
 

 

 

 

N O T I C E 

 

THIS DOCUMENT HAS BEEN REPRODUCED FROM 
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT 

CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED 
IN THE INTEREST OF MAKING AVAILABLE AS MUCH 

INFORMATION AS POSSIBLE 



- NASA Technical Memorandum 81553

M R 15 53	 NU ME RICA -L T PCHH IQU ES IN
k 	 - -	 N80- 31154

LINEART DUCT ACOUSTICS Status Report ( FIASA)

p	 23 p HC A02/M r` A01	 CSCL 2
ClC 1 as

#	 G 3/71	 28+,^`s,`3

NUMERICAL TECHNIQUES IN LINEAR
DUCT ACOUSTICS — A STATUS REPORT

J
a

K J,,Baumeister
Lewis Research Center
Cleveland, Ohio

$j

Prepared for the
Winter .Annual Meeting of the American
Society of Mechanical Engineers
Chicago, Illinois, November 17-21, 1980

	

c	 q On FACILIM

NrSA
i
t

a
^bbs^.,r_,	 ♦ 	 .	 .	 ..	 _,..... ^	 . ._.	 ..	 . -.-	 e.	 ,_.^.t a..,lw..^u.. __e .^_e.._J(`...^.u..s».ar....^.^..e.«..e........W.ntYi?ln9gL.IWe_^.._r_.......^,_ 	 .. .. __.



NOMENCLATURE

A matrix,	 Eq.	 (54)

Ak cell coefficient, Eq.	 (53)

bk cell coefficient, Eq.	 (53)

Ck cell coefficient, Eq.	 (53)

Co ambient speed of sound, m/s

C2 1 - (Y - 1)/2 ^42 + ^2

dk cell coefficient, Eq.	 (53)

do duct diameter

E total number of elements

e element

ek cell coefficient,. Eq.	 (53)

F initial condition vector, Eq.	 (54)

f * frequency, Hz

f function of y, see Eq.	 (39)

H* duct height, m

I number of axial grid points

i
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by
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ABSTRACT

A review is presented covering both finite difference and finite element
analysis of small amplitude (linear) sound propagation in straight and variable
area ducts with flow, as might be found in & typical turbojet engine duct, muf-
fler, or industrial ventilation system. Both "steady" state and transient
theories are discussed. Emphasis is placed on the aevantages and limitations
associated with the various numerical techniques. Examples of practical prob-
lems are given for which the numerical techniques have been applied,

n

w

J	 number of transverse grid points

k	 number of time steps

L*	 length of duct, m

m	 spinning mode number

N	 total number of finite element nodes

NGrid numbs. F grid points

Ne	element interpolation function for node n

Nsub number of storage locations in sub matrix

n	 node number in finite element analysis

nt	 transverse mode number

P*	 pressure, N/m2

P	 time dependent acoustic pressure, P*/poC*2

acoustic pressure, Pm(t,x,r), Eq., (12), N/m2

10	 mean flow pressure, N/m2

Pi	 fluctuating acoustic pressure, N/m2

spatially dependent acoustic pressure

po	 wave envelope pressure, Eq. (62)

R*	gas constant, m2/sec2 K

r	 radius dimensionless, r/ro

ro	 radius 'of duct

Ar	 radial grid spacing



T*	 temperature, K

Tp	 mean field temperature, K

T1	 fluctuation acoustic temperature, K

t	 dimensionless time, t*/tp

t 
	 period 1/f*, sec

At	 time step

U	 time dependent axial dimensionless acoustic

velocity, U(x,y,t), U*/Co*

Uo	dimensionless mean flow velocity in axial

direction, U*/Co

u	 spatial dimensionless axial acoustic velocity

u(x,Y)

V	 time dependent dimensionless transverse or

radial dimensionless acoustic velocity,

V (x, y, t )

V*	 vector flow velocity, m/suc

Vo	 mean vector flow velocity, m/sec

V*	 fluctuating vector flow velocity, m/sec

v	 spatial dimensionless transverse or radial

dimensionless acoustic velocity,

W	 time dependent dimensionless acoustic velocity

in 9 direction, W(x,r,6,t)

w	 spatial dimensionless acoustic velocity in

direction, w(x,r,6)

x	 axial coordinate, x */H * or x*/ro

xm	 mapped axial coordinates

Ax	 axial grid spacing

y	 dimensionless transverse coordinate, y * /H

ym	mapped transverse coordinate

Ay	 transverse grid spacing

Z *	impedance, kg/m2 sec

Y	 ratio of specific heats

t	 specific acoustic impedance

n	 dimensionless frequency, H */f * /Co (cartesian)

or rof*/Co (cylindrical)

1	 dimensionless wave length

6	 angle, radians

2

Or	 dimensionless specific resistance

P	 dimensionless acoustic density fluctuation ,p*/p0
p *	density, kg/m3

p o*	ambient air density, kg /m3

pi	 fluctuation acoustic density, kg/m3

to	 flow potential function, m2/sec

m*	 mean flow potential function, m2 /sec

dimensionless acoustic potential function,

@*/Coda

spatial acoustic potential function, m2/sec

fluctuation velocity potential function,

M2/sec

X	 dimensionless reactance

W	 angular frequency, w*do/Co

w*	angular frequency

SUBSCRIPTS

e	 exit condition

i	 axial index (fig. 2)

i	 transverse index (fig. 2)

o	 ambient condition or mean flow variables

s	 spatial value

t	 transient

1	 fluctuation quantity

SUPERSCRIPTS

dimensional quantity

k	 time step ind,,x

(1) real part

(2) imaginary part

( )	 vector quantity

INTRODUCTION

With the 'introduction of strict aircraft noise
regulations in the late 1960's, the new aircraft
nacelle designs required acoustic treatment in the
inlet and .̂:xhaust ducts to reduce engine fan noise.
To minimize the weight penalty of wall treatment, the
aerospace industry has been concerned with reducing
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the length of a liner for a required sound attenua-
tion. To perform this optimization, sophisticated
and flexible suppressor Analytical techniques are
neaded to handle sound propagation in ducts with
axial variations in cross-sectional area, wail liner
impedance (absorbers), and with gradients in the flow
Mach number. In an attempt to meet this need, both
finite difference and finite element techniques were
developed. In a parallel effort, universities and
industry have also developed similar numerical pro-
grams to analyze acoustic propagation in mufflers and
ventilation systems.

