NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT
CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH
INFORMATION AS POSSIBLE



A

‘sgaade-gvallable under NASA ;pongnship
In the interest of carly and wide dis:
semination of Earth Resources Survey
Program inforngation and without liabikity
for any use made thereof.”

Use of Collateral Information to

Improve Landsat Classification Accuracies

NASA Grant N$G-2377

Semiannual Progress Report

: 0OF COLLATERAL INFORMATION
0=-102568 UsSE OF COLLATERAL i,
égBIHPROVE)LANDSAT CLASSXFIC%TION ACCURAg;Eb
semiannual Proyress Report, Oct. 1979 - HMar.

" : ; AQU/MF A07
1980 (Calirornia Univ.) 75 p HC éch 08B G3/43

Alan H. Strahler
and
John E. Estes

Co-Principal Investigators

Geography Remote Sensing Unit

‘University of California
Santa Barbara, CA
93106

Technical Monitor: Dr. David L. Peterson, NASA-Ames

e T TR

80-10268
OR-1b 334y

W30-29815

Unclas
0008




B R

e T R T AT TR, oy ke AT Y ¢

UNIVERSITY OF CALIFORNIA, SANTA BARBARA

BERKELEY ¢ DAVIS ¢ IRVINE ¢ LOS ANGELES ¢ RIVERSIDE * SAN DIEGO » SAN FRANCISCO

SANTA BARBARA °* SANTA CRUZ

SANTA BARBARA, CALIFORNIA 93106

June 17, 1980

Dr. David L. Peterson
NASA-Ames Research Center
Mail Stop 242-4

Moffett Field, CA 94035

Dear Dave:

The purpose of this letter is to provide a semi-annual report of
our activities under NASA Grant N5G-2377. The period covered by the
report will be from October 1, 1979 to March 30, 1980, the six months
immediately proceeding our second year renewal on April 1. The semi-
annual report is submitted in fulfilliment of our responsibilities as
described in "NASA Provisions for Research Grants." My letter of
December 10, 1979, serving formally as a report of activities during
the July 1 to September 30, 1979 interval, also discusses some of
the activities which have occurred in the October to December time
period. Although I will refer to these activities in this report,

I will emphasize activities occurring after the first of the year.

Publications. I am very pleased to announce that during this
period three manuscripts have been placed in the publication process.
The first of these, entitled "The Use of Prior Probabilities in Maximum
Likelihood Classification of Remotely Sensed Data," was enclosed with
my letter of December 10. This manuscript has, within the past few
weeks, been accepted for publication in Remote Sensing of Environment.
Since the manuscript was accepted without revision, it should appear
essentially the same as the copy which you possess.

The remaining two manuscripts are in symposium proceedings. The
first of these is "Incorporating Collateral Data in Landsat Classifica-
tion and Modeling Procedures," which will appear in the Proceedings
of the Fourteenth International Symposium on Remote Sensing of the :
Environment. The second is "A Logit Classifier for Multi-Image Data,"
which will appear in the Proceedings IEEE Workshop on Picture Data
Description. I enclose copies as specified in the grant provisions.
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Travel. In March, 1980, my research associate, Mr. Curtis
Woodcock, and I attended an informal meeting of California researchers
involved in forestry applications of remote sensing at California
Polytechnic Institute and State University, San Luis Obispo. At
your invitation, we briefed the group on some of our current forestry
work as well as the implications of our research concerning the incor-
poration of collate-al data into Landsat processing systems. We
enjoyed this constructive opportunity to share research ideas witn
investigators working on similar applications.

Grant travel funds were also used to support a side trip from
Derver, Colorado to Fort Collins in December, 1979, to allow me to
conier with Dr. James A. Smith, of the School of Forestry, concerning
spectral modeling and possible joint research in exploring the role
of collateral information in the remote sensing process.

Although not during the time period covered by this report, I
also attended the Fourteenth International Symposium on Remote Sensing
of the Environment, held in San Jose, Costa Rica, in April, 1980. At
this meeting, I had many productive exchanges with remote sensing
researchers, and was allowed the opportunity to present the results
of our first year's work in this grant. I should also mention that,
as a result of discussions at that meeting, I have been invited to
present a seminar concerning the use of collateral information in
remote sensing at the Canada Centre for Remote Sensing (CCRS) in late
gungéRsTravel and per diem expenses for this trip will be reimbursed

y .

Technical Progress. During this reporting period, we made sub-
stantial progress in three research topics. The first of these is the
survey of quantitative techniques available for merging categorical
and continuous variables, and the assessment of the utility of these
techniques for remote sensing applications. This survey was completed,
and the results are summarized in the first part of the San Jose pre-
print (attached). The second area of progress concerns the further
application of prior probabilities in the context of a time-dependent
land use classification system. Again, the results are summarized in
the San Jose preprint.
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Perhaps some of our most exciting work concerned the development
and gpplication of the logit model to remote sensing. This model does
not rely on multivariate normal assumptions, and allows probability
of class membership to be predicted as a function of any array of
independent variables, either categorical or continuous in nature.
Further, the logit model may be formulated in a linear or curvilinear
fashion, depending on the application. Our research in this area is
summarized in the attached preprint, "A Logit Classifier for Multi-
Image Data."

Software. During the reporting period, we have also developed two
new software items. The first of these is a program which fits a logit
model to a set of calibration data which are jnput to the program.
Although existing programs are available for logit modeling, none of
these were suitable for the data which were available. The second
software item was a new VICAR program, PROBMAPS, which accepts images
of independent variables, input in MSS format, as well as the calibra-

tion parameters for the logit model, and produces a set of output images -

recording the probability of membership of each pixel for each class as
predicted by the logit model. Both of these programs are quite specific
to the logit model application, but both have been coded in universal
FORTRAN so that they can be compiled at other institutions. We will

be happy to make tiiis software available to you at NASA-Ames or to any
other users as well.

Future Plans. Our plans for the coming research period have not
been completely formalized at this time. I hope to be able to pursue
most or all of the following research topics:

1. wmodeling universal soil loss for a pixel based on landform,
land use, rainfall, and topographic parameters;

2. improved rainfall runoff modeling on a pixel-by-pixel basis
for use in hydrologic modeling;

3. further exploration of the logit model including its ability
to simulate various nonnormal distributions and perform as
a classifier of remotely sensed data; and,

4. continue the exploration of time-sequential classification
- of Tand use in Ventura County.

This concludes my semi-annual report,

Sincerely yours,

Alan H. Strahler
Principal Investigator
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A LOGIT CLASSIFIER FOR MULTI~IMAGE DATA

Alan H, Strahler and Paul F. Maynard Preprint: Proc, IEEE Workshon

on Picture Data Descrintion,
8780, AsiTomar, CA.

Denartment of feoaranhy
University of California
Santa Barbara, Californfa 93106

A new classifier for multi~imane databases
uses maximum 1ikelfhood astimation of narameters
fitting a logit model to training data. A loait
is the natural loaarithm of a nrobability ratio:
2.9, In (,/Py). As an examole, a Tinear logit
classitication mode] for a simole two-class case
based on_four Landsat channels {s:

ln(vé—) = Bn+31(L54)+82(LS5)+33(L56)+B4(L57)
where P dnd P: are orobabilities that the nixel
belongs to class 2 and b respectively, 24, ,,8,
are calibration constants, and LS4,,,LS7 and’
the four Landsat channels for bands 4 through 7.

Compared with usual Bayesian maximum 1ike-
Jthood classification, the 1ogit classifier has
certafn distinct advantages, [t is nonnarame-
tric, in that myltivariate normality is not as-
sumed, The model mav be specified in 1inear or
curvilinear forms as apnronriate. Further, the
model can incorporate categorical information in
the form of dummy variables, and can therefore
be used to merge continuously measured jmage
data with categorical collaterial data in a
sinale ¢lassification sten,

Introduction

The Bayes maximum 11kelihnod classifier (MLC)
is the most <ommonly used decision rule for dis-
crete classification with Landsat derived data.
Such a classifier uses the Ba;es decision rule to
assign pixels to the class with highest nrobability,
given the observed vector of snactral measurements
and the prior distributifon of classes. To find
this probability, the Bayes MLC requires an esti-
mate of the conditional nrobability of occurrence
of the observed vector of MSS data qiven that it is
associated with a specified ¢lass. This estimate
has traditionally been obtained by assuming that
the observed measurement vectors were Gaussian, or
normal; therefore, the best estimate is a measure
of the probability density value of the multivari-
ate normal distribution for the class evaluated at
the observation.

With four channels of Landsat spectral data,
the Bayes maximum 1ikelihood classifier has achieved
good classificatios accuracies in many cases.
Classification accuracies have been further boosted
by the inclusion of collateral data as additional
Togical channels or as indexes to sets of nrior
probabilities in the case of cateqorical collateral

variables.! Further increases in classification
accuracy will undoubtedly result from more ootimal
spectral channels and imnroved techniques of in-
corporating collateral data,

However, it {s very 1ikely that the spectral
reflectinces from some classes in many anplications
are not normally distributed. In this situation,
even with the ideal snectral "windows" and nrecise
and relevant collateral data, the Bayes MLC will
reach an asymptotic accuracy Timit that will be
less than optimal, In fact, for classes that de-
viate from normality, classification accuracles
could be significantly less than optimal.

Furthermore, each of the two previously men-
tioned techniques of increasing accuvracy hy innut
of collateral data to the Bayes classifier has
critical limitations, The Bayes MLC can only
accept meastement variables which are continuousiy
distributed, dand this requires continuous measure-
ment (or at least discrete measurement with a
large number of discrete steps), Consequently,
the collateral channel in the direct input anproach
can utilize only data which are measured on the
interval or ratio scale. This requirement elimi-
nates many potentially useful databases, such as
soils maps, geologic maps, political boundaries,
census tracts, etc, And when collateral informa-
tion is incornorated through the mechanism of
prior nrobabilities, the calculation of the orior
orobabilities usually requires a sophisticated
sampling design.

One solution to these problems is to use a
statistical technique that oredicts orobabhilities
of categorical membershin with no distribution
assumptions. One surh technique, called the loqit
regression model, has been widely used in the
social sciences for the last twenty years. The
logit regression mudel generates nredicted proba-
bilities that all sum to one for a specified suite
of classes, and the classification can be awarded
to the category with the highest oredicted nroba-
bility. Further, predictor variables may be con-
tinuous or categorical; the model may be snecified
in 1inear or curvilinear forms; and the assumption
of multivariate normality is not required.

This paper has the following components:
1. a review of the mathematics of the Bayes MLC;
2, ~an examination of the sources of classification
error due to non-normal distributions;
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3. an examination of Lhe problems encountered with
utilizing collateral data: )

4. devalopment and exposition of the lonit regres-
sion model, with an emnhasis on its ability to
act as a nonparametric ¢lassifiers

5, a description of planned research which will
compare the classificatfon accuracies of the
togit regression model and the Bayes MLC for a
land yse/land cover ¢lassification example; and

8. presentation of an example of the use of linear
1pgit model in a remote sensing apnlication.

The Bayes Maximum Likelihood Classifier

Backaround
In the past ten years, maximum 1ikelihood
¢lassification has found wide apolication in the
field of remote sensing. Based on multivariate
normal distribution theory, the maximum 1ikelihood
classification algorithm kas been in use for appli-
cations in the soctal sciences since the late
1940's, Providing a probabilistic method for rec-
ognizing similarities between individual measure-
ments and predefined standards, the algorithi found
increasing use in the field of pattern recognition
m the following decades.”»*s* In remote sensing
development of mylti-spectral digital images of
land areas from atreraft or spacecraft nrovided the
opportunity to use the maximum 1ikelihood ¢riterion
in producing thematic classification mans of large
areas for such purposes as land use/land cover des-

termination and natural cultivated land inventory;'"

Derivation of the Bayes MLC

In order to understand the difference between
a classification awarded on the basis of lonit-gen-
erated predicted probabilities and posterior proba-
bilities derived from the Bayes MLC, it will be
helpful to briefly review the mathematics of the
Baves maximum likelihood decision rule, In the
multivariate remote sensing apolication, it is
assumed that each observation ¥ (pixel) consists of
a set of measurements on r variables (channels)
Through the selection of training sites, a set of
observations which correspond to a class 1s identi-
fied -- that is, a set of similar objects charac-
terized by a vector of means on measurement vari-
ables and a variance-covariance matrix describing
the interrelationships among the measurement vari-
ables which are characteristic of the class. Al-
though the parametric sean vector and dispersion
matrix for the class remain unknown, they are esti-
mated by the sample means and dispersion matrix
associated with the object sample,

Multivariate normal statistical theory de-
scribes the conditional probability that an obser-
vation & will occur, given that it belongs to a
class ”, as the following function:

T A R YISO 0
Plx‘w/\:} = (2n) 728 557(! R St ) ";:'1(.1-11_1{)
(Please refer to Table 1 for a descrintion of the
mathematical symbols). As applied in a maximum
Jikelihood decision rule, expression (1) allows the
calculation of the conditional probability that an

3

observation {s a member of each of ™ ¢lasses, How~
gver, the actual nrobability desired is the poste-
rior probability ®rniX¥t; it can be shown* that:
":’;.(':')'P{m,_.} (2)

Praniyt = 2
A -

-
'.f"l%z’("‘.)'P(*’l""
This expression leads to the decision rule:

Choose * which minimizes
1010z [+(g-ms, ) D7 {xems.) ~210P Ay, Y, (3)

In usual practice the prior probabilities Pi..} are
assumed equal, or Piw,}=l/k where B {is the number of
classes, In this casé, the last term in expression
(3) is constant over all & classes, and need not be
considered in the decision rule. This equal priors
decfsfon rule is used in the currently distributed
yersfons of LARSYS and VICAR, two image processing
systems authored respectively by the Laboratory for
Applications of Remote Sensing at Pirdue University
and the Jet Propulsion Laboratory of California
Institute of Technology at Pasadena,

Classification Accuracy and the Assumption of Nor-
mality

In a tyoical supervised classifisation, train-
ing sites are selected by the analyst to typify
each class. Histograms of spectral values for
classes are inspected for multivariate normality,
and when a class actually consists of several dis-
tinctive sianatures, training sites are reaggre-
gated into subclasses, each of which {s aporoxima-
tely multivariate normal., In this way, a set of
multivariate normal disnersion patterns are defined
for the desired classes, It is imnortant to real-
ize that such dispersions, because they are se-
lected to be as "pure" as possible, are probably
underdispersed with respect to the true information
class, This effect produces a difficulty in the
classification of mixed pixels. Since the MLC
model does not provide for mixed pixels, the fupli-
cit assumption is that mixed pixels are to be ¢las-
sified according to the most probable signature
match; the components of the signature which are
reflected from the less important classes contained
within the pixel are thus revarded as random noise.
The mixed pixel, then, is typically classified by
comparing probability densities within the tails of
overlapping multivariate normal distributions. The
accurate classification of mixed pixels under MLC
thus requires a good fit of the tails to multivari-
ate normality; however, it is obvious that the
selection of training sites for purity wiil of
necessity produce a poor fit in the tails. And,
mixed pixels will constitute a large nortion of the
scene -~ up to forty rercent in some agricultural
applications: (F, Hall, oersonal communications)

This reasoning naturally leads to the consi-
deration of nonparametric classifiers. Brooner et
al.’ compared the Bayes MLC to a classifier which
used P{¥iw,} as directly estimated by a sampling
procedure, and reported a four percent increase in
classification accuracy over MLC, However, direct
estimates of P{Y|w,} require more data as well as
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vealing with p-dimensional table storage problem,
The logit model, discussed in the following pages,
provides an alternative which should require fewer
data to calibrate and can, by virtue of its curvi-
1inear modeling, approximate the real distribution
without assuming multivariate normality.

