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SECTION 1.0

SUMMARY

This final report documents the results of Contract DEN 3-38, Active Heat

Exchanger System Development for Latent Heat Thermal Energy Storage Systems.

The project was sponsored by the U.S. Department of Energy/Division of Energy

Storage Systems and managed by the National Aeronautics and Space Administra-

tion/Lewis Research Center. The overall project consisted of five tasks to

select, design, fabricate, test and evaluate candidate active heat exchanger

modules for future applications to solar and conventional utility power plants.

Alternative mechanizations of active heat exchange concepts were analyzed for

use with heat of fusion Phase Change Materials (PCMs) in the temperature range

of 2500 to 3500C. Twenty-six heat exchange concepts were reviewed, and eight

were selcted for detailed assessment. Two candidates were selected for small-

scale experimentation: a coated tube and shell heat exchanger and a direct

contact reflux boiler.

A dilute eutectic mixture of sodium nitrate and sodium hydroxide was selected

as the PCM fts ,!, over 50 candidate inorganic salt mixtures. Based on a salt

screening process, eight major component salts were selected initially for

fur Aer evaluation. Using an economic assessment program coupling the candi-

date salt mixtures and heat exchange concepts, NaNO 3 , NaNO2 , and NaOH appeared

to be the most attractive major components in the temperature range of 2500

to 3500C. The minor components, selected in similar fashion, were NaOH, NaOH,

and NaNO3 , respectively.

Sketches of the two active heat exchange concepts selected for test are shown

in Figures 1-1 and 1-2.
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The shell and coated tube heat exchanger is based on available and well devel-

oped heat exchanger equipment, but its applicability with a PCM is subject to

development o f.' a co,:tiag to which salt do- , not adhere. The reflux boiler

concept shown in Figure 1-2 is unique	 c;l,- the sal': freezes away from any

heat exchanger surfaces but requires thk , ification o.: the compatibility of

the salt mixture with water and its vapor.

Twenty-six different techniques were explored to deal with the problem of

solids buildup on discharge tube surfaces during heat extraction. These in-

cluded various techniques involving mechanical, electrical, magnetic, hydraulic

and media property characteristics as well as material morphological considera-

tions. A survey of industrial heat and chemical process industries equipment

was made to gain insight for storage design applications. A discussion of the

various techniques and surveys is presented in Section 3.0, and further details

are available from NASA CR159479.

The PCM was selected after a systemati. elimination of phase change inorganic

salts and salt mixtures based on various criteria that included stability, 	 '

availability, energy density, effect of candidate salt on system cost, salt

mixture composition, and phase diagram type. The selected PCM was a dilute

eutectic mixture of 99 percent (weight) of NaNO 3 and 1 percent (weight) of

NaOH and is shown on the phase diagram in Figure 1-3.

Based on the various heat exchange concepts reviewed in Section 3.0, eight

different mechanizations were selected for a more detailed economic and tech-

nical evaluation. These are presented in Table 1-1 in summary form. The

evaluation criteria included scrapability, maintenance, safety, auxiliary

power, technological development, recurring and nonrecurring costs. A de-

tailed evaluation based on these criteria is presented in ref. 1.

The costs, which include cost of heat exchanger manifold, tankage, salt and

balance of plant (BOP), are expressed as rate-related and capacity-related
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costs for a 300 MW(e) steam generation application. Column C of Table 1-1

gives normalized system costs (normalized with respect to passive tube-intensive

systems) for a 6-hour storage duration, and Column D gives those same costs

minus BOP, which includes circulation equipment, etc. The costs were based on

build experience and detailed estimates made for a pilot scale latent heat

storage system integrated with a solar electric plant. The period of engineer-

ing development required to bring each concept to a state of technical readi-

ness is estimated in Column E. Near-term (NT), intermediate (I), and far-term

(FT) periods correspond to 2-3 year, 3-5 year, and 5-10 year intervals, re-

spectively. The last two columns of Table 1-1 qualitatively identify the range

*Source: Phase Diagrams for Ceramists, Figure 1019, page 325.

a
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Table 1-1. Economic, and Technical Evaluation of Heat Exchange Concepts

EVALUATION

PARAMETER

HEATT

EXTRACTION
CONCEPT

^' ©

o

S

i

a^

1

`^

^^jj

i1 H

En

W V

°^
z ^7

W V

~How

z N vi

v

z
H

q

UH

^w °

C0

-WIN

DIMEN- DIMEN- FT HIGH HIGH
S/kW(,) $/kWh(,) SION- SION- I NORM. NORM.

LESS LESS NT LOW LOW

1	 INTERNAL SURFACE SCRAPER 201 13 1.72 2.2 FT H H

1	 EXTERNAL SURFACE SCRAPER 55 16 0.90 0.84 I H H

3	 SHELL AND COATED TUBE FLOWBY 45 13 0.77 0. 62 NT L N

4	 JET IMPINGEMENT 47 15 0.78 0.63 FT N H

5	 r SELF PRESSURIZING 50 13 0.80 0.66 FT L H
REFLUX 1

6	 CONTINUOUS SALT FLOW 46 13 0.77 0.62 I N N
BOILER

7	 OPEN SYSTEM 46 13 0.75 0 . 59 FT N L

8	 TUMBLING ABRASIVE 58 13 0.85 0.74 FT H H

9	 PASSIVE TUBE INTENSIVE (REF) 94 27 1.00 1.00 NT N L

FT - FAR TERM (5-10 YEARS) 	 BOP - BALANCE OF PLANT (OTHER THAN
I - INTERMEDIATE (3-5 YEARS)	 TANKAGE, HEAT EXCHANGE, MANIFOLD
NT - NEAR TERM (2-3 YEARS)	 AND SALT COSTS)
H - HIGH
N - NORMAL
L - LOW

of expected operating and maintenance costs for the respective concepts. This

enables total life-cycle costs to be brought into perspective. As a result of

this evaluation, the shell and coated tube (3) and reflux boiler (6) emerged as

the most attractive heat exchange concepts from among those studied.

A number of technical issues and questions regarding feasibility were addressed

for each concept to establish the requirements for the experiments. The

ability to model and scale each concept was reviewed to ensure that a 10 kW(t)

discharge rate and a 10 kW(t)-hour capacity was adequate. These aspects of the
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program are discussed in Section 4.0 along with a description of the experi-

mental setup, the hardware, and instrumentation. Supporting PCM data, and

experiment design and instrumentation details, are contained in Appendices C

and D.

The experimental results are discussed in Section 5.0. The results from the

Direct Contact Reflux Boiler experiment indicate that heat rates of 14.5 kw(t)

were achieved at a boiler pressure of 5.5 MPa. Severe degradation of the PCM

occurred, however, when in contact with water. The PCM underwent hydrolosis,

forming sodium hydroxide and nitric acid. This was compounded by an irrevers-

ible chemical reaction of nitric acid with the container walls forming iron

oxides in aqueous solution. As a result, only 60 percent of the design steam

pressure (9.3 MPa or 1350 psig) was achieved. These results, along with the

testing program, are described in more detail in Subsection 5.1.

The results of tests using the Shell and Coated Tube Flowby module were

equally disappointing. Although qualitative "dip" tests seemed to indicate

that several coatings might alleviate the problem of salt freezing on dis-

charge tube surfaces, tests using an electroless nickel coating in the Coated

Tube Flowby experiment confirmed that salt adhesion still had a deleterious

effect on heat transfer--to an extent which did not warrant further considera-

tion. Other coatings such as chrome or Teflon were not tested in the Coated

Tube Flowby experiment because of scheduler and financial constraints.

It is recommended that experimentation continue to assess: (1) other selected

materials for use with the Direct Contact Reflux Boiler concept; and (2) the

antistick properties of the other candiate coatings (i.e., chrome, Teflon and

Ryton). These and other recommendations are discussed in Section 6.0.
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SECTION 2.0

INTRODUCTION

High Temperature Thermal Energy Storage (HT/TES) can provide large-scale con-

servation of irreplaceable petroleum and natural gas resources. This in part

can be achieved in load leveling application; for conventional electric plants

and in thermal storage applications for solar thermal power plants.

Studies and analyses on the usefulness of HT /TES systems (NASA CR-159577) seem

to indicate that the economic viability is marginal, at best, with today's

technology. The capacity and power related capital costs for storage must be

lowered significantly before the economic leverage will shift in favor of its

use.

A promising candidate for thermal energy storage at high temperatures is the

utilization of the heat of fusion of molten salts. Many salts are attractive

because of their relatively high weight and volumetric heat storage capabili-

ties, their abundance in nature and as a result of industrial processes, and

their low cost per unit storage capability. By utilizing the heat of fusion

(liquid -solid transition) of various salts, large amounts of thermal energy

can be stored and subsequently released at a relatively constant temperature.

One problem, however, is inherent to s^7stems that utilize the heat of fusion

of molten salts by a passive heat exchange process (e.g., heat exchange tubes

immersed in a static salt bath). The accumulation of salt deposits on dis-

charge tube surfaces imposes a large heat exchanger surface area requirement.

This component can be the major cost item of the system.

To minimize a potentially large capital investment in required heat exchangers,

alternate heat exchange concepts have been proposed to enhance energy removal

from a TES module by actively inhibiting or removing the formation of salt

I^rE	 -



2-2

depositions on the discharge tube surfaces. One such concept, developed by

Honeywell in competition for the 10 MW(e) solar pilot plant, used mechanical

scrapers to remove the formation of a sodium nitrate salt mixture as it froze

on external vaporizer tube surfaces (TID-27775).

The intent of this investigation was to extend the technological development

of active heat exchange systems for potential application to conventional

high-pressure steam utilities and to advanced solar thermal energy conversion

systems. Utilization of an HT/TES module to provide boiling for a steam power

cycle was emphasized. Therefore active heat exchange concepts considered for

this function were to be capaLle of accomplishing boiling in the temperature

range of 250 to 3500C, which corresponds to a wide steam pressure range of

about 400 to 1650 N/cm2 (580 to 2400 psis).

The approach was to evaluate advanced active heat exchange concepts relative

to a passive tube-intensive design, identify the critical issues, select the

most likely candidates, experimentally address the outstanding issues,

recommend the most promising concept for continued development, and identify

areas requiring further research and technology.
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SECTION 3.0

CONCEPTS SELECTION REVIEW

3.1 GENERAL SYSTEM APPLICATIONS AND REQUIREMENTS

Thermal Energy Storage (TES) is important for efficient use of energy resources.

Advanced storage technologies can improve the operation and economics of

electric power systems by storing excess off-peak energy for later use in

meeting peak demands.

In electric utilities, baseload is the round-the-clock load that is met with

the most fuel-efficient equipment. As the daily load increases, the utility

incrementally brings the next most efficient equipment on-line. For the near

term (ref. 1), energy storage can effectively increase the use of existing

baseload equipment. In the longer term, energy storage can increase the

percentage of baseload capacity. Thus, there is an economic incentive for

utilities to use baseload plants to meet the peaking loads now met by less

fuel-efficient equipment.

Energy storage is a practical necessity for solar-thermal generation of electric

power. It is necessary for plant stability and control issues related to

high-frequency solar transients. Two techniques (ref. 2) can be used to

maintain the reliability of the grid with a large solar plant on the line. In

the first technique, the solar plant is backed up with a conventional plant

that is pressed into service as iieeded after available instantaneous solar

power has been supplied to the grid. The second technique controls the delivery

of power to the grid so that the collected energy can be stored when it is

available and not needed to meet grid demand. This stored energy becomes

available for electric generation when the demand is high and direct insolation

is not available.
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For these applications, the specific operating conditions and machinery typical-

ly used in power plants needs to be considered. The operational regime of

conventional turbomachinery is shown in Figure 3-1. In Figure 3-2, operating

conditions for cu r rent and advanced solar power plants and for utility systems

are shown on a steam enthalpy diagram. Here, the turbine pressures are shown

with corresponding entry flow temperatures. Notice that most of the steam

power plants operate within a band of 4.1 MPa to 16.5 MPa (600 psis to 2400

psia); the saturation temperatures corresponding to these pressures are between

250' and 350•C.

Heat from storage can be used to boil water and provide high-temperature steam

to the plant. To provide steam at 250 0 to 3500C, heat should be stored at a

temperature greater than the desired steam temperature. With an assumed

temperature drop of 18C°, the useful temperature range for storage media is

from 268° to 368°C. Salts with melting points up to 400°C were thus considered

in media selection.

Media for various steam turbine cycles are shown in Figure 3-3. A temperature

difference of at least 18C O each was allowed for heat transfer from charge

steam to salt and from salt to discharge steam. Only standard steam turbine

cycles were considered.

3.2 STORAGE MEDIA SELECTION

3.2.1	 TES System Cost Evaluation For Salt Screening

TES system cost is an important economic parameter in determining the usefulness

of storage to uti.lity and solar plants.
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Honeywell developed a model to compare the capital costs of candidate TES

systems. The model was based on build and detailed cost estimates for latent

heat systems for the Solar Pilot Plant program. Figure 3-4 shows a logarithmic

plot of storage installed cost as a function of storage capacity based on

small-scale, SRE, and pilot plant experience. The costs in the figure are the

actual accrued costs. The figure shows that TES costs follow the exponential

relationship. The cost exponent of the slope of the curve in Figure 3-4 was

determined to be -0.34. This cost exponent was used for scaling storage

system costs for salt systems. The model is described in ref. 4.

TES system costs include the costs of the storage medium, containment, heat

exchangers, circulation equipment for working fluid and storage medium, instru-

mentation and control, storage-medium handling and support equipment, foundation

and site preparation. For latent heat systems, the energy density of the

salt, which includes its heat of fusion, will determine system size. Storage

in high-energy-density salts will have smaller containment, smaller lengths of

piping, reductions in valves, controls, instrumentation, salt-handling equipment,

foundation and site preparation (like emergency containment for salt in event

of leakage, etc.). Therefore, the salt cost (in $/kWh(t) or $/106Btu), determined

from the specific salt cost and energy density, should not be used as the sole

indication of system cost for screening salts. This would be especially true

with low-capacity storage systems, where the balance of plant cost rather than

salt cost is significant and where a high-heat-of-fusion salt would be more

economical. Details on the preparat i on of the cost curves are contained in

Appendix A of NASA-CR-159479. From this analysis, a plot was obtained of salt

cost versus salt heat of fusion using system costs as parameters. The curves

shown in Figure 3-5 can be used to estimate TES system costs once specific

salt cost and heats of fusion are known. The curves are used in the following

subsection on screening salts.
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3.2.2 Salt Screening

A systematic technical and economic evaluation was conducted of about 200 salt

mixtures with melting temperatures between 2500 and 4000C. Figure 3-6 shows a

flowchart of the salt selection methodology. A list of salts and salt

eutectics with melting temperatures between 2560C and 3560C is given in

Appendix C, Tables C-1 and C-2. The salt selection was made after screening

on the basis of the criteria described in the next paragraphs.

Nonavailability and Hazardous Properties--Salts of uncommon metals were eliminated

because of high costs and unavailability in large quantities. Salts belonging

to certain groups like amides, cyanides, and chlorates were eliminated because

of their high toxicity and high volatility. Table 3-1 lists seven single

salts and 45 binary and ternary eutectic salts, that were selected for further

screening, with their salt costs and heat of fusion.

Salt Thermal Properties and System Costs--Important salt properties are salt

energy density, thermal conductivity, and corrosivity. An earlier section

explained the importance of salt energy density on system cost. Salt thermal

conductivity affects the heat exchanger costs. In general, heat exchanger

costs are inversely proportional to
Af _

.k
5 
 AT, where hf is salt energy

density, k  is thermal conductivity, and AT is heat transfer temperature

difference. Corrosion properties of salt affect the costs of containment,

handling, and heat exchangers.

The salt costs and heats of fusion given in Table 3-1 for the seven single

salts and 45 eutectics are plotted on Figure 3-7, the system cost plot obtained

from the cost model (Figure 3-5). The numbers on the graph refer to those in

Table 3-1. TES system installed costs increase as you go from the lower right

to the upper left corner of this figure.

r:

F
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COMPLETE LIST OF SALTS

- SINGLE AND BINARIES
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Figure 3-6. Salt Selection Methodology Flowchart
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Ôi/^	 N Z W

Ir
d

a

V1
yp,

y
w

a
M

0

ro

m
	

I a

O
N
a
N
OU
41

1
M

01
b
7
00

w

ax/S '1S03 lids



d

3-14

Although a few salts (LINO3 and 2nC1 2 , for example) demonstrated high system

costs, none are eliminated at this stage of the screening; all salts remain

under consideration until the end of the screening process when cost consider-

ations are crucial. For now, the cost criteria merely undertone other consider-

ations.

