processes involved the asstgnmrnt of labels to the rasterized
palyt areas. An intermediate categorized ^s Ones automatically produced by the program
PAII^, which aesiFns an arbitrary but unique brightness m wher to all the pi:wls within each
rasterized polygon, :his output ims was ccmbirned with the polygon ce:ntroids that had also
been converted to an IBIS graphics file format (with VZPOLY) and rigidly transformed to over-
lay with the po+ygcn borders (POL=). The pro ,̂rrm =%= was used to establish the corre-
spondence between centroid labels and polygon brightness numbers, and the proprami SMEM vast
used to reassign, identical brightness values to polygotns with similar labels, yielding a raster
format usage corresponding directly with the origi,tal Land use/land cower trap,

With both land use/land cover images in digital image foxmst, the next step is to overlay
them using 	 to :aaaly-,.e the change oc	 ^ between the two dates in order to estimate
the transition p=babilic7 matrix. Ths output of POLL 7VLY is a table counting the number of
?ixels in each combination of classes across the two images, If Sy -o denoces the count of pinals
in cla s Y of the first :mare, and class „ of the second, tkher io s": cities, probability ?;
for class i to 3 is	 S'	 The digitized map of 1576 .need use/land cover was also

1.^1
used to assess the accuracy, of *zC of Laxisat data, again using the POL'MVLY program. Accuracies
discussed below were obtained in dtis fashion.

With a digitized 1973 land use/land cover classification map produced from air photo inter-
pretaticn now in hand as collateral data channel registered to the 1977 Lndsat image, and with
a treni= probability matrix to provide sets of prior probabilities content as a col-
lateral data channel, it should be possible to carry ouc mwdma@ likelihood classification using
the transition probabilities as prior probabilities indexed by the 1973 classification. Future
work includes performing the classification, and overlsyl. g it on the 1976 digitized cop for
accuracy analysis. Initial indications are that accuracies will increase witthe use of the
1973 digitized map data, demonstrating than successful use of Iandsat to update existing manually
produced land use/lrrd cover maps.

4. CODICUMON

Of the large member of statistical techniques which can be used to develop models combining
remotely sensed images with collateral data in a common predictive framework, t•ort, techniques
are of special interest for remote sensing: logit modeling and maximum likelihood classification
with prior probaabil ;Lties. These methods allow the construction of ranparamscric classification
maiels utilizing both image and collateral data rinmw.,atls as well. as the mixing of parametric and
rao Vernmetric classification models for image and collateral data respectively. Both tsctntiq<ees
have been successfully demonstrated in applicat

o
imss using Landsat imagery; each hss the potential

to greatly increase classificatioxnaaccuracy thrthe use of collateral data, and each should
find wide application in a=ura research and development in remote sensing.
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Table 1. Notation

DE M=ICN

Vector of estimated dependent variables; %here signifies a vector
and ' sign3es an estimator,

d,E	 Regression flotation; vector c„r̀ estimated betas and vector of observed
"	 erzor terms

P	 ^knbsr of measurement variables used to characterise each object or
observation.

X	 a p-dimensional random vector.

;{.	 Vector of msssurwants cn q variables associated with the 4th object
"	 or observation. 	 -1,2,....,N.

9k	
Member of the kth set of clea_as 8; k-1,2,. 	 K.

P(s^)	 Probability that an observation will be a member of class $p,` prior
probability Cor class sx,

>.(Xu	 Probability density value associated with observation vector X as
evaluated for class k,

u	 Paramer- is mean vector associated with the kth class,

m^	 :fan vector associated with a sample of observations belonging to
the kth class; taken as an estimator of u;^.

Parametric p by p dispersion (variance-covariance) matrix associa-
ted with the kil class.

D.	 a by .v dispersion matrix associated with a sample of observations
belonging to the s:th class; taken as an estl=tor of .
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Figure 1. figchniques for Combirsirsg Continuous and Categorical Data
(modified from lokigl.ey, 1979)

I

15



i

PAw
a:t QUAUTY

^ R
a.

J r

9 L T
.: '!

J	 ` 	 1n	 33

N	 ^	 /

Y

iy

4	

^r

v F

n 
77 5 x

r L +r	 r

^ V (3 ^ J

9 u u q
J .rL

s. y GOB

^r

S

N
J.^
'^ R

Y

1 (O

v



L.

.^ y

V
J ^
r

.^ •^
+. S

.^.

4 w i
.w

11w ^ rr

!1 f u

9 ^1.
^.

7 :i4
_, v ^'

_ f
J i•

^ i

C `^ r

^ ^

y^
,^ f

-+ L :!

^^

L

7y^r

v ^r •f



7/



_T

a: ♦ a+M^+.Ma^F ^... Lk}. ^.4NF^it `1Ni^'.'FYiiCF.-iYk.R^1k+M^i^A^MVYIiYMlltii.Y^M.3i1Y.M^PF Fit WMwMe,MYY+kAa^{,.,/ta 	 .s.'!.i'M, #?f,'Sf fiSYtNPq©MF:.

The Use of Prior Probabilities in Maximum Likelihood

Classification of Remotely Sensed Data

ALAN H. STRAUILE.R

University  of'Cal{ftwia, Santa Barbara, CalUbrnia

The expected distribution of classes in a final classification map can be used to improve classification accu-

racies. Prior information is incorporated through the use of prior probabilities — that is, probabilities of

occurrence of classes which are based on separate, iudependemt knowledge concerning file areal to be

classified. The use of prior probabilities in a classification system is sufficiently versatile to allow (1)

prior weighting; of output classes based on their anticipated sizes; (2) the merging of continuously varying

measurements (nmltispectral signatures) with discrete collateral information datasels (e.g.. rock type, soil

type); and (3) the construction of time-sequential classification systems in which 'an earlier classification

modifies file outcome of a later one.

The prior probabilities are incorporated by modifyiaig the maximum likelihood decision rule employed in a

Bayesian-type classifier to calculate brosteriori probabilities of class membership which are based not only

on the resemblance of a pixel to the class signature, but also on file weight of the class which is estimated

for file final output classification. In the merging of discrete collateral information with continuous spec-

tral values into a single classification, a set of prior probabilities (weights) is estimated for each value

which file discrete collateral variable may assume (e.g., each rock type or soil type). When maximum

likelihood calculations are performed, the prior probabilities appropriate to the particular pixel are used in

classification. For tine-sequential classification, the prior classification of a pixel indexes a set of

appropriate conditional probabilities reflecting either the confidence of'the investigator in the prior

classification or the extent to which the prior class identified is likely to change during the time period of

interest.
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Introduction

In the past ten years, maximum likelihood classification has found wide application

in the field of remote sensing, Based on multivariate normal distribution theory, the

maximum likelihood classification algorithm has been in use for applications in the social

sciences since the late 1940's. Providing a probabilistic method for recognizing similarities

between individual measurements and predefined standards, the algorithm found increas-

ing use in the field of pattern recognition in the following decades (Chow, 1957; Sebes-

tyen, 1962; Nilsson, 1965), In remote sensing, the development of multispectral scanning

technology to produce layered multispectral digital images of land areas from aircraft or

spacecraft provided the opportunity to use the maximum likelihood criterion in producing

thematic classification maps of large areas for such purposes as land use/land cover deter-

mination and natural cultivated land inventory (Schell, 1972; Reeves, et al., 1975).

In the last decade, research oil 	 general use of classification algorithms in remote

sensing has centered in two areas: (1) computational improvements in evaluating max-

imum likelihood and discriminant function decision rules; and (2) the use of various

unsupervised clustering algorithms to extract repeated or commonly occurring measure-

ment vectors which are characteristic of a particular multispectral scene. Computational

improvements have included such developments as look-up table schemes (Schlien and

Smith, 1975) to reduce repeated calculation, and hybrid classifiers (Addington, 1975)

which use parallelepiped algorithms (Goodenough and Schlien, 1974) first, then turn to

maximum likelihood computation to resolve ambiguities. Although important for small

image processing systems, further computational improvements will become less and less

cost effective as real time computational costs continue to fall through the development of

fourth- and fifth-generation hardware computer systems.

