SOLAR HEATING AND HOT WATER SYSTEM INSTALLED AT OFFICE
BUILDING, ONE SOLAR PLACE, DALLAS, TEXAS - FINAL REPORT

Prepared from documents furnished by

Travis-Braun & Associates, Inc.
One Solar Place, Suite 200
4140 Office Parkway
Dallas, Texas 75204

Under DOE Contract EG-77-A-01-4093

Monitored by

National Aeronautics and Space Administration
George C. Marshall Space Flight Center, Alabama 35812

For the U. S. Department of Energy
NOTICE

This report was prepared to document work sponsored by the United States Government. Neither the United States nor its agents the United States Department of Energy, the United States National Aeronautics and Space Administration, nor any federal employee, nor any of their contractors, subcontractors or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed, or represent that its use would not infringe privately owned rights.
This work was done under the technical management of Mr. Charles L. Greer, George C. Marshall Space Flight Center, Alabama 35812.

This document is the Final Report of the Solar Energy System installed at the First Solar Heated Office Building, ONE SOLAR PLACE, Dallas, Texas. The Solar System was designed to provide 67 percent of the space heating needs, 100 percent of the potable hot water needs and is sized for future absorption cooling. The collection subsystem consists of 28 SolarGenics, series 76, flat plate collectors with a total area of 1,996 square feet. The solar loop circulates an ethylene glycol-water solution through the collectors into a hot water system heat exchanger. The hot water storage subsystem consists of a heat exchanger, two 2,300 gallon concrete hot water storage tanks with built-in heat exchangers and a back-up electric boiler. The domestic hot water subsystem sends hot water to the 10,200 square feet floor area office building hot water fixtures. The building cold water system provides make-up to the solar loop, the heating loop, and the hot water concrete storage tanks. This report describes the design, construction, cost analysis, operation and maintenance of the solar system. The project is part of the U.S. Department of Energy’s solar demonstration program and became operational July 11, 1979.
ONE SOLAR PLACE
DALLAS' FIRST SOLAR HEATED OFFICE BUILDING
MADE POSSIBLE BY A GRANT FROM THE DEPARTMENT OF ENERGY
4140 OFFICE PKWY
DALLAS TEXAS 75204
214/821-4431
Table of Contents

INTRODUCTION ... 1
SUMMARY OF PROJECT INFORMATION. 3
PROJECT CHRONOLOGY .. 5
PHOTOGRAPHS OF ONE SOLAR PLACE 6
PROJECT COST ... 13
BASIC SYSTEM DRAWINGS .. 14
ACCEPTANCE TEST PLAN AND RESULTS 17
ACCEPTANCE TEST PLAN DATA .. 31
ENERGY TABULATIONS ... 35
SYSTEM DESIGN CHANGES AND CONSTRUCTION PROBLEMS 40
START-UP PROCEDURE .. 43
OPERATING AND MAINTENANCE INSTRUCTIONS 45
TROUBLE-SHOOTING ... 48
OPERATION, MAINTENANCE AND PRODUCT APPENDICES 51

APPENDIX A - SOLAR COLLECTORS
APPENDIX B - SOLAR HOT WATER HEATER
APPENDIX C - OVER-TEMPERATURE CONTROL UNIT
APPENDIX D - CHEMICAL FEEDER
APPENDIX E - MAIN HEAT EXCHANGER
APPENDIX F - STORAGE TANK HEAT EXCHANGERS
APPENDIX G - PUMPS
APPENDIX H - BACK-UP BOILER
APPENDIX I - MULTIZONE VAV UNIT
APPENDIX J - AS-BUILT DRAWINGS
INTRODUCTION

1.0 The solar energy system of ONE SOLAR PLACE office building provides 87% of the space heating requirements, 100% of the potable hot water needs and is sized for future solar absorption cooling. The solar energy collection system consists of 28 Solargenics flat-plate collectors in two arrays. Each collector is 3' X 19' or a total of 1,596 square feet of collectors. One unique feature about the solar collectors is that they serve as the roofing over the office lobby.

2.0 The complete solar energy system includes a solar loop system, a hot water storage system, and a domestic hot water system. The solar loop circulates an ethylene glycol-water solution through the 28 Solargenics flat-plate collectors and into a heat exchanger to heat the hot water system. This loop also includes an over-temperature control unit (O.T.C.) which disposes excess and undesired heat into the atmosphere when temperatures in the solar loop reaches above 210°F or the storage tank temperature reaches 200°F.

3.0 The hot water storage system consists of a heat exchanger where heat is absorbed from the solar loop, two 2300 gallon concrete hot water storage tanks with built-in heat exchangers, and a backup boiler.

4.0 The domestic hot water system sends hot water to the hot water fixtures throughout the office building. The building cold water system provides cold water make-up to the solar loop, the heating loop and the hot water concrete storage tanks. The domestic hot water system includes a domestic hot water heater, a hot water-cold water mixing valve, a pressure reducing valve and expansion tanks.
5.0 The office building at ONE SOLAR PLACE combines an existing one story red brick building with a newly constructed two-story building. Total floor area of the building is 10,200 square feet. The old existing building makes up 3,000 square feet with the new two-story addition making up 7,200 square feet. The new two-story addition blends red brick walls with redwood paneled walls; a flat roof combines with a 40 foot square collector roofing mounted over steel framing. The collector roofing is tilted at an angle of 42° from the horizon giving the office building an attractive "triangular" look. The general proximity of ONE SOLAR PLACE office building near downtown Dallas provides easy access for viewing and touring.

6.0 The ONE SOLAR PLACE office building has already been toured by several groups of people. These include North Texas State University graduate students, contractors, a local television station crew, journalists from the Dallas Morning News, and even foreign delegations from Israel, Japan, and West Germany. Elementary age school children from a Dallas public school will soon be given a tour of ONE SOLAR PLACE. So already, the ONE SOLAR PLACE installation is effective in educating the public about solar energy space heating and hot water heating.

7.0 This report describes the design, construction, cost analysis, operation, and maintenance of the solar system installed at ONE SOLAR PLACE in Dallas, Texas. This report is made on behalf of ERDA/DOE and Travis-Braun & Associates, Inc., to support solar energy as an effective means of providing supplemental energy to the energy needs of the United States. It is believed that the material available in this report will be beneficial to those readers interested in applying solar energy for hot water heating and/or space heating.
SUMMARY OF PROJECT INFORMATION

1.0 General Information

1.1 Owner/Location: Travis-Braun & Associates, Inc.
One Solar Place, Suite 200
4140 Office Parkway
Dallas, Texas 75204
Phone: 214-821-4431

1.2 Contractor: United Plumbing & Air Conditioning Co.
P.O. Box 31066
Dallas, Texas 75231
Phone: 214-341-9300

1.3 Engineer: Travis-Braun & Associates, Inc.
One Solar Place, Suite 200
4140 Office Parkway
Dallas, Texas 75204
Phone: 214-821-4431

1.4 Operational Date: July 11, 1979

1.5 Building:

1.5.1 Type: Two-story, combined flat roof and sloped

1.5.2 Wall Material: Old Building - red brick
New Addition - redwood

1.5.3 Floor Area: Old Building - 3,000 square feet
New Addition - 7,200 square feet
Total: 10,200 square feet

1.5.4 Wall Insulation: Urethane with "U" value of .08

2.0 Local Climatological Data - Dallas

2.1 Latitude: 32\degree\ N

2.2 Ambient Temperature:
January - 46\degree\ F
August - 85\degree\ F

2.3 Heating Degree Days:
Yearly - 2382
January - 626
2.4 Annual Cooling Hours: 1500
2.5 Peak Daily Insolation: 2358 Btu/Ft² @ 45° angle from horizon
2.6 Yearly Sunshine: 68%

3.0 SOLAR ENERGY SYSTEM

3.1 Application: Space Heating - 81%
 Hot Water Heating - 100%

3.2 Solar Collector Description:
 3.2.1 Type: Flat Plate (used as roof over lobby)
 3.2.2 Fluid Medium: Water - 30% ethylene-glycol solution
 3.2.3 Manufacturer/Model: Solargenics Series 76
 3.2.4 Collector Dimension: 3' X 19' X 3-3/4''
 3.2.5 Collector Glazing: Single glazed
 3.2.6 Collector Area: 1,596 square feet
 3.2.7 Collector Orientation:
 a. Azimuth: 230 West of South
 b. Tilt Angle: 420 from horizon

3.3 Hot Water Storage System:
 3.3.1 Type: Cylindrical concrete tanks
 3.3.2 Capacity: 2 tanks @ 2,300 gallons each
 Total - 4,600 gallons
 3.3.3 Dimensions: Diameter - 7'-0''
 Height - 7'-6''
 Wall Thickness - 10-3/4''
 3.3.4 Insulation: 3'' urethane

4.0 BACK-UP SYSTEM

4.1 Hot Water Heating: Electric boiler
4.2 Space Heating: Multizone variable air volume unit
PROJECT CHRONOLOGY

1.0 June, 1977 - Lon W. Travis/Earl E. Braun, Jr., Partnership was notified by ERDA (now DOE) that the proposed solar project has been selected for negotiation of a cooperative agreement.

2.0 Sept. 15, 1977 - Lon W. Travis/Earl E. Braun, Jr., Partnership was awarded a contract which stipulated that ERDA would finance 84.5% of the estimated total cost.

3.0 Nov. 14, 1977 - The building drawings and solar design drawings were finished.

4.0 Jan. 5, 1978 - Groundbreaking ceremonies at ONE SOLAR PLACE were held.

5.0 Feb., 1978 - A preconstruction meeting was held with the General Contractor to decide on construction scheduling and a construction start-up date.

6.0 April, 1978 - Site preparation began. The construction site was graded and foundation laid.

7.0 June, 1978 - The (2) two 2300 gallon concrete hot water storage tanks were installed.

8.0 July, 1978 - The steel framing skeleton was finished.

9.0 Oct., 1978 - All solar collectors were mounted.

10.0 March, 1979 - All electrical and plumbing work was completed.

11.0 July 11, 1979 - Acceptance testing was finished and ONE SOLAR PLACE was declared operational upon agreement between designated authorities from DOE and Earl E. Braun, Jr.
Steel Framing for Collector Roofing and Structure

Wood Framing Finished
Alignment of Collectors

Mounting of Collectors With Crane
Mounting of Collectors With Crane

Alignment of Collectors
View of Collector Headers from Inside the Lobby

Hot Water Storage Tanks with Piping
Piping, Gauges, Thermometers, Controls...
in Mechanical Room

Digital Control Panel Box
in Mechanical Room
All Collectors Installed

Frontal View - ONE SOLAR PLACE
ONE SOLAR PLACE - Side View

ONE SOLAR PLACE At Sun Rise
Project Cost

<table>
<thead>
<tr>
<th>Item</th>
<th>Planned ($)</th>
<th>Actual ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collectors</td>
<td>$26,000.00</td>
<td>$28,950.00</td>
</tr>
<tr>
<td>Storage Tank and Base</td>
<td>2,500.00</td>
<td>6,657.00</td>
</tr>
<tr>
<td>Supporting Structure for Collectors</td>
<td>2,000.00</td>
<td>2,100.00</td>
</tr>
<tr>
<td>Insulation</td>
<td>3,000.00</td>
<td>6,000.00</td>
</tr>
<tr>
<td>Pumps</td>
<td>1,100.00</td>
<td>1,100.00</td>
</tr>
<tr>
<td>Heat Exchanger</td>
<td>1,200.00</td>
<td>1,200.00</td>
</tr>
<tr>
<td>(2) Emersion Heat Exchangers</td>
<td>00.00</td>
<td>4,461.00</td>
</tr>
<tr>
<td>Controls</td>
<td>2,500.00</td>
<td>2,500.00</td>
</tr>
<tr>
<td>Piping and Valves</td>
<td>10,000.00</td>
<td>10,414.00</td>
</tr>
<tr>
<td>Construction Labor</td>
<td>15,000.00</td>
<td>15,000.00</td>
</tr>
<tr>
<td>Construction Overhead</td>
<td>4,000.00</td>
<td>4,000.00</td>
</tr>
<tr>
<td>Subtotal - Construction Cost</td>
<td>$67,300.00</td>
<td>$82,382.00</td>
</tr>
<tr>
<td>Direct Labor Overhead</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Administration)</td>
<td>2,000.00</td>
<td>2,000.00</td>
</tr>
<tr>
<td>Engineer and Architectural Fees</td>
<td>7,500.00</td>
<td>7,500.00</td>
</tr>
<tr>
<td>Travel</td>
<td>250.00</td>
<td>161.00</td>
</tr>
<tr>
<td>Total Project Construction Cost</td>
<td>$77,050.00</td>
<td>$92,043.00</td>
</tr>
</tbody>
</table>
BASIC SYSTEM

DRAWINGS
SEQUENCE OF OPERATIONS

A) Solar pump is operated under the following conditions:
 1. Collector temperature is greater than storage tank.
 2. Heat exchanger collector is in excess of 60°F
 (16°C) differential.
 3. Heat exchanger valve V-1 opens to the heat exchanger
 when collector temperature is warmer than storage
tank and P-1 operates.
 4. Valve T-1 and T-2 are open.
 5. Air unit control valve V-2 operates as directed
 by air unit control package.
 6. Circulation pump V-3 operates when collector
temperature is greater than storage tank, P-2 closes.
 7. The heat exchanger operates as directed by
 differential temperature controller. Control
 valve, P-1, is open when the collector
 temperature is less than the storage tank,
 P-2 is closed.
 8. The heat exchanger operates as directed by
 differential temperature controller. Control
 valve, P-1, is open when the collector
 temperature is less than the storage tank,
 P-2 is closed.
 9. The system shuts down when the heat exchanger
 temperature reaches 70°F (21°C).
ACCEPTANCE TEST PLAN

AND RESULTS
I. INTRODUCTION:

This solar system Acceptance Test Plan describes procedures to be followed to verify that all components and subsystems are installed and functioning according to quality engineering practice. The Acceptance Test Plan also is performed to show that the complete system is free of irregularities and in accordance with design intention. The complete system includes a solar loop system, a hot water storage system and a domestic hot water system. This test plan checks the following items:

A. Solar Loop System:
 A.1 GPM Flow through Solar Loop
 A.2 Heat Collection Performance of Collectors
 A.3 Over-Temperature-Control (O.T.C.)
 A.4 Chemical Feeder
 A.5 Operation of Pump P-1
 A.6 Backflow Prevention
 A.7 Collector Outgassing
 A.8 Collector Roof Leaks

B. Heating Hot Water System:
 B.1 Adequate Pump Pressure
 B.2 Back-up Boiler
 B.3 Drainage of Hot Water Storage Tanks
 B.4 Automatic Operation of Pump P-2
 B.5 Backflow Prevention
 B.6 Hot Water System Safety Alarm
C. Domestic Hot Water Loop:
 C.1 Expansion Tanks
 C.2 Cold Water-Hot Water Mixing Valve
 C.3 Pressure Reducing Valve (PRV)

D. Miscellaneous:
 D.1 Plumbing Leaks.
 D.2 Non-growth of Algae, Fungi, etc.
 D.3 Log of Temperatures
 D.4 Temperature Comparison
 D.5 Space Heating/Air Conditioning
 D.6 Master A/C Control Panel

II. TIMING:
 This Acceptance Test Plan was performed on and before July 11, 1979, as mutually agreed upon by designated authorities from ERDA (DOE) and the Lon W. Travis/Earl E. Braun, Jr., Partnership. The ONE SOLAR PLACE office building solar energy system was declared operational on July 11, 1979.

III. PROCEDURE AND RESULTS:
 A. Solar Loop:
 This loop circulates an ethylene-glycol-water solution through 28 Solargenics' flat plate collectors and into a heat exchanger to heat the hot water system. This loop also includes an over-temperature control (O.T.C.).
A.1 GPM Flow Through Solar Loop: While solar loop is operating,
measure pressure differential from gauges located on discharge
and vacuum side of pump P-1 (solar loop pump). From pump
manufacturer's pump curve, obtain corresponding flow rate through
solar loop; i.e. net flow through collectors.

Results: The following information was recorded and
calculated on July 2, 1979.

<table>
<thead>
<tr>
<th>TIME</th>
<th>ΔP(PSI)</th>
<th>GPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:30 P.M.</td>
<td>32</td>
<td>45</td>
</tr>
<tr>
<td>1:30 P.M.</td>
<td>32</td>
<td>45</td>
</tr>
<tr>
<td>2:30 P.M.</td>
<td>32</td>
<td>45</td>
</tr>
<tr>
<td>3:30 P.M.</td>
<td>33</td>
<td>44</td>
</tr>
<tr>
<td>4:30 P.M.</td>
<td>32</td>
<td>45</td>
</tr>
</tbody>
</table>

A.2 Heat Collection Performance: On a normal operating day, with
pumps P-1 and P-2 on, at any one instant measure BTU insolation,
west collector supply water temperature (TS6), west collector
return water temperature (TS7), and ambient temperature (TS12).
BTU insolation is to be measured with a pyranometer on the west
collector frame. Pyranometer must be at same angle as collectors.
From this data and collector manufacturer specifications, cal-
culate collector efficiency. Repeat this procedure three other
times throughout the day. From net GPM flow through collectors
(see A.1) and ΔT through collectors (TS7, TS6), BTU output of
collector may be found and thus the collector efficiency. Compare this efficiency with the efficiency obtained using collector manufacturer specifications as described above.

