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AN ASSCSSMENT OF DREAM

William £E. Riddle
Cray Laboratories Inc.

5311 Western Avenue
Boulder, Colorado 80301

The Design Realization, Evaluation And Modelling (NREAM) System is eval-
uated. A short history of the DREAM research project is first given in
order to provide an historical context. Then, the significant charac-
teristics of DREAM as a development environment are given, the design
notation which is the basis for the DREAM system is reviewed, and the
development tools envisioned as part of DREAM are discussed. In the
concluding section, insights into development environments and their
production which we have gained from the work on DREAM are presented
and used to make suggestions for future work in the area of develop-

ment environments.

INTRODUCTION

During software system development, help is critically ieeded in many activities,
amorg them: 1) recording what is known and what has been decided about the sys-
tem, 2) uncovering what is unknown, 3) assessing the suitability and the complete-
ness of the (eventual) system, and 4) coordinating and monitering the efforts of

the team working on the development project.

Development environments are currently being studied as a way of providing help
for these activities. A development environment is a collection of tools which
provide a facilitating context in which to carry out development. The tools are
typically programs, such as compilers or text editors, which augment the "powers"
of the developers and ease the production of a suitable, executable version of the
system. But, tools may also be n»tational and serve to augment tlie developers'
denotational powers, or cognitive and serve to rationalize the development process.

In this paper, we give an assessment of the Design Realization, Evaluation And
Mode11ing (DREAM) System as a development environment. In the next section, we
give a short history of the DREAM project in order to provide scme historical con-
text. Then, in the following threg sections, we discuss the significant charac-
teristics of DREAM as a development environment, give a brief overview of the
notational tool which is the basis for the DREAM system, and discuss the other
tools provided (or to be provided) by DREAM. In the concluding section, we relate
some of the insights into development environments and their production which we

have gained from our work on DREAM.

A SHORT HISTORY

Like most systems, DREAM is a product of initial goals, prior experiences, biases

This work was performed while the author was affiliated with the University of
Colorado and was supported, in part, by grant NSG 1638 from NASA Langley Research
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and external "forces." In this section, we provide a brief history of the DREAM
project with the intent of providiny some insight into the technical and non-tech-
nical concerns which influenced the »volution of the DREAM system.

During the period 1973-1975, an automata theoretic formalism for modelling paraliel
systems was developed and its theorctical aspects were jnvestigated (this work is
reviewed in [Riddle 79d] and [Riddle 79e]). Under the formalism, a parallel system
is considered to be a single-level collection of asynchronous components. Component
interdependencies are modelled by message exchange and some components provide mes-
sage buffering capabilities. The non-buffering components are modelled as sequen-
tial processes which carry out a controlied sequence of message production, trans-
mission and reception operations. A parallel system's behavior may be described

in terms of sequences of message transfers among components using a notation very
similar to, but more powerful than, the notation of regular expressions. The ex-
istence of dual behavior/ctructurei notations affords the opportunity to assess

the "correctness" of a parcicular system structure by assessing the consistency
between the behavior produced by the structure and a specification of the system's
desired behavior. However, the power of the formalism is such that very few con-
sistency questions are algorithmically decidable.

Concurrent with this research, the TOPD system, developed by Peter Henderson and

his coileagues at the University of Newcastle upon Tyne ([Henderson 75b]l), was
acquired and used as the basis for a senior-level software engineering course.

The TOPD system is a development environment oriented primarily toward the im-
plementation phase of sequential program development. It allows the development

of a program to be done as a series of abstract descriptions, each of which is

a finite-state model organized as a collection of data abstractions. The TOPD
notation allows the description of behavior in terms of state transitions and the
TOPD system provides assessment facilities [Henderson 75a] which allow the check-
ing of the consistency between a procedure's behavioy :1 and structural descriptions.

It was in this context that the DREAM project began, in early-1976, with the in-
tent of preparing a prototype version of a TOPD-1ike system useful for the develop-
ment of concurrent software systems. Sycor, Inc., provided support because the
prototype was potentially useful in developing software for clusters of intelligent
terminals.

The project was decidedly a research one, however, and was not driven in any way

by a particular software development effort at Sycor or elsewhere. One goal was

to investigate the feasibility and desirability of basing a concurrent software
system development environment upon the theoretical model of parallel systems which
had been developed. An equally strong goal was to provide a basis for the exper-
imental evaluation of development environments and methodologies. Our aspirations
in the latter direction followed from our feeling that experimental evaluation
required the a%ility to perform well-defined, analyzable, partial development
efforts and onv belief that a development environment supporting modelling pro- 3
vided this ability. |

Initially, our efforts focused upon developing a notation primarily founded upon
our model of parallel systemps but whicn utilized some notions from general sys-
tems theory and incorporated some compatible concepts from the TOPD Notatijon. We
blatantly stole the general structure of the TOPD notation, as well as its concept
of state-based models for describing data abstractions, but used our model of par-
allel systems as the conceptual basis for our notation and extended the state-
based model adopted from TOPD. The result was the DREAM Design Notation (DDN)
which will be discussed in a subsequent section.

1. We use the tem "structure in the automata theoretic sense of denoting the
causes of a sys' 1's behavior d we use the term "organization" to denote the g
more physical aspects of a Thus, we would say "data organizaticn" instead
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of "daka strucuure,”
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During its development, we used DDN in several description tasks in order to as-
sure ourselves that it was hoth effective and reasonably natural for describing a
relatively broad variety of systems including operating systems, process-based
problem solving systems and embedded control systems. Most of cur description
"experiments," however, concerned operating systems or parts of operating systems,

We also adopted the TOPD system's organization and prepared preliminary versions
of many of the components of a prototype DREAM system — a data base, a syntax
checker and a command interpreter. Integration testing of these components was
precluded by the disbanding of the research group in late-1977. Several of us
moved to other institutions, and we took advantage of the interruption in our ac-
tivity as a group to both prepare reports and critically examine what we had done.

Ovi the last two years, our critical examination has been broadened to consider
a nuinber of specific topics which arose during our development of DDN. Some of
these studies concerned the extension of DDN's conceptual base to a broader spec-
trum of systems ([Wileden 78a], [Segal 80]). We also investigated both the rela-
tionship of our work to system's theory [Riddle 79b] and the nature of a top-down
design methodology based on dual behavior/structure notations such as DDN

[Riddle 79c]. Finally, we have been developing algorithms that can be used (in
modified form) to assess the consistency of DON descriptions ([Bristow 79],
[Stavely 79]).

At the moment, the research group is distributed and locsely-coupled. Each of us
has a different focus to our individual work (flight control system design, dis-

tributed problem-solving system development, analysis algorithm development), but
our work is somewhat integrated through our previous joint efforts.

THE DREAM SYSTEM

A wide variety of systems may be called development environments — even current-
day operating systems are, in some sense, deveiopment environments. The different
possibilities may be distinguished by characteristics such as the system's method-
ological base, the development phases supported, the intended audience, etc. In
this section, we "define" the DREAM system in terms of a number of thes: distin-
guishing characteristics.

ORIGT ———
Concurrent Systems orF PONKD PAGE 19

OR QUAL[TY'

As indicated previously, DREAM is oriented toward the development of concurrent
systems, i.e., systems having parts which either actually or logically operate

in parallel. We have not restricted attention to any specific type of concurrent
systems and feel that DREAM is applicable to a wide variety including multi-
proyrammed systems, multiprocess systems, multiprocessor systems, networks and
distributed systems. In DDN, we have provided a set of description capabilities
which are appropriate for conceptualizing systems of any of these types even
though these types differ eoxtensively with respect to some characteristics. As

a coroliary, DDN does not have facilities for describing those aspects, such as
the allocation of processes to processors, which distinguish these different types

of concurrent systems (although these aspects can sometimes be indirectly
described).

Our orientation toward this general class of software is not solely because of
our previous work on a formalism for describing parallel systems. Rather, it is
our belief, confirmed by our own and others' experiences, that the development
of concurrent systems is particularly taxing, especially with respect to the
assessment of suitability.

e
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Design Phase !

DREAM is oriented toward the archite «luval Jioxign phase of software development.

In this early segment of the total design phase, the task is to delineate the sys-
tem's modules and define the coupiings among modules.' Thus, attention is primarily
upon decomposing a system into its parts, defining the parts' interfaces, and in-
dicating the interactions and interdependencies among the parts.