L
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Unsupervised methods rely on clustering measurement vectors according to some

set of distance, similarity, or dispersion criteria. Many clustering heuristics have been

devised and applied in image processing. pubes and Jain (1976) provide a review and

comparative analysis of a number or techniques which are commonly applied in pattern

recognition. However, as Kendall (1972, p, 291) points out, clustering is a subjective

matter to which little probabilistic theory is applicable, No clustering algorithms have as

yet come to the fore which can incorporate prior knowledge in a formal fashion (except

for the use of h priori starting vectors in interactive clustering) with an expected incre-

ment in class identification accuracy produced by the use of this additional information.

However, recent developments involving guided clustering and automated labeling of

unsupervised clusters blur the distinction between supervised and unsupervised tech-

niques. Future work. may well produce a continuum of intergrading methods from which

a user can select a mix appropriate to the spatial, spectral, and temporal resolution of the

data in hand and information output desired.

The purpose of this paper is to show how the use of prior information about the

expected distribution of classes in a final classification map can be used in several different

models to improve classification accuracies. Prior information is incorporated through the

use of prior probabilities — that is, probabilities of occurrence of classes which are based

on separate, independent knowledge concerning the area to be classified. Used in their

simplest form, the probabilities weight the classes according to their expected distribution

in the output dataset by shifting decision space boundaries to produce larger volumes in

measurement space for classes which are expected to be large and smaiter volt ► mes for

classes expected to be small.

The incorporation of prior probabilities into the maximum likelihood decision rule

can also provide a mechanism for merging continuously measured observations (mill-
{
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tispectral signatures) with discretely measured collateral variables such as rock type or soil

type. As an example, consider an area of natural vegetation underlain by two distinctive

rock types, each of which exhibits a unique mix of vegetation classes. Two sets of prior

probabilities can be devised, one for each rock type, and the classifier can be modified to

use the appropriate set of prior probabilities contingent on the underlying rock type. In

this way, the classification process can incorporate discrete collateral information into the

decision rule through a model contingent on an external conditioning variable. The

method can also be extended to include two or more such discrete collateral datasets; the

number is limited only by the ability to estimate the required sets of prior probabilities.

Thus, prior probabilities provide a powerful mechanism .for merging collateral datasets

with multispectral images for classification purposes.

Another application of prior probabilities contingent upon a collateral dataset allows

temporal weighting in a time-sequential classification system. As an example, consider

distinguishing between two crop types which, through differing phenologies, can be easily

separated early in the season but are confused later on in the growing period. Through

the use of prior probabilities, a mid-summer classification can "look backward",to a

spring classification to resolve ambiguity. Thus, winter wheat could be separated from

spring wheat at mid-season by its distinctive early spring signature. This use of temporal

information provides an alternative to the calculation of transformed vegetation indexes

(TVI's) and comparable procedures (Richardson and Wiegand, 1977) in the identification

of crops with multitemporal images (Rouse, et al., 1973). Such a time-sequential

classification system could also be used to monitor land use change. In this case, a

Markov-type predictive model is used directly to set prior probabilities based on patterns

of change shown in a'i area.
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Review or iNtaximum LikOihood Classification

To understand the application of prior probabilities to it classification problem, we

must first review briefly the mathematics of the maximum likelihood decision rule. For

the multivariate case, we assume each observation X (pixel) consists of a set of measure-

menu on p variables (channels). Through some external procedure, we identify a set of

observations which correspond to a class -- that is, a stic. of similar objects characterized

by a vector of means on measurement variables and a variance-covariance matrix describ-

ing the interrelationships among the measurement variables which are characteristic of the

class. Although the parametric mean vector and dispersion matrix for the class remain

unknown, they are estimated by the sample means and dispersion matrix associated with

the object sample.

Multivariate normal statistical theory describes the probability that an observation X

0

	 will occur, given that it belongs to a class k, as the following function:

4) k (X I)	
(21r)-1'P11k1_y, e ( x-;LkYX 1 (x-JL h ) . 	 (1)

(Table 1 presents an explanation of the symbols used in this and other expressions.) The

quadratic product

X2 _ (X-Ad'Ekt(X-1Ad
	

(2)

can be thought of as a squared distance function which measures the distance between the

observation and the class mean as scaled and corrected for variance and covariance of the

class. It can be shown that this expression is a X  variate with p degrees of freedom

(Tatsuoka, 1971).

As applied in a maximum likelihood decision rule, expression (1) allows the calcula-

tion of the probability that an observation is a member of each of kciasses. The indivi-

dual is then assigned to the class for which the probability value is greatest. In an opera
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tional context, we substitute observed means, variances, and covariances and use the log

form of expression (t)

ln[4) A (X)1	 -^^l^nln( ^) -^ h,IE^.I _.i/a(X,-^tn^.)'UAt(Xr-^m^)^	 (3)

Since the log of the probability is a monotonic increasing function of the Probability, the

decision can be made by comparing values for each class as calculated from the right hand

side of this equation. This is the decision rule that is used in the currently distributed

versions of LARSYS and VICAR, two image processing program systems authored

respectively by the Laboratory for Applications of Remote Sensing at Purdue University

and the Jet Propulsion Laboratory of California. Institute of Technology at Pasadena. A

simpler decision rule, it,, can be derived from expression (3) by eliminating the constants

(Tatsuoka, 1971):

R I : Choose k which minimizes

F1,k(X,) = InID A I -h (X;--n k-YI)hI(Xi-111k) 
(4)

The Use of Prior Probabilities in the Decision Rule

The maximum likelihood decision rule can be modified easily to take into account

prior probabilities which describe how likely a class is to occur in the population of obser-

vations as a whole. The prior probability itself is simply an estimate of the proportion of

the objects which will fall into a particular class. These prior probabilities are sometimes

termed "weights," since the modified classification rule will tend to weigh more heavily

those classes with higher prior probabilities.

Prior probabilities are incorporated into the classification through manipulation of

the Law of Conditional Probability. To begin, we define two probabilities: P(w ), the pro-

bability that an observation will be drawn from class w k.; and P(X,), the probability of

occurrence of the measurement vector X,. The Law of Conditional Probability states that:

Ki

.,

.	 d

1 ^^

1.
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The probability on the left hand side of this expression will form the basis of a modified

decision rule, since we wish to assign the ith observation to that class w k. which has the

highest probability of occurrence given the p-dimensional vector X, which has been

observed,

Again using the Law of Conditional Probability , we find that

P)Xrlw k) - P{r`'4, Xi)

PIOJ

In this expression, the left hand term describes the probability that the measurement vec-

tor will take on the values Xi given that the object measured is a member of class wk-

This probability could be determined by sampling a population of measurement vectors

for observations known to be from class w A -, however, the distribution of such vectors is
t

usually assumed to be Gaussian. Note that in some cases this assumption may not hold,

as an example, Brooner et al. (1971) showed signifi^a ptly higher classification accuracies

for crops using simulated multispectral imagery with direct estimates of these conditional

probabilities than with probabilities calculated according to Gaussian assumptions. How-

ever, the use of the multivariate normal approximation is widely accepted, and, in any

case, it is only under rare circumstances that sufficient data are obtained to estimate the

conditional probabilities directly.

Thus, we can assume that PIX i lwA-) is acceptably estimated by ( k.(X) and rewrite

expression (6) as

(fi)

I 

a

t

(7)

a

Rearranging, we have
^^ 1

i

t^



Thus, %ve see: that the numerator of expression (5) can be evaluated as the product of the

nu110VUri.►te de11sitY function (1) A (X,) and the prior probability of occurrence of class (,)A.

To evaluate the denominator of expression (5), we note that for all k classes the

conditional probabilities mut suns to l:

Therelore,

Rat

Substituting (8) and (10) into (5),

_	 .._.,. .

K	 K	 U 1)
^(h (.\,) 1'{cup}	 Y, k(X,)

Kx^	 A:.

