NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT
CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH
INFORMATION AS POSSIBLE



F
f
]
E,
; ¥
‘ -
3
i
]
!
;
[
b
L .
f
|

- Chicago, Illinois, November 17-21, 1980

“NASA Technical Memorandum 81553

k K : Gi} | et i v e l\

' - ;e N e ““"".“"’"“j""“ T ":" 1T QU ES I b
 /UASA-TM=R1553) NUMERICAL TRCHNIQ ;
‘éxuana pUchH ACOUSTICS Status Report igﬁsggh
23 p HC AO2/MF RO1 cs

- NUMERICAL TECHNIQUES IN LINEAR
' DUCT ACOUSTICS - A STATUS REPORT

K. J. Baumeister
Lewis Research Center

- Cleveland, Ohio

Prepared fo; the
Winter Annual Meeting of the American
Society of Mechanical Engineers

© NB0-30154

63/71

e




O A

E-513

A

NUMERICAL TECHNIQUES IN LINEAR DUCT ACOUSTICS - A STATUS REPORT
by

K. J, Baumeister
NASA Lewis Research Center
Cleveland, Ohio

ABSTRACT

A review 1is presented covering both finite difference and finite element
analysis of small amplitude (linear) sound propagation in straight and varisble
area ducts with flow, as might be found in & typical turbojet engine duct, muf-
fler, or industrial ventilation system. Both "steady" state and transient
theories are discussed. Emphasis is placed on the afvantages and limitations
assoclated with the various numerical techniques. Examples of practical prob-
lems are given for which the numerical techniques have been applied,

NOMENCLATURE J number of transverse grid points
A matrix, Eq, (54) k number of time steps
a cell coefficient, Eq. (53) L¥ length of duct, m
by cell coefficient, Eq. (53) m spinning mode number
Cy cell coefficient, Eq. (53) N total number of finite element nodes
Cg ambient speed of sound, m/s Ngrid numbe. € grid points
EZ 1-(y-1)/2 [%i + ¢§] Ng element interpolation function for node n
dy cell coefficient, Eq. (53) Ngup number of storage locations in sub matrix
¥ duct diameter n node number in finite element analysis
E total number of elements ng transverse mode number
¢ element p* pressure, N/m2
ey cell coefficient. Eq. (53) P time dependent acoustic pressure, P*/pzcgz
F initial céndiéion vector, Eq. (54) Pﬁ acoﬁstic pressure, P;(t,x,r), Eq. (12), N/m?
£* frequency, Hz ' Y; mean £low pressure, N/m?
f function of y, see Eq. (39) P{ fluctuating acoustie pressure, N/m2
n* duct height, m » spatially dependent acoustic pressure
I number of axial grid points Po wave envelope pressure, Eq. (62)
i Ja R* gas constant, m?/sec? K
r radius dimensionless, r/rg
r: radius of duct
Ar radial grid spacing
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temperature, K

mean field temperature, K

fluctuation acoustic temperature, K
¢imensionless time, t*/t)

period 1/£%, sec

time step

time dependent axial dimensionless acoustic
velocity, U(x,y,t), U*/Cg

dimensionless mean flow velocity in axial
direction, U:/c:

spatial dimensionless axial acoustic velocity
u(x,y)

time dependent dimensionless transverse or
radial dimensionless acoustic velocity,
V(x,y,t)

vector flow velocity, m/suc

mean vector flow velocity, m/sec
fluctuating vector flow velocity, m/sec
spatial dimensionless transverse or radial
dimensionless acoustic velocity,

time dependent dimensionless acoustic velocity
in 9 direction, W(x,r,8,t)

spatial dimensionless acoustic velocity in

direction, w(x,r,8)

*

axial coordinate, x*/0* or x*/ro

mapped axial coordinates

axial grid spacing

dimensionless transverse coordinate, y*/H*
mapped transverse coordinate

transverse grid spacing

impedance, kg/m2 sec

ratio of specific heats

specific acoustic impedance

dimensionless frequency, H*/f*/cg (cartesian)
or rzf*/cg {cylindrical)

dimensionless wave length

angle, radians

0y dimensionless specific resistance

[ dimensionless acoustic density fluctultion,p*/c:

p* density, kg/md

p; ambient air density, kg/m3

o} fluceuation acoustic density, kg/m

0; flow potential function, m2/sec

o mean flow potential function, m?/sec

$ dimensionless acoustic potential function,
¢ /chdl

o* spatial acoustic potential function, m2/sec

Qi fluctuation velocity potential function,
m?/sec

X dimensionless reactance

w angular frequerncy, m*d;/c:

w* angular frequency

SUBSCRIPTS

e exit condition

i axial index (fig. 2)

3 transverse index (fig, 2)

0 ambient conditfon or mean flow variables

5 spatial value

t transient

1 fluctuation quantity

SUPERSCRIPTS

® dimensional quantity

k time step indax

(1) real part
(2) imaginary part

-
() vector quantity
INTRODUCTION

With the introduction of strict aircraft noise
regulations in the late 1960's, the new aircraft
nacelle designs required acoust:.c treatment in the
inlet and exhaust ducts to reduce engine fan noise.
To minimize the weight penalty of wall treatment, the
aerospace industry has been concerned with reducing
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the length of a liner for a required sound attenus-
tion, To perform this optimization, sophisticated
and flexible suppressor analytical techniques are
neaded to handle sound propagation in ducts with
axial variations in cross~sectional area, wall liner
impedance (absorbers), and with gradients in thz flow
Mach number, 1In an attempt to meet this need, both
finite difference and finite element techniques were
developed, In a parallel effort, universities and
industry have also developed similar numerical pro-
grams to apalyze acoustic propagation in mufflers and
ventilation systems,

In this paper, a review is presented covering
both finite difference and finite element analysis of
small amplitude (linear) sound propagation in straight
and variable area ducts with and without flow, Both
"steady state and transient theory will be discussed.
In the "steady" state theory, the pressure and acous-
tic velocities are assumed to be simple harmonic func-
tions of time; thus, the governing linearized gas-
dynamic equations become independent of time,

The numericsl analysis to be considered employs
a full two or three dimensional finite difference or
finite element theory., The theories to be discussed
will have provision for inlet and outlet flow, such
as in a muffler or jet engine duct.