Problems with Incorporating Prior Probabilities

As shown earlier, the Bayes MLC can easily be
modified tuo take into account prior probabil{ties
which describe how 1ikely a class is to occur in
the population of observations as a whole, The
prior probability ftself is simply an estimate of
the proportion of pixels which will fall into a
particular class, These prior probabilities are
sometimes termed weights, since the modified claz-
sification rule will tend to weight more heavilv
those nlasses with higher prior probabilities.
Strahler! showaed via simplified numerical examples
how these different weights can affect the decision
of the Bayes MLC, As the prior probability P{uw,}
in expression (3) becomes large and approaches I,
its Jogarithm will go to zero and the classifica-
tion decision will effectively be made with ex-
pression (1),

However, since this possibility and 1]
others must sum to one, the prior probabiiities of
the remaining classes will be small numbers, thus
increasing the value of the expression, Since the
classifications is ararded to the class with the
smallest value, the effect will be to force classi-
fication into the class with high probability.
Therefore, the more extreme are the values of the
prior probabilities, the less important are the
actual observation values %.

Strahler® has demonstrated how prior proba-
bilfties can be used as a mechanism to incorporate
collateral data in categorical from into the Bayes
MLC. His mechanism uses a set of prior probabili-
ties estimated for each collateral cate?ory by ar
external sampling procedure, with the classifica-
tion algorithm accessing the appropriate set of
probabilities contingent upon the collateral cate-
gory of the pixel. In this fashion, categorical
collateral information s merged with multivariate
normal information concerning the spectral signa-
tures. Although this approach was proven effective
for a forestry application,'estimations of the sets
of prior probabilities may require considerable
data collection, depending on the number of classes
and collateral categories. In addition, multivari-
ate normality of signatures is assumed, and the
comments of preceding paragraphs apply. In con-
trast, use of the logit c¢lassification model allows
categorical and continuous information to be mixed
freely through the mechanism of dummy variables.
And, again, the mode] can be fitted in a 1inear or
curvilinear fashion as desired, avoiding the
assumption of multivariate normality, Thus, the
Jogit model offers a more natural, straightforward
way of incorporating categorical variables into
the classification procedure.

The Logit Redression Model .

Linear Modeling of Probabilities >

The most commonly used predictive multivariate 3
statistical technique 15 probably ordinary least |
squares {OLS) regression, The prediction, or esti-
mated value of the dependent variable, is a func-
tion of the yector of estimated betas {8) in combi-
nation with the vector of observed independent
variables (¢). The betas are estimatad in such a
way that the variance about the least squares re-
gression 1ine is minimized,

When usad to model probabilities, OLS regres-
sion has one major drawback: although probabil{-
ties are constrained to 1i{e within tne range of 0
to 1, the predictions generated from such a mode’
are unbounded and may take values from minus infin=
1ty to plus infinity, Thus, the predictions may
11e putside the meaningful range of probability,
Further, the probability of each class must be
modeled separately, and there is no constraint to
ensure that all probabjlities must sum to one.

One solution to the bounding problem is to
specify that

inv'.il

{where P, is the probability of observing a speci«
fied class or category of the dependent variable),
Indt?e case of ordinary lnast squares regression
model,

3'3 = Bq + ﬁﬂfil + ﬁg_.’fﬁg.

The simplest way to satisfy this condition is to j
impose the following arbitrary definition of P

1, P. is ecual to 0 if ¥, fs Tess than 03

2, Pi is equal to Y, if ¥, 1s equal to or between
0"and 1, N v

3. Pi is eaual to 1 {f Y, is areater than 1:

and use straightforward ordinary least squares
estimation of the regression parameters. This
solution is often referred to as the linear proba-
bility model. Unfortunately, although it appears
to be a simple solution to the predicted probabili-
ties problem, the model has a number of serious
limitations which are discussed by Domencich and

McFadden” Again, the probabilities are not con-
strained to sum to one.

The Loqit Model

~ The simplest, yet most statistically sound,
solution to the probability problem (within a re-
gression framework) is the logit transformation.
In this transformation, the ratio between the pro-
bability that an observation or pixel ¢ belongs to
a class Py and the probability that it does not
belong to Py is expressed as a logistic function:

1-Ps,1
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whare é is a vector of parameters and - is a vector
of pbsarvations on independent variablés. Taking
the natural logarithm of this expression,

P,
1" (T:t_‘:m_) = 9}}.’ v (5)
Iy A

The left-hand quantity is referred to as a loqit,
Note that when 2% is zero, the ratio will be 1,
indfcating equal probabflity., As ¥ varies posi-
§iv?ly or negatively, the ratio will shift accord-
ng yb

The ratio. under the constraint that the numers
ator and denominator must sum to one, determines
the two probabilities uniquely, Expression (4)
can be solved explicitly for P,:
3.8
P, , = u—:%ié * (6)

H 3 Y
2 IERt€,

And, if P is defined as 1-Py, it is easy to show
that

P, . % 1uP, , & b (7)
Ty e 1h?§ld

Although expressions {4) and (5) show the
product ¥ as a linear function, the X vector may
contain wowers and cross products in the case of a
cgrv§11near model. An example is (elemental nota~
tion):

In (it S2PRRLEHR Y, 13 R, pX 48y, ¥ 10
i (8)
for the bivariate case.

Unlike the conventional regression models, the
logistic and linear logit regression models require
pither a weighted least squares (WLS) procedure or
2 maximum Tike]lihood procedure to estimate the
calibration parameters (betas)., The choige between
the two methods depends upon whether or net the
sample under investigation includes repeated ob-
servations for each combination of values of the
explanatory variables, If so, WLS is appropriate;
however, reniote sensing applications rarely have
repeated observations. Consequently, the method
of maximum 1ikelihood s the preferred method,

A number of authors present the details of this
method, which is discussed briefly in a following
section. .2y ¥s1Miis12

Maximum 11kel{ihood estimation of logit model
parameters has many other attractive features,
Provided that the sample data are not multicol-
1inear, a unique maximum 1ikelihood estimator can
be obtained even in relatively smal) samples,
Also, the mathematical properties of the 1ikelihood
function allow for efficient comouter programs to
produce the parameter estimates. These estimates
are consistent and are the best possible estimates
in very large samples, The disadvantages of the
procedure aré that it involves numerical optimi-
zation and therefore more ¢omputation, and that it

requires more calibration data than MLC beécause of
the larger number of parameters which need to be
gstimated.

Logit Example

The followina {s an example that uses contin-
uogs and cateaorical explanatory variables to esti-
mate

Pe s
In (*:Et::) ® 8o hinthge | (9)

where P, ,/{(1-P, ,) is the ratio of the probability
that pixe! ¢ is‘h&t of ¢lass 1, ¥,. refers to a con~
tinuously measured variable on pikél & (MSS or con-
tinuous collateral data), and 0, 1s a dummy variable
that s equal to one if a cateaorical variable is
true at pixel ¢ and zero if it is not, Given the
logit ratio, simple algebra will extract the value
of P, 1t 1s straightforward to add more con-

1

tinubué'and cateqorical exnlanatory variables.

Estimating the Regression Parameters

In order to calculate the logit ratio in the
preceding formula, it is necessary to obtain esti-
mates of the regression narameters, The first step
is to specify the model in terms of a likelihood
function, If the training observations are thouaht
of as independent trials, then the 1ikelihood of
the outcome of these trials (for the two-class case
deseribed above) is:

).’.1 n
L= e, 0 T (1ep p (10)
t=1 "’1{=H1+1 Lyl

where observations Z=1 to ny are those in which the
observed dependent yariable was a member of class 1
and ‘=n; + 1 to n are the observations in which the
dependent variable was not a member of class 1.

Substituting from the definitions of P; ; and 1-P; 4
in expressions (6) and (7), the result {s !

L =

<

fe
=R

\:
o8 i 1 (11)
1 =y +1 1+p g"g '

st
1+ri§

As specified, the 1ikelihood depends upon a
set of unknown parameters, the betas, These para-
meters are estimated by choosing those values which
maximize the preceding likelihood formula for the
given set of trafning data. Rather than maximize
the 1ikelihood itself, it is computationally sim-
pler to maximize the logarithm of the 1ikelihood, or
ny 1
Inl= £ g5 In(l+e=), (12)
=1 =1

To maximize this exoression it is not possible to
set the partial derivatives of In (L) with respect
to the betas to zero, and solve simultaneously for
the betas in a direct fashion. Instead, the solu-
tion must be obtained by {teratively recalculating
In L for successive estimates of betas until the
partial derivatives converge upon zero,

>
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Thare are several mathematical techniques for
iteratively converging the first partial deriyae
tives to zero., One well~known techniaue 1s the
Hewton-Raphson Method, which ¢alculates deltas
{amount of change) fur the betas by forming the
matrix of second partial derivatives, inverting it,
and postmultiplying it by the vector of the first
partial derivatives. That fis,

HEIHEE N

where i is the vector of calculated deltas, ™! is
the inverted second partial derfvative matrix, and
i is the vector of first partial derivatives. The
deltas are subtracted from the betas, and the sec-
ond partial derivative matrix and first partial
derivatives are recalculated with the new betas,
The process continues until the vector of first
partial derivatives has converged upon zero, at
which point the most 1ikely vector of betas has
been identified.

Given these maximum likelihood estimates of
the betas, the last step in a logit model ¢lassifi-
cation sequence is to use exmressions (6) and {7)
to calculate the vector of probabilities for each
pixel and award the classification to the category
with the largest predicted probability.

Polychotomous Loait Regression

The preceding examle, although conceptually
straightforward, is not applicable when there are
more than two categories to be predicted, The
dichotomeus logit can be easily extended to the
polychotomous legit, Now, Instead of two cateqo-
ries of interast, thera are 7 possible categories.
The model now becomes:

Lz,'ﬁ.e
fl
N R e g
P’.‘,,z' 7 ‘33:5" ) (13)
!: ke
da)

where P, 1s the prubability that pixel ¢ belongs
t5 the »th category.

Because of the constraint that the probabili-
ties myst sum to one, only 2-1 sets of betas and
probability ratios need to be determined, Intro-
ducing this constraint on the 7th class, it 1s
easy to show algebrajcally that

Rl
x 1 , = .
Pi,ﬁ laiipz.a 1475 9§Jgf (14)
s
This constraint can also be introduced by taking
3.=0, which produces an identical exoression from
substitution into expression (13).

For estimates of the betas, the maximum 1iie-
Hhood estimation procedure, described above for
the two-class case, 15 generalized to the R-class
case in a straightforward manner.

Proportion Estimation

Although the discussion above has stressed the
use of the Togit model for classification, it may
also be used for proportion estimation., Nelepka

3]

Kiamath National Forest Test Site Location

AREA MQOELED

Figure 1. Index map showing locatior of arsa
modeied 1in Kiamath National Forest.

et all!’ and Yoodcock et al?“ have both discussed
this problem using underlying assumptions of multi-
variate normality, The loait model provides an
alternative which does not assume multivariate nors
mality and estimates proportions directly. As in
classification, either linear or curyilinear models
may be selected, and cagegorical variables may be
readily utilized as well., The difference between
application of the logit model as a classifier and
as a proportion estimator lies in the nature of the
calibration data. For the ¢lassifier, training
observations of x vectors (for pixel ¢) are each
individually labéled with a single ¢lass: in the
case of proportion estimation, each observation
contains the okserved proportions of classes and
the associated measurement vectors. These propor-
tions constitute weiahts, and it {s easy to show
that the 1ikelihood function becomes (as in the two-
class case):
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where 7. , is the oroportion for the ‘th observa-
tion for’class », and = is the observation weight
(which, as a constant, is eliminated in differen-
tiation of the fraction),




applicetion Example

At the present time, the logit-based classi-
fier has not been tested, although a logit model
has been used in a forestry remote sensing problem
of proportion astimation, This use 1s summarized
fn the paragranhs below, For this application, a
Tinear logit model was devised and fitted to forest
species compositional data for northern California,
predicting the proportion of timber volume for each
of five coniferous tree species at each pixel based
on registered terrain data quantifying elevation,
slope, and aspect., This research utilizes the
Video Image Communication and Retrieval (VICAR)
system and the Image Based Information System
{IB1S) resident at the University of California,
Santa Barbara, VICAR/IBIS, developed at the Jet
Propulsion Laboratory (JPL5 at Pasadena, California,
{s a job control 1angua?e which permits the sequen-
tial 1inking and execution of a vast array of
Fortran and Assembler routines in a batch environ-
ment, In addition to extensive usage of existing
VICAR/IBIS routines, new VICAR and ron-VICAR soft-
ware were developed and/or modified as required for
this application,

Logit modeling of species proportions used
data derived from the Klamath National Fcrest, lo-
cated in northern California (Figure 1}, Ranging
‘n relief frow 500 to 8,000 feet, the Forest in«
cludes 2,600 square miles of rugged terrain in the
Siskiyou, Scott Bar, and Salmon Mountains, Little
of the area is developed beyond management for
timber yield, 1ivestock production, and recreation,
A wide variety of distinctive vegetative types is
present in the area, Forest vegetation includes
such conifarous species as noble, red, white, and
douglas firs, ponderosa pine, and incense cedar,
as well as several oaks, and typical species of
chaparral, Thus, the topographic and veaetational
characteristics of the area are wel) differentiated.
Within the Klamath National Forest, a study area
including most of the Goosenest Range was selected
for logit modeling of species comnosition from
terrain features, This area was chiosen because
calibration data and Landsat image. were readily
avatlable for 1it,

Digital Terrain Model

The logit model v this forestry application
requires preparation of digital terrain data.
These data, obtzined from the National Cartogra-
phic Information Center, in Reston, Virginia, are
derived from processing of 1:250,000 contour maps,
and include elevations at every point on a grid of
approximately 65 m spacing. Although the data are
comparable in scale to a Landsat image, the eleva-
tion values are quite generalized because they are
produced from small scale contour maps by interpo-
lation.

Slope angle and slope aspect channels can be
produced using the elevation data of the regis-
tered terrain image. Although a number of slope
and aspect generatirig algorithms are known, the
simplest is the fitting of a Jeast squares plane
through each pixel and 1ts four nearest neighbors
and the calculation of the duwnslope angle and
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direction of the plane, Slope aspect was trans-
formed from a coding of zero to 255 representing 0?
to 3597to a cosine function shifted by 45°. This
function, proposed by Hartung and Lloyd,” contrasts
northeast-facing siopes, which present a favorable
cool, moist growing anvironment, with hot, dry
southwest-facing slopes, Although tha “unction is
defined ecologically, 1t also simulatus Lambertian
reflectance from a light source placed in the north-
east, and thus the aspect image shown in Figure 2
gives the strung yisual impression of ralief,

Logit Model
The logit model fitted is

I(E) = By, + 32,08 + Ba,04 + 54,00, % % 1.5,
"

where P, is the probability that a board-foot of
timber Volume will be drawn from one of five snecies
k, P, is the probability that the board-foot will
not be drawn from species ¥, 7 {is elevation (com-
pressed to 0-255 range), 4 1s aspect transformed as
described above, 7 1s slope angle, and 8y,.,... 84,4
are the estimated regressfon constants. Note that
five equations, one for each spucies, actually com-
prise the mode}, The model was calibrated using 73
measurements of timber volume prepared by the U, S,
Forest Service and located within two subregfons of
the Goosenest range. These samples are probably not
representative of the entire area modeled, but serve
for the demonstration purposes of this research,
Each sample was Jocated on 1:15,840 scale color air
photos and transferred to Band 5 of a registered
Landsat image to obtain the line and sample coordi=-
nates of the sample point. The coordinates were
then used to extract elevation and aspect values for
the sample from the registered elevation and aspect
images, The coefficients for the model were fitted
by a nonlinear optimization algorithm employing the
Newton-Raphson method described above.