The architectural design phase is preceded and followed by other phases -- indicat-
ing what these entail serves to delimit the architectural design phase even fur-
ther by indicating what it does n¢ entail. Preceding the architectural design
phase are the roquivements deftnition and speoi fZeation phases during which the
system's overall capabilities are prescribed. Following the architectural design
phase are the algoriilm design and the sustfem Dmplementation phases during which
the information structuring and manipulation aspects of the system are detailed
and encoded in some executable form. Thus, sandwiched as it is between these other
phases, a primary purpose of the architectural design phase is to transform the
requirements levied against the entire system into information retention and man-
jpulation requirements to be satisfied by the system's components.

Implicit in this view of the system 1ifecycle is that system certification and
maintenance are not separate phases. Rather, coertification, by either verifica-
tion or validation approaches, is viewed as a continual concern which must be per-
formed during coery phase. Maintenance is viewed as regression to some previous
point in the development followed by re-development. Thus, the activities of
certification and maintenance are improtant during the architectural design phase
and it is our intent to support these activities in DREAM.

Total System

In many applications, the components of a concurrent system are physical ones
(e.g., aircraft engines) or human ones (e.g., a patient being operated on) as well
as software. DDN allows the consideration of the total system (hardware, wetware
and software) and thus permits the design of the software to be carried out with
full concern given to the environment in which the software will function.

Modelling

It is our belief that the.fundamental activity during architectural design is
modelling — in fact, the name "architectural design" was chosen to deliberately
suggest a relationship to the discipline of architecture in which the preparation
of schematic, conceptual models is a paramount concern. The models developed
during the architectural design of software (or buildings) are abstract repre-
sentations of the actual system which omit the system's fine detail but faith-
fully reflect its externally observable characteristics. In these abstract rep-
resentations, whatever is represented is done so to a level of accuracy and rigor
that there is an adequate basis for suitability assessment. Also, the representa-
tions are in a medium in which alterations may be more easily investigated.

The analogy to architecture indicates one additional aspect of the design-level
modelling of software. This is that there are at least two purposes of a model.
One is that indicated above — it should refliect externally observable character-
istics. The second purpose is that the model should be an adequate basis for
preparing implementation plans {blueprints). DDN is intended as a medium in
which models with either or both of these purposes can be prepared.

SFunctionality

There 41'¢ Many lateis kg & software system': titability, roughly partitionable
sufn functionality concerns, performance ¢, | and economic concerns. Some
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work has been done on assessment with respect to performance concerns
([Sanquinetti 77], [Sanquinetti 78], [Sanquinetti 79]) at the level of the con-
ceptual basis underlying DDN, but to2 oricontation of DON itself is exclusively
upon the description and assessment of a system's functional characteristics.

This focus was taken in order to reduce the scope of our work to a manageable ,
size rather than because of any feeling that performance or economic concerns are
of less importance. Much to the contrary, we feel that truly effective environ-
ments must support the assessment of systems with respect to these other concerns;
but we also know that facilities to allow such assessment are extremely difficult
to provide.

Decision-making Support

As noted, certification is considered to be a continuous activity that is well-
integrated with the activity of design preparation. It is an intent of DREAM
that designers be able to not only gradually evolve a design but also be able to
gradually evolve a defensible confidence in the suitability of that design. Thus,
DREAM includes a number of tools which guide the decision-making process, allow
the recording of decisions, and help designers determine the validity of their
decisions. In DREAM, decision-making guidance is supported by tools which help
designers identify unmade decisions and the information impacting the decisions.
Decision recording is aided by providing appropriate notational tools (i.e.,
languages). Decision verification is aided by toois whicih allow designers to see
the results, in terms of the system's functionality, of a decision i» tl context
of all previous decisions,

To date, our accomplishments have fallen short of our intentions and we have fully
developed only one decision-making tool, the DON notation for recording decisions
in terms of their effect on the structure and behavior of the system's components.
We have developed other techniques, discussed later, for decision verification,
but have not put these into a form compatible with DDN.

: ] ORICINAL PAGE IS
Methodology Independence OF POOR QUALITY

Because of our goal to provide a facility for the evaluation of a variety of
methodologies, and because of our reluctance to posit a universally applicable
methodology, we attempted to keep DREAM as free of methodological constraints as
possible. This did not, however, mean to us that we could not make the system
easier to use under one methodology and our proclivity toward top-down elabora-
tion is quite apparent in the DDN language.

One effect of this decision is that DREAM does not enforce the use of any par-
ticular tools at any particular points during design evolution. Our view of the
DREAM system user (which we adopted from TOPD) is that of a person who thinks
off-line and then uses the system to help keep track of decisions and periodi-
cally derive information by which the logical consequences of the decisions may

be deduced. As a consequence, DREAM does w:! preclude the entry of new informa-
tion concerning the design which is incompatible with existing information.
Rather, DREAM enforces only the rule that all information is syntactically correct
and provides tools through which designers may uncover incompatibilities and in-
consistences when warranted by whatever design "style" they use.

Language-based Integration

While DREAM does not achieve the integration of its tools by organizina them
around a unifying methodology, it should be apparent from the discussion so far
that it does follow the alternative approach to integration by basing the tools

upon some common notation. The DDN Tanguage and the view of software systems
sal 2k 3 b ambadiae.  nwauidea a commone hacic far defininag the tonle and +hode
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relationships in terms of how they construct, modify and manipulate descriptions' 6
in the language. The tools themselves make extensive use of both the syntactic
and the semantic aspects of DDN,

In actuality, DON is a collectionof compatible sub-languages. Therefore, DREAM is
more correctly characterized as being integrated on the basis of a fam11y of com-
patible languages. Anyone who has worked with "large" programming languages will
appreciate the desirability of having a collection of "small," well-defined lan-
guages where attention has been given to separation of concerns.

"Sophisticated" Users

DREAM 1is intended to be used by experienced design practitioners. Provision is
made to represent information of interest to both requirements definers and systom
implementors, but it is assumed that the design practitioners wijl funutlon as
interpreters of the information for these other concerned parties. "o attempt has
been nade to make DREAM usable by managers, end-system users, customers, docu-
mentors, testers, accountants, etc., all of whom have a legitimate concern in the
design and its implications. DREAM can, in some instances, represent the informa-
tion of interest to these agents, but the designers are again assumed to provide
an interpretive interface to this information.

DREAM DESIGN NOTATION

The heart of the DREAM system is the DDN language. It embodies a formalism which
Tacilitates the ronceptua]wzat1on of concurrent software systems during their
architectural design. Also, it is the basis for the integration of the tools pro-
v1d1ng aid to design practitioners. Before describing these tools, it is necessary

‘to give a brief overview of the DON language and that is the purpose of this sec-

tion. More detail on the DDN 1anguage can be found in the cited reports or inferrnd
from the example that appears in the Appendix.

Structural Models

In DDN, a system is modelled as an hierarchical, but not necessarily tree-like,
organization of Compononts which operate as ynchronous1y At each level in this
hierarchical decomposition of the system, components interact directly by the

transmission of messages or indirectly through shared information repositories.

Components which interact by message tranimission are called subsyatome

([Riddle 77], [Riddle 78a], [Riddie 78b]). At each level, the subsystems represent
the components which operate concurrently. Each subsystem's interface to its
environment (i.e., the other subsystems at the same level) is defined in terms of
ports through which messages may flow. The components within a subsystem know only
about the ports — the environment of the subsystem is not visible to the subsystem's
components. Likewise, the environment knows only about the subsystem's ports and
cannot "see" inside the subsystem. Thus, the subsystem's interface is akin to a
data abstraction interface with the ports serving a role analogous to a data ab-
straction's procedures.

some of a subsystem's components are primitive, that is, not decomposible. These
control processcs govern the flow of messages through the ports and serve to dis-
tribute incoming messages to component subsystems and to collect messages from
component subsystems for transmission out through the ports. Control processes may
communicate directly by message transmission. Also, they may communicate via
shared information repositories.