Application of finite difference or finite ele-
ments to acoustic propagation in enclosed rooms
(refs, 1-8) or to coupled structural-acoustic radia-
tion systems (refs. 9~12) will not be included. Also,
theories will not be covered which use the finite
difference analysis to determine the eigenvalue and
corresponding modal pressure difference across the
duct (refs., 13-17)., These works have been included
in the list of reference for completness,

First, the equations governing sound propaga-~
tion are presented along with the boundary and ini-
tial conditions associated with a typical turbojet
engine duct. Next, the various numeri¢al theories
developed in the literature are presented in the
following order:

(1) Steady State Finite Difference Theory
(2) Steady State Finite Element Theory
(3) Special Numerical Transformations

(4) Transient Numerical Theory

Items (3) and (4) represent special attempts to ulim-
inate the problems associated with the highly oscil-
latory nature of sound propagation in the inlet of a
turbojet engine,

GOVERNING EQUATIONS

In this section, the general fluid flow equa-
tions will first be introduced in vector form. From
these equations, the general linearized gas-dynamic
equations, which govern the propagation of sound down
a duct, will be developed. These equations will be
specialized to the case of a parallel shear flow in
a duct with uniform mean temperature and pressure.
Next, the parallel shear flow equations will be
written for cylindrical and cartesian coordinates.
Finally, the equations will also be presented in
terms of the velocity potential,

Unsteady Invisid Flow

The basic equations governing sound flow in air
ducts are the usual continuity, inviscid momentum
(Euler), energy, and equation of state. - In the
absence of any external sources of mass or momentum,

and neglecting viscosity and heat transfer, these
equations are:

" >
Continuity %%1 + 9% (p*W*) = (1)
eC TR -+
Momentum  p% (%%; + V¥, V*V*) = - ghp* (2)
Y L a ke 1 fopr Uk g
Energy kg + V% . W5 .?zcﬁy+v.% (3)
State P*/p* w RAT* (4)

Where an asterisk denotes dimensional quantities.

»

Linearized Gas-Dynamic Equations

. Customarily, the dependent flow parameters p',
V", and P" are represented as the sum of a mean
quantity and a small fluctuating quantity, i.e.
p* = pg + pg, TH = Tz'+ Tf, W Gg + %{ and
P* - PX + P{ where the subscript o represents the

mean comgoncnt and 1 represents the fluctuating
component, The mean flow quantities are assuired in-

dependent of time and thereby satisfy the steady mean
flow equation. Substituting these assumed expressions
into Eqs. (1) to (4), eliminating the mean flow quan-
tities and neglecting nonlinear acoustic quantities
yields:

3nsy e
_Continuity Ezi + 9% . (ngI + p;v:) = 0 (5)
vt
»>
Momentum pg(§%+v3~vW§+Vi.vW@
- -

+ofvy 0 vNE - - vhY (6

2 (9% o Kk, T x %

Energy Cg (SE% + Ve * v Pl +Vy 0 ¥ Po

>
+ ciBE . v

*
Pl T ko, e, X
iy +V, ¢ VP o+ Vl ’ VPO ¢))
* * *
P T
State —%- = E—%- 43 (8)

The vector form oL Eqs., (5) to (7) were listed by
Goldstein (ref. 18, p. 5). These equations are fre-
quently referred to as the linearized gas-dynamic
equations,

For the special and important case where the
mean velocity remains constant and parallel to the
duct walls (parallel shear flow) and for which the
mean flow temperature and pressure are constants, the
energy Eq. (7) reduces to:

B k2%
Py = C Py (9)

This derivation is most easily accomplished by first
expressing the energy equation in terms of entropy
(ref. 18, p. 8). The linearized continuity and momen-
tum equations become:

*
aP 2 +
1 ke koK * * Wk -
_3? + CO pOV Vl + v Plvo 0 (10)




Vv > > *7,
p (3:1 R AR vv;) - 9* oy
(Parallel shear flow)
Cylindricel Coordinates

Figure 1 shows the typical ducting £or a turso-
fan engine, Noise from the fan travels up the circu~
lar inlet against the flow and down through the
annular exhaust duct as shown. Thus, a cylindrical
coordinate system (x,r,0) is apprupriate for the
analysis. 1In general, the acoustic field 1s three
dimensional. The cound variation in the axial
direction will depend eon frequency, duct area, and
be very large in the presence of wall absorbers, The
acoustic field may also vary radially from the hub to
tip at the rotor (see f£ig. 1), Because of the rota-
tion of the rotor blades, large circumferential vari~
ations (see fig., 1) ipn acoustic pressure may also
occur depending on blade number and engine rpm.

A three dimensional solution for sound propaga-
tion would be expensive to perform, Customarily,
since the equations are linear, the circumferential
acoustic pressure and velocity variations are decom-
posed into spinning modes m:

P} (x,1,0,8) = D Ph(x,r,t)ein® (12)
m

The summation is over those lobe numbers (m) that are
likely to occur in a particular application. Using
the assumption that

* % , imd
Pl and V1 e (13)

Equations (10) and (11) for parallel shear flow in
cylindrical coordinates become after nondimensional-
izing

8 18 18V idm V. _VYoap
" TN Tm T Y TR T h om (14)
3u _ _22P _ Y sy _ 13U
t n x n X n dr v (15)
v 122 _Yoav (16)
ae ¥ "nar T
M _ _dm, _Yoaw an
ot nr n 9x i

Equations (14 to (17) are in dimensionless form,
where the particular nondimensionalizing variables
are tabulated in the list of symbols. The dimension-
less frequency n based on the radius of the duct is
given by

, nE o ct

* %

(?r fc* for cartesian coordinates to be used 1ater)
(o]

(18)

Equations (14) to (17) will combine to yield a
third order partial differential equation in pressure,
as shown by Savkar (ref. 19). In the absence of shear

U,
(75: - 0) Eqs, (14) to (17) combine into the usual

plug flow wave equation

2
2 3%P 2%p . 22p 3%p
n » (1 -ug) B4 °F 200 __“u 19)
at? ax2  pr? r’2 1a° £3x
'l' T

In the steady state analysis, the noise scurce
and dependent acoustic parametevs are always assumed
to be of the form

P; or V;~ elu®e? o gi2ne (20)

Consequently, Eqs., (14) to (17) and Eq, (19) reduce
to

(izmp--;;-i!-iﬂu-x—uoéa (21)

ir r r (3
(121n)u = - %ﬁ =y %% - %;? v (22)
(127n)y = = % - U, &2 (23)
(12mn)w = = 48 p -y, 2w (24)
r W

p ilano 55 (25)
+ 3 —2

The acoustic variables shown in lower case represent
the time independent values.

