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alternatives are and their differences and similarities.

Thu tangible components of a dcve l cirment environ-

ment are tools, software whirh ran be used In pel l folln-
in(j the develofvnent activities delineated above. Tools

nm y be general ones which support a variety of aCt iv-

ities, but more usually they have a purpose falling
within one of the activities distinguished in this dis-

cussion.

The intangible components are the datuelvFvnent prc?-

c# owes, t nrinceplus arui prastious which development
practitioners are encouraged or required to use. There
is an obvious, close interrelationship between these

methodological components of the environment and the
tool components - the procedures. practices and prin.
ciples included in the development environment shape
the function and nature of the tools and the tools,
themselves, give concrete meaning to the methodological
rules and guidelines, The tangible and intangible as-
pects of a development environment must, therefore, be
defined concurrently - proscribing either in isolation
runs the risk of defining an infeasible nr ineffective

environment.

The core of a development environment is the set of

l,t+.jrt.t^r1& provided for describing the characteristics,
properties and functioning of a system during its de-
veloprnort, These languages provide the media for com-

:.wnication, the basis for defining assessment tech-
niques, and the means by which the relationships among
alternatives may be explicitly or implicitly defined.
Further, the languages allow the precise definition of
the development environment's tool and methodological
components in terns of how descriptions in the languages
are prepared, modified, related and analyzed,

A broad spectrum of development environments is
possible, depending upon the number and variety of lan-
guages and the extent to which a single development
methodology guides the definition of the environment,
At one end of this spectrum are tao lb,:^xea which provide
a relatively large number of languages, generally hav-
ing no well-defined interrelationships, and which sup-
port a variety of development methodologies, The tools
included in a toolbox are either general ones, useable
upon descriptions in any of the languages and therefore
ignorant of the specific details of any particular lan-

guage, or specific ones strongly linke; to one partic-
ulur language and usable only w Wi descriptions in that
language, The tools are also gen^rally independent so
that they may be employed in a va-iety of combinations
in support of the variety of methodologies for which
the toolbox can be used,

At the other extreme in the spectrum are develoF•

-»r,r,tt :vyrrremva	 These "union shups" of the development
environment world provide a single, obviously very
general, language and provide support for only a sin le
methodology - practitioners who do not know (or like
the language or who do not subscribe to the enforced
methodology cannot obtain help from this type of
environment.

It should be obvious that the ideal development
environment lies somewhere between these two extr•crnes.
These ,;,r,elo,: cat Jul:p,u •t , pa ,"a should provide a
coordinated set of languages having well-defined rela-

tionships and features which allow the easy and natural
expression of the properties, characteristics and func-
tions of interest, This implies that development sup-
port systems generally cannot be universal arid, rather,

are oriented toward the development of a specific class
of systems. Further, the tools provided by a develop-
ment support system should be interdependent, integrated

around a collection of methodologies which are similar

in nature but which acecnrnodate a number of development
styles. Him "happy medium" to be struck is one which

encourages (and rewards!) good rractices but does not
stifIr in1ividuality, The characteristics of theso
ideal develolsnent ervironments will be di*,cussed further
in the last two sections.

PROGRA14 CONSTRUCTION TOOLBOXES

Current-day software system development environ-
ments are, for the most part, of the toolbox variety and
tend to support implementation activities occurring dur-
ing the development of r •eldtively simple systems, These

prog pevn oonstruotion enuirorvnenta provide tools to aid
in the development of an executable description of the
program and in the determination of the program's run-
time behavior. They tend not to embody any particular•
development methodology.

In order to suggest quidelines for producing de-
velopment support systems, it is instructive to look at
the components of current-day program construction en-

vironments and take note o several trends evidenced by
their, history. The first of these topics is the subject
of this section and the second is discussed in the next
section.

Our assessment of the current state of advancement
in the preparation of program construction environm nts
is oriented toward the facilities which the average
development practitioner could expect (or could demanu.)
to find as part of their computing facility, They are,
therefore, those facilities which are well enough de-
veloped to have been transferred out of "research"
status - tether facilities which are still under develop-
ment are not discussed, It should also be emphasized
that it is not necessarily feasible to implement all of
the facilities indicated here on all computing systems
and that their irnplenentation on resource-impoverished
computing systems is currently a research topic.

