

N O T I C E

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT

CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH

INFORMATION AS POSSIBLE

-4

RPI TECHNICAL REPORT MP-77

A PROPULSION AND STEERING CONTROL SYSTEM

FOR THE MARS ROVER

by

Jeffrey M. Turner

A Study Supported by the

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

under

Grant NSG-7369

and by the

JET PROPULSION LABORATORY

under

Contract 954880

School of EiYgi neeri ng
Rensselaer Polytc hnic Institute

Troy, New York

August 1980

cable of Contents

List of Figures....	 v

Abstract.., o vi

Acknowlaigelment vii

1. Introduction	 1

1. 1.	 History 	 1

1.2.	 Propulsion and Steering Overview 	 3

1.3.	 yavigatian and Performance seguirements...... 	 4

2. Wheel Coordination0............0.0.	 7

2 .1.	 The Problem 	 7

2 .2.	 Strain Feedback0....000.. 12

2 .3.	 Mismatch Feedback..**.* . 18

3. Implementation 28

3 .1.	 System Overview—....................... 28

3 .2.	 Hardware Description0000..... 33

3.2.1.	 Microprocessor Board 33

3.2.2.	 Telemetry Interface 35

3.2.3.	 "Motor Driver interface 42

iii

3.2.4.	 System Parameter Interface 46

3.3. Ccntrol	 47

3. 3. 1.	 Initialization 48

3.3.2.	 Hain Ccntrcl LcoF 49

3.3.3.	 Response to Vehicle Coamands......... 53

3.3.4. Data and Pa ra me tors.................. 58

3.3.5.	 Wheel Coordination................,... 63

3.3.6. Prcperticnal Speed Controller........ 66

3.3.7.	 Data Display E7

3.3.8. D irec ticnal Gyroscope Controller.. 	 69

3.3.9.	 Multiplication 72

4.	 Discussion and Ccnclusicn 73

S.	 Literature Cited................................... 75

iv

_	 rid

r1.	 _u

List of Figures

Figure 1-1 Short Range Steering 5

Figure 2-1 Wheel Spee9 Coordination on Level Ground..... 9

Figure 2-2 Irregular Terrain Requirements 10

Figure 2-3	 Ideal Spring Model 14

Figure 2-4	 Tarsion Bar Model 15

Figure 2-5 Wheel Speed Mismatch Sensors 19

Figure 2-6 Mismatch Compensator Model 22

Figure 2-7 Mismatch Compensator Model Block Diagram..... 23

Figure 2-6 Simulated Wheel Speed Comparison 24

Figure 2-9 Simulated Vehicle `tension Comparison......... 25

Figure 2-10 Simulated Motor Torque Comparison............ 26

Figure 3-1 Propulsion and Steering System Block Diagram. 29

Figure 3-2 Ta:hometer Calibration Curves 30

Figure 3-3 Telemetry Interface Block Diagram............ 37

Figure 3-4 Telemetry Interface Circuit Diagram.......... 39

Figure 3-5 Motor Driver Interfaca Circuit Diagram....... 44

Figure 3-6 Main Control Loop0... 50

Figure 3-7 Proportional Speed Control 52

Figure 3-8 Vehicle Commands Recognized by N-rICMD........ 55

Figure 3-9 Telemetry Interface Data Addresses........... 60

Figure 3-10 Switch-Selectable Parameters 62

Figure 3-11 Wheel Mismatch Correction Algorithm.......... 65

Figure 3-12 Gycascope Segment 'Numbers 71

V

Abstract

This paper discusses the design of a propulsion

ani steering control system for the R.P.Z. prototype

autonomous Mars Roving Vehicle. The vehicle is propelled

and steered by four independent electric motors. The

control system must regulate the speeds oL the motors so

they Work in unison during turns and on irregular terrain.

First, the paper presents an analysis of the motor

coordination problem on irregular terrain, where each motor

must supply a different torque at a different speed. A

procedure is developed to match the output of each motor to

the varying load.

Then, a design for the control system is given.

The controller uses a microprocessor which interprets speed

and steering commands from an off-board computer, and

produces the appropriate drive voltages for the motors.

r,

Vi

Acknowledgement

I would like to express my appreciation to

everyone on the Mars Rover- pLOjPat for their efforts to make

it a success. I would like to particularly thank those

people who helped me with the propulsion and steering

system:

Dr. Steven Yerazunis, for his enthusiasm ani

an=ouragement;

Dr. David. Gisser, for his advice on the design,

ani assistance with this report;

Dr. Dean Frederick, for managing the project

during a diffi-,ult period, and for his help with this

report;

Grahis Doig, and Karen Andersen, for wiring and

documenting the electronics hardware;

Paul Dunn, for installing the invaluable M6800

Gross Assembler and Emulator package on the Prime computer;

my wife, Antoinette, for drawing the figures and

proofreading this report.

r)

vii

1

1. Introduction

1.1. History

Since 1967, R.P.I. has studied various problems

associated with an unmanned mission to Mars under grants

from NASA and the Jet Propulsion Laboratory. Beginning in

1973, the primary objective of the study shifted to the

construction of a prototype "Mars Roving Vehicle". The Mars

rover would carry an on-board laboratory to study the

surface of the planet at selected sites.

B.P.L.'s study focuses on the problem of obstacle

detection and ivoidaacB. The rover must move across unknown

Martian terrain. Unfortunately, round trip radio

communication between Earth and Mars will take about twenty

minutes. Thus, direct radio control of the vehicle's motion

from Earth is impcactical, if not impossible. A hazard

detection system, with an on-board computer, would identify

dangerous terrain features, such as craters and boulders,

and find a safe path around 'Liiem.

By 1977, a half-scale prototype vehicle Was

completed. Th an prototype contained an on-board hazard

detection system, and operated under control of an off-board

computer via a radio link. • Hazard detection was

ac.omplished by firing a laser at the ground in selected

9+

., ,

2

azimuths along the vehicle's path. A laser detector was

mounted below the laser and adjusted so that it could

observe the laser spot only if the spot fell an terrain

wi.L.4-i n safe '-- fight and slope limits. Thus, the detector

classified each azimuth as a 11 safe 1' or "unsafe" direction'.

This single-laser/single-detector system was demonstrated in

laboratory and field tests in 1978.

In 1977, work began on the next generation hdzard

detector, called the elevation scanning system. This system

fires laser shits in several azimuths at various elevations.

A multiple element laser diode or CCD array will observe the

spot, and-give detailel information about the terrain ahead

of the vehiclez.

Sinoa the completion of the single-laser/single-

detector demonstrations, much work has been done to prepare

tha rover to carry the elevation scanning system. some of

the vehicle systems were directly affected by the change.

However, other systems have been modified or redesigned to

improve performance and correct problems which Were

identified during the laboratory and field tests. This

raport deals with the evaluation and redesign of the

propulsion and steering control systems.

x d

3

1.2. Propulsion and Steering overview

The propulsion system must carry the rover over

rough terrain as directed by the path selection algorithm,

an3 supply imp3rtant navigational information. The

propulsion system consists of wheal motors, motor drivers,

ani motor controllers.

originally, only the rear wheels of the vehicle

were powered. A separate motor steered the rover by turning

the entire front axle. The motors, controlled by relays,

operated only in forward, reverse, or off modes. Motors

were later added to the front wheels to help the rover climb

steps.

Gnfortunately, the rover could not be steered when

stopped and, since the Wheel speeds were unregulated, it

stretched and =ompressed under varying loads. For those

reasons, a four wheel speed control was implemented 3 . All

four wheel speeds were set to maintain the proper

relationships luring steering and turns on level ground.

The steering motor still assisted in turning the front axle.

This system served thraughout laboratory testing of the

single-laser/single-detector system.

Some problems remained with the four wheel speed

control system. The vehicle still stretched, compressed,

3n3 lurched. the steering motor fought with the front drive

motors during turns, and was removed. The wheel speeds

a

u

needed frequent, difficult recalibration to keep them

consistent with one another. More importantly, the computer

could not reliably calculate the rovers true position from

wheel speed and steering angle data. The new propulsion and

steering coutc:)l system should not have these faults.

1.3. Navigati3n and Performance Requirements

For safe navigation around an obstacle, the

control computer ^aust accurately and reliably know the

position of the vehicle .relative to the obstacle. Thus, the

propulsion and steering system must at least provide

accurate, consistent wheel speed, and steering anglo

information.

Although some measurement errors tend to cancel

out over long distances, they generally will not cancel in

the critical short range context. T-rrors in wheel speeds

an3 steering angle have different effects. For instance, if

we can tolerate a 2% uncertainy in position relative to an

obstacle, we can allow wheel speed measarement errors up to

2A. Steering errors are not as simple, and cause greater

problems. Consider the examples illustrated in figure 1-1.

Here, the vehicle is making a constant turn, presumably to

avoid a hazard that it has detected. For typical turns in

actual
location

X

perceive
location

5

f`

3

(ao = perceived steering angle 	 (91 = actual steering angle

r = turning radius	 L = vehicle length = 1.6 m

d =71r = distance traveled
2Ad = error in navigation = (—Ax + (oyT

where
L; _	 / t an tom' ^^]Ax 2 tan^	 tan 1 1 - cos "tan& o J

ay = tan s in(17- taan^1 	 o

Assume a 1 ° error in

1)	 -51.47° (4
61 = -52.47° (21,

d = 3.86 meters

,ad = 0.17 meters

steering measurement

increments left)

I error)

(4.5% error)

2) ee = - 38 . 60 (3 increments left)

8'1 = -39.6
0
	 (2.6% error)

d = 6.28 meters

,&d = 0.27 meters (4.3% error)

Figure 1-1
Steering Errors in Navigation

G

the four to six deter range, the relative position errors

are much greater than the relative steering errors. In the

example, a one degree (2%) steering error produces a 17 cm

(4.5:) position error in about a four meter trajectory. The

same 24 error in speed would produce only an B cm position

error. Thus, we should pay particular attention to steering

angle measurement.

