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1. INTRODUCTION

Significant research effort has been devoted to the development of an improved

crop area estimation procedure. This procedure would be a replacement for

Procedure 1, which was used extensively for crop area estimation in the Large

Area Crop Inventory Experiment (LACIE) at the National Aeronautics and Space

Administration, Lyndon B. Johnson Space Center (NASA/JSC).

Ir. view of the deficiencies of Procedure 1 (ref.), the goal of this research

has been to develop a procedure which is efficient in the sense of having a

small mean squared error relative to simple random sampling and which, at the

same time, uses a minimum number of labeled pixels. These two goals are in a

sense complementary. An efficient procedure is one which obtains a specified

acceptable variance with a minimum number of labeled or training pixels.

2. CLUSTER-BASED PROPORTION ESTIMATION

As a result of evaluations of Procedure 1 by Jess Carnes (ref.), it became

clear at the beginning of the development effort that the classification which

followed the clustering in Procedure 1 did not significantly improve the

stratification of the scene. Thus, from the outset, cluster-based procedures

were developed. That is, the candidate procedures were of the stratified

sampling variety, where the strata would be obtained by using an unsupervised

clustering procedure. This approach had the advantage of eliminating the

type 1 dots used for initiating and labeling the clusters in Procedure 1. In

addition, stratifying with clusters was expected, on theoretical grounds, to

be more efficient than stratifying with the two strata produced by the

classifier.

In order to begin development of the procedure, it was necessary to choose an

unsupervised clustering algorithm. Three algorithms, the Iterative Self-

Organizing Clustering System (ISOCLS), the Texas A&M University-developed

program (AMOEBA), and the CLASSY program, were tested by applying them to 21

LACIE Phase III blind sites and evaluating the average purity of the resultant
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clusters and the theoretical reduction in variance for the stratification.

These evaluations were made using the ground-truth label for every pixel in

the image. A complete statement of the results of this is found in appendix

A. The basic finding was that the average performance for the three

algorithms tested was remarkably similar. The only significant difference was

in the number of clusters generated. CLASSY generated an average of about 9,

AMOEBA had an average of about 11, and ISOCLS had about 31 clusters. It was

concluded that the similarity of performance probably indicated that a limit

had been reached in the separability of the data. The fact that this parallel

performance was obtained with very few clusters was seen as an advantage for

the CLASSY and AMOEBA algorithms.

The next stage in the development was to test each of the candidate clustering

algorithms in combination with various schemes for forming proportion

estimates. Six different proportion estimation techniques were chosen for

testing. Three of these were techniques which resulted in the labeling of

entire clusters. They may be described as (1) proportional allocation

followed by majority-rule labeling, (2) a sequential allocation technique for

labeling with a fixed degree of confidence, and (3) a Bayesian sequential

technique for labeling with a fixed degree of confidence. Three techniques

for stratified proportion estimation using clusters as the strata were also

tested. They may be described as (4) proportional allocation followed by

stratified proportion estimation, (5) a sequential allocation technique for

minimizing the estimated mean squared error of the proportion estimate at each

step, and (6) a Sayesian sequential allocation technique for minimizing the

estimated mean squared error of the proportion estimate of each step. Each of

these techniques is described in detail in appendix A.

The evaluation involved testing each of these six techniques in combination

with each of the three clustering algorithms. Each combination of clustering

algorithm and estimation technique was used with 100 different psuedorandom

allocations of ground-truth-labeled pixels for each segment. Initially, each

technique was evaluated using five segments. Promising techniques were subse-

quently evaluated using all of the 21 Phase III blind sites used in evaluating
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the clustering algorithms. The results of this study, as presented in

appendix A, were that only two of the techniques appeared to perform

consistently better than simple random sampling. These were proportional

allocatior. followed by stratified proportion estimation and sequential

Bayesian allocation for minimizing the mean squared error of the stratified

proportion, estimate at each step. The proportional allocation technique had a

reduction in mean squared error over simple random sampling of about 0.65 for

each of the three clustering algorithms. The Bayesian sequential allocation

technique had a reduction in mean squared error of about 0.51 for CLASSY and

ISOCLS and about 0.73 for AMOEBA. Because the CLASSY program generated many

fewer clusters than ISOCLS, it was possible to estimate the purity of each

cluster using a much smaller number of total labeled pixels. Hence, the

Bayesian sequential stratified proportion estimate, using CLASSY clusters as

the strata, emerged as the best technique of those tested with respect to the

goals of this study.

