
0

)RADO

,I

I

(NASA-CR-lc.3423)	 SOFTWARE DEVELOPMENT	 s. -lUUo7

ENVIRONMENT, APPENDIX F (Culorado i)niv. at
boulder.)	 12 p f1C A02 /MF A01	 C:SC:L 09d

Unr.l as

G 1/61	 243.49

DEPARTMENT OF COMPUTER SCIENCE

Arw t - "c



• ^^*^^^^

^^^^ t^1^^2^^^



aw

SOFTWARE DEVELOPMENT ENVIRONMENTS

William E. Riddle
Department of Computer Science

University of Colorado at Boulder
Boulder, Colorado 80309

CU-CS-182-80
	

October, 1940	
I H

This work was supported, in part, by grant NSG 1638
from NASA Langley Research Center.



RSSM/101
Prepared for a panel

at Compsac 80 Chicago,
(October 1980).

SOFTWARE DEVELOPMENT ENVIRONMENTS

William E. Riddle
Department of Computer Science

University of Colorado at Boulder
Boulder, Colorado 80309

Abstract: The purpose of this panel is to provide some
assessment, based on experience, of the current status in
the area of software development environments. This paper
provides a context and vocabulary for the panelists' re-
marks by discussing the purposes of environments, the types
of environments, the constituents of an environment, the
issue of environment integration, and the problems which
must be solved in preparing an environment. The paper also
provides a focus for the panel by proposing some general
maxims to guide near-term future work and by posing a num-
ber of questions which the panelists have been asked to
address in their remarks.

The process of software development is slow, costly and error-prone.

The problem seems to be that, unlike other creative disciplines, computer

science lacks both a sufficient understanding of the rroperties of the

products being developed and an adequate set of principles, practices and

procedures for guiding the development process and reasoning about the soft-

ware system as it is being developed. Even the most cursory comparison to

analogous disciplines such as art, architecture, carpentry, etc., uncovers

the immaturity of the discipline of software development.

Recently, solutions to this problem have been sought by preparing

software deveZopment environments which provide facilities supporting the
rational production of a software system's executable description. Such

environments are intended to support not only the agglomeration and evolu-

tion of the system's description but also the assessment of its validity

and quality and the exploration of alternative versions.

The purpose of this panel is to provide some assessment, based on ex-

perience, of the current status in the area of software development

environments. This paper provides a context and vocabulary for the

panelists' remarks by discussing the purposes of environments, the types

This work was supported, in part, by grant NSG 1638 from NASA Langley
Research Center.

r



-z-

of environments, the constituents of an environment, the issue of environ-

ment integration, and the problems which must be solved in preparing an

environment. The paper also provides a focus for the panel by proposing

some general oaxims to guide near-term future work and by posing a number

of questions which the panelists have been asked to address in their remarks.

AIMS OF A DEVELOPMENT ENVIRONMENT

The primary purpose of a software development environment is to

provide a context for the orderly, rational evolution of software systems.

The premise is that aid in performing development activities is crucial to

attaining an acceptable system, on schedule and with a reasonable consump-

tion of resources; the approach is to support the use of development tech-

niques and the observance of development principles during the development

process; and the hope is that progress will be more steadily and quickly

made.

A narrow definition of software deveZopment would encompass those
activities which follow the definition of requirements and result in the

delivery of an acceptable system. However, for two reasons we consider

development to encompass c:ZZ activities during the system's lifetime from

its initial conception as a set of user or customer desires to its ultimate

retirement. First, much of the support for development activities in the

narrow sense are of value in performing other activities such as maintenance.

Second, we feel that these other activities are not fundamentally different

and that it is a mistake to consider them to be separable.

Software development environments which realize this central goal re-

quire a number of fundamental capabilities. Foremost is the capability to

extract information about the system under development from the developers

and organize this information into a c6herent body of knowledge. This ex-

traction and organization is obviously hard to do fully automatically, but

something more is needed than simple facilities for recording information

and interrelationships among pieces of information.

Also required is the capability to assess the consistency and impli-

cations of the recorded information. The assessment of consistency allows

developers to gain confidence in the suitability and quality of their work

— for example, if there are no contradictions between information describing



-3-

a design and information describing the system's requirements then it is

fairly safe to assume that the design is an appropriate one. The ability

to assess the implications of the information provides the bas 4 s for making

meaningful progress — by identifying decisions yet to be made and the in-

formation impacting and constraining the decisions — and allocating project

resources.