In this paper, a review is presented covering
both finite difference and finite element analysis of
small amplitude (linear) sound propagation in straight
and variable area ducts with and without flow. Both
"steady" state and transient theory will be discussed.
In the 'steady" state theory, the pressure and acous-
tic velocities are assumed to be simple harmonic func-
tions of time; thus, the governing linearized gas
dynamic equations become independent of time.

The numeric&l analysis to be considered employs
a full two or three dimensional finite difference or
finite element theory. The theories to be discussed
will have provision for inlet and outlet flow, such
as in a muffler or jet engine duct.

Application of finite difference or finite ele-
ments to acoustic propagation in enclosed rooms
(refs. 1-8) or to coupled structural-acoustic radia-
tion systems (refs. 9-12) will not be included. Also,
theories will not be covered which use the finite
difference analysis to determine the eigenvalue and
corresponding modal pressure difference across the
duct (refs. 13-17). These works have been included
in the list of reference for completness.

First, the equations governing sound propaga-
tion are presented along with the boundary and ini-
tial conditions associated with a typical turbojet
engine duct. Next, the various numerical theories
developed in the literature are presented in the
following order:

(1) Steady State Finite Difference Theory
(2) Steady State Finite Element Theory
(3) Special Numerical Transformations
(4) Transient Numerical Theory

Items (3) and (4) represent special attempts to Olim-
inate the problems associated with the highly oscil-
latory nature of sound propagation in the inlet of a
turbojet engine,

GOVERNING EQUATIONS

In this section, the general fluid flow equa-
tions will first be introduced in vector form. From
these equations, the general linearized gas-dynamic
equations, which govern the propagation of sound down
a duct, will be developed. These equations will be
specialized to the case of a parallel shear flow in
a duct with uniform mean temperature and pressure.
Next, the parallel shear flow equations will be
written for cylindrical and cartesian coordinates.
Finally, the equations will also be presented in
terms of the velocity potential.

Unsteady Invisid Flow

The basic equations governing sound flow in air
ducts are the usual continuity, inviscid momentum
(Euler), energy, and equation of state. In the
absence of any external sources of mass or momentum,

and neglecting viscosity and heat transfer, these
equations are

Continuity+ 9 *+ (p*V*) n 0	 (1)at

( 3V
Momentum P 	 * + V* + V*V*

1 	
V*P*- - 	 (2)

.^
Energy	 + V* + Vp * *^	 + V* . 1P * 	(3)

C

State	 P*/P* • R *T* 	(4)

Where an asterisk denotes dimensional quantities.

Linearized Gas-Dynamic Equations

Customarily, the dependent flow parameters P
V * , and P * are represented as the sum of a mean
quantity and a small fluctuating uant ty, i.e.
P* - P * } P]* , T* - To+ Ti, ^* ^o + * and
P* . Po + Pi where the subscript o represents the
mean component and 1 represents the fluctuating
component. The mean flow quantities are assured in -
dependent of time and thereby satisfy the steady mean
flow equation. Substituting these assumed expressions
into Eqs. (1) to (4), eliminating the mean flow quan-
tities and neglecting nonlinear acoustic quantities
yields:

Continuity TW + V * - (PoV1* + P o) 0 0	 (5)

J -r*

Momentum po!V . + v,*+ 0 V* + Vi V*'v

+ PlVo V*Vo* - - V* Pi	(6)

Energy	 Cot (2--f  + Vo 9 *pi k V* + V*pa
J

C1 v* v* *1 o	 Po

*1
 
+ Vo + OPi -.+ Vi VPo	 (7)

*	 *	 *
PJ

State	 - W + T*	 (8)
Po	 Po	 To

The vector form of Eqs. (5) to (7) were listed by
Goldstein (ref. 18, p. 5). These equations are fre-
quently referred tows the linearized gas-dynamic
equations.

For the special and important case where the
mean velocity remains constant and parallel to the
duct walls (parallel shear flow) and for which the
mean flow temperature and pressure are constants, the
energy Eq. (7) reduces to;

P1 - Co 2pi	 (9)

This derivation is most easily accomplished by first
expressing the energy equation in terms of entropy
(ref. 18, p. 8). The linearized continuity and momen-
tum equations become:

*
8a + Co2Pov* 

yl + V* . P1 o ° 0	 (10)

,
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aVl	 N I.Po `ate + Vo ' V Vl * Vl oVo^ • ' V Pl 	 (11)	

tau,

 ar	 0 , Eqs, (14) to (17) combine into the usual

(Parallel shear flow)	 plug flow wave equation

Cylindrical Coordinates
Figure 1 shows the typical ducting fDr a turoo-

fan engine, Noise from the fan travels up the circu -
lar inlet against the flow and down through the
annular exhaust duct as shown. Thus, a cylindrical
coordinate system (x,r,0) is appropriate for the
analysis, In general, the acoustic field is three
dimensional. The sound variation in the axial x
direction will depend on frequency, duct area, and
be very large in the presence of wall absorbers. The
acoustic field may also vary radially from the hub to
tip at the rotor (see fig. 1), Beca ,ise of the rota-
tion of the rotor blades, large circumferential vari-
ations (see fig. 1) in acoustic pressure may also
occur depending on blade number and engine rpm.

A three dimensional solution for sound propaga-
tion would be expensive to perform. Customarily,
since the equations are linear, the circumferential
acoustic pressure and velocity variations are decom-
posed into spinning modes m:

P 1(x , r , o , t )

	

	 pm(x,r,t)eime	 (12)
m

The summation is over those lobe numbers (m) that are
likely to occur in a particular application. Using
the assumption that

P* And V1 . eime	 (13)

Equations (10) and (11) for parallel shear flow in
cylindrical coordinates become after nondimensional-
izing

ap p - 1 au 1 DV im w - V - Uo ap(14)

at	 71 "a	 n ar - rn	 nx	 n ax

aU	 ].aP - U, o BU- 
1-a

aU
oV	 (15)at	 n ax n ax n r

U

at _ n ar - n ax	
(16)

aw _ im P _ Uo aw	 (17)
at	 nr	 n -ax

Equations (14j to (17) are in dimensionless form,
where the particular nondimensionalizing variables
are tabulated in the list of symbols. The dimension-
less frequency n based on the radius of the duct is
given by

w* ron — 0
2n Co

(or f** * for Cartesian coordinates to be used later
\	

Co

(18)