In Figure 1, we give a grap.ical repre 1tiorn of a DDN model using circles to

denote Subsystr o trwang]ea to dPnnte c0nr>o] ﬂ?O(eaSCS and squares to denote
e L e R LI S VUV | N SPUR U M
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FIRST-LEVEL
DECOMPOSITION

SECOND-LEVEL
DECOMPOSITION

THIRD-LEVEL
DECOMPOSITION
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subsystem = message transmission "channel"

[:]dro—- procedure call with only value parameters
control process

[:]—--ﬂ> procedure call with only result parameters

monitor [:]*_'_’ procedure call with both value and

result parameters
link

procedure FIGURE 1
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"skin." The small, black squares in the figure are special shared data reposi- ' @
tories, called /7nks, which provide potentially infinite message buffering
facilities. This figure more clearly indicates that subsystems provide the means
for encapsulating collections of data storage components (internal, shared informa-
tion repositories) and data processing components (internal suhsystems). Note thac
component-sharing is allowed, even bctween Tevels of decomposition.

Shared data repositories are modelled as moniteors [Hoare 74] since this well-known
construct provides much of what is nceded [Riddle 79a]. A monitor in DDN denotes
a multi-procedure data abstraction which can function as a data repository shared
among asynchronous data processing components. There is the restriction that only
monitors may be components within monitors. (This somewhat arbitrary restriction
comes from a feeling that once a locus of control is sequentialized it should re-
main sequentialized.)

Behavior Models

A structural model reflects operational aspects of the system specifying interfaces
and modelling the algorithms which control the use of the interfaces. This is
analogous to defining the structure of a stack data abstraction and the structure
of a tree-search algorithm which uses a stack by specifying the push and pop pro-
cedures and giving an abstraction of the tree-search algorithm which indicates,
non-deterministically, the calls upon the push and pop procedures.

A structure gives rise to, or causes, some behavior which is the effect, over time,
of "executing" the structure. Thus the behavior of a stack data abstraction is
reflected by statements such as "the number of pop's is less than or equal to the
number of push's," and the behavior of the stack as used by the tree- search al-
gorithm is reflected by statements which indicate the sequences of pop's and

push's which the algorithm creates when it is executed.

Notice that a comporent will have an inwrinsic (or wetual) bchavior which is the
behavior the component's structure is capable of producing. A component will also
have one or more catrinsic (or desired) behaviors which are those stemming from
the use of the component. In the absence of any knowledge of about how a compon-
ent is actually used, its requirod behavion can be defined with the implication
that any legal extrinsic behavior should exercise the component only in ways that
are indicated in the required behavior. DREAM's certification tools, which will
be discussed later, determine suitability by comparing extrinsic, required and/or
intrinsic behaviors.

DON provides a number of ways of specifying a component's required behavior and
thus giving a behavioral model of the component ([Riddle 78b], [Wileden 78b]).
Required behavior that rejates to the usage of interfaces may be specified by in-
dicating conditions upon the information which may legally pass through the inter:
face. Thus, conditions may be levied against messages that may pass through
subsystem ports or values that may "pass through" parameters to monitor procedure
calls.

More complicated aspects of a monitor component's behavior, concerning when the
component's procedures may be legally invoked, may be specified by giving pre-

and post-conditions, stated in terms of the "state" of the component and associated
together to form a transition which indicates the effect of the procedure. For
example, a stack's states could be specified as empty, full, and otherwise and the
transitions for pop could be:

full — otherwise

otherwise ——g otherwise or empty

which indicate that annot Le 1eqt.,, invoked when the stack is emptyv
and specify r* reauirud behavmor to be "cau,od“ when pop is 1nvoked (lho
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specigication of behavior by state transitions is a concept which we borrowed from 9
TOPD.

A final set of DDN constructs for spuecifying required behavior allows the descrip-
tion of behavior over time. Kvcnis van bo defined as the occurrence of "interest-
ing happenings" during system operatinn and the required behavior may then be ex-
pressed as required sequences of events. tor example, procedure names are auto-
matically events and the usual required behavior for a stack could be specified as:

REENTRANT (SEQUENCE (push, pop))

which, because of the semantics of REENTRANT, means that the number of push's
must be greater than or ejyual to the number of pop's.

The DDN constructs for event sequence definition are powerful but parsimonious.
Also, they are a formal notation and are therefore not extremely "friendly" for
design practitioners who lack training in the formal aspects of computer science.
However, they provide a set of denotational capabilities which are extremely im-
portant for behavioral modelling.

ORIGINAY PAGE IS
Organizational Model OE POOR QUALITY,
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Fcllowing the precedent set by the TOPD language (and originated, we believe, in
the Simula language [Dahl 66]), DDN descriptions are a collection of c¢lics defini-
tions. A model is therefore obtained from a description by a process of (nutan-
tiailion.,  Standard declarative constructs are used to denote nierarchical organ-
ization and special constructs are provided to denote component sharing since the
standard declarative constructs would permit only tree-like hierarchies

[Riddle 80]. Message communication pathways among subsystems are defined by using
additional descriptive constructs.

DDN views instantiation as occurring cntirely before execution and thus models
have a static organization. Many dynamic organizations can, however, be
"simulated" by the dynamic use of a static communication pathway organization,
but, the resulting models tend to be overly complex and unclear.

A Final Word

DDN is a poor programming language; but that's because it is not intended to be

a programming language. The intent in developing DDN is to provide modelling

: constructs which allow the description of what modules comprise a system and what
the interactions among the modules should be. Exactly how the modules interact is
not considered to be properly part of a DDN model. Thus, for example, a single
concurrent process synchronization mechanism (message transfer) is provided in

DDN whereas ine actual synchronization in the fully developed system would be
achieved by the use of one of a number of synchronization mechanisms,

However, DDN looks 1ike a programming language and this is perhaps a mistake.

We have seen designers misled by the similarity and, as a consequerice, they mis-
use the language. We feel, however, that the concepts included in DDN are the
right ones for the architectural design of concurrent systems. We feel that the
problems which arise should be solved by education of the designers rather than
changing DDN.

DREAM SYSTEM TOOLS

We plan a number of tools to help design practitioners in constructing suitable
: models for concurrent software systems. We know that some of these tools are
Eﬂ feasible because we have constructed prototype versions. Others have been de-

e wAlAannd . ae Fawm nec _bhan . aliamsdihame s tnrhnasmiine ata aans~mavmnard bhoaad otan _asra. ok wanad
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put them in a form suitable for use with DON. We discuss these tools in this sec- 10
tion as if they have been constructed and the cited references indicate more ex-
actly the degree to which they have been developed.

Data Base Core

The fundamental tool in DREAM is a data base in which are stored fragments of a
DDON textual description. Most fragments define some aspect of some class of com-
ponents in the model; others give information concerning tests or analyses, doc-
umentation, etc. The DDN syntax defines how these fragments are related and
provides for naming them. Fragments to be retrieved from the data base are
selected by these names and thus DDN itself is used as the basis for the data base
query language.

Description fragments have other attributes besides names. In the current data
base implementation [Humbrecht 80], there can be an arbitrary number of addi-
tional attributes although the number of attributes and their values are fixed
for any data base. Further, there must be at least one attribute which hold a
time/date stamp reflecting when the fragment was inserted into the data base.
Users may establish a "slice" through the data base by specifying values for the
attributes and any modifications to the data base are relative to the fragments
in the active slice. The time/date stamp attribute is used to resolve all ambi-
quities, in effect selecting the "newest" fragment in any collection which is
selected by an ambiguous retrieval command or slice definition. This data base
organization provides a good deal of flexibility, allowing "windows" into the
data base which can reflect time, versions, design team organization, etc.

Bookkeeping Tools

In keeping with the view that a DREAM user intersperses relatively long periods

of offline thinking with relatively short periods of modification of the infor-
mation contained in the data base, the DRLAM tools for aiding the maintenance

of the evolving design's description are simple extensions of the data base inter-
face. It is assumed that the host operating system's editor can be used to pre-
pare new or modified description fragments. The bookkeeping tools then amount

to 1) an entry tool which syntax checks the fragment and presents syntactically
correct fragments to the data basg¢ for insertion, and 2) a retrieval tool which
interprets the user's retrieval directives and constructs the appropriate data
base query commands.

Decision-making Tools

The major tools provided by DREAM are those which aid design practitioners in
assessing the suitability of the design as it evolves and in identifying what
remains to be designed. These tools fail into three categories which we discuss
below.

Phar whrasing Tools. Tools in this category re-present the information in the
data base in a form, perhaps structured in some canonical format or presented
graphically, in which the user may more easily inspect it and perhaps even iden-
tify some errors. The informaticn is no more and no Jess than that already con-
tained in the data base although the use~ may focus on some subset of the total
information. Figure 1 is an example of +hat might be produced by an instantia-
tion graph paraphrasing tool. Other par:phrasing tools could produce control
maps akin to flow charts or they could p-oduce cross-reference charts.