One vast also consider the performance of the

vehicle on irregular terrain. Since individual motors drive

all four wheels, the rover can climb moderate steps and

slopes without much difficulty. However, a coordination

problem exists with independent motors. Each must supply a

different torque at a different speed as the rover turns and

=limbs. The c3ntrol system should account for these

differences so that the motors will work together, and not

against one an3ther.

w

7

2. Wheel Coordination

1.1. The Problem

When the rover moves forward on level ground, alb

four wheels sh3uld move at the same speed and deliver about

the same torque. When the rover turns, or encounters rough

around, this is no longer true.

The cover steers by turning its entire front axle.

Thi:s is called wagon steering. Obviously, the axle will

turn if one of the front wheels moves faster than the other.

Eiowevar, all f7ur wheel speeds must adjust if the rover is

in motion while turning.

In 3 four-wheel drive automobile, there is one

motor. A set of differentials allows each of the wheels to

supply the necessary torque at the proper speed relative to

tie other: three wheels. On the rover, there are four

inlependent spud-cont rolled motors. If the control system

can supply the proper set screeds for the particular terrain

an] steering angle, then speed feedback will insure that

each motor supplies the necessary torque.

Tim Gais 3 developed the speed relationships as a

function of steering angle on level ground. As the rover

turns, the wheals move in concentric circles of different

radii. The wheels with the longer turning radius must

r,

i
i

travel Earther than the others. Therefore, they must turn

faster. The relationship between wheel speeds is dotarmined

by the rover's geometry. Each wheel speed is normalized

with rasVect to the speed of the center of the front axle.

See figure 2-1.

On irregular terrain, the situation becomes more

complax. Dave Knaub • studied the torque-speed requirements

of a rigid two-wheeled vehicle climbing a slope. Again, the

front-to-rear speed relationship is determined by yoometry.

For example, when the rover begins to climb a 30 0 slop: the

front wheel must turn 15^ faster than the rear. Here, the

local slopes under each wheel and the pitch angle sire

important. Sae figure 2-2. Torqua requirements depend upo,.

the vehiclo weight and ritch angle. 	 Tor .,3ues are limited by

slippage.

Knaub determined that there is a single acceptabla

spea3 ratio, an3 a range of acceptable torques at oach point

on the slope. He showed that unregulated motors, operating

at a constant voltage, will adjust along their speed torque

curves to an a°cceptable torque at acceptable speeds as the

vehicle climbs the slope.

Should we, then, regulate the motors? If not,

than which tocgues in the acceptable range should we choose?

of course, we must regulata the motors.	 Zecal1

that the motors did run without regulation in the original

1A

'0

c
sill

(j)
y
j ck-4 I.OQYn

6	 1,07111

C 1,,57m

I

^Ij

fit-	 t/
	 1-.,

vw^
=	

&	
6 inV

^IEF	
c C-) 5 ^?	

2- c	 P

VLR Cos	 +	 17"
VREF

2-C,

VRF: b — Sin

VKEF
2c

\/Lr- b	 sc, in ^D
ac

F'igure 2-1
Wheal Speed Coordination on Level Ground

r

10

A11

VF 	cos (&R

V 	
Cos (- C`?F)

T -̀ /tR R N r	 T z 1-^F FN r

where
V = front wheel speed
VR = rear wheel speed

T = front wheel torque
TR = rear wheel torque
AR, AF = coefficients of friction
r = wheel radius

RN = rear normal force
FN = front normal force
Cp = pitch angle

& = local slope of terrain under rear wheel

p'F = local slope of terrain under front mhael

RN and FN are functions of the vehicle weight, (9R , &-,
^, and themselves4.

Figure 2-2
Irregular Terrain Requirements

design. At that time, there were severe problems with

maneuverability, and the vehicle compressed and stretched.

The .four wheel speed control system gave the vehicle much

more maneuverability, and improved the stretching problem

somewhat.

How, then, should we choose the torques? In a DC

motor, there are three important L.arameters: input voltage,

motor speed, and torque. A speed-torque curve exists for

each input voltage. If we specify two parameters, than the

third is also specifie3.

Suj:p3se that the Knaub model is climbing a slope,

as in figuro 2-2. Input voltage- and torque are specified.

Obviously, both front and rear motors must -supply more

torque to match the load as the rover climbs. If the motors

operate at a constant voltage, then the speed will drop.

Unfortunately, it is not likely that the speeds of the front

and rear motors will drop to the required front-to-roar

ratio. The front and rear axles will tend to move toward or

away from one another; since the vehiclo is riyi.d, it

supports a for g e between the axles and causes one of the

motors slow down. The less the motor speed varies with

applied torquo, the greater this force must be to load the

motor down. The load is not distributed evenly between the

wh°els.

if, instead of voltage -And torqu , wu could chooso

r

12

the speed and torque that the motor produces, then we could

adjust the mismatch force between the axles. If we can

specify the wheel set speeds a priori to meet the proper

geometric ratio, then the torques can meet the load

requirement without a net front-to-rear force.

There is no simple way to a priori s,ecify the

proper set speeds on irregular terrain. It would be

necessary to measure the local slopes under each of the four

wheels, as well as the pitch, roll, and steering angles.

Even if all of these variables were measured, and the motor

drivers carefully calibrated to eliminate mismatch, the

algorithm would be complex. A feedback solution seems more

promising.

2.2. Strain Feedback

We desire to adjust the torques and speeds to

acz_ptabla relationships and distribute the load rationally

between the four motors. A wheel speed mismatch adjusts

itself by changing the load distribution. Since one motor

carries most of the load, the vehicle's climbing ability is

reduced.. In fiat, the motors may even s,ork against one

another. If we can detect the conditions under which the

wheal speeds i just themselves, we can choose do input

f J

13

voltage which will result in the proper speeds and torques.

First, assume that There is no mass and the

vehicle is moving on level ground toward a 34 0 slope. As

soon as the front wheel begins to climb the slope, geometry

dictates that it should turn 15.E taster than the rear wheel.

Since the front of the vehicle is climbing too slowly, the

rear will push the front. If the motors operate at constant

voltage, or with a speed control, the front will resist.

The motors will expend useful climbing power crushing the

vehicle between them.

We can, however, measure this force with a strain

transducer, an3 apply enough power to the front wheel so

that it will turn faster, and carry its share of the load.

Alternately, we could slow the rear wheel down, with the

same results. Under these conditions, there will be no

front-to-rear force.

Consider the simple model in figure 2-3. A two-

wheeled vehicl? climbs a slope with identical springs

suspending the vehicle's mass between the wheels. The force

of gravity causas a stretch in one spring, but an equal

compression in the other. A set speed error would cause a

net stretch or compression in both springs. Thus, it is

easy to isolate the propulsion system error from the

gravitational effect.

Figure 2-4 shows a more realistic mo(1el of the 3pI

Z

;;, 11PT

14

x 1 = (L- 1 SinC^)

x2 = '^(L + r Sin (^)
d
Ut L =

of T _ v
T

where
x = the stretch in the rear spring
x2 = the stretch in the front spring
L = the length of the vehicle
M = the mass of the vehicle
g = gravitational constant
^p = pitch angle

of
T
= front wheel speed, parallel to vehicle

V T = rear wheel speed, parallel to vehicle

Figure 2-3
Ideal Spring Model

OBI.
OP,

Ap^^ QU GL;^ I
^LÎ s

r,

15

e

C w '^'

cx

^

S1-
iBw

Figure 2-4a
Torsion Bar Model

16

Front torsion bar displacement, t'f:

J f 6 f + B f (9,f + K f (9f = Vf 1' (Zrf + 'Cl f) Cos 3

Left rear torsion bar displacement, ^lr

Jr &lr + Br '^lr + Kr (1r r Ulr Vlr - wlr Hlr

Right rear torsion bar displacement, 6'rr

Jr err + Br err + Kr Orr r err Vrr Wrr Hrr

Steering angle, L`^':
• s bs

is 51s + Bs s 2 (elf - ^rf)

for each motor:

dt	 - L (e - 19w - - a '^)

where
3 is the moment of inertia of each strut
B is the viscous friction
K is the spring constant of each torsion bar
r is the wheel radius
V is the vertical distance from the axle to the

torsion bar axis
H is the horizontal distance from the axle to the

torsion bar axis
W is the vehicle weight on a wheel
,t^ is the motor torque
R is the motor armature resistance
L is the motor's inductance

is the back EMF constant
is the torque constant

w is the-motor speed
e is the motor input voltage
i is the motor current
b is the distance between the front wheels

Figure 2-4b
Torsion Bar Model Equations

r,

17

rover. Instead of spring displacements, we measure strains

in torsion bars in the front and rear. The L)dylz)ad is

supported between these torsion bars. Since the bars

supporting the rear struts are independent, and since we

measure the steering angle, it is possible to adjust the

voltage to each motor so all wheels work in unison. We

=orrect for ercars between the left and right front wheels

by measuring the steering angle. We correct for net front-

to-raar errors by observing the relative strains in the

front and rear torsion bars. Finally, we correct for !rrocs

between the left and right rear wheels by measuring the

relative strains in the rear torsion bars.