Dilute Eutectic Criterion--Through experimental and analytical work, Honeywell

has demonstrated that solidification characteristics of the molten salt mix-

ture are important selection criteria. By referring to the right-hand portion

of Figure 1-3, it can be seen that with a 99/1 nitrate-to-hydroxide composition

ratio a wide temperature range can be achieved. The wider the range the

greater is the heat transfer potential. As long as the outside tube wall tem-

perature carrying the coolant is above the solidus temperature a hard freeze

on the tube will not occur. The hard freeze would reduce the heat transfer

drastically. Meanwhile, the temperature drop that is required in the medium

for a given amount of solidification is small. These characteristics would

also maintain a two-phase slush in the crystallizing material, making heat

transfer to the melt and pumping the material more efficient. Such crystal-

lization characteristics can be achieved by adding another component (salt or

salt mixture) that, together with the primary salt, forms a simple eutectic

system. A simple eutectic system is one that does not form any significant

solid solutions between the single salt melting point and the eutectic point

for the system. The minor component is added in small quantities (about one

weight percent), hence the term dilute eutectic system. For example, a

99wt% NaNO3 + 1wt% NaOH mixture melting at 303 0C is a dilute, eutectic system

of a NaNO3 - NaOH simple eutectic system (eutectic point 272°C, eutectic com-

position 83% NaNO3 and 17% NaOH). For this system it would take approximately

95-percent solidification before the eutectic composition is reached. The

solid in this simple eutectic system is pure NaNO 3 , and there is always a

liquid in equilibrium with this solid.
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The next step in salt scree.ing was based on the dilute eutectic criterion;

here, the purpose was to find simple eutectic phase diagrams for the 52 salts

listed. Table 3-2 gives the system costs of the seven salts. (Notice that

the informatics contained in this table is a subset of that in Table 3-1,

reprinted here for convenience.) The ZnC1 2 system was eliminated because of

very high system cost. The melting point of LINO 3 is 254 •C and is too close

to the limit of the t ige of interest. For other salts, the steam charge and

discharge cycles are listed in the comments column. The charge cycle refers

to steam conditions of a standard steam turbine cycle required for charging

storage. The heat charged is the heat of condensation of steam. The condensa-

tion temperature is assumed to be about 18 to 20°C over the salt temperature

in determining charge condition. Similarly, discharge cycle refers to the

steam conditions of a standard steam turbine cycle obtained when storage is

discharged. The heat transferred from storage is used to vaporize water. A

AT of about 18 to 20°C is allowed for heat transfer in determining the standard

discharge cycle.

Final Media Selection --At this stage, the list of salts was reduced to the

eutectic systems of NaNO 3 , NaNO2 , and NaOH. Table 3-3 lists eutectic systems

of these salts. In selecting the minor component, several factors must be

considered.

e Reactivity

e Supercooling

e Temperature drop

e Stability

e Safety

e Cost and availability

The minor component should not react with the major component. In the NaOH -

Na2CO3 system, Na 2CO3 reacts with moisture to give off CO2 , and NaOH absorbs

moisture. Supercooling is a common phenomenon and it is a serious problem
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with phase-change materials in passive systems. The amount of supercooling is

generally less for large samples. The NaNO 3 - Ca(NO3 ) 2 system is known to

supercool and forms a glassy solid. The freezing temperature of the eutectic

system (generally) decreases with solidification. The freezing temperature

drop for a given amount of solidification should be as small as possible for

efficient operation. Table 3-3 lists the calculated temperature drop for the

eutectic system. The system should be stable. NaNO 2 decomposes at tempera-

tures greater than 4500C. Furthermore, the system should maintain thermal and

physical properties over the life of the storage system. The component should

be safe.

NH4NO3 is a hazardous salt, and TINO 3 is very toxic and should be avoided even

in minute quantities. Cost of the minor component is generally unimportant;

however, 1 weight percent of TINO 3 added to NaNO3 increases the salt mixture

cost about twofold.

Table 3-3 also lists the reasons for selecting the candidate salt media. The

recommended salt system is 99 weight percent NaNO 3 with 1 weight percent NaOH.

The recommended system, in addition to meeting all the criteria discussed, has

performed well with the mechanical scraper concept developed for the 10 MW(e)

Pilot Plant Storage Subsystem. Most of the data required for advanced active

heat exchange evaluation is available for this system.

The use of NaOH as the major component was considered based on its apparent

cost advantage, especially when the heat of transition is included. However,

due to its pervasive caustic effects on human tissue and material, the need

for closed system operation and the uncertainty of being able to recover the

heats of fusion and transition effectively, it was not selected.
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3.3 SELECTION OF HEAT EXCHANGE CONCEPTS

3.3.1 Survey of Heat Exchange Conceits

A candidate heat exchange concept applicable to latent heat thermal storage

units must be capable of transferring heat from a source into the frozen media

causing it to melt. Likewise, the concept must be capable of transferring the

thermal energy stored in the medium to a sink while the medium undergoes a

solidification process. In both cases, the concept should permit relr•ively

high heat transfer rates while undergoing the phase changes.

A survey of heat transfer and chemical processing literature was made to

determine the equipment used industrially and the chemical and physical processes

exploited in extracting the latent heat of fusion from a melt. An investigation

of crystallization processes (ref. 5, 6, And 7) was performed to determine if

existing industrial methods might be directly applicable to or provide new

ideas for latent heat storage design. The types of crystallization methods

used industrially are listed below.

e Crystallization through cooling

e Crystallization through evaporation

e Salting out with a common ion or second solvent that reduces the

solubility of the crystallizing substance

e Crystallization involving chemical reaction

The processing literature is limited in coverage of heat exchanger crystallizers,

as this approach has often been disregarded in favor of alternatives. The

major design and operating problem of a cooling crystallizer is crystal

deposits on the heat exchanger tubes. Once this takes place, the accumulation

1
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can increase rapidly, and not only does the heat transfer from the molten salt

decrease dramatically, but the solids are not in a mobile form for pumping.

Following is a list of different methods used in the past and innovative ideas

put forth by Honeywell engineers to overcome the solid film problem.

e Mechanical Folids-Removing Techniques:

- Agitation

- Vibration

- Ultrasonics

- Internal surface scrapers

- External surface scrapers

- Flexing surfaces

- Tumbling solids

- Fluidized beds

• Hydraulic Techniques:

- Flow variations

- Fluid pulsing

- Jet impingement

- Sprayed surface exc anger

- Freeze-remelt

• Techniques Involving Physical Properties of the Salt:

- Crystal volume change

- Crystal weakening additive

- Conductivity-enhancing additives

Magnetic susceptibility

- Electrostatic separation

Finishing and coating of heat exchanger surfaces

- Delayed nucleation and supercooling
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• Other Concepts:

- Direct contact heat exchange

- Shot tower latent heat of fusion concept

- Prilling tower crystallization

- Liquid metals salt system

- Immiscible salts

- Encapsulation (passive system)
- Distributed tube exchanger (passive system)

3.3.2	 Candidate Concepts for Evaluation

From the survey. Honeywell selected the following concepts as candidates for

further evaluation.

• Internal Surface Scraper

• External Surface Scraper 	
^ 9

• Shell and Tube Flowby

• Jet Impingement

• Reflux Boiler / Self-pressurizing
Direct Contact

• Reflux Boiler /Continuous Salt Flow	 Heat Transfer

• Reflux Boiler /Continuous Salt Flow
with Hydraulic Head Recovery

• Tumbling abrasive
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These concepts embody the most conventional and promising heat transfer processes.

The passive tube-intensive system was chosen as a reference system against

which cost comparisons could be made.

3.3.3	 Evaluation Criteria

To get an idea of the total system cost implications of the basic concepts

chosen, it was necessary to make a preliminary system layout and to estimate

costs of all major components for each of the systems. The following conditions

provided the basis for all cost estimates:

• Storage medium has the properties of NaNO 3 plus 1 percent NaOH.

• The latent heat storage module will supply saturated steam at

6.9 MPa/300°C (1000 psi/574°F).

• The heat rate would be 1000 MW(t) (3.41 x 10 9 Btu/hr) for 6 hours.

• All systems would be charged by steam-condensing coils in the storage

tanks (except in the tube-intensive system where the same tubes perform

both charge and discharge functions).

The performance and costs of the eight heat exchange concepts were compared in

Table 3-4. The comparison criteria were broken into five major groups:

• Performance Parameters

• Operational Criteria

• Subjective Evaluation Criteria

• Materials Required

• System Costs
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Performance parameters are those heat-transfer-related quantities that are

necessary to size the various systems and that indicate the extent of possible

system size reductions attainable if the heat transfer coefficient is improved.

With water vaporizing inside of a 2.5 cm outside diameter, 13-gauge carbon

steel tube, the overall heat transfer coefficient will be less than 6000

Wm2-°K due to thermal resistance of the tube wall and the water film co-

efficient. Salt film coefficients and any fouling resistance will further

reduce this value.

Operational criteria are control and maintenance parameters that may influence

j	 the overall complexity of the systems. Some of the critical control items are

discussed, along with the numbers of individual units that may contribute to

maintenance and/or control complexity.

Subjective evaluation criteria are parameters that are strictly engineering

judgment. It would be difficult to place a dollar figure on these quantities,

but they must be considered in the selection and overall evaluation of the

system.

Materials required are weight estimates of major components of the thermal

storage system. These estimates were made by calculating sizes and weights of

the necessary fluid-handling and storage components, while considering the

various code requirements and good engineering practices in designing systems.

System costs in 1979 dollars were broken down into costs of each of the major

components and finally into capacity- and rate-related costs. The final,

bottom-line figure is the estimated cost for the total system capable of pro-

viding 100 MW(t) for a 6-hour period. These cost estimates were based upon

data obtained by quotations developed under the Solar Pilot Plant proAl'3m and

scaled using appropriate scaling laws for each of the components. The passive

tube-intensive system was chosen as a reference to which cost comparisons

could be made.
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3.3.4	 Performance and Cost Evaluation

The following paragraphs discuss each of the concepts chosen. Table 3 -4

outlines their performance based on the criteria described. Notice that for

most systems, the balance of plant cost, which includes all auxiliary components,

is a large percentage of the total system cost.

Internal Surface Scrapers--Mechanical blades may be mounted on a rotating

shaft to remove material freezing on the inner walls of the heat exchanger.

The mechanically induced turbulence in the equipment makes it possible to

handle highly viscous liquids and slurries while maintaining moderately high

transfer coefficients.

The internal surface scraper was envisioned as either an Armstrong or Votator

commercially available scraped-surface heat exchanger. This device has a long

record of successful commercial use and does not need major design changes to

be adapted to thermal storage applications. The device can be disassembled

readily to service the scraper blades.

The system layout assumes that the heat exchangers would be centrally located

between the storage tanks and that the salt would be pumped to the exchangers

and back to storage. Here, the salt slurry would separate, and the rich

liquid would be recycled back through the exchanger. A 75-percent heat re-

covery factor was used as bases for the designs.

The heat transfer coefficient was estimated as 2271 Wm 2-°K based on Votator

literature data. For a 1000 MW(t) heat rate and 18°C heat transfer, AT, the

heat transfer surface required is 2.44 x 10 4m2 . The largest commonly manufac-

tured Votator unit made was listed as 4.65 m 2 (50 ft2 ) of surface, 0.25 m

(10 inches) diameter, and 6.1 m (20 ft) in length. Therefore, this requires

about 5300 units.
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Table 3-4. Performance and Cost Evaluation of

Candidate Heat Exchanger Concepts

1 2 3 4

INTERNAL EXTERNAL SHELL AND

SURFACE SURFACE 1118E JET

CRITERIA UNITS SCRAPER SCRAPER FLOW-BY IMPINGEMENT

PERFORMANCE HEAT TRANSFER COEFF. W.0 2 K_ 1 2271 2868 2260 2084

TEMPERATURE DROP K	 _ 2 18 18 18 18

HEAT TRANSFER RATE W.m 40878 51624 40680 37512

AUXILIARY POWER
_3

kW(e) x 10 25.2 25.2 8.4 9.0

PERCENT OUTPUT (a) 8.4 8.4 2.8 3.0

OPERATION CONTROL REQUIREMENTS FREEZE-UP FREEZE-UP TEMP. BAL. TEMP. SAL

MAINTENANCE TYPE SHARPENING WEAR MINIMUM MINIMUM

FREQUENCY 3 V')N. 3 MON. INFREQUENT INFREQUENT

SYSTEM SIZE m 0.25m x b.lm 35m x 2.4m 1.5m x 12.2m 3m x 3m x 5.5m

1 OF UNITS 5300 54 10 10

SUBJECTIVE SCALABILITY BAD HAD GOOD GOOD

EVALUATION TECHNOLOGICAL DEV. GOOD PHOTOTYPE GOOD CONCEPT

PARAMETERS COMPATIBILITY WITH FAIR GOOD GOOD GOOD

STEAM CYCLE
INSTITUTIONAL BARRIERS NONE NONE NONE NONE

SAFETY TUBE ABRASION TUBE ABRASION TUBE EROSION TUBE EROSION

MATERIALS HEAT EXCHANGER%
_6

REQUIRED SURFACES k8 x 10 -- 1.40 0.42 0.83

CONTAINMENT " -- NONE 0.09 0.05

MANIF'OLDING 0.27 0.27 0.20 0.20

TANKAGE 3.7 7.6 3.7 3.7

STORAGE MEDIA 166 166 166 166

COSTS HEAT EXCHANGERS $/kWh(t) 27.50 3.13 1.52 1.90

MANIFOLDS 0.33 0.33 0.25 0.25

TANKAGE 2.14 4.20 2.14 2.14

MEDIA @ 0.1 $/LB 6.10 6.10 6.10 6.10

BALANCE. OF PLANT " 10.8 10.8 10.8 10.8

RATE RELATED COST $/kW 201 54.9 44.7 47.0

CAPACITY RELATED COST $/kWh(t) 13.5 15.5 13.4 15.4

SYSTEM COST $/kWh(t) 46.9 24.6 20.9 21.2

SYSTEM TOTAL COST $ x 10-bb 281 147 125 127

RELATIVE COST 1.72 0.90 0.77 0.78

REL. COST LESS BALANCE
OF PLANT 2.2 0.84 0.62 0.63
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Table 3-4. Performance and Cost Evaluation of
Candidate Heat Exchanger Concepts (Concluded)

5 6 7 8 9

SELF
PRESSURIZING CONTINUOUS OPEN PASSIVE

REFLUX SALT FLOW (c) SYSTEM TUMBLING TUBE.
CRITERIA BOILER REFLUX BOILER REFLUX BOILER ABRASIVE INTENSIVE

PERFORMANCE HEAT TRANSFER COEFF. 4656 -- -- 568 55
TEMPERATURE DROP 15 IS 4 18 18
HEAT TRANSFER RATE 69840 69840 -- 10224 990
AUXILIARY POWER 9.0 9.0 9.0 9.0 1.5

PERCENT OUTPUT (a) 3.0 3.0 1.0 3.0 0.5
OPERATION CONTROL REQUIREMENTS SLURRY CONY. SLURRY CONC. SLURRY CONC. MINIMAL MINIMAL

MAINTENANCE VALVE SEATS MINIMUM VALVE SEATS TUBE WEAR NONE
INFREQUENT INFREQUENT INFREQUENT INFREQUENT INFREQUENT

SYSTEM SIZE 2.1m x 12,2m 2•Im x	 12.2m 2.1m x	 12.2m 1.8m x 12.2m 35m x	 12.2m
24 8 16 117 6

SUBJECTIVE SCALABILITY GOOD GOOD GOOD GOOD GOOD

EVALUATION TECHNOLOGICAL DEV. CONCEPT CONCEPT CONCEPT CONCEPT SMALL SCALE

PARAMETERS COMPATIBILITY WITH GOOD GOOD GOOD GOOD GOOD

STEAM CYCLE
INSTITUTIONAL BARRIERS PR. VESSEL CODE PV. VESSEL CODE PR. VESSEL CODE NONE NONE,
SAFETY ABMA CODE ABMA CODE ABMA CODE TUBE EROSION NONE

MATERIALS HEAT EXCHANGERS
REQUIRED SURFACES 0.29 0.29 0 2.70 16.5

CONTAINMENT 1.11 0.65 0.93 1.25 NONE
MANIPJLDING 0.09 0.09 0.09 0.27 1.1.2

TANKAGE 3.7 1.7 3.7 3.7 3.1
STORAGE MEDIA 166 166 166 1.66 125

COSTS HEAT EXCHANGERS 2.58 1.84 1.92 3.60 8.63
MANIFOLDS 0.1.1 0.11 0.11 0.33 1,.38

TANKAGE 2.1.4 2.14 2.14 2.14 1.78

MEDIA @ 0.1 $/LB 6.10 6.10 6.10 6.10 4.58
BALANCE OF PLANT 1018 10.8 10.8 10.8 10.8
RATE RELATED COST 50.2 45.5 46.0 57.7 94.1
CAPACITY RELATED COST 13.4 13.4 13.4 13.4 11.5
SYSTEM COST 21.7 20.9 20.5(b) 23.0 27.2
SYSTEM TOTAL COST 1.30 126 123(b) 138 163

RELATIVE COST 0.80 0.77 0.75 0.85 1.00
REL. COST LESS BALANCE

OF PLANT 0.66 0.62 0.59 0.74 1.00

FOOTNOTE: (a) PERCENTAGE OF THERMAL OUTPUT USED TO GENERA'1'F ELEC7RIC11'Y TO DRIVE AUXILIARIES
(b) SYSTEM COSTS ADJUSTED FOR HIGHER EFFICIENCY ATTAINABLE AT HIGHER TEMPLRA'IL'RF.
(r) AT' THIS LEVEL OF AN ESTIMATION, THE CONTINUOUS SALT FLOW REFLUX BOILER WITH AND

WITHOUT HYDRAULIC HEAD RECOVERY ARE REPRESENTED b y THE SAME NUMBERS.