3. ANALYST LABELING WITH BAYESIAN SEQUENTIAL TECHNIQUE

Because all of the preliminary testing had been done with ground-truth labeled

pixels, it was desirable to test this new Bayesian sequential technique with

CLASSY clusters as the strata using analyst-interpreter (AI) labels. This was

the focus of the second study, which is reported in appendix B. In this test,

each of 10 LACIE Phase III blind sites was evaluated using the Bayesian

sequential procedure. A total of 45 AI-labeled dots were allocated to each

segment. The result was that the Bayesian sequential procedure performed

significantly better than either Procedure 1 or simple random sampling. The

reduction in mean squared error adjusted for sample size was approximately

0.51 for the Bayesian sequential technique compared to simple random sampling

and approximately 0.29 for the Bayesian sequential technique compared to

Procedure 1. In addition, the Bayesian sequential procedure obtained a lower

average bias than either simple random sampling or Procedure 1. This led to

the investigation of the AI error rate on the sequentially labeled pixels

versus the pixels allocated as random samples. In each of the segments

tested, the AI error rate for small-grain pixels was lower for the dots 	 i
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allocated using the Bayesian sequential technique. This phenomenon appears to

be due to the influence of the prior distribution on cluster purities used in

the Bayesian scheme. In effect, the prior distribution considers pure small-

grain clusters to be fairly rare. Hence, if they occur, they are sampled more

heavily to verify their reliability. Since pure small-grain clusters are more

accurately labeled, this reduces the overall AI error rate.

4. CONCLUSION

Based on the results of tests using both ground-truth and AI labels, it is the

conclusion of these studies that stratified proportion estimation using CLASSY

clusters as the strata and Bayesian sequential allocation as the allocation

and estimation technique for minimizing the mean squared error of the propor-

tion estimate offers significant advantages over Procedure 1. It is the

recommendation of these studies that this new techniqu- be considered as a

replacement for Procedure 1 and further tested in a semioperational

environment.

5. REFERENCE

Carnes, J. G.: Detailed Analysis of CAMS Procedures for Phase III Using Ground

Truth Inventories. JSC- 14845, LEC-13343, NASA /JSC (Houston), April 1919.
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1. BACKGROUND AND INTRODUCTION

In performing machine classification of remotely sensed data, clustering has

typically been used to analyze and determine the inherent data signatures. In

the proportion estimation system developed during the Large Area Crop Inventory

Experiment (LACIE) and called Procedure 1, the multispectral land satellite

(Landsat) data was first clustered to obtain the spectral signatures. These

signatures were then labeled and used to train a maximum likelihood classifier

which classified each picture element (pixel) in the image into one of the

labeled classes. The final step was to evaluate the performance of this clas-

sifier on an independent labeled data set and to use the estimates of the

omission and commission errors resulting from this evaluation to correct the

bias in the classified data. Procedure 1, thus, required two sets of labeled

data. A set of approximately 40 labeled pixels, called type 1 dots, was used

to initiate the clustering and to label the resulting clusters. Another set

of approximately 60 labeled pixels, called type 2 dots, was used to evaluate

the classifier and correct any bias in the overall proportion estimates for

the labeled classes.

Within the past year, different investigations have resulted in several impor-

tant conclusions regarding the Procedure 1 system. One study (ref. 1) con-

cluded that the labeled clusters.agreed very closely with corresponding

classifier results. This seems to imply that the classification is unnecessary.

In a second series of studies (refs. 2 and 3), it was found that the overall

variance of the proportion estimates, resulting from Procedure 1, were only

smaller by a factor of about 0.1 (on the average) than the proportion estimates

resulting from a simple random sample of 60 labeled pixels. The conclusion was

that the machine processing, which comprised Procedure 1, was relatively

inefficient.

The current study was designed as a response to the observed deficiencies in

Procedure 1. It appeared that the classification step was unnecessary and

that a more efficient procedure would be to simply cluster the data using a

completely unsupervised clustering algorithm and then use any labeled pixels
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to either label the resulting clusters directly or to perform a stratified

estimate using the clusters as the strata. Such an approach would have the

advantage of eliminating the need for the type 1 dots as well as the machine

classification step.