Extraction Toola. Th' type of tool exa ines the information in the data base
and, knowing the se™ ~s of DDN, derives feedback “or the designers concerning
the characteristicy v. inie model. Usually, this feedback concerns the intrinsi
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simulators, finite-state testers [Henderson 7%a}, .nd event sequence expression 11
derivers [Riddle 79e],

Congle!oney Chooklny Tieslo. These tools uncesver incompatitilities among various
description fragments or detween a descriplion traguent amd -ome rule (e.qg,, no
deadlock). Because of tpe difficulty and impo. . ibility of doing exact, algorithmic
analysis, these tools uncover anomaii~s (i.e¢,, desiations which are suspicious but
are noc confirmed errors) and the designers must use intuition, experience and in-
sight to determine whether or not a detected anomaly is in fact an error. CExamples
of consistency checking tools are: the TOPD cunsistency checker [Henderson 76a],
event trace checkers [Stavely 79}, and synchronization anomaly detectors

[Bristow 79].

ORICINAL PAGE IS
OF POOR QUALITY,

Even though we have not yet prepared a full implementation of DREAM, our develop-
ment of DDN, along with its assessment and with our investigation into analysis
techniques and other associated topics, has jiven us some insights into the char-
acteristics of effective development support systems. ‘turther, we have also
gained some insight into major problems which remain to be solved on the way to
achieving these systems. These insights, several of them quite obvious with 20/20
hindsight, are discussed in this concluding section,

CONCLUSIONS

Some Lessons Learned

Intbigreage Decomposi i, By building on 10PD as a hase language, ard by not giving
enougn thought to the inadvisability of having a large, complex janguage, we
suffered a severe case of the "Second Systiem Syndrome." We do not believe that we
have unnecessary constructs. Nor do we feel that the constructs appcar in conflict-
ing forms. We do think that DDON should be more clearly decomposed intu the family
of interrelated lanquages which it actually is. Perhaps it is sufficicnt to par-
tition the lanquage along structure/behavior/organization lines, but that is not
entirely clear at the moment.

Sepavation of Coneerng.  Decomposition of the notational tools into an integrated
collection of logically complete ianquages is part of a Targ:r issue. A.. tools

in a development system must serve a narrowly defined purpose and it is a mistake
to make tools do "double duty." For example, having DDN be hoth a model descrip-
tion language and the basis for a data base query Tdanyguage is a mistake since it
complicates the language and negatively impacts the ability to easily change either
aspect of the language.

It is, of course, extremely desirable that a Tower of Babel situation be avoided.
The point is that our experiences with DDN indicate one should define a number of
small, interrelated, well-defined languages and then attempt to amalgamate them.
We made the mistake of trying to put everything into one language from the very
beginning.

Tool Usage. A beautifully handcrafted banjo can be just a piece of art and not a
musical instrument. So it js with software development tools -- their value depends
on their usefulness for software development rather than their elegance on more
esoteric levels. It is imperative, therefore, that tools emerge througl a natural
selection process involving actual use.

A well-established approach is to implement the tools, put them into use, and see
how they are accepted. This is also an offective way to "sell" tools %o practi-
tioners since, it they accept the tool then they will ask for more (a plienomenon
which has been called the "Potato Chip Principle" [Nassi 807]).

For a number of reasons, we did not take this approach in developing PREAM. Per-
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evolve it as a result of that usage. But it is equally important to do gedanken’
experiments away from the heat of battle - one has only to compare Pascal and
Fortran to see this. In developing DDN we have done a number of gedanken experi-
ments and feel that this introspective, controlled usage of tools is an important
development approach.

Exploration. DREAM provides Tlittle direet help for exploring and comparing alter-
native designs. Designers may describe alternatives, assess them individually ard
compare the results. But, more sophisticated facilities are generally needed to
help developers keep track of the alternatives, their similarites and their
differences. Facilities are also necessary to help developers trace back through
a sequence of decisions.

Iducation., In teaching TOPD and DDN, we have found it possible, but difficult, to
establish the right frame of mind for effective use of modelling-based tools.

Even those more sophisticated students, who embrace good programining methodologies,
tend to use the familiar to understand the unfamiliar and look at architectural
design as something of the same nature as aljorithm design, only more compliicated.
Further, the fact that TOPD and DON have their heritage in programming languages
fosters this reaction. We have found it mandatory to carefully establish the
nature of architectural design prior to introducing design notations.

Some Problems for the Future

Lducation., 1t probably overloads the world to create yet another paraphrase of
MacArthur's famous saying, but it is true that "eld programmers never die they
just become designers.,” And so it should be, since system designers must be rela-
tively sophisticated programmers so that they create feasible designs. But this
means that we cannot rely on experience being the "teacher" and must directly
address the issue of educating developers in the ways to appropriately and effec-
tively use tools and development environments.

Languages. Several proposals for primitives which should be in languages for pro-
gramming distributed systems (e.g. [Andrews 777, [Hoare 78], [Liskov 79]) have
duplicated some of the primitives found in DON. This indicates that some of the
primitives we developed for DDN are useful for the implementation-level descrip-
tion of systems. We view this as desirable since it lessens the gap between a
design and an implementation. But we also feel that blurring the distinction
between design and implementation is not a good idea since it will aliow, and per-
haps even encourage, implementation decisions to be prematurely made. If the
language-extension approach to preparing development environments is chosen, we
feel it is critically important to allow the use of the primitive concepts (e.g.,
message transmission) without having to express all the details (e.g., message
buffering constraints).

Evaluation. We currently lack the techniques that will be necessary to assess the
impact of tools and environments; there are many peree7oved advantages and disadvan-
tages, but asscssments are intuitive, subjective, ambiguous and contradictory. We
need models of the development process and developers themselves. We need metrics
of system quality and development methodology quality. And, we need some idea of
how to conduct "small," experimental development projects in a way which allows
valid inferences to be drawn concerning "large" efforts.

Development Style. A particular need, in order to be able to prepare truly effec-
tive environments, is for some understanding of how developers really carry out
their work. Most development methodologies make the assumption that the process

of development is, or can be, the ordeilv progression of logical steps, and ratjon-
alization of the process i<, no doubt, beneficial. But creative processes are
nor-torious fer their rando: -2ss and we need to understand the nature of this ran-
domness ratk  than try t ‘minate or control it. Only with such an understand-

ing cah B¥rec ive help b thr h software development tools and environments.
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APPENDIX:

Example DDN Description

In this appendix, we give a DDN description of an operating system that is struc-
tured similarly to the T.H.E. operating system developed by Dijkstra and his

16

colleagues [Dijkstra 68]. The description given here is essentially a translation
of the description given in a notation that served as a basis for the DDN notation

[Riddle 72].

First we use the DDN Notation to give simple models of the devices managed by the

operating system.

[memory control unit]: SUBSYSTEM CLASS;

DOCUMENTATION; Items in this class of subsystems process
requests for reading and writing of the real memory.
Each request is in the form of an address within the
real memory space. No éccount is taken in this model
of the response to a read request.