2 2
(2am)%p = (1 -u2) 2P 42
°" ax? 3;% ré

Cartesian Coordinates

The annular exit duct in the turbojet engine can
be represented approximately by rectangular geometry.
Also, many experiments are performed in rectangular
geometries, For simplicity, spinning modes have been
neglected, In the absence of spinning modes, the rec-
tangular forms of the governing equations are

TR T ndy T hoax (26)
u_13p Yoau 1%
£t~ ndx " n 3x " dy V (27)

e300 (28)

Likewise, the steady state equations (using eq. (20))
become

= -84 _ 3V _ o 9p
(12mn)p ax 3y Uo 55 (29)
U
(121n)u = - ~E - U, == ax ay" v (30)
i2 =-—E— 1
(i2mn)v Uy = ax (31)
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For the.care of no shear (1ﬁ? - 0). Bgs. (26)
to (28) combine into a single second order wave
equation

2 2 2 2
220 gy AR LA,y AP
nd e (L) pt ot Y0 3o (32)

The steady state form of Eq. (32) becomes
- y2y 32, 8% _ )4 % u
(1 UD) 3;7 + 3;2 ia“nuo 5; + (21n)*pP 0 (33)

In the absence of flow (Up equals zero) Eq., (33) re-
duces to the classic Helmholtz equation

2 2
3D L 372 4 (ann)%p = 0 3%
axz ayz ( "n) P ( )

Potential Flow Equations

When using numerical techniques in calculating
sound propagating in ducts, the velocity potential
formulation of the acoustic wave equation offers many
advantages over the conventional linearized gas equa-
tions, For three dimensional flows, the velocity
potential approach reduces the computer storage and
rupning time by an order of magnitude compared to the
more general linearlized gas equation approach,
because only one dependent variahle ¢ is required.
Since the flow into the inlet is usually modelled by
potential flow (excluding the boundary layer), the
acoustic velocity potential is ideally suited for
acoustic inlet caleulationa, Sigman, Majjigi and
Zinn (ref., 20) give the potential gas~dynamic equa~-
tions for a cylindrical duct, The general velocity
potential equation for inviscid flow (ref. 16,
eq, (1))

3%5* | 9 .
-;;—*-5 *SE—; (V*-Q* . v*$*)
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was the csarting point for their analysis. First,
they assumed

=t 44 (36)
where again the symbol ¢* represents the steady
mean value of the velocity potential and ¢7 the
fluctuation quantity. Next, because the fan genar-
ates spinning acoustic modes, they assumed

¢;(x,r,6,t) = ¢*(x)r)e_iw:eime (37)

Substituting Eqs. (36) and (37) into Eq. (35), yields
(dimensionless)

L) = @ - eDo,, + @ - 0Doy, - Wbyt

+

- - g2 1,2

(y - 1)%@“] ¢ + [" (O + Dbyxty = 20,9

1

1
(v = Do oy = (v -1 & «»m]u

+

[? - 2 C¥/x2g + 1200 4 + 1200,9,

3

iuly = 1) [41“ +-;1_- ¢p + ¢>xx]¢ =0 (38)

BOUNDARY CONDITIONS
To obtain a solution to the previously developed

equations, boundary conditions are required at the
liner entrance, duct liner walls, and exit plane.

Entrance Condition

For a rectangular duct, the boundary condition
at the liner entrance P(po,y,t) can be of form

Po,y,t) = f(y)elu't* (39)

where f(y) represents the transverse variation in
pressure, Similar expressions for ¢ or acoustie
velocity can be used. In cylindrical coordinates,
the radial coordinate r would replace ¥y 1in Eq.
(39), In a rectangular duct, spatial pressure vari-
ations at the liner entrance £(y) have been taken to
be plane (f = 1) or some harmonic (cos[m_ﬂy]) associ~-
ated with the normal-mode analytical solutions (ref,
21, p. 504), In cylindrical ducts, the spatial vari-
ations in the radial direction are of the form of
Begsel functions (ref., 21, p. 51i).

Physically, boundary condition (39) represents
the sum of a forward and reflected acoustic wave at
x = o, In a uniquely different approach, Eversman
et al., (ref, 22) assume an infinite duct upstream of
the source, and that Eq. (39) represents only the for~
ward propagating wave. Their analysis separates the
reflected and transmitted waves. At the present time,
both approaches to the entrance conditions are used in
modelling the sound input into the acoustic suppressor,

Wall Boundary Conditions

The boundary condition at the surface of a
locally reacting sound absorbant soft-wall duct can be
expressed in terms of a specific acoustic impedance
defined 4s the ratio of pressure to transverse acous-
tic velocity!

*
;:...Z__-.I:.E ([.0)
vV v

For shear flow, the mean velocity at the wall is zero;
therefore, substituting Eq. (40) into Eq. (28) yields

——

y

)
]

~is

ap
at (41)
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For harmonic excitation, olv ", Eq. (41) reduces to

®..Lm, (42)

Equations (41) and (42) are useful when working with
the wave equation formulated in terms of only prea-
sure. Bquation (40) is more useful when solving the
continuity and momentum equations simultaneously.