Results: Inaccurate results were obtained because of a small ΔT across the collectors. See Figure 1 for the collector efficiency curve furnished by the collector manufacturer.

A.3 Over-Temperature Control Unit (O.T.C.): To check to see that O.T.C. is functioning, set O.T.C. thermostat (inside control panel box) below west collector control temperature TC7. Go out on roof to check that O.T.C. unit comes on. Check to see that "Storage Too Hot" indicator light comes on (located on control panel box). Note: This light should also come on if storage tanks ever reach 200 degrees F.

Results: O.T.C. functions properly as commanded by the O.T.C. thermostat. "Storage Too Hot" indicator light functions properly.

A.4 Chemical Feeder: To insure freeze protection, chemical feeder must be supplying ethylene glycol to solar loop. To check, close valves S-11 and S-12 (with solar pump P-1 on). Immediately immerse a hydrometer into chemical feeder to measure gravity. From specific gravity, minimum operating temperature is obtained.
Results: At the time of the Acceptance Test Plan in July, 1979, no ethylene glycol was used in the solar loop because it is not needed for the summer months. In late September or early October of each fall season, ethylene glycol is added into the solar loop for a 30% ethylene-glycol-water solution to give freeze protection down to 30°F.

A.5 Automatic Operation of Pump P-1: Pump P-1 (Solar Loop Pump) and P-2 (Heating Hot Water System Pump) are set automatically to come on simultaneously when collector temperature is 20 degrees F. greater than hot water storage tank temperature. Both pumps are set automatically to shut off when collector temperature drops to 5 degrees F. above storage tank temperature. However, there are two banks of collectors (east and west) and two hot water storage tanks (east and west). Two switches located inside the control panel box determine which bank of collectors and which hot water storage tank are to be used for temperature control. One switch is labeled "Solar Sensor" and switches collector temperature control to east (TC6) or west (TC5) bank of collectors. The second switch is labeled "Storage Sensor" and switches temperature control to east (TC1) or west (TC2) hot water storage tanks. Two differential thermostats inside the control panel box are used to accomplish automation of pumps P-1 and P-2. On a normal oper-
ating day, ΔT-On is set at 20 degrees F. for pumps to come on and ΔT-Off is set at 5 degrees F. for pumps to shut off. To verify automatic operation of pumps, switch "Solar Sensor" to "West" and "Storage Sensor" to "West". Set ΔT-On to zero. Check to see that pumps P-1 and P-2 come on; green indicator lights on control panel box should come on.* To see that pumps P-1 and P-2 shut off automatically, increase ΔT-Off from zero. Check to see that pumps P-1 and P-2 shut off; green indicator lights should go off. Automatic operation of pumps P-1 and P-2 may also be checked by switching "Solar Sensor" to "East" and "Storage Sensor" to "East" and repeating the above procedure.

Results: Both pumps P-1 and P-2 function automatically as commanded by differential thermostats ΔT-On and ΔT-Off. Both pump indicator lights operate properly.

A.6 Backflow Prevention: Visually inspect location of check valve to be on discharge side of Pump P-1.

A.7 Collector Outgassing: Visually inspect collectors for outgassing, looking for a thin film on the collector glazing.

*NOTE: The two differential thermostats, ΔT-On and ΔT-Off are not effective until collector temperature reaches hot water storage tank temperature, i.e., when TC7 approaches TC1.
Results: No observable collector outgassing was observed. Temporary moisture, however, had condensed on a few collectors.

A.8 Collector Roof Leaks: During a rain storm, visually inspect collector roofing for rain leakage.

Results: Four rain water leaks were found between the collectors at the joints. One leak was found over the mechanical room and three leaks were found over the office lobby. These have been re-caulked and rain water leaks are now at a minimum, although still existent.

B. Heating Hot Water System:

The hot water system consists of a heat exchanger where heat is absorbed, two 2300 gallon storage tanks with heat exchangers, a back-up electric boiler, and a variable air volume multizone unit.

B.1 Adequate Pump Pressure: When hot water system pump P-2 is on, record pressure difference from two pressure gauges located on the discharge and vacuum side of pump P-2. From manufacturer specifications, obtain corresponding flow rate. Check to see that this flow rate exceeds 50 GPM, then pump pressure is adequate.

Results: A $\Delta P = 25$ psi across pump P-2 was found on July 8, 1979. This corresponds to a flow of 62 GPM which exceeds the minimum flow of 50 GPM for adequate heat transfer.
B.2 Back-up Boiler: Set boiler thermostat at or below TC4. Check to see that boiler comes on and that indicator light "Boiler On" (located on control panel box) comes on.

Results: Boiler comes on as commanded by differential thermostat.

B.3 Drainage of 2300 Gallon Hot Water Tanks: To drain east tank, close valves 90, 76, 39, and 41. Open valves 86 and 79. To fill east tank, close valve 86. Open valves 90, 76, 39, 41, 79. After east tank is filled to 6 inches below lid (see east sight glass), close valves 76 and 79. To drain west tank, close valves 91, 77, 40, and 42. Open valves 87 and 88. To fill west tank, close valve 87. Open valves 91, 77, 40, 42 and 88. After west tank is filled to 6 inches below lid (see west sight glass), close valves 77 and 88.

Results: All valves are intact. Both tanks were drained and filled. However, during filling operations, air pockets formed in both sight glasses and it took some time for the air pockets to "settle" out to give true sight glass readings.

B.4 Operation of Pump P-2: See A.5.

B.5 Backflow Prevention: Visually inspect location of check valve to be just above discharge side of pump P-2.
B.6 Hot Water System Safety Alarm: If the hot water loop temperature reaches the boiling point of water $212^\circ F$ (and thus creates unwanted steam), a pipe thermostat (located next to valve H-25) sounds an alarm. To verify that the alarm is working, lower pipe thermostat to or below temperature TC 8. To silence alarm, push "Silence" button located on control panel box. Also, when alarm sounds, check to see that indicator light "System Too Hot" comes on.

Results: The hot water system safety alarm was not functioning. Pipe thermostat is suspect and is being checked on and will be repaired by General Contractor.

C. Domestic Hot Water Loop:

The domestic hot water loop sends hot water to hot water fixtures throughout the building. The building cold water system provides cold water make-up to the solar loop, the heating loop and the hot water storage tanks. This domestic hot water system includes a domestic hot water heater, hot water-cold water mixing valve, pressure reducing valve, and expansion tanks.

C.1 Expansion Tanks:

C.1a 100 Gallon Expansion Tank: Visually inspect sight glass on east side of 100 gallon expansion tank. For normal operation, expansion tank sight glass should show about one-half air and one-half water.

C.1b 15 Gallon Expansion Tanks (2): Visually inspect for leaks and check to see that expansion tanks are operating properly.
C.2 **Cold Water-Hot Water Mixing Valve:** Temperature is automatically set inside the valve. Visually inspect location near domestic hot water heater.

C.3 **Pressure Reducing Valve (PRV):** City pressure of supply water is usually around 75 psi. Check pressure gauge in solar loop on the vacuum side to be around 10-15 psi. This shows the PRV is functioning properly.

Results: The solar loop pump vacuum pressure gauge reads 15 psi; therefore, the PRV is functioning properly.

D. **Miscellaneous:**

D.1 **Inspect all plumbing for leaks.**

Results: All plumbing leaks were repaired.

D.2 **Growth of Algae, Fungi, Mold, or Mildew:** Visually inspect piping. Also inspect strainer valves S-15 and L-3R.

Results: All piping was inspected as clean and free of any noticeable algae, fungi, mold or mildew.

D.3 **Log of temperatures:** A log of temperatures is recorded 3 or 4 times daily to check performance of various components and subsystems in the ONE SOLAR PLACE office building. All
temperature measuring devices are solid state thermistors.
The following are a list of the temperatures recorded from
the control panel box:

Solar Loop
TS1 - East Storage Tank--Lower
TS2 - East Storage Tank--Upper
TS3 - West Storage Tank--Lower
TS4 - West Storage Tank--Upper
TS5 - East Collector Supply Water
TS6 - West Collector Supply Water
TS7 - West Collector Return Water
TS8 - Solar Supply to Heat Exchanger
TS9 - Solar Return from Heat Exchanger

Heating Hot Water Loop
TS12 - Outdoor Air Temperature
TS13 - Multizone Duct Return Air Temperature
TS14 - Heating Hot Water Supply to Heat Exchanger
TS15 - Heating Hot Water Return from Heat Exchanger
TS16 - Leaving Water from Domestic H.W. Heater
TS17 - Leaving Hot Water from Boiler
TS18 - Hot Water Supply to Multizone
TS19 - Hot Water Return from Multizone
Results: See Table 1 and Table 2.

D.4 Temperature Comparison: There are five thermometers located in various places to visually read and compare thermistor temperatures found on control panel box.

Results: Date July 3, 1979

<table>
<thead>
<tr>
<th>Thermometer Reading °F</th>
<th>Temperature Reading °F (Control Box)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1 - 164</td>
<td>TS9 - 169</td>
</tr>
<tr>
<td>T2 - 165</td>
<td>TS18 - 168</td>
</tr>
<tr>
<td>T3 - 162</td>
<td>TS17 - 165</td>
</tr>
<tr>
<td>T4 - 166</td>
<td>TS6 - 179</td>
</tr>
<tr>
<td>T5 - 166</td>
<td>TS5 - 177</td>
</tr>
</tbody>
</table>

D.5 Space Heating/Air Conditioning: The multizone Variable Air Volume controls space heating and air conditioning through the office building. To see that air conditioning comes on, during hot weather months, turn thermostats down to desired temperature. To check that space heating operates, turn all thermostats in building up to heating conditions.

Results: Space heating and air conditioning functioning properly.
D.6 Master A/C Control Panel: The Master A/C Control Panel (located first floor lobby) has automatic control over the air conditioning system. It also has an automatic switch to control the fan and compressor of the condensing unit. An after hours timer will shut air conditioning system off after a desired time period of up to 12 hours. There are four indicator lights on the Master A/C Control Panel. These include a "System" light, a "Heating Inoperative" light, a "Condensing Unit Inoperative" light and a "Dirty Filter" light. Check to see that these lights are functioning properly.

Results: Master A/C Control Panel functions properly.

- END -
ACCEPTANCE TEST PLAN DATA
FIGURE 1

SOLARGENICS COLLECTOR EFFICIENCY CURVE

(Provided By Manufacturer)

\[
\frac{\frac{\text{HRS OF FT}^2}{\text{BTU}}}{\text{HRS OF FT}^2} - T_a - \frac{T_i + T_o}{2} \]
TABLE 1 - DAILY TEMPERATURES RECORDED
Temperatures recorded on July 2, 1979; Weather - Clear

<table>
<thead>
<tr>
<th>Solar Loop</th>
<th>8:40 A.M. (Pumps Off)</th>
<th>1:10 P.M. (Pumps On)</th>
<th>5:00 P.M. (Pumps On)</th>
<th>6:30 P.M. (Pumps Off)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS 1 - East Storage Tank - Lower</td>
<td>173</td>
<td>170</td>
<td>181</td>
<td>180</td>
</tr>
<tr>
<td>TS 2 - East Storage Tank - Upper</td>
<td>*</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TS 3 - West Storage Tank - Lower</td>
<td>164</td>
<td>162</td>
<td>170</td>
<td>170</td>
</tr>
<tr>
<td>TS 4 - West Storage Tank - Upper</td>
<td>173</td>
<td>169</td>
<td>182</td>
<td>182</td>
</tr>
<tr>
<td>TS 5 - East Collector Supply - Supply Water</td>
<td>85</td>
<td>175</td>
<td>182</td>
<td>174</td>
</tr>
<tr>
<td>TS 6 - West Collector Supply - Supply Water</td>
<td>82</td>
<td>181</td>
<td>183</td>
<td>178</td>
</tr>
<tr>
<td>TS 7 - West Collector Return - Return Water</td>
<td>84</td>
<td>184</td>
<td>183</td>
<td>175</td>
</tr>
<tr>
<td>TS 8 - Solar Supply to Heat Exchanger</td>
<td>97</td>
<td>186</td>
<td>185</td>
<td>178</td>
</tr>
<tr>
<td>TS 9 - Solar Return from Heat Exchanger</td>
<td>101</td>
<td>175</td>
<td>178</td>
<td>172</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Heating Hot Water Loop</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TS 12 - Ambient Temperature</td>
<td>79</td>
<td>92</td>
<td>91</td>
<td>90</td>
</tr>
<tr>
<td>TS 13 - Multizone Duct Return Air Temperature</td>
<td>76</td>
<td>81</td>
<td>82</td>
<td>85</td>
</tr>
<tr>
<td>TS 14 - Heating Hot Water Supply to Heat Exchanger</td>
<td>131</td>
<td>171</td>
<td>179</td>
<td>176</td>
</tr>
<tr>
<td>TS 15 - Heating Hot Water Return from Heat Exchanger</td>
<td>124</td>
<td>178</td>
<td>183</td>
<td>179</td>
</tr>
<tr>
<td>TS 16 - Leaving Water from Domestic H.W. Heater</td>
<td>92</td>
<td>170</td>
<td>178</td>
<td>169</td>
</tr>
<tr>
<td>TS 17 - Leaving Hot Water from Boiler</td>
<td>93</td>
<td>1'64</td>
<td>158</td>
<td>166</td>
</tr>
<tr>
<td>TS 18 - Hot Water Supply to Multizone</td>
<td>100</td>
<td>167</td>
<td>174</td>
<td>168</td>
</tr>
<tr>
<td>TS 19 - Hot Water Return from Multizone</td>
<td>101</td>
<td>173</td>
<td>178</td>
<td>173</td>
</tr>
</tbody>
</table>

Temperature sensor TS 2 was not functioning properly on this day.
<table>
<thead>
<tr>
<th>June</th>
<th>East Tank (Lower-6" from bottom)</th>
<th>East Tank (Upper-12' from top)</th>
<th>West Tank (Lower-6" from bottom)</th>
<th>West Tank (Upper-6" from top)</th>
<th>Weather</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>136</td>
<td>141</td>
<td>132</td>
<td>141</td>
<td>Haze</td>
</tr>
<tr>
<td>4</td>
<td>154</td>
<td>161</td>
<td>148</td>
<td>161</td>
<td>Partly Cloudy</td>
</tr>
<tr>
<td>5</td>
<td>150</td>
<td>158</td>
<td>146</td>
<td>158</td>
<td>Rain</td>
</tr>
<tr>
<td>6</td>
<td>153</td>
<td>161</td>
<td>149</td>
<td>161</td>
<td>Cloudy</td>
</tr>
<tr>
<td>7</td>
<td>151</td>
<td>158</td>
<td>157</td>
<td>157</td>
<td>Cloudy</td>
</tr>
<tr>
<td>8</td>
<td>157</td>
<td>164</td>
<td>152</td>
<td>164</td>
<td>Mostly Cloudy</td>
</tr>
<tr>
<td>11</td>
<td>172</td>
<td>180</td>
<td>167</td>
<td>181</td>
<td>Clear</td>
</tr>
<tr>
<td>12</td>
<td>170</td>
<td>178</td>
<td>166</td>
<td>178</td>
<td>Cloudy</td>
</tr>
<tr>
<td>13</td>
<td>163</td>
<td>169</td>
<td>159</td>
<td>170</td>
<td>Cloudy</td>
</tr>
<tr>
<td>14</td>
<td>168</td>
<td>---*</td>
<td>157</td>
<td>169</td>
<td>Clear</td>
</tr>
<tr>
<td>15</td>
<td>174</td>
<td>---*</td>
<td>161</td>
<td>174</td>
<td>Clear</td>
</tr>
<tr>
<td>18</td>
<td>175</td>
<td>---*</td>
<td>163</td>
<td>175</td>
<td>Partly Cloudy</td>
</tr>
<tr>
<td>19</td>
<td>178</td>
<td>---*</td>
<td>166</td>
<td>179</td>
<td>Cloudy</td>
</tr>
<tr>
<td>20</td>
<td>179</td>
<td>---*</td>
<td>167</td>
<td>180</td>
<td>Cloudy</td>
</tr>
<tr>
<td>21</td>
<td>180</td>
<td>---*</td>
<td>168</td>
<td>181</td>
<td>Cloudy</td>
</tr>
<tr>
<td>22</td>
<td>182</td>
<td>---*</td>
<td>179</td>
<td>183</td>
<td>Rain</td>
</tr>
<tr>
<td>25</td>
<td>185</td>
<td>---*</td>
<td>175</td>
<td>187</td>
<td>Mostly Cloudy</td>
</tr>
<tr>
<td>26</td>
<td>180</td>
<td>---*</td>
<td>171</td>
<td>181</td>
<td>Cloudy</td>
</tr>
<tr>
<td>27</td>
<td>178</td>
<td>---*</td>
<td>168</td>
<td>178</td>
<td>Cloudy</td>
</tr>
<tr>
<td>28</td>
<td>180</td>
<td>---*</td>
<td>170</td>
<td>181</td>
<td>Cloudy</td>
</tr>
<tr>
<td>29</td>
<td>186</td>
<td>---*</td>
<td>174</td>
<td>187</td>
<td>Clear</td>
</tr>
</tbody>
</table>