The typical program construction environment makes
available. a plethora of programming languages, generally
enough to satisfy any taste, style or proclivity. 	 In
addition to general-purpose, procedural languages, lan-

N

u ages are usually provided for specific problem domains
.g., Snobol)., specific solution spaces (e.g., Lisp),

or specific solution activities (e,g., RPG)	 As is true
of toolboxes in general, the languages are independent
and no attempt has been made to define relationships
among different languages.

The vast majority of tools present in a program con-
struction environment provide support for text prepara-
tion activities. The task of t ranslating a human-orient-
ed, problem-oriented description into executable code is
well-understood and translators of significant sophisti-
cation, in teens of t.ne language constructs they can
successfully handle and the optimization they can per-
form, are conmonplace. Preprocessors, especially those
providing structured-pr•ogranvning dialects of (generally
older) languages lacking a reasonable set of execution
control constructs, are also corurionplace. Finally, for
those wishing to prepare a translator forfor a language of
their own design, there are a variety of parser and
lexical analyzer generator tools.

Other, language-independent, text preparation tools
are also available in current-day program construction
environments. Chi,cf among these are text editing sys-
tems of which there is an extensive variety. The best
appear to be ones which are character-oriented and CRT-
based; but line-oriented editors seem prefevable when

only hard-copy terminals are available. Subroutine
libraries also provide help in preparing the text of a



piwgranl,
Text retention toots are usually present ar part of

Lilt., general-purpose file system provided by the operat-
ing sytiwn, Protection arid access control facilities

are supportive of program construction; the latter, In
particular, being valuable in the enforctment of develop-
rnrent principles such as the principle of inforrnaticn hill-
Ing (2], Retrieval facilities are typically fife-orient-

ed arid, therefore, not very sophisticated with respect to
composing a program out of units much smaller than a
procedure. This failing can, however, be circumvented
with facilities which allow the free composition of files

by placing directives in one file indicating that all or
part of another file is logically part of the file con-

taining the directive,

A variety of tools are typically provided to a ; ', con-
sistency assessment• simple tools of this type ar; ryen-
erally built into the language translators and cheex for
syntax errors, Semantic error detection tools are o,so
frequently provided as part of translators. Stine of
these cht:ck for simple errors such as a mismatch between
arguipents in a procedure invocation and the corresponding
parameters. Others perform more sophisticated checks but

require the users to give additional, semantic infor7na-
tion so that the check can be carried out, For example,
a units checker tool [J] has been developed for Pascal -

it requires the specification of units, e,g., miles/hour,
for program variables and then analyzes arithmetic ex-
pressions to determine whether or not units cancel

properly,

Tools for checking the consistency between the pro-
gram's overall dynamic (i.e., run-time) behavior and the
program developer's expectations are primarily of the
validation variety, This class of tools includes de-
bugging support systems, path analyzers, testbeds, test
coverage analyzers, test data generators, etc, These
tooli are typically language-specific, Also falling in
this class are machine simulators which allow the execu-
tion-style checkout of a program evert though the machine
on which it will eventually execute is not available,

Other tools for checking a program's dynamic Gehav-
for, by static verification techniques are not yet prev-
alent, but are becoming more common, (Most generally
available are those, typified by DAVE (4,5], which check
for properties which stem from semantic rules (such as
definition of i variable's value prior to its First use),
fra y: rules of good practice (such as Use Of a +variable
be,ore_ redefinition of its value), or from general re-
,, ,O rements pertaining to an entire g lass of systons
(such as absence of deadlock), More sophisticated tools,
typified by (6] and (7], use symbolic execution tech-
niques and allow the checking of properties defined by
the program developer and specific to the program itself.