It is also copveniont to express the specific
acoustic impedance in terms of resistance Oy and
reactance x as

g o= By 4 ix (43)

Exit Impedance
In a manner similar to the wall impedance, the

axisl impedance gt the duct exit can be defined as

peLY/H*,y, e

fe ™ U(L‘éua,y.t) (44)
Genera) values for the exit impedance for single
modes can be found in references 20 or 23, As with
the source condition, Eversman, et al. (ref. 22) use
the technique of accounting for reflected and trans-
mi.ted waves, For arbitrary multi-modal wave forms,
however, a general impedance equation 1s not avail-
able for use in the numerical techmniques.

Initial Conditions

In the transient analysis, for times equal or
less than zero, the duct is assumed quiescent, chat
is. the acoustic pressure and velocities are taken to
be zero. For times greater than zero, the applica-
tion of the noise source (eq. (39)) will drive the
pressures in the duct.

STEADY STATE FINITE DIFFERENCE THEORY

In 1973, Alfredson (ref. 24) and Baumeister and
Bittner (ref. 25) presented a finlte difference theory
for ioise propagation in both hard and soft wall ducts
in the absence of flow. In the 1973 Aero-Acoustic
conference, Baumeister and Rice (ref., 26) simulated
noise propagation in the jet engine duct by including
mean flow with the finite difference theory,

In the first step of these finite difference
analyses, the continuous acoustic flow field 1is lumped
into a series of grid points for which discrete values
of the acoustic pressure are defined, as shown in
Fig, 2 for a rectangular duct.

Grid Point Requirements

The question naturally arises as to how many
grid points are reguired in the axial (x) direction
and the transverse (y) direction to obtain reasonably
accurate results. The following one-dimensional ana-
lysis will be helpful in determining the required
number of grid points, For the special case of plane
wave propagation in a hard wall duct, no pressure
gradients will exist in the transverse direction in
the duct; consequently, the wave Eq, (33) reduces to
the one dimensional form

2
(1 -u2) 2R gy, B4 e =0 (45)
axz 9x

e R T
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For a gemi~infinite duct (no reflections), the solu~
tion to Eq. (45) for the complex acoustic pressure is
2n
i EEOEL
- 1+U, (46)
Thus, the pressure oscillates down the duct with a
wave length

14U,
n

The real part of the acoustic pressure in
Bq. (46) is shown in Fig. 3 for the cize of a dimen~
wionless frequepcy n =5 and a zero Mach number.
Five ssparate oscillations appear in the duct, If a
Mach wvimber U, of ~0.5 48 introduced to simulate
the inlet flow of a turbofan engine, Eq. (47) indi-
cates that the wave length would decrease by half,
and ten full oscillations wruld appear in the duct,
In a detailed study of the accuracy of the numerical
solutions to this problom, Baumeister and Bittner
(ref, 25) showed that at least twelve grid points per
wavelength are required to accurately resolve the
pressure and the transmitted acoustic power. Thus,
the number of grid points required in the axial di-
rection is

A om

(47)

* ) K
(o]

Besides the axial acoustic oscillations, trans-
ferse acoustic oscillations (ref., 21, p, 492) can also
exist in the duct. In a recent paper, Baumeister
(ref, 27) showed that the number of grid poipts J in
the transverse direction required to accurately re-
solve the highest order propagating mode is

J212n (49)

Thus, the total number of grid points Ngp.ig
in the duct is the product of Eqs. (4B) ugd (45§?uired

144 n2L*/p*
1+ U, (50)
Although a large number of grid poinss is re-
quired particularly at high frequenci s, a more diffi-
cult problem results from the natur. of the governing
steady state acoustlic equations tlemselves, as will be
considered next.

NGrid =

Difference Equation

The continuous governing differential equations
can be changed to a system of algebraic equations by
means of the finite difference aprroximations. This
set of algebralc equations can then be solved simul-
taneously to determine the pressure at each grid point,
In constructing the difference equations, only sound
propagation in the absence of flow will be developed
here in order to keep the mathematics simple,

Without flow, the classic Helmholtz equation
(eq. (34)), governs pressure propagation in the duct,
Using the usual 5 point difference approximations,
Eq. (34) becomes

(fi-l,j - 24,4t Pi+1.1) " (Pi,1~1 - 2py 4t Pi.i+%>
sz Ayz

#mp =0 (5D

_— i RS R PO, e i S e
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or for Ax equal to Ay

Pird, gt Py ge1m B = 2mna0 Zpg s 4Dy 14y Ry gm0

(52)

Equation (52) applies only to cell 1 in Fig., 2 which
is not adjacent to the boundaries. For the other
c¢ells in Fig., 2, a complex impedance condition i3
specified along a boundary, The integration method
is most convenient to use for generating the differ-
ence equations at the boundaries, as fully documentud
in Ref, 28, Appendix D,

The finite-di’fevence approximations for the
various calls shown in Fig. 2 can be expressed in
terms of the coefficients

BPiay, 3 TPy a1 P g Y AP gt P g " O
(53)

The subseript K denotas the cell number. The col~
lection of the various diffevence equations at each
grid point forms a set of simultaneous equations that
can be expressed as

e« [£] (54)

where {A} is the known coefficient matrix, l%l is the
unknown pressure vector, and tg is the kndW column
vector containing the various boiindary conditions.
The matrix is complex because of the complex nature
of the source and impedance boundary conditions.

Matrix Solution

The magnitude of the frequency term (2nn&x)2 in
Eq, (52), which subtracts from the main diagonal ele~
ment cx of coefficlent matrix represented by
Eq. (54); is such that the matrix is not diagonally
dominant. As a result, iteration solutions cannot be
used., Equation (54) is usually solved by the Gaugs
elimination technique., In general, the elimination
technique requires the storage of all the manrix
elements which would be represented by twice (complex
nature) the square of Ng.4q 8iven by Eq. (50). For
high frequencies (n), chﬁs represents a large burden
on the storage capacity of a computer. Sparse~matrix
techniques (ref. 29) have been employed to reduce
computer storage and run timas as much as possible.
Quinn (ref, 29) partitioned the matrix {A} into a
tridisgonal form, which reduced the elements in the
submatrix to

N, =J% = 144 n2 (55)

sub
Quinn's program stores the elements of the sub~
matrices in separate locations on tape or disk.

These matrices are then read in one at a time to ob~-
tain a solution of the matrix.