While this approach seems attractive, it is not so

easy to implement. on the real rover, the stress

measurements ace not straightforward. Most of the vehicle

strain does not actually occur in the torsion bars, but in

the wheels and struts. Even if the strains were accurately

measured, it is unlikely that the strains Sue to propulsion

errors could be reliably isolated from strains due to

vehicle weight. The correction algorithm would be very

complex. This approach might warrant further study, but

there is a simpler and more promising alternative.

18

2.3. Mismatch Feedback

As the rover climbs over irregular terrain,

various torgue and speed relationships hold for each wheel.

When the input voltages to the motors do not allow the

motors to m2_Fe►t the relationships, power is wastod and the

rover is unnecessarily strained. This extra strain results

because some motors push the others.

Reconsider the two-wheeled vehicle just beginning

to climb a 300 slope. The rear wheel pushes the front

wheel. The torque required from the rear motor incraat^es,

ani the rear slows. The load on the front motor is reduced,

so it speeds up. As climbing continues, a compressive force

develops on the vehicle. This compressive force indicates

that the front wheel is dragging. In other words, the reac

wheel is actually forcing the front wheel to turn.

on the R.P.I. rover, the wheels are driven by a

worm de r arraigement. Thus, the front wheel cannot be

forced to turn much faster than the front motor drives it.

Tha extra loading on the rear. wheel must slow it to 85 10' of

the front wheel speed. Nevertheless, the compressive force

developed by the rear motor still TRIES to turn the frcnt

wheel faster.

Refer to the sketch of a worn gear in figure 2-5.

g ormally, the motor drives the wheel, and there is a

downward end-thrust on the worm. This end-thrust is

19

Dragging
Signal

Csil

End
Thrust

Worm attached
to motor shaft

Driving
/	 Signal

eel Drive Gear

End Thrust Down
	

Motor Driving Wheel

End Thrust Up	 a
	

Wheel Dragging

Figure 2 -5
Mismatch Sensors

20

praducad when the wheel resists the motor. If, however, the

other wheel tcias . to turn it, then it does not resist. In

fact, it pulls the worm gear upward. The reversal of the

end-thrust indicates that the motor is no longer powering

the wheel. This is a direct indication of a mismatch

between the wheels.

If the control system could detect the end-thrust

reversal, it could supply more power to the dragging motor

and thereby increase the torque and speed outNut. The wheel

speeds could meet the necessary torque and speed

relationships; the load would be rationally distributed

between the motors. At very worst, the motors would no

longer fight one another, so they would no longer waste

power compressing or stretching the rover.

Fortunately, it is not difficult to detect the

reversal. By illawing the worm to move slightly, ordinary

switches on the worm shaft can detect the direction of the

and-thrust. The switches provide all the necessary

information in digital form, and do not have problems .pith

calibration or drift.

A computer program has been written to simulate

the rover and test this idea. The simulation assumes the

two-wheeled rover shown in figure 2-3. The front and rear

are connected by an ideal spring which suipends the payload.

Each motor is speed-controlled. The controller uses the

1

21

wheel mismatch information to modify the rear set speeds

while the front set speeds are not changed. Figures 2-6 and

2-7 show the e3uations used and a block diagram of the model

control loop. The model parameters, given in figure 2-6,

were isti,,.atel from measurements of the R.P.I. rover.

The zontroller allows the wheel spends to seek

whatever speed geometry dictates for them. Whenever the

switches indicate that one wheel is dragging, the wheal set

speed is incra;sed (or decreased) by an arbitrary amount.

This new set speed is low-pass filtered, with a time

constant similar to the rover's time constant. When the

actual wheel speed reaches the speed required by the

geometry of tha rover on the terrain, the motor again begins

to drive the wheel. 'The switch turns off. The unfiltered

set speed returns to its old value, and so the set speed

begins to decrease (or increase). Eventually, the wheal

will again begin to drag and the process repeats. There

will be some small speed oscillation, but the resulting

wheel speeds should follow the required speeds rather

closely. In any event, the wheels will not fight one

another.

Figures 2-8 through 2-10 compara the model rover's

performance with and without the worm-gear sensors. in the

figures, the rover climbs a ramp. The scales ara the same.

Without the sensors, the motors fight constantl y ; the rover

r.

:
a

i

22

Mismatch Compensator Model

Use Ideal Spring Model, Figure 2 -3
Wheel Mismatch Sensors, Figure 2 -5

cumulative speed mismatch:

0 = tv f cos (V - &f) - CO dt
r

Translation of worm gear:

,r = 	 o< Tmax
I

A

TV°x
Ay Tmax

Stress in vehicle spring:

S = 0
	 Q Tmax
K(ZS - Tmax)	 A2 Tmax

load torque on motor (always positive, since the wheel
cannot turn the motor through the worm gear)

MAX (W sin V - S, 0) for rear
load	 MAX (W sin P + S, 0) for front

motor speed:

Cv	 J (R e	 load) -
R C,J

d = motor torque constant, 0.8 Kg'm/amp
_ '.lack EMF constant, 12 V/rad/sec

R = motor armature resistance, 2.7 ohm
J = effective moment of inertia on each wheel
W = weight, (half of rover), 35 Kg

Figure 2-6

r

23

t-9

kr)

F—	
X

-oc
L

12

q `tip

LI

Q)

17T,
k1

> q "J

Figure

-10

9

0
r

-1)

C-4
ki)
fd

F-4

0
4J
cd

4-3

1
trl

I_	 ^

Figure 2-8
Simulated Wheel Speed Comparison

J ^,

s .^ L
3 ^ ^

d
N

	

14	
^.

U U

	

II	 II	 II

IL cc' 7

	

II	 II	 II

	

I	 •I	 j

- r V

`jJ

Ul
O

1

24

L

r.

y^

—1

v
vU

25

z	 j	 I

Figure 2-9
Simulated Vehicle Tension Comparison

i
a

Q

in
0-3

Figure 2-10
Simulated Motor Torque COITIparison

26

27

stretches and compresses. With the sensors, the motors

fight only while the controller reacts to the mismatch

signal. The stretch and compression peaks during this time

ra3ch only one-sixth of the peaks without the sensors. the

wheel speeds follow the required wheel speeds, and the

torques produced by each wheel are the same.

A controller utilizing sensors on the worm gears

can, then, pro p erly regulate the motors on irregular

terrain. it will also compensate for sat speed errors and

mismatched motar drivers since it responds to any kind of

torque or speed error. we are now implementing and testing

this system on the actual rover. It should greatly improve

the rover's pacformance on all terrain.

k

t

n

28

3. Implementation

3.1. System Dverview

The propulsion and steering control system must

obtain the stearing angle, wheel speeds, mismatch data, ani

commanis from the operator or off-board computer. It must

supply appropriate voltages to each motor so that each wheel

will maintain the correct torque and speed. See figure 3-1.

Steering angle and wheel speed measurements are

also required oy the off-board computer for path selection.

The measurements must be accurate, and the equipment most be

easy to calibrate. The steering angle measurement is

critical. We needed an 8-bit encodar, with 1.4 0 resolution,

to meat aavigdtional requirements. I chose a 10-bit optical

shaft encoder (Litton model 76NB1C,; 1,E1) , which has a

resolution of 3.35 0 , since it was available at the same

price. It is possible that a precision potentiometer would

have provided adequate resolution, but additional errors and

calibration adjustments are introduced by buffers and A/D

conversion. The wheel speed measurements need not be ds

precise, so I 3ecided to use the tachometers which were

already on tha vehicle. We tested the tachometers and found

them to be fairly linear, but each must be calibrated

separately. See figure 3-2. If more accuracy is required

In
^b
O O
4) a)
,^ a
3 ^

m
Ar

O

U

O

v
cJ

E-+

A

U

O
ri
C^

m

cn

^r

N

m

b

4i

D

01
r-1

a
O
;,

PL4

w
r-1 b
a^ a^^ a

O

U
r-1

s U

29

m ^
ri	 U

U	 •ri

A

O

O

m

O >
4-3 	•ri
O	 1:4

^. A

O 4a rn
+3 b

•^ U

r--1 1 ^

^ U U
ri	 >

r-q
O
^+ 3

Cd
C: a
O
U

b N
U r-I
Cr U O^

t C U
A>U]

Figure 3-1

O

O
U

W

60
A

F., Q)
a) r-4
m e0
+0 P
fn as

+-3
N

O r=
+j U

r-i
U
4J

ti e'r

30

0V

Figure 3-2

31

at a later tine, these can be replaced by optical

tachometers.

The on-board control system must interface with

these transducars and perform all the necessary control

calculations. A microprocessor-basal controller is the best

choice.

If the feedback control was done by analog

circuitry, the output from the tachometers can be used

directly. However, two D/A converters would be required to

interface with the command link and steering encoder. a

potentiometer could be used to measure the staerin3 angle in

conjunction with the encoder to eliminate one of the D/A

converters. Even then, there is a problem co?-acting the

wheal speeds during turns. The correction is a complicated

geometric function of the steering angle and vehicle

dimensions. the output of the encoder must address a read-

only memory containing the correction factor, and a

multiplying D/A converter must scale the analog set speed.