The remaining development activities of completeness
assessment, structure exploration and binding exploration
arc generally not directly supported cy any specific
Louis, P.ather, there is a hodgepodge of tools which have
been "collected" over the years that tend to allow de-
velopers to investigate a program's completeness and ex-
plore alternatives.	 Generally included in this collec-
tion are cross-reference facilities, linkage editors,
time-histogram facilities, etc. Specialized job control
languages also provide support in carrying out these
activities,	 Finally, additional support is sometimes
proviaed by homogenizing progranrning language interfaces
so that multi-lingual programs can be constructed,

TRENDS IN Mr EVOI.U'rion of
MG11A44 =117RUCTION TOOLBOXES

The historf of the develoixeent of program construc-
tion toolboxr;s exhibits some trends which, when extrap-
olated, indiratn what can be expected in the future, We

do not propu o that extending development in the direc-
tions indicated by these trends will be sufficient to
achieve truly effective development support systems. But
the trends are indicative of 

all
	 established mo-

mcmtum which provides a context for other evolutionary
trends which we will propose, in a subsequent section,
as additionally necessary,

One trend that is quite obvious is towardinteractive
environments which provide the means for much quicker
Information transfer between developers and the computer,
and vice versa, Once computer system users make the
change from thinking of programs as a deck of cards to
viewing their programs as text streams, interactive en-
vironments greatly speed upthe activities of program
text preparation, entry and modification. 	 In addition,

such environments offer a bafl s for speeding up the
other development activities of assessment or• explora-
tion. The overall benefit is that developers are freed,
by the virtue of higher-quality "secretarial services,"
to devote a larger proportion of their time to more
important, more intellectually challenging development
tasks, Of course, this benefit cones at some cost, but
this is generally not prohibitive and recognized as well

worth it.

Another, trend is inc -ration, With the development
of sophisticated operating systems to serve as vehicles

for the delivery of tools to development practitioners,
there has been a tendency to provide a common interface
to the various facilities provided within and under the
operating system, Another aspect of integration has been
provision of facilities which allow the various tools to
be conveniently used in the combinations required under
a number of development approaches and styles.

Closely related is a trend toward verification. An
example is the development of debugging facilities which
are oriented toward high-level rather than assembly-level
languages; fpr example, the development of the debugging
subsystem for the Algol-W language (B]. It is important
to note that this trend toward unification generally im-
plies a narrowing of ,cope of attention to a smaller num-
ber of languages, found by use over a number of years to
be valuable, natural arid sufficient for the representa-
tion of Programs,

Closely related to these two trends is one which can
be characterized as .cncrnlization, The tendency has
been to provide new tools as part of a translator, per-
haps optionally invokable, The usual, overriding reason
for this is that the tool needs the facilities provided
by the parser component of the translator and the (wise)

decision is made to embed the tool in the translator
rather than duplicate the parser, It should be noted,
however, that when new language constructs are involved,
the tool is frequently provided as a stand-alone facil-
ity; for example, structured programming preprocessors
are the norm, However, the desire to make the tool in-
dependent of existing translators sometimes adversely
affects the new language constructs,

Another trend, critical to providing program con-
struction environments of any reasonable quality and
effectiveness, has be< ,.n toward proJr+Ln animation to pro-
vide help for the activities of assessment and explora-
tion. Because of the availability of the machine on
which the proiram will run (or • a simulation of the
machine), there is a strong temptation to use execution
to gain an understanding of a programs dynamic behavior.
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Further, this "easy tray" 's encouraged because of the
trend to centralize tools into a single prograrnning ;ys-
Lcin - it is frequently impossible, for example, to lave,
the syntax of a program choked without also executing
the program or at least. having an executable translation

of the source text prepared, There is increasing r •ecori-

nition, however, that the inference of a program's dy-
namic properties by execution is generally neither cost-

effective nor effective,

The final trend to be commenced on here concerns the
environment's languages rather than its tools and can be

described as a trend toward hfghar-„u.rlity rei'veden tat ion.
One aspect is a move toward increasing tiie understand-
ability of programs, founded upon a recognition that

allowingan arbitrary relationship between the physical
structure of a program and its logical flow (i.e., the