Tile last expression, then, provides the basis for the decision rule; which includes

prior probabilities; Since the denominator remains constant for aII classes, tile: observa-

	

tion is simply assigned to the class for which (1) (`C), the product of (I)A( i) and Ptwj, is	 -•

,.I maximum. In its simplest form, this decision rule can be stated as:

ttz: Choose k which minimizes 	
(12)

1''.h(X;) = 1111DA;-1-( ;--ui^) ► 1)j;'t{a;— mx)- 21n1'{w^}.

This form of the decision rule is usually attributed to Tatsuoka and Tiedeman (1954;

Tatsuoka, 1971).

It is important to understand how this decision rule behaves with cliflerent prior pro-.^
f

babilities. If the prior probability 1 1 1(0 4 ) is very small, then its natural logarithm will be c

	

large _negative number; when multiplied by —2, it will become a large positive number and	 ry
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thus F2,k for such a class will never be minimal. Therefore, setting a very small prior p ,,o-

bability will electively remove a class from tine output classification, Note that this effect

will occur even if the observation vector X; is coincident with class mean vector ni A . In

such a case, the quadratic product distance function (+,--tir^)'U^ t (X,—m^) goes to zero,

but the prior probability term --2lnP(w A ) can still be large. Thus, it is entirely possible

that the observation will be classified into a different class, one for which the distance

function is quite large;.

As the prior probability P(w A ) becomes large and approaches 1, its logarithm will go

to zero and H2,4 will approach tFt , A for that class, Since this probability and all others must

sum to one, however, the prior probabilities of the remaining classes will be small

numbers and their values of r, , , will be greatly augmented, The effect will be to force

classification into tine class with high probability. Therefore, the more extreme are the

values of the prior probabilities, the less important are the actual observation values Xl.

This point is discussed in more detail in a following section.

Numerical Example

A simple numerical example may clarify this modification of the maximum likeli-

hood decision rule. For this example, we assume two classes w i and wz in a two-

dimensional measurement space. Their means and dispersion matrices are shown below.

ni l — [4 21

3 4

DI	 4 6

4S
D2	 5 7

1112 ^ [3 31

(13)

The determinants and inverses of these matrices are:

0
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1101 1 I — 2	 ID21 _ 3

BIC' «- 
1 32
 3
 ^-2

(14)

7	 s
3 ^3

DZI " 5 4
^3 3

For this example, we wish to decide to which class the measurement vector (4,3) belongs.

To evaluate the probability associated with w t , we first evaluate the quadratic product

X' — (X'—ml)'Dj 1 CYO--m l)	 (15)

3 —2 
1
0

1

2

The probability density value is (lien

3	 ,(1
'I (X) " 27r .	 .e- Z

1. 1
 ,.. .0532.	 (17)

Similarly, for the second class,

7	 5

	

X2 P 01'1 4	 U — 2	 (18)

I— T 
 

-3-

^I

^`( )	 2 7 %f3 e 
Z — .0338	 (19)

Thus, the measurement vector (4,3) has a higher probability associated with membership

in class w, than in class w Z , and it would be appropriate to classify the measurement into

wl.

it
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This same decision can be made by using the somewhat simpler decision rule Ri

(expression (4)):

Ft, t (X) — In I D I I + (X— mt)'Dj I (X--m l )	 (20)

Ft, I (X) — In (2) + 2	 2.193,	 (21)

F1,2 (X) = InID2I+(X— m,)'DZ 1 (X—m2)
	

(22)

F1,2 (X) = In(3)+2 = 3.098.	 (23)

Here again the decision is made to classify the observation X into Wi.

The foregoing calculations assume equal probability of membership in w i and 0)2.

Removing this restriction, we take prior probabilities into account. Assume that the fol-

lowing prior probabilities are observed:

P(,)
3
	P(w2) 3	 (24)

Recalling the v.)tation from expression (11) that (DA) denotes the probability density

function adjusted for the prior probability,

we calculate for the two classes

	

(D i (X) •P(w 1 ) — ( . 0532) . '   = .0177	 (26)

	

(PAX) _ (P 2 (X) •P(w 2) = ( .0338) • 3 = .0225	 (27)

The actual conditional probabilities (expression (11)` then become

P(c, I I Xt_ (4,2))	
.0177	

= .440	 (28)
,0177+.0225
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KoJ XI-0, 2)) --- 	 .0225	 — .560.	 (29).0177-,0225

Thus, the prior probabilities modify the outcome of the decision rule, favoring class 0)2

for the observation (4,3) over class wt.

In terms of the decision rule tt 2 , we calculate

F2 , t (X) — InjD t I+(X--in j)'DF t (X—m j)-2lnP(w i )	 (30)

F2.1(X) — F1,I (X)-21nP(w 1 )	 (31)

F2, t (X) = 2.193 -- 21n (3 ) — 4.390. 	 (32)

For the second class, the outcome is

FZ,2 (X) — 3.098-21n( 3) — 3.908. 	 (33)

Since the observation is classified into the class which minimizes the value of R2 , once

again the second class is chosen.

N

Prior Probabilities Contingent on a Single External

Conditioning Variable

Slaving shown how to modify the decision rule to take into account a set of prior

probabilities, it is only a small step to consider several sets of probabilities, in which an

external information source identifies which set is to be used in the decision rule. As an

example, consider the effect of soil type on the distribution of crops that are likely to be

grown in an area. In such a case, a single suite of crops will characterize the entire area,

but the expected distribution of crops from one soil type to the next could be expected to

vary considerably. Under these circumstances, it would be possible to collect a stratified

random sample of the area to be classified, in order to quantify two sets of prior probabili-
F
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tics: one for the crop~ on the first sail type, the other for crops on the second.

Thus, we introduce a third variable rr, wiaich indicates the state of the external con-

ditioning variable (e,g. soil type) associated with the observation. We wish, then, to find

an expression describing

II,(coAIX,, ►,J)
	

(34)

the probability that an observation will be a member of the class G, k given its vector of

observed measurements and the fact that it belongs to class ''r of the external condition-

ing variable.

In deriving sin expression to find this probability, we can make the assumption that

the tilean vector and dispersion matrix of the class will be the same regardless of the state

of the external conditioning variable. This assumption is discussed more fully in a later

section, The assumption imp lies that

P(x,I(,)A) — P{X,1li,A, ►,,).

Expanding both sides of this relationship using the Law of Conditional Probability,

P(\ I ,NJ	 P(r ,WA, ►'.i)
P((0 4)	 ^t'(wq, uj)

Solving for the 3-way joint probability,

Substituting expression (S) into the left hand term of the right denominator,

(r^(X) .,P((o	 t'(«^,^^.^)

P(:X, (I)k, Pi)	 (I)k(r) * P( (() k , Vj) .- ch; *(Xd .

Expanding expresion (34) according to the Law of Conditional Probability,

r

1 (35)

(3G)

(37)

(38)

(39)

II
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P(wA, X iPV.i)	 (40)P(v,^^X{,vJ) ^-	 P(XI,vJ)

Noting that since u,ll classes are included, expression (40), when summed over all classes,

must equal 1,

K

	

7, 
P( 'W k, X

i, 1,J) 
	 (41)

P(w k I X j, u J) ,^ 1 = ti't
PI X i' Vj)

Rearranging,

K
P(X 1 , P j)	 ^ P(cu k,X 1 ,VA	 (42)

k^l

Substituting expression (39) and (42) into (40), we have

i (d	) _ 
4)k(X I) ' P(w k , v./)	

(D ^U)	
43^rX ^ vJ	

14) (X,)•P(wk,VJ)	 I -- (X,)	
( )

k-i	 ti-i

This result is analogous to expression (11); note that the denominator remains constant

for all k, and need not actually be calculated to select the class w k for which `D ;"(X) is a

maximum.