END DOCUMENTATION;

channel: IN PORT;

BUFFER SUBCOMPONENTS; address OF [real address]
END BUFFER SUBCOMPONENTS;
END IN PORT;
process: CONTROL PROCESS;
MODEL; ITERATE; RECEIVE channel;
END ITERATE;
END MODEL;
END CONTROL PRQCESS;
END SUBSYSTEM CLASS;

[operator_console]: SUBSYSTEM CLASS;
DOCUMENTATION; This models the console and the operator
using it.
END DOCUMENTATION;
message_in: INPORT;
BUFFER SUBCOMPONENTS; message OF [program message]
END BUFFER SUBCOMPONENTS;
END IN PORT;
reply out: OUT PORT;
BUFFER SUBCOMPONENTS; reply OF [operator reply]
END BUFFER SUBCOMPONENTS;
END QUT PORT;
operator: CONTROL PROCESS;
MODEL; ITERATE; RECEIVE message in;
SET reply TO ans;
SEND reply out;
END ITERATE;
END MODEL;
END CONTROL PROCESS;
END SUBSYSTEM CLASS;

[card_reader]: SUBSYSTEM CLASS;

DOCUMENTATION; This models the actual card reader. For
purposes of this model, the card rcader reads in one
card at a time in response to requests from some part
of '+ e operatinc vstem.
£ ‘CUMENTAT T uiv;

END TEM CLASS:
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. ‘ [card reader]: SUBSYSTEM CLASS;

; request _in: INPORT; 17
p BUFFER SUBCOMPONENTS; read_request OF [read_request_message]
‘ END BUFFER SUBCOMPONENTS;

END IN PORT;
card _out: OUT PORT;
BUFFER SUBCOMPONENTS; card_image OF {card]
END BUFFER SUBCOMPONENTS;
END OUT PORT;,
reader: CONTROL PROCESS;
MODEL; ITERATE; RECEIVE request in;
SET card image TO defined,
SEND card _out;

END ITERATE; ORIGIN,

. L pa
END MODEL; P GE I
END CONTROL PROCESS; POOR QUALITy,

END SUBSYSTEM CLASS;

[printer]: SUBSYSTEM CLASS;

DOCUMENTATION; The model is of a printer which receives
carriage control signals scparately from lines to ke
printed. It is not necessary that each carriage
control signal be followed by a line to be printed.
END DOCUMENTATION;

carriage control: IN PORT;

BUFFER SUBCOMPONENTS; signal OF [carriage control_signal]
END BUFFER SUBCOMPONENTS;
END IN PORT;

contents: IN PORT;

BUFFER SUBCOMPONENTS; line OF [print line]
END BUFFER SJBCOMPONENTS;
END IN PORT;
print: CONTROL PROCESS;
MODEL; ITERATE; RECEIVE carriage control;
MAYBE; RECEIVE contents;
END MAYBE;
END ITERATE;
END MODEL;
END CONTROL PROCESS;
END SUBSYSTEM CLASS;

In giving these models, we have indicated the need to have several different types
of information. In some cases, we have indicated "values" that pieces of infor-
mation should assume. This can be recorded more explicitly by using DDN monitor
classes to record the names for these types of information and their possible
"values" as delineated so far.

[real_address]: MONITOR CLASS;
H#D MONITOR CLASS;

[program message]: MONITOR CLASS;
DOCUMENTATION; messages sent by a program to the operator
through the operator's console;
END DOCUMENTATION;
END MONITOR CLASS;

[operator reply]: MONITOR CLASS;
STATE SUBSETS; ans END STATE SUBSETS;
END MONITOR CLASS;

[read request message]: MONITOR CLASS;
END MONITOR CLASS;

N
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[card]: MONITOR CLASS;
STATE SUBSETS; defined END STATE SUBSETS;
END MONITOR CLASS;

{carriage control_signal]: MONITOR CLASS;
END MONITCK CLASS;

[print_line]: MONITOR CLASS;
END MONITOR CLASS;

Before giving the operational parts of the operating system itself, another prim-
itive part of the overall system that needs to be modelled is a program running
under the operating system. The system is a multiprogrammed one, so the class
definition facilities are used to model a generic program running under the
operating system. With respect to the devices and resources managed by the oper-
ating system, the important thing to describe about a program is that it produces
a nondeterministic sequence of uses of the various resources and devices.

[program]: SUBSYSTEM CLASS;
card_request: OUT PORT,
BUFFER SUBCOMPONENTS, read request OF [read request message]
END BUFFER SUBCOMPONENTS;
END OUT PORT;
read card: IN PORT;
BUFFER SUBCOMPONENTS, card_image OF [card]
END BUFFER SUBCOMPONENTS;
END IN PORT;
printerﬂpontro]:-OUT‘PORT;
BUFFER SUBCOMPONENTS: signal OF [carriage_control signall
END BUFFER SUBCOMPONENTS;
END OUT PORT;
Tine_contents: OUT PORT;
BUFFER SUBCOMPONENTS; line OF [print_line]
END BUFFER SUBCOMPONLNTS
END OUT PORT;
to_operator: OUT PORT;
“BUFFER SUBCOMPONENTS; message OF [program message]
END BUFFER SUBCOMPONENTS;
END OUT PORT;
from operator: IN PORT;
BUFFER SUBCOMPONENTS, reply OF [operator reply]
END BJFFER SUBCOMPONENTS;
END INPORT;
access: OUT PORT;
BUFFER SUBCOMPONENTS; address OF [virtual address]
END BUFFER SUBCOMPONENTS;
END OUT PORT;
END SUBSYSTEM CLASS;

[virtual_address]: MONITOR CLASS;
STATE SUBSETS; defined END STATE SUBSETS;
END MONITOR CLASS;




'[program]: SUBSYSTEM CLASS' run: CONTROL PROCESS; 19
MODEL; ITERATE; SELECT;
(PERHAPS) COMMENT read operation;
SET read request TO defined;
SEND card _request;
RECEIVE read _card;
(PERHAPS) COMMENT write operat1on,
SET signal TO defined;
SEND printer_control;
MAYBE; SET 1ine TO def1ned
SEND Tine_contents;
END MAYBE;
| (PERHAPS) COMMENT interact with operator;
| ORy SET message TO defined;
| Civay ' SEND to_operator;
| & Rooy, - PG yg MAYBE; COMMENT not all messages
f . ALp, reqJire a reply;
L RECEIVE from_operator;
: END MAYBE;
A i (OTHERWISE) COMMENT read or write a location
' in program's virtual
memory space;
SET address TO defined;
SEND access;
END SELECT;
END ITERATE;
END MODEL;
END CONTROL PROCESS;

[\

Notice that there is an inconsistency among these models — the operator always
replies to each message that a program sends whereas the program does not always
expect a reply. This coyld be uncovered by simulation-based testing at this
level of modelling or by more formal analysis. This inconsistency will be re-
moved when the operation of the system with respect to conversations between a
program and the operator is elaborated Tater.

The description of the operating system at this ievel of modelling may be com-
pleted by giving models of the major operational parts of the operating system.
First, the address translator which convertsaddresses in the virtual memory spaces
of the programs into the actual memory space of the memory system:

[address_translator]: SUBSYSTEM CLASS;
virtual _space: IN PORT;
BUFFER SUBCOMPONENTS, v_address OF [virtual address]
END BUFFER SUBCOMPONENTS;
END IN PORT;
actual _space: OUT PORT;
BUFFER SUBCOMPONENTS, a address OF [real address]
END BUFFER SUBCOMPONENTS;
END OUT PORT;
END SUBSYSTEM CLASS;

'[address_translator]: SUBSYSTEM CLASS' translate: CONTROL PROCESS;
MODEL; ITERATE; RECEIVE virtual _Space;
SET a_address T0 defined;
SEND actual_space;
END ITERATE;
END MODEL;
END CONTROL PROCESS;

, : Before giving modeis of the other major processing portions of the operating sys-
M_t__, o tems. the definitiaons aof the niecec nf infarmatinn nrncoceond hv tha _tcuctam chanld




be updated. : 20

'{read_request_message]: MONITOR CLASS'
STATE SUBSETS defined END STATF SUBSETS;

'[carriage_control_signal]: MONITOR CLASS'
STATE SUBSETS defined END STATE SUBSETS;

'[print_line]: MONITOR CLASS'
STATE SUBSETS detfined END STATE SUBSETS;

'[program message]: MONITOR CLASS'
STATE SUBSETS defined END STATE SUBSETS;

'[real _address]: MONITOR CLASS'
STATE SUBSETS defined END STATE SUBSETS;

At this level of modelling, there are no further distinctions that can be made
among the "values" of these pieces of information.

The next processing module within the operating system is the handler of messages
between the programs and the operator. At this level of modelling, the handler

is either passing on a program's message, perhaps with some accesses to the
handler's virtual memory space, or passing on the operator's reply, again p0§31b1y
with some accesses to the handler's virtual memory space. The description of this
class is parameterized with respect to the number of programs that can bec handled.