Equations (14) to (17) will combine to yield a
third order partial differential equation in pressure,
as shown by Savkar (ref. 19). In the absence of shear

	

n2 a'P (1 - U8) 12P + 82P - M. P - 2nUo - a2P	 (19)
DO	 ax2 art r2	 1 6P atax

# r ter
In the steady state analysis, the noise source

and dependent acoustic parameters are always assumed
to be of the form

	

Pi or Vi - ei-*ta ., tt12nt 	 (20)

Consequently, Eqs, (14) to (17) and Eq. (10) reduce
to

(i2nn)p " au - av - im w - 1 - Uo ap (21)
Ox	 ar	 r	 r	 ax

(12nn)u . - ^p - V au -
DUO v
	 (22)ax	 ,' ax	 ar

	

Wnn)v .. -22 - U 
av	 (23)

ay	 o ax

(12nn)w	
im 

p - Uo ax	
(24)

(2nn) 2p (> - Uo) AM+Li- m.. p - 14nnUo lk (25)
ax 2 ar	 r2	 1	 ax

+rd
The acoustic variables shown in lower case represent
the time independent values,

Cartesian Coordinates

The annular exit duct in the turbojet engine can
be represented approximately by rectangular geometry.
Also, many experiments are performed in rectangular
geometries, For simplicity, spinning modes have been
neglected. In the absence of spinning modes, the rec-
tangular forms of the governing equations are

aY	 1 DU	 1 av	 Uo aP	
(26)

	

at` - n ax'n ay	 n ax

au	 i aP Uo au 1 au,
at - n ax - n 8X - n ay V	 (27)

av	 i aP Uo' DV	
(28)

at - n sy ' n ax

Likewise, the steady state equations (using eq. (20))
become

	

(12nn)p - 
2x Y - Uo a	 (29)

(12nn)u - - -2 - U
su - aUo v
	 (30)

ax	 o ax	 By

(12nn)v c - IR - U

	

By	 axo	 (31)

,
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For the. case of no #hear `-W . 01, Eqn. (26)
to (28) combine into a single second order wave
equation

n2
 a

2
P 
	 2

C2 (1 ^ Ud?) aK2 + 0
2
P '" ZnUa 

2Cx	
(32)

The steady state form of Eq. (32) becomes

(1 - U 2) alp + 02p	 14, r,U it + (2nn)2p . 0 	 (33)o -57^	 0 ax

In the absence of flow (Uo equals zero) Eq. (33) re-
duces to the classic Helmholtz equation

+ 1-22 + (21m )2P0 0	 (34)
ax2	 ay2

Potential Flow Equations
When using numerical Ochniques in calculating

sound propagating in ducts, the velocity potential
formulation of the acoustic wave equation offers many
advantages over the conventional linearized gas equa-
tions. For three dimensional flows, the velocity
potential, approach reduces the computer storage and
running time by an order of magnitude compared to the
more general linearlized gas equation approach,
because only one dependent variable o is required.
Since the flow into the inlet is usually modelled by
potential flow (excluding the boundary layer), the
acoustic velocity potential is ideally suited for
acoustic inlet calculations. Sigman, Majdigi and
Zinn (ref, 20) give the potential gas-dynamic equa-
tions fora cylindrical duct, The general velocity
potential equation for inviscid flow (ref. 16,
eq, (1))

at*2 ' at* (
V* *

+ 2 v ¢* - v* (V*;F* V"V) - c* 2 o * ` . 0	 (35)

was the carting point for their analysis. First,
they assumed

+ ^*
	1

	
(36)

where again the symbol 0* represents the steady
mean value of the velocity potential and 0i the
fluctuation quantity. Next, because the fan gener-
ates spinning acoustic modes, they assumed

^*(x,r,e,t) . ¢ * (x,r) e-iwteim9	 (37)

Substituting Eqs. (36) and (37) into Eq. (35), yields
(dimensionless)

G(¢) a (C2 ^ or)4rr + ( 02 - ^x)@xx - UrYrx

+
L
- (y + 1 ) OrrOr - 20x^rx + T2 ^ (Y ^ 1) 1 mr

(Y - 1)yx x1 or + [ (Y + 1)4-xxdx - 20rxtr

(Y - 1)orrox ^ (Y - 1) r ¢ rOX] ox

+ [w 2 - m2 G2/r2]o + 12wPrfr + 120xtx

+ iw(Y - 1)[Nrr + 1& r + 01^ ' 0	 (38)

BOUNDARY CONDITIONS

To obtain a solution to the previou&ly developed

equations, boundary conditions are required at the
liner entrance, duct liner walls, and exit plane.

Entrance Condition

For a rectangular duct, the boundary condition

at the liner entrance P(o,y,t) can be of form

P(o,y,t) - f(y)eiw*t* 	(39)

where f(y) represents the transverse variation in
pressure. Similar expressions for ^ or acoustic
velocity can be used. In cylindrical coordinates,
the radial coordinate r would replace y in Eq.

(39). In a rectangular duct, spatial pressure vari-
atipns at the liner entrance f(y) have been taken to

be plane (f . 1) or some harmonic (cos [nt%y]) associ-

ated with the normal-mode analytical solutions (ref.
21, p. 504). In cylindrical ducts, the spatial vari-
ations in the radial direction are of the form of

Be&sel functions (ref. 21, p, $11).
Physically, boundary condition (39) represents

the sum of a forward and reflected acoustic wave at

x - o. In a uniquely different approach, Eversman
et al. (ref, 22) assume an infinite duct upstream of
the source, and that Eq. (39) represents only the for-

ward propagating wave. Their analysis separates the
reflected and transmitted waves. At the present time,
both approaches to the entrance conditions are used in

modelling the sound input into the acoustic suppressor,

Wall Boundary Conditions
The boundary condition at the surface of a

locally reacting sound absorbant soft-wall duct can be
expressed in terms of a specific acoustic impedance
defined as the ratio of pressure to transverse acous-
tic velocity:

Z* . P E	 (40)
o*C* V v
0 0

For shear flow, the mean velocity at the wall is zero;
therefore, substituting Eq. (40) into Eq. (28) yields

aP	 n aP	
(41)Ty S at

k
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For harmonic excitation, e it. )*t* , Eq. (41) reduces to

a . 1. p	 (42)

Equations (41) and (42) are useful whin working with
the wave equation formulated in turns of only pres-

sure. Equation (40) is more useful when solving the
continuity and momentum equations simultaneously.