The application of this expression in classification requires that the joint probabilities

P(w k ,vj) 
be known. However, a simpler form using conditional probabilities directly

obtained from a stratified random sample can be obtained through the application of the

Law of Conditional Probability:

P(w k,vj) = P((-)RIVA'P(VJ).
	 (4'(l)

Since P(P) cancels from the numerator and denominator after substitution, we have

M

{
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(G (X,)-P(tjIP,)

Thus, either the joint or conditional probabilities may be used in the decision rule:

R3: Choose k which minimizes

F3,4 (X,) —In I Dk I + (X; - iu k)'DZ' t (X,--mk) -- 2lnP(w k , v1)	
(46)	

3

R'3 : Choose k which minimizes
(47)

F3 k (Xi) — InI D^ I+(X; n► h)'DT t (X i--111 k) - 21nP(c^k1vJ}.

Numerical Example

To illustrate this use of prior probabilities contingent on an external conditioning

variable, let us return to the two-class example discussed earlier. This time, however, let

us assume that a stratified random sample of the area to be classified produces the esti-

mates of probabilities shown in Table 2. The conditioning variable v j has two states: vt

and v2. Under the conditions of v i , both classes have equal prior probabilities; under v2,

the second class is more likely to appear, with the probability of .7 for &)2 and .3 for 6,1.

Table 3 presents the calculations for this example. For vt, w, would be the most likely

choice. In the case of v2, IW 2 is more probable,

Adding Additional Conditioning Variables

Logic analogous to that of the preceding section shows that classification decisions

may be made contingent on any number of external multistate conditioning variables.

However, a separate set of prior probabilities must be estimated for all possible states of

conditioning variablt}s. For example, consider classifying natural vegetation in an area

containing four distinctive rock types, six different soil types, and four unique topographic

habitats. Ninety-six sets of prior probabilities will then be required. Estimating these pro-
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babilities by separate samples would be prohibitive for such it 	 number of combina-

tions.

To alleviate this problem, it is possible to model these probabilities from it much

smaller set under the assumption of no high-level interaction. This procedure amounts to

the calculation of expected values for a multidimensional contingency table when only cer-

tain marginal totals are known. Techniques for such modeling have been described in the

recent statistical literature, and are summarized in two current books by Bishop, Fienburg

and Rolland (1975) and by Upton (1978). (Other treatments appear in Cox (1970) and

Fienburg (1977).) The discussion below is based partly on the treatment presented in pp.

57-101 of Bishop, et al., and the reader is referred to these works for cases involving

modeling beyond the trivariate case presented here.

As a simple example, consider the three-way case in which a measurement is a

member of class wk and is also associated with two conditioning variables vj and o f . Then

the Law of Conditional Probability states

P(w ^ I r, J , o,} = P(W k., 
Pp 

01)
(48)

I PWk, vf,°I)
k-t

K
since P(vj ,o l) = 1:P(w k ,vJ ,0 1). There are Kx.IXLprobabilities of the form

k-t

P(w k ,vj,o f), and we wish to estimate these with maximum likeiihood without sampling

the full set. Such an estimate is possible, assuming no three-way interaction between w, v,

and o, if probabilities of the forms P(w k ,vf}, P((Ok,01), and P(vf ,o j) are known.

The method, first described by Deming and Stephan (1940), requires iterative fitting

of three-way probabilities P(w k,vj,o i) to conform with observed two-way probabilities

P(a) k ,vj), ]'(Wk,011, and P(vj,ol). Beginning with an initial starting probability
i

Pa(wk,vJ,01}, the individual three-way probabilities are first resealed to conform with one

.	 i

t



set of two-way probabilities:

4zy

I' (c,i ,r, I ► )

Resealing then procceds for another scat cif t%No-vWy Coll chti^ul, ► I^,

	

t	 (jtl)

and finally far the last set:

t
(0); 1, ,o:)

	

{ r	 fSl)
1'3((U h, I' l l ol) _. P,[vJA,v,,o;)	 ^..

P6 

As the procedure is repeated, ConvCI'gCnCC oCCUrs ral)idly, a lld V01LICS stabilitt; %%ithill

a $111,111 nunlbei' of iterations (Doming and Stephan, 1940). The method always converges

toward the unique set of maXinlwll likelihood estimates and can be used r^ith ally set of

starting values; further, estimates lllay be detCrnliI1Cd to ally prC80 10TI cat' aCCLIl-UCy.

(Bishop, f"'iCnburg, and Holland, 1975, p. 83).

In a typical remote sensing application, a stratified random aarnplC is Collected which

estimates the two conditional probability sets P(w A l p i ) and t'(w A lo /). Ill addition, proba^

bilitics of the f7ornl Pjw A ,o /) are obtained by processing registered digital images of slaps

shoving the spatial distributions of I, and o. 13y noting that

t.

	

p( ►',i) = E ►'( ►',, o l}	 (52)
l	 l

and t ► $ill" the Law of Conditional Probability,

3

the joint probabilities P(w A ,v jj and l'(w A , o /) call 	 be calculated from the sets of	 i

tj

I	 ^i
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conditional probabilities 11(wjv) anti P((04101).

Numerical Example

A simple numerical example will illustrate the iterative method. Table 4 presents a

set of one-way conditional probabilities for an example of three classes w A-, k-1,2,3 with

two conditioning variables v j , j-1,2,3 and o l , 1-1,2,3. Although simple decimal values

are assumed here for ease of computation, these values would normally be obtained by

prior random stratified sampling. Also required are the joint probabilities P(v f,o,) (Table

5). Tables 6 and 7 show how values for P(w A ,vj) and P(w k , o l) are calculated according

to expressions (52) and (53).

Table 8 presents the results of the first two iterations in fitting tale no-two-way-

interaction models to these data, Using the criterion of no further change in any

Ku A ,vj ,o 1 ) of greater than 10-6 , convergence is reached at iteration 23, Although these

probabilities can be used directly in decision rule It3, it may be easier to examine the

values as conditional probabilities as used in 16. These values are shown in the last

column of the table.

Time-Sequential Classification

If a classification carried out at a earlier time is viewed as an external conditioning

variable, then the mechanism of prior probabilities can be used to make the outcome of a

classification contingent on the earlier classification. This application is best clarified by an

example. Consider an agricultural classification with four field types: rice, cotton, orchard,

and fallow. An early spring classification reveals the presence of young rice with high

accuracy, but at that time cotton cannot be distinguished from fallow fields. Orchards are

easily distinguished from field crops at any time of year. By early slimmer, many fields

which classified as fallow are likely to be in cotton; however, fields classified as rice are

i
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still likely to be rice. Orchards will remain unchanged in areal extent.

Data from prior years are coS;Lcted to quantify these expected changes, and it transi

tion probabilit matrix is devised which describes the changes in classification expectedi

during the early spring-early summer period (Table 9). In this example, spring

classification shows thirty percent of tite observations to be rice; by summer, ninety per-

cent of these observations are expected to continue as rice, with ten percent returning to

Allow because of crop failure or lack of irrigation. Twenty percent of the spring observa-

tions are orchards, and all of these are expected to remain in orchard through early sum-

mer. Fallow fields, constituting fifty percent of the spring observations, are most likely to

become cotton (probability .7), with a few becoming rice, orchard, or remaining fallow

(probabilities .I). Since no observations are classified as cotton in spring, no transition

probabilities are needed for that class. This use of transition probabilities was suggested

as early as 1967 by Simonett, et al.

The transition probability matrix can also be recognized as a matrix of conditional

probabilities P(w k lvj) which describe the probability that an observation will fall into sum-

mer class co A given that the observation falls into spring class vj . Thus, the early summer

classification can be made contingent on the early spring classification through the prior

probability mechanisms discussed earlier, and any possible confusion between cotton and

rice in summer will be resolved by the spring classification. It is also interesting to note

that the transition probability matrix is actually a square stochastic matrix, and therefore

the situation is equivalent to a simple, one-step Markov process. Under these conditions,

the expected posterior probabilities P(w k,) are

PICT) J = 1 P(cu k i vj) •P(vj) •
	

(54)
—1

,F.

I'
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In at recent paper, Swain (1975) has carried this approach a step further, incorporat-

ing, in the decision rule bath measurement vectors X, ,t and Xr,2 taken from times tt and

12 at point i in space, In contrast, the approach described above uses X,, ► to predict j`, at

time t j anct then uses \;,.) and v, to make the classification decision at time t 2 . Swain's

decision rule, in the notation of this paper, becomes

its: Choose k to maximize

J	 (55)
FS,A(X,.tPX/,2) m EP( X1. ► IVJ)'P[X,,21WA)'P((OAIV,)'P(vj),

;-I

Swain has termed this rule the "cascade classifier."