To complement the capabilities to accumulate and assess information,

the capability is required to retrieve information in a variety of forms.

Partially, this is necessary because of the need to produce a large number

of documents, for example, user manuals, code, maintenance manuals, design

documentation, etc. Partially, it is necessary because developers need to

be able to periodically regain a perspective of the system's characteristics.

The necessity of these general capabilities reflect; the view that

software system development, in tole extended sense embraced here, is an in-

formation agglomeration task. The product at any point during development

is a record of what is known about the system and the persons having legit-

imate interest in the system have a variety of needs for visibility into

this record. The task at any point is to evolve the information either

by adding new information reflecting new decisions or by eliminating in-

ternal inconsistencies existing because of incorrect decisions or because

of changes to existing information. The purpose of a software development

environment is, In essence, to facilitate, foster and rationalize the

agglomeration of information.

CONSTITUENTS OF AN ENVIRONMENT

The facilities provided by I software development environment are
delivered by tools. The more conspicious tools constituting an environ-

ment are computer programs, such as compilers,,which augment the developers'

"powers" in much the same way a saw augments a carpenter's powers. Equally

important are intangible tools which are not implemented as computer programs

but serve to guide and support the development process.

The constituent tools making up an environment may be divided into

three classes. cognitive tools extend the intellectual powers of the de-

velopers. They provide procedures, practices and principles which ration-

alize the development process itself and make it easier for the developers



-a-

to solve the problem at hand. These tools come in the form of rules, guide-

lines and methods which focus the attention of the developers upon an appro-

priate succession of problems to be solved in order to achieve the develop-

ment of a required system.	 °

Tools in the second class, notational tools, extend the denotational
powers of developers. They provide languages in which developers may

record recisions and their effects. They allow the effective communication

of information about the evolving system among the interested "agents" who

are party to the development effort. They allow a record to be prepared

which is an adequate basis for assessing the extent of progress and for

identifying the suitability of what has been decided and the aspects of

the system which have not yet been attacked.

The third class of tools are augmentive tools which extend the cap-
abilities of the developers in much the same way in which saws, hammers

and screwdrivers extend the capabilities of carpenters. Some of these tools

perform the mundane tasks present in any development activity. Others per-

form those tasks which require an unfailing rigor and precision which humans,

subject to fatique and prone to error, cannot always deliver. Still others

carry out those tasks which even the smartest of humans find beyond their

capabilities. All of the tools in this class serve to extend the reasoning,

as apposed to the problem-solving, powers of the developers.

It is difficult to define tools within any one of these classes without

also defining tools within the others. For example, focusing upon a specific

development method, and thereby defining the cognitive tools which embody

this method, has strong implications for the (notational and augmentive

tools which are compatible with the method and which serve to support it

and each other. One must, therefore, co-evolve the various tools which are

part of an environment.

TYPES OF ENVIRONMENTS

A wide range of different types of development environments are

possible. One major factor differentiating these different types is the

extent to which they focus upon a specific development method. One extreme

is those development environments, called tooZboxes or tooZkits, which
reflect no method in' particular but rather provide help to developers no



•5-

matter what "style" they use (including the use of no "style"'). The

notational and augmentive tools in these minimally constrictive environ-

ments are typically minimally related and integrated. Further, the environ-

ment can usually be employed in the development of almost any type of software

system.

At the other extreme are dcve4 i?m6wt systemo which promulgate a single

development method. 'The notational tool, and augmentive tools in these types

of environments are typically highly integrated and exhibit little, if any,

redundancy. These environments are usually oriented towards the development

of a single, rather restricted type of software system such as an accounting

system or a non-linear equation solving system. These systems are akin to

"plants" in the manufacturing world.

It is obviously desirable to have an environment which falls somewhere

between these two extremes. Such a development Bupport system would provide

some guidance to developers in the form of a development "philosophy" or

approach which helps them focus on the important issues at the various

stages of development. Thus, in terms of the methods provided by a develop-

ment support system, there would be a collection of complementary ones and

the developers should assess the environment as "suggestive, helpful and

supportive" rather than "imposing." Notational and augmentive tools should

also foster this reaction and should present the developers with a homog-

enous, integrated context in which to carry out software development. It

is probable that this type of environment will be oriented towards the

development of a specific, but relatively broad, type of software system

if only because this focus is necessary so that the environment is well-

defined.

