

N O T I C E

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT

CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH

INFORMATION AS POSSIBLE

(NA.SA-CR-163425) FLIGHT SOFTWARE
REQUIREMENTS AND DESIGN S4JPiORT SYSTEM
Final Re poet (Colorado Unix. at Boul°ier.)
18 p HC A02/MF A01	 CSCL 0 `313

Final Report

To National Aeronautics and Space Administration
Langley Research Center

N,Au- 3J061

`ncl,lo
G3/61 28 -J 33

For Grant NSG 1638
Flight Software Requirements and Design Support System

William Riddle
Bryan Edwards

August 1980

Intro¢^^ion

The overall intent of this project was to investigate the

desirability and feasibility of computer-augmented support for the

pre-implementation activities occurring during the development of

flight control software. The specific topics to be investigated

were:

. the capabilities to be included in a prq-* - - Inentation
.a uppor t §y__t_pm for flight control software system devel-
opment, and

. the specification of a preliminary design for such a
system.

Further, the pre-implementation support system was to be character-

ized and specified under the constraints that it:

. support both description and assessor ent of flight
control software requirements definitions and design
specification,

account for known software description and
assessment techniques,

	

be compatible with existing and planned NASA fli 	 Vi	 "^ti3jJ,
control software development support systems, a

z	 ,

	

cs	 S^^ F PC^11^YJ;

	

P	 ^,

v^

."	 ;^^..:

. does not impose, but may encourage, specific devel-
opment methodo logies.

In this final r^:port, we give air overview of the results

obtained during the project -- specific detailM are given in the

reports included as appendices. In the next section, we address

the issues concerning the languags:s provided for the description of

requirements and designs. Then, in the succeeding sections, we

address issues concerning. the tools included in the pre-implementa-

tion support system and the basic nature of the support system

itself.

Languages

Our investigation of the capabilities desirable ,for the

description of flight control software during pre-implementation

development phases began with an attempt to describe the Annular

Suspension Pointing System in a fairly rigorous, formal manner.

Tn reading the original description of ASPS, which had been

prepared by fJASA Langley personnel, we felt that it suffered the

usual problems encountered when using informal description media

such as English prose, block diagrams and timing diagrams. The

description itself had very little structure and was relatively hard

to follow.. Also, various aspects of the system were presented in

an inconsistent manner, both in terms oi' the content of the descrip-

tion and in terms of the level of the description, and it was

difficult to detect inconsistencies and omissions.

Using the understanding of ASPS obtained from the original

description, another description was produced (see Appendix A)

.	
^^

using the DREAM Design flotation (DDN. The UDN description is

E^^.erarcha.aally structured and at each level of the hierarchy, all

Gank»nents of ^hc system art pr^:sented at th y: same level. oC detail.

Further, in the unN description, all rr'lationships among system

components are explicitly stated and thus inconsistencies and

omissions are more easily observed.

The DDN description is decidedly better in terms of rigor,

Flowever, it fails to capture several. aspects of the /1SPS system:

absolute time characteristics of praces;;es within the system,

time slicing of processes, system int,ali^ation, and ±'.he use of the

main processor interval timer to verify the master tinning pulse.

Failure to capture some: of these aspects is acceptable heeause they

are not really concerns during; requirements definition or (higlz-

level) design. However, the inability to describe them highlights

a (previously known) fai:link; of the DDN language, namely that it

does not contain facilities for describing the .absolute time char^rc-

teristics of systems.

In order to more completely consider the issue of the rigorous

specification of requirements and designs, we wanted to prepare

other descriptions of ASPS in other well--defined design description

languages. tale attempted a description in the Gypsy language, but

did not find it su p.table for describing ASPS at the design or

requirements definition level --- the level at which the system was

described in .UDN.

The difficulty lay in some major differences between the DDN

and Gypsy languages. 'These two languages differ significantly in 	 ^^

..	 .^

terms of two characteristics which may be called .^^^ ,^,^

and Lf^.L.e.^^ ^^^.^,. The property scope characterista . c concerns

whether ar not ttte global, overall proper, ties of a system may be

described -- a language h^^ving local property scope may be used to

describe th^^ characteristics of a systems components and one Having

global pr^aperty scope may be used to state the properties of

collect'^ans of components. The prapert-y statement characteristic

conccra,s haw system properties are described. A language f7aving

implicit property statement, with respect to some property, allows

that property to be only implici tly stated, i. e, , the property must

he deduced from L-he information which is explicitly stated. 11

language having explicit property st3ternent, on the other hand,

allows that property to be stated usink the primitive constructs of

the language.