(d) ALL ESTIMATES IN THIS TABLE HAVE BEEN SIZE[ '1'0 A 1000 MWt, 6 HR. STORAGE UNIT
OPERATING WITH 1000 PSI SATURATED STEAM,
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A disadvantage in the use of these unite is that the heat transfer surface

area per unit weight and volume is relatively small. A second deficiency of

these units is that high-pressure steam must be contained in a large-diameter

annulus; this requires very thick-walled tubular construction and may require

exotic expansion joints to accommodate differential expansion between inner

and outer shells. This potential problem could be overcome with a shell and

made-from-membrane wall structure formed into a cylinder, but this would

require further development and would not overcome the low surface-to-volume

ratio or improve the heat transfer coefficient. The system is basically not

scalable, as larger single units decrease the surface-to-volume ratio; hence,

large systems must contain large numbers of individual units manifolded together.

Maintenance on large numbers of active scraper systems is potentially a major

operational problem.

The cost estimate for this system of exchangers is based upon cost estimates

for large number of systems from Votator, a Division of Chemtron. It is

estimated to cost $4305/m2 surface.

The relatively high cost of individual units and the large number of them

required places this system at a price disadvantage compared with other

systems.

External Surface Scraper--Similar in function to the internal scrapers described,

the external concept uses elliptical blades on the outside of the circular

heat transfer tubes (see Figure 3-8). The scraper blades are held in place by

a series of ribs forming an open cage structure that admits salt to the transfer

tubes and permits frozen salt crystals to fall away. This concept has been

mechanized in a storage subsystem research experiment under the Solar Pilot

Plant Program (ref. 9).

The heat exchange system modeled in this concept was basically the external

tube scraper designed by Honeywell under the Solar Pilot Plant program (ref. 10).
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Figure 3-8. Close-up View of Bottom of Vaporizer Module
Showing Total Scraper

tZ..j
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The scraper modules are located in the top of the storage tanks, with a large

tank top surface area required by the slow solid-salt settling rate. Improve-

went in the overall heat transfer rate compared with the internal scraper is

obtained by the more favorable geometry and the thinner tube walls. Scraping

power requirements were assumed to be similar.

For a 120-rpm scraper speed, with 18 0C LT and 7.62 x 10-6m (3 mil) scraper

clearance, an overall coefficient of 2867 Wm 2-°K was obtained. The results of

the model correlated well with the experimental data in the Solar Pilot Plant

program. The heat transfer surface required for 1000 MW(t) heat rate is 1.94

x 104m2.

The solid salt scraped from heat exchanger tubes has to settle to the bottom

of the tank. Due to the slow solid settling rate, a large tank top area is

required. It was determined from the experiment that a heat rate of 20,500

W/m of tank surface can be obtained. Therefore, the design required about 54

tanks, each 35 m in diameter by 2.4 m in height.

Cost estimates for the scraper units were based on fabrication cost of the

modules made under the Solar Pilot Plant program, design changes to reduce the

total wel;tht, and an 85-percent learning curve for the increased quantity

productio_ No salt manifolding was required, but tank costs increased due to

the unfavorable surface-to-volume ratio required by having the exchanger in

the tank. The total system cost estimate ranks this system close to the

passive system, but maintenance and auxiliary power requirements were not

included in the costs.

Scalability is poor because of the limited number. of units that can be powered

by a common drive and because the surface-to-volume ratio decreases as pipe

size is increased. Heat transfer and high pressures tend to make 1-inch

diameter tubing nearly optimal for the system.
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Shell and Coated Tube Flowby--There are numerous applications in the chemical

process industries where finishes and coatings are used to provide antistick

and release properties for interfacing with the process medium. Any coating

and/or finish for heat of fusion thermal storage applications should provide a

smooth, thin, nonporous, nonreactive surface to discourage firm adherence of

the freezing salt to the heat exchanger wall. The heat transfer should not be

limited by this film. Surface morphology should minimize nucleation sites for

the crystallizing medium. Any coating should be stable at the operating

temperatures of the storage medium and should perform for an industrial lifetime.

In addition, the coating should show p,comise of large-scale use at reasonable

costs. This system was modeled assuming a shell-and-tube exchanger could be

designed to function with a latent heat storage medium. Given the proper

combinations of salt, tube coating or plating, flow velocities and temperature

control, this system may function with minimal fouling (see Figure 3-9).

EXCHANGER TUBING

GROUND
POLISHED
PLATED OR COATED

Figure 3-9. Shell and Tube Exchanger with Deposit-Resistant Tubes
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The heat transfer coefficient for a shell and coated tube exchanger was estimated

to be 2260 Wm2 -'K. The shell-side or salt-side coefficient can be obtained by

DeVore's method (ref. 11). A shell-side coefficient of 4383 Wm 2 -'K was used

based on the manufacturer's (ref. 12) design coefficient for "lfitec storage"

in a solar pilot plant. The design used a 0.6 m/s salt velocity. For a 1000

MW(t) heat rate, a 2.46 x 10 4m2 heat transfer, surface is required.

Pumping power for the salt and for the water, assuming that a recirculating

boiler concept is used, accounted for only a small percentage of the total

power output. Besides initial cost, the main advantages of this system over

scraped-surface exchangers are that shell and tube exchanger technology is

very well developed, and that a few large exchangers can provide sufficient

heat transfer area. Scalability is good, with presently manufactured shell

and tube exchangers having surface areas from less than 0.1 m 2 to over 500 m2

in one shell. Maintenance should be minimal, requiring only a periodic

inspection for tube erosion.

In estimating the price of the exchangers, the estimate for the tube bundles

was doubled to allow for grinding, polishing, and plating as necessary. A

highly polished nickel plating on all tubes was assumed to be required. The

exchanger accounts for only n small fraction of the total cost of the system.

The balance of the plant is the largest single item and includes instruments-

Lion, steel control valves, water treatment, preheaters, foundations, etc.

Jet Impingement--By using extremely high velocities in the flow of the melt

past the heat exchange surfaces, accumulating solids may be transported away

from the surface. In such a case, not only does the melt have a very short

residence time at the surface, precluding freezing, but the forces of impinge-

ment of the liquid salt could be great enough to break off solids that may

have been deposited previously. (See Figure 3-10.)
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Figure 3-10. Jet Impingement Salt Removal

The jet impingement concept is one in which high-velocity jets of salt would

be directed toward the heat exchange surface to aid in removing the solids

buildup. This would be an option if the shell and tube flowby concept has

marginal performance, or if flow velocities high enough to wipe the salt from

the complete circumference of the tubes cannot be maintained.

The heat exchange surfaces are assumed to be formed from membrane wall material

and are polished and coated to decrease salt adhesion. Membrane walls are a

common heat transfer surface used in fossil-fired boilers. The idea is to

apply developed, commercially available equipment and processes to salt storage.

The salt pumping power requirements are not significantly different from a

shell and tube design, as only 2 meters of salt head are required to obtain

salt velocities greater than 5 m/s.
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The size of the refluxing boiler is based on steam velocity at the salt sur-

face and the residence time of the salt. The required salt rate, assuming

75-percent solidification per cycle, is 4 m 3 /s for 1000 MW(t) heat rate. The

steam rate, calculated using steam properties, is 12.5 m3 /a. For 0.07 m/s

(1/4 ft/s) steam velocity, the salt surface area required is 20 m 2 . For a

horizontal cyc'_indrical tank,

A- L x D x N

N 7r D 2 D	 L

V	 2 2 2 + 2

W- 7D (L + D) t + p x N

12

where

A - surface area

L - length of tank

D - diameter of tank

N - number of tanks

V - volume of salt in tank (1/2 filled)

W - weight of steel per tank

t - tank thickness - PD /2S

P - density of steel

Eight cylincrical tanks, 2.3 meters in diameter by 9 meters long give the

required area with the salt residence time of 38 seconds per cycle. Twice the

number of tanks are required if one set is filling while the other set is

discharging. The total weight of steel required for the 16 tanks was estimated

at about 0.7 x 106 kg.
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Self-Pressurizing System--Figure 3-11 is a schematic of a self-pressurizing

reflux boiler heat transfer system. Liquid salt is allowed to flow into the

reflux boiler because of head differences. After closing the supply valve,

water injected into the molten salt flashes to steam quickly. This raises the

system above the condensing pressure and opens the steam valve. Condensate

from the shell and tube exchanger is continuously pumped through the salt

until 60 to 75 percent of the latent teat is removed. At completion of the

discharge, the steam valve and condensate return valve are closed to isolate

the reflux boiler from the condenser. The pressure balancing valve is opened

to relieve excess pressure, and the vented steam is used for feedwater heating

at other points in the plant. When the pressure is sufficiently reduced, the

salt return valve can be opened, and the remaining pressure can be used to

push the slurry back to storage for settling and further separation. Recharg-

ing the reflux boiler with salt is then started by closing the return valve,

venting the remaining pressure, and opening the salt supply valve.

All valves in the steam- and salt-handling system are pressure-compensated,

large-bore pintle valves to minimize the external forces necessary for actL!.ation

and to facilitate short cycle times. Several reflux boilers may be coupled in

parallel to one or more condensers to provide a continuous flow of steam to

the condensers. In the design of the reflux boiler, it is advantageous to

have a large salt surface area to minimize steam velocities leaving the surface

and to reduce carryover. It is also necessary to minimize the ullage space to

reduce the amount of steam blown down at the end of each discharge cycle.

With the free ullage volume equal to 20 percent of the salt volume, assuming

60 percent salt solidification, more than 8 percent of the extracted energy

would be blown down at the end of every cycle. With the free ullage space

equal to 8 percent of the salt volume, less than 3 percent of the latent heat
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Figure 3-11. Self-Pressurizing Reflux Boiler
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would be blown down. These low ratios would improve if the system temperature

was lowered from the assumed 303'C saturation conditions.

Continuous Salt Flow Reflux Boiler--The reflux boiler can be used more effectively

by operating on a continuous basis if a high-pressure source of salt is available.

This has the advantages of reducing the number of reflex boilers required,

reducing the high-pressure steam and salt valving requirements, and eliminating

the flow surges in the salt supply and return lines. Figure 3-12 illustrates

a system where the salt is pumped up to the working pressure, the latent heat

is extracted, and the salt slurry is throttled back down to ambient pressure

through an orifice and control valve. Assuming that a saturation temperature

of 303°C must be reached, that 60 percent of the salt is solidified, and that

the combined pump plus motor efficiency is 60 percent, then approximately 7.5

percent of the thermal output must be put back into the system as electric

power to drive the pump. If the power plant efficiency is assumed to be 30

percent, the net decrease in electric power output is 25 percent. One charac-

teristic of steam is that the pressure increases very rapidly with increasing

temperature. For the pumped salt system, the pump work increases linearly

wi l-h system pressure, but electric power generation efficiency increases with

temperature. Therefore, this system would work more efficiently at lower

pressures and temperatures and would become less inefficient at temperatures

about 300°C.

To decrease the amount of pump work required to operate the continuous salt

flow reflux boiler, a turbine may be used to recover the hydraulic head in the

discharge slurry stream. The turbine is a pump run in reverse that can be

directly coupled to the high-pressure pump. A system of this type is shown in

Figure 3-13. Using the same pressures and slurry densities as in the previous

systems and assuming an expander/turbine efficiency of 80 percent, the pumping

power requirements can be cut to 4.1 percent of thermal output. Assuming an

electric generation efficiency of 30 percent, the electric power required to

drive the salt pumps is 14 percent of the total electric output.
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Reflux Boiler, Open Cycle--A basic assumption previously made was that steam

passed through the turbine must be treated to the exacting standards of power

plant feedwater; this need not always be true. Because heat from storage will

generally be needed during peak plant hours (when all turbines may be operating

at capacity), separate turbines may be necessary to handle the discharge steam

from the storage system. If a larger thermal storage system has a turbine

dedicated solely to it, the water-treatment standards may not be as exacting

as that required for conventional boiler operation. Salt carryover might be

sufficiently minimized by good steam separators and by acceptably clean and

noncorrosive water obtained directly from the reflux boilers. This would

eliminate approximately one-third of the high-pressure shells required and all

of the condensing tube surfaces plus their associated temperature and pressure

losses. Assuming the temperature could be increased by approximately 15°C by

going to the open-cycle reflux boiler, the saturation pressure could be increased

from 6.55 to 8.27 MPa (950 to 1200 psia) with an accompanying increase in

thermal plant efficiency of approximately 3 percent.

The reduced cost of the heat exchanger and the slight improvement in cycle

efficiency appear to make this system the most economical to build and operate.

Tumbling Solids--The effect of tumbling abrasive solids is considered an

alternative to processes involving complex mechanical parts. Abrasive, inert

solids can tumble through a high-velocity or turbulent flow and impinge upon

the heat transfer walls with enough force to crack off pieces of solidified

material.

This system consists of a U-tube heat exchanger tube bundle, around which is

placed a drum carrying abrasives to the top of the bundle. As the drum is

rotated, the abrasives rain down over the tubes and remove the salt from the

tubes by impact and abrasion. The abrasive material probably would be steel

shot. Shot size and rate of transport would be proportional to the strength

of the salt-to-tube bond and the heat flux. This system would require greater
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tube spacing than that of standard shell and tube exchangers to permit free

passage of the shot and would have a lower heat transfer coefficient due to

salt buildup on the lower surfaces of tubes where the shot would not be effective

in removing the deposits.

Higher exchanger costs, lower heat transfer rates, and possible rapid erosion

of the exchanger tubes makes this type of system less attractive than the

shell and tube flowby or jet impingement systems.

Passive System (Reference System)--The modeled passive system assumed that

enough 3/4-inch outside diameter tubes would be placed into a storage tank to

provide 1000 MW(t) of energy for 6 hours, at the end of which time 100 percent

of the salt would be converted to a solid. Calculations showed that the

required tube spacing was on the order of 5.7 cm (2-1/2 inches). This requires

a very large investment in tubes and creates a large manifolding and pressure-

balancing problem. These costs are compensated by the ability of the system

to recover 100 percent of the latent heat, thus reducing both tankage and

medium requirements. Further savings are accrued by having the same in-tank

exchanger perform both charging and discharging functions.

Disadvantages of the passive system include the tremendous manifolding problem

from the number of pressure-tight tube-to-tube welds required and from flow

balancing. Flow velocities through the tubing would be less than 0.3 m/s,

thus creating very low pressure drops. Orifices would be required in most

lines to provide both pressure differences and reasonably high velocities in

the main steam ]-Ines. These problems, plus difficulties with large variations

in heat rate, have not been considered in system prices.
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3.4 SELECTED CONCEPTS

A comparative analysis of the active heat exchange systems indicates that the

most economical systems are those that employ the most compact heat transfer

surfaces. The compactness of the shell and coated tube heat exchanger and the

high heat transfer rata associated with the direct contact reflux boiler

concept are the two features that appear to be the most promising for large-

scale implementation, i.e., 1000 MW(t) rate and 6-hour rapacity.

The coated tube and shell system capitalizes on commercial availability of

tube and shell heat exchangers and assumes successful development of a nonstick

finish for the exchanger tubes. Studies and discussions with consultants have

indicated that there is a good possibility of achieving major reductions in

the adhesion strength of solid salts to the cold metal surfaces of the tubes.

One technique suggested is polishing the heat transfer surfaces to minimize

the mechanical bonding of the salt to the surface. Another technique involves

the application of a thin coating of an amorphous material or a material with

a crystalline structure different from, yet compatible with, the salt. This

might reduce bonding strength of the microscopic scale.