paths of execution through it) unnecessaril y increases

the complexity of a program, arid fostered by the desire
to automatically verify a program's correctness, there
has been both a general recognition that a progr:inuning

language must provide a rich set of simple, powerful and
easily understood execution control constructs arid an
increasing tendency in the definition of new languages

to provide such a set,

Another aspect of understandability enhancement has

been a move toward a separation of concerns. One simple
example, evidenced by the Gypsy language [9] among others,
has been the provision of constructs to explicitly con-
trol the scope of variables rather than have the bl,;ck
structure of the program indicate its resource require-
ments ^ d the scope of variables. A more sophisticated
example is providedby the constructs present in the Ada
language (10) which allow a subprogram's intent (i.e.,
its specification) to be stated separately and redun-
dantly of its implementation.

A closely related aspect is the tendency to intro-
duce, into a language's definition, rules of usage that
are relatively easily checked arid which foster the pro-
duction of "correct” programs. The thought behind this
tendency is that a program's frrnctiod is more easily
understood, and more easily checked for validity, if
aspects of its operation (arid sometimes its behavior)
are stated redundantly in all of those places where they
are of interest,	 Constructs for explicit con',rol of var-
ible scope are an example, as are those for specifying
the types of variables. it should be netzd that faeii-
ities for redundant specification are usually accompanied

by rules, enforced by the language's translator, requir-
ing that the redundant specification be made by the lan-
guage's users. This reflects the fact that these facil-
ities stem from a realization that their use typically
leads to "more correct" programs and that their imposi-
tion can speed the development of programs which func-
tion correctly.

Another closely related aspect is the trend in lan-

guage and t ranslator design to provide facilities sup-
porting modularity, typified by incremental compilation
facilities, These facilities are usually coincident
,rith procedure definition facilities which means they
are not always sufficient, But they do tend to facil-
itate incremental program development.

M ADEQUACIES OF
PPOGRNi CONSTRUCTION TOOLBOXES

The general trend in the evolution of program ccn-
st•uction toolboxes has been to provide facilities for
hastening the development of appropriately functioning
programs, Part of this has been the preparation of cre-

ation activity facilities vhich free development prac-
titioners from devoting an inordinate amount of their

efforts to the preparation and maintenance of the text
of their pr a, ram descriptions. Another part has been
the intrnductir,n into programming languages of constructs
fosteriw] the development of correct, undrtrstandabla pro-
eiram5. The final part cf this trend has been the de,-
velkaprmw. of facilities for the consistency assessment
of pr•ogr,1115 .

An obvious inadequacy is the lack of facilities pro-
viding direct, high-quality aid for completeness assess-
ment and exploration activities. The problems associat-
ed with these activities have been somewhat less impor-
tant and attention has been justifiably directed toward
the more important problems associated with creation and
consistency assessment activities, but it is also true
that these problems have been intellectually managable

for the vast majority of programs developed, and it is
only with respect to the development of large-scale,
complex programs (i.e,, oof4ti2ra ayutana) that these
problems become unrnanagable and aid is required,

When attention is turned to software systems as
opposed to programs, several other inadequacies become
apparent, These inadequacies primarily stem from a
failure to take into account the special nature of sy,-
terms that make them quite different from ordinary pro-
grams. Systems are a conglomeration of interacting
parts; sometimes this decomposition of a whole into
parts is a natural phenomenon and sometimes it is artifi-
cially induced because of our inability to otherwise
cope with the system's comp lexity, Thus, all activities
concerned with developin g a system must consider the sys-
t Im's parts ,rn<i their ir;ter •.actions and it is facilities
for direct consideration of interactions that are absent
from current-day program construction environments.

More specifically, what is missing are facilities to
perform modelling, What is needed is the ability to
focus upon the interactions, either as a prelude to de-
veloping parts which support these interactions or in an
attempt to assess the interactions of air•eady developed
parts, This requires the ability to abstract the func-
tional , operational characteristics of the parts, i,e.,
the ability to prepare models of a part's interface and
functionality.