*Temperature probe for upper east tank not functioning properly.
ENERGY TAGULATIONS
ENERGY REQUIREMENT TABULATIONS
(Including future Cooling)

<table>
<thead>
<tr>
<th>MONTH</th>
<th>HEATING DEGREE - DAYS</th>
<th>HEATING REQUIREMENTS * BTU X 10^6</th>
<th>COOLING DEGREE - DAYS</th>
<th>COOLING REQUIREMENTS ** BTU X 10^6</th>
<th>DOMESTIC HOT WATER REQUIREMENTS BTU X 10^6</th>
<th>YEARLY ENERGY TOTAL 3 + 5 + 6 BTU X 10^6</th>
<th>COOLING & HEATING YEARLY ENERGY TOTAL BTU X 10^6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>JAN.</td>
<td>626</td>
<td>41.02</td>
<td>0</td>
<td>0</td>
<td>2.31</td>
<td>43.33</td>
<td>43.33</td>
</tr>
<tr>
<td>FEB.</td>
<td>456</td>
<td>29.88</td>
<td>0</td>
<td>0</td>
<td>1.97</td>
<td>31.84</td>
<td>31.84</td>
</tr>
<tr>
<td>MAR.</td>
<td>335</td>
<td>21.95</td>
<td>0</td>
<td>0</td>
<td>1.89</td>
<td>23.84</td>
<td>23.84</td>
</tr>
<tr>
<td>APR.</td>
<td>88</td>
<td>5.77</td>
<td>0</td>
<td>0</td>
<td>1.73</td>
<td>7.50</td>
<td>7.50</td>
</tr>
<tr>
<td>MAY</td>
<td>0</td>
<td>0</td>
<td>81</td>
<td>19.04</td>
<td>1.56</td>
<td>1.56</td>
<td>20.60</td>
</tr>
<tr>
<td>JUN.</td>
<td>0</td>
<td>0</td>
<td>333</td>
<td>78.27</td>
<td>1.37</td>
<td>1.37</td>
<td>79.64</td>
</tr>
<tr>
<td>JUL.</td>
<td>0</td>
<td>0</td>
<td>435</td>
<td>99.90</td>
<td>1.31</td>
<td>1.31</td>
<td>101.21</td>
</tr>
<tr>
<td>AUG.</td>
<td>0</td>
<td>0</td>
<td>465</td>
<td>109.30</td>
<td>1.34</td>
<td>1.34</td>
<td>110.64</td>
</tr>
<tr>
<td>SEP.</td>
<td>0</td>
<td>0</td>
<td>181</td>
<td>42.55</td>
<td>1.48</td>
<td>1.48</td>
<td>44.03</td>
</tr>
<tr>
<td>OCT.</td>
<td>60</td>
<td>3.93</td>
<td>34</td>
<td>7.99</td>
<td>1.56</td>
<td>5.49</td>
<td>13.48</td>
</tr>
<tr>
<td>NOV.</td>
<td>287</td>
<td>18.81</td>
<td>0</td>
<td>0</td>
<td>1.75</td>
<td>20.56</td>
<td>20.56</td>
</tr>
<tr>
<td>DEC.</td>
<td>530</td>
<td>34.73</td>
<td>0</td>
<td>0</td>
<td>2.06</td>
<td>36.79</td>
<td>36.79</td>
</tr>
<tr>
<td>TOTALS</td>
<td>2382</td>
<td>156.09</td>
<td>1519</td>
<td>357.05</td>
<td>20.33</td>
<td>176.42</td>
<td>533.47</td>
</tr>
</tbody>
</table>

* Based on Total Peak Heating Load of 150,164 BTU/hr
** Based on Total Peak Cooling Load of 244,850 BTU/hr
SOLAR ENERGY PARTICIPATION

<table>
<thead>
<tr>
<th>MONTH</th>
<th>BTU $\times 10^6$ SOLAR ENERGY COLLECTED</th>
<th>DOMESTIC H.W. LOAD</th>
<th>SOLAR PARTICIPATION ON DOMESTIC H.W.</th>
<th>SPACE HEATING LOAD</th>
<th>SOLAR PARTICIPATION ON SPACE HEATING</th>
<th>SYSTEM HEAT LOSS BTU $\times 10^6$</th>
<th>AUXILIARY ENERGY BTU $\times 10^6$</th>
<th>D.H.W & SPACE HEATING PARTICIPATION %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>JAN</td>
<td>31.7</td>
<td>2.31</td>
<td>2.31</td>
<td>41.02</td>
<td>29.39</td>
<td>0.54</td>
<td>12.17</td>
<td>72%</td>
</tr>
<tr>
<td>FEB</td>
<td>33.8</td>
<td>1.97</td>
<td>1.97</td>
<td>29.88</td>
<td>29.88</td>
<td>0.45</td>
<td>0</td>
<td>100%</td>
</tr>
<tr>
<td>MAR</td>
<td>41.8</td>
<td>1.89</td>
<td>1.89</td>
<td>21.95</td>
<td>21.95</td>
<td>0.52</td>
<td>0</td>
<td>100%</td>
</tr>
<tr>
<td>APR</td>
<td>37.2</td>
<td>1.73</td>
<td>1.73</td>
<td>5.77</td>
<td>5.77</td>
<td>0.53</td>
<td>0</td>
<td>100%</td>
</tr>
<tr>
<td>MAY</td>
<td>34.8</td>
<td>1.56</td>
<td>1.56</td>
<td>0</td>
<td>0</td>
<td>0.59</td>
<td>0</td>
<td>100%</td>
</tr>
<tr>
<td>JUN</td>
<td>35.4</td>
<td>1.37</td>
<td>1.37</td>
<td>0</td>
<td>0</td>
<td>0.58</td>
<td>0</td>
<td>100%</td>
</tr>
<tr>
<td>JUL</td>
<td>36.9</td>
<td>1.31</td>
<td>1.31</td>
<td>0</td>
<td>0</td>
<td>0.67</td>
<td>0</td>
<td>100%</td>
</tr>
<tr>
<td>AUG</td>
<td>39.9</td>
<td>1.34</td>
<td>1.34</td>
<td>0</td>
<td>0</td>
<td>0.67</td>
<td>0</td>
<td>100%</td>
</tr>
<tr>
<td>SEP</td>
<td>40.7</td>
<td>1.48</td>
<td>1.48</td>
<td>0</td>
<td>0</td>
<td>0.61</td>
<td>0</td>
<td>100%</td>
</tr>
<tr>
<td>OCT</td>
<td>39.8</td>
<td>1.56</td>
<td>1.56</td>
<td>3.93</td>
<td>3.93</td>
<td>0.63</td>
<td>0</td>
<td>100%</td>
</tr>
<tr>
<td>NOV</td>
<td>20.9</td>
<td>1.75</td>
<td>1.75</td>
<td>18.81</td>
<td>18.81</td>
<td>0.64</td>
<td>0</td>
<td>100%</td>
</tr>
<tr>
<td>DEC</td>
<td>28.7</td>
<td>2.06</td>
<td>2.06</td>
<td>34.73</td>
<td>26.64</td>
<td>0.63</td>
<td>8.72</td>
<td>77%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>431.6</td>
<td>20.33</td>
<td>20.32</td>
<td>156.09</td>
<td>136.37</td>
<td>7.06</td>
<td>20.89</td>
<td>87%</td>
</tr>
</tbody>
</table>
Domestic Hot Water Requirements

<table>
<thead>
<tr>
<th>MONTH</th>
<th>Average City Water Temp. °F</th>
<th>BTU/LB at City Water Temp.</th>
<th>BTU/LB @ 130°F</th>
<th>BTU/Day</th>
<th>Average Days Office Bldg Open Per Month</th>
<th>BTU to Heat Water to 130°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>JAN.</td>
<td>47°</td>
<td>15.06</td>
<td>97.97</td>
<td>103,596</td>
<td>22.3</td>
<td>2,310,000</td>
</tr>
<tr>
<td>FEB.</td>
<td>52°</td>
<td>20.07</td>
<td>97.97</td>
<td>97,336</td>
<td>20.2</td>
<td>1,966,000</td>
</tr>
<tr>
<td>MAR.</td>
<td>62°</td>
<td>30.08</td>
<td>97.97</td>
<td>84,828</td>
<td>22.3</td>
<td>1,892,000</td>
</tr>
<tr>
<td>APR.</td>
<td>66°</td>
<td>34.07</td>
<td>97.97</td>
<td>79,843</td>
<td>21.6</td>
<td>1,725,000</td>
</tr>
<tr>
<td>MAY</td>
<td>74°</td>
<td>42.06</td>
<td>97.97</td>
<td>69,859</td>
<td>22.3</td>
<td>1,559,000</td>
</tr>
<tr>
<td>JUN.</td>
<td>79°</td>
<td>47.06</td>
<td>97.97</td>
<td>63,612</td>
<td>21.6</td>
<td>1,374,000</td>
</tr>
<tr>
<td>JUL.</td>
<td>83°</td>
<td>51.05</td>
<td>97.97</td>
<td>58,626</td>
<td>22.3</td>
<td>1,307,000</td>
</tr>
<tr>
<td>AUG.</td>
<td>82°</td>
<td>50.05</td>
<td>97.97</td>
<td>59,876</td>
<td>22.3</td>
<td>1,335,000</td>
</tr>
<tr>
<td>SEP.</td>
<td>75°</td>
<td>43.06</td>
<td>97.97</td>
<td>68,610</td>
<td>21.6</td>
<td>1,482,000</td>
</tr>
<tr>
<td>OCT.</td>
<td>74°</td>
<td>42.06</td>
<td>97.97</td>
<td>69,859</td>
<td>22.3</td>
<td>1,558,000</td>
</tr>
<tr>
<td>NOV.</td>
<td>65°</td>
<td>33.08</td>
<td>97.97</td>
<td>81,080</td>
<td>21.6</td>
<td>1,751,000</td>
</tr>
<tr>
<td>DEC.</td>
<td>56°</td>
<td>24.08</td>
<td>97.97</td>
<td>92,325</td>
<td>22.3</td>
<td>2,059,000</td>
</tr>
</tbody>
</table>

* Based on 150 Gal/Day of Domestic Hot Water at 130°F

Total 20,317,000
TOTAL SOLAR CONTRIBUTION TO 1596 SQ. FT. OF SOLAR COLLECTORS IN DALLAS, TEXAS

WITH A COLLECTOR TILT OF 42° AND BASED ON 32° NORTH LATITUDE

<table>
<thead>
<tr>
<th>MONTH</th>
<th>AVERAGE SOLAR INSOLATION PER COLLECTOR ARRAY BTU x 10^6/mo.</th>
<th>COLLECTOR AREA</th>
<th>PERCENT OF POSSIBLE SUNSHINE DIRECT</th>
<th>DIRECT & DIFFUSED</th>
<th>ATOMIC CLEARANCE</th>
<th>AVERAGE COLLECTOR EFFICIENCY</th>
<th>TOTAL AMOUNT OF USEABLE SOLAR ENERGY BTU x 10^6</th>
</tr>
</thead>
<tbody>
<tr>
<td>JAN.</td>
<td>110.3</td>
<td>89%</td>
<td>56%</td>
<td>64%</td>
<td>95%</td>
<td>53.1%</td>
<td>31.7</td>
</tr>
<tr>
<td>FEB.</td>
<td>110.3</td>
<td>89%</td>
<td>57%</td>
<td>65%</td>
<td>95%</td>
<td>55.7%</td>
<td>33.8</td>
</tr>
<tr>
<td>MAR.</td>
<td>122.8</td>
<td>89%</td>
<td>65%</td>
<td>73%</td>
<td>95%</td>
<td>55.2%</td>
<td>41.8</td>
</tr>
<tr>
<td>APR.</td>
<td>111.2</td>
<td>89%</td>
<td>66%</td>
<td>74%</td>
<td>95%</td>
<td>53.5%</td>
<td>37.2</td>
</tr>
<tr>
<td>MAY</td>
<td>107.5</td>
<td>89%</td>
<td>67%</td>
<td>75%</td>
<td>95%</td>
<td>51.1%</td>
<td>34.8</td>
</tr>
<tr>
<td>JUN.</td>
<td>100.3</td>
<td>89%</td>
<td>75%</td>
<td>83%</td>
<td>95%</td>
<td>50.3%</td>
<td>35.4</td>
</tr>
<tr>
<td>JUL.</td>
<td>105.7</td>
<td>89%</td>
<td>78%</td>
<td>86%</td>
<td>95%</td>
<td>48.0%</td>
<td>36.9</td>
</tr>
<tr>
<td>AUG.</td>
<td>111.7</td>
<td>89%</td>
<td>78%</td>
<td>86%</td>
<td>95%</td>
<td>49.1%</td>
<td>39.9</td>
</tr>
<tr>
<td>SEP.</td>
<td>114.1</td>
<td>89%</td>
<td>74%</td>
<td>82%</td>
<td>95%</td>
<td>49.5%</td>
<td>40.7</td>
</tr>
<tr>
<td>OCT.</td>
<td>117.3</td>
<td>89%</td>
<td>70%</td>
<td>78%</td>
<td>95%</td>
<td>51.4%</td>
<td>39.8</td>
</tr>
<tr>
<td>NOV.</td>
<td>105.0</td>
<td>89%</td>
<td>63%</td>
<td>71%</td>
<td>95%</td>
<td>49.0%</td>
<td>30.9</td>
</tr>
<tr>
<td>DEC.</td>
<td>105.0</td>
<td>89%</td>
<td>58%</td>
<td>66%</td>
<td>95%</td>
<td>49.0%</td>
<td>28.7</td>
</tr>
<tr>
<td>TOTALS</td>
<td>1321.2</td>
<td>89%</td>
<td>68%</td>
<td>76%</td>
<td>95%</td>
<td>51.4%</td>
<td>431.6</td>
</tr>
</tbody>
</table>
SYSTEM DESIGN CHANGES AND
CONSTRUCTION PROBLEMS
SYSTEM DESIGN CHANGES FROM ORIGINAL PROPOSAL AND CONSTRUCTION PROBLEMS

1.0 DESIGN CHANGES

1.01 Perhaps the biggest change in design involves the hot water storage tanks. By original design, there were to be three hot water storage tanks located outside the ONE SOLAR PLACE office building, serving as supports for a porte cochere. It was decided, however, to use two larger 2300 gallon hot water tanks, installed on a concrete slab in the office lobby. This design change resulted in a more simple piping system and smaller storage tank heat losses and therefore, more cost effectiveness.

1.02 Heat exchangers were added to the inside of each 2300 gallon hot water storage tank. This gives a second protection from the ethylene glycol-water solution. More importantly, without the heat exchangers, hydrostatic pressure resulting from city water pressure of 15 psi on a 7 foot diameter concrete storage tank lid would result in an uplift force of 83,000 pounds, which greatly exceeds the weight of the concrete slab and would blow the lid off the hot water storage tank.

2.0 CONSTRUCTION PROBLEMS

2.01 Each concrete hot water storage tank has developed a slow seepage leak at one time or another. To solve this, each tank was drained at different times completely and allowed to dry for days. This stopped the seepage.

2.02 The temperature sensors in each hot water storage tank have malfunctioned but since have been repaired.
2.03 Pumps P-1 (solar loop pump) and P-2 (system loop pump) have tripped-off undesirably on hot days because the mechanical room gets too hot. New pump seals will be installed and a larger exhaust fan will be installed in the mechanical room to solve this problem.

2.04 Rain leaks through collector flashing joints. Approximately five leaks occur between the collector modules when there is a south blowing rain. During a light rain, several leaks can still be observed. The collectors will expand approximately 3/8" over the 20 foot length of the collector due to thermal expansion. Sealing was to be accomplished with sponge rubber gaskets compressed from 1/2" to 1/4" by the module cases. (Figure 1) However, the collector spacing was greater than 1/4" in some places. Before finishing the space below the solar collector roof, all module joints should be leak tested from all directions with a pressurized hose. Floor tile or something other than carpet should be used as a floor below the collector array. Expansion and contraction provisions for the collectors should be provided. One possible way of sealing between collector modules might be accomplished with a gasketted mechanical interlock, if the module cover support was refabricated as shown in Figure 2. The solution to the present sealing problem is to apply generous amounts of silicone sealant under and around the flashing where a leak is found with the hose.