In addition, the possibility of a bright nickel plating on heat exchanger

tubes was investigated. The plating process and additives introduced into the

plating material can have dramatic effects. Thus, a review of the

plating material can have dramatic effects. Thus, a review of the plating and

metal finishing literature was made to obtain information on the most effec-

tive means of obtaining clean, smooth nickel coatings. The most commonly

added agents in nickel baths are those used for production of bright nickel

deposits. Such brightening agents smooth surface imperfections on the ex-

changer tubes. Because imperfections are the points at which solid salt can

adhere most readily, the smoothing introduced by brighteners may inhibit

adhesion. Any such plating material must, of course, be chemically compatible

with the salt media. One crucial consideration is how the salt crystal growth

will affect the wear of the surface finish.

L_
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The second system selected for further study is the direct contact reflux

boiler. Although two heat exchange processes are desired here (salt to

water/steam and condensing steam on tubes), the individual thermal resistances

are so low that their sum is less than the thermal resistance of most liquid-

to-pipe-to-pipe-to-liquid exchange processes. Consequently, a high overall

heat transfer coefficient can be continuously maintained. Furthermore, the

system can be designed to operate without salt transfer pumps. This is accom-

plished by gravity filling the refluxing boiler and subsequently expelling the

slurry with residual steam pressure.

Improved thermal efficiency through elimination of the heat exchangers can be

achieved in a system where the heat transfer medium is the working fluid. The

lifetime of this type of system is directly related to the content of salt

remaining in the working fluid as it enters the turbine. The salt content can

be minimized by good separator design.

3.5 SELECTED EXPERIMENTS

The first experimental module would test a series of flowby heat exchange

processes where molten salt is pumped over specifically prepared heat exchanger

tube surfaces. The purpose of the test was to determine the effects of various

surface finishes and coatings, flow velocities, and temperature conditions on

solid-salt buildup on heat exchanger tubes. It was intended that a small,

easily modified apparatus be built to provide rapid qualitative assessment of

these parameters and to provide heat transfer data. Should bulk flow of salt

parallel or perpendicular to the tubes prove inadequate, jet impingement of

the flow would be a possible alternative.

The second experimental module would test a scale model of the refluxing

boiler. A small, high-pressure apparatus would be built to measure the heat

transfer rates attainable, the proper point of injection of water into the
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salt, and the dynamics of the vapor-salt heat transfer interface with special

emphasis in the amount of salt carryover onto the condensing surfaces. Salt

carryover would be measured by removing and analyzing small samples of the

condensate. Mother phenomenon of interest was the formation of solids in the

melt as the heat is extracted. How well the solids settle and agglomerate and

the ultimate slurry density attainable are important experimentally determined

factors. Water carryover with the discharged salt and possible chemical

decomposition are other facets of the total system that would be reviewed to

determine salt and heat transfer fluid compatibility.

The mechanization of these concepts and the experimental designs are discussed

in the following section.

J
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SECTION 4.0

CONCEPTS MECHANIZATION AND EXPERIMENTS DESIGN

Two active heat exchange concepts applicable to large-scale, latent heat

thermal storage systems were formulated and selected under Task IC of this

contract. These two systems are described in sufficient detail to provide

an understanding of the concepts and the technical issues that the experimen-

tal apparatus was designed to resolve.

The two concepts--the reflux boiler and shell and coated tube flowby--are

first discussed from a large-scale systems point of view to establish the

design rationale for the experimental configurations. This is followed by a

description of experiments.

4.1 REFLUX BOILER CONCEPT MECHANIZATION

4.1.1	 System Description

The reflux boiler concept of heat exchange is depicted in Figure 4-1. The

molten salt thermal storage medium is pumped at high pressure into the pressure

vessel, where water is injected into the salt. The water flashes to steam,

which raises the pressure. The steam flows to a shell and tube condenser.

Here the steam condenses and transfers its latent heat to boil the water

flowing inside boiler tubes. This water can be delivered to a turbine. The

condensate is collected and refluxed into the boiler to start the cycle over.

Because the condenser and reflux boiler both operate at nearly the same pressure,

the condensate pump need only supply enough head to overcome the salt hydrostatic

head and the throttling necessary to achieve balanced flows through the injec-

tion nozzles.
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The salt slurry leaving the reflux boiler has a larger potential energy due to

the high pressure. A hydraulic expander can be used to recover this energy by

directly coupling the expander to the pump. For incompressible fluids, a well

designed pump can be run in reverse to recover head. Salt level control in

the reflux boiler will be maintained by modulating the slurry discharge stream.

A commercial size thermal storage system is shown schematically in Figure 4-2.

This system was sized to deliver 1000 MW(t) for 6 hours using eight refluxing

boilers and eight condenser units. Molten salt is pumped from the top of the

storage tank through the reflux boilers, and the salt slurry is directed back

into the bottom of the storage tanks. Settling, with increased separation of

the liquid and solid phases, will occur in the storage tanks to increase the

percentage of latent heat recoverable.

4.1.2	 Methods of Fabrication

The reflux boilers and condensers are envisioned as having conventional high-

pressure tube and shell construction as used in the heat exchanger industry.

Both the reflux boiler shells and the heat exchanger shells will see the same

pressures and temperatures. The heat transfer capabilities of the boilers and

condensers indicate that a good proportioning of demensions is that one reflux

boiler supply steam to one condenser unit, all units being the same size.

This will provide a price break by using greater numbers of identical components.

Condenser construction is standard shell with U-tubes construction with minor

changes. The tube walls must be thicker than normal to withstand high external

pressure should the plant steam pressure be low. The tube spacing may have to

be increased slightly to provide adequate steam flow over the condensing

surface to minimize the pressure and temperature drop.
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Pump technology exhibited today in the high-pressure feedwater pumps in both

conventional and nuclear power plants can be applied to high-pressure molten

salt pum, )s. The abrasiveness of salt slurry is not known at this time, but

pumps have been built that have hardened casings and impellers capable of

providing lo:)-; service in very abrasive environments.

	

4,1.3	 Scalability

The system may be scaled upwards by increasing the number of units or by

increasing the size of units. Increasing the size of individual units will

pose shipping problems due to size and weight limitations of the shell and

tube exchanger& currently sized at 2.1 meters in diameter by 12.2 meters in

length (7 feet diameter by 40 feet in length). An on-site assembly of some

type of modular construction such as prestressed, cast iron pressure vessels

may shift the optimum size of individual units upwards.

Scaling the system size downward poses no problems until sizes are reached at

which efficient high-pressure pumps are no longer practical. Staging of two

or more pumps in series may extend the range of practical operation crown to

less than 10 MW(t). Design of systems below 1 MW(t) may require special,

high-head, low-capacity salt pumps.

	

4.1.4	 Technical Is su:s

There are several technical i&sues that must be explored before a pilot plant

with a full-scale system could be properly designed and operated. A listing of

the major issues that the test program should resolve is provided in Table 4-1.

These items will be discussed further in conjunction with the test results.
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Table 4-1. Reflux Boiler Technical Issues

• What is the degree of compatibility of water and its vapor with a

dilute eutectic mixture?

• What is the solubility of water in the salt and what is its influence

on system operatiou?

• Is the salt or any particulate matter contained therein carried over

to the condensing surface with the steam?

• If solids are carried over with the steam, do they form deposite that

degrade performance?

• What are the steady-state processes at the water/steam and water/salt

interface and how are they influenced by geometry. considering:

- Water injection rate and location?

- Direct contact heat transfer rates?

- Liquid-vapor and melt-solid mass transport?

• What are the control issues involved during:

- Operations?

- Start-up?

- Sh•itdown?

- Load changes?

- Non-operating?

• What are the transport dynamics of the salt slurry discharged from the

reflux boiler and how are the dynamics influenced by geometry and

slurry density?

A



.•d

4-7

4.2 REFLUX BOILER EXPERIMENT

4.2.1	 Modelina

The experimental apparatu4 used to model the reflux boiler system for a 10-

kWh(t) capacity and 10-kW(t) rate mist resolve the technical issues yet circum-

vent the development of expensive, specialized equipment. This can be done by

operating the model in a batch mode and using compressed gas to transfer the

molten salt into the system. This eliminates the need for a high-pressure

salt pump. In addition, the low-head, high-temperature pump necessary for

f eedwater refluxing is replaced by a low-temperature, high-pressure pump and

water preheater.

4.2.2 Experimental Mechanization

The experimental apparatus, shown in the schematic of Figure 4-3, consists of

a reflux boiler nearly filled with molten salt into which hot water is injected

under high pressure. The molten salt gives up heat to boil the water. The

steam bubbles to the surface of the salt and passes to the condenser, where it

condenses on the cool condenser coils heating the secondary heat transfer

fluid. For the experiment, the secondary fluid was a heat transfer oil,

Mobiltherm 603. It provided close temperature control and high heat transfer

rates without using a high-pressure recirculating water loop.

The water-steam cycle was operated open loop to provide an accurate means of

measuring and controlling the water injection rate. This is achieved by

measuring the rate of water uptake at the pump suction port. The condensate

receiver provided a means of collecting and storing a nominal 15-minute flow

of water, which can later be cooled and analyzed for salt content to estimate

salt carryover. Further analysis of salt carryover can be made by disassembly

of the shell and tube condenser at the end of a test run.
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The filler tank provided a means of injecting and removing salt slurry from

the reflux boiler while maintaining a high pressure within the reflux boiler.

To charge the system, valves V2 and V3 are closed and valve V5 is opened to

vent the filler tank to atmospheric pressure. Valve V1 is opened, and the

charging tank is filled with molten salt to the desired level. After filling,

valves V1 and V5 are closed, and high-pressure gas is used to increase the

pressure in the filler tank to that of the reflux boiler. Valve V2 is then

opened, allowing the salt to flow into the reflux boiler as the air pressure

in the filler tank is increased. Conductivity sensors in the filler tank and

the reflux boiler were used to indicate salt level.

A discharge cycle is initiated by adjusting the gas pressure in the fill-

discharge tank to a pressure slightly lower than the reflux boiler pressure,

and then opening valve 2. Air pressure bleed valve V5 is then opened to

permit the salt to flow into the discharge tank. Valve V2 is then closed, and

the pressure in the discharge tank is reduced to atmospheric pressure. Valve

V5 is then closed, valve V3 opened, and valve V4 opened to allow high-pressure

air to push the salt slurry back into the storage tank for settling or remelting.

At this point the system is ready for recharging.

The advantages of this mechanization from a modeling standpoint are:

• No high-pressure pumping of salt Is required.

• No throttling of a high-pressure salt or salt plus water is required.

• No valves in the salt lines must be opened or closed while high-

pressure differentials exist across them.

The disadvantages include:

• Time-dependent operation.

• Stratification in the salt tank.
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4.2.3 Major Components

The mayor components required for the experiments are depicted on the mechanical

and electrical layout drawings shown in Figures 4-4 and 4-5, respectively.

The salt storage tank, located in the center of the test facility, supplies

molten salt to both the flowby heat exchange module and the reflux boiler

module. The oil pumping unit located away from the salt tank supplies a heat

transfer fluid to each experimental module. The instrumentation rack contains

the common recording, data logging, and display equipment.

4.2.3.1 Reflux Boiler Module--The unit was built in accordance with the

drawings contained in Appendix C. Figures 4-6 through 4-9 show the completed

reflux boiler module at the manufacturer's facility. Various in-process

manufacturing operations are depicted in Figures 4-10 through 4-15. The air

preheater shown in Figure 4-13 is filled with taconite pellets. Figures 4-16

and 4-17 show the unit initially installed at the test facility and with the

test cell enclosure partly completed. Figure 4-18 shows the test cell and

most mechanical work completed. Figure 4-19(a) and (b) show left- and right-

side views of the reflux boiler control and instrument panel. Four-foot valve

extender rods from the reflux boiler module to the control panel allowed

remote manual operation of the five primary flow valves. The salt level

indicating system installed on the boiler and a portion of the heating control

units are shown in Figure 4-20(a). Figkire 4-20(b) shows the valve extender

rods and the myriad of instrumentation wires and hydraulic and pneumatic

lines. Figure 4-20(c) shows a portion of the electrical checkout under way.
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Figure 4-6. Side View of Reflux Boiler Showing Filler Tank Air Heater and
E .	Condenser Receiver in Foreground.
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Figure 4-7. Front View of Reflux Boiler Showing Hand Valves with
Filler Tank at Left
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Figure 4-8. Back View of the Reflux Boiler Showing Condenser Above the Boiler
Tank on the Right. Water Heater is Lower Center Tank.
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Figure 4-9. Reflux Boiler Module (Guard Heater
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Figure 4-10. Reflux Boiler Shell
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Figure 4-11. Heads for Reflux Boiler
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B. Pre -assembly

Figure 4-13. Air Preheater
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Figure 4-15. Condenser Unit in Welding Fixture
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CONTROL

PANELn
CONTROLLERS

Lp 1`^

T^

ref
rc

?I

e ^
	 1

1

4-26

A. Left-side View
	

B. Right-side View

Figure 4-19. Reflux Boiler Control and Instrument Panel
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A. Salt Level Indicating-System Installer! on the Boiler

B. Valve Extender R(	 ,
	

C. Reflux Boiler Electrical
Instrumentetion Wires, and
	

Checkout Under Way
Hydraulic and Pneumatic Lines

Figure 4-20. Reflux Boiler Module Installation
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Salt Level Display Unit--To obtain an accurate mass and energy balance,

the salt level in the boiler must be known. This level must be measured under

conditions of 13.8MPa, 315°C (2000 psig, 630 0 F). An electrical-conductivity-type

probe was selected and a special connector was obtained to meet the temperature,

pressure, and electrical isolation requiremec,ts. The connector with a probe

is shown in Figure 4-21. The lower view shows the upper and lower ceramic

sleeves of the connector with a boron nitride insert that flows under applied

torque to seal and electrically isolate the probe from the tank. Four of

these probes were installed along the top of the boiler as shown in Figure

4-22, and two were installed in the transfer tank as shown in Figure 4-23. The

location of these probes was determined by accurately computing tank volume

versus height. The resulting curves from these computations are g'ven in

Appendix E. A level sensor display unit was designed and construt ^d to

indicate the salt level status. Figure 4-24 is a schematic of this unit and

an audio high-level alarm unit.

Heat Loss and Power Control System--To control the rate of heat lost for

experimental purposes, the reflux boiler i g enclosed by six aluminum panels

equipped with guard heaters installed as shown in Figure 4-25. A typical

panel is shown in Figure 4-26. Ten centimeters (4 inches) of mineral wool

insulation surround these panels. The guard heaters were specified to

operate on 208 vac. The general arrangement of these heaters is as shown in

Figure 4-27. Three set point controllers (G, H and I) are used to regulate

the enclosure panel temperatures. Sp p -ial adaptors allow for the two power

levels as shown in the columns. Controller F (Figure 4-27) controls the

electrical power to the gas heaters and the resulting temperature of the GN2

transfer supply. Controller E regulates the temperature of the salt supply

and return lines to prevent freezing. Controllers A, B, C and D control the

power to the water preheater based on the water temperature upon discharge.

Separate thermocouples from the same TC well are supplied to each controller.

Items 7, 8 and 10 are manually controlled based on periodic , monitoring !)r is

requi4ed. Controllers A through F are contained in power control panel No. 1
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PROBE #1 #2 #3	 #4

_L
20 CM	 -^-

19 CM

1
4C

6 CM

PROBE NO

REFLUX

INDICATION

BOILER TANK

 EUKIIM
1 75% FULL INDICATES 86% OF

MAXIMUM AREA AND 95%

VOLUMNE OF THE

FILLER TANK

2 71% FULL INDICATES 60x SOLIDS

GENERATION DURING

EXTRACTION IF FILLED

TO 75% AT START

3 50% FULL INDICATES MAXIMUM AREA

AND 64" OF VOLUME OF

FILLER TANK

4 20% FULL INDICATES 80% MAXIMUM

AREA AND FILLING

INITIATION

Figure 4-22. Location and Function of Probes Installed
Along Top of the Boiler

..4
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"M 6 5

PMTD

5 951 FULL MAKIR M SALT VON

TRANSFER WITH 51

ULLAGE

6 641 FULL IDICATES SALT LEVEL

FOR 501 FILLING OF

REFLUX BOILER AND

AS FILLING INITIATION

Figure 4-23. Location and Function of Probes Installed on the Transfer Tank
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Figure 4-24. Level Sensor Display Unit and Audio High-level
Alarm Unit Schematic
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Figure 4-26. Reflux Boiler Aluminum Panel with Guard Heaters
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(4) CIRCUITS

120V 10

20 AMPS

ITEM DESCRIPTION

1. TOP GUARD

HEATERS

2, BOTTOM GUARD

HEATERS

S. NORTH GUARD

HEATERS

4, SOUTH GUARD

HEATERS

S. EAST GUARD

HEATERS

6, WEST GUARD

HEATERS

7, BOILER TANK

HEATERS

8. FILLER TANK

HEATERS

9. GAS HEATERS

10. INTERVAL

TRANSFER PIPE

HEATERS

11. EXTERNAL RETURN

TRANSFER PIPE

HEATERS

12, EXTERNAL SUPPLY

TRANSFER PIPE

HEATERS

13-16. WATER

PREHEATER

D

NO H	 208V

TOA

BOTTOM	 C

208V

SOUTH	
20A

.	 L

Figure 4-27. Arrangement of Guard Heaters
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figure 4-28), and controllers G, U and I nre housed in power control panel

. 2 (Figoire 4-29). The circuit dingram for power control panel No. I is

ven in Appendix 1).