Baumeister (ref, 27) and Quinn (ref. 30) have
modified similar matrixes to allow iteration tech-
niques; unfortunately, the convergence is too slow to
be of any practical value, Other approaches, such as
in Ref. 31, might still offer iterative possibilities.

Example Solutions
Figure 4 shows some sample numerical calcula-
tions for a plane wave propagating in a uniform hard

wall duct, As seen in Fig, 4, the numerical theory
and exact analysis are in good agraement.

A ons
So far in this paper, the difference theory con-

sidered only straight uniform area ducts. Generally,
finite differences when applied to irregular ducts
requires considevable bookkeeping (ref. 32, p. 363).
Quinn (refs, 33 and 34), however, applied the mathod
of conformal mapping in conjunction with finite dif=
ferences to anslyze sound propagation in a hyperbolic
horn ghown 4in Fig, 5. 1In the absence of flow, the
following transformations

e R

X = g 08 ¥p (56)
oy W %m

ym it sy, (57)

change the governing Helmboltz equation into

2 42
22 BBy m)riydp m 0 (58)
LE m

where
o2m . " 5 ccou?yn = sinyn)

Equation (58) was programmed in finite difference
form hy Quinn for the straight duct shown in Fig. 5,
Quinn algn conformally mapped a conical horn and
found the numarical results to be in excellent agree-
ment with known analytical solutions,

In general, for ducts with variasle area, the
finite element theory 13 the most convenlent to use.
However, as pointed out by Quinn (ref. 30), the advan~
tage of finite elements versus finite differences is
not. as great when a mapping funetion is uged to com=
pute the mean flow field. For example, conformal
mapping has been used in the calculation of subsonic
and trangonic inlet flow fields in the DC~8 engine
(ref, 35). 1In such a case, where the conformal trans-
formation 1is avallable, the use of finite difference
theory would clearly have an advantage over finite
element theory.

STEADY STATE FINITE ELEMENT THEORY

The use of finite element techniques in duct
acoustics began in 1975. Young and Crocker (ref, 36)
developed a two-dimensional finite element solution
of acoustic propagation in mufflers without flow using
a variational technique. In a preliminary investiga-
tion, hipur and Mungur (ref. 37) concluded that a
finite element Galerkin method could be successfully
employed to handle shear flow in duets with area var-
lations., Since these papers, numerous finite element
solutions of the duct propagation problem have appear=-
ed in the literature and will be discussed herein,
First, however, a brief review of the finite element
theory 1is presented to establish categories to clas~-
sify the various references in the acoustic literature.
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The solution of the duct acoustic problem by
the finite element theory follows the usual step-by-
step process (ref. 38, p. 7) d-velopad for any cop~
tinuum problem. These steps will now be succinctly
listed with particular emphasis on how they relate
to the duct acoustic problem,

1., Discretize the Continuum: The first step
is to divide the interior of the duct into elements,
A variety of elements have been used in the duct
acoustic problem as shown in the first column of
Table I, Table I will be used as a focal point about
which the discussion of the acoustic litevature will
center,

2, Select Interpolation Funetion: The next
step 18 to assign nodes to the element and then
choose the type of interpolation funetion to repre-
sent the variation inside the elements of the field
variable, such as pressure and the acoustic veloc~
ities, In Table I, column two shows the node pattern
while column three deseribes the interpolation fupc-
tion. The required number of elements can be estim-
ated from the results of the finite difference theory.
For sound propagation without large reflections (ex-
clude low frequency as in mufflers), Eq. (50) can be
used to estimate the number of finite elements neces-
sary to obtain ap accurate solution., 1In determining
the required number of finite elements, however, the
constant 144 will be smaller because the interpola-
tion function in finite element theory is generally
of higher crder than the first order linear differ-
ence approximation used to establish Eq. (50). The
precise decrease will depend on the type of element
used in the analysis. In general, the more nodes per
element the fewer will be the pumber of elements
needed to resolve the acoustic fileld., On the other
hand, since the size of the solution (global) matrix
is proportional to the number of nodes, considerably
more computational time and computer core memory are
required for the higher order elements, Column four
1ists the number of dependent variables considered
in the particular study, For a fixed number of ele~
ments, the computer storage will be proportional to
the square of the pumber of dependent variables while
the solution times can increase by the cube (ref., 39,
p. 261) of the dependent variables. [learly, those
equations should be employed which can successfully
model the physics with the fewest dependent variables.

Generally, Lagrange polynominals are used for
interpolation when only one field variable (such as
pressure p) is calculated at each node, commonly
called the C° continuity problem, When using Hermite
polynominals, the values of 9dp/3x and dp/dy can
also be calculated at each node, commonly called the
¢l problem. In general, Cl continuity is more diffi~-
cult to construct (ref. 38, p. 172), so with the ex-
ception of items 1 and 5 in Table I, Lagrange poly-
nominals are used. Also, if Cl continuity increases
the unknowns by four (item 5, Table I), then the
regulting solution matrix will increase by about
sixceen,

3, Finite Element Method: Next, the tinknown
nodal values of the pressure (or any other dependent
variable) must now be constrained such that the nodal
pressures provide an accurate approximation for the
true pressure distribution. In conjunction with the
governing differential equations and boundary condi-
tions, a finite element method 1s used to develop the

algebraic element équations for the unknown pressures
agsociated with each element, The element equations
are then combined into A general matrix (global) which
is solved for the pressures at the nodes.