Figure One

![Flashings and Silicone Sealant Diagram](image1)

Figure Two

![Aluminum Extrusion and Gasket Diagram](image2)
START-UP PROCEDURE

I. Fill Hot Water Storage Tanks.
 A. East Tank - Close valve 86. Open valves 90, 76, 39, 41, 79. After tank is filled to 6 inches below lid (use sight gage), close valves 76 and 79.
 B. West Tank - Close valve 87. Open valves 91, 77, 40, 42 and 88. After tank is filled to 6 inches below lid, close valves 77 and 88.

II. Add ethylene-glycol to solar loop to obtain a 30% glycol/70% water solution. Refer to Appendix D - "Manual Chemical By-Pass Feeders" for instructions.

III Check to see that pump breakers are closed in electrical power panel.

IV. Check to see that control panel breaker is closed in electrical power panel.

V. Automatic operation of pumps P-1 and P-2. (Control Panel in Mechanical Room)
 A. In control panel box, set AT-On differential thermostat to 20°F.
 B. In control panel box, set AT-Off differential thermostat to 5°F.
 C. Turn switch on control panel to "Auto" for Pumps P-1 and P-2.

VI. Over Temperature Control - In control panel box, set O.T.C. to 200°F.

VII. The remainder of the temperature controllers and sensors were set before installation.

VIII. Fill all systems with water.
 A. Heating Hot Water System - Open valve 49 and 50.
 B. Domestic Hot Water System - Open valves 43, 44 and 46.

IX. Set room thermostats at desired temperature.

X. Verify that 7-day Time Clock is on desired setting.
XI. A/C Control Panel in Downstairs Lobby
 A. Set "System Switch" to "Auto".
 B. In cooling season, turn "Condensing Unit" switch to "Auto".
 C. In heating season, make sure night setback thermostat located above control panel is set at 45°F.

XII. Heating Season - Set boiler thermostat inside boiler at 110°F. for backup heating.
I. Chemical Feeder - Periodic and annual additions of ethylene-glycol to the solar loop are required to insure freeze protection in the winter months to 30°F. (Refer to Appendix D for initial charge of Chemical Feeder).

A. Monitoring - During winter months, check every two weeks to insure system has 30% ethylene-glycol 70% water.

B. Add ethylene-glycol as needed.

C. At the beginning of each heating season, check PH factor of glycol solution and neutralize as required to a PH of 6.7 to 7.4.

D. During summer months no monitoring is required.

II. Pumps - Refer to Appendix G. Pumps are life-time lubricated and do not require periodic oiling.

III. Strainers - All strainers are to be cleaned monthly for the first six months and every three months thereafter.

IV. Collectors - Location of collectors prevents operating personnel from performing any maintenance or trouble shooting. Solar contractor will perform these functions.

V. Boiler - Refer to Appendix H.

A. Inspected, cleaned, and if necessary adjusted once a year by a qualified serviceman.

B. Frequently check the boiler operating pressure.

VI. Multizone VAV Unit - Refer to Appendix I.

A. Night Setback Thermostat - Located in the main lobby of building above control panel. Set at 45°F. Will automatically activate heating if temperature drops below 45°F. in building.
B. Control Panel for heating and air conditioning is located in the main lobby and consists of the following: (Also refer to Appendix I, pgs. 10-13)

1. System On Light - Green indicates system is operating.
2. Heating Inoperative Light - Red light comes on, Refer to Appendix I, Page 8 for service instructions.
3. Condensing Unit Inoperative Light - Red light comes on, refer to Appendix I, page 9 for service instructions.
5. Auto/Off Switch - Set on Auto at all times, unless units are being serviced.
6. After Hours 12 Hour Timer - May be set for one to twelve hours manually. Turn this switch only when unit is off at night.
7. Condensing Unit Auto/Off Switch - Set at Auto in cooling season, and Off during heating season.

VII. Solar Hot Water Heater - Refer to Appendix B.

VIII. Over Temperature Control Unit - Refer to Appendix C.

Annually the purge coil system should be inspected and checked as follows:

1. Purge Coil
 Clean and inspect the coil and coil guard to be sure they are free of obstructions. Turn off power to unit and wash coil and coil guard with a garden hose.

2. Oil fan motor:
 a. Motor without oiling ports - Prelubricated and sealed. No further lubrication required under normal operation.
b. Motor with oiling ports - Add a few drops of SAE No. 10 non-detergent oil in motor oiling ports. Access to the fan motor may require unbolting and lowering the fan motor/fan guard assembly.

3. Visually inspect connecting lines and coil for evidence of fluid leaks.

4. Check all wiring for evidence of loose connections.

5. Check for correct voltage at unit (unit operating).

6. Check amp-draw on fan motor.
TROUBLE-SHOOTING

I. Power:

Control Panel (Mechanical Room)

Problem - No power to panel.

1. Check electric power from power panel to insure that circuit breaker #16 is closed.
2. Check to see if fuse is blown inside control panel. (Fuse is white with an "L" on it.)

II. Pumps:

Solar Loop Pump P-1 and Hot Water System Pump P-2

A. Problem - Pump will not run.

1. Check motor starter/disconnect switch to make sure it is closed.
2. Check breakers in power panel to see if tripped.
 - Pump P-1: #22, 23, 24
 - Pump P-2: #19, 20, 21
3. Check to see if differential thermostat ΔT-On in control panel is set at 20°F. (Note: ΔT-On is not effective until collector temperature TC7 or TC5 reaches hot water storage tank temperature TC 1 or TC 2.)
4. Check to see if "Solar Sensor" and "Solar Storage" controllers in control panel are both turned to either East or West.

B. Problem - Pumps run continuously.

1. Check control panel switch to make sure it is on "Automatic Mode" not "On" position.
2. Check ΔT-Off is set at 5°F. (Note: ΔT-Off differential thermostat is not effective until collector temperature TC7 or TC 5 reaches hot water storage temperature TC1 or TC2).

III. Over Temperature Control Unit (OTC):

Problem - Unit will not function
1. Check electric power panel to see if breaker #3 is tripped.
2. Check OTC thermostat in control panel is set at 200°F. Lower setting to circulating water temperature to see that it turns on.

IV. Boiler:

Problem - Unit will not function
1. Check to see that 175 amp breaker in power panel is not tripped.
2. Refer to Appendix H-2 "Trouble-Shooting for Water Boilers".

V. Air Conditioning Unit:

Control Panel in Downstairs Lobby

Problem - "Heating Inoperative" red light comes on. - Refer to Appendix I-8.
Problem - "Condensing Unit Inoperative" red light comes on. - Refer to Appendix I-9.
Problem - None of system indicator lights are functioning. - Check to see if 225 amp breaker in power panel is tripped.
Problem - "Dirty Filter" red light comes on. - Change filter.

VI. Heating Hot Water System Safety Alarm:

Problem - Alarm sounds and "System Too Hot" light comes on.
1. Push "Silence" button located on control panel.
2. Check to see if Pump P-2 is operating. If it is not on in "Auto" mode, switch to "On". If it does not come on, refer to Section II- "Pumps".
VII. Storage Tanks:

Problem - Tank leaks.

Refer to page 25, B.3 "Drainage of 2300 Gallon Hot Water Tanks"

Allow tank to dry out for several days before refilling.

VIII Collectors:

Problem - Roof Leaks

1. Identify exact location on underside of collectors where water leaks.
2. Check caulking on top of collectors where leak appeared.
3. Recaulk area or identify more severe problem.
OPERATION, MAINTENANCE, AND
PRODUCT APPENDICES OF
ONE SOLAR PLACE SYSTEM COMPONENTS
APPENDIX A

SOLAR COLLECTORS

SOLARGENICS FLAT PLATE - SERIES 76
<table>
<thead>
<tr>
<th>MONTH</th>
<th>Ambient Mean Temp. °F.</th>
<th>Collector Efficiency Water Only</th>
<th>Collector Efficiency With Glycol</th>
<th>Avg. Insolation</th>
<th>Temperature In °F.</th>
<th>Temperature Out °F.</th>
<th>FT</th>
</tr>
</thead>
<tbody>
<tr>
<td>JAN</td>
<td>46</td>
<td>90</td>
<td>236</td>
<td>.199</td>
<td>199</td>
<td>96</td>
<td>331.93</td>
</tr>
<tr>
<td>FEB</td>
<td>49</td>
<td>90</td>
<td>261</td>
<td>.170</td>
<td>170</td>
<td>96</td>
<td>323.70</td>
</tr>
<tr>
<td>MAR</td>
<td>57</td>
<td>100</td>
<td>262</td>
<td>.176</td>
<td>176</td>
<td>96</td>
<td>321.96</td>
</tr>
<tr>
<td>APR</td>
<td>65</td>
<td>110</td>
<td>246</td>
<td>.195</td>
<td>195</td>
<td>116</td>
<td>323.38</td>
</tr>
<tr>
<td>MAY</td>
<td>72</td>
<td>120</td>
<td>230</td>
<td>.222</td>
<td>222</td>
<td>126</td>
<td>319.91</td>
</tr>
<tr>
<td>JUN</td>
<td>81</td>
<td>130</td>
<td>222</td>
<td>.234</td>
<td>234</td>
<td>136</td>
<td>318.47</td>
</tr>
<tr>
<td>JUL</td>
<td>85</td>
<td>140</td>
<td>226</td>
<td>.237</td>
<td>237</td>
<td>146</td>
<td>318.19</td>
</tr>
<tr>
<td>AUG</td>
<td>78</td>
<td>140</td>
<td>239</td>
<td>.243</td>
<td>243</td>
<td>146</td>
<td>318.03</td>
</tr>
<tr>
<td>SEP</td>
<td>68</td>
<td>120</td>
<td>252</td>
<td>.218</td>
<td>218</td>
<td>126</td>
<td>317.86</td>
</tr>
<tr>
<td>OCT</td>
<td>56</td>
<td>110</td>
<td>232</td>
<td>.219</td>
<td>219</td>
<td>116</td>
<td>317.64</td>
</tr>
<tr>
<td>NOV</td>
<td>48</td>
<td>100</td>
<td>224</td>
<td>.246</td>
<td>246</td>
<td>106</td>
<td>317.40</td>
</tr>
<tr>
<td>DEC</td>
<td>66</td>
<td>115</td>
<td>240</td>
<td>.219</td>
<td>219</td>
<td>121</td>
<td>317.40</td>
</tr>
<tr>
<td>MONTHLY</td>
<td></td>
<td>66</td>
<td>240</td>
<td>.219</td>
<td>219</td>
<td>121</td>
<td>317.40</td>
</tr>
</tbody>
</table>

A - 8
APPENDIX B

SOLAR HOT WATER HEATER
Specifications

<table>
<thead>
<tr>
<th>Model No</th>
<th>LSHW1-1</th>
<th>LSHW1-2</th>
<th>LSHW1-3</th>
<th>LSHW1-4</th>
<th>LSHW1-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of collectors</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>No. of packages in shipment</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Approx. shipping weight (lbs.)</td>
<td>570</td>
<td>713</td>
<td>864</td>
<td>1140</td>
<td>1263</td>
</tr>
<tr>
<td>Water tank capacity (gal.)</td>
<td>66</td>
<td>82</td>
<td>120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water piping connections mpt (in.)</td>
<td>3/4-18</td>
<td>3/4-18</td>
<td>3/4-18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector piping connections fpt (in.)</td>
<td>1/2-18</td>
<td>1/2-18</td>
<td>1/2-18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical characteristics</td>
<td>115 volt/60 Hertz/1 phase</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1

B - 1
I - OPERATION
A - System Function
Once the entire Lennox LSHW solar water heating system has been installed and the transfer fluid and storage tank systems are filled, the system will operate by itself. The pump controller will register temperatures from the collector sensor and the storage tank sensor, activating the pump as required. Important: the operation is the temperature difference between the two sensors, referred to as the "\(\Delta T \)". If the temperature at the collector is equal to the temperature of the storage tank, the pump will be off. When the \(\Delta T \) between the collector and the tank increases (example: the sun begins to heat the collectors) to \(3^\circ \) to \(11^\circ \), the pump will run intermittently, providing an amount of fluid circulation proportional to the \(\Delta T \). As the temperature difference between sensors increases so does the rate at which the pump provides circulation. When the \(\Delta T \) becomes less than \(11^\circ \), the pump will be on steadily and will continue until the \(\Delta T \) is again \(3^\circ \) or less. At this point the pump will shut off until the sensor temperatures require transfer fluid circulation.

B - Components and Functions
1 - Air Vent Valve
Located at the top of the transfer fluid system, this valve is a float type valve which will release air only. As fluid enters the valve, the float rises and closes the vent port. Any air in the system will be allowed to escape at this valve particularly when filling the system. See Figure 13.

2 - Pressure Relief Valve
Located at the top of the LSM1 module, (Figure 1), this valve will release any pressure in the transfer fluid system in excess of 50 psi (345 kPa). The discharge from this valve may exceed 200°F (93°C). Because of this temperature, the Pressure Relief Valve must be plumbed to an open drain. Water released from this valve is unsafe, glycol contaminated water.

3 - Temperature and Pressure Relief Valve
Located at the side of the LSM1 module, (Figure 1), this valve will discharge water from the Storage Tank when the stored water reaches a temperature of 210°F (99°C). This valve purges excess heat accumulated in the transfer fluid by releasing heater water from the storage tank and replacing it with cold supply water. The addition of cold water will cool the collectors and transfer fluid. The Temperature and Pressure Relief Valve must be plumbed to an open drain.

4 - Expansion Tank
The expansion tank absorbs the expansion and contraction of the transfer fluid which may vary from \(-20^\circ \) to \(-29^\circ \) in winter to \(240^\circ \) to \(116^\circ \) in summer. The expansion tank is a diaphragm type which is pressurized to 12 psi (82.7 kPa) and sealed. Do not open tank. If tank should ever be opened or depressurized, recharge with 12 psi (82.7 kPa) of air.

C - Pump Controller
1 - "AUTO" position —
The pump controller has 3 positions. "AUTO" is the switch position for normal operation. If the temperature difference between the tank and the collector is great enough, 11° or more the pump will run steadily (indicator light is on continuously) to circulate fluid through collectors. The pump will run intermittently (indicator light is "blinking") to circulate a proportional amount of fluid through collectors as temperature of tank approaches temperature of collectors — \(\Delta T \) is between 3° and 11°. When indicator light is off (switch in "Auto" position) the storage tank is up to a proper temperature and the pump is off.

2 - "ON" and "OFF" positions —
The "ON" and "OFF" controller switch positions are for service operations only. With switch in "ON" position the pump will run continuously. With switch in "OFF" position pump will not operate. DO NOT LEAVE PUMP IN OFF POSITION FOR EXTENDED PERIOD OF TIME. In summer the collectors may overheat without circulation.

D - Pump Motor
A two speed pump motor is provided with the LSM1 module. Low speed is recommended for the most satisfactory operation. The switch is located on the backside of motor electrical connection box. "1 Dash" position is the recommended speed. Check to be sure the "1 Dash" side of the switch is depressed. Set mechanical head adjustment (bottom of pump) on "5" or MAXIMUM. See Figure 2.
APPENDIX C
OVER TEMPERATURE CONTROL UNIT
(PURGE COIL)
DIMENSIONS

TOP VIEW

25 in. (635 mm)

28 in. (711 mm)

REAR VIEW

SIDE VIEW

(VERITCAL AIR DISCHARGE SHOWN)

OPERATION/MAINTENANCE

I. - OPERATION
The HRW1 purge coil is an automatically controlled high temperature limiting device. Its function is to prevent an excessive buildup of heat in the collector loop fluid. When there is no demand for space heating or domestic hot water and the storage tank is charged to its designed temperature, any heat gathered by the solar collectors is retained in the collector loop fluid. When the temperature of the collector loop fluid reaches the setting of the purge aqua-stat (not supplied with purge coil unit) the collector loop fluid is routed through the purge coil and the fan is energized. Heat is dissipated to the outside air at the coil, lowering the collector loop temperature and preventing over heating of the collectors and collector fluid. The purge coil will automatically activate and deactivate as it cools the collector loop to the designed safe temperature or until other heat requiring demands can absorb the collector solar energy.

II. - MAINTENANCE
Annually the purge coil system should be inspected and checked as follows:
1. - Purge Coil
 Clean and inspect the coil and coil guard to be sure they are free of obstructions. Turn off power to unit and wash coil & coil guard with a garden hose.
2. - Oil fan motor:
 a. Motor without oiling ports - Prelubricated and sealed. No further lubrication required under normal operation.
 b. Motor with oiling ports - Add a few drops of SAE No. 10 non-detergent oil in motor oiling ports. Access to the fan motor may require unbolting and lowering the fan motor/fan guard assembly.
3. - Visually inspect connecting lines and coil for evidence of fluid leaks.
4. - Check all wiring for evidence of loose connections.
5. - Check for correct voltage at unit (unit operating).
6. - Check amp-draw on fan motor.
 Unit nameplate _________ Actual _________
INSTALLATION

I - SHIPPING AND PACKING LIST
Package 1 of 1 contains:
1 - HRW1 Coil Unit
4 - Legs (Vertical discharge)
Plastic Bag Containing:
2 - Mounting brackets (Horizontal discharge)
24 - #6 Lockwashers
24 - #6 - 32 x 1/2" Screws

II - SHIPPING DAMAGE
Carefully inspect unit for shipping damage. If any damage is found, immediately consult the last carrier.