Since clustering was to be the primary machine processing step in the new

procedure, it was important to choose the most efficient clustering algorithm

available. Three algorithms were ultimately chosen for testing. These algo-

rithms were:

a. CLASSY (refs. 4, 5, and 6) — an adaptive maximum likelihood algorithm

developed at the National Aeronautics and Space Administration (NASA),

Lyndon B. Johnson Space Center (JSC)

b. AMOEBA (ref. 1) — an algorithm developed at Texas A&I University,

employing both spectral and spatial information

c. The Iterative Self-Organizing Clustering System (ISOCLS), (ref. 3) -:a

variant of the ISOOATA algorithm of Sall and Hall (ref. 9), and the algo-

rithm used in Procedure 1

These algorithms were applied to each of 41 5 LACIE segments collected during

the 1976-77 crop year. The details of the clustering algorithms and the meas-

ures used in evaluating the clustering results are discussed in section Z of

this report.

An equally important part of defining a new proportion estimation procedure

was the selection of a scheme for obtaining a stratified estimate or a method

of labeling each cluster. In this regard, three stratified estimation schemes

and three labeling schemes were considered. The details of these schemes are

described in section 3. A description of the data set and the experimental

design is included in section 4. In section 5 is a summary of the primary

results, and section 6 consists of the conclusions drawn from the observed

results with appropriate recommendations.

r
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2. CLUSTERING ALGORITHMS AND EVALUATION CRITERIA

The clustering evaluation portion of the study consisted of running each of

three different clustering algorithms on each of the 25 LACIE segments selected.

The clustering algorithms tested were CLASSY, AMOEBA, and ISOCLS.

CLASSY was run using three complete passes through the data where the data set

consisted of every other pixel in the image. Clusters smaller than 2 percent

of the scene were eliminated.

ISOCLS was run with the standard iterative parameter set recommended by Wylie

and Bean (ref. 10) and known as the MPAD cluster parameter set. The values

of these parameters are given in table 2-1. The algorithm was started with

40 randomly selected and unlabeled pixels from each image.

AMOEBA was run with parameters specified by its developers at Texas ASM Uni-

versity. The minimum number of clusters was set at five.

Both CLASSY and AMOEBA were run on data which had been transformed to Kauth

brightness and greenness coordinates on each pass (ref. 11). This reduced the

dimensionality of the data by a factor of 2. ISOCLS was run on the full dimen-

sional data in accordance with the standard practice during LACIE Phase III.

Each of the algorithms tested produced cluster maps which were subsequently

compared with digitized ground-truth maps. The ground-truth maps were pre-

pared from ground-truth images having a resolution six times that of Landsat

imagery. The higher resolution ground truth was converted to Landsat resolu-

tion by applying majority rule to each six-subpixel area corresponding to one

Landsat pixel. In the event of ties, the first label to receive the tying

number of subpixels was chosen as the Landsat pixel label.

By comparing the digitized ground truth with a cluster image, the proportion

of each ground-truth class, making up each cluster, was determined. The pro-

portions for the small-grains classes were then combined to give the proportion

2-1	 A-11
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of small grains (P i ) in each cluster. These data were used to calculate two

different evaluation criteria for each clustered image. These criteria are

called the variance reduction criterion (R) and the percent of correct classi-

fication (PCC), using majority rule labeling.

The R criterion represents the ratio of the variance of a proportion estimate

based on a stratified random sample allocation (in which strata are the clus-

ters) to the variance of a simple random sample proportion estimate. The

equation for this ratio (when samples that are allocated to clusters are pro-

portional to the size of the cluster) follows:

C Ni.

R a	 - P	 (1)

where

c = total number of clusters

N i = total number of pixels in cluster i

NT = total number of pixels in the segment

P i = the proportion of small grains in cluster i

P = the overall proportion of small grains in the segment.

The parameters P i and P were evaluated using the Accuracy Assessment (AA) digi-

tized ground-truth data for each segment.

The PCC criterion measures the proportion of pixels that would be correctly

labeled or classified if each cluster were labeled by majority rule. The equa-

tion for computing the PCC criterion may be written as follows:

PCC =	 Pi(^) + ^, (1 - Pi)\Ni)
P > .5	 T	 P <0.5	 T

i	 i-

where P i , N i , and NT are defined above. The first term represents the summa-

tion over all clusters having P i > 0.5. These clusters would be labeled "small
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grains" by majority rule. The second term represents the summation over all

clusters having P i < 0.5. These clusters would be labeled "other" by majority

rule.