Given the constants produced by this procedure,
the probability images were created using the new
VICAR program "PROBMAPS." PROBMAPS, written speci-
fically for this anplication, calculates the pro-
babi1ity of species ® for each pixel < using the
following expression:
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PROBMAPS then scales each probability so that the
range 0=255 represents 0 to 1, PROBMAPS output
images for this example are shown in Fiqure 2,
Brightness values represent that probabilities occur-
rence for douglas fir, ponderosa pine, white fir,
and red fir, with probabilities scales to range
from black (0.) to white (1.0). The incense cedar
image has been contrast stretched for display pur-
poses, and presents a probability range of 0. to ,3
from black to white. The probability images repre-
sent maximum 1ikelihood estimates of species pronor-
tions; they appear reasonable in 1ight of the known
ecological preferences of the species, but their
accuracies remain to be determined.
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Future liark

some uirigue sdvanianey

Although the loait classifier appears to have
o, ventional maximum

Tikelinood classificativui :oither work will be
recessary to orove its value for remgte sensing
applications. Topics to be investigated include:

1.

Model Sgscifigg;ﬁyl. For what shapes of nons
normal distribution are linear models appro-
priate? Under what cond:tions are curvilines:
models necessary? Could & stepwise procedure,
analogous to polynomial gurve fitting, be
devisad for model calibration? Since it {s
possible to obtain assymptotic estimates of
the standard error of each beta, could the
stepuise procedure drop individual terms from
the model which are not significantly differ-
ent from zers?

Accuracy, How wel) ave probabilities pre-
dicte Can a confidence Yimit be placed on
the predicted probability? Monte Carlo meth-
ods may be helpful here, How does accuracy
intaract with distribution shape?

“urthar Anplfcat'ans, The logit model needs
to be exercised on a real classification oro-
blem and compared with convantional MLC,

ihich 1s more accurate? Which consumnes more
computational resources? Do categorical vari~
ables present any special problems?

These aquastions and others will be the subject

of future research in the application o7 the logit
model to the remote sensina problem.

Table 1, MNotation

Term

Def{nition

"

Number of measurement variables used to
characterize each object or obsarvation,

A » dimensional random vector.

Vector of measurements on » variables
associated with the <th object or obser-
vation; =1,2,,,, 1.

Probability that a dimensjonal random
vector will take on observed values ..

Member of the th set of classes wi %=1,

Yy by Jed

Pé s, Probability that an observation will be

a member of class w,3 prior probabiliily
of class wu. '

pﬁfimki Probability density value associated

with an observation vector ¥ as evalu-
ated for class w,,

1., (%) Probability density value times prior

probability for observation vector ¥
evaluated for class w,

Parametric mean vector associated with
the »th class,

Parametric £ by p dispersion (variance-
covariance) matrix assoctated with the
*th class,

8

Tarm Definition

D, > by » dispersion matrix essociated with
a somple of observations belonging te the
“th classy taken as an estimator of I,

% Surmation siqn, add together ail oceur~

Iy rences of ¥ from 1 to »n.

g Product sign, multiply together all occurs

Ty rénces of ¢ from 1 to »,

} Estimated vector of reqression parameters.

m, Mean vector associated with a sample of

observations belonging to the *th class;
taken as an estimator of «,,
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INCORFORATING QOLLATERAL DATA IN LANDSAT

\ CLASSIFICATICN AND UDDELING PROCEDURES

A.H. Strahler, J.E, Estes, P,F, Maynard
F.C. Mertz, D.A. Stow '

Department of Geo
University of Cau.gaphmiay
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ABSTRACT

A mmber of existing statistical tecimiques cun be used to merge spec-
tral image data with collateral information, inecluding regression, ANOVA,
HANOVA, ANCOVA, MANCOVA, discriminant analysis, maximm likelihood classi-
fication with or without prior prcbabilities, contingency table analysis,
and logit modeling. Thae choice of an appropriate t:chnique upon
the nature of inmput and output variables -- contimious, discrate, or cate-
gorical -- and the appropriate modal -~ parametric or nonparamerric,

Logit modeling is a very versatile techmique which is well adapted to
remote sensing application. The logit, which is the natural logarithm of
a odds ratio for two states of an cutput categorical variable, is predicted
by a linear or cuxrvilinear fimction of continuous or categorical inpur vari-
gbles, Since the lipéi: models probabilities or proportions, it can be used
directly as a classifier or indirectly as an estimator of prior probabili-
ties for conventional mmcimum likelihood classification with prior probabil-
ities. The logit model is arametric, a feature which makes it y
desirable when used to merge ate types of collateral data, The dis-
advantages of the logit model are that more calibwation (training) data are
required to f£it the model, and that fitting requires zn iterative nonlinear
optimization procecira. A logit model was devised and fitted to forest
species compositional data for northern California, pradicting the propor-
tim of timber volume in each of five species at each pixel based on regis- |
tered terrain data quantifying elevarim and slope aspect.

. Arpther versatile tool is maximum likelihood classification with prior
probabilities, By making prior probabilities conditional on a collateral
data charmel, the information contained within the charmel can be conveyed
to the maximum likelihood algorithm. An example is in land use, in which
a previous classification and an externally devised transition probability
mtrix are used together with new image data to produce an updated classi-
fication consistent with the observed pattern of change. This tecimique
has relevance for monitoring urban expansion and the impact of forest

clearing in developing nations,

1. INTRODUCTION

Viewed in a broad context, the problem of combining image data and spatial collateral data
into a predicted cutput map or image is actually a problem of combining continuous and categori-
cal variables in a modeling framework capable of producing contimuous or categorical ¢utputs.
At the University of Califormia, Santa Barbara, NASA-supported research (grant NSG-2377) is cur-
rently mderway to identify existing models anid procedures for spatial modeling and to apply
them to selected datasets to demenstrate their applicability in a remote semsing situatiom.

Collareral data, here defined as preexisting spatial information in the form of a map, pro-

.
. g - — i e . TR UM G . -
TN A0l K AN S Ay TR KT ey b L o Y . S W ST

1
i
4
;
4
1
L
(

e RN



e ol

!

cessed image, or set of observations at grid coordinate locatioms, Gan be carbined with Landsat
or other remorely sensed digiral imagery to enhance classification accuracy or to construct
models which predict spatial patterns of ground phencmena, Collateral informcion can be either
contimous or categorical in nature. Examples are elevation, slope, or aspect charmals obtained
fram a digital terrain model (continucus); and rock type, soil type, cxop , or land use
(categorical). Image data, with which collateral informaticn are to be combined, are typically
contimuous in natiure, although values my ha quantized into discrete gray tome levels for data
processing applications. Desired outputs may also be either categorical or continmuous, Any cype
of classificatimm constitutes a discrete or categorical output, whereas such outputs as percent
bare ground, timber volume, soil loss, or forage cover are contimuous in characrer.

Figure 1 presents appropriate tectmiques for the merging of contimuous, categorical and
mixed (both econtinucus and categorical) datasets to produce either centimuous or é‘:tegvz'ical out-
puts, Contirmuous cutput models, including regression, analysis of variance, and analysis of co-
variance, are all mathematically related and based on least squares algebra, Categorical outpur
models are more diverse and include variance maximdzing tectmiques such as discriminant analysis
as well as the nonparamecxic methods of contingency table analysis and logit modeling, Maximm
likelihood classification may be viewed as a special case of logit modeling in which the inpuc
variables are assumed to be normally distributed. Norparametric and maximem likelihood techni-
ques, because they produce prchabilities of classification as an outpue, alse have the advantage
that they can be adjusted for prior probabilities, Because many present remote snsing applica-
tions call for categorical classificacion, these latter methods are probably most useful in com-
bining contimuous image data with categorical and contimuous types of collateral data.

Demngtraticns of a selected set of these techniques are plarmed and under current develop-
ment; their current status is discussed in following sections. Several of these examples have
important implications for remote sensing in developing naticns, 7n one application, logit
modeling is used to fic a model which describes the probability of ocowsrence of various forest
species given elevation and slope aspect values obtained from a registered digital terrain model.
Once cbtained, these probabilities can be used ag prior probabilities in a maximm likelihood
classification of a Landsat image with registered terrain data for natvmal vegetaticm wunits.

This tecimique could facilitate the acourate ldentification of forest types in camplex tTopical
upland ermirorments. :

In another exanmple, land use classification lor change detaction monitoring is improved by
a contingency table-analytic technique which quantifies the probabilities of change for each
land use type dwing the fixed time interval., This technique has important implications for many
developing natioms, especially in Central America, where whan expansion is impecting agricul-
tural land, and forest clearing for agriculture is impacting large natiral envirorments. Addi-
tional examples are being developed, focused on Landsat’ and collateral datasets obtained for an
area of Ventura Cowmty, California.

¥

2. STATISTICAL TECHNIQUES

Figure 1 identifies a set of statistical tecimiques which are relevant for combining colla-
teral data in the context of lLandsat mndeling and classificaticm, The techniges can be seen as
a double level hierarchy, ranging from continuously measured independent variables in the first
colum to categorically measured independent variables in the last colum. In the first row,
the dependent variables are are contimuous in nature, and in the second row the dependent variables
are categorical, Continuous variables are measured on interval or ratio scales, whereas categori-
cal variables are measured at namnal or ordinal scales. Categorical variables can be of three
types:

(a) dichotomous (e.g., presence or absence, yes or mno)
(b) wnordered polychotcmous (e.g., land uses; agriculture, urban, forest, etc.)
(c) ordered polychotomous (e.g., low rumoff, medium, and high nunoff)

. The statistical techniques in the first row have been thoroughly documented and are commonly used

in social sclence (Blaleck, 1972; Graybill, 1961; Morrisom, 1967; Winery 1971). However;
there has been relatively little work in the area of applying these apprraches to remota sensing.
The second row of the figure describes tectmiques which are gene_rally less well kncwn, but also
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include maximm likelihood calssificacion as commonly carried ous in remote sensing, The remain-
ing portions of this sectitn discuss the theory and remote sensing application of the techniques
identified in Figure 1.

2,1 CONTINUOUS RESPONSE VARIABLE

Tha scatistical techniques of the first row of Figure 1 share one thing in camon -~ they
are all different forms of the basic linsar regression model, Consequently, the theory and
application of the different types of regressiom in row one will be very similar. Cell (a) will
bol?n?li’x)ud én(c’:)nmil. and except whare explicitly specified, ths malysis can be extended to
cells and ().

2.1,1 CEL (a) -~ CONTINUDUS EXPLANATORY VARIABLES, The moat commonly used mechod in this cell
is regression, which predicts a continmuously measured response variable from contimuously meas-
ured explanacory varinbles, The model (in vector notaciom) con be written:

f=ar+e

where Y’ i3 the vector of cbserved dependent variables, 8 is the vector of wnnown parameters,
is the vector of observed independent variables, and ¢ Is the vector of errors. (lable I des-
cribes the symbols used in this paper.) Typicilly, the vector 8 is unknowm, and must be esti-
mated from a dataset for which both response and explinatory variables are chbserved, This esti-
mation is done by the proceas of ordinary least squares regression (OLS), OIS regression finds
the slope and the intercept of a line ruming the data which minimizes the variance of
K(y-1)2 , or the sum of squared differences between the cbserved Y and the predicted y. The
vector of predicted Y value is calculated by:

2=

The regressim is accomplished by defining the quantity @ equal to T (¥ - 7) taking the first
pu:ia?fhrivaciws of Q with respect to the values in thae vector § and setting these partials
equal to zero, By definition of a paiital derivative, a minimum has been found.

The best statistic for measuring the strength of the regression is 52 There are several
ways of calculating 32, but the following 1s conceptually the sinmplaest. The resicual sum of
galqmremﬂ; (ﬁ.s.g) or the total ammt of variance in the model riot explained by the regression is

ted by:

n L3 ¥
35S = ¢ (¥, -3.)%
i__}(ﬁ 2)

The 755, when divided by the total corrected sum of squares in 7 (written 755), gives the propor-
tion of wnexplained variance to total variance. R2, or thae proportion of explained variance, is
obtained by subtracting this ratio fraom me:

R? = ] - B5S
7SS

One example of how regression could be used within the context of merging Landsat and col-
lateral data is bicmas; modeling. The regression example used for cell (a) is restricted to
continuously measured independent variables, For simplicity, only one spectzal charmel and one
collateral data source are used, Adding other charmels and other collateral data sources is a
straightforward procedure, A basic linear model could be:

By = 8o + 81 (S5,) + Balrainy)
where 3. is the predicted biomass for pixel 7, 455, is cbserved multispectral scarner data (as

single kand, or miltiband ratio or transform) for pixel ¢, main, is observed rainfall on pixel
i, and the vector of betas (8;...8;) are the estimated regressién parameters,

Regression models are applied as a two stage process, First, the model must be calibrated
(estimace the vector of §'s) b

y regressing the observed independent variables on the observed
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dependent variable, In this example, biomass data are required from a-sufficient mmber of
pixels to give a representative sample of the Landsat image to be modeled, The locations of
data points are then 'rubber-sheeted' to a geometrically corrected Landsat image, and the linked
biomass and MSS data is directly accessed z‘a statistical software pw:k.*;g\v:i such as the Stacise-
tical Analysis System (SAS), to calculate betas and 72, Secondly, if 8% is statistically
significant (i.e., the calculated betas explain a .ignificant portion uf the total variance in
¥), the model is extended as a predictor to othe# pixal: where the dependent variable has not
haen observed. This, in effect, constitutes a m del of bictmss predicted by suwrface reflectance
and measured ruinfall, :

2,1.2 CEL (b) -- MIXED EXPLANATORY VARTABLES. This cell includes comventional regression
models which are similar to those of cell (a) but also include a mixture of continuous and cate-
gorical explanatory variables, Such models are common in social science research, the categori-
cal explanatory variables often being termed ''dummy" variables. It can be shown that the more
familiaxr statistical 4est Analysis of Covariance (ANCOVA) is a straightforward extemsion of OLS
regression with dumy variables (variables that assume values of 1 or 0 depending on the presence
or absence of the qualitativa variable being measured).

As an example, the model used in cell (a) will be extended to cell (b). In this cell we
are able to include data measured categorically -- for example, soil type which can be observed
in two stares, raferred to as class 1 and class 2. The model now hecames:

é':'- =35 + 61((‘155,;:) + éz(z'aini) + Q3Dﬁ’~ + §wiz

where the blomass for pixel 7 is predicted by the variables used in cell (a) in cambination with
the dumy variable terms 8,0., and 8uD;,. IE the observed soil type for pixel < is class 1,
then the categorical beta thit will be“fised is 83, whereas if the:soil type is class Z, then 3,
will be used. This is accamplished by dafining 07| equal to 1 if the soil type in pixel ¢ is
class 1 and O otherwise and by defining D;, equal to 1 if the soil type is class 2 and 0 otherwise.
It is a relatively simple task to expand this model to include several (polychotomous) soil types
or to include other cacregorical data.
When tinre is more than one interval scale dependent variable, the mpdel is called MANCOVA,
or Multivariate Analysis of Covariance. In this model, all of the independent variables are
regressed against each of the dependent variables, with separate 72s and 7 ratios calculated for
each dependent variable. An example of this is:

8.5, = Bo + B1(MS55) + Ba(raing) + 830z + iz
where 3; is predicted biamss for pixel ¢, §; is predicted soil loss for pixel ¢, and the: other
variables remain as in the preceding example. !ANOOVA can be seen as a device to test more than
one ANCOVA model in the same statistical analysis. . .