It is also convenient to express the specific
acoustic impedance in terms of resistance Or and

reactance X as

4*Or +ix
	

(43)

Exit Im edance
In a manner similar to the wall impedance, the

axial impedance at the duct exit can be defined as

P (L* 411* 9 X ,Q 	
(44)4e	 U(L tl ,y,t)

General values for the exit impedance for single

modes can be found in references 20 or 23. As with
the source condition, Eversman, at al. (rvf• 22) use
the technique of accounting for reflected and tr:ans-
mi..ted waves. For arbitrary multi-modal wave forms,
however, a general impedance equation is not avail-

able for use in the numerical techniques,

Initial Conditions
In the transient analysis, for times equal or

less than zero, the duct is assumed quiescent, that

is, the acoustic pressure and velocities are taken to
be zero. For times greater than zero, the applica-
tion of the noise source (eq. (39)) will drive the

pressurcp in the duct.

STEADY STATE FINITE DIFFERENCE THEORY

In 1973, Alfredson (ref. 24) and Baumeister and

Bittner (ref. 25) presented a finite difference theory
for noise propagation in both hard and soft wall ducts
in the absence of flow. In the 1973 Aero-Acoustic
conference, Baumeister and Rice (ref. 26) simulated
noise propagation in the jet engine duct by including
mean flow with the finite difference theory.

In the first step of these finite difference
analyses, the continuous acoustic flow field is lumped
into a series of grid points for which discrete values
of the acoustic pressure are defined, as shown in
Fig. 2 for a rectangular duct.

Grid Point Rpouirements
The question naturally arises as to how many

grid points are required in the axial (x) direction
and the transverse (y) direction to obtain reasonably
accurate results. The following one-dimensional ana-
lysis will be helpful in determining the required
number of grid points. For the special case of plane
wave propagation in a hard wall duct, no pressure
gradients will exist in the transverse direction in
the duct; consequently, the wave Eq. (33) reduces to
the one dimensional form

(1 - Up) a- 2 - i4nnUo 	+ (2nn) 2p = 0	 (45)
ax

6

For a somi-infinite duct (no raflections), the solu-
tion to Eq. (45) for the complex acoustic pressure is

2,t nx
p 0 e- i T+ Uo	 (46)

Thus, the pressure oscillates down the duct with a
wave length

1 
01 

1 + Uo	
(47)

n

The real part of the acoustic pressure in
Eq. (46) is shown in Fig, 3 for the cr,se of a dimen-

.1onless fre quency n - 5 and a zero Mach number.
I-ive aRparate oscillations appear in the duct. If a
Mach --ember U. of -0.5 is introduced to simulate

the inlet flow of a turbofan engine, Eq. (47) indi-
cates that the wave length would decrease by half,
and ten full oscillations wruld appear in the duct.

In a detailed study of the accuracy of the numerical
solutions to this problem, Baumeister and Bittner
(ref. 25) showed that at least twelve grid points per

wavelength are required to accurately resolve the
pressure and the transmitted acoustic power. Thus,
the number of grid points required in the axial di-

rection is

12 L*/H* n	 (46)
1 +uo

Besides the axial acoustic oscillations, trans-
ferse acoustic oscillations (ref, 21, p, 492) can also
exist in the duct. In a recent paper, Baumeister
(ref. 27) showed that the number of grid points 3 in
the transverse direction required to accurately re-
solve the highest order propagating mode is

J ^ 12 n	 (49)

Thus, the total number of grid points NGrid r quired
in the duct is the product of Eqs. (48) and (49^:

NGrid . 144 n2Uo/H*	(50)

Although a large number of grid points is re-
quired particularly at high frequenei , s, a more diffi-
cult problem results from the natur. of the governing
steady state acoustic equations tt,.;mselves, as will be
considered next.

Difference Equation

Thecontinuous governing differential equations
can be changed to a system of algebraic equations by
means of the finite difference approximations. This
set of algebraic equations can then be solved simul-
taneously to determine the pressure at each grid point.
In constructing the difference equations, only sound
propagation in the absence of flow will be developed
here in order to keep the mathematics simple.

Without flow, the classic Helmholtz equation
(eq. (34)), governs pressure propagation in the duct,
Using the usual 5 point difference approximations,
Eq. (34) becomes

(p i-I.i - 2pi.i + Pi+l.i + ^pi,i-1 - 2pi.j_+ pizi+l̂

6x2
	 1)	 Ay 

+ (21rn) 2pi,j	 0	 (51)

I >
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or for 4x equal to 4y

pi-1,i + pi , j'1- [4 - Or nAx) 9 pi, j + pi,j+l+ p i+l, j " o

(52)

Equation (52) applies only to cell 1 in Fig, 2 which
is not adjacent to the boundaries. For the other
cells in Fig. 2, a complex impedance condition is
specified along a boundary. The integration method
is most convenient to use for generating the differ-
ence equations at the boundaries, as fully documented
in Ref, 28, Appendix D.

The finite-difference approximation$ for the

various calls shown in Fig. 2 can be expressed in
terms of the coefficients

akp i-1, j + 
b kpt, j-1 + 

c kpi, j + d kp i, j+l + ekp i+l, j - 0

(53)

The subscript k denotes the cell number. The col -
lection of the various difference equations at each
grid point forms a set of simultaneous equations that
can be expressed as

fA) LEJ ,► [F]	 (54)

where (A) is the known caeffictelt matrix, rP
r	

1 is the
unknown pressure vecto, and 	 is the knavi, column
vector containing the 'various 	 undary conditions.

The matrix is complex because of the complex nature
of the source and impedance boundary conditions.