Swain's approach has the advantage of using full information about the distances of

the measurement vectors X1, ► and X 4 2 from class means; however, as Swain notes, there

is no way to make the first observation set dominate the second. When the transition

probability matrix goes to all 	 matrix, the classification rule becomes:

t's,A(Xj,t,Xi,2) — P(Xi, ► 1l'j)'P[X,,21(OA)'P( ►^.,),

and the two observations become equally weighted. 'Decision rule R3 does allow the first

observation to dominate; here, all 	 transition probability .matrix will preserve the

first classification completely. Oil 	 other hand, R3 assumes that the prior classification

is perfectly correct, and any errors in the prior classif ►cation will also be preserved to an

extent controlled by the transition probabilities. Thus, both approaches are relevant,

depending on the classification task at hand.

Remote Sensing Example

I

(56)

The preceding numerical examples have demonstrated the application of prior proba-

bilities in maximum likelihood classification in a computational context; a real example

drawn from remote sensing will hopefully serve to further understanding in an operational
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context, This example (Strahler, Logan, and Bryant, 1978). 	 is drawn from a problem

involving classification of natural vegetation in it heavily forested area of northern Califor-

nia. In the classification, spectral data tire used to define specieb-specific timber types, and

elevation and slope aspect are used as collateral data channels to improve classification

accuracy.

The area selected for application of the classification techniques described above is

referred to as the Doggett Creek study area, comprising about 220 sq. km. of private and

publicly-owned forest land in northern California near the town of Klamath River,

Located within the Siskiyou Mountains, elevations in the area range from 500 in at the

Klamath River, which crosses the southern portion, to 2065 in 	 Dry Lake Lookout on

an unnamed summit. A well developed network of logging roads and trails is present,

providing relatively easy access to nearly all of the area by road or foot,

A wide variety of distinctive vegetation types is present in the area, Life-form

classes include alpine meadow, fir park, pasture, crop4tnd, and burned, reforested areas.

Forest vegetation includes, from high elevation to low elevation, such types as red fir,

white fir, douglas fir-ponderosa pine-incense cedar, pine-oak, and oak-chapparal. Thus,

the topographic and vegetational characteristics of the area are well differentiated.

After a review of available Landsat frames which included the Doggett Creek area,

two were selected for analysis: July 4, 1973, and October 15, 1974. The two frames were

obtained as computer compatible tapes from the EROS Data Center, Sioux Falis, S,D.

and then reformatted and precision rectified to sinusoidal projections. Pixel size was con-

verted to 80 x 80 meters in the rectification process to facilitate film writer playback.

Using the July image as a base, the October frame was registered to within a half-pixel

error using seven control points. In this process, the October image was resampled to

conform with the July image using a cubic spline convolution algorithm. Figure 1
f
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presents an image of the study area using Landsat band 5 (.6 - .7 µ) from the July frame.

Also registered to the July image wits a terrain image derived from the U.S. Gcologi-

call Survey 1:250,000 digital terrain tape for tlae Weed, California, quadrangle. In the

registration process, the image was converted to 80 x 80 meter pixel size, and stretched to

yield a full range of gray tone values. Slope and aspect images were generated directly

from the registcred elevation data using_ a least squares algorithm which fits a plane to

each pixel and its four nearest neighbors.

The slope aspect image consisted initially of gray tone densities between 0 (black)

and 255 (white) which indicated the azimuth of slope orientation, ranging clockwise from

0° to 359°. These values were then transformed by at cosine function proposed by Har-

tung and Lloyd (1969). Since northeast slopes present the most favorable growing

environment, and southwest slopes the least favorable, with northwest and southeast

slopes of neutral character, the density tones of azimuths were rescaaled with 3 represent-

ing clue southwest and 255 representing due northeast. (Values of 0, 1, and 2 were

reserved for special codings.) Neutral slopes, oriented northwest or southeast, thus

received density tones near 127, The function also corr:^ Icted automatically for the 12°

skew of the Landsat image. For processing as collateral data channels, both elevation and

transformed aspect were converted to three-state variables: elevation to low, middle, and

high; and aspect to southwest, neutral (southeast or northwest) and northeast. Figure 2

shows elevation and aspect images as well as their three-state versions.

Following an initial reconnaissance of the area, thirnen species-specific forest cover

classes were selected as representing the range of cover typk s within the study area.

These classes were defined by a set of 93 training sites ranging in size from approximately

twenty to one hundred pixels. Further processing revealed the presence of several sub-

types within nio^it of the forest cover classes. For example, open canopy douglas fir train-

a j
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ing sites were divided into two subtypes. Such subtypes were also donned for hardwood,

white fir, douglas fir, sparse, and grass and shrub cover classes, Throughout the

classification procedure, these subtypes were kept separate, Joining together only in the

final classification map.

In order to obtain estimates of prior probabilities for the forest Cover class types,

one hundred points were randomly selected from a grid covering the Doggett Crock study

area by drawing coordinates from a random number table. At each of these points, the	 r

forest cover class was determined either by interpretation of 1;8,000 color aerial photogra-

phy, or by actual field visit, Of the 100 points, 15 were discarded because they fell (1) in

locations which were inaccessable in the tints; available; or (2) outside the area covered by

1;8,000 air photos (and therefore could not be accuratelt, , located oil 	 the Landsat

frame or on the ground), At each point, the elevation and aspect class was also recorded,

thus allowing type counts to be cross tabulated according to elevation and aspect,

From this sample of 85 points, three sets of probabilities were prepared. The first of

these recorded the unconditional prior probabilities of the forest cover types — that is,

their proportional representation within the entire study area, Tile second anal third sets of

probabilities aggregated the points according to elevation and aspect classes, and were used

to estimate three sets of probabilities for each topographic parameter (low, middle, and

high for elevation, and northeast, neutral and southwest for aspect). Table 10 shows how

the classes were defined, and describes the numbe^ of points falling into each.

These estimates of probabilities lack precision iseuatisb the number of sample points

is small; with 85 samples distributed across 13 cover, types, the calculated probabilities are

more likely to indicate adequately the rank order of the magnitudes rather than the true

values of the magnitudes themselves. However, under constraints of field time and

expense, it was not possible to prepare a larger datas t for this particular trial, Consider-

,.w
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ing the sensitivity of the classification to extrome probability values, future work should

estimate these probability sets to a higher degree of accuracy.

This dataset was also used to estimate classification accuracies, By recording the

pixel location of each of the sample points, the cover type as determined on the ground

could be compared with the cover type as classified on the Landsat inlage. Because of

uncertainties in locating each pixel on the 1;5,000 air photos, it was necessary to specify

alternate acceptable; classifications for each point. For example, a pixel falling into a stand

identified on the ground as douglas fir, open canopy might fall almost entirely on a clear-

ing, and thus be classiftcd as grass/shrub, or sparse if containing a few canopy trees. In

such a case, the classification was termer! correct. On the other hand, classifications such

as hardwood, alpine meadow, or red fir forest would be an obvious error in a douglas fir

stand. Mere again, estimated accuracies are influenced by the limited size of the sample.

Note that the field data are used to produce a classification which is then assessed

for accuracy by reference to the same data. Separate samples would clearly be more desir-

able. The decision to use the s:une set of samples to determine accuracy that was used to

estimate the probability sets was, again, influenced by available field time and travel funds.

However, the accuracies are greatly dependent on the spatial location of the data points;

only in the aggregate does each data point influence the classification. Tiaus, we would

expect the accuracies to reflect only a slight positive bias produced by this cost-reducing

strategy.