The R criterion serves as a measure of the efficiency of a clustering algo-

rithm as used in a stratified sampling proportion estimation scheme. The PCC

criterion, on the other hand, serves as an overall indicator of zluster purity

and of the quality of a proportion estimate obtained by labeling clusters.

The results of evaluating these criteria for each of the three clustering

algorithms as applied to the 25 LACIE segments are given in section S.
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3. TECHNIQUES FOR CLUSTER-BASED PROPORTION ESTIMATION

The objective of performing clustering in the context of Procedure 1 replace-

ment is to use the results of the clustering as a basis for obtaining a pro-

portion estimate for a crop of interest. In this study, six different tech-

niques for obtaining proportion estimates by labeling a subset of pixels from

the image were explored. Three of these techniques result in a labeling of

each cluster, whereas the other three produce estimates of the proportion of

the crop of interest.in each cluster. We will refer to the first three tech-

niques as cluster-labeling techniques and the last three as stratified propor-

tion estimation techniques.

The various cluster-labeling techniques differ from one another in the manner

in which the subset of pixels to be labeled is selected. In one technique,

pixels are allocated to each cluster, proportionally to the size of that

cluster; that is, if n  total pixels are to be labeled, then

N

	

ni FT nT
	

(3)

is the number of pixels to be labeled from each cluster. It should be noted

that if n  is not an integer, it is rounded up or down. If this produces a

total number of pixels less than n, the remaining pixels are selected first

from the largest cluster, then the next largest, continuing in this manner.

Clusters too small to receive a single pixel are lumped together, and an

allocation is made to that lumped group. Following the pixel allocation,

majority rule may be applied to label the cluster; that is, if

	

Pi n 
ni	

(4)
i

where x i = the number of pixels out of the n i pixels labeled in cluster i

that are the crop of interest.
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Then the labeling rule is as follows:

a. Label cluster i as the crop of interest if

Pi's

b. Otherwise, label cluster i as being other than the crop of interest.

The proportion estimate is obtained as

P ^, Ni

Pi> 2 T

The procedure gust described will be called cluster labeling by proportional

allocation.

The other two cluster-labeling procedures tested were developed by M. D. Pore

of Lockheed Electronics Company, Inc. (ref. 12). One approach, called cluster

labeling by sequential allocation, labels pixels, selected at random, from a

given cluster until a confidence interval for the estimated proportion of the

crop of interest no longer contains one-half.

The final cluster-labeling approach tested is called cluster labeling by

sequential Bayesian allocation. In this approach a Bayesian estimate for Pi,

the probability that the true proportion of the crop of interest is less than

or equal to one-half is developed. The formal equation is

/2

P1 = Prob CO < 9	 fl

	

i < ^	 f(ei (x i )de

1/2

_T	
f(xilei)g(ei)dei

i fo

where 8  = the true proportion of the crop of interest in cluster i,

g(e i ) = the unknown prior distribution for the e i 's and as before x i = the

number of pixels out of the n i pixels labelled in cluster i that are the crop

of interest.
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The strategy is to select a form for g(e i ) and calculate the form of Pi. Then

one may continue sampling at random and labeling the samples selected until

Pi is smaller or larger than a fixed threshold. If Pi is smaller than a, then

label cluster i as other than the crop of interest. If Pi is greater than

1 - a, then label the cluster as the crop of interest. Thus, in both cluster

labeling by sequential allocation and cluster labeling by Bayesian sequential

allocation, labeling from a given cluster continues until a specified confi-

dence on the label of that cluster is obtained. The Bayesian scheme uses the

additional information of an estimated prior distribution on the true cluster

purities produced by a given algorithm. The necessary labeling rules and

equations for these two techniques are developed in (ref. 12) and repeated

here.

For cluster labeling by sequential allocation, the labeling rule is as follows:

a. Continue labeling if

xi (xi  - 1.534a i , ni + 1.534a i J
i	 /

where

v r
xn -xi

ini - 1)

or until 35 samples have been allocated.

b. Otherwise, label by majority rule

This interval provides an approximate confidence of 1 - 1/8 = 0.875 in the

label for each cluster.