Matrix Solution
The magnitude of the frequency term (2nn4x) 2 in

Eq. (52), which subtracts from the main diagonal ele-
mentck of coefficient matrix represented by

Eq, (54), is such that the matrix is not diagonally
dominant. As a result, iteration solutions cannot be
used. Equation (54) is usually solved by the Gauss

elimination technique, In general, the elimination
technique requires the storage of all the matrix
elements which would be represented by twice (complex
nature) the square of NGrid given by Eq. (50). For
high frequencies (n), this represents a large burden
on the storage capacity of a computer. Sparse-matrix

techniques (ref. 29) have been employed to reduce
computer storage and run times as much as possible.
Quinn (ref, 29) partitioned the matrix (A) into a
tridiagonal, form, which reduced the elements in the
submatrix to

Nsub	 J2 
144 n 2 	(55)

Quinn's program stores the elements of the sub-
matrices in separate locations on tape or disk.
These matrices are then read in one at a time to ob-
tain a solution of the matrix,

Baumeister (ref, 27) and Quinn (ref. 30) have
modified similar matrixes to allow iteration tech-

niques; unfortunately, the convergence is too slow to
be of any practical value, Other approaches, such as
in Ref. 31, might still offer iterative possibilities.

Example Solutions
Figure 4 shows some sample numerical calcula-

tions for a plane wave propagating in a uniform hard

wall duct, As seen in Fig, 4, the numerical theory
and exact analysis are in good agreement.

So for in this paper, the difference theory con-
sidered only straight uniform area ducts. Generally,
finite differences when applied to irregular ducts
requires considerable bookkeeping (ref. 32, p, 383).
Quinn (refs. 33 and 34), however, applied the method
of conformal mapping in conjunction with finite dif-

ferences to an4lyze sound propagation in a hyperbolic
horn shown in Fig. 5. In the absence of flow, the
following transformations

exm - a"xm

	

x - ~---~-^- cos ym	 (56)

y - 
`-'"'- e--: 	 sin ym	 (57)

change the governing Helmboltz equation into

	

+ ^ + (2nn)2F(xn ,ym )p '* 0	 (58)
axm aym

where

F( ,y )	

a2xm - e_2xm + 2(co
_ sum-..,-s,._in2ym)	

(59)xtn m "	 4

Equation (58) was programmed in finite difference
form by Quinn for the straight duct shown in Fig. 5,
Quinn ales conformally mapped x conical horn and
found the numerical results to be in excellent agree-

ment with known analytical solutions.
In general, for ducts with variaol.e area, the

finite element theory is the most convenient to use.
However, ab pointed out by Quinn (ref. 30), the advan-
tage of finite elements versus finite differences is
not as grant when a mapping function is used to com-
pute the mean flow field. For example, conformal
mapping has been used in the calculation of subsonic
and transonic inlet flow fields in the DC-8 engine

(ref. 3$). In such a case, where the conformal trans-
formation is available, the use of finite difference
theory would clearly have an advantage over finite.
element theory.

STEADY STATE FINITE ELEMENT THEORY

The use of finite element techniques in duct

acoustics began in 1975.. Young and Crocker (ref. 38)
developed a two-dimensional finite element solution
of acoustic propagation in mufflers without flow using

a variational technique. In a preliminary investiga-
tion, h.pur and Mungur (ref. 37) concluded that a
finite element Galerkin method could be successfully
employed to handle shear flow in ducts with area var-
iations, Since these papers, numerous finite element
solutions of the duct propagation problem have appear-

ed in the literature and will be discussed herein.
First, however, a brief review of the finite element
theory its presented to establish categories to clas-
sify the various references in the acoustic literature.

7



Basic Theory
The solution of the duct acoustic problem by

the finite element theory follows the usual step-by-
step process (ref. 38, p. 7) d eveloped for any con-
tinuum problem. Those steps will now be succinctly
listed with particular emphasis on how they relate
to the duct acoustic problem.

1, Discratize the Continuums Tire first stop
is to divide the interior of the duct into elements+
A variety of elements have been used in the duct
acoustic problem as shown in the first column of
Table I, Table I will be used as a focal point about
which tile. discussion of the acoustic literature will
center.

2, Select Interpolation Function., The next
step is to assign nodes to the element and than
choose the type of interpolation function to repre-
:tent the variation inside the elements of the field
variable, such as pressure and the acoustic veloc-
ities. In Table I, column two shows the node pattern
while column three describes the interpolation func-
tion, The required number of elements can be estim-
ated from the results of the finite difference theory.
For sound propagation without large reflections (ex-
clude low frequency as in mufflers), Eq. (50) ern be
used to estimate the number of finite elements neces-
sary to obtain an accurate solution. In determining
the required number of finite elements, however, the
constant 144 will be smaller because the interpola-
tion function in finite element theory Is generally
of higher order than the first order linear differ-
ence approximation used to establish Eq . (50). The
precise decrease will depend on the type of element
used in the analysis. In general, ttse more nodes per
element the fewer will be the number of elements

needed to resolve the acoustic field. On the other
hand, since the size of the solution (global) matrix
is proportional to the number of nodes, considerably
more computational time and computer core memory are
required for the higher order elements. Column four
lists the number of dependent variables considered
in the particular study, For a fixed number of ele-
ments, the computer storage will be proportional to
the square of the number of dependent variables while
the solution times can increase by the cube (ref. 35,
P. 261) of the dependent variables. Clearly, those
equations should be employed which can successfully
model the physics with the fewest dependent variables.

Generally, Lagrange polynominals are used for
interpolation when only one field variable (such as
pressure p) is calculated at each node, commonly
called the Co continuity problem. When using Hermite
polynominals, the values of Op/ax and ap/ay can
also be calculated at each node, commonly called the
C1 problem. In general, C l continuity is more diffi-
cult to construct (ref. e.8, p. 172), so with the ex-
ception of items 1 and 5 in Table I, Lagrange poly-
nominals are used. Also, if C 1 continuity increases
the unknowns by four (item 5, Table I), then the
resulting solution matrix will increase by about
sixteen,

3. Finite Element Method: Next, the unknown
nodal values of the pressure (or any other dependent
variable) must now be constrained such that the nodal
pressures provide an accurate approximation for the
true pressure distribution. In conjunction with the
governing differential equations and boundary condi-
tions, a finite element method is used to develop the

algebraic element equations for the unknown _pressures
associated with each element. The element equations
are than combined into a general matrix (global) which
Is solved for the pressures at the nodes.