2.1.3 CHLL (c) -- CATEGORICAL EXFLANATORY VARTABLES, The extended regression model examined in

cell (b) is also applicable here. When the explanatory variables are all measured on the ordinal
or nominal scales, the model is usually called Analysis of Varimce (ANOVA). All that is neces-

sary to move from cell (b) to (c) is to exclude from the amalysis all explanatory variables that

are measured on the interval or ratio level. As an example of ANOVA, the biomass model would be

writton:

3,; = 35 + éiﬂil + B20g2 + 33053 + Bugu
Here, 8, and 8, refer w0 two different soil types and §; and 8, refer to rainfall that hes been
categorized into two levels (high and low). It would be possible to categorize MSS data for use
in such a model, but there is comsiderable information loss. Consequently, the ANOVA or MANOVA
(Imliivariace Analysis of Variace) model is not likely to be as useful as the ANCOVA or MANCOVA
2.2 CATEGORICAL RESPONSE VARTABLE

The first three cells have dealt with Landsat MSS data and continuous dependent collateral
variables as predictors in various scatistical models of physical phenomena. The last three
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cells, in which the dependent varisble is categorical, opén up naw Ways of utilizing collateral
data within the Landsat stxucture, With categorical data and with the appropriate statiscical
tachniques (see Figure 1) it is possible to:

1) model physical and social phencosna that are best represanted in discrete steps -~ low,

medium, (soil erosion, fire hazard, Bicmmss, housing quality, mmicipal. services,
ete.);

2) classify t:!)n dependent varisble into nominsl groupings (land use, vegetation commnify
type, etc.):

3) create predicted probabilities that the dependent variable will assume particular caty-
gories and use thase probabilities to classify an immge directly or use them in conjuic-
tion with other date (usuzlly MSS) in a Bayselan maximm likelihood classifier.

Unlike the first row of Figure 1, the second row includes five different statisuical techni-
quas. For purposes of modoling with landsat under the constraints of the second row, Maximm
Likelihood Classification (ILC) with Prior Probabilities is the most important method. 'Made
mum likelihood’ is a statistical property of an estimator, and, used in its proper way, %n
that an estimator has the highest probability of producing the data which were used for calibra-
tion. However, its use in ramwte sensing implies a particular decision rule (MC) possessing
this which is discussed below. Our research has shown that the inclusion of collateral

property,
data as prior probabilities to ML offers a simple and effective way of combining collateral and
remotely sensed daca.

Tha kay to the use of pricz probabilities is the logit regression model, which takes col-
lacteral data (contimuous or categorical) and generates predicted probabilities. These predicted
probabilities can be used as. a direct classifier (i.e., the pixml is classifisd into tha catie-
gory that has tha higheat probability), but the most likely usage of these predicted probabili-
ties is as input to the !IC decision rule, in which they serve as weights. Since the logit re-
gression model is probably the least familiar of the statistical rechniques to remote sensing
Tes

earch, and sinca it is applicable in ewry cell in'the bottom row, it will be explored with
the most decail,

Discriminmt Analysis is similar in its usage to maximm likelihood with prior probabilitiss
but because of its compurarional complexdty it has not been used often in the remote sensing con-
text, Consequently, it will be only briefly discussed. Chi-Square Anelysis, which is the tra-
ditional analysis used on contingency tables (all variables are categorical) is by definition
not compatible with interval or ratio scale ramtely sensed data. It is similar to ANOVA, -
except that the output is categorical. ' .

2.2.1 CEL (d) -- CONTINUOUS EXPLANATORY VARIABLES. In the past ten years, maximum likelihood
classification has found wide application in the field of remote sensing. Based on multivariate
normal discribution theory, the MLC algoritim has been in use for applications in the social
sciences since the late 1940's. Providing a probabilistic method for recognizing similarities
betwesn individual measurements and predefined standards, the algorithm found increasing use in
the field of pattern recognition in the followdmg decddes .(Chow, 1957; Sebestyen,’1962; Nilsson,
1965). In remote sensing, the development of multispectral scarming tecimology to prodice -
layered multispectral digital images of land areas from aircraft or spacecraft provided the
opportunity to use the maximm likelihood classifier in producing thematic classification maps
of large areas for such purposes as land use/land cover determination and natural cultivated
land inventory (Schell, 1972; Reeves et al., 1975).

Before presenting a practical example, it will be helpful to briefly review the mathematics
of the mmxiums likelihood decision rule. In the multivariate remote sensing application, it is
assuned that each observation X (pixel) consists of a set of measurements on p variables (chan-
nels), Through some external procedure a set of obsexrvations which correspond to a class is
identified -- that is, a set of similar objects characterized by a vector of means on measwre-
ment variables and a varisnce-covariance matrix describing the interrelationships amomg the
measuremant variables which are characteristic of the class. Although the parametyric mean vec-
tor and dispersion matrix for the class remain uniqxwm, they are estimated by the sample means
and dispersion matrix associated with the cbject sample.

Multivariate normal statistical theory describes the probability that an observation X will
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ceceur, given that it belongs to a class k, as rhe following function:
- -}
R0 = @0 Tl g ® =) BT - w)

As appliaed in a mmdmm [ikelihood decisim rule, the previous expression allown the calculation
of the probability that an cbservation is a member of each of % classes, The observation (pixel)
is then assigned to the class for which the probability density value is test, Since the
log of the probability is a monotmic increasing finction of the probability, the decision cm
be made by comparing values for each class as calculated from the right hand side of equation,

A simplifiad remote sensing clascification rule using maximumm likelihood (Tatsuoka, 1971;
Strahler, 1980) with k possible categorical classes and p charmels of MSS inpur davasets is to
choose the ¥ (class) which minimizes

Fle(y) = InfD] + (X; - mg) ‘D" (%7 - my)
This expression is derived from the preceding cne by taking the natural logaritim aid deleting
terms which are constant for all classes.

Intexval or racio level collateral data can be incorporated as extra 'logical” charmels
within this model, One successful forestry application was achieved by the creation of a tex-
ture charmel which was synthesized from Landsac Band-5 by taking the standard deviation of den-
sity values within a 3 by 3 moving window, scaling this value, associating it with the center
pixel of the 3 by 3 window, and retwrning it in imape format (as a fifth charmel), Valugs in
the texture charmel describe the variarion in image tone within the immediate area of each pixal.
High values are characteristic of edges and boundaries, whereas lower values describe more uni-
form areas, This techmique was shown to significantly increase classification accuracies for a
muber of species-specific forest cover types in northern California (Strahler, 1978, 1979).
Strahler (1978) demmstrated how to imput: collateral information in the form of elevation data
and slope aspect (in cambination with a textiwe charmel) as separate "'logical' chamels, increas-
ing the classificacion accuracy by 27 percent.

2.2.1.1 it Regressim. In extending the conventional regression models adopted in cells
(a), (), and éc? to ﬁ.e problems of cell (d), two difficulties are encountered. (For details
see Wrigley, 1976, p. 8-9; 1977b; p. 12-13), First, a comventional regression model with a
categorical response variable will violate the constant error variance or homoscedasticity
assumtion. While this problem does not result in biased or inconsistent parameter estimates,
it does result in a loss of efficiency and gives rise to serious problems if comventional infer-
ential tests are used. Secondly, a conventional regression model with a categorical response
variable may generate vredictions which are seriocusly deficient. It can be shown that the pre-
dicted values of the response variable in such a model are best interpreted as predicted proba-
bilities. The problem is that although probabilities are constrained to lie within the range
of 0 to 1, the predicrions generated from such a model are umbounded and may take values from
mirug infinity to plus infinity, Thus, the predictions may lie outside the meaningful range of
vrnbability and may be inconsistent with the pmbabilig‘incerprecatim that was just presented.
The simplest yet most statistically sound solution to probability prcblem (within a regres-

sion fr t) is the logit transformation, in which the probability P, is modeled as
© o GBY
P, = —-—g:-“
14 eH
and the probability of "not 2," is:
1
l-2, = —1%
Tol4e™

where 3¢ is the vector product of betas multiplied by row vector of X's (obseried explamatory
variables), Although these two equations are nonlinear models, it is a simple matter to rewrite
them as

[«
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The logit transformacion is achieved by taking the natural logarittm of the prace formila
michc’;%am Fraceding '

Py
1-2,
This transformation has the propsrty of increasing fram mimus infinity to plus infinity as 2,

increases from 0 to 1. Once efficient estimarors are calonlated for the beras, simple algebia
will extract the value of 2,, The method can be generalized to % classes, in which there are

% - 1 logits of the form °

In

= 8%

Ps 21 1
a3, 18EY, .., ;nBY

Each logit must be modeled separately, preducing ¢ - 1 sets of betas, 4s in the binary case
described above, algebra will extract the values of the probabilities from the % - 1 logits pre-
dicted for an observation along with the constraine that all probabilities mist sum to one.

Unlike the conventional regressicn models of the previcus cells, all of which can be effi-
ciently estimated by the ordinary least squares (OLS) method, the logistic and linear logit re-
gression models appropriate for the problems of cell (d) raquire sither a weighted least squares
(WLS) astimation cg:oced:.n:e or a mudmm likelihood procedure. The choice between the two methods
depends upon whether the calibration data include repeated observatioms for each cambination of
values of the explanatory variables (in the case of WLS) or not (in the casé of maximm likeli-
tood), Since such replicatici) are unlikely in calibration of the logit model for remotely
sensed data, maximum likelilwod estimation is preferrad. (Note that here the term "maximm
likelihood" refars to a parameter estimation method different from miltivariate normal MLC.)

The maximm likelihood solution to the calibration of the logit model has mamy attractive features,

It can be shown that provided the sample data are not multicollinear, a uniqua maximm likelihood
estimator can be obtained even in relatively small samples. Also, the mathematical properties

of the likelihwod fumctitn allow for efficient computer programs to produce the parameter esti-
mates, and these estimates are consistent and are the best possible estimates in very large sam-
ples, The disadvantages of the procedure are that it inmvolves mmerical optimization and there-
fore more costly camputation, and that it is a less familiar statiscical technique. For a de-
seription of the procedure used to calculate such maxdmm likelihood estimates, see Cox (1970,

p. 87), Mantel and Brown (1973, p., 634-5), Wrigley (1975, p. 191-3), Domencich and McFadden (1975,
p. 110-12) and Schmddt and Strauss (1975a, p. ).

There are two ways the logit model can be used within the context of remote sensing., The
fizst is to act directly as a nomparametric classifier (i.e., to classify a pixel into the class
tuving the highest predicred probability), The second is to use collateral data in a logit model
to predict prior probabilities and input them to a ML decision rule which accepts prior proba-
bilities, This approach effectively cumbines a nomparametric logit model for collateral data
with a parametric I'IC model; it will be discussed in a following section. The following example
of_:!iogogit: model irmvolves the direct classification of land use by MSS and terrain data. The

Py
1l-2:
where 2;; Ls the probability that pixel ¢ is class 1l and the following terms indicate linear com-

bination of spectral and collateral data. If desired, the model can easily be expanded to all
four bands and all the continuous collateral variables relevart to the classification.

2.2.1.2 Discriminat Analvsis. Discriminant analysis is a multivariate technique used to
produce sets of uncorrelated runctions which separate observatioms wost efficiently into predesig-
nated groups. A discriminant medel, or classification criteron, is developed, the values of

In = 8q + 81 (bandS;) + B2(slope;)
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which define groups for the observations, The individual cbservation is classified into cne of
the previcusly derined groups by a measure of generalized squared distance.

This techniqua requires some difficult computation, Deriving the classification criteria
requires extracting ei tors from the nonsymmetric W™ !B matrix, whers B and W are respec-
tively, the between and within groups sum of squares and crossproducts matrices. The matha-
matics of this grocus ars beyond scope of the paper (please refer to Tatsuoka, 1971; Cooley
and Lotmes, 1971), Tha tecimique is helpful in the social sciences for identifying variables
which do the best job of separating classes, but is not usually used to process nes data for
classification. Further, the tachnique assumes thut all classes possess an identical dispersion
matrix, an assumption unlikely to characterize ramtsly sensed data.

2.2.2 CEL (@) -- MIXED EXPLANATORY VARIARLES. Conceptually no new problems are encountered in
moving from cell (d) to cell (e); categorical explanatory variables are included through dummy
variables, The logit rodel has high potential for application in ramote sensing. Since it is
capable of incorporating both bomtinuous and discrecs input data and generaving probabilities
either directly for classification or as input as a collaceral data set of probabilities to MLC
(Strahler, 1979), In other words; interval level measured data such as rainfall, elevariom,
slope, etc, (no matter what its varianca-covariance) can be combinad with discrete data such as
soil ype, previously classified land use, census tracts, etec., in a nonparametric, logit frame-
work and the result will be a discrete ocurput such as a land use map, a soll ercdibility map
(divided into discrete levels) or other special use maps.

The logit model, as in the previcus cell, can be easily extended to cell (e). Again, land
use could be predicted by

D.

.ol R R N N
In -L—l-P—- = fo + 8y (bandS;y + Ba(alopes) + 8aDzy + BuDga

where 2;; is the probability of land use 'l' for pixel ¢ over the probability of all the land
uses that are not 'l', band5; is the MSS value for pixel i, alope; is slope of the pixel, and
D;1 is a dumy variable with a value of 0 if the previous land use on pismsl 7 was class 1 and 0
othexwise and Dy, has the value 1 if the land use cn pixel 7 was class 2 and 0 otherwise.

Preceeding paragraphs have referred to the use of prior probabilities in modifying the out-
Sorical e data. and thi {opup of UG Lo a categyrioat ealssiicarion this Cehchigus s spo
ta, t o a cate s , ap-
propriate to discussion of cell (¢). Prior probabilities are incorporated into the classifica-
tion the manipulation of the Law of Conditional Probability. The acutal derivation of
the prior probability is beyond the scope of this paper (see Stxrahler, 1980), The mpdified
decision rule is to choose % which minimizes

D

Fo,e ) = InlDg .+ &7 - m)'B (%5 - m) - 2LaP(ey)

where the only difference batween this formula and the one presented in cell (d) is the probabil-
ity term, -2InP(8;). This form of the decision rule is usually attributed to Tatsucka and
Tiedanm (1954; Tatsuoka, 1971).

It is important to understand how this decision rule behaves with different pricr precbabil-
ities. If the prior probability P(sy) is ver{ small, then its natural logaritim will be a large
negative mmber; when multiplied by =2, it will becane a large positive mmber and thus F,,; for
such a class will never be minimal, Therefore, setting a very small prior probability will
effectively remove a class from the output classification. Note that this effect will ccour even
if the cbservation vector X; is coincident with class meam vector m,. In such a case, the quad-
ratic product distance functiom Xy -~ m) 'D‘;:I(Xj ~ m,) goes to zero, but the prior probability
term -21nP(sy;) can still be large., Thus it 'is entirely possible that the obsexrvation will be
clsssified into a different class, one for which the distance finction is quite large.

As the prior probability P(e,) becomes large and approaches 1, its logarittm will go to

zero and F;,z will approach Fy,; for that class. Since this probability and all others must sum
to one, however, the prior probabilities of the remaining classes will be small numbers ard their

8
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valuss of Fa,; will ba greatly augmnted, Tha effect will be to force classification into the
class with high probability, Therefore, the more extrems are the values of the prior probabili-
tigs, the less important are the actual cbservations valuas X;,

For a mmerical exarple of how prior probabilities can affect the decision of the mutimmn
likelihood classifier, please vefer to Strahler, 1980, There are so mary porantial applications
of prior probabilities :und the mdmm likelihood decision rule thac it would be comterproduce
tive to list them all, In general, al? data thac is relevant to a classification model can now
be incorporated and this process has been shown to significancly increase classification accura-
cies (Stxahler, 1978; Strahler, 1980),

The versacility of the prior probability techmiquas comes about when the priors are allowed
to vary on a pixel-by-pixel basis, The priors for a pixel my be determined by a logit or othar
model, or by using a set of class-conditional prior probabilities estimated by sampling. Because

L{ricrs are ccuputed separately, it is possible to mix any sort of model estimaring prior pro-
babilities with a multivariare normal MLC algoritim which is known to ba well sulted to most
spectral data, Thus, the techniqua allows easy, flexible merging of collateral daca, used ro
gregihi: d-(x:g%:;ors, with continucus image data, These points are discussed in more lergth in

tranhler .