As one moves from toolboxes to development systems, one finds increased

tool integration: duplication of tools decreases, tool specialization in-

creases, and the tools complement each other to a greater degree. In an

integrated collection of tools, the collection itself is more powerful than

just the collective power of the constituent tools.

Notice that as the number of methodologies supported by an environment

varies there is a concomitant variation in the variety and number of langkuiges

provided by the environment. Thus, another way to achieve integration of

the constituents in an environment is to focus upon a small set of languages.



"6-

If done carefully, the result can be an environment that provides a set of

highly integrated tools but that supports a wide range of methodologies.

OTHER ENVIRONMENT CHARACTERISTICS

In addition to classifying environments with respect to their "fixation"

upon a development method, there are a number of characteristics which define

other dimensions along which an environment may be classified. Some of the

more important of these characteristics are the following;

• agents serviced: the environment will provide help to some subset
of people concerned with the target systems, i.e., the systems pre-
pared with the help of the development environment (customers, users,

requirements definers, designers, programmers, acceptance testers,
verifiers, trainers, managers, accountants, maintainers, modifiers,
etc.);

• characteristics of target systems: the systems which can be
developed with the aid of the environment will span some subset
of data processing concepts (data management, numerical compu-
tation, text processing,real-time control, parallel processing,
concurrent processing, distributed processing multiprogramming,
etc.);

• development phase: the environment will be oriented toward some
subset of the lifecycle of the target systems (requirements defini-
tion, system definition, architecture design, algorithm design,
program implementation, system implementation);

• properties of interest: the environment will support the reasoning
about the target system's functionality, performance and/or
economics;

• development task: the environment will aid in per'orming some
or all of the tasks which must be carried out during development
(creation of a solution, certification of the solution, or ex-
ploration of alternative solutions);

e development activity: some or all of the activities performed
by the agents concerned with the target systems will be supported
{bookkeeping, supervision, management, decision-making, etc.).

These characteristics define a multi-dimensional space and a particular

development , environment will be oriented toward some subset of the possibilities

along each dimension.

PROBLEMS IN THE PREPARATION OF DEVELOPMENT ENVIRONMENTS

To prepare a development environment a number of problems must be

solved. Since an environment is'itself a software system, these problems

J



.17-

could be organized along the lines of the traditional life-cycle for soft-

ware systems. It is more interesting, however, to group the problems somewhat

differently from (although isomorphically to) the traditional life-cycle view

since this different organization more clearly identifies alternative approaches

to the preparation of an environment.

The problems which must be solved during the preparation of a develop-

ment environment may be organized as follows;

e scope problem: the environment must be placed within the multi-
dimensional space defined in the previous section;

e aapability problem: the capabilities which the environment will
provide (so that the various agents may perform their activities
and tasks during the various phases in the development of the
target systems) must be identified;

s techniques problem: techniques implementing the required cap-
abilites must be developed (or identified and borrowed):

e delivery problem; the environment's organization must be determined,
consideration mint be taken of the computing facility on which the
environment will execute, and the hiiman-engineering aspects of the
environment must be addressed;

e training probtem: development practitioners must be educated in
the use of the environment and helped to understand how to
effectively use it (since the latter may necessitate approaching
the development of systems in ways different from established
practices);

e evaluation problem: the efficacy of the environment must be measured.

The statement of these problems is suggestive of one order in which they

can be addressed. Obviously, A totally sequential solution of these problems

in the order given is not possible since the problems are highly interrelated.

The evaluation problem, for example, requires that some consideration be

given to it during the solution of the delivery problem so that the necessary

information for evaluation may be extracted during the use of the environment.

Nonetheless, attacking these problems in the order given is a reasonable

approach. It necessitates, however, a subscription to an overall approach

to preparation which is heavily exploratory in nature. This is not at all

unusual for systems, such as environments, for which there are no prototypical

implementations.