In ocoustits, except for the no flow case, the
Calarkin finite element method is most often used to
establish the matrix equations for the unknown field
variable. For example, consider the case using tho
velocity potential to describe the acoustic field,
Eq. (38). Application of the Galarkin Finite element
method yields the following relationship

E

if NQL(¢)dA (e) - 0	 n o 1,2,,..N

e°1
(60)

where the integration is performed over the area of
each element. The known Interpolation function NO
Is for the n node in the a th element and N is
the total number of nodes in the problem under consid-
eration, It should be noted that No is zero for all
elements not having the nodal point as a vertex.
Equation (60) provides N equations for the N

unknown nodal values,

G. Matrix Equations , To find the solution to
the complete network of el,.ments, all the element
equations must now be assembled into a global matrix.

With the exception of the least squares approach, the
solutions are all accomplished by some sort of elim-
ination procedure. Effective solutions take into
account the banded nature of the matrix. The band
width increases with ^i larger number of element nodes
and number of dependent variables. As with finite
difference, the storage requirement of the finite
element solution can severely restrict the range of
problem that can be solved as pointed out by Quinn
(ref. 30). For the larger problems, an out-of-core
banded solver is generally required with a moderate
amount of in-core storage but much more input/output
time,

Finite Element Theories
Tile following discussions of the published fin-

ite element theories will be in order of the complex-
ity of the flow field and interpolation function and
not chronological.

No Flow, Young and Crocker (ref. 36, item 1,
Table I) developed a two-dimensional finite element
model for analyzing sound propagation in expansion
chambers with hard walls. The basic, elements were
rectangles using one-dimensional Hermitian polynom-
Inals of fourth .order, Good agreement was found
between the finite-element approach and the acoustic
filter theory at low frequencies where plane wave
analysis applies. At the higher frequencies, where
the diameter to wave length ratio is greater than 0.8,
significant differences between the plane wave and the
two-dimensional finite element analysis were found.

Kagama and Omote (ref. 40, item 2, Table I) ex-
panded the analytical work of Young and Crocker to
lined axisymmetric soft wall mufflers with more com-
plicated inputs. A linear three node triangular
element was used in Ref. 40 for the hard wall muffler
while a six node element triangle was used in Ref, 41,
item 3, Table I, in the soft wall analysis. A wealth
of example problems were considered in theso papers.
Rectangular and conical mufflers were analyzed with



and without sound absorbing materials. Significantly,
experimental data were obtained for all the examples
analyzed. Excellent agreement between the finito
element theory and experiments was obtained. There-
fore, the acoustic response of a muffler of any shape
can be accurately and easily determined by a two-
dimensional finite element analysis. In the same
tire frame, Craggs (refs. 42 And 43) presented a
formulation And appruAch similar, to that of Kagawa
and Omuto. Craggs used a more refined axisymmetric
hoxahedral iaoparametric element as shown in Table 1,
item 4. lsoparametric elements allows the sides of
the hexahedral element to band and more closely match
the shape of a curved boundary. In Refs. 44 and 45,
Craggs extended his treatment of sound absorbing
materials to include axtandad reaction effects, His
two-dimensional model showed that propagation parallel
to the incident boundary can be important

Tag, lumsdaine, and Akin (refs. 46 and 47) have
applied linear rectangular isoparAmatric elements to
two-dimensional (cartesian) rectangular ducts with
soft walls without flow. Examples are shown
(ref, 46) for sound propagation around circular and
rector.gular bends as might cnmmonly be seen in Indus-
trial ducts. Some simple plane wave propagation
examples with plug flow in hard walls (ref, 46) are
also presented. Similar o Young and Crocker, Lester
and Pnrott (ref. 48) have recently presented a
Hermitian analysis for sound propagation in straight
ducts with sound absorbing walla, Finite elements,
niener Hopf, and wnye propagation math models were

ntfound to give consiuta results.

irrotational Flow, Sigman, Majjigi and Zinn
(ref, 20, item 7) presented the first finite element
analysis which treated irrotational flows in ducts,
They used a ,simple linear three node triangular
element in conjunction with Galerkin analysis to
model the sound propagation, The potential function
wave equation is appropriate to inlet flow in a tur-
bojet engine where the flow is nearly irrotational
(excludint the boundary layer), The potential flow
formulation gives an order of magnitude reduction ii
required core storage compared to the more general
flow solutions to be presented next, As an illustri
Live example in their paper, they analyzed the hard
wall version of the NASA QCSEE (quiet, clean short-
haul experimental engine) inlet. This inlet was de•
signed to suppress inlet-emitted engine machinery
noise using a high throat Mach number and thus has
somewhat more curvature than a conventional inlet,
For an initial plane wave, their finite element
analysis showed that significant distortion of the
initial plane wave occurred due to the entrance cur
ature effects,

Majjigi, Sigman, and Zinn (refs, 49 and 50,
item 8) have expanded their original analysis to
include sound absorbing material by using a quadrat
interpolation function. Using this program, Baumei
ter and Majjigi (ref, 51, it e m 8) estimated the sen
sitivity of duct attenuation to inlet curvature,
centerbody and irrotational flow gradients for a hi
Mach number turbojet inlet. They showed that area
variations can significiantly change the calculated
attenuation as compared to the circular cylinder
model presently being used for the design of such
inlets.

The assumption of irrotationality aliminatea
the practical case of parallel shoar boundary .layer
flow. BAumeister and Majjigi (ref, 51) showed that
even in An approximate manner the velocity potential
cannot be used to estimate the affacts of sheArod
flow. However, a boundary layer correction based on
the Goldstein-Rice analysis (ref. 52) was suggested
for predicting the attenuation with shear in a soft
wall duct.

Tag and Lumsdaine (ref, $3, item 9) Also per-
formed a similar irrotational analysis for a hard wail
inlet using an iooparAmetric quadrilateral element.
They showed that the finite alomint analysis can con-
veniently handle the problem of cutoff in a variable
area duct. For a pAmple inlet, they Also performed
calculations to show the effect# of duct geocaetry on
for field attenuation And of flow gradients on the
effective mound wavelength.

oanar	 F aw Fed, Items 10, 11, And 12 in
Table i Are concerned with formulating a general fin-
ite element solution of the complete acoustic flow
field, Eqa, (54). In most canes, the general theory
has been Applied to some relatively simple cases to
check the theory.

N inn (ref. 34, item 10) examined the use of
various interpolation functions and finite element
methods on many sample problems. lie compared the
accuracy of linear interpolation functions on tri-
angles, bilinear interpolation function on rectangles
and biquadratic interpolation functions on rectangles.
He found that the biqu:dr tics pgrmi. good app roxima-
tion of curved boundaries and better convergenc y} than
the bilinear interpolation functiona.