III - GENERAL
These instructions are only intended as a general guide and do not supersede local codes. Authorities having jurisdiction should be consulted prior to installation.

IV - APPLICATION
The HRW1 Purge Coil is intended for application with other Lennox solar equipment in a designed solar energy system. The purge coil may be installed outdoors with vertical discharge or indoors with horizontal discharge and is for use with a maximum of 30 Lennox solar collectors.

V - LOCATING AND SETTING UNIT
A sound absorbing material (such as Isomode) should always be used under unit if it is installed in a position or location that will transmit sound or vibration to the living area or to adjacent buildings. Refer to unit dimension drawing to size mounting slab, platforms or supports.

A - Vertical Discharge Outdoor Application
1 - Slab Mounting
When installing unit at grade level, install on a level slab high enough above the grade to allow adequate drainage of water. Top of the slab should be located so runoff water from higher ground will not collect around unit.

OUTSIDE APPLICATION

CONNECTING PLUMBING THROUGH WALL

HRW1 UNIT

CONCRETE OR ISOMODE BASE

Refer to "Dimensions" illustration on Page 1 to determine pad size.

FIGURE 1

2 - Roof Mounting
Install the unit a minimum of 4 inches above the surface of the roof. Care must be taken to ensure that the weight of the unit is properly distributed over roof joints and rafters. Either redwood or steel supports are recommended.

3 - Service Clearances
Refer to Figure 3 for proper service/installation clearances. Unobstructed air flow to and from the unit is important for proper unit performance.

FIGURE 2

SERVICE CLEARANCES (VERTICAL DISCHARGE)

FIGURE 3
B - Horizontal Discharge Indoor Application

Certain applications may require installation of the HRW1 Purge Coil in an attic or other interior location. Figure 5 shows a representative attic installation with the purge coil fan exhausting air through the coil to the outdoors. Install the coil as follows:

1. Provide an opening 23 in (234mm) by 26 in. (264mm) and a field provided and installed louvre.
2. Position HRW1 Purge Coil unit against opening in desired position (determined by installer).
3. Fasten unit at bottom using (2) provided mounting brackets.
4. HRW1 fan will exhaust 2100 cfm (0.99 m³/s). If attic air infiltration is not a sufficient supply, an additional louvred intake vent may be required.

VI - PLUMBING CONNECTION

The inlet and outlet pipes can be identified in the "Dimensions" illustration on Page 1. Both inlet and outlet are 1-3/8 in. (35 mm) O.D. copper tube. Use proper copper sweat plumbing techniques to deburr, clean, flux and solder connecting piping to the inlet and outlet tubes. Install valves and test ports as required by the total designed system schematic.

VII - ELECTRICAL CONNECTION

Wiring must conform to the National Electric Code (NEC) (NFPA No. 70-1975/ANSI C1-1975) and any local codes.

Note - National Electric Code (NEC) (NFPA No. 70-1975/ANSI C1-1975) is available from:

National Fire Protection Association
470 Atlantic Ave., Boston, Mass., 02210

An application diagram is provided in this instruction. Local or other codes may require the installation of a fused disconnect switch in the power circuit to unit. Refer to the designed total system instruction for proper connection of wiring to central controller.

VIII - CLEANUP

1. Replace all electrical covers and access panels.
2. Turn on power to unit.
3. Refer to the total system instruction for operational check procedures.
INSTALLATION and OPERATION INSTRUCTIONS FOR MANUAL CHEMICAL BY-PASS FEEDERS "POT FEEDERS"

NOTE: PIPE AND FITTINGS IN DOTTED AREA ARE NOT SUPPLIED.

A. Pot feeder should be empty when not in use. To empty, close valves (1) and (2), open valve (3) and look... filler cap (5).

B. To fill pot feeder, close valves (1), (2), (3). Remove filler cap (5) and fill with treatment.

NOTE: IF YOU DO NOT FILL POT FEEDER TO THE TOP WITH TREATMENT, YOU MUST TOP OFF WITH WATER. THIS IS TO AVOID INTRODUCING AIR INTO THE SYSTEM.

C. To add treatment into boiler, close filler cap (5), close valve (4), open valves (1) and (2).

After treatment has left the feeder (not more than 30 seconds is required to accomplish this), open valve (4), close valves (1) and (2). Follow procedure A. to drain pot feeder.
MANUAL CHEMICAL BY-PASS FEEDERS

"POT FEEDERS"

NOTE: VALVES FITTINGS AND PIPING SHOWN IN DASH LINES NOT SUPPLIED.

SEE REVERSE SIDE FOR OPERATING INSTRUCTIONS

PART & NAME
#1 Valve, ¾" Gate
#2 Valve, ¾" Gate
#3 Tank
#4 Valve, ½" Gate
#5 Red. Tee, ¾" x ½"
#6 Unions ¾" (2 reqd.)
#7 Top Cover (3¼"
Fleckenstein)
#8 Nipples (6)

SPECIFICATIONS

MODEL NUMBER SIZE INCHES APPROX. CAP. APPROX. SHIPPING
#1 — 10 1½ 20 lbs.
#2 10 — 16 6 35 lbs.
#3
#4
#5
#6
#7
#8

BUILT FOR 125 LBS. MAXIMUM PRESSURE
FREEZING POINTS OF AQUEOUS SOLUTIONS
OF ETHYLENE GLYCOL AND PROPYLENE GLYCOL

Reprinted from ASHRAE
MAIN HEAT EXCHANGER

TYPE: Water to water heat exchanger with steel shell and copper tube.

MANUFACTURER: TACO - Model No. B-12408-L
1160 Cranston Street
Cranston, Rhode Island 02920

TUBING: 3/4" copper
NO. OF PASSES: 4
TUBE CAPACITY: 30 GPM
TUBE TEMPERATURE "IN": 111°F
TUBE TEMPERATURE "OUT": 120°F
SHELL CAPACITY: 50 GPM
SHELL TEMPERATURE "IN": 130°F
SHELL TEMPERATURE "OUT": 124°F
PRESSURE DROP - TUBES: 1 Foot
PRESSURE DROP - SHELL: 2 Feet
HEAD MATERIAL: Cast Iron
TUBE PLATE MATERIAL: Cast Iron
APPENDIX F

STORAGE TANK HEAT EXCHANGERS
STORAGE TANK HEAT EXCHANGER

TYPE: Helical wound copper

LOCATION: One in each storage tank

FLOW: Reverse return

SURFACE AREA: 82.3 square feet

MANUFACTURER: Thermo-Pak, Inc.
P.O. Box 13223
Memphis, Tennessee
901-942-4684

PIPE CONNECTION: 2" union

PIPE SIZE: a) Helical pipe is 3/4", type "L" soft copper
 b) Header (supply and return) is 2", type "L" hard drawn

PHYSICAL DATA: a) 16" in diameter
 b) 62" in height
 c) Four sections of closely wound 3/4" pipe around the
 2" supply and return riser
APPENDIX G

PUMPS
PERFORMANCE AT 3450 RPM

Types PE-B and PE-C
Fractional Horsepower Fluidyne Pumps

Impellers selected for maximum service factor of motor rating based on handling clear water
160°F max temperature 80 psi max pressure

PE33B -- 1/3 hp
PE75C -- 3/4 hp
PE100C -- 1 hp
PE150C -- 1-1/2 hp

PE50B -- 1/2 hp
Installation and Operation

INTRODUCTION -- Your Peerless Fluidyne Pump will give the best possible service when installed according to instructions. Be sure to read this entire bulletin carefully before starting any installation operations. The Peerless Pump carries a one-year warranty against defects in manufacture. This warranty, however, does not apply to parts damaged in transit. Check the shipment carefully and report any damage or shortage to the transportation company immediately.

LOCATION -- Place the pump as close as possible to the water supply, considering suction specifications for the pump, accessibility for installation, inspection, and service operations. The most direct and simple piping is best, especially for the suction line. If possible, locate the pump so that the water flows by gravity into the pump suction.

FOUNDATION -- The pump foundation should be strong enough to support the pump solidly and permanently in position. A concrete foundation is recommended.

PIPING -- To facilitate and simplify piping, the volute casing and discharge flange can be rotated to any one of 4 positions by removing the 4 adaptor-to-casing cap screws and rotating to the desired position. The bleeder vent should be moved to the position at the top of the casing in any change from the normal factory-assembled position. Suction piping should not contain any low points which can trap air. When the pump is located above the level of the water, a check-valve or foot-valve should be installed in the suction line to maintain prime, and a priming tee should be so located at the discharge flange of the pump that the case and suction line can be completely filled. If debris is apt to be present, a combination foot-valve strainer should be used. When the suction is under pressure, or the level of the water is above the pump, a valve and union should be installed in both the suction and discharge pipes to permit inspection and service of the pump at any time. To obtain optimum performance, suction pipe joints must be made up with pipe joint compound to insure that there are no air leaks. When the pump is located above the liquid or operating with a suction lift, even a small air leak in the suction line will materially reduce capacity of the pump or cause a loss of prime. If a union is required, use a gasket type and seal it with pipe joint compound. Also, the pump must not support heavy suction or discharge piping, and piping must not be forced into place because this could result in distortion and binding of rotating parts.

ELECTRICAL CONNECTIONS -- Be sure the motor terminals are connected for the voltage to be used. Connection diagrams can be found on the nameplate or inside the terminal cover. Single phase, 1/4 and 1/3 horsepower motors are wired for 115 volts only. 1/2 thru 1-1/2 horsepower may be wired for either 115 volts or 230 volts as desired; standard factory connections you receive should be 230 volts. Three phase motors may be of other voltage and are not pre-connected. Local electrical codes governing wiring should be observed.

MOTOR -- The motor supplied with the Peerless Fluidyne Pump does not require lubrication -- it is life-time lubricated. It also has built-in overload protection which will automatically reset as the motor cools, therefore the main switch should always be open when working on the motor. If for any reason the motor is serviced or reconditioned, its rotation should be checked to be clockwise when looking toward the pump at the end opposite the shaft extension. Also, this end of the shaft, covered by a plug, has a screw driver slot referred to elsewhere for holding or turning the motor shaft, pump, etc.

IMPELLER -- The impeller rotating in the pump casing is the only moving part of a centrifugal pump. In case of reduced pressure or reduced capacity requiring service traceable to the impeller, its water passages should be inspected by passing a flexible wire etc. from the outside toward the center to dislodge any obstructions. See DISASSEMBLY as required for this operation.
1. casing - cast iron
2. impeller - bronze
6. shaft - stainless steel
7. casing ring - bronze
40. deflector - rubber
53. base - steel
71. adapter - cast iron
73. "o" ring seal
80. mechanical seal

Type PE-B
- A suction
- B discharge
- 26 impeller screw
- stainless steel

Type PE-C
- 1-1/4 NPT
- 1-1/2 NPT
- 3 ph only

ORIGINAL PAGE IS OF POOR QUALITY
MECHANICAL SHAFT SEAL -- A short run-in period may be required when a new unit is placed in operation before a perfect seal is effected in the mechanical shaft seal. However, there should be no leakage at the seal during normal operation. If considerable grit, etc., is present in the water, the seal may eventually become scored and develop a leak. In such case, the seal should be disassembled and all parts cleaned thoroughly. The rubber bellows should be examined for leaks and the seal faces for scratches. Worn parts should be replaced, but emergency repairs may be made of the seal faces by smoothing these on No 500 grit carborundum paper placed on plate glass to provide a flat surface. See DISASSEMBLY as required for this operation also.

PRIMING & STARTING -- When the pump is located above the level of the liquid, the pump must be primed by filling the case and suction line through the tee installed at the discharge flange. Be sure all the air has been expelled from the suction pipe and pump case. Plugs are provided for the release of air trapped at the top of the impeller cavity.

The rotation of single-phase motors is predetermined by internal wiring, but the rotation of 3-phase motors must be checked at installation by momentarily closing the electric service switch and observing the rotation. It should be clockwise when looking toward the pump from the free end of the motor. Interchange of any 2 of the 3 power leads will reverse a 3-phase motor.

DISASSEMBLY -- It is advisable that a competent pump mechanic be employed for disassembly and reassembly operations. Before starting disassembly of the pump, re-check to make certain that this operation is necessary. Close any valves that may be installed in the suction or discharge piping. Remove a plug at the bottom of the pump case and a plug at the top to admit air and expedite draining. Remove the (4) case-to-adapter screws and the mounting- foot screws. This permits removal as an assembly: the motor, the adapter, the foot, and the impeller. The impeller is now exposed for inspection and cleaning. See paragraph on impeller. The impeller is assembled to the motor shaft by 7/16-20 R.H. thread. On 3-phase units, impellers are locked in place with a 7/16-20 hex socket set screw. If disassembly is necessary, hold the motor shaft with a screwdriver engaging the slot which is covered by a cap at the opposite end, remove the set-screw, if provided, and turn the impeller counterclockwise. The mechanical shaft seal can now be removed for inspection, service, or replacement.

REPLACEMENT PARTS -- When ordering replacement parts be sure to give both the Model No and Serial No appearing on the nameplate on the top of the adapter, as well as the part name.

REASSEMBLY -- Cleanliness is essential in the reassembly of any pump, especially to make sure that no grit, etc., is included between the surfaces of the mechanical shaft seal. Also, all connections should be made air and water tight.

DO NOT RUN A PUMP
NOT FILLED WITH WATER
(It keeps the seal lubricated)
Troubleshooting Guide

Probable Causes and Solutions

Motor Will Not Start or Run

<table>
<thead>
<tr>
<th>Probable Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circuit incomplete, wiring incorrect.</td>
<td>Check wiring and instruction on Electrical Connections.</td>
</tr>
<tr>
<td>Motor or capacitor defective.</td>
<td>See dealer for service.</td>
</tr>
<tr>
<td>Impeller or seal stuck.</td>
<td>Turn motor shaft with screwdriver engaging slot end of shaft.</td>
</tr>
<tr>
<td>Overload tripped.</td>
<td>See Motor Overheats (below).</td>
</tr>
</tbody>
</table>

Motor Overheats

<table>
<thead>
<tr>
<th>Probable Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage low, wrong connections.</td>
<td>See instructions on Electrical Connections.</td>
</tr>
<tr>
<td>Head or lift exceeds unit rating.</td>
<td>Reduce lift -- increase pipe size.</td>
</tr>
<tr>
<td>Viscosity or specific gravity exceeds rating -- water.</td>
<td>See dealer for proper application.</td>
</tr>
<tr>
<td>Mechanical defect in motor or pump.</td>
<td>See dealer for service.</td>
</tr>
<tr>
<td>Ventilation -- poor.</td>
<td>Vacuum clean motor air passages, ventilate surrounding area.</td>
</tr>
</tbody>
</table>

Motor Runs * No Water * Low Capacity * Low Pressure

<table>
<thead>
<tr>
<th>Probable Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump not primed.</td>
<td>See Priming & Starting instructions.</td>
</tr>
<tr>
<td>Speed rpm below motor tag specification.</td>
<td>Check for incorrect voltage or motor overload.</td>
</tr>
<tr>
<td>Rotation reversed.</td>
<td>Reverse any (2) of (3) leads for (3) phase.</td>
</tr>
<tr>
<td>Lift or head total exceeds unit rating.</td>
<td>Reduce lift -- increase pipe size.</td>
</tr>
<tr>
<td>Air leak in shaft seal.</td>
<td>See instructions on Mechanical Shaft Seal.</td>
</tr>
<tr>
<td>Air leak in suction pipe.</td>
<td>Make up tight with pipe joint compound.</td>
</tr>
<tr>
<td>Air trapped in suction pipe.</td>
<td>See instructions on Piping.</td>
</tr>
<tr>
<td>Plugged foot-valve or screen.</td>
<td>Clean.</td>
</tr>
<tr>
<td>Plugged impeller.</td>
<td>See instructions on Impeller & Disassembly.</td>
</tr>
<tr>
<td>Impeller wear or damage.</td>
<td>See instructions on Impeller & Disassembly.</td>
</tr>
</tbody>
</table>

Pump Loses Prime After Starting

<table>
<thead>
<tr>
<th>Probable Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air leak -- suction piping.</td>
<td>Make up tight with pipe joint compound.</td>
</tr>
<tr>
<td>Suction lift excessive.</td>
<td>Reduce lift -- increase pipe size.</td>
</tr>
<tr>
<td>Screen or foot-valve plugged.</td>
<td>Clean.</td>
</tr>
<tr>
<td>Air leak -- mechanical shaft seal</td>
<td>See instructions on Mechanical Shaft Seal.</td>
</tr>
</tbody>
</table>

Pump Vibrates or Is Noisy

<table>
<thead>
<tr>
<th>Probable Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insecure footing.</td>
<td>Re-work.</td>
</tr>
<tr>
<td>Air leak in suction pipe.</td>
<td>Make up tight with pipe joint compound.</td>
</tr>
<tr>
<td>Cavitation due to excessive lift.</td>
<td>Reduce lift.</td>
</tr>
<tr>
<td>Clogged impeller.</td>
<td>See Instructions on Impeller & Disassembly.</td>
</tr>
<tr>
<td>Bent shaft.</td>
<td>Remove from motor and straighten or replace.</td>
</tr>
<tr>
<td>Motor bearing wear.</td>
<td>Replace bearings.</td>
</tr>
</tbody>
</table>
APPENDIX H

BACK-UP BOILER
The ASME safety valve is shipped on the boiler. Pipe the safety valve outlet to a drain or near to the floor; do not pipe safety valve discharge to any area where freezing temperatures could occur.