We could rely upon mismatch feedback from the worm-gear

switches to raplace precise steering correction, but the

wide range of speeds is a problem for the correction

algorithm. Steering information must at least tell the

mismatch controller which direction the wheels should turn.

Altogathec, the hardware would be complicated and difficult

to calibrate.

32

A hard-wired digital controller should be easier

to calibrate, but would still be complex. it could

interface dire:tly with the steering encoder and command

link without any conversion. The telemetry system could do

tha A/D conversion required to supply the wheel speeds.

Unfortunately, the low pass filters, steering correction,

and prDportional speed control are awkward to build.

A miz roprocessor shares the advantages of both

hard-wired approaches, but few of the disadvantages. It is

easy to interface to all of the existing systams. :?uce

importantly, it offers flexibility. The control algorithms

could be modified, expanded, or completely replaced with the

adlition of little or no hardware. it user interface can be

provided for laboratory or field calibration. It can

perform a wide variety of control tasks on the rover,

besides steering and propulsion. A Motorola M6800

mizropcocessoc system was chosen since there was se much

technical support for it on campus.

r,

33

3.2. Hardware Description

The heart of the propulsion and steering control

system is a Motorola stand-alone microcomputer board. An

ad3itional board contains the interface to the telemetry

system, to motor driver cit:cuitry, and to the parameter

selection switches. These hoards, plus the telemetry

system, are coatained in a single card cage. Motor driver

circuitry is mounted on each strut.

3.2.1. Microprocessor Board

The propulsion control system uses theMotorola

M63SA21 stand-alone microcomputer board s . The M63S7C1 was

intenda3 for use with a Motorola development system. In

addition to the microprocessor, the board contains four

pacallal I/O ports (PIA's) , two asynchronoas serial I/O

Forts (AZIA's) , 348 bytes of random accw ss memory (RA !fl, and

3K bytes of programmable read-only men ►ory (1pROrt) . It can

be configured in a variety of ways by zwitches a.nd jum ers.

Appendix 6.2 gives the list of jumpers and switch settings

that are neede3 to use the microcomputer in the Eropulsion

system.

r3

One of the serial ports, U12, acts as the

interface to tha command link. It interrupts the processor

34

whenever a command, is received. The other serial port, U4,

is connected to an RS-232 interface and so can be connected

to a terminal. The propulsion system uses U4 to diSj,ldy the

Wheel speeds 3n9 and steering angle. If any character is

received from the terminal, U4 issues a non-maskable

interrupt which stops execution of the propulsion system and

transfers control.to the MINIBUG II software. The command

link port operates at 110 baud, and the terminal port

operates at 9600 baud.

Obviously, the board has capabilities beyond

propulsion and steering control. Only two other control

functions remain on the current rover: strut control, and

directional gyro control. If the microprocessor performs

these functions, none of the old rover electronics will

remain. This is an advantage, since an additional card cage

must be built if any of the old electronics are kept. The

software to perform these functions has been written. It

uses only one of the parallel ports (U5B). The other three

parallel port{,: are available for future expansion. Appendix

6.2 discusses the additional hardware required to drive the

struts and gyro.

35	 j

i

3.2.2. Telemetry Interface

The microcomputer must have current information

about the rover in digital form. For propulsion and

steering control, it needs all four wheel speeds, the

steering angle, and wheel mismatch date.. It needs the gyro

reading for directional gyro control.

The Dff-board computer also needs this

information. therefore, a telemetry system samples each

important vehizle state and transmits it to the off-board

computer via a radio link. The telemetry system contains a

data multiplexer which presents each 16-bit data word, in

turn, to the transmitter with an identifying address. For

the old telemetry system 6 , the vehicle states were measured

by analog devizes; potentiometers and tachometers. A 16

zhannel analog multiplexer delivered each measurement to a

12-bit A/D converter. Four address bits were required to

identify each of the 16 possible vehicle words. The new

telemetry system, currently under construction 7 , pcovides 16

analog and 16 3igital channels. Thus, there is a five uit

address.

In either case, the data multiplexer presents a

parallel 16-bit data word to the transmitter for

serialization. Rather than duplicate the multiplexer

circuitry, the microcomputer obtains its information from

the telemetry system's data multiplexer through the

^`s

36

telemetry interface. The interface also allows the

microprocessor to send data to the off-board computer.

The interface is a block of random access memory

(RAM) which ca3 accept data from either the telemetry System

or from the microcomputer. See figure 3-3. The RAIM ai:h,;ars

as 126 16-bit words to telemetry, and 258 8-bit ;cords to the

microprocessor. Either system can obtain sole read and

Write access to the RAM.

The telemetry system requests access, via the

signal "Telemetry Data Request" (TDR), whenever there is

valid data at the output of the multi p lexar, or whenever the

multiplexer wishes to take data from the RAM during its

dolling sequence. The data multiplexer gives the same

address to identify the word to the R,M anti to the

transmitter. It indicates whether it will read from or

write to the RAM with the signal "Telemetry Read/Write".

Unless the microprocessor already has sole access, the RA;l

controller retirns the signal "Telemetry Data Grant" (TDG).

The controller transfers the 16-bit word to or from the

spe^ified address.

The telemetry system must use the TDG and

Telemetry Real/Write signals only if the polling sequence

includes data from the microprocessor. Telemetry Read/Write

should be grounded if it is not used.	 Naturally, it is LIP

to the telemetry system to ignore data from the RAM if it

1)

, ' r `	 •shy

37

r i'

Telemê R^cu
TDR

i

{

^r r»l i n 9and
Cont'r^{

and	 I	 I

Cant {	 I	 ^

^	 I

-51 M 11

N! $	 and
C ro^	 {

Words	 {

ifs	 ^

na TA I

Figure 3-3
Telemetry Interface Block Diagram

'4

38

does not rt2ceive a TDG during a "Read". TDG can alwdy ri be

ignored during a "Write ll since telemetry writes to the RAm

for the micropcocessor's benefit. The telemetry interface

will work with both the old and the new telemetry systams.

The nicroprocessor obtains sole access to the RAM

by writing to a special address (:4F IE) , and checking to see

if the "write" was successful. The "write" clears a flip-

flop which disallows new Telemetry Data Raquests. Unless

telemetry already has sole access to the RAM, the "write"

will be successful. The microprocessor retains sole access

until it writes to another special address (C4FF) to sot the

flip-flop. The programmer of the microprocessor must insure

that it does not retain access for too long. The telemetry

system must have access frequently enough to keep up-to-date

vehicle data in the RAM.

Figure 3-4 shows the circuit diagram. The core of

the circuit is the memory. Two Motorola MC6810 randout

access memories (1046 and IC47) are used in parallel.

Around the mewacies are address and data buffers which give

thew their own miniature address and data buses. -ach

memory is organized as 128 8-bit words so that there are .:k

total of 128 16-bit words. Internally, the address bus is

7-bits wide, and the data bus is 16-bits wide.

On the telemetry side of the interface, there are

the 16-bit data bus, the 5-bit address bus, and the cocitrol

1

Figure 3-4
	

39

Telemetry interface

VJ

6 z

3:1

,

z

	

^^	 _^I .III)	 .'f ^^	 ^-^^	 I	 1	 1
1 	'

	

i,J	 it

	

H,s ^„^^.a	
!I'I :11111	 ^I,	 _^	 ^	 f) I ^^ { I	 I	 ^	 I

7 1

17 `7L

Iq

.21"1

Ilt
^

I	
^	 31	 _1„	 j1,^ 	 ^^ I ! ^^'I^„ I 	a II	 i	 I	 I	

,

I	 „i	 I	 ^Il.^'•'rl 11 !t	 ;^	 '^i j	 I

sl

=7
All

i

,#A

40

signals (TDR, TDG, and Telemetry R/W) . TDR is gatell through

I_-33 into the trigger input of a one-shot (IC4v).	 When the

microprocessor is not requesting sole access, IC.33 is

enabled. If TDR goes high indicating telemetry desire

access, it triggers I_'40 and the output goes high. Phe

output, TDG, i3 also the main control signal. When TDG goes

high, it disables the address tnd data buffers to the

microprocessor and enables the buffers to telemetry. Both

memories are enabled so a 16-bit word can be transferred.

Telemetry L4/'d controls the data direction in the data bus

drivers and in the RAls. When TDR Boas low again, TDG is

cleared.

on the microprocessor aide of the interface, two

4-bit magnitu3a comparitors (1-'26, I.:27) decode the upper 8

bits of the microprocessor's 16-bit address.	 (Presently,

tha RAMS are assigned to 0400 through -'4FF). A NAND-gate

(IC-41) matches the bits A7 through Al. 	 When the

microprocessor references RAM location '4FF or C4FF, th4

output of the 4AND-gata goes low and clocks address bit AO

into the flip-flop (I--42). Thus, a reference to _'4FE clears

the flip-flop, and a reference to C4FF sets the flip-flop.

When the flip-flop is cleared, it disables IZ33 to disallow

new TDRs. Ncta that TDG is not directly affected. 	 the

microprocessoc must wait until telemetry has finished to

actually obtain access. It will continue to write to an(]

41

read from y4FE until access has been granted. Of course,

the microprocessor might actually have access to the ZI AM

before perfuming this procedure, but there is no guarantee

unless 1%33 disables TDRs first.

