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LATERAL DENSITY VARIATIONS IN ELASTIC EARTH MODELS

FROM AN EXTENDED MINIMUM ENERGY APPROACH

B. V. Sanchez
C
C Abstract

The gravitational field of the earth shows the existence of lateral density inhomogeneities in

the mantle and crust but it does not yield a unique solution for them, that is, there are an infi-

nite number of possible density perturbation fields which will match the observed gravitational

field.

Kaula's minimum energy approach has been extended to include the nonhydrostatic gravita-

tional potential energy and the density perturbation field has been obtained to degree and order

8. The depth profiles for the density perturbation show a stratification with density excesses and

deficiencies alternating with depth. The results indicate that the addition of the gravitational

potential energy in the minimization process does not change significantly the conclusions based

on results for the minimum shear strain energy case, concerning the inability of the mantle to

withstand the lateral loading elastically.
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LATERAL DENSITY VARIATIONS IN ELASTIC EARTH MODELS

FROM AN EXTENDED MINIMUM ENERGY APPROACH

I.	 Introduction

The external gravitational potential of the earth 4.an be expressed in spherical harmonics and

its components determined by analysis of satellite data. Such an analysis indicates the presence

of lateral variations of density in the earth interior. However, it is not possible to define uniquely

what these lateral density variations are by inverting only the gravity data. The question of lateral

density variations and the internal stresses they produce has implications with respect to the possi-

ble existence of mantle convection within the earth. Kaula (1967), Lambeck (1976), Phillips and

Lambeck ( 1980) among others have provided extensive and detailed discussions of these ideas. A

possible approach to the problem consists in using static earth-tide theory in a modified form to

include interior density anomalies expressed in spherical harmonics, the parameters which define

the anomalies are determined by imposing the condition of minimum strain energy and the solu-

tion is constrained to satisfy the external boundary conditions provided by the gravitational poten-

tial; the surface topography is also included in the problem as a loading surface density distribu- 	
,15

tion. This is the method followed by Kaula (1963) and Arkani-Named (1970, 1972). It provides

an estimate of the minimum shear stresses induced by the internal density anomalies and conclu-

sions can be drawn concerning the capability of the mantle to withstand such stresses elastically.

The results indicate that the stresses are probably excessive.

Lambeck (1976) has pointed out that the nonhydrostatic gravity field implies the existence

of free potential energy within the earth and that there must be a capacity for rearrangements of

mass toward distributions of lower energy ( assuming no new energy generation and no kinematic

constraints). A study by Rubincam ( 1979) indicates that the maximum nonhydrostatic gravita- 	 I
tional potential energy in the mantle and crust is of the same order of magnitude as Kaula 's esti-

mate for the minimum shear strain energy.

1
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In the light of the remarks above, it is not without a measure of interest to carry out an in-

vestigation similar to Kaula's but with the inclusion of the gravitational potential energy in the

minimization process. The object of the study is to determine the distribution of lateral density

anomalies and to compare it to the results for the minimum strain energy case to ascertain if any

significant changes occur.
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2.	 Differential equations

The equations of motion governing the vibration of an elastic body are given by Love (1944),

these equations and the Poisson's equation for the gravitational potential can be expressed in spher-

ical coordinates and with the appropriate set of boundary conditions they will admit an eigenvector

solution. The static solution is obtained by setting the frequency equal to zero. Using the trans-

	

formation of Alterman et. al., (1959) these partial differential equations yield the following set of	
i

six ordinary differential equations. The dot denotes derivatives with respect to r.

v = 1 A lY +1Bld
	

(2.1)

Y = (Y 1 , Y 2 1 Y3, Y4 , YS, Y6)T	 (2.2)

The elements of the matrix [A) are given by Smylie and Mansinha (1971) and Israel et. al., (1973).