Some modelling capabilities are inherent in a pro-
gram construction environment. It is possible, for ex-
ample, to develop a system pr-ototype, a simplified ver-
sion which does riot exhibit all of the properties of the
eventual system but can be used in order to gain an
understanding of systems of the type being developed.
Use of models of this type can be called evolutionary
programming [11) and can provide a very effective de-
velopment method as evidenced by the MTS operating sys-
tem [12] which was developed as a succession of progres-
sively more e;aborate "models," Out it is equally impor-
tant to be able to prepare horizontal models which rep-
resent the entire system but only to a level of detail
which is somewhat short of an executable version of the
system. These types of models are of particular impor-
tance during the early stages of development, by what-
ever develo pment method is being employed, when the task
is to infer or specify overall system properties without
the ability (or necessity) of executing the system to de-
termine its properties,

This leads to another inadequacy of current program
construction environments, being the strong orientation
toward functionality properties, During software system
development, particularly when there are no previously

developed, similar systems to provide hints concerning
the system's eventual properties, practi*,ioners reed the
capability to obtain estimates of the system's economics
and performance, While this can be accomplished by im-

plementing the system and gathering statistics during its



operation, this would be a regression to an ancient
practice, described by Graham [13) as building systems
like the Wright brothers built airplanes - construr^tirty
them, pushing them off a cliff, watching them crash and

starting all over again.

Another inadequacy has been implicit in the discus-

lion so far - the inadequate recognition of pre-imple-
mentation development stages. During these stages, it
Is critically important to be able to unambiguously re-
cord and rigorously assess the policies and strategies
governing the system rather than the mrechanisms and al-
gorithms used in its implementation, The languages pro-
vided are inadequate for expressing these attributes of
a system and the tools provided do not support investi-
gation of the system's properties as derived from these
attributes, Further, the languages and tools are not as
helpful as necessary or desirable during the post-imple-
mentation stages of maintenance and racdification, which
are more akin to pre- implementation stages than they are

to implementation itself,

The final inadequacy to be noted here is in essence
a secondary affect of the strong orientation toward the
implementation stage of developuent. With respect to
software systems, the development of software,
is no longer a personal thing between one person and the
computer - there is, instead, a development team (some-

times more appropriately misspelled "tecyn"), as well as
project managers, cU'at'rel's, users, acceptance testers,

document p rs, user-guide writers, etc. Each of these
persons has differing desC:{ p tional requirements and
this severely complicates the problems of communication
and highlights the fact that proiirannring languages and

pr •ugramning language oriented tools are not sufficient
for an effective development support system,

PRINCIPLES GUIDING FUTURE EVOLUTION

we do not propose "starting ail over again" in order
to prepare effective: development support systems, First,
evolution, as opposed to revolution, is too well recog-

nized as ail 	 and successful paradigm. Second,
revolution is not warranted, at this point, since program
construction environments are basically on the right
track and their inadequacies stem primarily from ronsid-

er•ation of too small a set of concerns. Third, we feel
that the trends evident in the evolction of program con-
struction environments are, with only two exceptions, en-
tirely appropriate and conducive to the eventual emer-
gence of development support systems.

Therefore, in this section. we present several prin-
ciples which we feel have affected the evolution of de-
velopment environments only secondarily or not at all,
r;ut which must be given strong emphasis in order that
the evolutionary process yields effective development
support systems and that the emergence of such systems,
and their delivery to working practitioners, is both
quick and timely.

rr • . rtJ ' Ple : ,	 ;;rr}ta no'! th	 CA:I'.','s 3'4 VC power r:n..T r'ti^ir,rAl)!r
^;' :}.a Tzr<,^,t;:.a•nt,i,;r•t+,irt;r the del±dto.^-
rnC71t Cnllir'Cr.rrwnw,

The need to describe char •acter • istics in addition to
functionality and operation and thf: need to canarunicate
essential information to a variety of audiences means

that languages are needed to directly support a rmulti-
plicity of views of the system being developed, The
traditional dual views of data flow and control flow are
a simple illustration of what is needed - description

capabiIiLes providing alternative views and having a

formal (although not necessarily algorithmically ana-
lyzable) relationship. Perhaps the ideal would be to

have a ain1le representational technique, not necessar-
ily directly used by developers, from which all other
system descriptions are analytically derivable. Whether

or not this is an ideal, and what the various descrip-
tion techni ques should be, will require a good deal of
investigation,