4.2.7.2 111gh-pressure Water Pumping Unit--A high-pressurt , water pumping unit

was designed and constructed am shown in Figure 4-30. It contninn a water

supply tank, a positive displacem.•rt pump with pulsation damper, and pressure

regulator and flow control and bypass valves. This tinit can supply 2.31/m

(0.6 gpm) water at 428 MPa. To meet the heat rate requirements, approximately

0.61/m (0.15 gpm) must he delivered at 1n.3 MPa. This unit supplies the high-

pressure water to a preheater unit located within the reflux holler module,

where it is heated to saturation conditions for injection into the salt boiler.

Figure 4-31 shows the basic components. The pump is of triplex, uniflow design

with floating pistons. The water lubricates and cools the pistons. The motor

is a 1.12 kW (1 1/2 HP) and requires 240 volt, 10, 10 amp power. The water

temperature must not exceed 71°C (160°F) during operation.

4.2.3.3 Gaseous Nitrogen System--To transfer salt to the boiler, Ras pressure

is used. The supply is obtained from a bank of "K" bottles manifolded together

as shown in Figure 4-32. A high- and low-level pressure regulation capability

is provided to effectively regulate pressures between 2000-100 and 0-100 psig.

The regulated cool gas is supplied to the gas preheater, where it is heated to

315-330°C (600-650°F) before being admitted to the salt transfer tank. The

gaseous nitrogen flows over taconite pellets, which are heated by external

tubular heater bands. These heaters, shown in Figure 4-33, are rated for 750

watts (in a series configuration) at 240 volts.

4.2.3.4 Salt Storage Tank--The salt storage tank, shown in Figure 4-34, is of

mild steel construction and measures 0.5 x 0.6 x 0.9 millimeters. Surrounding

the tank are four heat loss control panels. These panels are equipped with

guard heater thermocouples and 10 centimeters of fiberglass insulation. At

the base, four range heaters are installed to provide the primary power for

a



4-36

Figure 4-28. Power Control Panel No. 1



Figure 4-29. Power Control Panel No. 2
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Figure 4-30. High-pressure Water Pumping Unit

Figure 4-31. High-pressure Water Pumping Unit Componvits
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Figure 4-33. External Tubular Heater Bands

Figure 4-34. Salt Storage Tank
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melting the salt. When filled with 454 kilograms of NaNO 3 /NaOH, the tank has

a stored thermal capacity of 22 kWh. The ratings of the heaters are given in

Table 4-2. A special design, submerged centrifugal type pump is installed in

the tank as shown in Figures 4-35 and 4-36. The pump shaft is cantilevered to

eliminate the need for bearings being located in the molten salt. This pump

is capable of delivering salt flows up to 1 1/s to either experiment.

A special screen was designed to separate the solids from the returning salt

slurry and to prevent the solids from being pumped out of the tank. This

screen, shown in Figure 4-37, is mounted on an inclined stand and placed into

the tank. A splash guard is attached to the top to prevent salt solids from

getting past the screen. Figure 4-38 shows the storage tank after the mayor

mechanical work was completed. Figure 4-39 shows the storage tank during the

'	 instrumentation and electrical hookup to the controller station, and Figure 4-40

shows it in completed form with the flowby experiment installed and insulated.

Notice the reflex boiler module in the background of Figure 4-40. A special

thermocouple rake, shown to the right in Figure 4-36, was designed to measure

the vertical temperature gradient in the salt tank with measurements every 15

centimeters.

Storage Electrical Power Distribution--The electrical power to the guard

heaters is regulated by 'three set point controllers. Figure 4-41 is a schematic

of the power distribution to the storage tank and flowby module guard heaters.

The left-hand side of the diagram depicts "he set point's power consumption,

and the right-hand side Rhows the power controller and 208/120-volt distribution.

Instrumentation--Instrumentation parameters and locations are given in

Figure 4-42 for the storage tank, flowby module, and oil flow loop. A mixture

of type J and K thermocouples are used to accommodate instrument availability.

Table 4-3 lists the instrumentation for both experiments. Details are contained

in Appendix D.
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Table 4-2. Ratings of Salt Storage Tank Range Heaters

QUANTITY LOCATION TYPE

RATING ACTUAL

VOLTS WATTS VOLTS WATTS

SALT TANK

(4) RANGE HEATERS CHOMOLOX 240 1950 208 1465

(4) SALT TANK GUARD HEATERS MFG. AT HONEYWELL 120 400 120 400

(2) BOTTOM GUARD HEATERS CHROMOLOX STRIP 240 500 120 125

(2) TOP GUARD HEATERS FAST HEAT STRIP 208 700 120 233

FLOWBY HEAT EXCHANGER

(2) FRONT FACE HEATERS CHROMOLOX STRIP 120 500 120 500

(2) SIDE HEATERS CHROMOLOX STRIP 120 250 120 250

(2) TOP HEATERS CHROMOLOX STRIP 120 1000 120 1000

(1) TOP OF EXHAUST DUCT

HEATER CHROMOLOX STRIP 120 500 120 500

(2) BOTTOM OF MODULE CHROMOLOX STRIP 120 506 120 500

OIL FLOW LOOP

(6) TANK IMMERSION HEATER ICHROMOLOX IMMERSION1 240 11500 1	 208 1 1127

4.2.3.5 Hydraulic Pumping Unit --This unit was designed to provide a heat

transfer fluid to either of the experiments. This unit is shown in Figure 4-43

and is shown schematically in Figure 4-44. This unit is capable of pumping 91

1/m (24 gpm) of Mobiltherm 603 oil at 2.8 mp (20 psig) and 315% (600°F)

for extended periods of time. Oil temperature is maintained by a set point

controller. For rapid cooldown of the hot oil. a specially designed counterflow

oil/water heat exchanger was built. The heat exchanger is capable of 11%

(20°F)/minute of oil cooldown. A cast iron centrifugal pump was modified to

provide a seal-tight bearing and faceplate for 315% (600°F) operation.
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Figure 4-36. Installation of Submerged Centrifugal-T ype Pump in Tank
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r	 Figure 4-37. Screen Used to Separate Solids from Returning Salt Slurry and
to Prevent Solids From Being Pumped Out of the Tankr
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INSTRUMENTATION

IDENTIFICATION UNITS
G

PARAMETERS
^^^

t a

s AND TEMPERATURE PROBES ^^ 0 0

NORTH HEATER X J 1 F

EAST HEATER X J 1 F 1

SOUTH HEATER X J 1 F
SALT TANK

WEST HEATER X J 1 F i OUTSIDE

33 25 BOTTOM HEATER X JSK 1 1 1 1 1

32 26

30 27 TOP HEATER X J&K 2 2 2 1 1

(4) RANGE HEATERS (SEE	 M	 BELOW)

29 28 EAST HEATER X J&K 1 1 1

39 29 SOUTH HEATER X J&K 1 1 1 FLOW

38 30 WEST SIDE HEATER X JtK 1 1 1 MODULE

45 31 BOTTOM HEATEf X JLK 1 1 1 BODY

6 32 TOP HEATER X J K

16 1 SALTTEMPERATURE	 ENTER X K 1 1/8 1 1 1

43 1 SALT TEMPERATURE - LEAVE X K 1 1/8 1 1 1 FLOW

34 6 SALT TEMPERATURE PROXIMITY (EAST) X K 1 1/16 1 1 1 MODULE

37 8 SALT TEMPERATURE PROXIMITY (WEST) X K 1 1/16 11 1 HEAT

35 7 SKIN TEMPERATURE (EAST) X 1 1/16 1 1 1 EXCHANGER

36 9 SKIN TEMPERATURE (WEST) X 1 1/16 1 1 1

FLOW METER X 1

PRESSURE (IN t OUT) X 2

1 11

THRU THRU SALT GRADIENT "RAKE" K K 5 5

5

41

15

16 SALT SCREEN TEMPERATURE X K 1 1 1 1
INSIDE

® SALT TEMPERATURE (FOR HEATER
SALT

CONTROL) X JLK 1 1 1 1
TANK

31 17 TANK WALL TEMPERATURE X K 1 1 1 1

FLOW (OIL) X

27 4 TEMPERATURE	 (OIL)	 IN X K 1 1/8 1 1 X

42 5 TEMPERATURE	 (OIL) OUT X K 1 1/8 1 1 X OIL
3 4 M VOLTS J 2 1/4 X FLOti

PRESSURE X LOOP
OIL PUMP TEMPERATURE X JLK 1

OIL EXPANSION TANK (LEVEL) 1

40 33 OIL BYPASS (AT SALT TANK) X K 1 1/8 1 1 X

OIL TEMPERATURE CONTROL (ILOWBY) X J 1 1 l X

® TEMPERATURE MAY BE INDICATED FOR MONITORING.

CHANNELS NOT ASSIGNED 0, 10, 18, 19, 20, 21, 11, 23, 24, 35

Figure 4-42. Instrumentation Parameters and Locations for the Storage Tank,
Flowby Module, and Oil Flow Loop
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REFLUX
BOILER
MODULE

Table 4-3. Active Heat Exchanger Instrumentation

RECORDING INSTRUMENTATION
ITEM CHANNEL VALUE ASSIGNMENT

ILER PRESSURE 53 23,45 NV

OPEN 52
0000,0 OF •

OPEN S1 0.09. OF
TRANSFER TANK SO 103,6 OF T-11

RETURN PIPE 49 67,9 of 7-13
CONDENSER 48 95,8 OF T-22

BOILER FLANGE 47 140,6 OF T-10
GNy OUT 46 119,7 OF T-14

MATER PREHEATER _ 45 69,7 OF T-13
TRANSFER TANK _ 44 111,5 Of T-12

SALT RETURN 43 00.00 OF T-17
SALT IN 42 0.0.0. OF 7-16

MODULE AMBIENT 41 67,4 OF T-24

CONDENSATE REC. SKIN 40 00000 OF 7-10
CONDENSATE REC. IN 39 95,7 OF 7-9

BOILER MATER IN 38 70,5 OF T-6

CONDENSER TUBE 37 109,1 OF T-5
CONDENSER 36 98,0 OF T-4

BOILER STEAM 35 140,9 OF T-2
BOILER SALT-MIDDLE 34 131,6 OF 7-1

BOILER SALT-BOTTOM 33 117,5 OF T-3

OIL aT 32 0,21 mV

OIL OUT 31 68,5 O F T-8

OIL IN _ 30 68,2 O F T-7
SOUTH HEATER __, 19 476,6 OF
EAST TOP HEATER 28 493,E OF
SALT PUMP 27 597,7 OF

OPEN 26 069.10 OF
BOTTOM GUARD 25 469,4 OF
HEST SIDE HEATER 24 481,0 OF
BOTTOM HEATER 23 486,9 OF
TOP HEATER 22 475,8 OF
OIL BY-PASS 21 77,8 OF
OIL-LONER aT 10 348,3 OF

OPEN 19 •'•' ' OF
OPEN 18 0.00 OF

TANK WALL 17 598,3 OF

SALT SCREEN 16 599,4 OF

OP 15 597,6 OF

STORAGE 14 303,4 OF

TANK 13 597,6 OF
RAKE 12 59C,8 OF

TTOM 11 596,1 OF
AMBIENT 10 68,4 OF

E. WEST SKIN 9 480,7 OF

H. E. WEST PROX. 8 480,9 OF
H. E. EAST SKIN 7 71,2 OF
H. E. EAST PROX. 6 354,0 OF

FLOW BY OIL OUT 5 456,1 OF

HEAT OIL IN 4 465,0 OF

EXCHANGER OIL aT 3 13,283 MV

SALT OUT 2 480,4 OF

SALT IN 1 495,9 OF

• FAHRENHEIT SCALE WAS USED DUE TO CALIBRATION OF INSTRUMENTS
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4.3.1 System Description

The shell and tube heat exchange system for use with molten salts appears to

be identical to any conventional shell and tube heat exchange system. The

differences lie in the tube surface property and the heat storage medium.

Available evidence indicated that the proper choice of tube surfaces, surface

preparation, and medium selection would reduce the salt-to-tube bond strength

to permit the solid salt to be removed by modest hydrodynamic forces.

Analysis of heat exchange concepts under Task I of this contract showed that

the shell and tube exchanger system was the most cost-effective closed heat

transfer system. Only the open-cycle reflux boiler, which can take advantage

of a higher output temperature, shows possibilities of being more cost-effective.

From the hardware development standpoint, the shell and tube heat exchanger

technology is better developed and more widely used than any other industrial

heat exchanger technology. The main questions to be resolved in its application

to molten salt thermal storage are the suitable combinations of surfaces and

medium, and the temperature, flow rate and heat rate range within which the

system can be operated.

Figure 4-45 is a diagram of a typical counterflow heat exchanger with an

enlarged section of tube broken out to illustrate the different surface condi-

tions to be explored. Figoire 4-46 is a schematic diagram of a 1000 MW(t)

system with 6 hours of storage capacity using tube and shell heat exchangers

to effect the removal of the heat of fusion from the molten salt medium

thermal storage. For this system, it is expected that a slurry density of

20 to 30 percent will be readily transportable in the pipe lines. To

achieve high latent heat recovery from storage, the slurry is returned
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STEAM MOLTEN SALT

EXCHANGER TUBING

GROUND
POLISHED
PLATED OR COATED

Figure 4-45. Coated Tube and Shell Heat Exchanger with Flowby
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to storage where gravity separation is used, causing the solids to settle to

the bottom of the tank. The less dense liquid rises to the top to be re-

circulated through the exchanger.

Scaling down the thermal storage system capacity to provide a high heat rate

for a short duration may require settling augmentation. At a high heat rate

with a small storage system, the gravity separation of the solid from the

liquid may not occur rapidly enough to provide a high latent heat recovery

factor. Separation of solid and liquid phases could be augmented by centrifugal

separators.

System performance predictions made under Task I indicated that overall heat

transfer coefficients of 2260 Wm 2- •K would be attainable and that ten units,

1.5 millimeters in diameter by 12.2 millimeters in length, would be able to

supply 1000 MW(t) with an 18 •K temperature drop between the salt and the saturated

steam.

Fabrication of the shell and tube exchanger would follow standard practices

after the exchanger tubes receive the appropriate preparation and coating as

will be determined by experiment.

Shell and tube exchangers are commonly made in a range of sizes having heat

transfer areas from a fraction of a square meter to greater than a thousand

square meters. The upper limit in size is usually determined by transportability

rather than heat transfer considerations.

4.3.2	 Technical Issues

The technical issues that have to be considered when evaluating the feasibility

of the shell and tube exchanger are few in number, but crucial to the success

of the system. Table 4-4 lists these technical issues; they will be discussed

further in conjunction with the test results.
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Table 4-4. Shell and Tube Exchanger Technical Issues

e What conditions permit heat transfer without solids buildup on

the heat exchanger tubes?

- Salt to tube temperature differences?

- Salt velocity?

- Surface finish?

- Surface coatings?

e What heat transfer rate can be sustained?

e Does slurry density effect heat transfer rate or salt buildup on the

tubes?

4.4 SHELL AND TUBE FLOWBY HEAT EXCHANGER EXPERIMENT

4.4.1 Modeling

To model a heat exchanger, a differentiation must be made in the beginning

between crucial parameters and those that can be scaled properly. For the

purposes of determining if or how salt freezes to tr: tubes of a heat exchanger,

it is important that the exchanger hydrodynamically approximate a full-size

exchanger. A very common heat exchanger configuration uses outside diameter

tubes spaced in a triangular pattern. This was chcsen as the tube diameter

and configuration to model.

In a large heat exchanger, as was considered for the large-scale system, the

fluids in the course of a single pass through the exchanger will flow past

several hundred rows of tubes as dictated by the tube sheets (baffles). It
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becomes a monumental task to build a small heat exchanger model with hundreds

of ranti.s of tubes. but the effect can be approximated by recirculating the

flow rocpeatedly over the same tubes. This was the approach used for this

experimental model.

Calculations indicated that approx:m_*ely 1.2 percent of the salt would be

solidified per pass through the a»erimental apparatus when flowing at 1.5 m/s

, ad rejecting heat at the rate of 10 W. Therefore, to achieve 20 to 30 percent

solidification per pass, the salt must be recirculated 17 times before returning

to the settling tank for separation.