[message interpreter]: SUBSYSTEM CLASS;
QUALIFIERS #_of programs END QUALII’IERc
message_in: ARRAY [1::4_of programs] OF IN PULT;
BUFFER SUBCOMPONENTS; message OF [program message]
END BUFFER SUBCOMPONENTS;
END INPORT;
message out: OUT PORT;
BUFFER SUBCOMPONENTS; message_to operator OF [program_message]
END BUFFER SUBCOMPONENTS;
END OUT PORT;
reply in: IN PORT;
BUFFER SUBCOMPONENTS reply OF [operator reply]
END BUFFER SUBCOMPONENTS
END IN PORT;
reply out: ARRAY[I :# of programs] OF OUT PORT;
BUFFER SUBCOMPONENTS; reply to_program OF [operator reply]
END BUFFER SUBCOMPONENTS
END OUT PORT;
END SUBSYSTEM CLASS;

[message_interpreter]: SUBSYSTEM CLASS;
access: OUT PORT;
BUFFER SUBCOMPONENTS; address OF [virtual_address]
END BUFFER SUBCOMPONENTS;
END OUT PORT;
collector: ARRAY[1::# of programs] OF CONTROL PROCESS;
DOCUMENTATION; These control processes serve to funne1 all
of the messages from all of the programs into one stream
and therefore to model that the message handler can
handle the messages in any order,
END DOCUMENTATION;
message stream: LOCAL OUT PORT;
BUFFFR SUBCOMPONENTS; hold message OF [program message]
* BUFFER SuP WPONENT‘
v AL OUT PORT,
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SET hold_message(MY INDEX) TO message(MY_INDEX);
SEND message_stream(MY INDEX);
END ITERATE:
END MODEL;
END CONTROL PROCESS;
handler: CONTROL PROCESS;
get _message: LOCAL IN PORT;
BUFFER SUBCOMPONENTS; one_of the_messages OF [program message]
END BUFFER SUBCOMPONENTS;
END LOCAL IN PORT;
MODEL; ITERATE; RECEIVE get message;
ITERATE PERHAPS;
SET address TO defined;
SEND access;
END ITERATE;
SET message to operator TO defined;
SEND messayge out;
MAYDE; COMMENT reply not always expected;
RECEIVE veply in;
ITERATE PERHAPS;

é?RLGuyAL.PA_ SET address TO defined;
b E ROOI{ GE IS SEND ACCESS
¥ QUaggy, END ITERATE;

FOR SOME i IN [1::# of programs];
SET reply to_program(i) TO defined;
SEND reply out(i);
END FOR;
END MAYBE;
END ITERATE;
END MODEL;
END CONTROL PROCESS;
CONNECTIONS;
FOR ALL i IN [1::# of programs];
PLUG(collector(7) |message stream, handler|get message);
END FOR;
END CONNECTIONS;
END SUBSYSTEM CLASS;

The connections among the ports of the control processes serve, as the comment in
the documentation of the collector control processes indicates, to set up a message
communication network which funnels all of the messages into one stream. This net-
work, when there are four programs, may be graphically represented as in Figure 2.

A further elaboration of the message interpreter, given later, will indicate that
an alternative communication network is really used. This one, and the models of
the control processes, serve to give an abstract description of the interactions

of this part of the operating system with the other parts of the operating system.

The remaining major part of the operating system is the spooling subsystem. In
the following model of this part, we exhibit an alternative to funnelling message
from many sources into one stream — the spooler is set up to poll the various
sources of requests in some rondeterministic (at this point anyway) order,

S S
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FIGURE 2

[spooling system]: SUBSYSTEM CLASS;
access: OUT PORT;
BUFFER SUBCOMPONENTS; address OF [virtual address]
END BUFFER SUBCOMPONENTS;
END OUT PORT;
to_operator: OUT PORT;
"BUFFER SUBCOMPONENTS message OF [program message]
END BUFFER bUBCOMPONENTS
END OUT PORT;
from operator: IN PORT;
BUFFER SUBCOMPONENTS reply OF [operator_reply]
END BUFFER SUBCOMPONENTS;
END IN PORT;
END SUBSYSTEM CLASS;

[spooling system]: SUBSYSTEM CLASS;
QUALIFTERS; # _of _user_programs END QUALIFIERS;
read_request in: ARRAY[1::# of user programs] OF IN PORT;
BUFFER SUBCOMPONENTS; program_read request
OF [read_request message]
END BUFFER SUBCOMPONENTS;
END IN PORT;
read_request out: OUT PORT;
BUFFER SUBCOMPONENTS; read _request OF [read request_message]
END BUFFER SUBCOMPONENTS;
END OUY PORT;
read_car ': IN PORT;
BUFFf  SUBCOMPONCMTS: card_image OF [card]

: 'UFFER SUBCOMPONENTS
ﬁjND l?:: PORT »
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BUFFER SUBCOMPONENTS; delivered_card image OF [card]
END BUFFER SUBCOMPONENTS;
END OUT PORT;
printer control__in: ARRAY[1::# of user programs] OF IN PORT;
BUFFER SUBCOMPONENTS: signal OF Tcorr1age control_signal]
END BUFFER SUBCOMPONENTS;
END IN PORT;
printer_ contro] _out: OUT PORT;
BUFFER SUBCOMPONENTS; 519"3] to printer
OF [carriage_control signal]
END BUFFER SUBCOMPONENTS;
END OQUT PORT;
Tine_contents_in: ARRAY[1::#_of user programs] OF IN PORT;
BUFFER SUBCOMPONENTS; Tine OF [print_line]
END BUFFER SUBCOMPONFNTS
END IN PORT;
line contents_ out: OUT PORT;
BUFFER SUBCOMPONENTS; 1lne _to printer OF [print_line]
END BUFFER SUBCOMPONENTS
END OUT PORT;
spooler: CONTROL PROCESS,;
MODEL; ITERATE; SELECT;
(PERHAPS) COMMENT send a message to the
operator;
SET message TO defined;
SEND to_operator;
MAYBE; RECEIVE from operator;
END MAYBE;
(PERHAPS) COMMENT read or write a location
in virtual memory space;
SET address TO defined;
SEND access;
(OTHERWISE) COMMENT service a request

IQ;RQQOVa, from one of the user
“14&&3“ . programs;
Ry L oy FOR SOME i IN [1::4# of_ user_programs J;
Sedge, ¥ MAYBE; RECEIVE read_request in(i);
N SET read_request TO def1ned

SEND read request out;
RECEIVE read card;
SET delivered card _image(i)
TO card 1mage,
SEND read_card out(i);
ELSE:
RECEIVE printer_control_in(i);
SET signal to pr1nter
TO defined;
SEND printer_ contro] _out;
MAYBE

RECEIVE line_contents_in(i);

SET Tine to_pr1nter
TO line(i);
SEND Tine_contents_out;
END MAYBE;
END MAYBE,
END SELECT;
END ITERATE;
ENC MODEL;
END CONTROL PROCESS;
END SUBSYSTEM CLASS;

23




This concludes the description of all of the components for the operating system. 24

The remaining step at this level of modelling is to describe the operating system
itself, indicating its componentry and the network of communication pathways
among the components.

[operating system]: SUBSYSTEM CLASS;
QUALIFIERS;# of user_programs END QUALIFIERS;
SUBCOMPONENTS;
programs ARRAY[1::#_of user_programs] OF [program],
memory system OF [memory_control_system],
console OF [operator_console],
reader OF [card_reader],
hard_copy OF [printer],
transiator OF [address_transiator],
interpreter OF [message_interpreter(#_of user_programs+l)],
spool OF [spoo]ing_§ystem(#_pfﬁyser_programs)]P
END SUBCOMPONENTS;
CONNECTIONS;
PLUG (translator|actual space, memory system|channel);
PLUG (interpreter|message out, console|message_in);
PLUG (console|reply out, interpreter|reply_in);
PLUG (interpreter]access, translator|virtual_space);
PLUG (spool|read_request out, reader|request_in);
PLUG (reader|card out, spool|read card);
PLUG (spool|printer control_out, hard copy|carriage_control);
PLUG (spool|line_contents out, hard_copy|co: vents);
PLUG (spoollaccess, transTator|virtual_space);
PLUG (spool|to_operator, interpreter|message_in(1));
PLUG (interpreter|reply out(1l), spool|from_operator);
FOR ALL i IN [1::# of user programs];
PLUG (program{i)|card request, spool|read_request in(i));
PLUG (spool|read card out(i), program(i)!read_card);
PLUG (program(i)[printer_control, spooi|printer_control_in
PLUG Eprogram(i) Tine_contents, spoo]Iline_pontents_jn(igz
(

(i));

PLUG (program(i)|to_operator, interpreter message_in(i+l)};
PLUG (interpreter|reply out(i+l), program(i)|from operator);
PLUG (program(i)|access, translator{virtual_space);
END FOR;

END CONNECTIONS;

END SUBSYSTEM CLASS;

The communication network that is set up by this description is essentially that
given in Figure 1 in [Riddle 72].