In acoustiss, except for the no flow case, the
Galerkin finite elemant mathod is most often used to
establish the matrix equations for the unknown field
variable, For example, consider the case using the
velocity potential to deseribe the acoustic field,
Eq. (38), Application of the Galerkin Finite elemant
method yields the following relationship

E
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where the integration is performsd over the area of
each element, The known interpolation function Ng

is for the n node in the o th element and N 16
the total number of nodes in the problem under consid-
eration, It should be noted that N§ is zero for all
elements not having the nodel point as a vertex.
Equation (60) provides N equations for the N
unknown nodal values,

4. Matrix Equations* To find the selution to
the complete network of el.ments, all the element
equations mugt now be assembled into a global matrix.
With the exception of the least squares approach, the
solutions are all accomplished by some sort of elim~
ination procedure. Effective solutions take into
account the banded nature of the matrix, Thae band
width increases with & larger numbér of element nodes
and number of dapendant variahles. As with finite
dixference, the storage requirement of the finite
element solution can severely restrict the range of
problem that can be solved as pointed out by Quinn
(ref, 30), For the larger problems, an out-of-core
banded solver is generally required with a moderate
amount of in-core sterage but much more input/output
time,

Finite Element Theories

The following digcuasions of the published fin-
ite element theories will be in order of the complex~
ity of the flow field and interpolation function and
not chronological,

No Flow, Young and Crocker (ref, 36, item 1,
Table I) developed a two~dimensional finite element
model for analyzing sound propagation in expansion
chambers with hard walls. The basic elements were
rectangles using one-dimensional Hermitian polynom-
inals of fourth order, Good agreement was found
between the finite-element approach and the acoustic
filter theory at low frequencies where plane wave
analysis applies, At the higher frequencies, where
the diameter to wave length ratio is greater than 0.8,
significant differences between the plane wave and the
two~dimensional finite element analysis were found.

Kagama and Omote (ref. 40, item 2, Table I) ex-
panded the analytical work of Young and Crocker to
lined axisymmetric soft wall mufflers with more com-
plicated inputs. A linear three node triangular
element was used in Ref. 40 for the hard wall muffler
while a six node element triangle was used in Ref. 41,
item 3, Table I, in the soft wall analysis. A wealth
of example problems were considered in these papers.
Rectangular and conical mufflers were analyzed with




and without sound absorbing materials, Significantly,
experimentul dota were obtained for all the examples
analyzed. Excellent agreement between the finite
element theory and experiments was obtained, There~
fore, the acoustic response of a muffler of any shape
can be accurately and easily determined by a two=
dimensional finite elemant analysis, In the same
tire frame, Craggs (refs. 42 and 43) prusented a
formulation and apprunch similar ta that of Kagawa
and Omute, Craggs used a more vefined axisymmetric
hexshedral isoparametric e¢lement as shown in Table I,
item 4, Tsoparametric elements allows the pides of
the hexahedral element to bend and more closely match
the shape of a curved boundary, In Refs. 44 and 45,
Craggs extended his treatment of sound absorbing
materials to include extended reaction effects, His
two~dimensionnl model showed that propagation parallel
to the incident boundary can be important

Tag, lumgdaine, and Akin (refs. 46 and 47) have
applied linear rectangular isoparametric alements to
two~dimensional (cartesian) rectangular ducts with
goft walls without flow, Examples are shown
(ref, 46) for sound propagation arvound circular and
rectangular bends as might commonly be seen in indus-
trial ducts, Some simple plane wave propagation
examples with plug flow in hard walls (ref, 46) are
also presented, Similar Lo Young and Crocker, Lester
and Pavott (ref, 48) have recently presented a
Hermitian analysis for sound propagation in straight
ducts with sound absorbing walls, Finite elements,
Wiener Hopf; and wave propagation math models were
found to give consiutant results.

JIrrotational Flow., Sigman, Majjigi and Zinn
(ref. 20, item 7) presaented the first finite element
analysis which treated irrotational flows in ducts,
They ugad 8 simple linear three nede triangular
element in conjunction with Galerkin analysis to
model the sound propagation, The potential function
wave equation is appropriate to inlet flow in & tur-
bojet engtne where the flow 1s nearly irrotational
(excluding the boundary layer), The potential flow
formulation gives an order of magnitude reduction in
required core storage compared to the more general
flow solutions to be presented next, As an illustra-
tive example in their paper, they analyzed the hard
wall version of the NASA QCSEE (quiet, clean short-
haul experimental engine) inlet, This inlet was de-
signed to suppress inlet-emitted engine machinery
noise using a high throat Mach number and thus has
somewhat more curvature than a conventional inlet,
¥Yor an initlal plane wave, their finite element
analysis showed that significant distortion of the
initial plane wave occurred due to the¢ entrance curv-
ature effects,

Majjigi, Sigman, and Zinn (refs. 49 and 50,
item 8) have expanded their original analysis to
include sound absorbing material by using a quadratic
interpolation function. Using this program, Baumeis-
ter and Majjigi (ref, 51, itum 8) estimated the sen-
sitivity of duct attenuation to inlet curvature,
centerbody and irrotational flow gradients for a high
Mach number turbojet inlet. They showed that area
variations can significilantly change the calculated
attenuation as compared to the circular cylinder
model presently being used for the design of such
inlets.

B

The assumption of irrotationslity eliminntes
the practical case of parallel shear boundary layer
flow, Baumeister and Majjigi (ref. 51) showed that
even in an approximate manner the velocity potential
cannot be used to esrimate the sffcects of aheared
flow, Howaver, a boundary layer correction based on
the Goldstein=Rice mnulysis (rel. 52) was suggested
for predicting the attenuation with shenar in a soft
wall duct.

Tag and Lumsdaine (ref, 53, item 9) also per~
formed a similar irrotational analysis for a hard wall
inlet using an isoparametric quadrilateral element.
They showed that the finite alement analysis can con=
veniently handle the problem of cutoff in a varfable
area duct. For s pample inlet, they also performed
caleulations to show the effects of duct peometry on
far field attepuation and of flow gradients on the
effective mound wavalength,

Genernl Flow Field, Items 10, 11, and 12 in
Table 1 are concerned with formulacing a geneval fin-
ite element solution of the complete acoustic flow
field, Eqs, (5-8). In most cases, tho genersl theory
has been applied to some relatively simple cases to
check the theory.

Quinn (ref. 30, item 10) axamined the use of
various interpolation functions and finite element
methods on many semple problems, He compared the
accuracy of linear interpolation functiong on tri=-
angles, bilinear interpolation function on ractangles
and blquadratic interpolation functions on rectangles,
He found that the biguadratics permi. good approxima=
tion of curved boundaries and better convergence than
the bilinear interpolation functiona.