A second effect that is of some importance in heat exchanger design is the

hydrodynamic development of the flow field within the tube bundle. It is

known that the heat transfer coefficients change significantly due to entry

effects. To improve the approximation to fully developed flow, two rows of

inactive tubes were inserted in the flow stream to develop the flow before it

contacts the active heat exchange tubes and to reduce the number of piece

parts that must be prepared when preparing new tube surfaces.

4.4.2 Experiment Mechanization

The experiment, shown schematically in Figure 4-47, consists of an insulated

mild steel tank that is heated externally with controllable guard heaters. A

sump-type pump is mounted in the main storage tank such that the pump is

always immersed in molten salt. A discharge line connects the salt pump to

the flowby module. The module consists of a rectangular chamber with a tubular

cross-flow heat exchanger, which extends across the test chamber.

The solid tubes are inactive; i.e.. they do not transfer heat but are flow

patterns. Fifteen tubes, 19 millimeters in diameter, are arranged to transmit
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ACTIVE HEAT EXCHANGER

INACTIVF
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SALT FLOW CONTROL
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Figure 4-47. Flowby Heat Exchanger--General Schematic
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heat and are shown by the plain tubes in Figure 4-47. These tubes are blanked

off at the outboard ends and fed with cooling oil from a manifold through

concentric internal tubes. Heated oil flows out through the outlet oil manifold.

The tube bundle is arranged with separator plates and, together with the oil

manifolding, may be removed as a unit for servicing and changing of coated-

tube elements. When the unit is inserted into the test chamber, salt flow, as

shown by the arrows in Figure 4 +7, passes through the tube bundle three

times. Turning vanes maintain a proper flow pattern to simulate a large-tube

bundle.

A discharge duct located above and at the outlet of the tube bundle and the

salt stream channels the flow back to the tank. A butterfly valve regulates

the back pressure and flow level in the channel. F force gauge attached to a

contoured pintle measures changes in momentum of the salt slurry. By measuring

the liquid height and by knowing the force, the salt slurry flow can be calcu-

lated. An electrical contact probe was planned to determine liquid levels in

the flow meter. A small quantity of salt will be continually drained off the

channel through a tube. This salt will flow into the main settling tank.

Figures 4-48 through 4-60 shoo the flowby module in various stages of construc-

tion and assembly. Figi!res 4-48 through 4-50 depict the elements that are

assembled into the unit shown in Figure 4-51. The tube bundle shown in Figure

4-52 is next assembled into the shell shown in Figure 4-53. The resulting

component is shown in Figure 4-54. Figure 4-55 shows the butterfly valve,

return channel, and salt down comer. A cover, shown in Figures 4-56 and 4-57,

and other auxiliary parts are assembled onto the shell to complete the flowby

module. This module is attached to the salt tank as shown in Figure 4-58.

Figure 4-59 is a picture of the flowby module after coating with 1-2 mil of

electroless nickel plate. The module is then assembled into the awaiting

shell, Figure 4-60.

..
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Figure 4-48. Flowby Module'Tube Bundle with Inner Tubes Exposed
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Figure 4-49. Flowby Module Tube Bundle with Active Tubes Installed
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Figure 4-50. Flowby Module Tube Sheet with Inactive Tubes Installed
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Figure 4-53. Flowby Module Heat Exchanger Shell with Cover Removed
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Figure 4-56. Auxiliary Parts of Flowby Module
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Figure 4-57. Flowby Module Cover with Viewing Port Flange
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Figure 4-58. Flowby Module Installed Over Salt Storage Tank
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SECTION 5.0

EXPERIMENTS TESTS, RESULTS AND DISCUSSION

5.1 TEST RESULTS AND DISCUSSION--REFLUX BOILER

Five tests were run with molten salt in the reflux boiler. These were basically

centered around experimenting with various high pressure feedwater injectors

and addressing water solubility and chemical compatibility issues. An evaluation

of the test results indicates that a chemical degradation of the PCM was taking

place due to a hydrolysis reaction of the injected water with the NaNO3.

This precluded the generation of sufficient quantities of steam to develop the

expected saturation pressures corresponding to the PCM mixing temperatures.

These tests and associated results are discussed below.

Test Run 127--The system was configured in this test for open-loop, pressure-

demand, batch operations. The regulator at the water pumping unit was adjusted

for 9.3 MPa (1350 psig) discharge from the waver pump. This pressure corresponds

to the saturation temperature of steam at the salt fusion temperature at 1350

psig, i.e., 307 0C (5840F). The water preheater was designed to receive high

pressure feedwater and heat it to the saturation temperature for injection

into the molten salt boiler. Ideally, the injected water would then be vapor-

ized as it extracted the heat of fusion from the salt. Boiler pressure would

rise to the feedwater pressure level, where a check valve would stop the flow.

The generated steam then would be condensed by the oil flow and collected as

high pressure water in the condensate receiver. Subsequent to the test, the

high pressure water would be blown down through a water-cooled heat exchanger,

and collected at atmospheric pressure in a holding tank.

Results from this run are shown in Figure 5-1. The injector was a long tube

with 30 holes distributed along its length and was located above the molten

salt level in the reflux boiler. The feedwater flow loop arrangement used in
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this test is shown in Figure 5-2. No heat was input to the water preheater as

the unit had been recently repaired and conservative measures were being

practiced. The plot shows the results from a series of cold water injections.

The pressure increased from 0 to over 800 kPa in about 6 minutes. This was

expected to be a rapid pressure response; instead it was quite sluggish. The

amount of water injected was in excess of that required to fill the ullage at

9.3 MPa. High pressure subcooled feedwater was admitted to the boiler. At 30

minutes into the run (strip heaters located on the boiler tank were supplying

heat to the salt--permitting the water injection experiment to be ongoing)

additional high pressure-cold water was injected, and at this point the salt

froze, crusted over, and the boiler was flooded with water. The boiler

pressure fell to less than 276 kPa (40 psig) and the solid salt crusted at the

interface was at 1770C (3500F).

Test Run 128--The results from this run are given in Figure 5-3. The basic

purpose of this test was to determine if heated high pressure feedwater could

be maintained to the boiler and if this would eliminate the crusting problem.

It was anticipated that 9.3 MPa water at 308 0C could be maintained if steam

were generated at sufficient rates into the boiler ullage. The plot demon-

strates the poor thermal response of the feedwater heater to feedwater flow.

Notice that the feedwater was injected in a series of discrete spurts. This

was done because it was feared that continuous injection of subcooled feedwater

would cause freezeup and flooding. It was also clear that a metering valve was

required downstream of the check valve as the standard gate valve was too

coarse for accurate control.

Heat rates of 14.5 kW(t) at 5.5 MPa (800 psig) were achieved in this test, as

shown in Figure 5-4. This compares with a design requirement of 10 kW at

9.3 MPa or 1350 psig. If the difference in heats of vaporization at the two

pressures is taken into account, a heat rate capability of 1.7x design was

demonstrated. The plot also demonstrates that the saturation temperature

corresponding to the boiler pressure closely approximates the condenser tube
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temperature. It was concluded that the pressure did not build up to the

expected 9.3 MPa level because the water was not being mixed with sufficient

volume of molten salt. It requires 3x volume of salt per volume of saturated

water at 9.3 MPa to effect proper heat exchange. (The possibility of a

chemical reaction between the water and salt mixture was not suspected seriously

at this time primarily due to information obtained on the operating experience

of the Olin Chemicals NaNO 3 Production Plant at Lake Charles, Louisiana.) In

addition, from the plot it was reasoned that the low condenser tube temperature

was allowing condensate to accumulate at a rate to preclude continued boiler

pressure buildup. No attempt was made to evaluate the total energy discharge

since operating pressure and injection technique were still indeterminate.

At completion of this run an attempt was made to remove the high pressure con-

densate and measure the weight for a heat balance. Inspection of the apparatus

revealed that the vent line was plugged; later inspection revealed that sodium

nitrate carryover from the boiler was causing the blockage. The carryover was

in the form of dissolved solids in the water that flooded the boiler and con-

denser as a result of the boiler freezeup, which started at time . 40 minutes.

It appeared that the freezeups were being caused by (1) admitting subcooled

feedwater into the boiler, (2) admitting the water through a distributed spray

type injector above the molten salt surface, and (3) lack of mixing at the in-

terface. This led to certain modifications and the conduct of the next test run.

Test Run 026--A new injector was supplied for this run. The distributed spray

tube was replaced by a two-orifice, downward oriented (45 0 to molten surface)

nozzle providing a high velocity jet action onto the molten salt surface. In

addition, the boiler was pressurized to 9.7 MPa (1400 psig) at the onset of

the run with GN2 . The results of the run are shown on Figure 5-5.

Notice that there was no tendency of the salt to freeze up. However, the rate

of heat removed by the oil (oil AT) reached a maximum of about 5 kW at time .

36 minutes. The feedwater temperature fluctuations were lessened with improved
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operating procedures. The partial pressure of water based on the condenser

tube temperature (180 to 216 0C) was between 1.1 and 2.3 MPa. This low tempera-

ture was caused by the loss of oil loop temperature during the run. The run was

aborted.

Test Run 027--This run was an attempt to correct the operating deficiency on

the oil loop temperature control and to start the run without the GN 2 pre-

charge, incorporate a control valve at the injector, and obtain more data on

the new injector. The results of this run are shown in Figure 5-6. During

the run a sluggish response of boiler pressure to injected feedwater became

apparent. The series of injections during the first 20 minutes into the run

produced less than 138 kPa of boiler pressure. Since only 0.7 to 1.5 kg of

H2O vapor at 260 to 30400 is required to produce an ullage pressure of between

4.8 and 9.3 MPa, the degree of chemical inertness of NaNO 3/NaOH and water

mixtures at high temperatures and pressures began to be suspect. At 20 minutes

into the run, with the injector valve open, the salt in the boiler began to

freeze in response to the sudden decrease !n feedwater temperature. It took

approximately 10 minutes for the water preheater to provide temperature recovery.

In the meantime, the boiler pressure increased to almost 2.5 MPa. Unfor-

tunately, the characteristics of the control valve were poor beyond one-

quarter turn, and approximately 2 1/m (0.5 gpm) of water was being pumped into

the boiler. The preheater simply could not keep up at that rate. Essentially

no heat was removed by the oil flowing in the condenser at the time. This was

due to the condenser tube temperature being at a higher temperature than that

of the saturated water vapor corresponding to the boiler pressure; this pre-

cluded condensation. Under these conditions the boiler pressure settled off

at 2.75 MPa.

Test Run 011--The purpose of this run was to test the performance of the unit

with a new jet injection placed below the salt level (about 7.6 cm). A new con-

trol valve was installed for better metering of the feedwater. It was plannPd

to keep the condenser tube at a high temperature (about 300 0C) to preclude con-

.F
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densation until the boiler pressure rose to 8.6 We to ensure a good "head of

steam." Figure 5-7 is a plot of the significant parameters observed during the

run. Again the sluggish reaction of boiler pressure to water injection was

observed.

A series of 14 discrete injections were made over the operating period. The

maximum pressure achieved was 2.6 MPs. The water injection pressure and tem-

perature were oscillating, but the control band was improved. Notice that the

condenser tube temperature was maintained at a high level to preclude steam

condensation. This allowed the boiler and system ullage pressure to increase

at the maximum rate based on the heat and mass transfer between the salt mix-

ture, the feedwater, and its vapor. At the end of the run, 13.6 liters of

distilled water (ambient temperature) had been consumed in the experiment.

The system was shut down and sealed and allowed to cool to room temperature.

An inventory of the water was made. Approximately 3.6 liters were contained

in the water preheater and lines with 1.1 liters in the condensate roceiver,

and 0.9 liters in the internal lines. The net difference of 8 liters was con-

tained in the boiler. Since 1.5 liters of water vapor is sufficient to gener-

ate an ullage pressure of 9.3 We at 304 0C, it was concluded that the water

either (1) hydrolized the salt mixture, i.e.,

NaNO3 + H2O	 HNO3 + NaOH

(2) dissolved in the salt mixture, or (3) formed a chemical complex.

Subsequent chemical analysis indicated that the PCM in the boiler was 70 per-

cent (weight) NaOH with mixtures of iron oxides, NaNO 3 and water making up the

remainder. A sample of this PCM was evaluated for chemical complex formation

with negative results.

Therefore, the first two degradation mechanisms were investigated. First waR

the hydrolysis reaction of sodium nitrate with water to form nitric acid and

A
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sodium hydroxide, followed by the reaction of the nitric acid with the con-

tainer walls

NaNO3 + H2O W----IAI HNO3 + N&OH

7 Fe + 4 HNO3 --+ 2 Fe203 + Fe304 + 2 H2O + 2 N2

Reaction (2) was postulated because iron oxides were present in the mixture.

Based on the information obtained from reviewing the Sodium Nitrate Production

Plant at Lake Chares, Louisiana, it was generally deduced that the Gibbs free

energy of the hydrolysis reaction (1) was positive and by applying LeChatelier's

Theorem, pressure should not influence the reaction. Therefore the removal of

the nitric acid was necessary to cause reaction (1) to proceed to any appreci-

able extent.

The second mechanism consisted of a series of reactions involving the thermal

decomposition of NaNO 3 into NaNO2' 02 , Na20, NO2 and NO, followed by the

reaction of Na20 with water to form NaOH, i.e.,

2 NaNO3 —► 2 NaNO2 + 02	(3)

2 NaNO2— Na20 + NO2 + NO	 (4)

Na20 + H20 --►NaOH	 (5)

It was realized that the thermal decomposition of NaNO 3 was not normally sig-

nificant until much higher temperatures were reached; however, the iron in the

container walls might have been acting as a catalyst.

The change in Gibbs free ener,. for the reaction in which the products are

sodium hydroxide liquid and nitric acid vapor was computed to be -4.7 Kcal,

corresponding to an equilibrium constant of 59.

t
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A thermodynamic analysis of the decomposition of sodium nitrate into sodium

nitrite and oxygen indicated that this reaction was not an important mechanism

in the degradation of the salt. The equilibrium constant for reaction (3) was

7 x 10 2 at 5500C. 1 Assuming that the heat of reaction was not a function of

temperature, an equilibrium constant of 2 x 10-7 at 3100C was obtained.

This corresponded to a 
AGrxn 

of +17.7 Kcal. The equilibrium constant was

small; therefore, the decomposition reaction was not considered an important

factor in the degradation of the salt.

The equilibrium constant for the hydrolysis reaction was calculated to be 0.15

if the final state of nitric acid was assamed to be liquid. Even at this, a

considerable degradation in salt properties could occur.

Therefore, the hydrolysis of the sodium nitrate and water to sodium hyroxide

and nitric acid appears to be an inescapable result of operation in a system

where the salt and water are in direct contact. The thermal decomposition of

the sodium nitrate does not appear to contribute to the salt degradation.

Additionally, a reduction in the pressure of the steam produced in the reflux

boiler below that which corresponds to saturation conditions appears likely,

although the exact magnitude of the reduction cannot be easily calculated.

Because the hydrolysis reaction of water and sodium nitrate appears to be an

inevitable result of their contact at high temperatures, further research into

a system using sodium nitrate and water in direct contact would not be useful.

However, it may be possible to find other materials combinations whicF are

chemically compatible and capable of performing in direct contact in the reflux

boiler.

1Silverman, M.D. and Engel, J.R., Survey of Technology for Storage of
Thermal Energy in Heat Transfer Salt.
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5.2 TEST RESULTS AND DISCUSSION--SHELL AND TUBE FLOWBY

Four tests were run with the Shell and Tube Flowby Module. As a prelude to

these tests a series of experiments were conducted on candidate coatings to

evaluate the most promising types. An electroless nickel coating was selected

as the primary candidate with chrome metal and Teflon, Ryton plastic as

alternates. However, all of the tests with the Flowby Module were conducted

with the nickel-coated tubes. Tests planned with the other coatings were not

conducted because of schedular and financial program constraints. The four

tests conducted with the Flowby Module were made over a range of salt velocities

and overall temperature differences. The salt flow to the heat exchanger was

controlled manually. The temperature difference was varied by adjusting tem-

perature controllers in the oil loop. Salt velocities of up to 1 m/s and tem-

perature differences of 30 Ko were achieved. An evaluation of the results

indicated that the PCM adhered to the outside of the nickel-coated tubes under

all conditions of salt velocity and AT tested. The electroless nickel coa ng

did not provide an antistick surface. The results from each test are discussed

below.

Run 1--In this run the salt temperature was well above the freezing point.

The oil temperature, which initially was at 304 0C, was lowered to 2710C.

Figure 5-8 shows a plot of heat rate, overall coefficient, and AT versus time.