In attompta,ng to develop a Gypsy description of ASPS that wa s

comparable to the DDN description, we found that whereas DDN has

both local. and global property scope, Gypsy has only 1oca1 property

scope, and whereas DDN has explicit prape;^ty statement with respect

to behavioral properties., Gypsy has only implicit property statement

with respect to behavioral properties. L^ecause of the impossibility

of describing global properties anti explicitly describing behavioral.

properties ^.^e did not feel it was fruitful to further investigate

the Gypsy language as a medium for the description of flight. control.

software requirements and designs. Specifically, as a result of this

exercise, we feel ttlat any language for the pre-implementation

description of flight control software should contain capabilities

similar in nature to the following wk^ich are present in the DDN

^^

language:

SUBCQP1I'ONENTS ^-- to a11ow the explicit description of the
hierarchical organization of th y: system

C©NNECTQNS --- to allow t1^e explicit specification of the
global connectivity rc^;ationships among a system's
componet.ts

. ^VGNTS and DL;STRCD BEMAVI©R -- to allow the explicit
description of the global behavior characteristics. to
be exhibited by tl^te system

Wo feel that it is more than merely desirable to be able to state

the global properties of a system during its design since ttaese

global property statements may be effectively used to check the

suitability of lower-level design decisions made during the process

of iterative enhancement. This ability in turn helps in verifying that

the design is internally consistent and permit,, the early discovery

off' omissions.

^Je came to one other conclusion as a result of our attempts to

use the Gypsy language to describe 1^SPS. lJe feel that Gypsy is

more appropriately considered to be an implementation description

medium rather than a pre-implementation description medium. Further

we feel that the fact that the Gypsy language utilizes basic concepts

(such as message transfer) which makes it a natural companion to the DDN

language.. There are other natural companion languages of course,

such as ^lda, but the point is that in developing pre-implementation

:languages, they should be based upon the same set of primitive

concepts as the implementation languages, ^t^d Vl.ce versa..

To broaden our investigation of languages despite our inability

to use the Gypsy language in this endeavor, we turned to a survey

•.r^

of actual deaariptlons of flight control software systems, We used

the Proceedings of the Programming Languages for Heal-time Systems

Workshop held at NASA Langley Research Genter in October 1.979 and

scann:: •i these proceedings ^o determine answers to the following

questions:

. What aspects of flight control systems are typically
described in reQuirements and design descriptions and
what aspects are frequently omitted from these descrip-
tions?

What description media are typically used^

. What description media are not used and could they
be effectively used?

What is a typical description medium used to describe?

. What could a particular descript i on medium be
fruitfully used to dF^scribe?

We summarize our findings in the following paragraphs.

The most commonly used descriptive medium was Cnglish prose

structured in a hierarchical or outline-< form. Tt was usually used

to describe the bt^havior of the system is a very loose manner. One

descriptive technique that. could have been, but was not,. used to

make these behavior descriptions a bit more. rigorous is regular

expressions.

Block daagra ►ns and. flow charts were also used. Slocb:

diagrams were used to describe the functional units of a system.

Very frequently, the units were physic^^l, hardware: ones, and the lines

between the blocks represented communication pathways. Usually the

paths in the block diagrams were bidirectional. Flow charts were

used to describe some type of cycle, for example, an execution cycle

or a project life cycle. Usually, but not always, the arcs in the

^,	 -	 . . .r^

^^^

flow charts represented d^,rected paths.

A variety of information was represented in tabular form.

Included were tables of items and their associated costs, cross-

correlation tables and transition tables. ^ regular expression

notation could have been used to effectively represent bath the

information presented in the tables and correlations of items

indicated in the tables, e.g., correlations among transitions

ndicatj t^^g common transition wa^;t^ences.

pverall system timing was usually presented in the form of

timing diagrarris. This information could have been mare extensively

and formally represented by using clock variables (such as found

in Gypsy) and giving regular expressions ever the values of these

variables to express timing constraints.