2,2,3 CHL (f) -- CATEGORICAL EXPLANATORY VARIABLES., Data that falls into this level has bean
traditicnally analyzed by contingency table analysis with Chi-Square mechods. Buc stasistically
speaking, it is a simple matter to extend the logit model of cell (e) to cell (£) through the
use of durmy variables, For data that only come in nominal cr ordinal levels, the logit model
offers new and important insights incto the daca (Wrigley, 1979; Theil, 1970; Grizzla, Starmer
and Koch, 1969; Koch et al., 1971, 1972, 1976a, 1977; Landis and Koch, 1977; laimen and Koch, _
1974a, 1974b). As in earlier discussion, the logit mxdel can serve directly as a nonparametric
classifier, using only categorical variables input as dummy variables. In this form, the logit
model is equivalent to a log Linear model of a contingency table; such models are discussed fully
in such texts as Bishop ec al. (1975).

Tha categorical logit model is formulated in the example below:

473 . .
In = 3y + 81Dy + 82023
_ 1 -5y ’

where there are two cutput categories -- 1 and not 1 -~ which are mndeled by categories of soil
type as dascribed in call (e). The classifier simply assigns the ourput pixel to the class with
the higher probability. , .

3. APPLICATIONS

Two statistical modeling tectmiques, logit modeling and maximum likelihood classification
with prior probabilities, were selected for further investigation in the context of a real appli-
cation., A linear logit model was devised and fitted to forest species compositional data for
northern California, predicting the proportiom of timber volume for each of five coniferocus spe-
cies at each pixel based on registered terrain data quantifying elevation and slope aspect.
Maximm likelihood classification with prior probabilities was tested in Ventura County, Cali-
fornia in a land use application. A previcus Landsat classification and an externally dovised
transition probability matrix were used together with new Landsat: image data to produce an up-
dated classification consistent with the observed pattern of change.

Throughout this research we have utilized the Video Image Comminication and Retrieval
(VICAR) system and the Image Based Information System (IBIS) resident at UCSB, VICAR/IBIS, de-
veloped at the Jet Propulsicn Laboratory (JFL) at Pasadena, California, USA, is a job control
language which permits the sequential linikdng and execution of a vast array of Fortran and
Assentbler routines in a batch envirerment. In addition to extemsive usage of existing VICAR/IBIS
routines, new VICAR and non-VICAR software were developed and/or modified as required for the
purposes of this research.

3.1 LOGIT MODELING OF SPECIES PROPORTICNS
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logit modaling of species proportions used daca derived from the Klamath National Foresc,
located in northem California, USA, (Figure 2). ing in relief from 500 to 0,000 feet, the
Forest includes 2,600 square miles of rugged teirain in the Siskiyou, Scott Bar, and Salmon
Moncains, Little of the area is developed beyoid managemsnt for timber yield, livestock produc-
tion, and recreatiom, A wide variety of discinctive vegetative types is present in the araa,
Forest vegetation includes such codferous species as noble, red, white, and douglas firs, pon-
dervsa pine, and incense cedar, as well as several ocaks, and typical species of chaparral. us,
the :zgographic and 'egucational characteristics of the area are well differentviated. Within tha
Klan:th National Forest, a study area inciuding most of the Gousunest Range was selected for
logit modeling of spucies ctwposition from terrain features, This area was chosen because cali-
bracion data and Landsat images were readily available for it,

The logit model devised for this fores application requires preparation of digital ter-
rain dnu.og'fh-u data, obtained from the N:gcml Cartographic Information Center, in Reston,
Virginia, USA, are derived from processing of 1:250,000 contour maps, and include elevations at
every point on a grid of approximacely 65 m spacing, Although the data ave carparable in scale
to a Landsat image, the elevaticn values are quite generalized because they are produced from
small scale contowr maps by interpelation (Figure 4),

Slopa =igle and slope aspect charmels can be produced using the elevation data of the regis-
tered tacg:ain image. Alog‘wugh a muber of slope and aspect ?J‘m:ating algoritizs are m'gis
the simplist is the fitting of a least squaras plana each pixal its four nearest
neighbors and the calculation of the downslope angle and direction of the plans. Slope angle is
chbtained relative to the mmeric range of the elevation chamel and image grid spacing, and azi-
muth is determined with respect to the rectangular imege grid, These chennels are best generated
drectly during the preprocessing of the original tervain data. Ar that time, slope angles and
;_lg;ct:a can be calculatad from half-word absolute elevations arrayed in a north-south east-west

The slope aspect image (Figuras 5) consisted initially of gray tone densities betwsen 0
(black) and 255 (white) which indicated the azimuth off slope orientation, ranging clockwise from
0° to 359°, These values were then transformed according to tha function below:

newden = 3,0 + 126,0%(1.0 + cos(.024933275%(oldden - 26.1)))

where oldden symbolizes the old (azimuth-keyed) gray tone pixel density value, newden symbolizes
its transformed value, and the argument of the cosine fimction is expressed in radiarns. This
fnction transforms density values according to an orientation proposed by Hartung and Lloyd
(1969) . Since northeast slopes present the most favorable growing environment, and southwest
slopes the least favorable, with northwest and scutheast slopes of neutral characcer, the den-
sity tone azimiths were rescaled by a cosine function with 3 representing due northeast and 255
representing <ue soutimvest. Neurral slopes, oriented nortiwest or souttwest, thus received den-
sity tones near 128. Flat pixels were ccded with zerces. The function also corrects automati-
cally for the 12° skew of Landsat immge.

The logit model fitted is shown below:
P, X . .
1n<P"—'__:) = Bryg + By pE F Byl + 8y 08, k= 1,5

whare P, is the probability that the board-foot of timber volume will be dram from cne of five
species , P.; is the probability that the board-foot will not be drawn from species k, I is ele-
vation (compressed to 0-255 range), 4 is aspect transformed as described above, 5 is slope angle,
and éhk,...,éq,k are the estimared regression constants, Note that five equations, one for each
species, actually comprise the model. The model was calihrated using 73 measurements of timber
volume prepared by the U, S. Forest Service and located within two subregions of the Goosenest
range, These samples are probably not representative of the entire area modeled, but sexve for
the demonstration purposes of this research, Each sample was located on 1:15,840 scale color
air photos and tranferred to Band S of the Landsat images to obtain the line and sample coordi-
nates of the sample point. The coordinates mve then used to extract elevation and aspect valuss
for the sample from rhe registered elevatidn and aspect images. The coefficlents for the model
were fitted by a nonlinear optimization algorithm employing the Newton-Raphson method to seleut
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coefficients with madimm likelihood,

Given tha constants produced by the procedure discussed above, the probability images wers
eated using the new VI Qb.gro am "'PROBMAPS,” FROBVAPS, writtaen specifically for this appli-
cation, calculates the probability of species % for each pixal using the following expression:

Q, \
By m = vhare @ = ep (3 + Ba 1 + By 1+ By 1 )

Jr

PROBYAPS then scales each probabilify so that tha range 0-255 repzesents 0, to 1, PROBMAPS out-
put immges for this example are shown in Figures 6-10, Brightness values in Figures 6-9 repre-
sent probabilities of occurrence for douglas f£ir, ponderosa pine, white fir, and red fir, re-
spectively, with probabilities scaled to range from black (0.) to white (1.0), Figwe 10, incense
cedar, has besn contrast strecched for display purpeses, and presents a probability range of 0,

to ie from blad;_ Lo whdi;‘ce. The pmbu%tfy ?%“ rcpzf'es&;-.mhmmdm ll.ﬂ;ullﬁwod estimares gfm
species proporticns: appear re e to ecolo 7 CLees O
species, but their accu:gcias remain to be dece&d. F

The probability imuges produced by FROEMAPS can be thought of as predictions of the propor-
tion of the timber volume expected for escii species at each pixel, This view implies a continue
ous mixture of species, constatly varying in response to elevation and slope aspect, An alter-
native view is t forest stands are monospecific, and that aeach pixel {s dominated by a parei-
cular species or forest cover type. In such a case, the mndaled valuss are probabilitias thac
the pixel will be dominaced by a particular species or stand type, and it is therefore appropri-
ate to produce a single output image indicating the type with hi?\ut: probabiliz for each pixal.
In this way, the logit model can serve as a noparametyic classifier, The puobabilities can also
be viewed as prior probabilities, and input to MLC of an image us spectral data, This pro-
cedure amounts to mixing a nonparametwic model for collateral data (terrain charmels) with a
parametric modal for specrral data (Landsat chamnels).

3.2 LAND USE CLASSTFICATION USING TRANSITION FROBABILITIES

An additioral cbjective of our research was to apply the method of maximum likelinhood classi-
ficarion with prior probabilities to a land use/land cover classification. (see sections 2,2.1 and
2,2.2). In this example, land use/land cover maps for two 7%-minmute quadrangles in Ventura
County, California, U,S.A,, wers obtained from photointerpretation of high-level U-2 aircraft
imagcrgnfcr the vears 1973 and 1976, These maps, with inherent accuriycies considerably
than those of Landsat classifications, were used as ''grownd truth'" to construct a marrix of tran-
sition probabilicies, shawing the probability of change of classification for each land use/land
cover type to 2ach othar type in the three year interval. With a 1976 Landsat image as input data,
we plarmed to carry out MO of each pixel using the 1973 U-2 derived cover class as a collateral
data charmel indexing the transition probabilities appropriate fo the 1973 cover class. The
resulting classificarion was to be compared with the 1376 U-2 derived map to evaluate the acciracy
of the tecimique. AL present, we have used image cverlay techmiques to create the transition
probability matrix, but the classificacions using the transition probabilicy macrix have not been
carried out.

3.2.1. PROCEDURE. Using the Jet Propulsiom Lab's (JPL) Image Based Information System (IBIS) and
a coordinate digitizer, {t is possible to merie image data in digital form with other types of
geographic daca, The IBIS is essentially a fire-mesh grid information system which is coamatible
with the handling and storing of digital image data. By allowing a user to overlay thematic map
and digital Landsar data (or pertinent Landoat-derived data) with IBIS, it is possible to derive
the ues that comprise the transition probability mazrix, as well as determine the accuracy of
the thematic Landsat classification data.

Prior to IBIS processing, the two "ground truth'' land use/land cover maps for the twoe-
quadrangle study area were prepared through photointerpretation of NASA high-altitude color infra-
red imagery with additional ground checks, A coordinate digitizer board was used to comvert the
maps to a series of digital coordinates. Polygmms of thematic land cover categories were captured
by digitizing overlapping line segments that ccmprise such polygems. Polysen centroids were also
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irizad and assigned an appropriate land use/land cover label for laver use in converting the
gﬁygml data co ga‘:w: (ig;c base) form. g

The digitized line segment data were processed using IBIS as follows. A modified version
of the IBIS prog-n POLYGEN convertad the coordinate digicizer segment daca inco polygons in
the form of an IBIS graphics file. Following this reformatting, tha program POL rigidly
rotated the polygons to conform with the Landsat data for the test site, POLYSCRB was used to
convert the pol data inro raster form (fine-mesh grid), The result was an imege of ras-
tarized polygpon borders rerresenting che edges to thematic land cover inits,

The next phase in the IBIS processing inwolved the assi t of labels to the rasterized
pol aress, An intermediace categoriz was automatically produced by the program
PAINT, which assigns an arbirrary bur unique brighthess meber o all the piiels witgin each
rasterized polygon, This ocurput image was covbined with the polygon centzoids that had also
been converted to an IBIS graphics file formac (with VZPOLY) and rigidly transformed to over-
lay with the polygon borders (FOLYREG), The pr:sfrm CITRWTCH was used to establish the corre-
sporndance between centzoid labels and polygon brightress numbers, and the propram STREICH was
used to reassign identical brightness values to polygons with similar labels, yielding a raster
format image corresponding directly with the odgimfm{md use/land cover map,

With both land use/land cover images in digital imege format, the next step is to overlay
then using POLYOVLY to analyze the change oc between the two dates in orcder to estimate
the rransition probability matzix. The output of POLYOVLY is a table counting the muxber of
?ixnls in each conbination of classes across ths two images, If S; : denotes the count of pixals
in class ¢ of the first image, amd cluss J of the second, then tin cransirion prehabiliey T, .
for class ¢ to 7 i3 L, The digitized map of 197§ .and use/land cover was al3d
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used to assess the accuracy of ML of Limdsat data, again using the POLYOVLY program. Accuracies
discussed below were cbcained in this fashion,

WHeh a digitized 1973 land use/land cover classification map produced from air photo inter-
pretation now in hand as collateral daca chamel registered to the 1977 Landsat imege, and with
a transition probability matrix to provide sets of prior probabilities continpent as a cole
laceral data chemel, it should be possible to carry cut maximm likelihood classification using
the transition probabilities as prior probabilities indexed by the 1973 classification, Fumure
work includes performing the classificacion, and overlaying it on the 1976 digitized map for
accuracy analysis, Initial indications are that accuracies will increase with the use of the
1973 digitized map data, demmstrating the successful use of Landsat to update axisting menually
produced land use/lmd cover maps,

4. CONCLUSION ' '

Of the large mamber of statistical techniques which can be used to develop models combining
remotely sensed images with collateral data in a common predictive framework, twe technigues
are of special interest for ramote sensing: logit modeling and maxdioim likelihood classification
with prior probabilicies, These methods allow the construction of nonparametric classificacion
mdals utilizing both image and collateral data charswls as well as the mixing of paramstric and
nonparanerric classification models for image and iollateral data respectively, Both tacimiques
have been successfully demenstraced in applicatiors using Landsac imagery; each has the potential
to cly increase classification accuracy th the use of collateral dara, and each should
find wide application in futiure research and developmnt in ramote sensing.
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Table I. Notation

L1ERM DEFINTTION
7 Vector of estimated depencent variibles; where . signifies a vector
- ad * signifies an escimator,
5.: Regression notation; vector nZ estimaced betas and vector of chserved
v arTOr tarms.
j Muzber of measuremsnt variablas used to characterize each cbject or
observation,
A p-dizensional random vector.
L Vector of measurements cn » variables associated with the fth object
“ or observation: i=1,2,....,M, ! '
2 Merher of the ~th gset of clas.es 9; kwl,2,, , , .X
P(s,) Probabiliry that an cbservacion will be a mamber of class §,; prior
’ probability for class 3, ’
:92(3{4) Probability density valus associatsd with cbservaticn vector X as
v evaluatad for class =,
Hy, Parameriic mean vector associated with the kth class,
m. Vemn vector associated with a sample of obsexvaticns belenging co

the kth class; taken as an estimator of u,,

z Parametric 7 by p dispersion (variance-covariance) watrix associa-
* ted with the “th class.

D. 2 by » dispersion matrix associated with a sample of observatioms
< belonging to the “th class; taken as an estimator of %,
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The Use of Prior Probabilities in Maximum Likelihood

Classification of Remotely Sensed Data

ALAN H. STRAHLER

University of California, Santa Barbara, California

The expected distribution of classes in a final classification map can be used to improve classifieation aceu-
racies. Prior information is incorporated through the use of prior probabilities — that is, probabilities of
occurrence of classes which are based on separate, independent knowledge concerning ihe area to be
classified. The use of prior probabilities in a classification system is sufliciently versatile to allow (1)
prior weighting of output classes hased on their anticipated sizes; (2) the merging of continucusly varying
measurements (multispectral signatures) with discrete collateral information datasets (e.g.. rock type, soil
type); and (3) the construction of time-sequential classification systems in which an earlier classification

maodifies the outcome of a later one.