	

lit 	 to evolving a set of coordinated, formal-
ly relatable languages, it is important that none of the
languatpe; exhibit a rococo nature. Far example, the lan-
guage which was develo ped as the bass of the DREM de-
sign support system [l ei] is somewhat of this nature, to
trying to put into one language, it consistent forms,
all of the descri p tional capabilities we felt necessary,
we possibly created the Pill of design description lan-
guages, The lesson learned is that it is much better to
define a multitude of languages, each having a well-de-
fined purpose, than it is to define a single language
having a multitude of purposes - this follows the ob-
vious extension of the trend toward separation of con-
cerns evidenced by recent developments in programming
language design.

Further, in the development of individual languages

we should strive for a reasonable balance between suffi-
ciency and naturalness, Having a parsimonious set of
constructs is desirable because of the attendant clarity
of the language and the relative ease with which one may
obtain a for •rmal basis for the language, Naturalness is
obviously important but tends to increase the language's
"size." in order to realize the aim of having formal
relationships among the languages, it is perhaps best to

	

err oil 	 side of sufficiency.

One last word of caution is that we must be careful

not to create a Power of Babel situation as we cannot
afford to forestall and inhibit progress by a "profusion
of tongues," This analogy indicates that we should be
as concerned with the meta-languages we use to define
the languages as we are with the languages themselves,

t1mna"' le Cr CoveZop more ex-Vanoiva anir,r^rCi n ,ta:izitao,
ir1 cline coordination with the cvadofnent
of languages .

The most challenging of development activities is
assessment, taxing our inference capabilities to their
utmost, particularly in the case of concurrent systems,
We must, therefore, increase the facilities, whether they
be sim►ulatian-based or analytic in nature, available for
aiding the inference of a system's properties while it
is under development and the estimation of the properties
it will eventually exhibit when its development is com-
plete,

C. that we do not suffer decidability and computa-
tional complexity problems, the animation tools should
be of a Ovac back variety. By this, we mean that the
tools should derive information for the developers con-
cerning the system's dynam i c pro perties, but should not
attempt to completely cert fy that a system exhibiting
these properties is ^ippropr ,iate, leaving that task for
the developers to perform by interpreting the derived
information, Animation tools of this sort have been de-
veloped ((1,5,15) for example) and experience with their

use indicates that while quality is a serious problem,
they provide imreasurable assistanceby uncovering po-
tentially erroneous situations which would have escaped
detection under a less-rigorous inspection done without
the tool's aid.

That the development of ar ,ation tools and of de-

scri p tion languages must be coordinated is obvious since
each affects the form and content of the other. An
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additional reason is that, for effective system develop-

ment, the processes of eynthesia and an,;tyeie must be

tightly Interleaved so that assessment is a continuous
activity, integrated with the activities of creation and
exploration - otherwise, we are back with the Wright

brothers again.

Urincii^t,7 3; dive c ►raantruc d att a'rrtiOn to P-rovidiphj
t4,Gtn v%rit:r direcGty au . ; , ►rt +'Rp2rrnGi^n
w :iuitiO4.

On the surface, this principle means that support
must be developed for preparing and exercising system
models, both prototypes and horizontal abstraction mod-

els. Additionally, however, differential elaboration
of these models must be facilitated since it is in this
way that alternatives for achieving some system part call
be assessed within the context of the rest of the system,
This assessment-in-context is critically important to
any meaningful exploration of alternatives.