The 3ata stoced in the RAMS is 16 bits wide, but

the M6800 data bus is only 8 bits wide. The least

significant bit, A0, selects only one of the RAMs and puts

only one byte onto the M6800 data bus. The data buffers

from both RAMS ara tied to the bus. The 'high RAM",

selected by an odd address (Au=1) , contains the upper byte

of the telemotcy data word. The "low RAM'', selected by an

even address (U=0), contains the lower byte of the

telemetry data word. Note that the n6800 data bus is

inverted, so the bus drivers (IC28, I::29, I-"32, and IC33)

must invert.

r

42

3.2.3. Motor Driver Interface

The microprocessor compares the wheel set speed to

the actual wheel speed and produces a number. This nli;,ibev,

the drive camm3nd, represents the voltage required by each

motor. Unfortunately, a number will not turn the motors.

The motor driver interface converts the number into the

power the motors require.

Cite common, and easy, way to control the power

delivered to •t DZ motor is pulse-width modulation. Each

motor is connaated to a switching circuit which can turn the

supply voltage on and off. If the supply is turned on and

off rapidly enough, the motors will filter the voltage and

extract the DZ component. A ccntrol signal determines tha

langth of time that the switch is on. The control signal is

a constant frequency, variable duty cycle waveform. the

"on" time of the signal determines the "on" time of the

switch.

The old propulsion system used pulse-width

modulation 3 , so the new system uses the same motor driver

circuits to switch the 24 volt supply. Thus, the motor

driver interface need only supply the control signals. I

decided, after experimentation, to use a 400 iiz control

signal as was used in the old system. At a lower frequency,

the motors begin to jerk. At higher frequencies, the motors

_	 hum, heat, and slow down. N frequency around 400 liz ma'KeL;

r

4

the best compromise between filtering and inductive losses

in the motor.

All that remains is to convert the drive co.nina.nd

number into the appropriate duty cycle. 'The most

straightforwarl method, to turn a single bit on and off

under software control, does not seam to be the simpleot in

this case. The 400 Hz waveform has a period of 2.5 milli-

seconds. Thus, the bit may be on from 0 to 2.5 milli-

sazonds. ` It .+ g ull be difficult to insure that the prof,--r

duty cycle was produced during program operation du;a to

interrupts foc vehicle comman3s and waits for telemetry to

finish with the interface RAM. This ;foes not rule out the

software approach. Some hardware/software tradeoffs aere

necessary in the early design stage, and a small amount of

hardware does Simplify the control algorithms.

Therefore, the variable duty cycle waveform is

produced by a cata multiplier (7497) 8 . See figure 3-5. The

rate multiplier contains a 6-bit binary counter, which

counts 64 clock pulses. A 6-bit binary number (from J to

63) is applied to the rate inputs. This number specifies

how many pulses to output during each full cycle of 64 clock

pulses. That is, if the number 27 was applied to the rate

inputs, 27 pulses would be produced each cycle. A pul.,e is

output after each clock pulse, while the clock is low.

Therefore, if the clock is low for all but d eery short

	

LS,;	 Sib
I	 ^

	

T IN IF' s3 	
v i1
	 l^ I^ ^

vl

ORIGINAL PAGB
or, POOR QUALJJ

^a

Figure 3- 5 	44
;Motor Driver Interface

ql

!tly S	 ^„ ^	 I	 v^	 y	 4r	 ^ !	 rr• W2e^	 °	 I'•" iT 3u	 OI 	 I

._L; : 'J	 aL,-gyp` 	 S
'-^-'t K	 `^ ' is , t 	 ^	 ^	 d^	 2

	

1	 it u^—>;1

ti	J-I - ti _	 - _....!	 1..ti•:
X2 	r^ic

I li	 rl%_ r	 .I	 ;! ^ w	 ^^	 !	 3

i{ tom , s^ `^;	 I	 _.`t	 t m	 ro

i 	 1 M?in	 J	 ^	 ^-
tt

it 	 ^\	 \ \
LZI

Awl S	 -mob ,	 I	
s d.	

4^^	 B.a1k	 ^	
I I	

I	 '(1 t

	

1	 , : I :l .l .l,., i	 ^	 I I I
.7	 I	 M	 I-ILI: IC•. ^ Ik 	 i	 I

.^C:	 1 ^I y	 rt I 	^ ^ ^	 ^ n	 4	 ^^ +	 L	 I	 ^ ^n ^l	 I
,sq	 13 1 3 . 	-.t	 '?^ ^ ^	

.^^p::".1^
= or	 „ 1' - ^ ^• ^ ^	 ^	 n ^ ^	 I

Î ,^ts
a-e i
	 JI 1	 „y = >	

3 	 _r~ `^ i	 •I . I ,'.	 et•t^ < 'L.,	 'r¢I ^ I i' ! i I
1 I^ ti _?: ^ ^	 I I	 ^'I • _	 ^	

pa.^^^p^r.^n-^ ~'1 `S	 ^	 M^.y-. ^	 i ^ (f ^	 '.

	

^. I '	 I{ y	 tl. ^.	 I	 I	 it

k .L- vi

t-;1	 ,^ ^ .r.l	 r a

?v	 -
r	

ryry ^

^s^ ^,^ r
'\ ^ u	 N

^' ^-	
IIII

	 I

4	

I	 I	 .	 i
I	 l^ ^ bL.^r v_ I	 I • ti	 _

y

I

l^

o-

^zc

^`^	
R I
	 I raN .

i	
t) rAT .

r ~I	 ^

-s

elr

^

I	 V

N

Ar

f^ LL

t IZ3 Y

^ e n	 n ^I

i

C I	 ^
II
I^I
iI
r

i	 II

i
I

I^IV	 ^

r it
H T V
	 y+ 1'

45

tiva, many of the output pulses run together. The rate

input s^ecifias the duty cycle rather than the number of

pulses. This way, the duty cycle can be controlled to one

part in 6u.

The microprocessor sets the rate inputs by storing

the drive command into an 8-bit latch, which appears as a

write-only register. (The write-only registers occupy

addresses :5F8 through ^, 5FF) . The.; drive command is in

signed binary form: seven bits of magnitude p1 l is a sign bit.

Six bits of the magnitude become the rate inputs. The sign

bit specifies drive direction. The least significant bit of

the drive command should be 0, and is ignored.

The motor drivers can turn the 24 volt supply to

the motor on or off, forward or reverse. One control line

specifies forward drive and supplies 24 volts to the motor.

The other line supplies -24 volts to the motor for revecse

drive. The sign bit from the drive command switches the

output from the rate multiplier between the control lines

through two NAND-gates. High-voltage open-collector drivers

act as buffers to the control lines.

Thera is a latch, a rate multiplier, and a

direction switching circuit for each wheel. A common clock

feeds all four rate multipliers.

The clock is derived from a 400 Hz square wave,

produced by IT25. IC25 drives a monostable multivibrator

I

46

(I --949) which pcaducp s very short clock pulses. Since the

clock pulses are so much shorter than the clock petciod, the

mite multipliers can approach 100 49 duty cycle.

Another multivibrator (I::M) , acts as a fail-safe

device. Its output is tied to the clear input of all four

13tchas. "very time the microprocessor updates one or the

latches with a new drive command, the multivibrator is

ratriggered far about another 300 milliseconds. As lonj as

the output remains high, the latches retain the drive

command. if the program fails to operate properly and the

latches are nut updated, then tho latches will be cleare,j

an3 the motors turned off. The latch.Ls are also cleared

upon systaio restart.

3.2.4 System Parameter Interface

The propulsion and steering system must be easy to

calibrate. Therefore, five 3-bit switches are provided on

the board. Eaoh switch is assigned an address and appears

as a read-only register to the microprocessor. The section

3.3.4 dascribzs how the software interprets the data entered

on the switches.

Up to eight read-only registers are possible with

the current hardware, but only six ar-a used.	 They ire

i

i

i

r

47

assigned addresses from C5F0 to C5F7. The five parameter

selection switches occupy addresses Z5F1 through -'5F5. The

wheal mismatch sense switches are assigned to address ^„5FJ.

All switches are buffered through 3-state drivers onto the

microprocessor data bus.

3.3. Control Algorithms

This section describes the algorithms used in tha

propulsion control system. Since the system is

microprocessor based, the algorithms are implemented in

sof tware form.

The control program is divided into twelve

functional subroutines. It occupies just over 2K bytes of

memory.

7.

4R

3.3.1.	 Initialization

when the power is (turned on, the microprocessor

automatically issues a "Restart" interrupt. ;t "Restart",

program execution begins at the address contained in memory

locations FFFEIFFFF. The propulsion system initializatio ► t

routine, INIT, lies at this address.

INIr performs five basic tasks. It must clear all

propulsion system workspace and driver interface registars,

put a copy of the main program into system workspace,

initialize th` stack pointer, initialize the commani]

y

	

	
receiver and MINIBUG AZIAs, and initialize the relay control

PIA. After initialization is complete, INIT transfers

control to tha program main loop.

The command ACIA (Asyncronous Communications

Interface Adaptar) 9 is set to accept seven bit words with

even parity, and two stop bits. Whenever a word is

received, it issues an interrupt request to the

microprocessor. Program control would be transfered to the

new command processing routine, HEWCMD.

The MINIBUS ACIA transmits characters to the Lear

Siegler CRT terminal. The data display routine, DISPLY,

uses it during execution of the propulsion system. However,

I-	 if the MINIBUS ACIA receives any character from the

terminal, it will issue a non-maskable interrupt. This
i

transfers control from the propulsion system software to

0

4

Motorola's MINIBUS II software io . The ACIA accepts the same

format as the PRIME computer: eight bit words with no parity

bit and two stop bits.