The prior probabilities are incorporated by modifying the maximum likelihood decision rule employed in a
Bayesian-type classifier to caleulate apasteriori probabilities of class membership which are based not only

en the resemblance of a pivel to the class signature, but also on the weight of the class which is estimated

for the final output classification. In the merging of discrete collateral information with continuous spec-

tral values into a single classification, u set of prior probabilities (weights) is estimated for each value
which the discrete collateral variable may assume (e.g., each rock type or soil type). When maximum
likelihood calculations are performed, the prior probabilities appropriate to the particular pixel are vsed in
classification. For time-sequential classitication, the prior classification of a pixel indexes a set of
appropriate conditional probabilities reflecting either the confidence of the investigator in the prior

classification or the extent to which the prior class identified is likely to change during the time period of

interest,
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Introduction

In the past ten years, maximum likelihood classification has found wide application
in the field of remote sensing., Based on multivariate normal distribution theory, the
maximum likelihood classification algorithm has been in use for applications in the social
sciences since the late 1940’s, Providing a probabilistic method for recognizing similarities
between individual measurements and predefined standards, the algorithm found increas-
ing use in the field of pattern recognition in the following decades (Chow, 1957; Sebes-
tyen, 1962; Nilsson, 1965), In remote sensing, the development of multispectral scanning
technology to produce layered multispectral digital images of land areas from aircraft or
spacecraft provided the opportunity to use the maximum likelihood criterion in producing
thematic classification maps of large areas for such purposes as land use/land cover deter-
mination and natural cultivated land inventory (Schell, 1972; Reeves, et al., 1975).

In the last decade, research on the general use of classification algorithms in remote
sensing has centered in two areas: (1) computational improvements in evaluating max-
imum likelihood and discriminant function decision rules; and (2) the use of various
unsupervised clustering algorithms to extract repeated or commonly occurring measure-
ment vectors which are characteristic of a particular multispectral scene. Computational
improvements have included such developments as look-up table schemes (Schlien and
Smith, 1975) to reduce repeated calculation, and hybrid classifiers (Addington, 1975)
which use pérallelepiped algorithms (Goodenough and Schlien, 1974) first, then turn to
maximum likelihood computation to resolve ambiguities. Although important for small
image processing systems, further computational improvements will become less and less
cost effective as real time computational costs continue to fall through the development of

fourth- and fifth-generation hardware computer systems.
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Unsupervised methods rely on clustering measurement veetors according to some
set of distance, similarity, or dispersion criteria, Many clustering heuristics have been
devised and applied in image processing. Dubes and Jain (1976) provide a review and
comparative analysis of a number of techniques which arc commonly applied in pattern
rccoghition. However, as Kendali (1972, p, 291) points out, clustering is a subjective
matter to which little probabilistic theory is applicable. No clustering algorithms have as
yet come to the fore which can incorporate prior knowledge in a formal fashion (except
for the use of & priori starting vectors in interactive clustering) with an expected incre-
ment in class identification accuracy produced by the use of this additional information.
However, recent developments involving guided clustering and automated labeling of
unsupervised clusters blur the distinction between supervised and unsupervised tech-
niques. Future work may well produce 2 continuum of intergrading methods from which
a user can select a mix appropriate to the spatial, spectral, and temporal resolution of the
data in hand and information output desired.

The purpose of this paper is to show how the use of prior information about the
expected distribution of classcs in a final classification map can be used in several different
models to improve classification accuracies. Prior information is incorporated through the
usc of prior probabilities — that is, probabilities of occurrence of classes which are based

| on separate, independent knowledge concerning the area to be classified, Used in their
simplest form, the probabilities weight the classes according to their expected distribution
in the output dataset by shifting decision space boundaries io produce larger volumes in
measurement space for classes which are expected to be large and smalier volumies for
classes expected to be small.

The incorporation of prior probabilities into the maximum likelihood decision rule

can also provide a mechanism for merging continuously measured observations (mul-
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tispectral signatures) with discretely measured collateral variables such as rock type or soil
type. As an example, consider an area of natural vegetation underlain by two distinctive
rock types, each of which exhibits a unique mix of vegetation classes. Two sets of prior
probabilities can be devised, one for each rock type, and the classifier can be modified to
use the appropriate set of prior probabilities contingent on the underlying rock type. In
this way, the classification process can incorporate discrete collateral information into the
decision rule through a model contingent on an external conditioning variable, The
method can also be extended to include two or more such discrete collateral datasets; the
number is limited only by the ability to estimate the required sets of prior probabilities.
Thus, prior probabilities provide a powerful mechanism for merging collateral datasets
with multispectral images for classification purposes.

Another application of prior probabilities contingent upon a collateral dataset allows
temporal weighting in a time-sequential classification system. As an example, consider
distinguishing between two crop types which, through differing phenologies, can be easily
separated early in the season but are confused later on in the growing period. Through
the use of prior probabilities, a mid-summer classification can “‘look backward”\to a
spring classification to resolve ambiguity. Thus, winter wheat could be separated from
spring wheat at mid-season by its distinctive early spring signature. This use of temporal
information provides an alternative to the calculation of transformed vegetation indexes
(TVI’s) and comparable procedures (Richardson and Wiegand, 1977) in the identification
of crops with multitemporal images (Rou§e, et al., 1973). Such a time-sequential
classification system could also be used to monitor land use change. In this case, a
Markov-type predicti've model is used directly to set prior probabilities based on patterns

of change shown in an area.
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Review of Maximum Likclihood Classification

To understand the application of prior probabilities to a classification problem, we
must first review briefly the mathematics of the maximum likelihood dccision rule. For
the multivariate case, we assume each observation X (pixel) consists of a set of measure-
ments on p variables (channels). Through some external procedure, we identify a set of
observations which correspond to a class — that is, a st of similar objects characterized
by a vector of means on measurement variables and a variance-covariance matrix describ-
ing the interrelationships among the measurement variables which are characteristic of the
class. Although the parametric mean vector and dispersion matrix for the class remain
unknown, they are estimated by the sample means and dispersion matrix associated with
the object sample,

Multivariate normal statistical theory describes the probability that an observation X

will occur, given that it belongs to a class 4, as the following function:
Dy(X) = ()|, | S ED, ()

(Table 1 presents an explanation of the symbols used in this and other expressions.) The

quadratic product
X2 = (X—p ) T (X—p ) (2)

can be thought of as a squared distance function which measures the distance between the
observation and the class mean as scaled and corrected for variance and covariance of the
class. It can be shown that this expression is a X? variate with p degrees of freedom
(Tatsuoka, 1971).

As zpplied in a maximum likelihood decision rule, expression (1) allows the calcula-
tion of the probability that an observation is a memter of each of kclasses. The indivi-

dual is then assigned to the class for which the probability value is greatest. In an opera-
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tional context, we substitute observed means, variances, and covariances and use the log

form of expression (1)
n[@; (X)) = =Y pIn(27) = hln| Xy =X, =m) D (X my) 3)

Since the log of the probability is a monotonic increasing function of the probability, the
decision can be made by comparing values for each class as calculated from the right hand
side of this equation, This is the decision rule that is used in the currently distributed
versions of LARSYS and VICAR, two image processing program systems authored
respectively by the Laboratory for Applications of Remote Sensing at Purdue University
and the Jet Propulsion Laboratory of California Institute of Technology at Pasadena. A
simpler decision rule, Ry, can be derived from expression (3) by climinating the constants
(Tatsuoka, 1971):

Ry: Choose k which minimizes

4
Fp (X)) = In|Dg |+ (X;—mp)'D; (Xi—my) .

The Use of Prior Probabilities in the Decision Rule

The maximum likelihood decision rule can be modified easily to take into account
prior probabilities which describe how likely a class is to occur in the population of obser-
vations as a whole. The prior probability itself is simply an estimate of the proportion of
the objects which will fall into a particular class. These prior probabilities are sometimes
termed “‘weights,” since the modified classification rule will tend to weigh more heavily
those classes with higher prior probabilities.

Prior probabilities are incorporated into the classification through manipulation of
the Law of Conditional Probability. To begin, we define two probabilities: P{w,}, the pro-
bability that an observation will be drawn from class w,; and P{X), the probability of

occurrence of the measurement vector X;. The Law of Conditional Probability states that:

e
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The probability on the left hand side of this expression will form the basis of a modified
decision rule, since we wish to assign the ith observation to that class wy which has the
highest probability of occurrence given the p-dimensional vector X; which has been
observed.
Again using the Law of Conditional Probability , we find that
P{X/|w;) = Plo,, X) ®)
g Plw,)

In this expression, the left hand term describes the probability that the measurement vec-
tor will take on the values X; given that the object measured is a member of class w,.
This probability could be determined by sampling a population of measurement vectors
for observations known to be from class w; however, the distribution of such vectors is
usually assumed to be Gaussian. Note that in some cases this assumption may not hold,
as an example, Brooner et al. (1971) showed signifizantly higher classification accuracies
for crops using simulated multispectral imagery with direct estimates of these coydilional
probabilities than with probabilities calculated according to Gaussian assumptions, How-
ever, the use of the multivariate normal approximation is widely accepted, and, in any
case, it is only under rare circumstances thai sufficient data are obtained to estimate the
conditional probabilities directly.

Thus, we can assume that P{X;|lw,]} is acceptably estimated by @,(X,) and rewrite

expression (6) as

P{wkr xl'

Ploy) @)

(I’k(xi) =

Rearranging, we have
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l’{wg. X,) ™ (I)A(X,)'P(wﬂ b (b[(X,). (8)

Thus, we see that the numerator of expression (5) can be evaluated as the product of the
multivariate density function &, (X,) and the prior probability of occurrence of class .
To evaluate the denominator of expression (5), we note that for all A classes the

conclitional probabilitics must sum to 1:

A . AT (X)) Plw,)
P X, = = . .
E‘ {wAI } E‘ P{h,} (9)
Therelore,
¥ K »
P{X,) = PI(I’,\(X,)»P[M]. (10)

Substituting (8) and (10) into (5),

¢, (X) P ®/(X)

Plo,|X,) = ﬁ..x,,_&.u._t.m[i‘i!;,}.,,. - "’7:""5"(’“‘1"""
3 (X)) Ploy) Y @ (X)
Lu[ A l

' (i

The last expression, then, provides the basis for the decision rule which includes
prior probabilities. Since the denominator remains constant for all classes, the observa-
tion is simply assigned to the class for which @, (X,), the product of &, (X)) and Plw,}, is

a maximum. In its simplest form, this decision rule can be stated as:

Ry Choose & which minimizes
F 4 (X)) = In| D} + (Xi=m) DX —m)=2In Ploy) .

v

(12)

This form of the decision rule is usually attributed to Tatsuoka and Tiedeman (1954,
Tatsuoka, 1971),

It is important to understand how this decision rule behaves with different prior pro-
babilities. If the prior probability P{w,) is very small, then its natural logarithm will be ¢

large negative number; when multiplied by —2, it will become a large positive number and

L3
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thus ¥« for such a class will never be minimal, Therefore, setting a very small prior pro-
bability will eftectively remove a class from the output clussification. Note that this cffect
will occur even il the observation vector X, is coincident with class mean vector my. In
such a case, the quadratic product distance function (X,~my)'D7'(X,~my,) goes to zero,
but the prior probability term —=2InP{w;} can still be large. Thus, it is entirely possible
that the observation will be classified into a difterant class, one for which the distance
function is quite large.

As the prior probability P{ew 1} becomes large and approaches 1, its logarithm will go
to zero and Fy 4 will approach Fy 4 for that class, Since this probability and all others must
sum to one, however, the prior probabilities of the remaining classes will be small
numbers and their values of ¥, will be greatly augmented, The effect will be to force
classification into the class with high probability. Therefore, the more extreme are the
values of the prior probabilities, the less important are the actual observation values X;.

This point is discussed in more detail in a following section.

Numerical Example
A simple numerical example may clarify this modification of the maximum likeli-
hood decision rule, For this example, we assume two classes o and w; in a two-

dimensional measurement space. Their means and dispersion matrices are shown below.

m, = [4 2] m; = [3 3]
34 .

Di=14 6 (13)
45

o=}

The determinants and inverses of these matrices are:

i
|




>1
|Dy] =2
a4 3 -2
™ 2
1 _5
41773
D=5 4
3 3

IDy| =3

10

(14)

For this example, we wish to decide to which class the measurement vector (4,3) belongs.

To cvaluate the probability associated with ), we first evaluate the quadratic product

X2 = (X—m)'Di M (X~m,)

3 -2 IO 3

2 - 1] L] REL s

XE=[0 1] 3 }] 5

2
The probability deusity value is then
l l Nl—lté‘n
B st @ e § 2 2 8

¢, (X) 2w e 0532,

Similarly, for the second class,

1 5
x%-[—-l 0]«[_3% _‘Z .[T)l]=2
3

1
1 st

S S S
q’z(X) - .\/-3— e

2
= 0338

(15)

(16)

(7

(18)

(19)

Thus, the measurement vector (4,3) has a higher probability associated with membership

in class w; than in class w;, and it would be appropriate to classify the measurement into

w].

£rg @it an L£a- Tm - w2’ g3




R

3
11

This same decision can be made by using the somewhat simpler decision rule R

(expression (4)):
Fi 1(X) = In|Dy| + (X~ my)'D{" (X—m;) (20)
Fi1(X) = In() + 3 = 2,193; @1)
Fi 2(X) = In|l)2| + (x—nlz)'Dfl(X"'rlIz) (22)
Fi,2(X) = In(3) +2 = 3.098. (23)
Here again the decision is made to classify the observation X into w,.

The foregoing calculations assume equal probability of membership in o, and w,.
Removing this restriction, we take prior probabilities into account. Assume that the fol-
lowing prior probabilities are observed:

1
Plo) = + Plw,) = %— w 24)
Recalling the natation from expression (11) that (D[(X;) denotes the probability density
function adjusted for the prior probability,
<D/:(X1) = ‘DA(XI) 'P{wk}: (25)
we calculate for the two classes
®(X) = @, (X)-Plw,) = (0532) ;— = 0177 (26)
(X) = @(X)-Play) = (0338)-2 = 0225 Q7
The actual conditional probabilities (expression (11)} then become
—(4 N — 0177 _
Plw|X=(4,2)) D705~ 40 (28)
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Ploy| X;=(4,2)) ~ Ti’ﬁ%%%’i’z‘é" =560, (29)

Thus, the prior probabilities modify the outcome of the decision rule, favoring class w;
for the observation (4,3) over class ).

In terms of the decision rule R,, we calculate

Fy,1(X) = In|Dy| + (X—=m))' D' (X—m) = 2InPlew,} - (30)
F2.1(X) = Fy 1 (X) ~ 2InP{w)) 31
£2,1(X) = 2,193~ 2In(§) = 4.39. (32)

For the second class, the outcome is
Fy 2(X) = 3.098 - 21n(—§-—) = 3.908. (33)

Since the observation is classified into the class which minimizes the value of R, once

again the second class is chosen.