Abrahamson (refs. 54=~56, item 11) has developed
a finite element model using & linear rectangular ele-
ment along with the Galerkin mathod, He has applied
the method to conical horns, liners with axial imped=
snce variations and the optimization of lipers for
maximum acoustic attenuation. He has devoted consid-
arable effort (ref. 56) to reducing the computational
times for large complex problems,

Astley, Eversman, and Thanh (refs. 57-60,
item 12) have developed a finite element method based
on weighted residuals using an eight node isoparcmet~
ric element, As in Ref, 30, they also found the
Galerkin method to be superior to the least squaves
approach, For uniform rectangular and circular ducts,
they showed that the finite element method produces
results for eigenvalues and transmission coefficierts
nearly identiecal to those from analytical approaches.
Eversman, Astely and Thanh (ref. 57) also used the
finite element method to explore the choking that
might occur in a subsbniec flow, They found that a
large transmission loss is not an automatic conse~
quence of propagation against a high subsonic mean
flow,

NASA Lewis Research Center has begun an experi-
mental program to check the results of the finite
element wodels against experiment. A 0.5 area con-
traction in the form of a quartic curve has been
constructed in which experimental results are cur-
rently being obtained, Figuve 6 shows the comparison
of the Astley~Eversman finite element program with
the experimental data. As geen in Fig, 6, experiment
and theory are in good agreement, The finite differ-
ence theory (dashed 1line) by Prof. James White will




be discussed later in the section on transient solu~
tions to the wave equation,

SRECIAL RUMERICAL TRANSFORMATIONS

In the inlet to 4 turbojat engine, the dimen~
sionless frequencies n are of order 30 to 50 for
the higher harmenics of the blade passing frequency.
The storane requirement and agsocintod running times
for these high frequencies are not practical at the
prasent time. Some special techniques have been
developed in order to reduce the storage require~
mants.,

Wave Epvelope Technique

- j%k:%;ﬁbvc some (if not all) of the axially
oscillatory pavre of the wave pressure profile and
theraby greatly reduce the required number of grid
points, Baumeister (refs. 61 and 62) assumes

wi20% /2 (61)

where p represents the prassure of the oscillating
curve in Fig., 7 and p, represents the prassure of
the wave envelope shown by the dashed 1line. The
lanpth *  represents the effective axial wave lew: h
of the oseillation, In genezal, A 4s chosen to te¢
the valuc aesnciated with a particular mode propagat-
ing through a hard wall duet., For the case of a
plane wave propagating in a soft wall duet without
flow, » 1s approximated by 3i/n, Substituting

Eq, (61) into the Helmholtz Eq. (34) vields the wave
envelope equation
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The finite difference form of this equation was then
programned (ref, 60), Excellant agreasment between
the analytieal and wave envelope finite differance
cﬁlc&ln:ionﬁ are shown in Fig., 8, For the n = 5,
L/R" = 6 case in Fig, 8, the convantional finite
difference theory required 3600 grid points, whereas
the wave envelope difference throry vequired only 100
grid points, Thus,; a savings of 3500 grid points
over the conventional difference theory was obtained,
In Ref, 63, this technique was used to optimize multi~
element liners of long lengths at high frequencies.
This technique can also be used with finite elements,
At the pregent time, shis technique has been
applied only to the simple cases of no flow and plug
flow. For a variable area duct with Ylow, it will be
necessary to have X a funetion of %, Calculated
trial values of A c¢ould be obtained from a one~
dimensional solution of the governing equations,

Marching Techniques
Although initial value numerical solutions of

elliptie equations are generally unstable (ref. 64,

p. 63), Baumeister (refs. 65 and 66), using the

Von Neumann stability analysis, showed that the two=-
dimensional Helmholtz wave equation can be solved
approximately using explicit marching techniques.
However, the grid spacing in the transverse y
direction must be sufficiently large so that non-
propagating acoustic modes cannot be resolved, that is,
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Compared to standavrd finfte~differunce or finite~
element boundary valie approaches, the nuserical
marching technique is ovdars of magnitude shorter in
computational time and required gomputer storage.
This technique {8 limited, however, to high frequen=
cies and to cases whare veflections are small,

The numarical optimum attentuations were cal=
culated using the marching technique and compared to
the corraesponding analytical results similar to
Fig. 8. For dimensionls~s frequencies nw 1 or
n = 2, the numerical results were in poor agreement,
while for n = 5 or greater the mothed worked quite
well« Consequently, marching could be used in con=
Junction with conventional analysis to handle the
specinl casss of high freauency and long length,

ar Field i

To obtain the far field mcoustic radiation pat-
terns and to eliminate th2 necessity of specifying
the impedance of the duct at its exit, finite elements
can be extended from the internal pertion of a duct
into the far field, as shown Ly Kagaws et al, (ref,
40, fig. 16). In Ref. 40, an acoustic horn with an
cpening into a semi-infinite space was analyzed by
antroducing a hypothetical spharical boundary with a
characteristics ke, exit impedance termination.
Yowever, when taking account of ucoustic radiation in
this way, o spherical boundary of large area must be
gconeidered, which correspondingly results in solving
& large matrix equation. To eliminate this larze
matrix requirement, Kagawa et al, (ref, 67) recently
developed a combination of the finite element (in
duct) and analytical methods (Green-Theorm = far
field) to analyze sound propagation from an acoustic
hern, Experiment and theory were found to be in good
agrasment,

Baumeistor and Majjigl (ref. 51) presented a
matrix partitioning approach that separated the duct
and far field into two or more regions, The regions
are coupled by an assumed value of impedance. For the
no flow case in the far fileld, the dimensionless
impedance can be chesen to be unity at s spherical
surface. In Ref, 51, large matrix storage reductions
(factor of 50) were obtained, For cases where complex
flows occur around the exit, the first partition
should be in the far field where an analytical value
of impedance can be reasonably specified.