Although several different classifications were carried out, only three are of impor-

tance here. The first used spect­! data only, and assumed equal prior probabilities; this

classification yielded an accuracy of 55 percent (F"igure 3). in the second, three sets of

prior probabilities for the forest types were used, each contingent on one of the three

elevation states (Table 10; Fig. 4). The classification software was modified to use a table

I

L	 ..,y1



—°. •^`--_	
MS!F ww.0 rtx! •M!r A^Yi.^M .:+a..www.w-, ^ena+e. ,war.+: ae . a ...e....,.w. ^t xz^. rw^4+'h.i^r.e.aa .ash a++.+i+..i+M^wM+MI.+M^F

25	 1

look-up of prior probabilities with eievation class as one index into the prior probability

table, This technique increased classification accuracy from 58 percent to 71 percent.

The third classification used two sets of prior probabilities contingent on elevation

and aspect, analogous to P(caAJY,,) and P(wk Jo / ( in the preceding section, Software then

systematically sampled the register;,^d elevation class and terrain class images to yield the

joint probabilities of elevation and aspect classes, analogous to P(J? J ,o J). Tile iterative

algorithm described earlier was then applied to estimate the set of conditional probabilities

for forest cover classes contingent on all combinations of elevation and aspect classes.

Classification using these estimated probabilities contingent oil 	 elevation and aspect

yielded an accuracy of 77 percent, an improvement over that observed for elevation alone

(Figure 5). Thus, this example demonstrates how prior probabilities can be. used to

merge continuous variables of multispectral brightness with discrete variables of elevation

and aspect class to improve classification accuracies.

Discussion

As noted earlier, extreme values of prior probabilities can force a classification to be

made essentially without information concerning the observation itself. When priors are

equal, however, they have no effect. Tile classifier, then, continuously trades off the role

of the multivariate information for the role of prior information, depending on both the

magnitude of the distance of the multivariate observation vector from the class mean vec-

tor and the ratios of the particular prior probabilities involved in the decision. When the

experimental design allows the priors to be determined by external conditioning variables,

the effect is to classify based on multivariate information when the pok sible classes are not

particularly influenced by the conditioning variable and to classify based on prior informa-

tion when multivariate data are equivocal or some classes are much more or less likely

than others. Thus, in the forest classification example, terrain information served to
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dil ere"lt late speeles-Spoeilie cover tyr,.:s (e.g., reel fir, white. fie'), whereas si)eetral inl*orrna»

tion dilrerentiated lil`C 1'01, 111 Classes	 grass-sbrub, hardwood).

Another important point concerns the dependence of the prior probabilities oil the

scene itself; the relative areas of the ChISSCS in the output SMIC must be accurately

CStinratCd. II' the output SCC11C shifts in area, then the priors nitrst be Cllanged, The

classif eaticln cannot be CXtCIICICd to -,I new area without reestimating (lie prior probabilities.

Thus, it would be appropriate to use County Crop acreage values to set prior probabilities

only whell the entire area of the County, Ito more, no less, is to be Classified, In the Case

:)f one or two external conditioning variables determining the appropriate; set of pricers,

both the joint probabilities Pb l i3 O 1 ) and the conditional probabilities Plog1t, ' ) and

P(w A 101) 111uSt truly rOpreSCnt the area to be classified, for, taken together, they determine

the prior probability values tactually used in Computation. In SomC applications, it may be

possible to e?ct0nct the conditionals to a new. scene in which only the joint probabilities of
4

A

file variables Change -- l'or example, a l 'orest cover Classification with elevation and "aspect

as conditioning, variables which is extended front one uniform area to another. The new

area will have difTerent joint probabilitiCS Pf1 1p0 1) (and dCri 1 Cd priors P( ►r;) and P(oj)),

but it alight be reasonable to asstllllC that the Conditional probabilities are ecologically

based and remain consistent front one area to the next.

It Should be noted that. collateral information cannot be incorporated through the

prior probability niec li alliS111 witllQUt file e01lCCtiOI1 of data to CstinlatC the priors and/or

conditionals. It' the collateral data are likely to be unrClatetl to the multivariate data a11d

are expected to intILIC"I e strongly the prior probabilities of the classes, 111011 such estimat-

ing; costs will be ,iustil'i0d, for SigniflCaalt iallprovCnlCnts ill'ICCUracy shOUld result, Ulti

I11 yltCly, it iS up to the user to balance 1110 Costs of acquirill" such iltfOrmUltioll with the

vtlhlC of the CxpCCtCd payoR's in aCCUracy which are anticipated. r
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The logic wliich culminates in decision rules R2 Ond R3 assumes that the mean vector

and dispersion matrix for a class are not affected by the external conditioning variable (see

expression (35)) — in the remote sensing case, this means that the signatures are invark

ant. In some applications, this assumption may not be warranted. An example would be

an agricultural crop classification with soil type as a collateral variable. Here the signature

of the soil itself, at least in the earlier states of crop development, will influence the crop

signature. In this situation, there is no recourse but to spectrally characterize each conibi-

nation of crop and soil type so that probabilities of the form 	 x,, ,)) can be calcu-

late(.. Fallowing the logic of expressions (5) through 01), it is possible to show that

'	 (57)
E P( INk, I'.j]
A=1

r	 which could be made the basis of a clecision rule related to R2.

Afinal point worthy of discussion concerns modeling of joint probabilities, suggested

in an earlier section to reduce the need for more extensive ground sampling. The model

presented is but one example of a large variety of techniques by which collateral data can

be used to predict the spatial distribution of classes in an output image. Discrete and con-

tinUOUS collateral variables can be merged either using empirical techniques including mul-

tiple regression, logic analysis, discriminant analysis, analysis of covariance, and con-

tingency table analysis, or by constructing more functional models which model the spatial

processes actually occurring in a deterministic way. When such models are Constructed

and interfaced with remotely sensed data, the result may be extremely powerful, both for

the ability to accurately predict a spatial pattern and for the understanding of the complex

system which produces it.

-	 y
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Conclusions

The use or prior probabilities in maximum likelihood classification allows:

(1) the incorporation into the classification of prior knowledge

concerning the frequencies of output classes which are expected

in the area to be classified;

(2) the merging of one or more discrete collateral datasets into

the classification process through the use of multiple prior pro-
4

bability sets describing the expected class distribution for each

combination of discrete collateral variables; and

(3) the use of time-sequential information in making the out-

come of a later classification contingent on an earlier

classification.

Thus, prior probabilities can be a powerful and effective aid to improving classification

accuracy and modeling the behavior of spatial systems.
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Tables for Prior Prole-thilities

TABLE' 1 Notation
Tr1cm	 D11 1 10 1 ION

p Number of 111easttrenlent variables ttsed to characterize each
object or observation,

x A p-dimensional random vector,

X , Vector of meaSt1re1110ntS oil p variables associated with the i th
object or observation; i— 1, 2, , , , , N,

P1 X,J Probability that a p-dimensional random vector X Will take on
observed vale ► es \,.

cu d Member of the k th Set of classes w, k-1,2, ... r l^',

Member of the J th set of states for a conditioning variable w,
J-1,2,,,.,J,

1) &)A) Probability that ail observation lvill be i► member of class (,)A,
prior probability for class wA,

Probability that an observation will be associated with state Jor
conditi:,ning variable v;, prior	 1'or state J^p

P(cd A I xJ Probability that an observation is tl nicnlber or class wA given
that 11MISUrement Vector X j is observed,

(t) h(t j ) Probability density VakkL aSSOCiated With observation vector X, as
evaltratcd for class k.

A Parametric mean vector associated With the k th class,

Illy Mean vector associated with t► Sample or observations belonging
to the is th class, taken as ail 	 or A..

E Parametric h by p dispersion (variance-covariance) matrix asso-
ciated with the k th class,

1) l, p by /I dispersion matrix associated with a SUMPle of observa-

tions belon g ing to the k th class; taken as ail 	 of EA.