Prior Probabilities Contingent on a Single External
Conditioning Variable

Having shown how to modify the decision rule to take into account a set of prior
probabilities, it is only a small step to consider several sets of probabilities, in which an
external information source identifies which set is to be used in the decision rule. As an
example, consider the effect of soil type on the distribution of crops that are likely to be
grown in an area. In such a case, a single suite of crops will characterize the entire area,
but the expected distribution of crops from one soil type to the next could be expected to
vary considerably. Under these circumstances, it would be possible to collect a stratified

random sample of the area to be classified, in order to quantify two sets of prior probabili-
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Thus, we introduce a third variable »,, which indicates the state of the external con-

ditioning variable (c.g. soil type) associated with the observation, We wish, then, to find

an expression describing

l){‘l'/\ | x', ",I‘ »

(34)

the probability that an observation will be a member of the class wy given its vector of

observed measurements and the fact that it belongs to class »; of the external condition-

ing variable,

In deriving un expression to find this probability, we can make the assumption that

the mean vector and dispersion matrix of the class will be the same regardless of the state

of the external conditioning variable. This assumption is discussed more fully in a later

scction, The assumption implies that
) P{X,|w,]) = l’[x,la),\,njl.
Expanding both sides of this relationship using the Law of Conditional Probability,

P(X, 0, PIX,0.0)

P{mk} _ﬂp{wk,l!j}

Solving for the 3-way joint probability,

P{X,, ;) Plog,v }
PiX, o, v = = L,
(X, 0p0) Plw,)
Substituting expression (8) into the left hand term of the right denominator,

(bk (X,) 5[’{(0;\} ‘P{(t)k ’ Il_,']
Plog)

l’{,\',,w;\,vj} =

P(X;, 0, v} = @ (X)) Plog,v,} = 0(X).

Expanding expression (34) according to the Law of Conditional Probability,

(3%

(36)

(37

(38)

(39)
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P{‘”I\v xi' "./l (40)

PlosXpv ) = =5y, v

Noting that since all classes are included, expression (40), when summed over all classes,

must equal 1,

K
Plog, X v
?-31 (o X1 41)

K
Plo X, v)=1= '
En (1) P(X;,v))

Rearranging,

©
P{X, v} = LEIP[mk,X[,vj}. (42)

Substituting expression (39) and (42) into (40), we have

¢, (X)) Plog,v)) @, (X))

Plogl X, v} = I\’A l b= KA..i ' 43)
2 (bk(x,) 'P(wk, l'j) 2 (Pk (xl) k
k=1 k=1

This result is analogous to expression (11); note that the denominator remains constant

for all k, and need not actually be calculated to select the class wy for which @ £ (X)isa

maximum,

The application of this expression in classification requires that the joint probabilities

Plwg,v j} be known. However, a simpler form using conditional probabilities directly

obtained from a stratified random sample can be obtained through the application of the

Law of Conditional Probability:

Plog,v;) = Ploglv)) Plv}. &4)

Since P{v j) cancels from the numerator and denominator after substitution, we have




.

Y sadal

- a2
ool M .

S R A B EME A I R S ki W 2 & R S LR AR W R AN N R e R e e Bl e B

ye
15
, b, (X)) Plolv
P{&)A‘Xjn"j} -— A( i [mlJUl ' )
3 @ (X) Plegle )
kenl
Thus, cither the joint or conditional probabilities may be used in the decision rule:
Rj: Choose A which minimizes (46)
FJJ‘(X,) i lnlel + (x,"'“lll,\,)'l)z'l(x;'“lllk) “2!“1’{0);\.,11],
R'y: Choosc & which minimizes
47

F3.0(X) = In] D]+ (X;—mp) ' DFHX ~my) = 2inPloglv ).

Numerical Example

To illustrate this use of prior probabilities contingent on an external conditioning
variable, let us return to the two-class example discussed earlier. This time, however, let
us assume that a stratified random sample of the area to be classified produces thé esti-
mates of probabilities shown in Tg‘ble 2. The conditioning variable v ; has two states: v,
and v,. Under the conditions of vy, both classes have equal prior probabilitiés; under v,
the second class is more likely to appear, with the probability of .7 for w; and .3 for w;.
Table 3 presents the calculations for this example. For v, w; would be the most likely

choice. In the case of v,, @, is more probable,

Adding Additional Conditioning Variables

Logic analogous to that of the preceding section shows that classification decisions
may be made contingent on ény number of external multistate conditioning variables.
However, a separate set of prior probabilities must be estimated for all possible states of

conditioning variables. For example, consider classifying natural vegetation in an area

containing four distinctive rock types, six different soil types, and four unique topographic

habitats. Ninety-six sets of p'rior probabilities will then be required. Estimating these pro-
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babilities by scparate samples would be prohibitive for such a large number of combina-
tions.

To alleviate this problem, it is possible to model these probabilities from a much
smaller sct under the assumpticn of no high-level interaction. This procedure amounts to
the calculation of expected values for a multidimensional contingency table when only cer-
tain marginal totals are known. Techniques for such modeling have been described in the
recent statistical literature, and are summarized in two current books by Bishop, Fienburg
and Holland (1975) and by Upton (1978). (Other treatments appear in Cox (1970) and
Fienburg (1977).) The discussion below is based partly on the treatment presented in pp.
57-101 of Bishop, et al., and the reader is referred to these works for cases involving
modeling beyond the trivariate case presented here.

As a simple example, consider the three-way case in which a measurement is a

member of class w, and is also associated with two conditioning variables v; and o;. Then’

the Law of Conditional Probability states

Plo,v;,0))

K ’
zll,{mk,'l’j,o/} (48)
kn

P{mklxij,o,} =

K
since P{v;,0} = ¥ Plwy,v;,0/). There are KxJx L probabilities of the form
k=1

Plw;,v;,0;}, and we wish to estimate these with maximum likelihood without sampling
the full set. Such an estimate is possible, assuming no three-way interaction between w,v,
and o, if probabilities of the forms Plwy,v;}, Plw, 0], and P{v;, 0} are known.

The method, first described by Deming and Stephan (1940), requires iterative fitting
of three-way probabilities Plw,v 110 }} to conform with observed two-way probabilities
Plw, v}, Plwg, o/}, and P{v;,0,}. Beginning with an initial starting probability

Polwy,vj,04), the individual three-way probabilities are first rescaled to conform with one
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set of two-way probabilities:
Y Pdw o)
i){ ] i'l 1 - 11 “‘))
Wi P01 A 00 . ,
A ' l’{l' 20
1
Rescaling then proceeds for another set of iwosway conditionals,
: .
; Y Pw 0 ! G0}
) My [ >
Pylosg, o0 = Pyl o feese oo oo
&{ I\' 10 li A } l,{") "(, ]
and finally for the last set:
[
ZI’_,{co,».nv,n‘l G
- " ] ' 3
P}{(u 1,0 ] = l',{(,) L0 ,} ¥ ime e e
JLW 150y RELLYS ; I'{(u,;.l'd}
. As the procedure is repeated, convergence oceurs rapidly, and values stabilize within
't
3‘ a small number of iterations (Deming and Stephan, 1940). The method always converges
J toward the unique set of maximum likelibood estimates and can be used with any sct of
starting values; further, estimates may be determined to any preset level of aceuracy
(Bishop, Fienburg, and Holland, 1975, p. 8§3).

In a typical remote sensing application, a stratified random sample is collected which
estimates the two conditional probability scts Plw|e;) and Plwglo,}. In addition, proba-
bilities of the form Plw,, 0/} are oblained by processing registered digital images of maps
showing the spatial distributions of » and o. By noting that

‘ L .
l’{l’j) = E Ptl'l’,O/) (52)
J=1

s and using the Law of Conditional Probability,

l’{(u;\,u’/} == |’{(:),\~|u>,}~l’{vj}, (53)

the joint probabilities Plowg, ;) and Plw,,0,} can easily be caleulated from the scts of
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conditional probabilities Plw|v,} and Plwglo ).

Numerical Example

A simple numerical example will illustrate the iterative method. Table 4 presents a
set of one-way conditional probabilities for an example of three classes wy, A=1,2,3 with
two conditioning variables v, j=1,2,3 and o/, I=1,2,3. Although simple decimal values
are assumed here for ease of computation, these values would normally be obtained by
prior random stratified sampling. Also required are the joint probabilities P{v j,o;} (Table
5). Tables 6 and 7 show how values for Plwy,»;} and P{w,, 0/} are calculated according
to expressions (52) and (53).

Table 8 presents the results of the first two iterations in fitting the no-two-way-
interaction models to these data, Using the criterion of no further change in any
Plwg, v, 0} of greater than 1075, convergence is reached at iteration 23, Although these
probabilities can be used directly in decision rule Rj3, it may be casier to examine the 1
values as conditional probabilities as used in R’3. These values are shown in the last

column of the table,

Time-Sequential Classification

If a classification carried out at a earlier time is viewed as an external conditioning

variable, then the mechanism of prior probabilities can be used to make the outcome of a
classification contingent on the earlier classification. This application is best clarified by an
example. Consider an agricultural classification with four field types: rice, cotton, orchard,

and fallow. An early spring classification reveals the presence of young rice with high

accuracy, but at that time cotion cannot be distinguished from fallow fields. Orchards are
easily distinguished from field crops at any time of year. By early summer, many fields

which classified as fallow are likely to be in cotton; however, fields classified as rice are
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still likely to be rice, Orchards will remain unchanged in areal extent,

Data from prior years are col.ected to quantify these expected changes, and a transi-
tion probabilit; matrix is devised which describes the changes in classification expecte’
during the early spring-early summer period (Table 9). In this example, spring
classification shows thirty percent of the observations to be rice; by summer, ninety per-
cent of these observations are expacted to continue as rice, with ten percent returning to
fallow because of crop failure or lack of irrigation. Twenty péercent of the spring observa-
tions are orchards, and all of these are expected to remain in orchard through early sum-
mer. Fallow fields, constituting fifty percent of the spring observations, arc most likely to
become cotton (probability .7), with a few becoming rice, orchard, or remaining fallow
(probabilities .1). Since no observations are classified as cotton in spring, no transition
probabilities are needed for that class, This use of transition probabilities was suggested
as early as 1967 by Simonett, ct al.

The transition probability matrix can also be recognized as a matrix of conditional
probabilities P{wklu j} which describe tlie probability that an observation will fall into sum-
mer class w, given that the observation falls into spring class »;. Thus, the early summer
classification can be made contingent on the early spring classification through the prior
probability mechanisms discussed earlier, and any possible confusion between cotton and
rice in summer will be resolved by the spring classification. It is also interesting to note
that the transition probability matrix is actually a square stochastic matrix, and thercfore
the situation is equivalent to a simple, one-step Markov process. Under these conditions,
the expected posterior probabilities P{w,) are

Plw,) = _Z‘IlP{wk‘vj} -P[uj}. (34)
o
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In a recent paper, Swain (1978) has carried this approach a step further, incorporat-
ing in the decision rule both measurement vectors X, ) and X;; taken from times £, and
ot point / in space. In contrast, the approach described above uses X, | to predict v, at
time £ and then uses X;» and v, to make the classification decision at time ¢,. Swain’s

decision rule, in the notation of this paper, becomes

Rg: Choose A to maximize

~ J (55)
Fsa(X,1, X2 = Zl P(X; 11w} PIX, 2le ) Plogle ) Ple ).
Joo

Swain has termed this rule the *‘cascade classifier.”

Swain’s approach has the advantage of using full information about the distances of
the measurement vectors X, and X;, from class means; however, as Swain notes, there
is no way to make the first observation set dominate the second. When the transition

probability matrix goes to an identity matrix, the classification rulc becomes:
Fs (X, 1, X;2) = P{X; 1|} P{X; 2l }PLw ), (56)

and the two observations become equally weighted. Decision rule R3 does allow the first
observation to dominate; here, an identity transition probability matrix will preserve the
first classification completely. On the other hand, R; assumes that the prior classification
is perfectly correct, and any errors in the prior classification will also be preserved to an

extent controlled by the transition probabilities. Thus, both approaches are relevant,

depending on the classification task at hand.

Remeote Sensing Example
The preceding numerical examples have demonstrated the application of prior proba-
bilities in maximum likelihood classification in a computational context; a real example

drawn from remote sensing will hopefully serve to further understanding in an operational




“§

context, This example (Strahler, Logan, and Bryant, 1978) is drawn from a problem

involving classification of natural vegetation in o heavily forested area of northern Califor-

: nia. In the classification, spectral data are used to define species-specific timber types, and
¥ elevation and slope aspect are used as collateral data channels to improve classification
. accuracy.
The area sclected for application of the classification techniques described above is

referred to as the Doggett Creek study area, comprising about 220 sq. km. of private and
publicly-owned forest land in northern Calit‘ornia near the town of Klamath River,
| Located within the Siskiyou Mountains, elevations in the arca range from 500 m at the
Klamath River, which crosses the southern portion, to 2065 m near Dry Lake Lookout on
an unnamed summit. A well developed network of logging roads and trails is present,
providing relatively easy access to nearly all of the area by road or foot.

A wide variety of distinctive vegetation types is present in the arca, Life-form
classes include alpine meadow, fir park, pasture, cropland, and burned, reforested areas.
Forest vegetation includes, from high elevation to low elevation, such types as red fir,
white fir, douglas fir-ponderosa pine-incense cedar, pine-oak, and oak-chapparal. Thus,
the topographic and vegetational characteristics of the area are well differentiated.

After a review of available Landsat frames which included the Doggett ¢ 'reek area,
two were selected for analysis: July 4, 1973, and October 15, 1974, The two frames were
~ obtained as computer compatible tapes from the EROS Data Center, Sioux Falis, S,D.

and then reformatted and precision rectified to sinusoidal projections. Pixel size was con-
verted to 80 x 80 meters in the rectification process to facilitate film writer playback.
- Using the July image as a base, the October frame was registered to within a half-pixel
error using seven control points. In this process, the October image was resampled to

conform with the July image using a cubic spline convolution algorithm. Figure 1
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presents an image of the study area using Landsat band 5 (.6 - .7 ) from the July frame.

Also registered to the July image was a terrain image derived from the U.S. Geologi-
cal Survey 1:250,000 dligital terrain tape for the Weed, California, quadrangle. In the
registration process, the image was converted to 80 x 80 meter pixel size, and stretched to
yield a full range of gray tone values, Slope and aspect images were generated directly
from the registererl elevation data using a least squares algorithm which fits a plane to
cach pixel and its four nearest neighbors,

The slope aspect image consisted initially of gray tone densitics between 0 (black)
and 255 (white) which indicated the azimuth of slope orientation, ranging clockwise from
0° to 359°, These values were then transformed by a cosine function proposed by Har-
tung and Lloyd (1969). Since northeast slopes present the most favorable growing
environment, and southwest slopes the least favorable, with northwest and southeast
slopes of neutral character, the density tones of azimuths were rescaled with 3 represent-
ing due southwest and 255 representing due northeast. (Values of 0, 1, and 2 were
reserved for special codings.) Neutral slopes, oriented northwest or southeast, thus
received density tones near 127, The function also corr:icted automatically for the 12°
skew of the Landsat image. For processing as collateral data channels, both elevation and
transformed aspect were converted to three-state variables: elevation to low, middle, and
high; and aspect to southwest, neutral (southeast or northwest) and northeast. Figure 2
shows elevation and aspect images as well as their three-state versions,

Following an initial reconnaissance of the area, thir.zen species-specific forest cover
classes were selected as representing the range of cover typ.s within the study area,
These clasies were defined by a set of 93 training sites ranging in size from approximately
twenty to one hundred pixels. Further processing revealed the presence of several sub-

types within most of the forest cover classes. For example, open canopy douglas fir train-
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ing sites were divided into two subtypes. Such subtypes were also defined for hardwood,
white fir, douglas fir, sparce, and grass and shrub cover classes. Throughout the
classification procedure, these subtypes were kept separate, joining together only in the
final classification map.