To facilitate and enhance the exploration of alter-
natives, it is also necessary to provide facilities for
the aggregation and structuring of information concern-
ing the System being developed. Underlying fii,ikstra's
development of the guarded conmand construct (16] was
the important observation that the creation of a pro-

Cram is not 
all
	 process but is more generally a

relatively_ random por•cess in which computational details

emerge in an order which does not currespond to the

order in which they are per rormed during program execu-

tion, This phenomenon is even more true of the pre-

im l,lemantation development stages and thus it is im-
portant to provide an environment under which pieces of

infonration call 	 recorded in the order of their gen-
eration and structured into a coherent base of info rnw-
tion from which developers can extract "chunks" com-

posed of interrelated pieces of information,

even more sophisticated facilities are important for
the support of exploration activities. First, the in-
formation retention facilities must be able to distin-
guish andkeel) track of versions of a system, prefer-
ably with only straightforward. natural directives from

till, developers as to the relationships among pieces of
information concerning the system, Second, the facil-
ities must allow the modification of the system descrip-
tion within any relatively arbitrary "slice" through the

inforvnation base, 	 Finally, the facilities should ideal-

ly monitor and guide the infornation agglomeration pro-
cess, checking for incr^.isistencies and missing infonna-
tion this capability obviously demands a significantly
more extensive undo-standing of the development process

than we currently possess,

:4?laipt,a 11 Thu F 2 '000 -310 cf	 utecCiun oJrou.3'c
.0d ,at :vvey orrpnrtlulity,

This principle is obvious and should not need to be

stated, but there is a frequent tendency to forget this
basic tenet of evolution. It is use ►ul, therefore, to
point out some concerns relating to this principle which

should be kept in mind,

First, experimentation is all absolute necessity,
This means, however, that much more i;, required than the
conduct of experiments intended to investigate the effi-
cacy and efficiency of various practices, principles and
procedures - that is, various methodologies.	 It means

that individual tools must be constructed with attention
to providing mechanisms for monitoring their individual

and collective use, It means that the operating system

environments through which the tools are delivered to

development f"rutitioners must allow the monitoring of
tool usage and the collection of Statistis on tool
uti 1 f z. Lion. fina lly,  i t meant that an undq rs tandfnrj
must be leveloped of how to Caaduct the exp, •im(nts,
what data to collect, how to reduce the data to r ";eaning-

fui derived measurements, and )row to use the results to
guide future evolution and experimentation.

To facilitate evolution, it is also necessary to
have an organization underlying the development environ-
ment which is conducive to the reorganization, extension
and modification of the tools present in the environment.
Users should be We to employ the tools in whatever
sequence and combination :cent warranted and productive

given the intents of the tools, The tools themselves
should be robust enough to function, at least to the
level of reporting an error, in (perhaps bizarre) con-

texts not originally envisioned, Users should also be
able to modify the tools, particularizing them to spe-
cific tasks. (This, however, raises some serious sup-
port questions.) Finally, it should be possible to
easily add now tools to the environment.

To achieve this modifiability of the tools
and their use, we feel that it is not appropriate to
continue the trend toward centralization. In fact, it
would be hest, at this point, to unbundle the tools
typically present in a programming system, The avail -
ability of 3 stand-alone parser, for example, would
facilitate the development of other stand-alone tools
while reducing the effort needed to produce them. Inter-
face problems arise, but we feel they are solvable and
the benefit gained is well worth it.

The process of natural selection further requires a
management environment which facilitates and encourages
the use of tools. In addition to sometimes well-founded
suspicions as to the efficacy and efficiency of indi-
vidual tools, practitioners also possess a "momentum" in
the use of well-known practices and procedures which in-
hibits their adoption of new tools„ Management should
foster the sunnounting of this inertia by indicating
that the use of tools, even those without clearly estab-
lished "credentials," is both expected and respected,
This requires that management be willing to give the

necessary monetary support to using mri learning to use

the tool, Management must also give monetary support to
the task of toolsmithing and establish this as a respect-
able and desirable activity.

Critical to establishing an environment in which
natural selection can easily run its course is th^ de-

velopment of criteria b" which tools may be Judged.

These criteria are necessary in the design of experiments,
required so that practitioners can make intelligent
choices of which tools to use and when, and almost pre-
requisite to management willingness to provide the neces-
sary support and encouragement. However. ;siting until
these criteria are fully developed would introduce a de-
bilitating delay and it is necessary that some risks be
taken and there be a willingness to develop and refine
the criteria concurrent with the experimental use of tools.