.^ i
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TABLE 2 Simple Prior Probabilities for Numerical Example
CONDITIONING VARIADU

PROBABILITY	 v1	 y2

P w l	 5	 .3
P(w 2 )	 .5	 .7

TABLE 3 Calculation of Maximum Likelihood Posterior Probabilities
VI v2

wl
0)2

w
(t)2

^h 4 (X,) .0532 .0338 .0532 .0338

P((,) 4 1 v j) .0266 .0169 .0160 .0237

(t)k.(xj) •P(CO .0266 .0169 .0169 .0237

2
2L (I)	 Y j) •P(aj k.Ivj) .0435 .0397
A-1

P1(0k X,, vj) .611 .389 .403 .597

TABLE 4 Conditional Probabilities for Numerical Example

P(w A 1 .1)	 K60 01)

W	 v1	 y3	 v3	 01	 02	 03

^► 1 	.6	 .5	 .2	 .5	 .8	 .2

CO2	 .3	 .2	 .4	 .4	 .1	 .3

W3	 .1	 .3	 .4	 .1	 .1	 .5

TABLE 5 Joint Probabilities for Numerical Example

P(vpol)

v 01	 02 03 P(V1)

v1 .08	 .12 .14 .34

V 2 .07	 .09 .12 .28

V 3 .16	 .10 .12 .38
P(01) .31	 .31 .38
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04.vI,o
.0614
.1132
.0456
.0$17
.0820
.0221
.0386
.0504
10023
.0179
.0059
.0613
.0153
.0043
.0277
.0931
.0217
10259
,0007
.0009
,0291
.0030

,0072
.0283
,0279
.0937

vfY

.9431
,3546

.7383
,9116

.1845

.2413

.5038

10106
,2243

.0492
4376

.210

.0482

.2307

.5817

.2169

,1993
10083

.0077
,2079

,0430

,0401

1 .5848
.1770
.2793

.7811

. a
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r%inx 6 Ca1cu% . an or Joint T%o•1YaY Probabilities for Numerical Example
1'(w^.Pl(	 1^(W,t (! •2 (	 P'!'3j	

... P
(N,,t r 1'2 (	 1'(w^^{'y(	 P(Ptl.. .X ,,.	 .....	

. 204
.3	 .34	 .,	 .102	 2	 x	 2g	 ..	 x	 °""-".076

	

.34	 ^.	 .034	 .3	 x	 28	 •^	 034	 4	 x	
.3$	 ..	 1$2
.38	 .152

r,,L111.E 7 Calcw'44on of Joint Two•Wa} Probabilities for Numerical Example
P(w t la l ( P lod	 {1w4.011	 P(a t laf (	 1';0.(	 PIt)^1o2(	 Piy^R,10JI	 1'(03(	 P(EVA.o3).0 1 5	 x	 1	 p	 1	

x	 o17!	 .4	 x	 .31	 -	 .12424.
	 w	 x	 38	 a

.f	 x	 at	 -	 031	 .3	 x	 .38	 ,114ry	
I	

,31	 -	 1031	 I	 x	 ,31	 r.	 ,031	 .5	 x	 .34	 -	 1190

1' ► 11t.E 8 lierati^t Fitting of
	

Model

r ^.nr) P 1 jw^,V ./' O i l f 2 16) 4.,1• 1 ,0 1 i	 F'y(.14.i•,..1; PI(w t 	14 1 ) P2(w^,i'^,o^N I'	 w(!	 I
t	 1

1
2

i*S
X$70

0
.0680

753 .0502 X487
3	 k'^'^

^1 b^0^57
1	 1
1	 2

3 .0110 ,06'0
.120<

0369
.1074

0525
,1043
,0510

.1196
,0457

.1098

.0494

1	 2
1
2

.11 .1170
0370

.0467

.0467
10517
.0826

.0432 .0408 10332 •0479
'-

7	 3
3
1

.!3370 .0467 .0253
,0760
.0289

,0718
.0273

0823
,0245

.0785
•0250

1	 3 2
"011+3

!:370
.0253
.0253

.0280
0349

.0422 .0293 .0382 0434
1	 3

1
3
1

x370 .0,53 .0138
0579
0093

.0402
0065

.0461
0058

.0542
0052

'.	 1 2
+}3;0
.4370

.0340

.03.30
,0408 .0272 ,0309 .0262 •0230

1 3 .1'3'0 .0340
0102

.0375
.0091

0534
.0103
.0607

10088
.0544

.0081

105892
'.	 2

1
2

070

f'3"p
.0187 0224 .0187 .0221 ,0187 .0169

'.	 2 3 .1370
0187

.0187
.0056

,0206
.005t

10235
0061 •0052 ,0049

'.	 3

3
1
2

x:370 0507 .0608 .091:
0278

',0933
.0249
,0790

10254
.0897

3 3

.0,70
V:70

,0507
.0507

•0152
10599

10196
.0380

,0200 .0170 ,0200
I

1
1
2

.C4370 •0113 ,0039 0026
.0387

•0022
0347
.0016

,0313

.0014

1 3
.0370

.070
.0113

.0113
0039
,0239

.0035

.0341
.0029 ,0023 10021

2 1 0373 .0280 .0096 10081
•0288
.0080

0293
.0058

.0317

.005?,2
2

2
3

x:370

.1.4370
,0280
0280

,0096

.0591
,0089

.0675
,0088 .0068 ,006;1

3

3
1 X1370 .0507 0175 .0263

0672
.0329

.0683
0236

.0696
0268

3
2

3
14370
0.170

0507
.0507

0175
,1070

,0225 •0282 10219 .0257
0727 ,0910 ,0924 ,0834

TABLE 9 Agricultural Time-Sequential Classification Example

PIN,-(pi)
IWI	 W2 W3 0)4.

SPRING CLASS P(vj) RICE	 COTTON	 ORCHARD	 FALLOW
vt Rice 3 .9	 .0 .0 .1
V 2 Cotton .0
V3 Orchard . 2 .0	 .0 1.0 .0
V4 Fallow .5 .1	 7 .2 .1

P(0) k ) .32	 .35 .25 .08
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TABLE 10 Elevation mitt Aspect Class Definitions
Cone;	

_
DFFIv lrinN POINT* CUUN,r

Elevation
Low < 1067 In 45
Middle 1068-1524 m 26
High > 1525 to 14

Aspect
Northeast 337.60-112.50 26
Neutral 122.6"-157,50; 292.6 0-337.5 0 25
SouthWest 157,60-292.50 34

_	 ..«x»+- e+r . ,.. .«. .,,r,°. ^::n.y^...•::^w.«.a«. :. "r •.« ,..,..r.,-s..:t...« ^,^,..,...ww^`r-•»ne	 +.... _n-.• / r..°r,.. ,. ."' r k.^^..^.«.. ....•:: ..•	 _.aas«m .-	 .. r.. i:,...:	 a.rws..0	 .r^«	 Sr^	 ^y*,

r	 i1	 .f

Ab
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Figure Captlans for Prior Probabilities

FIGURE 1. Landsat Band 5 image of Doggett Creek study area, Klamath National
Forest, California.

FIGURE 2, Registered continuous and tri-level elevation (upper photos) and aspect
(lower photos) images of Doggett Creek study area.

FIGURE 3. Classification map based on spectral data only, accuracy, 58 percent.

FIGURE A. Classification map based on spectral data, with elevation included by varying
prior probabilities. Key to map symbols is included in Figure 3. Accuracy is 71 percent,

FIGURE 5, Classification map using spectral, elevation, and aspect data. Key to map
symbols is included in Figure 3. Accuracy is 77 percent.

I	 I



1
'	 '^"..•	 i	 ^' t _ • iii

f	 ^ ^
IL

tpIV

-r'

ks

Ov

^ .	 • .	 why,	 M	
ti'u ,rt••^	

{	 ,.,,^	 ^	 •tea,.,,- . ^;^,^^.

1p

	

"7^y	 •	 r Y	 «

r	 y^

I	 ry^	 +	 vYY^^MI	 I

ass	 J6 ld

A
}	 ,,.1. ,ry ^4 ^ ,	 ^• t:fA4 ,• ^,	 ^ ti . 4	 +` 	j :w •. ^•( ` yt3 •^ °	 ^ ^ ^'^^	 • w _irk	 ^  •	 •t 1••^ W r w. _

01

'"^„^ ^'^•	 ^-. ^r^^	 ^ ^^	 ^^ Vii•.