Figure 5-9 shows a plot of the salt coefficient versus calculated temperature

difference between the salt and the tube.. The salt flow rate was estimated at

60 1/m, with a corresponding velocity of 0.6 m/s. Due to difficulty with the

force gauge and the bubble tube for measuring salt flow, this value was esti-

mated from the heat rate and temperature drop in the salt during sensible heat

extraction. In the sensible heat region, the salt heat transfer coefficient

ranged between 2128 and 3080 Wm 2-oK. The higher coefficient was obtained when

the tube temperature was above the freezing temperature of the salt. When the

salt approached its initial freezing temperature, the salt coefficient

decreased with increasing AT. The heat rate, when the tube temperature is

•.i

.
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below the salt freezing point, was approximately 1.17 kW. The salt heat

transfer coefficient was 380 Wm 2-oK, with an 11 Co AT between the salt and the

outside of the tube.

Run 2--The salt temperature at the start was 312 0C. The salt flow rate

was 76 1/m, with a 0.76 m/s salt flow velocity. The heat transfer coefficient

in the sensible heat region was calculated to be 4200 Wm 2-oK. There was uneven

freezing on the tubes as indicated by the thermocou;ler. Figure 5-10 shows the

overall coefficient, AT, and temperatures versus time.

Run 3--Figure 5-11 shows the q, U, AT versus run time for Run 3. The

initial salt temperature was 307 0C (5840F), and the salt flow was the equiva-

lent of 3-1/2 turns on the globe valve (estimated as 91 1/m and 0.91 m/s). The

initial oil temperature was 3040C (5790F), which was above the freezing tem-

pera^ure of 3030C (577.50F) for salt. Notice that with a decrease in oil tem-

perature or an increase in overall temperature difference, the heat rate

increased and the coefficient remained constant at about 1250 Wm 2-oK (220

Btu/hr-ft 2-oF). As the salt temperature decreased to near freezing, the heat

rate and coefficient decreased, as at time a 50 minutes. With an increase in

AT from 10 to 150C (18 to 27 0F), between the time 50 to 200 minutes as shown

in Figure 5-11, the overall coefficient decreased from 540 Wm 2-oK (95 Btu/hr-

ft 2-oF) to 340 Wm2-oK (60 Btu/hr-ft 2-oF) and the heat rate was approximately

constant at 1465 W (5000 Btu/hr). After about 240 minutes of run time, the

salt flow was decreased to 0.4 m/s. With the increase in AT from 6 to 80C

(11 to 150F), the overall coefficient decreased from about 480 Wm 2-oK (85

Btu/hr-ft 2-oF) to 400 Wm2-oK (70 Btu/hr-ft 2-oF), but the heat rate was constant

at about 880 W (3000 Btu/hr). With the salt flow at 0.7 m/s, the overall co-

efficient increased slightly. For a AT from 8 to 11 0C (15 to 200F) the co-

efficient decreased from 454 Wm 2-oK (70 Btu/hr-ft2-oF), while the heat rate

was approximately constant at 1170 W (4000 Btu/hr).
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Figure 5-12 shows a plot of heat rate versus AT for three different salt flow

rates, with salt near freezing temperature. Notice the heat rate is about

constant for a given salt flow. Figure 5-11 shows a plot of overall coeffi-

cient versus AT. The coefficient decreases with AT. Figure 5-13 shows a plot

of heat rate versus salt flow. The heat rate was about constant for a given

salt flow rate. Figure 5-14 shows a plot of salt side heat transfer coeffi-

cient versus AT.

With tube temperatures at or near freezing, the salt coefficient obtained at

full flow of I m/s was 3300 Wm 2-oK (575 Btu/hr-ft 2-oF). With a salt velocity

of 0.7 m/s the coefficient in the sensible heat region was from 2700 to 3100

Wm2
-
oK (480-550 Btu/hr-ft 2-oF). The lower coefficient occurred when the tube

temperature was near freezing and the higher coefficient occurred when the tube

temperature was well above freezing.

With the salt near freezing temperature, the low heat transfer coefficient was

apparently due to the salt layer surrounding the tube. The salt layer thick-

ness appears to be a function of salt velocity and AT. Increased salt velocity

and decreased AT decreased the layer thickness. This suggests a possibility

that at high salt velocities increased heat rates could be sustained.

However, increased salt velocity results in increased pump power. Due to the

poor heat transfer coefficient across the module, the power required to pump

salt through the heat exchanger was as much as the heat rate developed. At

full flow, the pump power required was measured as 2080 W, while the heat rate

was only 1500 W. At least 1250 W were added to the salt as heat as it was

pumped through the heat exchanger. This high pump power requirement was

specific to the experimental setup. On a large scale, the power requirements

would be proportionately lower.
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Figure 5-13. Flowby Experiment - Run 3, Heat Rate versus Salt Flow
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Run 4--In the experiment is was possible to have the salt layer on the

tubes build up to a thickness such that the temperature on the outside of the

salt layer remained above the freezing point and the heat transferred was the

sensible heat added by the pump. This suggested that salt was sticking to the

coated heat transfer tubes. A further test to determine this was carried out

in Run 4 by suddenly increasing the oil flow inside the tubes. The results

are given in Figures 5-15 and 5 - 16. At low oil flow, the oil-side coefficient

was controlling and increasing the oil rate, causing the outer tube temperature

to decrease and the salt to freeze. If the salt did not stick to the tubes,

the overall heat transfer coefficient and heat rate would increase. In Run 4

L_
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at time • 128 minutes, with an increase in oil flow from 46 percent to 76 per-

cent of full flow, the overall coefficient and the salt side coefficient de-

creased with the same overall temperature difference and the same salt flow

rate. This decrease in heat rate indicated a salt buildup on the tubes.
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SECTION 6.0

RECOMMENDATIONS

6.1 SELECTED TES APPLICATION EVALUATION

The reflux boiler using continuous PCM flow was selected as the concept for

large-scale 1000 MWh(t) commercial cost evaluation. The general concept mech-

anization given in Subsection 4.1 is recommended. However, based on the un-

satisfactory results of the PCM in reflux boiler module tests, additional

experimental work with other PCMs is necessary to establish proof of the Direct

Contact Reflux Boiler Concept.

6.2 FOLLOW-ON TES PROGRAM PLAN CONCEPT

6.2.1 Reflux Boiler Concept

Experimentation is recommended with this concept to determine the extent of

compatibility between water, other refluxing fluids and PCMs at high pressures

and temperatures. Investigation of the physical chemistry of the mixtures

should be included. The experimental modules should be designed to permit

closed loop control for the water or fluid preheat, provide thermal tracing

and heat loss control, positive level sensing technique for molten salts and

provide comprehensive instrumentation.

If, as a result of additional experimentation, the reflux boiler qualifies for

larger-scale development, then component development would be required in the

following areas:

e High temperature hydraulic slurry turbines



e High pressure PCM pumps

6-2

e PCM boilers

e PCM flow measurement devices

e PCM pressure measurement devices

e PCM conductivity measurement devices

e PCM energy content measurement devices

e High temperature trace heating devices

e High temperature PCM valves

Of special concern is the development of the high pressure PCM pump and

hydraulic turbine combination.

6.3 COATED TUBE AND SHELL FLOWBY CONCEPT

Continued experimentation is recommended with this concept due to its extreme

attractiveness for large-scale mechanization. The additional testing should

explore the following:

e The effect of higher salt velocities for a given AT using nickel

coated tubes.

e The evaluation of at least two other coatings with the NaNG 3/NaOH PCM;

i.e., chrome plate and Ryton No. 164 (PPS/PTFE) coating.



J

6-3

s The influence of mechanical vibration and sonic@ on adherence of salt

crystals to tubes.

s Analysis of the PCM supplier process producing sodium sulfate and its

influence on the solidification of sodium nitrate from the melt.

• The effect of a magnetic field on the adherence of diamagnetic NaNO3

crystals to heat transfer surfaces.

e The effect of alternate heat of fuaion phase change materials.

a
3
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APPENDIX A

COATED TUBE DATA

A letter of inquiry concerning antistick coatings, Figure A-1, was prepared

and sent to the potential coatings suppliers listed in Table A -1. As a res^llt

of communications with several of these suppliers, samples of coatings were

obtained. In most cases, a prepared substrate was furnished to the supplier

over which the sample coating was applied.

The basic categories to be considered in a coating evaluation program include:

• Tube material and mill process

- SA178-A

- SA192-A

• Base condition

- Mill run

- Mechanicai `finish

- Chemical finish

• Electro-polish

• Electro-etch

R Coating application

- Metallic

- Plastic

Ceramic

- Other

The tubes considered included welded and seamless with mill run, special

mechanical eiectropolish finishes. The coatings included metallic and plastic.
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Honeywell

January 3, 1979

E.! DuPont De Nemours b Co., Irc.
Fabrics and Finishes Dept.
308 East Lancaster Avenue
Wynnewood, Perin.	 19096

Attn: Mr. Riot

Dear Sir:

The Energy Resources Center of Honeywell, Inc. is developing thermal
energy storage devices using the heat of fusion of molten salts in the
temperature range of 550-6000F. Specifically we are seeking a coating
to be applied to the c. -stside of tubes which when immersed in a molten
nitrate bath will inhibit the nitrate crystals from sticking to the
tubular surfaces as they fractionally solidify from the melt during heat
extraction.

The coating should provide a micro-smooth, thin, non-porous, non-reactive
surface with a non-crystalline structure (or crystalline but dissimilar
to the nucleating sodium nitrate crystal structure at 5800F). Also it
appears that a low electrical conductivity is desirable if good release
properties are to be assured. However, heat flow must not be limited by
this film coatir:,. Obviously this coating must be stable at the operating
temperature under the influence of the molten salt for an "industrial"
equipment lifetime. Finally, this coating must show promise of large
scale use on tube and shell type heat exchangers at reasonable cost com-
pared to tubular plating techniques.

Since your company is a recognized leader in anti-stick coatings your
candidates and/or recommendations are solicited.

Sincerely,

R. T. LeFrois
Energy Storage Systems
612/378-4940
Mail Stati8n MN19-T540

RTL; cb

Figure A-1. Letter of Inquiry

ENERGY RESOURCES CENTER. HONEYWELL INC., 2600 RIDGWAY PARKWAY, MINNEAPOLIS, MINNESOTA SM13, TELEPHONE 612/37"



A-3

Table A-1. Coatings and Finishes--Survey Status (Continued)

Industrial Source Response and Comments

Ferro Company No response.
Cleveland, Ohio

SermeTel Inc. No response.
Limerick, Pennsylvania

Gen. Magnaplate Corp. Do not have anything at this time.
Linden, New Jersey Expect it will require extensive R&D.

International Polymer Co. Provided three sample plastic coatings
Houston, Texas including PPS, TFE, and Tyton.

Donwell Company Provided two sample plastic coatings
Manchester, Conneticut including PTFE and PFA teflon.

Morton Chemical Co. Discontinued their line of HNS ceramic
Woodstock, Illinois coatings.

Gulf Oil Co. Suggests use of BTDA and epoxy or polyimides.
Houston, Texas Contacted five cormulators.

Allied Chemical Corp. No materials they feature capable of with-
Morristown, New Jersey standing environment. 	 Suggest HALAR or

ECTFE for lower temperature.

Phillips Chemical Co. PPS/PTFE coating called Ryton may work with
Pasadena, Texas NaNO3 at 300oC.	 Provided samples.

Dow Chemical Co. Provided information on Molykote 321R
Midland, Michigan bonded lubricant spray. 	 Good to 4500C.

ICI Americas Inc. Nothing compatible at required temperature
Wilmington, Delaware including PTFE.	 Suggest "Fluon" for lower

temperatures.	 Would provide sample.

Pennwalt Corp. No response.
King of Prussia,
Pennsylvania

Dixon Industries Corp. Recommended PD-2839, basically a fluoro-
Bristal, Rhode Island carbon.	 Good for temperatures to 3710C.

Extremely interested in this program and
results.

Union Carbide Corp. UCAR ceramic coatings. 	 Plasma or Detonation
Indianapolis, Indiana Gun application; not economical for pipe.

Suggests UCAR-LC-1H chrome carbide.	 Very
expensive.

Cotronics Corp. Ceramic coatings - applicatior problems for
Waterford, New York pipes.

i.



A-4

Table A-1. Coatings and Finishes--Survey Status (Concluded)

Industrial Source Response and Comments

General Electric Co. Silicone release coatings good only to
Waterford, New York 2600C.	 Nothing to recommend.

Whitford Corp. Will provide special formulation containing
West Chester, Pennsylvania silicon resin to be cured at 7000F.	 Xylan

series 8500 modified.

Corning Glass Works No response.
Corning, New York

Fluorocarbon Tribal Provided samples of Milkon-600, a copoly-
Santa Ana, California ester, and Tribolon PI-501, a polyimide.

Superior Plating Inc. Provided eight samples including various
Minneapolis, Minnesota electroless nickel and chrome platings.

Electro-Coatings Inc. Provided Kanigan electroless nickel and
Moraga, California hard chrome samples.

Boyd Coating Research Provided two samples of PFA teflon.
Glee on ale, Massachusetts

E.I DuPont They feel that the only possible plastic
Wynnwood, Pennsylvania coatings capable of surviving in molten salts

are PFA and PTFE teflon.	 Provided data on
formulators of teflon.

Fiber Materials Inc. Did not work in this area. 	 Suggest TFE or
Biddleford, Maine FEP teflon, H.T. silicone or H.T. polysulfone

without graphite powder.

Electro-Glo Co. Provided five samples of electropolished tubes
Chicago, Illinois with varying mechanical finishing conditions.

Able Electropolishing Provided two samples of electropolished tubes.
Chicago, Illinois

Valspar Corp. No response.
Ft. Wayne, Indiana

Armstron Prod. No response.
Warsaw, Indiana

The Dexter Corp. No response.
Industry, California

P. D. George Co.
St. Louis, Missouri

Highly recommends a Tritherm 98 Amide-Imide.
Ability of material to withstand high
temperatures and exposure to salts is out-
standing according to this supplier.

Rust-Oleum Corporation Have a large number of heat-resistant
Vernon Hills, Illinois coatings: phenolics/silicones for

temperatures to 6500C (dry heat condition).
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Figure A-2 shows various metallic plating* on welded/seamless tubes with

different base preparations. Likewise Figure A-3 shows various plastic and

other types of coatings.

A series of tests was conducted to determine the general compatibility of the

tube coating with the molten salt. The first test was to dip the cciting into

the molten salt for about 20 seconds to verify that no chemical reaction or

mechanical failure was apparent. The second test was to let the specimen soak

in the molten salt for about 2 minutes. This was sufficient time for the tube

temperature to rise to the salt temperature. At this point it was removed and

wiped clean of the salt and examined. The results of these tests are! given in

Table A-2. These results narrowed the investigation to the following coatings:

• Electroless nickel

• Chrome

• PTFE Teflon

• Ryton 164

A series of photomicrographs were prepared for selected specimens to aid in

the evaluation of the coatinge. These are shown in Figures A-4 through A-11.
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I

3	 4	 5	 6	 8	 9	 10	 11	 1

1. SA 178-A tube with standard mill finish.

2. SA 178-A tube with 400-grit finish and Mc'; 2 dry film coating.

3. SA 178-A tube with 400-grit finish.

4. SA 176-A tube with standard mill finish and 1-mil alectropoliah.

S.	 SA 178-A tube with 400-grit finish and 1-oil elsctropolish.

6. SA 192-A tube with standard will finish and 1-mil alectroless nickel
Plata.

7. SA 192-A tube with 400-grit finish and 1-ail electrola p r nickel plate

with color buff.

8. SA 192-A tube with standard mill finish and 1-mil hard-chrome plate.

9. SA 192-A tube with 400-grit finish and 2-all hard-chrome with polish.

10. SA 178-A tube with mill finish and I-mil alactrolsss nickel plate.

11. SA 178-A tube with 400-grit finish and I-mil elactroless nickel plate.

12. SA 178-A tube with standard mill finish and 0.5-mil hard-chrome plate.

13. SA 178-A tube with 400-grit finish and 1--mil Ford-chrome plate with
polish.

Figure A-2. Tubes with Various Metallic Finishes
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1. Molykote Spray (MoS2)

2. Silicone Spray

3. Fluoro-Glide Spray

4. Milkon 600

S.	 Tribolon PI 501

6. SA-192-A tube with molykote	 1

7. SA-192-A tube with silicone	 Ay

8. SA-192-A tube with fluoro-glide spray

9. Ryton 164 Plastic coating - IPC

10. Ryton 104 Plastic coating - IPC

11. PPI Syctem I

12. PTFE Teflon

13. PFA Teflon

14. PFA Teflon

15. PFA Teflon

Figure A-3. Tubes with Various Plastic and Other Types of Coatings
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Table A-2. Test Results

SPECIMEN NO.