In order to obtain estimates of prior probabilities for the forest cover class types,
one hundred points were randomly selected from a grid covering the Doggett Creck study
area by drawing coordinates from a random number table, At each of these points, the
forest cover class was determined either by interpretation of 1:8,000 color aerial photogra-
phy, or by actual field visit, Of the 100 points, 15 were discarded because they fell (1) in
locations which were inaccessable in the time available; or (2) outside the area covered by
1:8,000 air photos (and therefore could not be accuratelr located on either the Landsat
frame or on the ground). At each point, the clevation and aspect class was also recorded,
thus allowing type counts to be cross tabulated according to elevation and aspect.

From this sample of 85 points, three scts of probabilitics were prepared. The first of
these recorded the unconditional prior probabilities of the forest cover types — that is,
their proportional representation within the entire study area. The second and third sets of
probabilities aggregated the points according to elevation and aspect classes, and were used
to estimate three sets of probabilities for each topographic parameter (low, middle, and
high for elevation, and northeast, neutral and southwest for aspect), Table 10 shows how
the classes were defined, and describes the numbes of points falling into each,

These estimates of probabilities lack precision because the number of sample points
is small; with 85 samples distributed across 13 covei types, the calculated probabilities are
more likely to indicate adequately the rank order of the magnitudes rather than the true
values of the magnitudes themselves. However, under constraints of ficld time and

expense, it was not possible to prepare a larger datagst for this particular trial, Consider-
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ing the sensitivity of the classification to extreme probability values, future work shoulkd
estimate these probability sets to a higher degree of accuracy.

This dataset was also uscd to estimate classification accuracies, By recording the
pixel location of each of the sample points, the cover type as determined on the ground
could be compared with the cover type as classified on the Landsat image, Because of
uncertainties in locating each pixel on the 1:8,000 air photos, it was necessary to specify
alternate acceptable classifications for each point, For example, a pixel falling into a stand
identified on the ground as douglas fir, open canopy might fall almost entircly on a clear-
ing, and thus be classified as grass/shrub, or sparse if containing a few canopy trees. In
such a case, the classification was termed correct. On the other hand, classifications such
as hardwood, alpine meadow, or red fir forest would be an obvious crror in a douglas {ir
stand. Here again, estimated accuracies are influecnced by the limited size of the sample.

Note that the field data are used to produce a classification which is then assessed
for accuracy by reference to the saine data, Separate sumples would clearly be more desir-
able. The decision to use the same set of samples to determine accuracy that was used to
estimate the probability sets was, again, influenced by available field time and travel funds,
However, the accuracies are greatly dependent on the spatial location of the data points;,
only in the aggregate does each data point influence the classification. Thus, we would
expect the accuracies to reflect only a slight positive bias produced by this cost-reducing
strategy.

Although sevéral different classitications were carried out, only three are of impor-
tance here. The first used spect’ ! data only, and assumed equal prior probabilities; this
classification yiclded an accuracy of 58 percent (Figure 32. In the second, three sets of
prior probabilities for the forest types were used, each contingent on one of the three

elevation states (Table 10; Fig. 4). The classification software was modified to use a table
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look-up of prior probabilities with eievation class as one index into the prior probability
table. This technique increased classification accuracy from 58 percent to 71 percent,

The third classification used 1wo sets ot prior probabilities contingent on elevation
and aspect, analogous to Plw,|v,} and Plw;lo/} in the preceding section, Software then
systematically sampled the register:d elevation class and terrain class images to yield the
joint probabilities of elevation and aspect classes, analogous to P{w J»0 ). The iterative
algorithm described earlier was then applied to estimate the set of conditional probabilities
for forest cover classes contingent on all combinations of elevation and aspect classes.
Classification using these estimated probabilities contingent on both elevation and aspect
yielded an accuracy of 77 percent, an improvement over that cbserved for elevation alone
(Figure 5). Thus, this example demonstrates how prior probabilities can be used to
merge continuous variables of multispectral brightness with discrete variables of c¢levation

and aspect class to improve classification accuracies.

Discussion

As noted earlier, extreme values of prior probabilities can force a classification to be
made essentially without information concerning the observation itself. When priors are
equal, however, they have no effect. The classifier, then, continuousiy trades Hff the role
of the multivariate information for the role of prior information, depending on both the
magnitude of the distance of the multivariate observation vector from the class mean vec-
tor and the ratios of the particular prior probabifities involved in the decision. When the
experimental design allows the priors to be determined by external conditioning variables,
the effect is to classify based on multivariate information when the po; sible classes are not
particularly influenced by the conditioning variable and to classify based on prior informa-
tion when multivariate data are equivocal or some classes are mnch more or less likely

than others. Thus, in the forest classification example, terrain information served to
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differentinte species-spocific cover types (e, red fir, white i), whereas spectral informa-
tion difterentiated life form classes (e.g., grass-shrub, hardwood),

Another important point concerns the dependence of the prior probabilitics on the
scene itselly the relative arcas of the classes in the output scene must be accurately
estimated, 1 the output scene shifts in arca, then the priors must be changed, The
classification cannot be extended to i@ new area without reestimating the prior probabilities,
Thus, it woukl be appropriate to use county crop acreage values to set prior probabilities
only when the entire arca of' the county, no more, no less, is to be classified, In the case
9f one or two external conditioning variables detcrmining the appropriate sct of priors,
both the joint probabilities P{r;,0,) and the conditional probabilities Plw e} and
Plw;lo,) must truly represent the area to be classified, for, taken together, they determine
the prior probability values actually used in computation. In some applications, it may be
possible to extand the conditionals to a new scene in which only the joint probabilitics of
the variables change — for example, a forest cover classification with clevation and aspect
as conditioning variables which is extended from one uniform arca to another. The new
arca will have different joint probabilities P{v;,0/) (and derived priors Ple )} and Plo}),
but it might be recasonable to assume that the conditional probabilities are ccologically
based and remain consistent from one area to the next,

It should be noted that collateral information cannot be incorporated through the
prior probability mechanism without the cotlection of data to estimate the priors and/or
conditionals. 1" the collateral data are likely to be unrclulcc'l to the multivariate data and
arce expected to influence strongly the prior probabilities of the classes, then such estimat-
ing costs will be justified, for significant improvements in accuracy should vesult, Ulti-
mately, it is up to the user to balance the costs of acquiring such information with the

alue of the expected payofls in accuracy which are anticipated.,
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The logic which culminates in decision rules Ry and R3 assumes that the mean vector
and dispersion matrix for a class are not affected by the external conditioning variable (sce
expression (35)) — in the remole sensing case, this means that the signatures are invari-
ant. In some applications, this assumption may not be wirranted. An example would be

an agricultural crop classification with soil type as a collateral variable. Here the signature

of the soil itself, at least in the earlier states of crop development, will influence the crop

signature. In this situation, there Es no recourse but to spectrally characterize each combi-

nation of crop and soil type so that probabilities of the form Plw;|X;,»,) can be calcu-

lated. Following the logic of expressions (5) through (11), it is possible to show that

P "‘ ’ 'p )
P{w/\'x,-,uj} = {\f\"w,\ Vf} {‘Ol\'lj) ’

- (57
2 P(X,'wk, ".i} )
A=l 5
j
which could be made the basis of a decision rule related to R,, ;
" A final point worthy of discussion concerns modeling of joint probabilities, suggested

s,

in an earlier section to reduce the need for more extensive ground sampling. The model
presented is but one example of a large variety of techniques by which collateral data can
be used to predict the spatial distribution of classes in an output image. Discrete and con-
tinuous collateral variables can be merged either using empirical techniques including mul-

tiple regression, logit analysis, discriminant analysis, analysis of covariance, and con-

tingency table analysis, or by constructing more functional models which model the spatial
processes actually occurring in a deterministic way. When such models are constructed

and interfaced with remotely sensed data, the result may be extremely powerful, both for

the ability to accurately predict a spatial pattern and for the understanding of the complex

system which produces it.




Conclusions

The use of prior probabilities in maximum likelihood classification allows:
) the incorporation into the classification of prior knowledge
concerning the frequencies of output classes which are expected
in the area to be classified;
(2) the merging of one or more discrete collateral datasets into
the classification process through the use of multiple prior pro-
.

bability sets describing the expected class distribution for each

combination of discrete collateral variables; and

(3) the use of time-sequential information in making the out-
come of a later classification contingent on an earlier
classification.
Thus, prior probabilities can be a powerful and effective aid to improving classification

accuracy and modeling the behavior of spatial systems.
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Tables for Prior Probabilities
TABLE 1 Notation
Trrm DirINiioN
P Number of measurement variables used to characterize cach
objeet or observation,
X A p-dimensional random vector,
X, Vector of measurcments on p variables associated with the /th
object or observation; j=1,2,,,., N
P{X,} Probability that a p-dimensional random veetor X will take on
observed values X,.
Wy, Member of the Ath sct of classes oy A=1,2, ..., K.
P, Member of the jth set of states for a conditioning variable v,
j’“’l,z, L x'lt
; Plo,} Probability that an observation will be a member of cluss
1 prior probability for class ey,
]
3 P{n ) Probability that an observation will be associated with state jof
’ conditioning variable »; prior probgtainy for state v ;.
Pl X, Probability that an observation is &# member of class wy given
that mcasurement vector X, is observed,
®, (X)) Probability density value associated with observation vector X, as
evaluated for class k.
TN Parametric mean vector associated with the & th class,
mg Mean vector associated with a sample ol observations belonging
to the A th class, taken as an estimator of py.
X, Parametric p by p dispersion (variance-covariance) matrix asso-
ciated with the A th class.
' D, p by p dispersion matrix associated with a sample of observa-
’ tions belonging to the & th class; taken as an cstimator of ;.
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TABLE 2 Simple Prio‘r Probabilities for Numerical Example
CONDITIONING VARIABLE

PROBABILITY v vy
Plo) ) 3
P(wz, ; .5 .7

TABLE 3 Calculation of Maximum Likelihood Posterior Probabilitics

vy V2

W) ()] ()] 105
@, (X) 0532 0338 0532 0338
Plowglv )} 0266 0169 .0160 0237
B (X) Ploglv) 0266 0169 0169 0237

2

> 0 (X)) Plogly ) 0435 0397
Kmel
PloilX, v ) 611 389 403 597

TABLE 4 Conditional Probabilities for Numerical Example

Plo,,v)) Plw;,0))
w vy V3 V3 k 0y 03 03
w) .6 5 2 S 8 2
03 3 .2 4 4 1 3
w3 1 3 4 1 1 5

TABLE 5 Joint Probabilities for Numerical Example

P{Vj,o,}
v 0] 0y - 03 P{Vj}
) 08 12 14 34
v 07 .09 12 28
V3 16 .10 12 38
P{o}} 31 3l 38
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FABLE 6 Calvuts: on of Joint Two-Way Probabilities for Numerical Example
o Plogegd Pl Ploag, ) Pl [y} Pli,) - Plog,m) Play ;) Plin) Ploog, i)
i X E X B R 1 1) 3 R R 1 2 N
3 3 EI 2 - 402 .2 X .8 - 056 K) x 38 - 182 .
2 N L | ol 034 a3 X 28 - 084 K ) x 38 L 52
TABLE 7 Culculston of Joint Two-Way Probabilitics for Numerical Example ,
N l‘{m,‘laﬂ l'(o,} P lm‘,oll ledo:} l'g(lzl "((u".pzl mb‘.QJl I'(u3| p{(‘)‘.ﬂ]’
I N | 8RR TR TR TR0
@3 o4 = L3l ~ 24 A x ) L 031 3 x 38 e NIt
93 W « 3 - 031 A x +3) - Kix1 .3 X .3 ~ 490
TABLE 8 lrerative Fitting of No-T hree-Way Interaction Modet
INTTIAL ITERATION | ITERATOY ¢ ) FINAL
L | l"(,{cu@,v,.a,l "l(w‘.l',.oll l'zlmpv,.o,l l"_;lw‘.u,.o,} I"l(wk.uj.oll lzlm‘.v ol l.'jlmk.u,.n,] l.’lo:‘.v,.nﬁ i’(mk!ul.o,l
[ I R 0680 0753 L0502 0487 0635 0557 614 71074
I 1 2 sy 1} 0680 1205 1074 J043 1196 L1098 A3 9431
S T | £330 0600 0369 0525 0510 L0457 0494 0456 3546
I 2 1 HAT 0467 0517 0432 0408 0332 0479 D317 J7383
12 2 4370 0467 0826 0760 0718 0823 0785 ,0820 916
F S | L1570 0467 0253 0289 ,0274 0245 0250 0221 1845
[ | N1370 0253 0280 L0422 0293 0382 0434 0386 2413
P 3 2 L3770 0253 0449 0579 0402 0461 0542 L0504 5038
t 3 3 HART0 0253 0138 0093 0063 0038 0052 0023 0196
2 1 i Rexyti] 0340 0408 0272 L0309 0262 0230 0179 2243 §
21 2 JE3T 0340 ,0102 0091 0103 ,0088 0081 0059 0492 ’
213 £370 0330 0375 0534 L0607 0544 ,0589 0613 4376 i
221 L3570 0187 0224 0187 0221 0187 0169 0153 267 ;
a2 2 Kk 0187 0056 L0051 L0061 ,0052 0049 0043 482
22 3 -yt 0187 0206 0235 0278 0249 0254 0277 ,2307 R
23 A370 0507 0608 L0913 0933 0790 0897 0931 23817
23 2 £370 0307 0152 0196 L0200 0170 0200 0217 2169
2 3 3 JI370 L0507 0599 0380 0387 0347 03]3 0239 1993
3011 J£370 0113 0039 0026 0022 0016 0014 0007 0083
31 2 £L37 0113 0039 0035 L0029 0023 00 0009 0077
I ] F370 0113 0239 0341 0288 0293 0317 0291 ,2079
21 5315 0280 0096 L0081 .0080 0058 0052 0030 0430
2 02 3370 L0280 0096 0089 0088 D068 0064 ,0036 0401
i 2 3 3370 L0280 0591 0675 0672 0683 0696 0072 y 3848
31 370 0507 0175 0263 0329 0236 0268 0283 v L1770
i 3 2 370 0507 0175 0225 ,0282 0219 0287 0279 2793
¥ 3 3 L3370 0507 1070 ,0727 0910 0924 0834 0937 L1811
TABLE 9 Agricultural Time-Sequential Classification Example i
i P{wk‘V j’
f ) W) w3 Wy
- SPRING CLass — Plv;}  RicE  CoTtoN  ORCHARD _ FALLOW
ﬂ »1 Rice 3 9 0 0 1
f vy Cotton .0 -- - -- --
: vy  Orchard 2 .0 .0 1.0 .0
- v4 Fallow 5 1 N 2 1
o Plw,) 32 35 25 .08
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TABLE 10 Elevation and Aspect Class Definitions
Cone DEFINITION Point Count
Elevation
Low <1067 m 45
Middle 1068-1524 m 26
High >1525m 14
Aspect 7
Northeast 337.6°-112.5° 26
Neutral 122.6°-157.5°, 292.6°-337.5° 25
Southwest 157.6°-292.5° 34
)
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Figure Captions for Prior Probabilities

FIGURE 1. Landsat Band 5 image of Doggett Creek study area, Klamath National
Ferest, California,

b FIGURE 2. Registered continuous and tri-level eievation (upper photos) and aspect
(lower photos) images of Doggett Creek study area,

E FIGURE 3. Classification map based on spectral data only; accuracy, 58 percent,

FIGURE 4. Classification map based on spectral data, with clevation included by varying
prior probabilities. Key to map symbols is included in Figure 3. Accuracy is 71 percent,

FIGURE 5. Classification map using spectral, elevation, and aspect data, Key to map
symbols is included in Figure 3. Accuracy is 77 percent,
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