Graphs indicating the relationships between two variables were

frequently used to indicate project dynamics. These graphs usually

communicated a history of the occurrences of an event over time.

Lastly, schematic diagrams were frequently used ts^ give a

drawing of actual e,.,ipment or an "artist's conception" of the final

system. Sometimes these schematic diagrams were presented with

associated block diagrams to show the physical layout of a syst,em's

functional units.

The descriptions frequently did not distinguish between

whether a particular aspect of the. system was a system requirement

or part of the system design. This is a very common happening

when the description is prepared after the fact and the developers

^''

_ ,,:	 . •rJ

h43ve lost sik;ht of whether a particular aspecti is there because it

was .part of the initial requirements or because it was the result

of a design decision. Tt paints out the critical need to carefully

demarcate the description of a system's requirements, which are

immutable and fired, and the description of the system's design,

which may be changed as long as the new system design still

],earls to the delivery of the characteristics and properties

specified, directly or indirectly, in the requirements.

Another characteristic of the descriptions inspected was that

it was difficult to trace the effect of decisions through tihe design

and relate these decisions to aspects of the final system. It

would seem that, in addition to facilities for directly capturing

the effect of a decision, it would be important to have the capability

to have more structured descriptions that would capture, in the

organization of the description itself, same of the interrelationships

among the various aspects of the description. Also, it is important

for the purpose of tracing requirements and design decisions ba be

able to rigorously specify the "world" in which the eventual system

will operate since the hardware, software: and human aspects of this

"world" inipact; and constrain the decisions that can be made.

Some attempt was made to identify the tools that could and should

be included in a pre-implementation support system oriented towards

flight control software system development. One attack an this aspect

was to hypothesize the sequence of activities that must be carried 	 ^

I
^i

^+a
__..^.^.^^..^._ .___.	 _.	 _	 ;gad

out. by a .number of agents during flight control sof tware system

development -^- in essence, L• his amounted to giving a very detailed

life- cycle for the development of these systems. Once this was

developed, note was made of the tools that would be useful in

aiding each of the activities. The results of this part of the

project arc given in Appendix B.

To augment this activity and give some. indication of the

spectrum of foals which are available (as opposed to those which

;^ho^^ld be available), a bibl.^.o6raphy was prepared giving references.

to literature concerned with tools which enuld support pre- imple-

nentation cevelop^;ent act^,ivities. This bibliography appears as

Appendix C. The bibliography was not intended to be complete but

a number of so urces wore utilised and it does give a fairly accurate

indication of the .range of capabilities available. (lt should be

emphasized that the bibliography, besides fixing on tools for aiding

pre-implementation activities, does not reference any literature on

development methods or techniques, i.e., cognitive tools, or any

literature on descriptive media, i.e., notational tools.)

The. conclusion that we wish to suggest may be drawn from a

perusal of the tools bibliography is that a large number of quite

adequate tools exist already and that an effective and useful

collection of techniques and capabilities can easily be identified.

The problem that arises is obvious -- although the collection of

capabilities and techniques may easily be identified, implementing

them. in some cokerent, integrated manner is entirely a different

matter, let alone very difficult. We will address this issue again

in the next .section. 	 j
l

^... , _ _	
d_	 __-	 ^"^

we ware unable to give concentrated attention to the vary

important question of the ecmpatibtlity of capabilities anal techniques

already present in the P1UST environment and those which should be

included in trie pro-implementation support system. It is clear that

the intend of some of the already axistin^ capabilities and techniques

is consonant with the requirements levied upon. the capabilities and

techniques necessary and desirable during. pre-implementation

activities. This does not mean, however, i:hat the exsr,ing techniques

and capabilities are the ones of choice when efficiency,

effectiveness, and performance crt^:ria are considered.

^'or example, the DAVE system employs annotated graph

representations of a program g rad then duos graph searching activities

to identify anomalous occurrences. This processing. can also be

thought of as doing language theoretic operations upon sets of

sequences defined by regular expressions; this latter, functionally

equivalent processing approach was not chosen for the DAVC system

for efficiency and performance reasons. It is, for a number of

reasons, quite viable at the pre-implementation level because of the

generally smaller and less complex descriptions (because of the use

of abstraction) which exist at this level.