3.3.2. Main Control Loop

Figure 3-6 shows the program top level. The

grogram gathers vehicle state data, and commands from the

off-board computer. It develops the proper set speeds using

steering and terrain correction algorithms. Then, it

performs as a iiscrete time proportional speed control.

The main loop does nothing but call the functional

subroutinas. It resides in random access (read/write)

memory for easy access during debugging. The program runs

continuously. Every time around the loop, the program

produces a new set of motor drive commands which it stores

in the motor driver interface. It completes each loop in

about 12 milliseconds, so the wheel speeds are sampled and

updated about BG times per second.

stability and error requirements determine the

sample rate that is actually needed. As the time between

samples becomes longer, the forward path gain must be

reduced to insure stability. This increases the steady-

state error. Since no correction is made to ti.e motor drive

i

i
i

I

i

50

Interpret last propulsion
or Steering command

collect and. format vehicle
state data and systt,;,

parameters

correct each set speed
due to steering angle

correct each set speed
due to terrain

filter each set speed

set motor drivers by
proportional speed

control

date Gyro sector

Disp lay vehicle state	 I

Figure 3-6
Main Control Loop

r

51

between samples, errors in the speed can build up. Ths

sample time should be short enough toallow negligible error

build-up between samples, and a high forward-path gain to

reduce steady-state errors.

Figure 3-7 shows the block diagram of a discrete

proportional speed control. If electrical transients are

ne3lectad, the motor transfer function, G(s), contains a

single pole due to the mechanical transients. The closed-

loop discrete transfer function, T(z), also contains a

single- pole which is dependent upon the forward path fain

and the sampla time.

our motors have mechanical time constants of about

two seconds under no load. Take two seconds for a

conservative estimate. First, consider intersample errors.

A rule of thunb is that the sample interval should be one-

tenth the time constant of the pole. By this estimate, we

can tolerata a sample interval as long as 200 milliseconds.

Next, consider stability and steady-state error. Equation u

in Figure 3-7 gives the steady-state transfer function.

Equation 5 gives the upper limit on the forward path rain.

For steady state errors under 57'4, the gain must,bo at least

20. This fixes the maximum sample interval at 100

milliseconds.

The sampla interval should be smallar that this

upper limit fur a margin of safety. our :,ample interval of

52

VR +	 k	 p
/ A	

^- Cs)
 motor	 , /

l	
_	

YA

AID

(1) G (s) = VA =	
«/JR	 =	 A

VR	 s+ B J+ ,<^ JR	 s+ a

(2) G(z) = _A
_Fl - e-aT
a z - e-aT]

(3) T(z) =	 K G(z)	 _	 K'	 1 - e -aT)
1+ K G(z)	 z-[(1 +K' e -aT - K']

(4) T(1) = 1—+Kam—	 (steady-state) so K' = 1 TT1 1

-aT ^
(5) for stability: K' < 1 e -aT	 or T< a ln 1 ,} I

e

IF T(1) = 0.95, and a = 0.5 seconds,

K' '- 19	 (gain) K' = K A

T G 100 msec	 (sample interval) a

Figure 3-7
Proportional Speed Control

1^ I

53

12 milliseconJ:; leaves a wide margin of safety (gains up to

200) and sufficient room for program expansion.

3.3.3.	 Response to Vehicle -ommands

The of f- board computer or h uman operator controls

the rover by ridio 3 . Vehicle control commands set the

rovers steed and steering angle, raise or lower the struts,

and initialize the gyro. Two subroutines are responsible

for responding to and obeying the commands.

The command port, ACIA U12, issues a program

interrupt request (IRQ) to the microprocessor whenever it

receives a new vehicle command. program control is

transferred to the routine NEWCMD.

rhe command ACIA is also connected to the "loss of

signal" output from the command recaiver. If the command

carrier fregueacy is lost, the "loss of signal" sets an A--IA

status bit. S".WC •ID checks the status bit. If it is set,

NEW:MD stops the wheels. The rover cannot run away

uncontrolled.

No attempt has been made to change the command

format. It is comFletely compatible with the old command

link.	 Vehicle commands are seven bit words. The four most

significant bits designate a vehicle subsystem. lh2 tnrea

54

least significant bits designate the function which the

subsystem should perform. Figure 3-8 gives a list of the

commands MEWCMD recognizes.

NEWCMD is short, so that the main program loop

execution time is predictable in spite of interrupts. It

only partially decodes the vehicle command. In the case of

propulsion or steering control commands, it just stores the

new command code for the appropriate subsystem. The command

is interpreted further and obeyed by GETC.MD during normal

program execution. Similiarly, a command to initialize the

gyro simply updates the gyro status word. The GYRO routine

does all of the initialization. Only the strut commands,

which are infraguent and simple to obe y , are executed by

NEWCMD.

The propulsion and steering system itself

recognizes four types of vehicle commands. These are the

steering commands, main drive commands, front wheel drive

commands, anu- one wheel drive commands.

The ald steering system had 15 possible steering

positions, so the command link allows four bits to designate

the steering angle. One bit of the subsystem code

designates Whether the steering angle is "left" or "right".

The three data bits are a code representing the magnitude of

the steering angle. There are seven steering angles in each

direction. Of course, there is no reason the new steering

55

r3 ,

Command Name Command Code	 (octal)

One Wheel Drive:	 OFF 010
Left Rear 014
Right Rear 015
Left Front 016
Right Front 017

Steering:	 (left)	 -90.0° 107
-77.10 106
-64.3 104.°
-38.6° 103
-25.7° 102
-12.9° 101

0.0° 100
(right)	 12.90 111

25.7 112
38.6° 113a

64.30 115
77.1 116
90.00 117

Main Drive:	 Forward Speed #3 123
Forward Speed #2 122
Forward Speed #1 121
STOP 120
Reverse Speed #1 125
Reverse Speed #2 126
Reverse Speed #3 127

Strut Control:	 Rear Up 152
Rear Stop X50
Rear Down 153
Front Up 157
Front Stop 154
Front Down 156

Front Wheel Drive:	 Forward 172
STOP 170
Reverse 173

Gyro Initialize 167

Display ON 166
Display OFF 164

Figure 3-8
Vehicle Commands Recognized by NEWCMD

t.

56

system must be limited to 15 steering positions when 236 :ire

readily availaole. However, the path selection algorithms

do not now require more than 15 positions. The addition of

more steering positions requires a modification If the

command link format.

The nain drive command controls the movement of

the rover. All four motors are used. Tha command link

allows a stop ,:)mmand, three forward speeds, and three

reverse speeds. Only one of these, the slowest forward

speed, is used during autonomous roving.

Thera are two other commands to control the

wheals. The front wheel drive command allows the two front

wheels to move alone. The one wheal drive command allows

only one wheel to run. These commands are not used Suring

autonomous roving. They are included primarily for

compatibility with the old command link. As implemented

now, the one wheel drive command may help to calibrate the

wheal speeds. The selected wheel is set to turn at 16 2/3

RPM. Thus, an ordinary stroboscopic disk, used to check

turntable speai, will appear to stand still under indoor

lighting when the speed is correct.

The microcomputer responds to three miscellanous

commands. ona command turns the propulsion display on and

off.	 Nc",` ZMD sats a flag which the routine DISPLY

interprets. uISPLY writes the actual steering an•ji2s and

S7

wheel speeds on a terminal in readable format. Another

command sets a flag used by the routine GYRO. The GYRO

softwara insucas that the directional gyroscope stays within

its linear range. When the flag is set, the gyro

initialization procedure begins. The last command controls

the position of the front and rear struts. NEWCMD sets the

bits that contcol the strut motors in a PIA. These features

are discussed further in the descriptions of DISPLY, GYRO,

and Appendix 6.2.

Thera are plans to add naw commands to the command

link to c p ntrol the new laser mast. The off-board computer

could specify the center of scan position or even cha p ie the

laser firing pattern. Some changes in the command for,7at

will be necessary to add these commands. I balieve that the

entire format should be changed at that time. NEW MD can be

modified easily to accomodate this change, and one of the

spare PIAs could interface with the laser !oast controller.

GETCMD need only be changed if the steering angles or wheel

speeds are spazified by different function codes.

I'

58

3.3.4. Data and Parameters

The routine GETDAT obtains and formats the vehicle

state data and switch-selectable parameters for the

propulsion and steering system. GETDAT is the software

which drives the Telemetr y Interface and System Parameter

Interface circuitry.

First, consider the Telemetry Interface. The

propulsion, and steering system needs the steering angle and

each wheel speed. GETDAT obtains these from the telemetry

data multiplexer via the Telemetry Interface. The off-board

computer needs the directional gyroscope reading and the

last command raceived by the rover. GETDAT sends this

information to the telemetry data multiplexer via the

Telemetry Interface. All of the data in the Telemetry

Interface SAM is 16 bits long.

The steering angle consists of 10 significant bits

in two's ccm^lement form from the steering shaft encoder.

The remaining 6 bits should be zeros. GETDAT rounds to take

only the most significant 8 bits. The result, in STeering

Units (STU), is used by the steering correction algorithm.

similarly, the wheel speeds consist of 12 bits in

two's complement form from the telemetry A/D converter.