Abrahamson (refs. 54-56, item 11) has developed
a finite element model using a linear rectangular ele-
ment along with the GAlerkin method. He harm applied
the method to conical borne, liners with axial imped-
ance variations and the optimization of liners for
maximum acoustic attenuation. He has devoted consid-
arable effort (ref. 56) to reducing the computational
times for large complex problems,

Astley, Eversman, and Thanh (refs. 57-60,
item 12) have developed a finite element method based
on weighted residuals using an eight node iaoparcmat-
rie element, As in Ref. 30, they also found the
Galerkin method to be superior to the least squares
approach. For uniform rectangular and circular ducts,
they showed that the finite element method produces
results for eigenvalues and transmission coefficients
nearly identical to those from analytical approaches.
Everaman, Asteey and Thanh (ref, 57) also used the
finite element method to explore the choking that
might occur in a subsonic flow, They found that a
large transmission loss is not an automatic casse-
quence of propagation against a high subsonic mean
flow.

NASA Lewis Research Center has begun an experi-
mental program to check the results of the finite
element models against experiment. A 0.5 area con-
traction in the form of a quartie curve has been
constructed in which experimental results are cur-
rently being obtained, Figure 6 shows the comparison
of the Astley-Eversman finite element program with
the experimental data. As seen in Fig, 6, experiment
and theory are in good agreement, The finite differ-
ence theory (dashed line) by Prof. James White will
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be discussed later in the section on transient solu-
tions to the wave equation.

Ay 3 "	 (63)

SPECIAL Nt'MERICAL TRANSFORMATIONS

In the inlet to i turbojet Angina, the dimen-
sionless frequencies n are of order 30 to $0 for
the higher harmonics of the blade passing, frequency,
The atorw requirement and associated running times
for these high fraquancas are not practical at the
present time. Some special techniques have been
developed in order to reduce the storage roqutra-
monts,

!LA_V*.k_v.'tLqZ't Tachainuo
To remove some (if not all) of the axially

oscillatory part of the wave pressure profile and
thereby greatly reduce the required number of grid
points, Baumeister (refs, 61 and 62) assumes

p (x,y) - po(x1 y) o'121tx/X	 (61)

where p represents the pressure of the oscillating
carve in Fig. 7 and pe represents the pressure of
the wave envelope shown by the dashed line, The
length # represents the effective axial wav y lei,,; 1,
of the oscillation, In general, X is chosen to 4
the value ae.nnriated with a particular mode propagat-
ing through a hard wall duct. For the case of a
plane wave propagating in a soft wall duct without
flow, a is approximated by l/n, Substituting
Eq. (61) into the Helmholtz Eq. (34) yields the wave
envelope equation

Fh k	 2 i4nn	 " 0	 (62)

The finite difference form of this equation was than
programmed (ref, 60). Fxcel.lant agreement between
the analytical and wave envelope finite difference
ear nlationa are shown in Rig, 8. For the n 5,
L /H a 6 cag e in Fig. 8, the conventional finite
difference theory required 3600 grid points, whereas
the wave envelope difference theory acquired only 100
grid points, Thus, a savings of 3500 grid points
over the conventional difference theory was obtained
In Ref. 63, this technique was used to optimize multi-
element liners of long lengths at high frequencies.
This technique can also be used with finite elements.

At the present time, this technique has been
applied only to the simple cases of no flow and plug
flc,. For a variable area duct with flow, it will be
necessary to have X a function of x. Calculated
trial values of 1 could be obtained from a one-
dimensional solution of the governing equations.

Marching„ Techniques
Although initial value numerical solutions of

elliptic equations are generally unstable (raf. 64,
p, 63), Baumeister (refs.: 65 and 66), using the
Von Neumann stability analysis, showed that the two-
dimensional Helmholtz wave equation can be solved
approximately using explicit marching techniques.
However, the grid spacing in the transverse y
direction must be sufficiently large so that non-
propagating acoustic modes cannot be resolved, that

Compared to standard f#n&teatlifkezMnce or finite-
element boundary val:<e approaches, the numerical
marching technique is ovdars of magnitude shorter in
computational time and required computer storage,
This technique is limited, however, to high frequen-
cies and to case* whore refiactions are small.

The rzl ►marical optimum attantuations were cal-
culated using the marching technique and compared to
the corresponding analytical results similar to
Fig. S. For dimansionl,!"s froquencies n a 1 or
n a 2, the numerical results were in poor agreement,
while for n K 5 or greater the method worked quite
well. Consequently, marching could be used in con-
junction with conventional analysis to handle the
special cases of high fraquency and long length.

ar WId-OaLia
To obtain the far field acoustic radiation pat-

terns and to eliminate the necessity of specifying
the impedance of the duct at its exit, finite, elements
can be extended from the internal {portion of a duct
into the far field, as shown by Kagawa at Al. (ref,
40 ) fig, 16). In Rat. 40 0 as acoustic horn with an
opening into a .semi-infinite space was analyzed by
tntroducing a hypothetical spherical boundary with a
characteristics wbco exit impedance termination.
1,owever, when taking account of acoustic radiation in
this way, a spherical boundary of large area must be
cons{.tiered, which correspondingly results in solving
a large matrix equation. To eliminate this large
matrix requirement, Kagawa at al. (ref. 67) recently
developed a combination of the finite element (in
duct) and analytical methods (Green-Theorm - far
field) to analyze sound propagation from an acoustic
horn, Experiment and theory ware found to be in good
agreement.

Baumeister and Majjigi(raf. 51) presented a
matrix partitioning approach that separated the duct
and for field into two or more regions. The regions
are coupled by an assumed value of impedance, For the
no flow case in the far field, the dimensionless
impedance can be chosen to be unity at a spherical
surface. In Rat, $1, large matrix storage reductions
(factor of 50) were obtained, For cases where complex
flows occur around the exit, the first partition
should be in the for field where an analytical value
of impedance can be reasonably specified.

TRANSIENT NUMERICAL SOLUTIONS

In order to eliminate the storage requirements
associated with the steady state numerical analysis
of sound propagation in a turbojet engine inlet,
Baumeister developed time dependant numerical solu-
tions for noise propagation in a two-dimensional duct
without flow (ref. 27), with parallel shear flow
(ref. 68), and with axisymmetric plug flow (ref, 69).
Advantageously, matrix storage requirements are com-
pletely eliminated in the time dependent analysis.
The solution vectors for pressure and velocity need
only be stored.