The ^.onclusion which we .reach from this train of thought is that

the questions of what capabilities and techniques should be used during

pre-.implementation activities and the extent of overlap between the

capabilities and techniques used before and during implementation

are much more difficult than originally perceived. The more we

addressed these questions, the more we felt that we e,^u1d not, in

w

=^i

the lifetime of this pro3ect, adaquateXy address them.

41e did, however, devel,ap the Strang fceli g that the way to

approach thaw questions was ex per^.m^:ntally. I3y this wo mean that;

a trial-and-error, ^.teratve approach to deciding the appl;tcabilty

of already axistin^ capabil.i.ties and techniques and decf'.ing the

relative effectiveness of new techn^.ques and ^:a^^°^bi^ hies ^.^ the

a ►̂ proprate way t;o procead. In the next section, we wi^.l give some

guidelines for carrying out this approac}^ -- those guidelines were

in part affected by our consideration of the ^,uestion,s discussed

here.

In cor,^cludl.ng this section, wa should emphasize that the tools

of use during pre-implementation are, in a sense.,. fundamentally

different from those of which aid implementation activities. Dy

nature, thc^ activities occurring dur^ 	 emantation arc

explvrato^. ,° O rd speculative; ^•^her^as thoso occurring during

implementation arE stt^aight^vr^^ard and well.-defined. It is, i:here-

fore, hard to duplicate th^^ leva]. of automation that has been

achieved for tools of u:^e during implementation. Instead, it is

necessary, at this point in i^.ime, to make the tools provided to

support pre-implementation activities very intersetive -- they

should in essence be considered as extensions of the human

developers and should. be viewed as augmenting rather than replacing

the developers. Tools which serve to ^^animate'^ the system description

and provide information concerning its behavior as feedback to the

developers are particularly important in this regard.

•	 _., ,.wi

.^'c.Cl YY^^,^^2,Ct.^^'^t^+. 4

Teals become a^.l the more useful and ^fCective whin they are

provided as a coherent, w^:ll-integrated sot ^^ one has only to

cam^are ^ toolbox with a machine shoJ^ to cot^te to this conc^.usion«

The result of this integration is an ,^,.t^,1;t1^, in whi.oh the

development practitian^r^^s may pe^rfor^n their day^t;o-day work. Ta

conclude the inva^tigations of this pra,^ecty we were interested in

the questions what is a goad basis for prav3,ding an i ntegratPct

set of tools for aiding flight control software development and

how can stick an environment be delivered to development practitioners

in a reasoned :and ralntiveJ.y inexpensive manner?

With regard to the first question we feel that the organization

of choice for development environments is one in which there is a

central data base which serves as a repository for all information

ever generated about the system under development. This is not a

particularly startling observation at this paint in time as this

organization is the one most often used ar suggested. 4Je would like

to paint out, however, that it is about the only organization that

is consistent with our suggestion that the Investigation of tools

be experimental in nature. This is because it provides the flexibility

necessary to adct and subi;ract tools since it imposes no restrictions

on what tools are available .and how they are provided in the environ-

ment. (Additionally, it should be Hated that this organization

permits avoiding the imposition of methodologies through the

environment itself since methodological, constraints come, when using

this organization, in the form of rY ules and guidelines for using the

"^

.^

tools nrav3ded by the environment.>

We ►tiia'^e reached this conclu:^ion a a result of a number of

ntropective reviews of our prev;^ous wart< on the pR>aAM deve^.opment

support system, One of the;;e review; wL^s very general in nature

anal tried to assess the current state of affairs, accounting for the

history of deve;.opmcnt enviranmc^nt in general. This re view appears

a:, Appendix p.