They are given below for the sake of completeness. The symbols p o , µ and X denote the unper-

turbed density and the elastic parameters, go stands for the gravitational acceleration and n is the

degree of the deformation.

c	 = 1/0, + 2µ)

All = -2)\c/r

A l2 = c

A 13 = Xn (n + 1) Or

A21 = 4p(3X + 2µ) c/r 2 - 4pogo/r

A22 = 4µ Or

A23 = -n (n + 1) 12p OX + 20 c/r2 - pogo /rl

A 24 = n (n + 1)/r

A26 ` -pu

A31 = - 1/r

A33 = 1 /r

A34 = I/µ

A41 = -2µ (31\ + 2u) c/r2 + pogo /r

3



A42 = -AC/r
i

A43 = 4n (n + 1) p(X + µ) c/r2 - 2,u/r2

A44 Q -3/r

A4S = -po /r

As, = 4jrGpo

AS6 = I

A63 a -4xG n(n + 1) po/r

A6s = On + 042

A66 = -2/r

The unlisted elements are equal to zero. The yj are radial functions defined as follows

ur = Yl (r) Snm

ue = y 3 (r) (a/ao) Snm	 (2.3)

u,O = y 3 (r)(1 /sin 6)(3/4)Snm

5
where u r , ue and 4 denote displacements in the respective coordinate directions and Snm is a

surface harmonic of degree n and order m. The stress-strain relations yield:

(b rr , 60 0, amm , b re , b ro, aem)T = lR1 (Y1, Y2, Y3, Y4)T 	(2.4)

where the b's denote stresses and the matrix l R1 is given by Arkani-Hamed (1972),

R21 = [ 2,u OX + 24A )/rl Snm

R 31 = R21	
!4

R 12 = Snm
	 10

R22 = Xc Snm

R32 = R22

R23 = ( 2µ/r) la2 /8e 2 - n(n + 1) ),cl Snm

R33 a (-U/r) la 2 /ao 2 + 2n(n + 1) (1\ + µ) cl Snm

R63 = ( 2µ/r sin o) lag /ao am - cot o a/aml Snm

4



R44 _ O/89) Snm

R 34 _ (1/sin 9) (8/4) Snm

The unlisted elements are equal to zero. Also

^ = ys (r) Snm	
(2.5)

Y6(r) = y, - 41rGpDy,

where ^ denotes the perturbation in the gravitational potential and G is the gravitational constant.

The density perturbations arise from two different causes, the perturbation caused by the

deformation due to the loading and a perturbation due to unspecified effects such as thermal and

chemical processes. That is,

P = Po( r ) + Pd(r, e, 0) + PA( r, B, 0)	 (2.6)

where p o(r) is a nominal radial distribution ( from seismic data), Pd is the density perturbation

due to deformation and PA is the added density due to unspecified processes. It is assumed that

PA can be expressed in spherical harmonics,

P A	 Pnm (P Anm i cos mm + PAnm 2 sin mol	 (2.7)
n m

where Prim is an associated Legendre polynomial. Furthermore it is assumed that the coefficients

PAnmi are given as polynomials in the normalized radius,

6

PAnmi ° F dnmij ( r/R* 1 i - 1,2	 (2.8)
ju 1

where the dnmij are constants to be determined and R denotes the outer radius of the earth.

With these assumptions the forcing term in equation (2.1) is specified, the elements of the 	 I

matrix (B( are given by

B2k = go
(r/R)k-i	

k = l to 6
136k - - 4*Qr/R)k-t	 (2.9)

Bek = 0 Q = 1,3,4,5 • k = 1 to 

5
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The vectorlincludes the constants to be determined

-T: (dnmil , dnmi2- dnml3 . dnmi4 , dnmis- dnmi6)T	 (2.10)

Equation (2.1) is applicable to the earth mantle and crust, the equations for the liquid core are

obtained by assuming hydrostatic equilibrium conditions, they are given by

Ys = OGpo ys /go + Y6

Y6 ' ln(n + 1)/r2 - 16rGpo /go rl ys - (4*Gpo/go + 2 /r ) Y6

and

Y l s Ys /!to

Y2 = 0

Y3 = (4Y 5 + rY6)/n (r. + I) go

Y 4 = 0

(2.11)

The boundary conditions appropriate for the solution of the equations are specified by the spher-

ical harmonic expansions defining the surface topography and the gravitational potential. Let the

surface topography be given by

•	 n

T -

	

	 E Prim (Tnm l cos m 0 + Tnm 2 sin m 0)	 (2.12)
n-o moo

and the gravitational potential by

n

V =

	

	 Pnm (Vnm i cos in + Vnm 2 sin in 0)	 (2.13)
n = o m=o

The surface boundary conditions are then

Y2 (R) s - 60 (Tnmi)

Y4 (R)	 0
(2.14)

y 5 (R) = Vnmi

Y6 (R) + 1(n + 1)/Rl Ys( R ) - 4rGTnmi

The initial conditions for the solution of equations (2. l 1) were approximated by an analytical

solution c.f the surface load problem for a model of the earth having a homogeneous mantle and