TRANSIENT NUMERICAL SOLUTIONS

In order to eliminate the storage requirements
associated with the steady state numerical analysis
of sound propagation in a turbejet engine inlet,
Baumeister developed time dependent numerical solu-
tions for noise propagation in a two-dimensional duct
without flow (ref, 27), with parallel shear flow
(ref. 68), and with axisymmetric plug flow (ref. 69).
Advantageously, matrix storage requirements are com-
pletely eliminated in the time dependent analysis.
The solution vectors for pressure and velocity need
only he stored.

Difference Equations
The analysis begins with a noise source radiating

into an initially quiescent duct. Next, au explicit
iteration method obtains the transient as well as the
"steady" state solution,




To §llustrate how the transient equations are
propranmad coniider the no flow cartesian wave squa-
tion (eq, (29) with U, = 0) in one space dimensiont

=

nzﬁtﬁ

22 " o (64)
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Away from the boundaries, the second derivatives in
the wave equation ¢an be repraegented by this usual
central differences in time (subscript K1 and space
(subseripts 1,§)
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where At and Ax are the time and space mosh spae=
ing, respectively. Solving Eq. (65) for Pf*l
yialds
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The procedure is explicit since all the pagi values
of PX  are known ag the new values of F are
computed, The derivation with two space dimensions
and boundary conditions 4 fully documented in Refs.
27, 68, and 69, Since Eq, (66) 18 a simple algebrale
equation, ﬁcorugc is only required for the solution
Voctors P}, Pk=1; that is, no matrix storage or man=
isulasdon is réquired, Thiz was eutvemely usaful in
Ref. 6B, where a simultaneocus solution of the contin-
uity and momentum equations was employed to obtain
the acoustic values of P, U, and V.

Graphicul Output
Fortunately, the pressure calculated at each

instant of time nead not be saved or displayed.
Although multiple values of pressure are calculated,
only the latest values (k,k=1) need be stored, After
staady state 1s reached (checked numerially), the
time~dependent results will be compared to the
"aceugy" state results simply by dividing by ei2nt,
that is

p(x,y) = ElELLE) (67)

el2nt

In this case where the source is a simple harmonie
function of time ei2mt, p vepresents the Fourier
vransform of P(x,y,t)(ref, 18, p, 11), In this
manner, the numerical results (refs., 27 and 69) are
nearly identical to those shown in Fig. 4, The book~
keeping and graphical cutput is held to a minimum by
the use of Eq. (67), The time-dependent analysis is
considerably faster than the steady analysis, as seen
in Fig. 9. 1In general, however, the computational
time associated with the steady ani transient analysis
will be comparible. The major advantage of the
transient analysis remains the elimination of matvix
storage requirements. Bacause manipulation of
matrices is omitted, the time dependent approach is
much easier to program and debug,

Ly

Time-dependent numerical techniques have been
applied to one=dimensional mound propagation (ref. 70,
pr 258), twpedimensfonal vibration problams (raf. 32,
ps 452), and the more genaral problem of compressible
fluid flow (ref, 71). tumerical stabilicy is & major
difficelty mssociated with all thess tine depandent
solutions, The new problem associated with two=
dimensional soft wall acountie problems is the influ~
ence of the boundary conditions on wtability. The
manner in which the boundary conditions are posed can
cause the solution to be absolutely unstable
(ref, 69), At the present time, the time marching
technique has been found to be stable for no ilow
(refs 27), plug flow (ref. 68), and axis symmetric
spinning wave acoustics in a cylindrieal duec
{ref, 69), Numerical experimentation will be re=-
nuirved to determine 1f the equations will remain
stable and modael the acoustic propagation when axial
and transverse variations in the mean flow are con-
siderad,

At the present time, the transient method ap=
pears to have one major drawback. The transient
method does not converge for cut-off modes (raf. 69).
This has implications as to 1ite use in a variable
aren where modes may become cut=off in the small area
portion of the duct, This will ultimately have to be
resolved since cut-off modes will be encountered in
real problems., In the nean time, the steady state
numarical techniques can be conveniently employed
near eut=off, Because of the relatively long axial
wavalength of a near cut=off mode, the required
nungr of grid poincs (or elements) is relatively
amnll,

Variable Ares

The finite element methed 1w dnappropriate for
the two~dimensional transient problems because the
solutions are implicit requiring storage of the ususl
lavrge matrix, Therefore, in applying the transient
method to problems with area variations, the method
of mapping in conjunction with the finite diffarence
method cowld be used.

In particular, the mapping procedure developad
by Thempson et al. (ref. 72) provides for the auto~
matic generation of a general coordinate system with
coordinate lines coincident with all the boundaries
of an arbitrary shaped duct, Professor James White
of the University of Tennessee (Knoxville) under NASA
grant NAG 3-18, is extending the procedute of Ref, 72
to the problem of scund propsgation in variable area
ducts, In a form similar to Eq. (49), Professor White
has developed the appropriate transformed acoustic
equations which are solved in the mapped rectangular
domain, The results are then transformed back into
the physical plane by an inverse mapping procedure.

Figure 6 shows a comparison of Professor
White's transient finite analysis with the experimen-
tal data for the quartic duct discussed earlier in
conjunction with the Astley~Eversman finite element
analysis. As seen in Fig, 6, experiment and theory
are in good agreement,

CONCLUDING REMARKS

The finite difference and finite element theories

have proven to be useful calculational tools in

handling acoustic propagation in ducts with discontinu~
itles in lining impedance, with area variations, and in

ducts where large variations in the mean flow field
oceur,
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At the presant time, the steady and transient
numerizal theories are capable of handling the design
of mufflers, expansion chambers, and exhaust ducts of
turbofan engines where the effective frequency n i
quite small, 1In contrast, the steady numarical
theories are not as yat capable of analyzing & prac-
tical turbofan inlet because of the high [raquencies
and Mach numbars in the inlet, Special steady scate
transfovmations and the transient technique hava
potential for handling this problem.

At the present time, NASA, universities and
industry are extanding the steady and transient num-
ericnl techniques to situations involving high fre-
quencies, high Mach numbers and gecmecries with
large area variations. The transient numerical tech-
nique is heing adapted to handle nonlinaar affects
ineluding acoustic shocks. An additional goal {s to
develop more reslistic inlet and oxit conditions to
model a tvpical turbofan aireraft nacalle,
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