4^^e also have prepared a review -M appearing 7s Appendix ^ ^^

which. considers the I7ftE.AM system alone, but pays attention to

no g-,-technical as well a technical aspects, As a rc,u].t of this

review, we feel strang,ly that the t)Rk;Ah1 system organization sad the

set of concept: cry:bG► di^d in tht LPN a.arat;ua^;e Aare bh^w right w,:+y to

proceed but Gt^^.t tt;^^ s+:t a!" concept. is ir^compt^:te (as Hated he:fore

in our discussion of language issues) and that• more careful thought

is needed concerning the syntax of the langua^,e delivering the

concepts and the orhanization of the tools in the environment.

The final review appears as Appendix. F' and contains little

.hindsight but rather attempts to establish a vocabulary for talking

about environments and a framework for thinkingr about their design

andimplementation.

Another aspect of this part of the project was to prepare a

bibliography on soFtware development environments -- this appears

as Appendix G. Again, an attempt was made to be fairly complete

but. the bibliography was not intended to be exhaustive of the

liter7ture. Tt was, however, extremely disconcertnt; to find two

•,^^

other bibliographies that. had very little overlap with ours ^-^

one which covered the area of programming environments such as

the Lisp rnaohne and the t>ther covered development environments.

(Our bibliograpF^y has since been merged with the second one cited

above and will appear in the Proceedings of the Symposium ort Software

Engineering Environments held in Cologne., Germany, which is to

be publai.shed by North Elolland in ^etober.) The lesson to be].earned

from finding these other bibliographies is that there is a

^^p,^^ndou ^, amorant of activity in the area of environments and that

the literature is not appearing in a small, concentrated segment

of the computer science publications.

To conclude, we would like to suggest an incremental approach

to deliveri.irg flight software development support environments in

which a series of progressively more sophisticated environments are

producer], the last of which is what we feel would be the complete

environment. (Tt should be noted that we were helped in developing

this incremental approach by participating in a NBS-sponsored

workshop at whicr; rchis topic was given concentrated attention by

a working group of seven people aver three. days,).

The initial environment would provide the minimum necessary

support,. much of it through manual rather than automated procedures.

This system (and all of tkle others) assumes the presence of several

pieces of standard system software (such as compiJ.ers, linking

loaders, runtime libraries, file systems, etc.) suoh as are found

in the h1UST environment. To arrive at a minimal pre-implementation

environment, little need be added to this assumed core since a number

,.

a^

of cn^rnual procedures :rre availatalG for thcr control of trieces o9

textual information ;:rntt 'rtle iaSSe^SIi ► trr1t Cl f i.Ls valid ity. 	The paint

is ttrat a mininr4^l e'nviranmcnt can be rtrader available toy au^mentin

t'ilJST with manual procedures for requiraments definition, desw,^,n,

testing and project rrranatcmcnt.

Regtrirerrcents would tae kltrndled vy in. ► titutin^; manual procedures

(for example, the u:,e of 4^AI^T diagrams? f'or the definition of

re^qui; err7ents.	 I)eai^rt coald tae t^7ndled t,y informal design procedures

chosen and iruplemerrted by the project loader. To handle the

or^anizint of the various descrpL°°ions, a partially implemented

text control systeru (using the ideas embodied in floe 11N1:X source

code control system) would tae aincluded. 'This system would include

facilities f'or text ontry and editing; and facilities for "version"

control.	 It would also include: f'acilitieN for maintainir7^ a szntpl.e

dreatary allowing 'or the cosy rear-ievul of pieces of text.

Analysis would be handled rn^rnurally as would be project manage--

meat. This latter aid could be; augmented lay facilities for the

preparation of PORT-type charts.

This first in taro series of environments is admittedly primitive

and simple --- but it indicates that a l;ood deal. of aid COU Id be

provided by a relatively simple extension to t11e h1UST environment.

Tt rFlies upon existing, software and manual procedures and, as such,

does not r^:preserrt a 1arg;e axpense in tcrtres of time or resources

in ardor to provide a basic, simple environment. tJc feel that this

environment would lac sufficient to support small, r -"a person flight

control software devclapme:nt projects.

Extensions can be made to arrive at a second system in the

series. The most extensive addition would be a data base systcrn

(mostly already provided in MU S?) wl^tich would provide support

for keeping track of objects, object .attributes, and relationships

among objects. This "simple" change hits vEry broad implications

since it moves the environment toward: one in which there is a

central, repository of information and tlZUS the basis for tool

integration.