GETDAT rounds to take only the most significant 8 bits.

S peed Units (SPU) are used internally. The tachometer gains

must be calibrated to give the maximum output 'from the A/D

u

59

converter at 3.5 meters/second for a result in SPU. See

Appendix 6.3.

The iirectional gyroscope reading is different.

As with the wheel speeds, the telemetry system samples the

voltage on the gyroscope potentiometer and produces a 12 bit

number. The telemetry interface stores the number at

11GYDAT". GYDAr does not identify the direction alone. A

four bit segment number, supplied by the gyroscope

controller (see section 3.3.8), is also required. The'

gyroscope controller forms a 16 bit word consisting of the

potentiometer ceading the the upper 12 bits, and the segment

number in the lower four bits. When the routine GYRO

performs the gyroscope control function, GETDAT stores the

16 bit gyroscope direction at "GYOUT". The telemetry system

should include GYOUT in its polling sequence. It should

transmit GYOUT, but not GYDAT, to the off-board computer.

The _-3mman1 echo contains the command receiver

status word in the upper byte, and the actual command

received in the lower byte. The off-board computer can use

this information to determine whether the last command was

received properly, and to determine if the command receiver

indicates a "loss of signal ,, from the radio link.

Figure 3-9 shows the addresses assumed by GETDAl

for compatiblilty with the old telemetry system.	 (Not` that

with the old telemetry system, the gyroscope controller

4

rR*%r

4

r-

yye^t

60

Data Used by Microprocessor Telemetry
Control System Data Address Data Address

Command Echo 00 1 0

Steering Angle 2, 3 1

Left Rear Speed l}, 5 2

Right Rear Speed 6, 7 3

Right Front Speed 24, 25 12

Left Front Speed 28, 29 14

Gyro pot .reading
(from Telemetry) 30, 31 15

Gyro reading
(to Telemetry) 32, 33 16

(Note: the microprocessor addresses are relative
to the beginning of the telemetry interface RAM).

ra

Figure 3-9
Telemetry Interface Data Addresses

61

board, not the GYRO routine, supplied the segment number.

Only the first sixteen telemetry words are used). The neu

telemetry system must use the addresses in figure 3-9, or

the data definitions in GETDAT must be changed.

'Now consider the switch-selectable parameters.

Eazh parameter is 4 bits, so there are two parameters to

each 8-bit word. Figure 3-10 shows the layout of the

parametrs.

There are five 8-bit DIP switches. Thus, tan O-

bit parameters ire available. Only nine are used now. The

switches allow one to define each of the three vehicle

speeds, the speed controller gains, the time constant of the

digital low pass filter, and the rate of turn during

steering.

G I.I TD3T is called each time arounl the main loop.

It obtains and formats all of the data each time.

I

I

62

rj

bit	 7	 4 3	 0

DIP Switch #1:
	

Speed #1	 Speed #2

DIP Switch #2:
	

Speed #3	 LF Gain

DIP Switch #3;
	 RF Gain	 [RR Gain

DIP Switch #4:
	

LR Gain	 Time Constant,

DIP Switch #5:
	 Turn Rate	 Soare

The Value of each item is an integer between 0 and 15

Sr=reds :	 0.1 <_ Speed _S 0.35	 meters/second

Speed (in SPU) = 25 + 4 x Value

Gains:	 0 < Gain	 60

Gain = 4 x Value

Time Constant:	 0.375 < tau _< 0.9921875

tau = (1.12 + Value) / 128

Turn Rate:	 0 <_ Rate S 0.234 meters/second

Rate (in SPU) = 4 x Value

Figure 3-10
Switch Selectable Parameters

63

3.3.5. Wheel Cooc din at ion

As discussed in Chapter 2, the propulsion control

system, should drive the wheels cooperatively at all times.

Wheel mismatch feedback enables the two-whealed model to

adjust to irre3uldr terrain. The actual rover is a little

more complicated, since there are four wheels.

Mismatch feedback, alone, is insufficient to

coordinate all Four wheels since the rover uses "wagon

steering". See figure 2-1. The entire front axle turns.

During strong turns, the rover pivots at a point along the

rear axle. Thus, one of the rear wheels must reverse

direction. As long as the set speed remains forward, the

mismatch controller will assume that the wheal is pushing

against an unusually heavy load; it is not dragging.

Therefore, the controller must use the steering angle dt

least to determine the direction the wheel should turn.

Actually, the controller uses the equations in figure 2-1 to

set the speeds co their proper values on level ground. This

enables the controller to work tolerably well even if the

mismatch sensors fail.

First, it is necessary to know the cover's desired

Speed. GETCMD interprets the commands from the operator or

off-board computer. GSTDAT finds the vehicle speed which

corresponds to the speed command code. Then, the routine:i

STRCOR, TERZOR, and FLTR develop the sat speeds for each

ry

J

64

wheel...

STRCDR determines the set speed for each wh2-i1 on

level ground as a function of steering angle. it uses the

equations in figure 2-1, as did the old propulsian systan.

However, STRCOR uses S-bit precision rather than 4-bit

precision.

STR y OR al:;o turns the front axle if the desired

steering angle is not equal to the actual steering ingla.

The speed of one front wheel is increased, while the speed

of the other wheel is decreased by the same amount. ;within

about 14 0 of the desired steering angle, the speed increment

is about 1 cm/sac for each degree of steering error.

outsi3a of this proportional band, the rata of turc ► is

svecified by the "(rate of turn" DIP switch.

TERZOR checks the sense switches oil 	 worm gears

to see if a correction due to irregular terrain (or even

tachometer mis=alibration) is required. when the sense

switches slicw that a Wheel is dragging, tha set speeds are

aijusta3 by TERCOR according to the algorithm in figura 3-

11.

Changes in each of the set speeds are smoothed by

the routine FLrR. FLTR implements a first order difference

aquation, so it acts as a digital low-pass filter.	 Thus,

the rover will behave like the model in section 2.3. 	 W'hea

tha time constant of the filter is properly set, the spee;ls

65

Read Values
of switches
and find

which drag

/ Both \
ront wheels
Dragging

	

Right Rear	 N Fight Rear
Dragging	 Dragging

	

Add Gv to	 Subtract Av

	

Right Rear	 from Left

	

Set Sp eed	 Rear Set
Steed

Left Rear, y	 Left Rea
	

y

	

rag g ing	 Dragging

	

Add Av to	 Subtract Av

	

Left Rear	 from Right

	

Set Sp eed	 Rear Set
Speed

Low-pass
filter each
set speed

Figure 3 -11
Wheel Mismatch Correction Algorithm

66

will closely follow the speeds required on the terrain, and

the wheals will not fight each another.

3.3.6.	 Proportional Speed Controller

The routine EONTRL implaments four parallel

proportional speed controllers:

DRIVE = GAIN * (REF ::3EN'CE SPEED - A•' .:TUAL SEED)

The actual wheal speed is subtracted from the set speed

which was foun3 by STRCOR, TERCOR, and FLTR.	 The differenc-e

is multiplied by a constant gain to produce the drive signal

for each motor. one copy of the driv:a si:3n,31 is kept in

system worksp3--e, in two's complement form, for d,!buyjing

purj, osas.	 The other copy is rounde3 to 7 bits in si,,jiietl

binary form. This number is stored in the proper driver

interface register. It specifies tha Di-, voltage to daliv?r

to the motor.

b 7

3.3.7.	 Data Display

`lhe p ropulsion and steering :system will require

periodic calibration checks to insura that the wheel sj•ee.1s

and steering angle are -..ccurate. The rata display feature,

performed by the routine DISPLY, will halp with calibration

checks. DISPLY formats the important propulsion systems

parameters and writes them to a terminal.

The desired and actual steering an-glas ars

displayed in decimal degrees. The 3asirei and actual wheal

speeds are displayed in decimal millLneters/se-cone. the

display also indicates whether or not each wheel is

dragging.

Even at 9600 baud, it takes the AZIh about 1

millisecond to transmit each character to the terminal. The

entire display, including descriptive titles, is a1-1o8t 300

zharactars long.	 Obviously, the pcopulsion co;itrol system

cannot wait for the transmission of almost 300 characters

ea:h time around the main loop. Thus, DISPLY does not .Tait

for the ACIA to transmit a character.

DISPLY keeps a pointer to the next character.

This pointer doubles as a flag. If the painter is 0, then

DISPLY exits without transmitting any characters. To start

the display, the pointer is sat to any large number beyond

the and of the nessage text (hex FFFF, for instance).

DISPLY will convert each variable from its internal fo.—iiat

I,

G^

to its decimal ASCII representation. Then, it will begin to

store characters in the ACIA data buffer. The ACIA can hold

two characters: one that is being transmitted, and one to

transmit next. As soon as the AZIA buffer is full, DISPLY

exits.

The message text consists of the data, and

descriptive titles to identify the data. These are

intermixed at the terminal, but not in memory. The titles

reside in read-only memo-:y, whereas the data must reside in

read/write memory. In order to simplify the program, a

spacial pointer in read-only memory designates a roference

to read/write memory. DISPLY reads each character, in turn,

out of read-only memory. Normally, it stores the character

into the ACIA data buffer. However, if the most significant

bit of the character is on, then it cannot be an S:II

character. Instead, it is a pointer to the next data

character. DISPLY extracts an index to the data from the

pointer, and gets it from read/write memory.