SOME DESIRABLE ATTRIBUTES

Regardless of the type of a software development environment and its

1

6—_



-8-

characteristics, there are a number of general attributes which seem appro-

priate at this point. Perhaps these attributes will be shown undesirable

once we have more experience in designing, implementing and using software
development environments; but they do seem to provide some general guidelines

for preparing development environments in the near future.

Tools should be "tops," Tools should be as simple as passible and

should serve a narrowly-defined purpose. The temptation to produce multi-

purpose, general tools should be resisted in favor of producing single-

purno3e, specific tools.

Tools should be independently available. Collections of tools should
have a user interface which allows the individual tools to be used independ-

ently or sets of tools to be used in any (reasonable) sequence. The tendency,

evidenced by some programming language=specific development environments,
to hide individual tools (e.g., the parser) should be avoided.

Tools should be catalogued. In addition to their function, tools
have many characteristics which are important to know when deciding whether

or not to use them. Somo of these characteristics are: assumed user sophis-

tication, assumed development method, types of systems being built, and

user development strategy.

3elopment method, i.e.,

be rigorously defined as

to carry out the develop-

used to support a variety

impose constraints upon

Tools should be methodology indepamient. A de'

an overall appraoch to the development process, can
a Jet of rules for how to use a collection of tools

ment process. The best tools are ones which can be

of methodologies and therefore themselves minimally

their useage.

Notational, tools should be numerous and sirnple. Many things must be
described about a system during its development, and it is better to have a

number of compatible languages, each with a single purpose, than to put

everything into one language.

NotationaZ tools should allow modelling. Each language should provide
abstraction capabilities so that it is possible to not only highlight specific

aspects but specify these aspects to an appropriate level of detail.



-9-

The notational toole' semantics should be developed First. Each language

should admit rigorously defined models. The formal foundation for the lan-
guage should be carefully and fully developed prior to determining a user-

friendly syntax for describing models based on this foundation.

"Old programmers never die, they ,. tuat become devigners. 11 Therefore,

languages for describing operational aspects of a system should have their

heritage in programming languages. Further, languages for describing non-

operational aspects (e.g., behavior) should not use concepts from programming

languages.

Auglrmentive tools should be exceptionally .robust. My daughters have an

unbelievable knack for finding new, innovative and creative ways to use the

hammers and screwdrivers in our toolbox. This can be expected to be the

situation with software develo ment tool users also and so the tools should
be able to withstand unusual, even bizarre, use. They should also protect

the user from doing (too much) harm.

Augmentive too4o should deliver feedback. It is notoriously difficult

to algorithmically assess the suitability of a system, Tools to aid this

assessment should therefore do what can be done and provide developers with

algorithmically derivable information which the developer can interpret in

order to determine suitability.

The premier augmentive tool is a data bane. The core of a collection
of tools should be a data base which retains and organizes all information
known about the system under development. The data base should allow incon-

sistent pieces of information to co-exist. All other tools should access the

information through the data base management routines.

EXPERIENCES WITH EXISTING ENVIRONMENTS

A number of software development environments have been prepared and
used. To complement the general discussion of environments presented in

this paper, reports on experiences with some of these environments will be

presented by the panelists. These reports will be given by:

G. Estrin, University of California at Los Angeles
W. Riddle, University of Colorado
S. Saib, General Research Corporation
P. Santoni, Naval Ocean Systems Center
A. Wasserman, University of California at San Francisco

.



-10-

In their reports, these people have been asked to focus on the fallowing

questions:

1. What is the type of your environment and what tools are provided?

2. Now is the environment organized and to what degree is the
collection of tools integrated?

3. Where does the environment sit in the multi-dimensional space
defined above?

4. To what extent and how have the problems in preparing software
development environments been solved?

5. What were the technical and non-technical 4 nfluences which shaped

the nature of the environment?

6. What were the technical, political, and pragmatic problems
encountered in preparing the environment?

7. Do your experiences reinforce or negate the maxims given above
for guiding near-term future work on environments?

8. What are the important issues and/or problems to be solved in
the future in order to provide truly effective developiiient
environments?


	1980021566.pdf
	0001A01.jpg
	0001A01.tif
	0001A02.tif
	0001A03.tif
	0001A04.tif
	0001A05.tif
	0001A06.tif
	0001A07.tif
	0001A08.tif
	0001A09.tif
	0001A10.tif
	0001A11.tif
	0001A12.tif