Two or more boilers may be utilized where necessary to obtain the desired capacity. Standard industry piping practices should be used for headering the steam and condensate return piping. The waterlines of all boilers should be at the same level. A boiler water-level controller and boiler feed pump system is recommended in order to provide best service. Locate the "body mark" of the boiler water level controller 1-1/2" below the centerline of the boiler's water gauge glasses.

WIRING THE BOILER

The Model CE boiler is pre-wired at the factory. Please see wiring diagram for internal and external wiring. The Model CE electric boiler contains internal overload protection. Provisions are made in the upper left hand corner of the boiler cabinet to accept the power input wiring. Listed in the table are the minimum recommended wire sizes according to the boiler capacity. The wire size listed for each boiler size is based on a copper conductor for runs of 50 feet or less; for runs in excess of 50 feet consult National or Local Electrical Code Manual. Bring the power input wiring from the disconnect panel through the conduit opening in the boiler cabinet and connect the wires to the fuse blocks shown in wiring diagram. Please note that the power input wiring must have at least a 90°C rating.

Up to seven (7) thermal time delays and up to six (6) heating element contactors are prewired in the boiler cabinet. Each thermal time delay is wired in series with its respective heating element contactor to prevent a sudden inrush of electrical current. On a "call for heat", only one contactor at a time is allowed to become energized.

A low voltage (24 volt secondary) transformer is mounted in the boiler cabinet to provide a power source for the control circuit. The CE boiler is provided with both an operating control and a limit control, and the steam boiler also has a low water cutoff. Our wiring diagram also shows the use of a low voltage thermostat or controller which should be used to obtain proper control function and safety of operation. Note that high limit controls must be set at least 2 PSIG or 20°F higher than operating control settings.

EXTERNAL CONTROL WIRING—WATER BOILERS

If it is desirable to utilize outdoor thermostats to provide control of the heating elements, the outdoor bulb of such a controller must be located to sense outdoor temperature, but the bulb should not be exposed to the sun, rain, snow or the warm air from ventilating openings.

Where only one zone is utilized, the relay, circulator, thermostat, etc., should be wired according to the controls employed (refer to manufacturer's instruction for application information). For single zone applications where only one (1) low voltage operating control is utilized, the operating control must be wired across terminals 1 and 2 of the low voltage terminal board.

On radiant panel systems, heat pumps, etc., where optimum control of the water temperature is desired, placing the operating control (bulb) in the return water piping near the boiler is desirable, as is constant water circulation through the system.

EXTERNAL CONTROL WIRING—STEAM BOILERS

For single zone applications where only one (1) low voltage operating control is utilized, the operating control must be wired across terminals 1 and 2 of the low voltage terminal board.

SEQUENCE OF OPERATION

Call for Heat

1. The thermostat contacts close (external operating control) energizing the first contactor (1K) and the heater in the first thermal time delay (TD1).

2. Approximately 30 seconds later, the thermal time delay contacts close, energizing the second contactor (2K) and the heater in the second thermal time delay (TD2).

3. Approximately 30 seconds later, the second thermal delay contacts close, energizing the third contactor (3K) and the heater in the third thermal time delay (TD3).

4. This sequence continues until all contactors are energized or until the call for heat ends.

End of Call for Heat

5. The thermostat (external operating control) contacts open, de-energizing the first contactor (1K) and the heater in the first thermal time delay (TD1).
6. After a minimum of 10 seconds the contacts in the first thermal time delay open, de-energizing the second contactor (2K) and the heater in the second thermal time delay (TD2).

7. This sequence continues until all contactors are de-energized.

8. When the boiler temperature or pressure exceeds the operating control setting, the thermostat circuit is opened and the elements are de-energized in a normal off sequence. If the high limit setting is exceeded, the transformer secondary circuit is open and all element contactors are de-energized instantly.

TROUBLE SHOOTING GUIDE
(Refer to Wiring Diagram)

I. Symptom — No Heat

A. Check fuses.
 Fuses F1 and F5 supply power to the control circuit.

B. If fuses are good, jumper the thermostat terminals. If boiler starts, check the thermostat and associated wiring.

C. If thermostat and wiring are good, check the "Limit" and operating control.
 1. Jumper terminals of High Limit Control together. If the boiler starts, replace the limit control.
 2. If the boiler does not start in Step 1, jumper the terminals on the operating control. If the boiler starts, replace the operating control.

D. If the Limit and Operating controls are good, check the transformer.
 1. Measure the transformer secondary voltage from control tray to transformer side of the "High limit" control; it should measure 24 volts a.c. ±10%.
 2. If the voltage is 0, replace the transformer (the transformer is fused, behind the insulated cover of the transformer, and replacement of the fuse is possible if care is exercised.)

E. If the secondary voltage is low, the primary voltage is correct, remove the transformer secondary lead from the limit control.

1. If the voltage remains low, replace the transformer.

2. If the voltage increases, reconnect the transformer lead to the Limit control, and disconnect the contactor coils one by one while observing the voltmeter. If voltage returns to normal upon disconnecting one of these, replace the defective contactor.

II. Symptom — Low Heat
One or more contactors do not energize. Operation of any contactor, beyond the first is dependent upon the operation of two components:

1. Thermal time delay.

2. Contacteur itself.

Observe the sequence of operation and note the contactor where the sequence stops. Proceed as follows:

Disconnect the wire going from the contactor coil to the thermal time delay, using a jumper wire, reconnect the contactor coil terminal to terminal 1 of the thermostat terminal strip.

1. If the contactor energizes, replace the thermal time delay.

2. If the contactor fails to energize, replace it.

III. Symptom — Boiler Does Not Shut Down
One or more contactors remain on after call for heat ends.

A. Check contactors.
 Lower the temperature setting on the "High Limit" control to simulate a limit of operation.
 1. If all contactors instantly de-energize, the contactors are good.
 2. If one or more contactors fail to de-energize, replace the contactors that failed to de-energize.

B. If all contactors de-energized check the thermal time delays.

Return the temperature setting on the "High Limit" control to its original setting. Allow the boiler to sequence on with a normal call for heat. When all contactors are energized, lower the setting on the operating control to satisfy the call for heat. Observe the shut down sequence and note the contactor at which it stops. Replace the thermal time delay supplying power to that contactor.
PLEASE HANG THESE INSTRUCTIONS NEAR THE BOILER

OPERATING INSTRUCTIONS
FOR
WEIL-McLAIN ELECTRIC BOILER

Mr. Boiler Owner:

Below, the procedure is outlined for starting your Weil-McLain Boiler including instructions for the care of your heating system. All mechanical equipment needs occasional attention. The boiler should be inspected, cleaned and if necessary, adjusted once a year. We recommend that a qualified serviceman be called as he has been trained for the job and will have the necessary instruments to check your boiler. This will assure you that the operation of your heating system will remain highly efficient. Your Weil McLain boiler will give you many years of heating comfort, if you follow the few simple suggestions listed in this instruction sheet.

FILLING STEAM AND WATER BOILERS

Do not fill the boiler (except for leakage tests) until the boiler is ready to be fired. CAUTION: Do not add large quantities of cold feed water to any hot boiler!

Steam Systems: The boiler should be filled to the normal water line and fired for about 15 minutes at a low rate sufficient to keep the boiler at steaming temperature with the steam vented to drive off dissolved gases (also see Skimming Steam Boilers).

Water Systems: The boiler and the entire system should be filled to about 12 pounds per square inch and heated to approximately 210°F for about 15 minutes to drive off dissolved gases. Before filling the system, make sure all the system air vents are closed. Open the hand water feed valve and beginning on the lower floor, open the air vents (one at a time) until water starts to flow; then, close the vent. Repeat this throughout the building until all heat distributing units are filled with water. Close the hand water feed valve when the correct boiler pressure is reached. After the system is in operation, keep the system filled with water; occasionally opening the air vents allowing any entrapped air to escape and adding enough make up water to maintain the correct system pressure. If your system is provided with a purge valve located in the system return piping, connect a garden hose to the drain valve located above the purge valve. Close the purge valve and open the hand water feed valve and allow the system to purge all air. Where the system has more than one circuit, purge each circuit separately by opening each balancing valve one at a time. When the system is purged of all air, close the drain cock located above the purge valve and open the purge valve. Fill the boiler and the entire system to the correct pressure. Air in the system can interfere with circulation of water and prevent the heat distributing units from properly heating.

TO START THE BOILER

1. Be sure the main electric switch in the boiler electrical circuit is turned to the off position
2. The boiler must be filled to the correct water level or pressure as outlined above.
3. Set the limit control at desired setting as recommended in these instructions.
4. Turn the thermostat to its lowest setting so there is no call for heat and close the main electric switch in the boiler electrical circuit.
5. Turn the thermostat above the actual room temperature and observe that the heating elements sequentially become energized.
6. Check operation of all limit controls.
7. Set the thermostat to the desired room temperature.
8. If boiler operates incorrectly (see Sequence of Operation) or fails to start, refer to Trouble Shooting Guide in these instructions.

SKIMMING STEAM BOILERS

All new boilers and steam and water piping contain oil, grease, chips, and other foreign matter. It is essential to clean new heating systems to remove these materials in order to avoid overheating of boiler metal, foaming and priming, and high maintenance costs on strainers, traps, and vents. The boiler installer should use the following procedure to clean oil, grease, and other impurities from the new boiler:
1. Close the valves in the building steam supply main(s).
2. Provide at least a 1½" skim line, with valve, from the boiler skim tapping and run this line to a convenient floor drain.
3. Energize the boiler for a period sufficient to keep the boiler at steaming temperature allowing the steam, along with entrained water and impurities, to discharge through the skim piping to the drain.
4. Feed the water to the boiler as required to maintain
proper water level in the gauge glass. It may be necessary to cycle the boiler to prevent a rise in steam pressure above several pounds.

5. Continue the boiling and skimming process for at least two hours or until the water leaving the skim line is clear of all grease, oil and impurities. On unusual jobs, the skimming procedure may require repeating one or more times.

CAUTION: THE USE OF CHEMICAL CLEANERS IS NOT RECOMMENDED

6. Drain boiler and, while the boiler is warm but NOT HOT, remove safety valve and insert a hose nozzle into the opening. Flush all interior surfaces of the boiler with water under full pressure until all traces of dirt and impurities are removed and the drain water runs clear.

7. Replace safety valve; close drain cocks, fill with fresh water to the water-line. Start boiler and steam for 15 minutes to remove all dissolved gases, stop boiler.

8. Drain boiler sufficiently to remove skim piping; plug skim tapping; refill boiler to water line.

9. To prevent the return of impurities to the boiler from new or old piping systems, waste all condensate for several days or until no impurities are contained in the condensate. NOTE: IT IS IMPERATIVE THAT FEEDWATER BE SUPPLIED TO MAINTAIN THE CORRECT WATER LEVEL AND THAT A LOW WATER CUTOFF IS OPERATIVE.

BOILER SERVICE AND MAINTENANCE

Leaks in the boiler and piping system must be repaired at once. The use of makeup water in large quantities is undesirable and may damage the boiler after an extended period of time. If serious leaks occur, stop the boiler and gradually reduce boiler pressure or temperature. Do not attempt to make repairs while a steam boiler has pressure or hot water boiler temperatures are above 130°F.

Foaming or priming may occur in a steam boiler and cause large quantities of water to pass out into the steam main(s). It can be observed by violent fluctuations of water level, in the gauge glass. This trouble may be caused by dirt, oil, or precipitates in the boiler water, too high a boiler water level, a high overload on the boiler (i.e., the sudden release of boiler steam pressure into the mains by action of fast operating valves), or the addition of too much boiler water treatment. With serious foaming or priming, stop the boiler and decrease boiler load. Then alternately blowdown and slowly feed fresh water several times. If trouble persists, it may be necessary to skim the boiler one or more additional times.

Any problem in regard to large amounts of makeup water, extreme foaming or priming, scale in the boiler, or internal corrosion or pitting, should be referred to a company specializing in boiler water chemistry.

Frequently check the boiler water level in the gauge glass of steam boilers, and check the boiler operating pressure of steam or water boilers. Test the low water cutoff by opening its blowdown valve to remove dirt, rust, and sediment, and observe that burner stops as the water level approaches the bottom of the water gauge glass (gauge glass on steam boilers only).

DO NOT DRAIN BOILER during periods of shutdown unless heating system is exposed to freezing temperatures. On steam boilers, open boiler blowdown valve and flush till clear while under steam pressure. On water boilers, open boiler drain cock to remove impurities that have settled to the bottom of the boiler. Refill as required to the correct water line for steam boilers or the correct pressure for water boilers. Turn off all electrical power connections to the boiler. If the water side of the boiler must be cleaned or inspected, open the blowdown valve and drain the boiler.

Remove plugs from the boiler and open the drain cock. Hose the inside of the boiler with high pressure water to remove sludge and sediment, flush again. Dry in inside of boiler thoroughly, or refill with fresh water and heat to release dissolved gases (see Filling Steam and Water Boilers). Repeated draining and filling of the boiler and/or the heating system can lead to the same consequences as adding too much makeup water.

Refer to Water Boiler Controls or Steam Boiler Controls for specific service requirements.

Periodically check and if necessary, tighten any gasket bolts.

CHANGING HEATING ELEMENTS

1. If the boiler will not get hot enough to properly heat the building, it is possible that one or more heating elements are burned out.

2. Open the main electric switch in the boiler electrical circuit.

3. Your serviceman can determine whether any of the heating elements are burned out by disconnecting the wires to each element and checking the resistance and continuity with an Ohmmeter.

4. Close the system valves located at each side of the boiler.

5. Open the boiler drain cock and completely drain the boiler.

6. Remove the four (4) cap screws which secure the burned out heating element to the boiler casting and remove the burned out element.

7. Use a new heating element gasket and insert a new heating element of the same type (voltage dimensions and KW or watts rating) into the opening in the boiler casting. Secure the element to the casing using the four (4) cap screws.

8. Fill the boiler with water to the correct level or pressure.

9. Open the system valves located at each side of the boiler.

10. Close the main electric switch in the boiler electrical circuit.
RATINGS

| Boiler Model No. | Boiler Capacity | KW | Lbs. of Steam per hour | No. of Circuits Required* | 1 Phase | 2 Phase | 3 Phase | 1 Phase | 2 Phase | 3 Phase | 1 Phase | 2 Phase | 3 Phase | 1 Phase | 2 Phase | 3 Phase | 1 Phase | 2 Phase | 3 Phase |
|-----------------|----------------|----|------------------------|---------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| WATER 162 W | 162,834 | 46 | 56.3 | 2 | 6.8 kW | 3.14 kW | 3.14 kW | 2 | 1 | 0 | 116/116 | 0/0 | 123 | 0 | 100/100 | 1/1 | 117 | 0 | 50 |
| CT 48 W | 191,126 | 56 | 86 | 1 | 6.8 kW | 4.14 kW | 4.14 kW | 2 | 1 | 0 | 154/154 | 0/0 | 180 | 0 | 134/134 | 0/0 | 158 | 0 | 78 |
| CE 32 W | 310,832 | 86 | 112.6 | 2 | 6.8 kW | 6.14 kW | 6.14 kW | 2 | 1 | 0 | 154/154 | 0/0 | 180 | 0 | 134/134 | 0/0 | 158 | 0 | 78 |
| CE 80 W | 227.840 | 107.3 | 112.6 | 2 | 6.8 kW | 6.14 kW | 6.14 kW | 2 | 1 | 0 | 154/154 | 0/0 | 180 | 0 | 134/134 | 0/0 | 158 | 0 | 78 |
| CE 112 W | 382,736 | 132 | 112.6 | 2 | 6.8 kW | 6.14 kW | 6.14 kW | 2 | 1 | 0 | 154/154 | 0/0 | 180 | 0 | 134/134 | 0/0 | 158 | 0 | 78 |
| CE 120 W | 436,644 | 132 | 112.6 | 2 | 6.8 kW | 6.14 kW | 6.14 kW | 2 | 1 | 0 | 154/154 | 0/0 | 180 | 0 | 134/134 | 0/0 | 158 | 0 | 78 |
| STEAM CE 48 S | 218,848 | 56 | 86 | 1 | 6.8 kW | 4.14 kW | 4.14 kW | 2 | 1 | 0 | 117/117 | 0/0 | 123 | 0 | 117/117 | 0/0 | 117 | 0 | 70 |
| CE 56 S | 250,848 | 76 | 112.6 | 2 | 6.8 kW | 6.14 kW | 6.14 kW | 2 | 1 | 0 | 117/117 | 0/0 | 123 | 0 | 117/117 | 0/0 | 117 | 0 | 70 |
| CE 56 S | 250,848 | 76 | 112.6 | 2 | 6.8 kW | 6.14 kW | 6.14 kW | 2 | 1 | 0 | 117/117 | 0/0 | 123 | 0 | 117/117 | 0/0 | 117 | 0 | 70 |
| CE 60 S | 300,848 | 96 | 112.6 | 2 | 6.8 kW | 6.14 kW | 6.14 kW | 2 | 1 | 0 | 117/117 | 0/0 | 123 | 0 | 117/117 | 0/0 | 117 | 0 | 70 |

* C-3 = output ratings. Piping loss not included in the header space should be added to the building loss to determine total heating requirement.