Rec,uirements could now be lcept in rTrachine-processable form

in terms of objects, attributes and relations (much as in the xSi)OS

system). Simple analysis procedures could be provided to analyze

requirement descriptions for completeness and form. Manual

procedures could. be defined for snore extensive analysis.

The manual design procedures could also be replaced by simple,

.formal techniques which also relied on the definition of designs

in terms of objects, attributes and relations.. As with requirements,

the designs could be analyzed far completeness and Form. E•lowever,

automated procedures for checking; tide consistency of requirements

definitions and designs would not be included.

Project management could also be aided with. the addition of

a simple project control system, again relying on the use of

the object-attribute-relation rlata base.	 ^^^itomated aids for 1':,he

generation of project status reports, milestone prt^grc:ss reports

and dependency charts could also be included.

This second envirUnrnent in the series would not be a tf,rribly

-t

q

lame step sway from the fist and would naL- be difficult to

implement. but it lays the groundwarlt for all subsequent environ-

ntents through th y: introduction of the central dat •,a base, We fool

that it could be effective in aiding, medium aizcd projects.

Tl°te rest of the environments in the series would be obtained by

adding ►Wore and ►Ware sophisticated ao;1s^ Languages could easily

be added to the system and ^.he data u,^:,» could be used to help

maintain descriptions written ^^^ithin the languages. since a fragrner^t

of text can be vie^^ed as a object and the means exists for keeping

tracit of these text fragments, their attributes and their relaton-

ships.

Tools could rather easily be added or deleted from. the environ-

meat as long as each L• ool is viewed as using the information in the

data base to produce new information to be added to the data base.

Tools for possible inclusion would be: data flow analyzers, pretty

printers, flow charters, control flow analyzers, performance monitors,

simulators,. crass refereneers, etc. In fact, most of the tools

indicated in tree tools bibliography appearing in the appendices

ar• e candidates with the primary decision being whether the effort

of implementing versions which. oper^rte on the descriptions in the

languages Iarovided by the environment is cost effective with

respect to the benefit derived.

This scenario of successively more sophisticated environments

is simple but effective, It allotiti^s a gradual committment to the

production of an environment and a gradual expenditure of effort and

money. It also provides useful environments along the way --

tt

cnvir^unm^:ntw whi.eh a^ro not on^,y abJ.ci to he; ^ase^i for ^'^.i^ht oontro^.

software development kaut also mtay be u.,ed to evai,uate the effeetive-

ness oC envirQnme:nts in t,hc; fli^,ht oontr^al software deve^.opmcnt

situation ^^nd l.hus the effioaeay eaf pr^^e:e.^e:d^.nl; ^`at^tkter Lhro^t,h the:

s4'C'i C3.

C^.l'15.1^ ^?^:.^.5?I1

We have indi.^ated some: of tk^c re:su^.t;^ obtained durint tl7rou^;h

this projeot.	 The; details of the resu^.ts are retorted in t.kic

append^.ee;, arad we have h^:re provided just and overview and liven the

OOnCl4lsion4 lJn^.•t:tl 41e ft'^'1 may ^^ drawn.	 X17 ^util111ar^' ^ WG feel tk'^at L•k^P

means and tcchna.e^ues already exist for the preparation of flight

control softw4tr^ dcvelot^me'rtt support systems but that the

othly way to effectively detcririine taint should be in the support system

and juut hots effcctivc the sup^1ort system ► will be is by an more;-

mental, experimcntaJ. a^prt^ach. IJe have provided a tame-plan for such

an approach and ^ivcn advice an what should lac c^^nsidered as

candidate tools for inclusion ir1 tt^e suocessive versions of the

suppor^t system produced lay S'ollowa.s^t this approactz.

0

_.^
--	 ^

	1980021560.pdf
	0001A01.tif
	0001A02.tif
	0001A03.tif
	0001A04.tif
	0001A05.tif
	0001A06.tif
	0001A07.tif
	0001A08.tif
	0001A09.tif
	0001A10.tif
	0001A11.tif
	0001A12.tif
	0001A13.tif
	0001B01.tif
	0001B02.tif
	0001B03.tif
	0001B04.tif
	0001B05.tif