5
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liquid core. Zharkov (1967). Values of ys and y 6 were obtained at r n R/10. Equations (2.11)

were then integrated numerically up to the core-mantle boundary using the earth model M j due

io Landisman et. al., (1965) as given by Israel et. al., (1973). This procedure was followed for

every degree and order. The boundary conditions adopted at the core-mantle boundary are

those developed by Israel et. al., (1973) and Crossley and Gubbins ( 1975), that is, continuity of

the variables y4 and ys only.

l.et the solution of equation (2.1) be given by

y = IMI^' + IN1^	 (2.15)

where (MI  and [NJ  are matrices and'is a boundary comnitions vector. It follows the:

IINJ = JAI !MI, JM(rU , ro)I = Ill
(2.16)

INI = IAl IN] + IBI, IN(ro ,ro )I = 101

where III is the identity matrix. At some point r.

y(r) = IM(r, ro)I j + IN(r, r^,)1 d	 (2.17)

5

The set of ordinary differential equations has been cast into a transition matrix form to facilitate

the application of a Ieast-squares minimization procedure.

Assume the existence of .,. function H which can be written as

T	 ^.

H = -,	 I LJ	 (2.18)
7di

where ILI is a matrix of the appropriate dimensions. The function H is to f^ minimized subject 	 10

to the following equations of constraint,

t t

IEJ	 y	 (2.19)

J
where IEJ is a matrix and k is a vector of fixed boundary conditions. It can be shown (Arley

and Buch, 1950) that the solution

7
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-r

(^(-T (El ((E( (^1-T (E(T)-,
	 (2.20)

minimizes H in a least-squares sense.

t
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3.	 The elastic and gravitational potential energies

The expression for the total shear strain energy of the mantle is given by Arkani-Hamed

(1970),

R

Snmi = 41r 	 r2 µTT I l Y	 (3.1)

where Rc denotes the core radius and the matrix I PI has the following elements

P1! _ :(3X + 2µ)2 C2/3r2	 P21 - P12

P 12 = -20X + 20 c 2 /3r	 P31 = P13

P ia = - n(n + 1) P 11 /2	 P32 = P23

P22 = 2 c2 13

P23 = - n(n + 1) P 12 /2

P33 = 2n 2 (n + 1) 2 (3X 2 + 4µ 2 + 6µa) C2 /r2 - n (n + 1)/r2

P44 = n(n + 1)/2µ2

The unlisted elements are equal to zero.

Making use of equation (2.15) it is possible to rewrite equation (3.1) as follows,

T	 R

Snmi	 ^7 d
	
f r2 µ [[ M 1, (N 11 T [ P] [[M], [N1] dr 

a	
(3.2)

RC

The expression for the gravitational potential energy of the mantle is given by Rubincant (1979),

R /' r

Unmi	 I— l61r 2 G/(2n + 1)1 
f.R 

P(r) ^+1/Xn+2 P(X) aX dr	 (3.3)
c	 .IRC

where p(r) denotes the radial component of the density perturbation which has two components:

the one due to deformation (P D ) and the one due to unspecified causes (PA)' Making use of

equation (2.8),

R

Unmi - I- 161r 2 G/(2n + 1)1 dT f [0 f(r)^(r) - rn; ` .RC
n+3 

f(r)-F(R,)1 dr - d	 (3.4)

RC

9
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where

T(r) = (8 1 , Br 83, 94, Bs, 96)

Bk = (r/R)k-1/(k + n + 2) k = 1 to 6

1(r) = (f1,f2,f3,f^,fs,f6)T

fk = (r/R)k - 1 k = I to 6

The radial component of the density perturbation field due to deformation is given by

Pd = Po Lt — ft,) /ar ) y 1 	 (3.5)

where Ar denotes the radial compcnent of dilatation,

At = Y1 + (2/r)y 1 - [n(n + 1)/r) Y3	 (3.6)

Inserting equation (3.6) into equation (3.5) and making use of the differential equation for y1

yields

Pd = 'TTy	 (3.7)

where

q 	 = ( q 1 , q 2 , q 3 . 0. 0. 0)

q 1 	 _ - p o [ A11 + (2/r) + (l/po)apo /drj

q 2 = - pOAl2

c,3 = - p o [ A13 — On + 1) /r)