W o ok ok ok ek ok ok ok

In [Riddle 72] the level of modelling for the operating system is elaborated for
each of the major operational parts of the operating system. For purposes of ex-
ample, we will carry that elaboration out for the message_interpreter and
address_translator parts of the operating system. The elaboration of the
spooling_system, using DDN, is Teft as an exercise.

For the address_translator, we need first to model the external storage that is
used to hold paged-out portions of the virtual spaces. '

[external_storage]: SUBSYSTEM CLASS;

read request: IN PORT;

BUFFER SUBCOMPONENTS; request OF [io_request]

END BUFFER SUBCOMPONLNTS;

END IN PORT;
write request: IN POR

BUFFFR SUBCOMPONEN rite request OF [io_request])
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; END BUFFER CONDITIONS;
. END IN PORT;
read_done: OUT PORT;
BUFFER SUBCOMPONENTS; signal OF [io_done_signal])
END BUFFER SUBCOMPONENTS;
END OUT PORT;
write_done: OUT PORT;
BUFFER SUBCOMPONENTS; write_signal OF [io_done_signal]
END BUFFER SUBCOMPONENTS;
END OUT PORT;
jo: CONTROL PROCESS;
MODEL; ITERATE; MAYBE;
RECEIVE read_request;
‘ SET signal TO accomplished;
E SEND read_done;
| ELSE; y
. RECEIVE write_request;
ORIGINATL PAGE 1§ SET write_signal TO accomplished;
QE POOR QUALITY, SEND write_done;
END MAYBE;
END ITERATE;
END MODEL;
END CONTROL PROCESS;
END SUBSYSTEM CLASS;

[io_request]: MONITOR CLASS;
STATE SUBSETS; read, write END STATE SUBSETS;
END MONITOR CLASS;

[io_done signal]: MONITOR CLASS;
STATE SUBSETS; accomplished END STATE SUBSETS;
END MONITOR CLASS;

We have used the buffer conditions construct of DDN to indicate that only write
requests may come in through the write_request port.

We also need a semaphore.

[semaphore]: MONITOR CLASS;
STATE SUBSETS; uninitialized, zero, one
é END STATE SUBSETS;
5 DOCUMENTATION; This is a binary semaphore which may be used
v for mutual exclusion. The operation of the procedures is
not elaborated here — they may be "programmed" using
signals and waits upon condition variables.
END DOCUMENTATION;
initialize: PROCEDURE;
TRANSITIONS; uninitialized - one
END TRANSITIONS;
END PROCEDURE;
p: PROCEDURE;
TRANSITIONS; one - zero; zero -+ zero
o END TRANSITIONS;
B END PROCEDURE;
i v: PROCEDURE;
TRANSITIONS; zero - one
END TRANSITIONS;
END PROCEDURE;
END MONITOR CLASS;

,n-.,....w..“
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[address_translator]: SUBSYSTEM CLASS; ! 26
virtual_space: INPORT;
BUFFER SUBCOMPONENTS; v address OF [virtual address]
END BUFFER SUBCOMPONI'NTS;
END IN PORT;
actual_space: OUT PORT;
BUFFER SUBCOMPONENTS; a_address OF [real_acdress)
END BUFFER SUBCLOMPONENTS;
END OUT PORT;
SUBCOMPONENTS
storage OF [external_storage],
mutex OF [semaphore]
END SUBCOMPONENTS
check: CONTROL PROCESS;
set_up_swap: LOCAL QUT FURT;
BUFFER SUBCOMPONENTS; signal OF [activate_signal)
END BUFFER SUBCOMPONENTS;
END LOCAL OUT PORT;
BODY; ITERATE; RECEIVE virtual_space;
mutex.p;
COMMENT access the page tables;
mutex.v;
IF PERHAPS
THEN a_address.assign;
SEND actual_space;
ELSE signal.assign;
SEND set_up_swap;
ENG IF;
END ITERATE;
END BODY; END CONTROL PROCESS; END SUBSYSTEM CLASS;

In this control process definition, we have used a body textual unit to indicate
that what is being defined is an actual part of the subsystem rather than just

a model. Within the body, we have used nondeterminism to indicate that it is not
yet completely specified as to how the decision is made as to whether the page is
in the actual memory system or on external storage. This is not really legal in
DDN — a legal description would require the definition of a flag variable that

was set (nondeterministically) to either true or false within the critical section
and was used to control the subsequent flow of processing.

The definition of the address_translator is completed with the following textual
units.

[address_translator]: SUBSYSTEM CLASS;
swap: CONTROL PROCESS;
wait for ~ctivation: LOCAL IN PORT;
BUFFER .'JBCOMPONENTS; signal OF [activs 2 signal]
END BUFFER SUBCOMPONENTS;
END LOCAL IN PORT;
read_request: LOCAL OUT PORT;
BUFFER SUBCOMPONENTS; request OF [io_request]
END BUFFER SUBCOMPONENTS;
END LOCAL OUT PORT;
read _done: LOCAL IN PORT;
BUFFER SUBCOMPONENTS; signal OF [io_done_signal]
END BUFFER SUBCOMPONENTS;
END LOCAL IN PORT;
write request: LOCAL OUT PORT;
BUFFER SUBCOMPONENT": write request OF [io_request]
END BUFFER “'RC JONENTS;
END LOCAL OUT
ite done: LOCAL 1 1w,

"o,
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END BUFFER SUBCOMPONENTS 27
END LOCAL IN PORT;
BODY; ITERATE; RECEIVE wait_for activation;
mutex.p: COMMENT check for page unchanged;
mutex.v;
IF PERHAPS
THEN write request.assign;
SEND write request;
RECEIVE write done;
END IF;
request.assign;
LMHCZN SEND read_request;
' Lo RECEIVE read done;
“R Q. E Is mutex.p; COMMENT update the page tables;
ALtry. mutex.v;
‘ a_address.assign;
SEND actual_space;
END ITERATE;

>
g
&

|

1 END BODY;
t END CONTROL PROCESS;
END SUBSYSTEM CLASS;

[address_translator]: SUBSYSTEM CLASS;
CONNECTIONS

PLUG (check|set up swap, swap|wait_for activation);
PLUG (swap|read request, storage|read request);
PLUG (storage|read_done, swap|read _done);
PLUG (swap|write request, storage|write_request);
PLUG (storage|write_done, swap|write_done);
END CONNECTIONS;

The graphical representation of this connection network is essentially that appear-
ing as Figure 6 in [Riddle 72]}. The major difference is that in the Figm: in
[Riddle 72], the semaphore is represented as a 1ink process because the precursor
of DDN did not have the concept of monitor class.

This elaboration indicates one of the major purposes of controi processes in addi-
tion to their role in modelling. When components within a subsystrm dre partic-
ular to that subsystem, a body for a control process .may be prepared to indicate
the algorithm for the message handling carried out by the component. DDN would
allow a class definition to be preparcd and then an instance of that class to be
declared as a subcomponent within the subsystem —~ as was done for the external
storage component. But it is often sufficient to indicate the component directly
as a control process body, and this serves the additional purpose of drawing a
direct correspondence between the subsystem's modelled beiavior and the operation
of the subsystem's components.

In these textual units, we have again used procedures named assign. We should
define these wi‘hin the class definitions, but this is not really very illustra-
tive, so we will skip that.

For the elaboration of the message interpreter, we will not only specify the
operation of some of its components, but will also elaborate the description with
respect to the types of messages that are processed. The intent of this elabora-
tion is to specify some aspects of conversations between a program and the opera-
tor. First, we elaborate the types of messages that can be sent by the programs
to the operator.
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[program message]: MONITOR CLASS; 28

STATE SUBSETS; write, write and wait, terminate

END STATE SUBSETS
set to_terminate: PROCEDURC;

TRANSITIONS; » terminate

END TRANSITIONS;

END PROCEDURE;

END MONITOR CLASS;

We have included the procedure set_to_terminate because it will be needed in later
descriptions. The state subsets indicate that the program may send a message to
the operator without a rly expected (write), send a message with a reply expected

(write_and_wait), or indicate that the conversation with the operator may be termi-
nated,

In the elaboration of the message_interpreter, it will attach an identification
of the originating program to the message before passing it on to the operator.
Thus we need a class definition that describes these coded messages.