Difference Equations
The analysis begins with a noise source radiating

into an initially quiescent duct. Next, an explicit
is, iteration method obtains the transient as well as the

"steady" state solution.
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To Illustrate how the transient equations are
progr,wmmed consider the no flow cartesion wave squa-
tion (eq, (29) with V. „ 0) in one apace dimensiont

n2.
Bt2 2x2

Away from the boundaries, the second derivatives in
the wave equation can be represented by ttvi usual
control differences in time (subscript k) and space
(subteripts i,j)

	

k+1 - 2Pk + Pk-1	
Pk - 2P  +V 1

	

n 2 LI	 - (6S)
At2 	AX2

wham At and Ax are the time and apace mash spac-
ing, respectively. Solving Eq. (65) for Pk+1
yields

	

2 	 k 1)
Pki*1 „ 2Pj - Pt + (	 ) (Pik+l - 2Pi + Pi.(66)

	

The procedure is explicit since all the p 	 values
of Pk are known as the new vnlueo of P41 are
computed. The derivation with two space dimensions
and boundary conditions io fully documented in Refs.
27, 68, And 69, Since Eq. (66) is a simple algebraic
equation, &toraga is only required for the solution
vectors
pul4tiorris 

riquire»sat Tis i-no-
mA

en t remely usefreman-

Ref. 68, where a simultaneous solution of the contin-
uity 2nd momentum equations was employed to obtain
the acoustic values of P, U, and V.

Gra hical flint
Fortunately, the pressure calculated at each

instant of time need not be saved or displayed.
Althou gh multiple values of pressure are calculated,
only the latest values (k,k-1) need be stored. After
staady state in rear,hed (checked numarially), the
time-dependent results will be compared to the
"'stoady" state results simply by dividing by e12nt ,
that is

P(X,Y) - P (x . x,t	 (67)

In this case where the source is a simple harmonic
function of time e12mt, p represents the Fourier
transform of P(x,y ► t)(ref. 18, p, 11). In this
manner, the numerical results (refs, 27 and 69) are
nearly identical to those shown in Fig, 4. The book-
keeping and graphical output is held to a minimum by
the use of Eq. (67). The time-dependent analysis is
considerably faster than the steady analysis, as seen
In Fig. 9, In general., however, the computational
time associated with tho steady an9 transient analysis
will be comparible. The major advantage of the
transient analysis remains the elimination of matrix
storage requirements. Because manipulation of
matrices is omitted, the time dependent approach is
much easier to program and debug.

kukwix
Time-dependent numerical techniques have boon

applied to one-dimensional sound propagation (rat. 70,
P. 250), two-dimonatonal vibration problems (rat. 32,
p. 452), and the more general problem of compressible
fluid flow (rot, ]1), numerical stability is a major
difficulty associated with All those time dependent
solutions. The new problem associated with two-
dimensional soft wall acoustic problems is the influ-
ence of the boundary conditions on stability. The
manner in which the boundary conditions are posed can
tau#e the solution to be absolutely unstable
(ref, 69), At the present time, the time marching
technique has been found to be stable to%* no &low
(rat. 27), plug flow (rat. 60), and axis symmetric
spinning wave acoustic# in a cylindrical duct
(rot, 69). Numerical experimentation will be re-
quixod to determine if the equations will remain
stable and model the acoustic propagation when axial
and transverse variations in the mean flow are con-
sidarod.

At the present time, the transient method ap-
pears to have one major drawback, The transient
method does not converge for cut-off modes (ref. 69).
This has implications as to its use In a variable
Area where modes may become cut-off in the small area
portion of the duct, This will ultimately have to be
resolved since cut-off mode# will be encountered in
xenl problems, In the mean time, the staAdy state
numerical techniques can be convrnieutlyemployed
near cut-off, Because of the relatively long Axial
wavolength of a near cut-off mode, the required
number of grid points (or elements) is relatively
small.

Variabble A, r^ea
The finite  element method is inappropriate for

the two-dimensional transient problems because the
solutions are implicit requiring storage of the usual
large matrix. Therefore, in applying the transient
method to problems with area variations, the method
of mapping in conjunction with the finite diffxrence
method could be used.

In particular, the mapping procedure developed
by Thompson at al. (ref. 72) provides for the auto-
matic gor.eration of a general coordinate system with
coordinate lines coincident with all the boundaries
of an arbitrary shaped duct, Professor JAmoo White
of the University of Tennessee (Knoxville) under NASA
grant NAG 3-18, is extending the procedure of Ref. 72
to the problem of ;mound propagation in variable area
ducts, In a form similar to Eq. (b9), Professor White
has developed the appropriate transformed acoustic
equations which Are solved in the mapped rectangular
domain, The results are then transformed back into
the physical plane by an inverse mapping procedure,

Figure 6 shows a comparison of Professor
White's transient finite analysis with the exporimen-
cal data for the quartic duct discussed earlier in
conjunction with the Astley-Evaraman finite element
analysis, As seen in Pig, 6, experiment and theory
are in good agreement,

CONCLUDING REHAi=

The finite difference and finite element theories
have proven to be useful calculational tools in
handling acoustic propagation inducts with discontinu-
ities in lining impedance, with area variations, and in
ducts where large variations in the mean flow field
occur,

ll

(64)
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At the present tfio, the steady and transient
numerical theories are capable of handling the design
of mufflers, expansion chamberA, and exhaust ducts of
turbofan engines where the effective frequency n is
quite small. in contrast, the steady numerical
the0r.i4* Are not as yet capable of analyxing a prac-
tical turbofan inlo ► because of the high frequencies
and Mach numbers in the inlet. Speyial stootly ;state
transformation* and the transient techniqus have
potential for handling this problem.

At the present time, NASA, universities and
industry are extending the steady rend transient num-
erical techniques to situations involving high fro-
quencies, high Mach numbers and geetmestries with
larger are►A variations. The transient numerical tech-
nique is being adopted to handle nonlinear offocter
Including acoustic shocks. An additional goal is to
dovelop mesre realistic inlet and exit conditions to

model n tvpical turbofan aircraft nacelle.
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Figure 5. -Conformal map of Hyperbolic Horn Into a rectangular
duct,
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