FIG. A-2
METALLIC

FIG. A-3
OTHER

DIP
TEST

SOAK
TEST REMARKS

11 3 TURNED DARK, THEN BLACK

9 3 TURNED MOTTLED BROWN

5 3 TURNED BLUISH

13 3 R 10 MIN. SOAK AT 327'C, SOFT WHEN RUBBED

12 3 3 2 MIN. SOAK AT 324•C

10 3 3 8-10 MIN. AT 316'C. NON-WETTING - OK

9 3 3 2 MIN. AT 316•C

11 3 X 2 MIN. AT 310 0C - CHARRED WITH RESIDUE

14 3 3 2 MIN. AT 310 0C - OK

1 3 X TURNED BROWNISH. SALT STICKS

14 3 3 15 MIN.. 310 0C - OK

10 3 3 10 MIN. AT 316 0C. TARNISHED

13 3 3 10 MIN. AT 321 0C. TARNISHED

7 3 X COATING PEELED OFF

4 3 X CHARRED AND EVOLVED SMOKE

5 3 X DECOMPOSED AND REACTED WITH SALT

16 3 - SAMPLE NOT ADEQUATE

9 3 3 23 MIN. AT 316 0C - OK

10 3 X 20 MIN. AT 320'C, SOFTENING

9 3 3 4 HOUR AT 321'C - OK

12 3 3 4.5 HOUR AT 316 0C. MOTTLED BUT OK
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APPENDIX B

PROPERTIES OF MOL':EN NITRATES AT HIGH PRESSURES

Fusion Temperature

The Clausius equation for variation of melting point with pressure is

dT - T ('k,-'s)
dP	

h 

v Z and vs are specific volumes of liquid and solid. h f is heat of fusion.

Now,	
r

P^ '	 P	 exp L ^ (P - PLO	 T	 c) I
^,	 J

Substituting and integrating, we get

In Tf2 - 1	
P - Po + 

1	 Iexp(-RTP) - exp (a Po)^

Tf1	
h f 	''s	 ZT PLO 11

or approximately,

Tf2 - exp	
P	

1 - PLO

T fl	 [TfPLO	 Pso

For NaNO3 near melting point,

PLO - 1910 kg/m3	Pso = 2114 kg/m3

h 
	 - 173.2 kJ/kg	 T  = 5800 k

At P - 1 x 10 7 N/m2 or 1500 psi

Tf2 - 1.0029 or T f 2 -
 
T f 1 = 1.7 C o or dT 0.017 Co/atm

Tfl	
dP

0
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Electrical Conductance

Electrical conductance can be determined by

ke- k  exp (-AP)

where,

k0 - 0.3018 exp(0.00383t)
A - 4.58 x 10-4 exp (-5.84 x 10-3t)

k  - conductance at 1 atm in (ohm-cm)-1

t - temperature in 0 
P - pressure in atm

For NaNO3 near m.pt, P - 100 atm, k0 - 0.9522, and k - 0.9447 (ohm-cm)-1.

Solubility

The solubility of water in molten sodium nitrate near melting point is given

as S o - 14.1 x 10-4 moles H2O/mole melt.

The solubility of a gas, Z, in a molten salt may be described by the equation

Z (in solution at P, T) = Z (gas at p , T)

The free energy equation with prodsicts and reactants in arbitrary state is

Qp
OF = RT In _

K
P

	

Qp = Pz♦ 
- 1	 ; K 	 1

a	 s
z	 o

:. AP = RT in ( SO
S

 )

From thermodynamics, we have

dF = Vdp - SdT

I	 g
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At constant temperature,

dF VdP

For gas,

AF -F - F° - R" lnP
g	 g	 g

for pressure changing from 1 atm to P atm, and assuming ideal gas behavior.

For liquids,

AFB - FR - F  - i1VdP - iI
P	

dP

Substituting for p - p  
exp(-ST 

P), integrating and simplifying, we get

F - F° _ - M [exp  ( - R

TJ

P)-11 MP
1	
pos 	 po

At 1 atm,

AF° - Fg - F°̂  - - RTln So

So - 14 . 1 x 10-4 mole H2O , T - 580° k
mole melt

AF° - -7614 Cal/mole

At P atm,

AF - Fg - Fe = (F° + RT1nP) - ( Fe + MP)
0

or

AF - AF  + RT In P - MP
po

At P - 100 atm,

AF = •-7614 + 5242 - 106 - -2478 mole

i.e.,

S

RT In ° - - 2478
S

S = 8.5 S	 1 .
2 x 10-2 mole H2O

°	 mole melt

Solubility at 100 atm and near melting point is 0.012 mole H2O/mole melt.

I
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Density

The variation of density as a function of pressure can be estimated from

isothermal compressibility data or veloc i ty of sound data. The data is

given in Handbook of Molten Salts by C. J. Janz. The isothermal compres-

sibility UT) and velocity of sound (U s ) are defined as:

-
1 ap

ST p TF T

U s 	 ( ap) T .Yi Y-1

P and p are pressure and density respectively.

Integration of the equations gives,

P (T, P) - P (T, Po) 
L 
exp 

CST 
(P-P0)^^

Either one of Lhe equations can be used. The data for p and Us as a function

of temperature is given in the literature.

Viscosity

Based on the kinetic the n- of liquids, an approximate equation for viscosity

is given.

1

U = Nh . exp (0.408 
AUvap )

ti
V	 RT

j	 Where

N = Avogadro ' s number

h = Planck's constant

ti
V = Molar volume, = M/p

AUvap = Internal energy for vaporization

.
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R - Gas constant

T - Temperature, °K

M - Molecular weight

Now, at T - To , p	 po , and U - u^
ti

Po - Nh .p • exp ( 0.408 DU van`
° M °	 RT

Dividing the two equations we get

P - P-
110  Po

but,

P - Po [exp O T 
P)- exp (0TPA

:. Ij - Uo [exp ( OT
 P) - exp ( aT PA

For 'LP» Po , U - Po 
exp ( ^T P)

Thermal Conductivi ty

From the kinetic theory of liquids, an approximate equation for thermal

conductivity is given.

k - 2.80 ( N ) 2/3°.	 us

V

Substituting equation 3 for u s , we get

k/ko	(P/P ) 1/6
0



B-6

or	 r	
`1k ' k0 Lexp 

C6
 OT (P-P0)J^

cr P>>P0

1
k - k0 exp (6 STP)

k0 is thermal conductivity at P0.

Heat Capacity

From thermodynamic properties of fluids, we can write

r A
(dP)T

a-T
`WT P +V

Differentiating with respect to T gives

2	 z
d	 8H	 8 H	 8 H	

IC
dT 8P T a t TAP	 a P3	 p T

or

Nap)
= 8	 3V

T 8T	 - T 8T P + V

n $
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Substituting for V - 1 (specific volume), we get
P

8C P	-2 T 

C^
2

8P T	 3	 p 3 dT

Now,

dp
p - a - bT and dT--b

8C^	 _ - 2 rT b 2 	 1

••	 P	 T	 L p3

Substituting for p - pCP and integrating, we get

2
C  - Cpo - 3 ^	 C exp 1 - 3P  P) - exp (-3a, Po) J

	

o T L 	 J

Using the other equation for density, p -p 0  + P - P o / u 2 s , we get

2C - C	 b T U ' 6F	 1	 -	 1

	

p po -	 s ` ( p̂  a	-+ P) 2	 2( p ou r + Po) 

Both the expressions give the same result.

Calculations

The properties for molten NaNO 3 as a function of pressure and temperature

are given in Table B-1.

The isothermal compressibility is

	

T = 17.8 x 10 12 CM2 /dyne	 at 3000 C

	

= 21.6 x 10-12 CM2 /dyne	 at 4000 C

	

= 26.8 x 10 12 CM2 /dyne	 at 5000 C
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A thermodynamic relationship between electrical conductance and pressure for

molten NaNO3 has been developed. The relationship is expressed as log 10 K-A +

EP, where K is the specific conductance, P is the pressure in atmospheres, and

A and B are constants. This expression can be used to calculate conductivity

of NaNO3 at any pressure and temperature.

Effect of pressure on the conductance of molten sodium nitrate and sodium

nitrate containing 1 percent by weight of NaOH.

The fundamental relationship has been developed from the experimental data

available in the literature.

log 0-A+BP

Wher e

K - specific conductance (ohm - cm) -1
	

I

P - pressw•e (rtm)

A and B are constants

A - -0.447908 + 1.4556 x 10-3t

B - -6.618 x 10-5 + 0.011 x 10-5t

Where t - temperature, 0C.

This relationship is applicable from 1 to 1000 atm and 330 0 to 4500C with a

maximum error of 3%.
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The velocity of sound is

us w uo - at w 2164 - 1.15 x t ( 0C); m/s

The density is

Po • 2320 - 0.715 x T ( 0K); Kg/m3

The viscosity is

uo w 15.45 x 10 -5 exp (3400); N-$
RT	 M

CPO a 1840 Joules/kgoK

ko a 0.570 W/MoK

The above data is at atmospheric pressure.

From the table it can be seen that the effect of pressure on properties

is insignificant for pressure up to 100 atm.

E.
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log10 t: log10 K
Pressure (atm) (calculated) (observed)

At 334°C, log 10 K • 0.0382624-2.944 x 1.0-5P

1 0.0381 0.0343

294 0.0296 0.0253

666 0.0187 0.0160

1006 0.0086 0.0057

At 3460C, log ioK • 0.05573 - 2.812 x 10-5P

1 0.0557 0.0567

223 0.0495 0.0500

388 0.0448 0.0461

666 0.0370 0.0386

862 0.0315 0.0333

1006 0.0274 0.0295

At 3640C, log 10K	 0.08193 - 2.614 x 10-5P

1 0.0819 0.0845

294 0.0742 0.0776

705 0.0635 0.0681

980 0.0563 0.0613
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APPENDIX C

N.EFLUX BOILER MODULE
DRAWING LIST

DRAWING NO. TITLE

D-79015 General Arrangement Plan View of Reflux
Boiler System

D-79016 General Arrangement Elevation of Reflux
Boiler System

D-79017 Boiler

D-79018 Condensate Receiver

D-79019 Water Preheater

D-79020 Filler Tank

D-79021 Air Heater

D-79022 Condenser

D-79023 Boiler Coil and Tube Shee: Details

D-79024 Inner Coil Details

D-79060 Reflux Boiler System Frame

D-79061 Frame Details

+
1	 D-79062 Piping Assemblies
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APPENDIX D

INSTRUMENTATION

The basic instrumentation plan was centered around an automated data record-

ing system. the Fluke Data Logger. and served both experiments. Data were

organized as to type. quantit y . purpose. and location, as shown in Table D-1.

The liquid sensors in the boiler and transfer tanks were located as described

in paragraph 4.2.3.1 and calibrated for volume and area in accordance with the

curves shown on Figures D-1 through D-4.

The boiler pressure transducer was converted from a 4 to 20 milliampere to a

20 to 100 millivolt device. as shown in Figure D-5, and matched to the cali-

bration curve shown in Figure D-6.

J
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Table D-1. Instrumentation - Parameter Assignment

:11"0 x1110"
IDENTIPBCATIOH

UNITS TYP V

OF

a QQ

ARAMET[Bt APO TEMP PROBES Tic ij•

Q
L{I

I SALT 10 WOLFE

(IMd1S[D NEAR W.FACY) l K WILER
T J J "ACC ABOVE SALT IN

WIL[R t r 1101110
T I 1 SALT IN WILCR NEAR

BOTTOM (	 I	 INCH) t C WILIR

l A ! CONDrNSER TEN/ X K CONDYNBLB

T ! N CONDENSEl OIL PIP1.

SIN/ACE TEMP X K CANDLNB[1
T6 1 OIL	 IN TO OUNDINSCN

OIL OUT	 /RINI CONDI:SER
X K CUNDEtlSEI

I 1 I X K Ia1MMb[MSLR
T I 4 WATER IN"	 ION tINP l K WILFR
T 9 II CONDCNSATF RELFIVLt

INTERNAI T"1 (107711) N N U)ND/N[CFIVER"0

IJ SKIN T04	 OY CONDENSAi[/

11C(IVT0 X ' X X GOND/Orcr1VER

TII
11 BAIT TIMP OF 111.118 TANK R I 1I LLF1 TANK

112
- "IN TIMY OF RILL/N TANK K K % l YILLIN TANK

T I) Y WATEK T 	 IN WAY F1

IR I.N I.ATCN X K 1 YATFF PR [H(AT CN

T14
1 1NT Y KNAL T1MY OF CAS ..T11 X K CAB MPATLI

K ILUY UY OIL K K 1111.	 ILOW LOOP

A PR ES SI'NY OY OIL X 011, FLOP LOOP

4 UIL 01/1CRYNTIAL TEMP MV K CONDFNSLR

I UIL BYPASS TINT X N K

X YATLR	 !'UNP	 1'%M;.	 1 41 X A WATER LOOT
A WATYl	 INIILTION	 PA'	 S1^R1 % A WATr1 LOOP

(LOW Of 	 INJC1fION .ATFR X WATPR LOOP

X LAS	 PNYN'i ATrR PRFS.9VRL % X 'AS LOOP

X YILLFR TANK Yr (fi SPRY X X

TI!
SC IN twr UY CA4 PR IIIFATEN A K K N GAS PREHEATER

T16
SALT INLMT TO FILLF1 TANK X K

T I) SALT RETURN FROM FILL10

TANK X K !

;It
SKIN T01P SALT TRANSFER

OUTSIDE.	 SUPPLY PIPF SKIN % X X

T 19 SKIN TEMP SAIT TRANSFER

OLMSIDENYTUNN PIPE SKIN A A X

WILEA PKI: SSUR1 K X

TIO
WILTR TANK SKIN TEMP X l

1 1 NO I L[P	 TANK	 6ALT LF.V1.1,	 111	 2

L J WILLA TANK SALT LEVEL HI2

LT WOO KK TANK SALT LEVER. IOM

L4 WILLA TANK SALT LEVEL L02

L, FILLFN TANK SALT LPVEL HI

L6 11111..8 TANK SALT LEVEL LO

T21
WATER HEATER l K X % 1'0111 JUMCTIONS

T JJ SKIN TEMP OF CONDENSER X N K

T23 SKIN SALT TRAh6FEA PIPE X K l K

T J 12 NORTH (EAST HALF)	 1

T J IS NORTH (WEST HALF)

T 16
19 CAST

T 27 20 SOUTH (LAST NALF)

T 28 21 SOUTH "WEST HALT)

T J 22

WE 

ST

T ) 23 TOP (EAST HALF)

T )I 24 TOP (WEST HALF)

T ) 25 BOTTOM(EASY HALF)

T ) 26 BOTTOM (WEST .11

T ) 1! INTP.IINAL AIR TEMP X X

1 1
16 AMBIENT WON X K l

TIE
INTERNAL AMBIENT OF

NEFLUX BOILER

Is
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Figure D- 1. Boiler Module Height versus Volume
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Figure D-2. Boiler Module Height versus Area
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Figure D-3. Transfer Tank Height versus Volume
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Figure D-4. Transfer Tank Height versus Area
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change materials for storing thermal energy. 	 Over 25 novel techniques for active heat exchange
thermal energy storage systems were identified. 	 Salt mixtures that freeze and melt in appro-
priate ranges were selected and evaluated for physico-chemical, economic, corrosive and safety
characteristics. 	 Eight active heat exchange concepts for heat transfer during solidification
were conceived and conceptually designed for use with selected storage media. 	 Tile concepts
were analyzed for their scalability, maintenance, safety, technological development and costs.

A model for estimating and scaling storage system costs was developed and used for economic
evaluation of salt mixtures and heat exchange concepts for a large-scale application. 	 The
heat exchange concepts were sized and compared for 6.5 MPa/281

0
C steam condistions and a 1000

MW(t) heat rate for 6 hours.	 A cost sensitivity analysis for other design conditions was
also carried out.

Tile study resulted in the selection of a shell and coated tube heat exchange concept and a
direct contact reflux boiler heat exchange concept. 	 For the storage medium, a dilute eutectic

mixture of 99 percent (weight) NaNO 3 and 1 percent (weight) NaOH was selected for use in ex-

perimenting with the selected heat exchanger concepts.

Two 10 kW(r)/Hour capacity, 10 kW(t) rate Thermal Energy Storage (TES) modules, embodying
the selected concepts, were designed, constructed and instrumented for testing.

Test results with nickel-coated tubes showed that the shell and coated tube heat exchanger could

not generate the required heat rate due to the salt sticking to the tubes. 	 The direct contact

reflux boiler demonstrated high heat transfer rates, but also showed strong hydrolysis of the
sodium nitrate.
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