DISPLY contains five internal subroutines. Tt

calls the routine CONVRT whenever the last text character

has bean tr ansmitted. CONVRT updates the data characters

with the current vehicle state. --OVVRT calls DISSTU and

DiSSPU. DISSTU converts from the internal steering

representation, STeering Units, to decimal degrees in *,SCII

characters. DISSPU converts from SPeed Units to deci!nal

v

mil lima ter s/sacond in ASCII. Both of these call CVO and

CVA. ZVD converts from hexadecimal to decimal. Likewise,

CVA converts from decimal to ASCII.

3.3.8. Directional Gyroscope Controller

In order to reduce the hardware on board the

rover, the directional gyroscope controller board 3 11aa been

raplac-^3 by a subroutine. The routine GYRO will be called

as part of tho main control loop.

GYRO will perform the same function as the

hardware it replaces. There are two reasons GYRO has been

written.	 First, it reduces the hardware complexity on

board. With GYRO, and the strut control feature in NEWO;9D,

tha microprocassor replaces all of the vehicle control

functions. The new telemety system will reside in the

microprocassor card cage. Therefore, GYRO eliminates the

need for two card cages, and reduces power consumption.

Secondly, it simplifies the new telemetry system somewhat.

The old telemetry system had a special provision to append

tha 4-bit sagmant number from the gyroscope controller to

the 12-bit potentiometer reading from the A/D converter.

Tha new telemetry system need not do this. The

micropcoces sar will combine the words and send them to the

6

1

70

telemetry system through the interface.

The 3irectional gyroscope on the rover is a

Gi-annini Type 3221. A report by Karen Andersen gives a

complete description of it". The gyroscope direction is

me-asura3 by a potentiometer. Unfortunately, the

potentiometer has a linear range of only about 180 0 . the

rover must be -able to make turns in excess of 90 0 in either

direction. Fortunately, the gyroscope provides for this.

Inside the gyroscope housing are two stepping solenoids.

Each can rotate the potentiometer relative to the housing in

2 0 steps. One solenoid rotates it clockwise, the other

rotates it counter-clockwise. The directional gyroscope

controller insures that the potentiometer stays within its

linear range, and keeps track of the solenoid steps.

The 360 0 circle is divided into tan 36 0 segments.

Each segment is given a 4-bit binary number, from 0 to 9.

Tha number increases in a clockwise direction. See figure

3-12. Every time the potentiometer passes a certain

threshold (about 60 0 off center) 18 solenoid steps move_ the

potentiometer 36 0 to the next segment. The segment number

is increased or decreased accordingly. A segment number of

15 indicates that the computer should ignore the gyroscope

reidin3 since the solenoids are turning the potentiometer.

The gyroscope controller should be initialized at

the beginning of each autonomous test. During

9

k

71

SEGMENT NUMBER

Add (300 x Segment Number) to gyroscope
reading to obtain the true heading

Figure 3 -12
Gyroscope Segment Numbers

72

u
	 inLtialization, GYRO steps the solenoids until the

potentiometer reads about zero volts. Then it sets the

segment number to zero. Initialization begins when a "GYRO

initialization command" is received, or when the

initialization button on the rover is pushed.

Two Lines of a PIA (U5B) control the stepping

solenoids. Every fourth time around the main loop, the

appropciata control line turns a solenoid on or off. This

results in a stepping frequency of about 12.5 Hz. The

manufa:turer r3commends a maximum frequency of 15 Hz.

3.3.9.	 Multiplication

The 16800 microprocessor does not have a

multiplication instruction. Therefore, a subroutine was

included in the propulsion and steering system to multiply

'two 8-bit two's complement numbers.

The routine MULTB produces two results: a 16-bit

product, and as 8-bit product. The 8-bit product is the

r
	 most significant portion of the 1.6-bit product. Most of the

routines use it. MULTB uses Booth's algorithm and was

adapted from the multiply routine given in tha Motorola

applications manua112.

73

4. Discussion and Conclusion

The new propulsion and steering control system

should greatly improve the rover's performance on all types

of terrain. Even without the mismatch sensors on the worm

gears, the wheal speeds will be consistent and accurate on

level ground.

The microprocessor also performs control functions

such as vehicla command interpretation, strut control, and

directional gyroscope control. of course, the

microprocessor can receive and interpret commands to control

new systems with little effort. For instance, the laser

firing pattern and center of scan might be specified by the

off-board computer and changer] by the microprocessor.

Thera is still room for improvement. Some

features are not yet implemented.

The control system should impose a torque limit on

each motor, so that they Will not damage the gears and

wheels if they become stuck. The motors have damaged the

rover in the past.

If the need for tachometer calibration still poses

a problem to navigation, the tachometers should be replaced

by incremental optical encoders. These are expensive

commercially but can be built rather cheaply.

U)

74

It wou1:3 be interesting to have the microprocessor

check the attitude gyroscope. If the rover reaches a

precarious pit:h or roll, the propulsion systemsystem would

automatically shut down to prevent the rover fro;o

overturning.

The wheel set speeds are low-E , ass filtered to

produca a smooth transition from start to stop, and to

enable the areal speeds to follow those required by

irregular terrain. Since the set speeds drop oTf so slowly,

steering overshoot might become a problem. =f it does, then

the whole sat speed should not be filtered. The speed

increment adda3 by terrain com t:ensation could be filtered

separately. SDme other method could be used to create a

reasonable velocity profile during starts an3 stoics.

As of this writing, all of the system hardware and

software has been checked separately. The software produces

the correct results on the `46800 amulator. The

microprocessor and the interfaces seem to function

correctly. Tha system has not yet been tested with the

other rover subsystems. It should be fully integrated into

the rover by the Fall of 1979.

75

5. Literature Cited

1. Cairns, Steven,
"Terrain Sensing System (Laser Transmitter and
Data Handler/Controller) +', Rensselaer Polytechnic
Institute, Troy, N.Y., May, 1976.

2. Jraig, John,
"Elevation Scanning Laser/Multi-Sensor Hazard
Detaction System", Rensselaer Polytechnic
Institute, Troy, N.Y., August, 1978.

3. Geis, ri%:)thy R.,
+'Eontrol Electronics for the Mars Roving vehicle",
Rensselaer Polytechnic Institute, Troy, N.Y., :,ay,
1976.

4. Knaub, David,
"EvaLuation of the Propulsion Control System of a
Planetary Rover and Design of a K-ast for an
Elevation Scanning Laser/Multi-Datector System",
Rensselaer Polytechnic Institute, Troy, N.Y.,
July, 1978.

5. Motorola,
M68_DS2A De_velo ,pment System user's c,uide, Sacond
Edition, Motorola, Inc., 19750

6. Fell, Kathering A.,
"Tha Telemetry Link and Computer Interface
Desi3ned for the g ars Rover", Rensselaer
Polytechnic Institute, Troy, N.Y., December, 1975.

7. -1--ipolle, David J.,
"Telemetry Data Link System", Rensselaer
Polytechnic Institute, Troy, N.Y., May, 1979.

8. Texas Instruments, Inc.,
The rTL Data Book for D esign E ngineers, SP.COIld
Edition, Texas Instruments, Inc., 1973.

9. Motorola,
the :2 Llete Motorola Microco,n p ut er Data Li br a ry,
Motorola, Inc., 1978.

10. Motorola,
^?inibuj II Source Listing, Motorola, Inc., 1074.

r

J

11. Andersen, Karen E.,
"Mars Rover Gyroscope System' s Rensselaer
Polytechnic Institute, Troy, N.Y., lay, 1979.

12. Motorola,
c6803 MicroLrccessor pLli	

--
cations Manual,

Motorola, Inc., 1975.

76

	1980022247.pdf
	0001A03.tif
	0001A04.tif
	0001A05.tif
	0001A06.tif
	0001A07.tif
	0001A08.tif
	0001A09.tif
	0001A10.tif
	0001A11.tif
	0001A12.tif
	0001A13.tif
	0001A14.tif
	0001B01.tif
	0001B02.tif
	0001B03.tif
	0001B04.tif
	0001B05.tif
	0001B06.tif
	0001B07.tif
	0001B08.tif
	0001B09.tif
	0001B10.tif
	0001B11.tif
	0001B12.tif
	0001B13.tif
	0001B14.tif
	0001C01.tif
	0001C02.tif
	0001C03.tif
	0001C04.tif
	0001C05.tif
	0001C06.tif
	0001C07.tif
	0001C08.tif
	0001C09.tif
	0001C10.tif
	0001C11.tif
	0001C12.tif
	0001C13.tif
	0001C14.tif
	0001D01.tif
	0001D02.tif
	0001D03.tif
	0001D04.tif
	0001D05.tif
	0001D06.tif
	0001D07.tif
	0001D08.tif
	0001D09.tif
	0001D10.tif
	0001D11.tif
	0001D12.tif
	0001D13.tif
	0001D14.tif
	0001E01.tif
	0001E02.tif
	0001E03.tif
	0001E04.tif
	0001E05.tif
	0001E06.tif
	0001E07.tif
	0001E08.tif
	0001E09.tif
	0001E10.tif
	0001E11.tif
	0001E12.tif
	0001E13.tif
	0001E14.tif
	0001F01.tif
	0001F02.tif
	0001F03.tif
	0001F04.tif
	0001F05.tif
	0001F06.tif
	0001F07.tif
	0001F08.tif
	0001F09.tif
	0001F10.tif
	0001F11.tif
	0001F12.tif
	0001F13.tif
	0001F14.tif