† Number of circuits required to supply power to the boiler.

‡ Total amperes in each circuit supplying power to the boiler.

| Minimum U.L. Gauge wire sizes based on runs of 50 ft or less using 90° C temper only. Consult national or local electrical code manuals for temperature ratings of conductors other than 480V. Boiler requires only one circuit.

Fuse Size: 20A/200V - 60 Amps, 480V - 550 Amps

Boiler Water Content (all sizes): Water - 10.2 gal., Steam - 7.0 gal.

Approximate Shipping Weight (all sizes): 300 lbs.

DIMENSIONS

WATER

LEFT SIDE

FRONT

RIGHT SIDE

STEAM

LEFT SIDE

FRONT

*24" minimum wall clearance required for element removal.

STANDARD EQUIPMENT

- Jacket with Wall-Mounting Brackets
- One-Piece Insulated Casting
- Incoloy Sheathed, Low-Watt-Density Elements
- 24 Volt Control System
- Fuse for Each Element Leg
- Thermostat Terminal Block
- Power Input Terminal and Fuse Block
- Thermal Time-Delay Relays
- Heavy-Duty Contactors

For Water Boilers

- ASME Safety Relief Valve
- Combination Pressure and Temperature Gauge
- Thermostat Operating and High-Limit Control

For Steam Boilers

- ASME Safety Valve
- High-Limit Pressure Control
- Operating Control
- Low-Water Cutoff
- Water Gauge Glass
- Gauge cocks
- Steam Pressure Gauge

WEIL-McLAIN

Michigan City, Indiana 46360

A Division of Wylain, Inc.
APPENDIX I

MULTIZONE VAV UNIT
I - BLOWER OPERATION

1 - During normal operation the indoor blower motor (B3) runs continuously. The blower speed is determined by the EAS integrating analyzer and inverter (A8). If the unit has optional night setback but does not have smoke detectors, the blower motor system is in response to heating demands during night operation. When the heating demand is satisfied, the fan control (S4) allows the blower to run until the heat dissipates from the heat exchanger (gas heat only). If the unit has both night setback and smoke detectors, the blower motor operates in two modes:
 a - Day Operation - The blower motor runs at the speed dictated by the integrating analyzer.
 b - Night Operation - Without a heating demand the motor continues to run, but the speed is determined by the night blower control (R1). With a heating demand the blower motor speed is again dictated by the integrating analyzer. These provisions allow the utilization of smoke detection during periods of night setback. Refer to page 74 for additional information on the night blower control.

2 - The return-air blower (B4 - optional) runs whenever the indoor blower is operating.

3 - Fire protection thermostats (S24 & S25) are located in the return air compartment and blower compartment. Thermostats terminate all unit operation at temperatures above setting.

4 - All other systems are dependent upon the blower operation. The blower proving switch (S31), located in the indoor blower airstream, senses a blower failure and shuts down all systems within the unit.

5 - With the presence of smoke, the smoke detection system (optional) terminates heating and cooling functions and provides four options of controlling blower and damper operation. See Figure 19.

 Option 1 - "Shutdown"
 a - Supply blower stops.
 b - Return blower stops.
 c - Outside dampers close.
 d - Return dampers close.

 Option 2 - "Exhaust"
 a - Supply blower continues to run.
 b - Return blower stops.
 c - Outside dampers close.
 d - Return dampers close.

 Option 3 - "Intake"
 a - Supply blower continues to run.
 b - Return blower continues to run.
 c - Outside dampers open.
 d - Return dampers close.

 Option 4 - "Intake and Exhaust"
 a - Supply blower continues to run.
 b - Return blower continues to run.
 c - Outside dampers open.
 d - Return dampers close.

II - THE LENNOX ELECTRONIC ENERGY SAVING SYSTEM

The RVZ1 is equipped with a solid-state control system which cycles the unit to match its output to the load requirements. The control has two functions:

1 - To modulate zone dampers to provide conditioned supply air that satisfies the heating or cooling demands in each zone without overdrive.

2 - To maintain hot and cold deck temperatures in the unit that satisfy the requirements of the zone with the largest heating load and the zone with the largest cooling load.

A - Zone Damper Control

Two air temperature sensors are used for each zone - one located in the conditioned space (A4 room sensor) and one mounted in the supply duct (R14 air charge sensor). An electronic circuit compares the temperatures at room sensor and discharge air sensor to control the position of zone dampers. See Figure 20.
In multiple unit installations, the following guidelines are recommended for mixing perimeter and core zones:

- **Maximum Load Diversity**
 For optimum energy efficiency, install an RVZ1 equipped with condenser heat and outside air discriminator in applications with maximum load diversity. See Figure 17. By intermixing perimeter and core zones, the heat rejected into the return air from core zones will be recirculated into the supply air stream. A cooling demand will initiate DX cooling and bring additional heat into the hot deck.

- **Minimum Load Diversity**
 Minimize load diversity in installations less condenser heat and outside air discriminator. If possible design system so perimeter zones go to one unit and core zones go to another. See Figure 17.

VI - Room Sensors

Two types of room sensors are offered: the standard and a wide no load band type. On a typical heating/cooling day, the load demand swings from morning heating to midday cooling and back to late day heating. The standard room sensor controls the heating/cooling demand through the day within plus or minus 2 degrees of set point. The wide no-load room sensor gives approximately 6 degrees range between the heating and cooling demand. The unit coasts within the no-load band. Temperature control remains plus or minus 2 degrees at either end of the band. Refer to graph.

A - Installation

1. Room sensor mounts on a standard 2" x 4" (51 mm x 102 mm)

FIGURE 17

ON UNITS LESS CONDENSER HEAT AND OUTSIDE AIR DISCRIMINATOR:

- **MINIMIZE LOAD DIVERSITY**

FIGURE 18

REGULAR THERMOSTAT COMPARED TO WIDE NO-LOAD BAND THERMOSTAT.

FIGURE 19

- **SENSOR (THERMOSTAT)**
 - Junction Box
 - Wall Plate
 - Decorator Plate
 - Wiring Subbase
 - Electronic Frame
 - Cover
 - Keying Post

outlet box. Wall plate, decorator plate, wiring subbase, electrical frame and cover make up the sensor assembly. See Figure 18.

2. Do not locate room sensor on an exterior wall, in an entryway, or in direct sunlight. See Figure 18.

3. Make certain room sensor or sensors are located where they sample air in the occupied space for a particular zone, however, direct impingement by discharged air upon the room sensor should be avoided or minimized. See Figure 18.

4. All room sensors should be maintained at approximately the same set point.
The zone dampers in the Verizone are designed so the hot and cold damper blades operate independently. A magnetic spring overdrive mechanism will allow one blade to remain at closed or at minimum position while the other is opening. The minimum position is adjustable from zero to 45 degrees. This feature minimizes air mixing between the two decks, thus allowing the desired air to go to the zones that require it.

As the room temperature changes from the room sensor set point, the zone dampers will move to satisfy the demand. On a change in discharge air temperature, the zone damper will reposition in anticipation of the effect on room temperature.

In addition to the standard room sensor, an optional "no load" band room sensor allows a wide temperature differential of 6 degrees before cycling the heating or cooling in the RVZ1.

If the conditioned zone requires more CFM than a particular damper opening can deliver, two or more dampers must be linked together to provide the needed CFM. Adjacent dampers can be slaved together using mechanical linkage. Non-adjacent dampers can be electrically slaved together. Only three dampers may be mechanically linked to one actuator. If more than three dampers are required for a zone, use 2 or more actuators and slave electrically. Although several dampers may be linked together, they still constitute one zone and are consequently controlled by one room sensor. Refer to "Electronic Zone Control" on page 87 for additional information on slaving dampers.

Two zone control options are available:
1 - ZC17 Zone Control System - Actuator modulates in response to the variable voltage signal transmitted by the demands of the room sensor and discharge sensor.
2 - ZCB - This actuator is used with remote mixing boxes for dual duct applications.

B - Hot And Cold Deck Controls
The EA3 load analyzer module cycles the unit in response to the zone with the greatest heating demand and the zone with the greatest cooling demand. Any zone can generate these demands. See Figure 20. If no zone has a demand of sufficient magnitude to actuate either the heating or cooling functions, the system will coast with only the blowers running.

Overriding controls monitor cold and hot deck temperatures to protect unit from problem zones (a zone which transmits a constant heating or cooling demand).

C - VARIABLE AIR
In addition to zone temperature control, the RVZ1 incorporates
energy conservation features which lower the watt consumption of indoor blower motor and return air blower motor (if used). These controls regulate blower motor speed in proportion to zone demands. The EA5 integrating analyzer receives the zone signals from the room sensors, it analyzes these signals to determine the units air requirements and then transmits a DC volt blower command signal to the inverter. The inverter responds to this signal and changes blower motor RPM correspondingly. The EA5 has a minimum speed adjustment which is factory set at 45% of full air. Figure 21 illustrates the blower command signal.

If individual zones require a constant air volume, the RVZ1 zone dampers can be field adjusted to provide the desired amount of air flow. For a detailed explanation of the blower operation, refer to "BLOWERS" on page 72.

III - CONDENSER HEAT
The condenser heat option is used in conjunction with Outside Air Discriminator and Power Saver. The condenser heat coil within the hot deck gives off heat from the No. 1 refrigerant circuit whenever...
compressor is running and there is a heating demand. The function chart in each respective heating section illustrate staging of condenser heat. The "Refrigerant Cooling" section on page 57 explains condenser heat operation. The following table lists the available heat size unit.

<table>
<thead>
<tr>
<th>CONDENSER HEAT CAPACITY</th>
<th>Size Unit</th>
<th>Btu Available</th>
<th>Ealh Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>RVZ 1-185</td>
<td></td>
<td>95,000</td>
<td>23,940</td>
</tr>
<tr>
<td>RVZ 1-185/275</td>
<td></td>
<td>125,000</td>
<td>31,500</td>
</tr>
<tr>
<td>RVZ 1-275</td>
<td></td>
<td>155,000</td>
<td>39,060</td>
</tr>
<tr>
<td>RVZ 1-415</td>
<td></td>
<td>155,000</td>
<td>39,060</td>
</tr>
<tr>
<td>RVZ 1-600</td>
<td></td>
<td>155,000</td>
<td>39,060</td>
</tr>
</tbody>
</table>

IV - GAS HEAT
Gas heat capacities range from 275,000 through 850,000 Btu input.
1 - On a heating demand, the combustion air blower is energized to provide a prepurge period to clear combustion chamber. A time delay brings on the first stage of gas heat after the prepurge period has elapsed.
2 - An additional heat demand brings on the second stage of gas heat after 5 minute delay.
3 - A power burner, with individual electronic safety controls and monitor flame conditions, is incorporated on each heat exchanger used. Two high limit controls shut down burner(s) at excessive hot deck temperatures.

V - ELECTRIC HEAT
Electric heaters range in size from 45 KW to 150 KW. Each element has 15 KW capacity. A five switch EAS electric heat sequencer controls stepping of elements to satisfy the heating demand. Lockout relays balance the load between electric elements and compressors to prevent overloading the main switch.

VI - HOT WATER AND STEAM HEAT
The motorized valve controls flow through the hot water and steam coils.
1 - A heating demand will open valve.
 a - The steam coil uses a two way valve.
 b - The hot water coil uses a three way valve to either direct hot water to coil or by-pass coil.
 c - An auxiliary circulator pump (optional) continuously circulates water through coil.
2 - Both coils are equipped with air bleed valves. The hot water coil has a drain valve.
3 - The freeze protection thermostat (S40) monitors the coil manifold temperature and opens the valve at a set point to prevent coil freezing.

VII - POWER SAVER
1 - The Power Saver consists of outside and return air dampers which are linked together. These dampers open and close in reverse relationship to each other. A cooling demand modulates the outside dampers open, if the fresh air cannot satisfy the demand, mechanical cooling will be engaged.
2 - The Power Saver actuator has a minimum air adjustment to set for a specific amount of fresh air.
3 - The enthalpy control (S18) senses both temperature and humidity or the heat content of the outdoor air. When the heat content rises above control set point, the outside dampers close to minimum position.
4 - The Outside Air Discriminator (optional) holds the outside dampers at minimum position at a given switch point in the heating mode.
5 - The morning cool-up control (S18) holds outside dampers at closed position until the return air temperature has risen above the set point.
6 - On night setback, the outside air dampers are in the fully closed position.
7 - The sandstorm switch (S17 optional) is a manual switch which closes the outdoor dampers.

VIII - REFRIGERANT COOLING
The operating sequence and cooling functions vary according to the size of the unit.
1 - The Lennox L6 compressor has two speeds which run at 1,800 RPM at low speed and 3,600 RPM at high speed. Each L6 compressor has a positive interlock between speeds to prevent both speeds from being energized simultaneously. There is a time delay between speeds.
2 - Each compressor has an individual refrigerant circuit. The No. 1 refrigerant circuit is equipped with a hot gas by-pass valve for conditions requiring reduced capacity. As the suction pressure dips below the hot gas valve set point, the valve opens to prevent an evaporator coil freeze-up.
3 - Each compressor is protected by a high gas pressure switch (S32), low gas pressure switch (S34), ambient thermostat (S33) and a crankcase heater. In addition, 8 and 11 ton compressors use internal cutout thermostats (S35) and overload relays while the 15 ton compressors use inwinding thermostats with a protection module (A1).
4 - The compressor monitor (S38) locks out compressors whenever the outdoor air falls below set point.
5 - The evaporator low limit (S41) control locks out compressors when cold deck temperature drops below set point.
6 - The following list matches compressor usage to unit size:
 a - RVZ 1-185 uses two L2, 8 ton compressors.
 b - RVZ 1-275 uses two L2, 8 ton compressors but has a larger evaporator for 19 tons of cooling.
 c - RVZ 1-415 uses three L2, 11 ton compressors.
 d - RVZ 1-600 uses one L6, 15 ton compressor and one L2, 11 ton compressor.
 e - RVZ 1-600 uses one L6, 15 ton compressor and one L2, 15 ton compressor.
 f - RVZ 1-415 uses three L2, 11 ton compressors.
 g - RVZ 1-600 uses one L6, 15 ton compressor and two L2, 15 ton compressors.

IX - CHILLED WATER
A motorized valve controls flow through coil. The valve is located on the return line from the coil and has three ports — inlet, outlet and by-pass. Each chilled water coil is equipped with an air-bleed and a drain valve.
With a piece of equipment as sophisticated as the RV21 unit, it can often be difficult to locate the source of trouble from a given set of conditions. The following service flow charts are designed to direct you to the likely source of trouble from certain observed or readily determined conditions.

When going through the following service flow charts, always start with "Supply And Return Air Blower Operation." Once the indoor and return air blowers are running, go to the flow charts for "Hot Deck" or "Cold Deck." The schematic wiring diagrams provided on the unit are to assist you in understanding the various circuits.

SERVICE FLOW CHART FOR INDOOR AND RETURN AIR BLOWERS

1. Indoor and return air blowers do not run
2. Is main disconnect "on"? (located in master control panel)
3. Check fuse in 120 volt power circuit fusetrons
4. Is power supply voltage the same as unit nameplate
5. Check blower motor fusetron (located in master control panel)
6. Are blower motor overloads "Open"? — 7-1/2, 10 and 15 hp Motors only (located in master control panel). 1-1/2, 3 and 5 hp motors have internal overloads (automatic reset)
7. With motors running, check full load amps against motor nameplate
8. Check for loose or broken blower belts
9. Is system clock timer in "Day Position"? (located in blower compartment)
10. Is nite setback switch in "Day Position"? (located remote)
11. Is readout panel system switch "On"? (located remote)
12. Reset mixed air fire protection thermostat (located in blower compartment)
13. Reset return air fire protection thermostat (located on return air damper panel)

Refer to Service Representative or to Service Manual
SERVICE FLOW CHART FOR COLD DECK OR COOLING SECTIONS

Outside temperature above 70°F (21.1°C)
- Insufficient or no cooling
 - Indoor and return air blowers running
 - Are power saver controls correctly set?
 - Is at least one zone calling for cooling?
 - Is EA3 load analyzer module operating properly
 - Is portion of cooling de-energized by overriding controls

CHILLED WATER COOLING
- Is main pump running? (located remote)
- Is water at correct temp.?
- Is water valve operating? (visual check)
- Are pressure switches open? (internal to compressor)
- Air restriction over coil?
 - Air restriction over evaporator coil?
 - Is evaporator coil icing or frosting?
 - Insufficient refrigerant charge?