PrincdPdj ;a Encourage,, but do not m-rn.,,itc, the use of
,^cvclopment practices, prccc,,url;s and
princip Les ,

At this point in ti:e evolution of development method-
ologies, not enough is known as to their value in partic-
ular development situations to warrant their strict im-
position. Rather, their value must be explored simulta-

neously with the exploration of criteria for • tool usage

and of tools themselves,	 In addition, we feel that it

will never be appropriate to mandate the usage of a

single set of principles, practices and procedures for

r,



davelopnrent because there $4111 always be a wide variety
of viable styles and a wide variance in practitioner
saphistication and level of experience,

It seems best, therefore, to head toward development
environments which embody a development ,'t ►jvm+ti rather
than a strict methodology, which provide tools supporting
a variety of styles consonant with the development phi-
losophy, and which (perhaps subtly, perhaps blatantly)
reward working within the guidelines of the philosophy,

fir rn +̂tipla of y1ir",,lrr arvjjno1cviiuj vonsitior +ativrur a3^ rrt,t co
of P1"Imm tf ac rncer n.

An environment which fosters natural selection, en-
courages experimentation and invites practitioners to
use tools in support of their development activities
cannot exist without the tools being easy and convenient
to use. There should be relatively homogeneous Inter-
faces tothe individual tools, The tools should be
oriented toward users who are unsophisticated with re-
spect to computer science in order to foster theirtheir in-

volvement in the development process, particularly dur-
ing the preimp)emontation stages, The tools should pro-
vide users with extensive Control over its functions and
facilities so that their usage may easily be tailored

to the task bring done and the users' need,

With respect to human engineering concerns, we feel
that the trend toward interactive environments is not
. -;S sarily a good one to pursue. The activities of
,rssessment and exploration seem to be primarily off-line
activities and the development environment would, there-
fore, seem best supported by remote-,lob-entry facilities
coupled with high-speed, hard-copy output facilities.
The exception would seem to be the use of interactive
grdpnics devices, such as in the Tell systein C17), to
provide quick display of different system characteristics.

CONCLUSION

The transfer of technological developments from re-
search status to use by "real-world" practitioners seems
to fairly consistently require a ten-year period of time

(18).	 In this paper, we have attempted to propose and
,justify some principles guiding the preparation of soft-
ware development environments which are critic,illy nec.
essary to achieving, and hopefully speeding, this
transfer rate, We first reviewed the state-of-the-art
of development environments, noting their strong orien-
tation toward the construction of relatively simple soft-
ware systems, We then indicated some of the trends
evidenced by the evoluti-on of these program construction
environments and some of their• inadequacies, These. ob-
servations formed a basis for suggesting several prin-
ciples (some at slight variance with previously estab-
lished trends) to guide future evolution and arguing
their criticality to achieving truly effective and effi-
cient development support environments,

Our observations have been primarily with respect to
development practitioners - specifiers, designers, 1411-
plemaentors, and maintainers, They have some validity
wit}$ respect to other agents - managers, users, customers,
acceptance testers, etc, - participating in the develop-
ment process, but the special concerns of these agents

have not been given adequate attention here.

Because of the quasi-research, quasi-development
nature of the task of continuing the evolution of de-
velopment environments, it would appear that the most
success would result from university/industry or univer-
sity/government collaborative efforts. Preliminary fin-
plementations and feasibility studies, tasks that
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Industry and government software development divisions
frequently cannot devote time to carrying out, could be
per• foorrd in university environments guided by the prac-
tical experience of industry personnel, Production-ver-
sion Implementation tnd effectiveness assessment, tasks
that university projects frequently hick the resources
to adequately attack, Could be performed in industry or
governmemt with the guidance of university researchers,
particularly with regard to this conduct and interpreta-

tion of experiments, It would seem that the differing
interests, experiences and capabilities of the various
segments of the software engineering community are not
extensive or rich enough for any one segment alone to
meaningfully attack th.i overall problem; and it would
seein that a collective t."for; would be effective and
beneficial,
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