• r .	 'fir	 ; ^d ,^^^ ,a

t V •- ;f *i ` b..'
'

.

^(

.

yi• 

Cp	 '^	 xV ij	 •'°°°YYY,,. _. w 	
j
	 1 ,	 1'.AV

1p

. 1 •t	 S M JLl71 .0 ►rl
• -^	 -.c • cN za-»

_

	

	 ZK •IC ID '9 O1 :• 18.74* ►LL COD-ADM
fL IIn.ISC o•Or C':IW, L-UP"t(7rf

Figure 1.

i ._



Figure 2.	 (upper left)
ORIGINAL PAGE. IS

OF POOR Q- JALf7Y



^.

Figure 2.	 (upper right)



t

_'!►t - ALA.: -	 1

	

ire, '	 F	

S4	

I.	 d

- t	
`^	

#^^	
Iu'	 S

}	 t f,'f.	 i	 fit`• 5 1':...^ ,
	 l^ '•	

1^¢.010

Ir

=_ f

	
TMs.	

L	 ^!	 .^.	 •^J	 ^•	
_

 -to

.11	 t,,,

I;:Gi:ETT CFEEK, LHLIFCPNIN
CCMPASS N=PECT
LOW PASS FILTER OF FUNCTICN IMHr;E

DOGA,PEX SAT :'EP 3+ 15 7 11.' 11 JPL %IPL

Figure 2.	 ( lower left)	
OWGINAL PAGE iS

OF POOR QUALITY

4 i



Y`

l
lllrlllllf^^i . 'lll^	 Illlllr i ' 1.111IIr 11	 IIIII1111	 IIr -.111 V III ^111r IIII II1111	 1111' /111I11rr'r1

GL 	 —

`il 1
-	 - -<	 A.

all

	

t l	
L	 '• i,	 11	

,^	 %	

y ••J2^

WMW

•	 M

n^	 1	 L	 •^47-T
_ .	 i	

•	 r

I111,'I^Ill^lllr'I, 11^111^.1111'Iri rI1 1 1 1'11111111111111^11 • I I I^ 11 1 1 1111^1111'•I III II IIIIIr I^^ll l^l 	 l

,	 i;1JETf	 =-r Et	 I"NL

DGGTFI'' SAT JAH C •?• 19; 9 0 541' AFL/TF'i.

	

Figure 2.	 (lower right)

Crl!G—I AL PAGE 1:3

OF POOR Vi.JAUN

xi



.	 C+t

	

r. at„T9► 's,w•s" "^,:^ ,; jC• ' t, f .	 ,tT•..^r	 ',-14• ••'Tl

,r ^r'.:::	 "	 r*+k 'w	 FOR RE'S'T  TY PE
r;' 	•-rte	 '%'	 '^	 . ^	 :1^'^;;Y' •^'- CI.ASSIFICNTION P1HF

•	 . ti ::	 Lf	 ,y
i.^-^'^i :fir	 :.:	 FPUM

•	 '^	 y^^ 	 r	 hiriLTI-UNTE LkNDSAT AND

°,,
,
;
,, ^g	

^' ' ^'!^•- '^^'^^i..!!1.•	 ;4. 	 DTGITi4L TEF'R.AIN DATA
'	 *^:	 f•	 ay 

ar.	
a :	 OCTOBER. 1974

	

y...
Ve.	 6 10 n

r	 .:'	 ^,+'' ^,	
..	 y^ ►

^ + ^r .^: ry	 , x • ;:.•	 NU-TEP AIN APPPO.iCH

L.,,^• •	 j'; t { ►̂	 DOGGE TT C PEEL' VICINITY

	

tf•	 ^l	 •^	 'i^.%^ '"" + !	 FLAP1 ►ilH fIMTZUN ►iL FOREST

^' • .•
	 .	 :^	 ^^ ^,	 !7• ti.' •^.:.° ..a: 

.
t '	 FONDEPO: k FIUE 7PEN CWfUPY

,1	 r. •. ^
^.y

!

	: •^• ^^t	 •^` v	 ^,	 " 'f to	 t>h,.+.	 FONDEPO:H FINE CLO_	 r.*dt0kl

1^P "	 •	 ..	 t:' tl"	 t a	 f ►3	 ^i^ ...^'C.
	 r	 :...: i I O k,l w: FIR OPEN 04140P'(

M^.	 „t•	 "y3^ i.!	 a d:c:	
^,t	 ajr. tC'	 DOVGLA: FIP CLO:ED CFtfOPY

F y l
ilb .	 sr<1.	t. 	 ::	 :.. 	 • :.;?... w i: •~ 1; _Ti is t	 {-	 ..	 WHITE FIR MENi..rlov'r

_'T.	 • J	 •'i	 •	 •r.•yt. ♦.. ^.:	 ``•f.^	 •^!	 .t. iii .T	 F F	 .J IO -E I C( USEDS E I C 

r	 r	 r	 n x	 '1	 :y 7 r	 • y ..• '.^• ' '	 FED FIP OF-Eri CWKI:l',
..t 

`! ^stt€* ► «. ,^^"M.	 v	 fit	 +'	 w	 '1 k. F •* 7 .t..•:L J.	 J. I	 •r ^ :	 FED FTP CLO:EL CmNUPY

	

' 1K`K. -ter•	 v.	 -}'.	 }:::! +,.	 ^• ff...	 'i'	
L.'!Teti :	 ^!Ml1^IiFtn` r	 '^ '^.:	 ^`^	 '	 • i :1• 't'. .t.. .:	 MAD:tlNll TFEC

,s	 a',	 w	
7	

'^	
•^{	 :^^^^1 r 

—rs'v:C~'	 nE H1Uu

	

fw	 1T^.::S: t	 ..:.,.^:!r	 rs	 c+ 
,
:,^.•.r:}.	 '•r .iO"u 	 cPHPCE	 fkPFErt

^^► 	 ^'	 •mow.	 '.	 ^•«	 ..
^,	

r,^	
••^,•^,..	 •:^'	 ^ .'► ;i•'i••-i ,,	 '!'•i.'^,^'^^	 f;!^;^,,^::^t E:	 ^^ HHVDitOOD.;

+:	 .:. t•~y i••	 -^ •'::r	 ^• :. a?^ ,j'	 ,.^'^.'':• -,•	 •' ^• i1.•	 GPH$ HND SHPUP

'	
: . ^^ ':.	 M.: ` •a _ ;!`^^.r . a::. F "•f : 

w .: ' ,.+	 ^1	 r	 v1iLAYIFIED

	

°ls;^ r	 • •-F^ Fi 	 '• {	 00 ^^ I^ 1'	 FOHDSt uHITE SINUOU; LIMES

!.r	
•.^	

^•	 L	 -.	 t+' •a.	 ^y.' •^ 
1	 ,.	 flOPTH: , 4a DE , ;FEE': FPUM TOP

y^ 	 cir:	 irei ri^"fr
1!^	

r^	 0	 5	 10	 15

j	 •^1. . •rR '`	 ^' 	 t'	 t	 i	 ^'	 KILUMETERS

4.,•
• , ► 	 !	 r	 „,	 p . t	 ^^	 UrrI"EPSITI' OF CHLIFOPNIH

•	 .T	 '_?	 ^	 GEOliPMPHY FEMOTE ,EN;IIOG UNIT

	

r'	 :o4NTP4 F HFtBMPHs^^ +.	 a+ t.,	 '•r^r	

,•' Fri•	 "14

	

r"•̂ i°	 NND
'^► L•!	

'tom	 ..'s^Y; T ^.$ '	 I	 !ET FPOPULSION LHPDPATOP'r
,._.. `...
	 •w•-r	 :1,reM r•j,M-. f. '..	 r*.,'^'4:.^.*.	 n.#'.. .	 a:: ^• ii•:1

Figure 3.

''C_-iNAL PP.GU IS

OF POOR QUALUY



MKAW_	 -I

I 
t%.rl 	 asii }	

i^

All,

16

C&V.

Lu.

. •!	 •^	 ^ : ^	 . 1^	 '. :3: .' •rte	 't
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