[encoded message]: MONITOR CLASS;
QUALIFIERS; # of programs END QUALIFIERS;
STATE VARIABLES;
id: VALUES (1::# of programs),
content: VALUES Tmessage, nu]])
END STATE VARIABLES;
STATE SUBSETS;
write: <<--, content=messaqge-r:,
write_and wait: <<--, content=message>>,
terminate: <<--, content=null>>
END STATE SUBSETS;
assign: PROCEDURE;
PARAMETERS :
id VALUE OF [1::# of programs],
message to _be sent VALUE OF [program message]
END PARAMETERS;
TRANSITIONS; messagenﬁonbe_ﬁent=write swrite,
message_to_be sent=write_and wait - write_ and_wait,

message to _be sent=terminate » terminate
END TRANSITIONS;

END PRGCEDURE;
END MONITOR CLASS;

We also need similar class definitions for the messages sent from the operator to
the program.

[operator_reply]: MONITOR CLASS;
STATE SUBSETS; ans, suspend
END STATE SUBSETS
assign: PROCEDURE;
PARAMETERS;
reply to be sent VALUE OF [encoded reply]
END PARAMETERS:
TRANSITIONS; repiy to be sent=ans -+ and
END TRANSITIONSS
DOCUMENTATION; Th1s procedure may not be legally invoked
when the operator has sent a suspend message,
END DOCUMENTATION;
END PROCEDURE;
END MONITOR CLASS;
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[encoded_reply]: MONITOR CLASS;
QUALIFIERS;# of programs END QUALTFIERS;
STATE VARIABLES;

id: VALUES (1::# of proyrams),

content: VALUES (message, null)

END STATE VARIABLES;
STATE SUBSETS;

ans: <<--, content=message->,

suspend: <<--, content nullx

END STATE SUBFETS; 4
find id: PROUEDURE; 6y,

PARAMETERS ; fqg“é Yy
jd RESULT OF [1::4 of_programs]

END PARAMETERS;
END MONITOR CLASS;

With these monitor classes, we are in a position to give the elabaration of fhe
message_interpreter.

[message_interpreter]: SUBSYSTEM CLASS;
QUALIFIERS # of programs END QUALIFILRS
message in: ARRAY[1::# of programs] OF INPORT;
BUFFER SUBCOMPONENTS; message OF [program i message]
END BUFFER SUBCOMPONENTS
END IN PORT;
message out: OUT PORT;
BUFFER SUBCOMPONENTS message to_operator
OF [encoded message(#_of programs)]
END BUFFER SUBCOMPONENTS;
END OUT PORT;
reply in: INPORT;
BUFFER SUBCOMPONENTS reply OF [encoded_reply(# of programs)]
END BUFFER SUBCOMPONENTS
END IN PORT;
reply out: ARRAY[I :#_of programs] OF OUT PORT;
BUFFER SUBCOMPONENTS: reply to_program OF [operator - reply]
END BUFFER SUBCOMP NENTS
END OUT PORT;
access: OQUT PORT;
BUFFER SUBCOMPONENTS: address OF [virtual address]
- END BUFFER SUBCOMPONENTS:
END OUT PORT;
SUBCOMPONENTS ;
mutex OF [semaphore]
END SUBCOMPONENTS;
transfer: ARRAY[l :#_of programs] OF CONTROL PROCESS;
pass_message_in: LOCAL OUT PORT;
BUFFER SUBCOMPONENTS; passed_message OF [program message]
END BUFFER SUBCOMPONENTS
END LOCAL OUT PORT;
MODEL; ITERATE; RECEIVE message in(MY INDEX);
SET passed_message(MY_INDEX) TO message(MY INDEX);
SEND pass_message_in(MY INDEX);
END ITERATE;
END MODEL;
END CONTROL PROCESS;
encode: ARRAY[1l::# of programs] OF CONTROL PROCESS;
get_message_in: LOCAL IN PORT;
BUFFER SUBCOMPONENTS; message from_program_or_decode
OF [program message]
END BUFFER SUBCOMPONENTS;
END LOCAL IN PORT;
BODY: ITERATE: o ] ) o

29
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RECEIVE get message_in(MY_INDEX);
mutex.p;
WHILE message from program_or_decode(MY_INDEX)
= write_and_wait;
TITERATE PERHAPS;
address.assign;
SEND access;
END ITERATE;
message to operator.assign(MY_INDEX,
message_from_program_or_ decode(MY _INDEX))
SEND message out;
RECEIVE get_message_in(MY_INDEX);
END WHILE;
IF messagp_from_program%pr_decode(MY_}NDEX)
= write;
THEN: ITERATE PERHAPS;
* address.assign;
SEND access;
END ITERATE;
message_to operator assign(MY INDEX,
message_from program_or_decode(MY_INDEX));
SEND message_out;
END IF;
mutex.v;
END ITERATE;
END BODY;
END CONTROL PROCESS;
decode: CONTROL PROCESS;
transfer_suspend: ARRAY[I :# of programs] OF LOCAL GUT PORT;
BUFFER SUBCOMPONENTS: term message OF [program_message]
BUFFER SUBCOMPONENTS:
END LOCAL OUT PORT;
LOCAL SUBCOMPONENTS;
id OF [1::#__of6programr
END LOCAL SUBCOMPONENTS;
BODY; ITERATE;
RECEIVE reply in;
reply.find_id{(id);
IF reply = suspend
THEN; term message(id).set to terminate;
SEND transfer suspend(id);
ELSE; reply to*prooram(1d) ass1gn(rep1y);
SEND reply out(id);
END IF;
END ITERATE;
END BODY;
END CONTROL PROCESS;
CONNECTIONS;
FOR ALL i IN [1::# of programs];
PLUG (transfer(3 1) |pass_message_in,
encode(i)|get message in);
PLUG (decode|transfer suspendf\)
encode(i) |g in);

END FOR;
END CONNECTIONS
END SUBSYSTEM CLASS;

This completes the elaboration of the message interpreter. It remains to update
the model of the nerator's console to reflect the new level of modelling
achieved in the o1 of the message_interpreter.
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‘ [operator _console]: SUBSYSTEM CLASS; 31
DOCUMENTATION; This models the conso1e and the operator
using it.
END DOCUMENTATION;
message in: IN PORT;
BUFFER SUBCOMPONENTS; message OF [encoded message(# of programs)]
END BUFFER SUBCOMPONENTS;
END IN PORT;
END SUBSYSTEM CLASS;

[operator_console]: SUBSYSTEM CLASS;

reply out: OUT PORT;

BUFFER SUBCOMPONENTS, reply OF [encoded_reply(# of programs)]

] END BUFFER SUBCOMPONENTS;
END OUT PORT;
j operator: CONTROL PROCESS
| LOCAL SUBCOMPONENTS; id OF [id::# of programs]
f END LOCAL SUBCOMPONENTS;

BODY; ITERATE;
l RECEIVE message in;
) message.find id(id);
F IF message = write and wait;
THEN; reply.set id(id);
reply.set_type;
ORIGINAL PAGE 15 SEND reply_out;
QFE IF reply = suspend AND PERHAPS;
EOOR QUALITY. THEN; reply.set_some_id;
reply.set_message;
SEND rep]y out;
END IF;
END IF;
END ITERATE;
END BODY;
| END CONTROL PROCESS;
E QUALIFIERS; # of_programs END QUALIFIERS;
END SUBSYSTEM CLASS;

This description requres the definition of four procedures to operate upon encoded
replies.

'[encoded_ﬁep1y]: MONITOR CLASS' set id: PROCEDURE;
PARAMETERS;
id VALUE OF [1::# of programs]
END PARAMETERS;
END PROCEDURE;

‘Lencoded reply]: MONITOR CLASS' set type: PROCEDURE;
TRANSITIONS; -+ ans, - suspend
END TRANSITIONS;
END PROCEDURE;

'[encoded reply]: MONITOR CLASS' set some id: PROCEDURE;
END PROCEDURE;

‘[encoded reply]: MONITOR CLASS' set message: PROCEDURE;
TRANSITIONS; - ans
END TRANSITIONS;
END PROCEDURE;

Note the use of nondeterminism in the procedure set type. This makes the descrip-
tion of the operat1on of the operator_console be a nondeterministic one even
though a body is ngen for the control process.
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