Making use of equations (3.7) and (2.15), equation (3.3) yields

^ T	 R	 r

Unmi= 	 [-16rr2 G/Ga + 1)1 cr°+1 [[M), [N)] T 
4fR

Xn+2-TT [[M),(NJ]dxdr' d
fp^	 C

(3.8)

10



4. Numerical results and conclusions

Equations (2.16) were solved numerically in order to evaluate the expressions for the shear

strain and gravitational potential energies given by equations (3.2), (3.4) and (3.8), then equation

(2.20) was used to obtain the best estimate for the vectors c and d where the function H was

representative of three separate cases:

i) minimization of the shear strain energy, H = Snmi-

ii) minimization of the gravitational potential energy, H =Unmi +Unmi'

iii) minimization of the sum of the two, H = Snmi +Unmi +Unmi•

The nominal earth model used is the M 3 model of Landisman et. al., (1965) as given by

Israel et. al., (1973), the density and elastic parameters are given in table form and a cubic spline

interpolation was used to obtain their values as functions of the radius.

The spherical hannonic expansion used for the topography is the equivalent rock set given

by Balmino et. al., (1973). The expansion used for the gravitational potential is the Goddard

Earth Model 6 by Lerch et. al., (1974) with the hydrostatic components of the second and fourth

degree zonals subtracted out (Munk and MacDonald, 1960). 	 5

The density perturbation field due to unspecified causes was obtained for each degree and

order by means of equations (2.7) and (2.8), equation (2.7) yields the total sum which in this

case was truncated at degree and order 8. The surfaces of equal density perturbation evaluated

at the surface of the earth are shown in figures (4.1), (4.2) and (4.3) for each of the three cases

mentioned above. Figures (4.4), (4.5) and (4.6) present the surfaces of equal radial displacements

at the surface. Figures (4.7), (4.8) and (4.9) show the surfaces of equal density perturbation	 IN

evaluated on an equatorial cross-section of the earth. The magnitudes of the density perturba-

tions and displacements at the surface is larger by about a factor of two for the case of minimum

shear plus gravitational as compared to the minimum shear case. The same result is observed for

the density anomalies as a function of depth. The minimum gravitational potential energy case



i

a

r

yields much smaller density anomalies but unrealistically large displacements. The depth profiles

E
for the density perturbation show a stratification with density excesses and deficiencies alternating

with depth, this internal compensation has been mentioned by Phillips and Lambeck (1980) and

i	 others-, on the other hand Arkani-Named (1970) refers to an oscillation along the radius as a nu-

}	 metccal instability which he eliminates by introducing a weighting factor for the amplitudes. The

minimum gravitational energy case yields abrupt lateral variations also.

Table (4.1) gives the global energy magnitudes for each case. The minimum total energy is

obtained when minimizing only the shear strain contribution.

The results indicate that the addition of the gravitational potential energy in the minimiza-

tion process does not significantly alter the lateral density perturbation field, as compared to the

results obtained for the minimum shear strain energy case, certainly not in a way which would

change the existing conclusions concerning the inability of the mantle to withstand the resulting

stresses elastically.

Table 4.1
Global energy magnitudes, units of 1030ergs

DEGREE
Min. Shear Min. Gray . Min. (Shear+ Gray.)

Gray. Shear Gray. Shear Gray. Shear

N = 2 - 7.912 0.178 -0.086 94.639 -27.599 5.640

N = 3 - 5.966 0.167 -0.120 204.381 -13.683 1.120

N = 4 - 6.020 0.566 -0.237 586.165 -11.624 1.039

N = 5 -13.935 0.225 -0.321 106.685 - 7.443 0.688

N = 6 -	 1.412 0.070 -0.174 719.578 -	 1.645 0.062

N = 7 - 0.672 0.043 -0.174 12249.120 - 3.510 2.204

N = 8 - 0.432 0.029 -0.324 1307.191 - 2.623 2.266

N -36.351 1.2281 -1.539 5223.762 -68.130 13.021

Total -35.070 522 2.222 -55.108

12
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F*re 4.7. Surfaces of equal density perturbation on an equatorial cma-section of the earth,

units of pn/cm 3 . Minimum shear strain enew cane.
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Figure 4.8. Surfaces of equal derdty perturbation on an equatorial crow-action of the earth,

units of pn/cro s . Minimum Sravitational potential enemy case.
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Figure 4.9. Surfaces of equal density perturbation on an equatorial cross-section of the earth,

units of gm /cm 3 . Minimum shear plus gravitational energy case.
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