REFRIGERANT COOLING
- Check compressor power supply fuse-tron (located in master control panel)
- Check compressor control circuit fuses (located in master control panel)
- Check compressor safety circuit fuses (located on compressors)
- Are compressor overloads or motor protectors open? (located in compressors)
- Are condenser fans running? 1st stage condenser fan may be off because of condenser heat
- Refer to Service Representative or to Service Manual
Central Station Check of Heating-Cooling Equipment

The operation of heating-cooling equipment can be checked at a glance on a Remote Readout Control Panel conveniently located within the conditioned area. Complete panel consists of a control panel and rough-in box. The rough-in box may be installed during building construction and the control panel added at a later date. One panel is required for each heating-cooling unit. Panel may be installed individually or in multiples. See typical installation sketch.

Signal lights on the panel indicate "System On", "Combustion Lockout", "Condensing Unit Inoperative" and "Dirty Filter". Check switches are provided to prove signal light operation. Two on-off switches control "System Auto-Off" and "Condensing Unit Auto-Off" operation. Panel is equipped with a manually operated 12 hour clock timer. Timer overrides night setback controls providing normal operation for the time period set. The combustion lockout signal circuit operates a relay that can be connected to a telephone circuit signalling the serviceman of a failure. An adjustable compressor monitor thermostat (not required on DMS3 applications) is required to complete the condensing unit operation signal. A filter flag is required to provide the "Dirty Filter" signal light.

Field wiring will vary depending on type of system and unit used in installation. 6 to 12 class II field wiring connections are required from the heating-cooling equipment to the remote readout panel. See field wiring diagrams. See Installation Instructions for complete wiring diagrams.

One Remote Readout Control Panel and Rough-In Box is available for all applications. Specify BM number when ordering.

RP00-1 Rough-In Box (BM1-5358)
RP2-1 Remote Readout Control Panel (BM2-5358)

Additional controls are required for use with the Readout Panel and must be specified when ordering.

DMS2 and DMSR2 Applications
- Filter Flag (BM-4338)
- Compressor Monitor Thermostat (BM-4875)

DMS3 Applications
- Filter Flag (BM-4338)

GC53 and OCS3 Applications:
- Remote Readout Panel Kit (BM-5817)
 Consists of: 1—Filter Flag
 1—Compressor Monitor Thermostat
 1—Relay Control Panel

CHAB Applications:
- Remote Readout Panel Kit (BM-5893)
 Consists of: 1—Filter Flag
 1—Compressor Monitor Thermostat
SEQUENCE OF OPERATION

<table>
<thead>
<tr>
<th>READING PANEL</th>
<th>SIGNAL LIGHTS</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYSTEM ON</td>
<td>Indicates blower is operating and system is giving normal "occupied" operation. When this light is out, system is inoperative or equipment is on night setback control.</td>
<td></td>
</tr>
<tr>
<td>COMBUSTION LOCKOUT</td>
<td>Light will come on whenever flame sensor control locks out. (Gas or Oil fired units only.)</td>
<td></td>
</tr>
<tr>
<td>CONDENSING UNIT INOPERATIVE</td>
<td>When system calls for cooling this light will come on in approximately 45 seconds if suction line doesn’t cool down. Due to delayed starting of the condensing unit through the timed off control, this light may come on for a short period and then shut off indicating proper operation. DMS3 applications – light will come on if any compressor safety control opens, indicating that a compressor is not running.</td>
<td></td>
</tr>
<tr>
<td>DIRTY FILTER</td>
<td>When filter becomes excessively dirty the light will come on indicating a requirement to change or clean filters.</td>
<td></td>
</tr>
<tr>
<td>SYSTEM "AUTO" "OFF"</td>
<td>Shuts down entire system except for the combustion air motor on gas fired units and the water pump on hot water units.</td>
<td></td>
</tr>
<tr>
<td>MANUAL OVER-RIDE TIMER</td>
<td>Overrides night setback controls. Set the 12 hour clock timer to give the required hours of system operation during any period when the system is on night setback. When the timer shuts off, the system returns to night thermostat control or off if night setback controls are not used.</td>
<td></td>
</tr>
<tr>
<td>CONDENSING UNIT "AUTO" "OFF"</td>
<td>Overrides the condensing unit control circuit.</td>
<td></td>
</tr>
</tbody>
</table>

DIMENSIONS (in.)
For All Season Equipment
(Net Weight 6 lbs.)
DMS2 and DMSR2 UNITS
NOTE—UpFlo Model Shown (Down Flo Model Same)

THERMOSTAT (S)
ON
MIXING DAMPER

OPTIONAL
RETURN AIR
BLOWER

HEAT
SECTION

COOLING
SECTION

BLOWER
SECTION

DAMPER-FILTER
SECTION

THERMOSTAT (S) OR
MIXING DAMPER

REMOTE READOUT PANEL

SYSTEM CLOCK TIMER

DISCONNECT SWITCH (BY OTHERS)

DMS2 UNIT

A—Power Source (See DMS Bulletin for complete Field Wiring)
B—Two wire low voltage (Thermostat)
 Three wire low voltage (Modulating Damper Motor)
 Two or three wire low voltage (Mixing Boxes)
C—Ten wire low voltage
D—Two wire low voltage

All wiring must conform to NEC and local electrical codes.

DMS3 UNITS

A—Power Source (See DMS Bulletin for complete Field Wiring)
B—Two wire low voltage (Thermostat)
 Three wire low voltage (Modulating Damper Motor)
 Four wire low voltage (Mixing Boxes with Load Sensor)
C—Nine wire low voltage
D—Two wire low voltage

All wiring must conform to NEC and local electrical codes.
GCS3 SERIES UNITS AND OCS3 SERIES UNITS

A—Nine wire low voltage (Single Stage Heat and Single Stage Cool)
 *Ten wire low voltage (Two Stage Heat and Single Stage Cool)
 *Eleven wire low voltage (Two Stage Heat and Two Stage Cool)
 *If POWER SAVER and Nite Setback Controls are used one additional wire is required
B—Four wire low voltage (Single Stage Heat and Single Stage Cool)
 Five wire low voltage (Two Stage Heat and Single Stage Cool)
 Six wire low voltage (Two Stage Heat and Two Stage Cool)

C—Two wire low voltage
D—Two wire low voltage (Without POWER SAVER)
 Three wire low voltage (With POWER SAVER)
E—Three wire power (See Unit Electrical Data Table)
F—One wire (120 volt) (GCS3 series only and OCS3 series)

All wiring must conform to NEC and local electrical codes. If local electrical code permits may be class 2 wiring.

CHAB SERIES COOLING ONLY

CHAB SERIES COOLING AND ELECTRIC HEAT

A—Six wire low voltage (Single Stage Cool)
 *Seven wire low voltage (Two Stage Cool)
 *Eight wire low voltage (Two Stage Cool and Single Stage Heat)
 *Nine wire low voltage (Two Stage Cool and Two Stage Heat)
 *If POWER SAVER and Nite Setback Controls are used one additional wire is required.
B—Three wire low voltage (Single Stage Cool)
 Four wire low voltage (Two Stage Cool)
 Five wire low voltage (Two Stage Cool and Single Stage Heat)
 Six wire low voltage (Two Stage Cool and Two Stage Heat)

C—Two wire low voltage
D—Two wire low voltage (Without POWER SAVER)
 Three wire low voltage (With POWER SAVER)
E—Two or three wire power (See Unit Electrical Data Table)
F—Five wire low voltage (Single Stage Heat)
 Six wire low voltage (Two Stage Heat)

All wiring must conform to NEC and local electrical codes. If local electrical code permits may be class 2 wiring.
LIST OF AS-BUILT DRAWINGS

J-1: Architectural Floor Plans
J-2: Architectural Elevations
J-3: Solar System Equipment Schedule
J-4: Storage Tank Details
J-5: Storage Tank Floating Slab
J-6: Solar Panel Flashing and Gutter Details
J-7: Storage Tank Heat Exchangers
ORIGINAL PAGE IS OF POOR QUALITY

403 EAST ELEVATION
1. EQUIPMENT SCHEDULE - MULTI-ZONE A

<table>
<thead>
<tr>
<th>MODEL</th>
<th>MANUFACTURER</th>
<th>CAPACITY</th>
<th>C.F.M.</th>
<th>VOLTAGE</th>
<th>G.P.M.</th>
<th>MAX.</th>
<th>MIN.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENZ1-300</td>
<td>LENNOX</td>
<td>3000</td>
<td>10,000</td>
<td>230V, 3-4-5</td>
<td>10</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>

2. PLUMBING CONNECTION & FIXTURE SCHEDULE

<table>
<thead>
<tr>
<th>MARK</th>
<th>MODEL</th>
<th>MANUFACTURER</th>
<th>DESCRIPTION</th>
<th>ALLOWANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>WC</td>
<td>F-2164</td>
<td>AN STD 8"DIA DISCHARGE FLOOR MOUNT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS</td>
<td>F-300</td>
<td>FLAT SINK DISH WX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAV.</td>
<td>F-3000</td>
<td>AN STD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENC.</td>
<td>EXISTING SINK, WHICH IS BEING RELOCATED</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HK</td>
<td>JOSAM 10-1/2" WALL MOUNT - JOSAM 04012 - 8" DEPTH</td>
<td>FLUSH MANIFOLD INDOUSE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WB</td>
<td>LENNOX 25 GALLON NO SUPPLEMENTAL HEAT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDA</td>
<td>SPRO SERIES</td>
<td>JOSAM OR WANE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDE</td>
<td>300 DRAIN</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. GRILLE, DIFFUSER & REGISTER SCHEDULE

<table>
<thead>
<tr>
<th>MARK</th>
<th>MFG & MODEL</th>
<th>DESCRIPTION</th>
<th>VOL. LIMIT</th>
<th>REFLECTIVE</th>
<th>FINISH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>MGD-32116</td>
<td>24 x 0</td>
<td>YES</td>
<td>YES</td>
<td>ALUMINUM</td>
<td>RETURN AIR CURVE</td>
</tr>
<tr>
<td></td>
<td>METALLINE</td>
<td>60X4</td>
<td>4</td>
<td>3,4</td>
<td>2,3</td>
<td>1,2</td>
</tr>
<tr>
<td></td>
<td>6 X 6 EXHAUST GRILLE</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. PUMP SCHEDULE

<table>
<thead>
<tr>
<th>UNIT</th>
<th>GPM</th>
<th>HP</th>
<th>HEAD</th>
<th>VOLT</th>
<th>MF & MODEL NO</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>50</td>
<td>1</td>
<td>300</td>
<td>220</td>
<td>PEERLESS BEARING</td>
<td>CIRCULATING PUMP</td>
</tr>
<tr>
<td>P2</td>
<td>30</td>
<td>1</td>
<td>200</td>
<td>220</td>
<td>PEERLESS BEARING</td>
<td>CIRCULATING PUMP</td>
</tr>
</tbody>
</table>

* ISOLATION IS WITH PUMP

5. MAIN HEAT EXCHANGER

<table>
<thead>
<tr>
<th>UNIT</th>
<th>SOLAR WATER</th>
<th>SLAUGHTER SW</th>
<th>LWT</th>
<th>EWT</th>
<th>HW</th>
<th>LWT</th>
<th>EWT</th>
<th>HW</th>
<th>FR</th>
<th>MT</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.1</td>
<td>180°F</td>
<td>180°F</td>
<td>50</td>
<td>120°F</td>
<td>90°F</td>
<td>180°F</td>
<td>120°F</td>
<td>90°F</td>
<td>180°F</td>
<td>250°F</td>
</tr>
</tbody>
</table>

6. AIR COOLED HEAT EXCHANGER (GTR)

<table>
<thead>
<tr>
<th>UNIT</th>
<th>GTR</th>
<th>LWT</th>
<th>R</th>
<th>MT</th>
<th>MANUFACTURER</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.1</td>
<td>180°F</td>
<td>170°F</td>
<td>7</td>
<td>15</td>
<td>LENNOX NL140</td>
</tr>
</tbody>
</table>
Zone A/C Unit

<table>
<thead>
<tr>
<th>Model</th>
<th>HP</th>
<th>Volts</th>
<th>Current</th>
<th>Type</th>
<th>Speed</th>
<th>RPM</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMT1</td>
<td>1</td>
<td>230</td>
<td>0.5</td>
<td>3</td>
<td>30</td>
<td>1750</td>
<td></td>
</tr>
<tr>
<td>AMT2</td>
<td>1</td>
<td>230</td>
<td>0.5</td>
<td>3</td>
<td>30</td>
<td>1750</td>
<td></td>
</tr>
</tbody>
</table>

Schedule

Equipment Load Table

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Load</th>
<th>HP</th>
<th>Volts</th>
<th>RPM</th>
<th>Type</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMT1</td>
<td>1</td>
<td>1</td>
<td>230</td>
<td>1750</td>
<td>30</td>
<td>AMT1</td>
</tr>
<tr>
<td>AMT2</td>
<td>1</td>
<td>1</td>
<td>230</td>
<td>1750</td>
<td>30</td>
<td>AMT2</td>
</tr>
</tbody>
</table>

Exhauster Fan Schedule

<table>
<thead>
<tr>
<th>Unit</th>
<th>CFM</th>
<th>HP</th>
<th>Voltage</th>
<th>Manuf.</th>
<th>Mod.</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>1</td>
<td>230</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>200</td>
<td>1</td>
<td>230</td>
<td>30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Solar Hot Water Heater Schedule

<table>
<thead>
<tr>
<th>Unit</th>
<th>GPM</th>
<th>kW</th>
<th>Mod.</th>
<th>Manuf.</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Storage Tank Schedule

<table>
<thead>
<tr>
<th>Unit</th>
<th>Cap.</th>
<th>Mod.</th>
<th>Manuf.</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>250</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Backup Boiler

<table>
<thead>
<tr>
<th>Unit</th>
<th>Volts</th>
<th>CFM</th>
<th>HP</th>
<th>Mod.</th>
<th>Manuf.</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Return Air Fan

<table>
<thead>
<tr>
<th>Model</th>
<th>Type</th>
<th>CFM</th>
<th>HP</th>
<th>Volts</th>
<th>RPM</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMT1</td>
<td>N/A</td>
<td>150</td>
<td>1</td>
<td>230</td>
<td>1750</td>
<td></td>
</tr>
<tr>
<td>AMT2</td>
<td>N/A</td>
<td>150</td>
<td>1</td>
<td>230</td>
<td>1750</td>
<td></td>
</tr>
</tbody>
</table>

Vent-A-Hood (1 units)

<table>
<thead>
<tr>
<th>Model</th>
<th>HP</th>
<th>Volts</th>
<th>RPM</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAM1</td>
<td>1</td>
<td>230</td>
<td>1750</td>
<td></td>
</tr>
<tr>
<td>VAM2</td>
<td>1</td>
<td>230</td>
<td>1750</td>
<td></td>
</tr>
</tbody>
</table>
STORAGE TANK LOCATION ON FLOATING

SCALE 1"=1'-0"

DRAWING NO. 1500

REVISION 0

DRAWN: J. W. HOGAN

CHECKED: A. W. HOFFMAN

ORIGIN: 1970
STORAGE TANK SPECS

<table>
<thead>
<tr>
<th>ITEM</th>
<th>WEIGHT</th>
<th>CAPACITY</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>TANK(BND)</td>
<td>2159 sq ft</td>
<td>GIFFORD MILL</td>
<td></td>
</tr>
<tr>
<td>LID</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOTTOM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TANK(RIS)</td>
<td>2159 sq ft</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

* SEE SHEET FOR TANK DETAILS

INSULATION TO BE 6" THICK, VARY THICKNESS AS REQU'D BUT NO LESS THAN 3" IN ORDER TO MAKE SIDES PERFECTLY VERTICAL. SEE SPECS.

INSULATION TO BE ALUMINUM FOAM TYPE INSULATION WITH A REFLECTIVE FOAM CORE ON A FLEX / FIBER GLASS-FACED MANUFACTURER TO BE DGC 85 ETC.

J-5

ONE SOLAR PLACE
4140 OFFICE PARKWAY
DALLAS, TEXAS

UNITED AIR CONDITIONING CO.

ORIGINAL PAGE IS OF TONE QUANTITY
SOLAR PANELS - PLAN VIEW
SCALE: 1/8" = 1'-0"

* EXACT LENGTH TO BE VERIFIED FROM ARCHITECTURAL DRAWINGS
BY SOLAR GENICS, INC.
PANEL FLASHING & GUTTER DETAILS

NOTE: METAL GAUGES AS SPECIFIED PER SOLAREGENIC, INC.

ONE SOLAR PLACE
4140 OFFICE PARKWAY
DALLAS, TEXAS

J-6