For cluster labeling by sequential Bayesian al'location, the labeling rule is

as follows:

a. Label two pixels from a given cluster. If x i = 0 or 2, stop and label by

majority rule. Otherwise, go to step b.

b. Label three more pixels. If x i = 1 or 4, stop and label by majority rule.

Otherwise, go to step c.

3-3	 ' A- 17
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c. Label two more pixels. If x i - 2 or 5, stop and label by majority rule.

Otherwise, go to step d.

d. Label three more pixels. If x i - 3 or 7, stop and label by majority rule.

Otherwise, go to step e.

e. Label three more pixels and label the cluster by majority rule.

This labeling rule is derived using a uniform prior for g(9) and also provides

an approximate probability of correct labeling of 1 - 1/8 - 0.875.

The three techniques for stratified proportion estimation parallel the three

cluster-labeling techniques just discussed. One possibility is to allocate

a total of n  pixels such that each cluster receives an allocation proportional

to its size. This proportional allocation is accomplished as described earlier

in this section. The proportion estimate is then computed as

^- ^ r niF	
(7)

i	 T	 i

XThe term 
n
i represents an estimate of the proportion of cluster i which is the

i
crop of interest. The remaining two techniques for stratified proportion

estimation differ in the rules used for allocating pixels to cluster and in

the equation used for obtaining the final estimate. As was the case for clus-

ter labeling, both techniques are sequential in nature with one employing a

Bayesian prior distribution. Both techniques were developed by M. D. Pore

(ref. 13).

The concept of sequential sampling as it is used in these two techniques is

to apply information obtained from previously allocated samples in determining

which cluster should receive the new sample. Suppose n i pixels have been

allocated to cluster i, and x i of these pixels are of the crop of interest.

Then

N 2 P(1 - P )
on - `i'' l̂T ini- 1	 (8)

A-18
	

3-4



where

Xi
P i = ni

is an estimate of the variance of the usual stratified proportion estimator

as given in equation (7). Now the estimated expected value of cn is (if one

more sample from the ith cluster is taken)

Eivn+1J ' S i an+1 (x i + 1) + (1 - Pi)on+1(xi)	 (9)

where c2+1 (x i + 1) is the variance based on n + 1 total samples if the last

sample selected is frcn cluster i and is also the crop of interest, and

Q2+1 (x i ) is the varia-ze if the last sample selected is from cluster i and is

other than the crop of interest.

The expected change in the estimated segment proportion variance due to an

additional labeled sample from cluster i is then

	

^2
Lai = a - EIcn+1J(10)

Written in terms of the basic variables this equation becomes

N 2 n+3
2= 	 x

ooi	
i	

- xi)

	

(RTT (ni - 1)n (n i + 1)	 i
(ni 	 (11)

The strategy for the first technique, which we shall call stratified propor-

tion estimation using sequential allocation, is to first allocate at random

a fixed number of pixels to each cluster for the purpose of obtaining an ini-

tial estimate of the proportion of each cluster which is the crop of interest.

Then La. is computed for each cluster, and the next sample to be labeled is

allocated to the cluster with the largest value of Lai. This process con-

tinues until a fixed number of pixels have been labeled. The proportion esti-

mate is then

	

IN 

^ ni	 (12)
i	 T	 i
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The last technique, which is called stratified proportion estimation using

Bayesian sequential allocation, is similar to the technique just described

except that the additional information of a prior distribution on cluster

purities is used. In this case we use the posterior Bayes estimate

1

ei • V eilxi) ' 	 fo
^

i
ef ( xil e i )9( e i ) d9 i	(13)—j

in place of the minimum variance unbiased estimator

.	 Axi
P i ` ni

A
Although A i is not unbiased, it is the minimum mean - square-error estimator.

Following an initial fixed allocation to each cluster, one may then use ei

in place of P i in equations (8) and (9) to calculate oo2 for each cluster and

proceed to allocate sequentially as before. The only difficulty is in the

selection of a prior distribution on cluster purities.

The prior distribution on cluster purities was chosen following an examination

of the empirical distribution for each of the three clustering algorithms

on a subset of 10 segments. These histograms representing percentage of clus-

ters versus ground- truth percentage of small grains are given in figures 3-1.

3-2, and 3- 3. The similarity of these histograms and their general shape led

• to the belief that at least for segments having a moderate to large amount of

small grains, a prior distribution which was quadratic in form would be

appropriate.

It seemed reasonable that 16ne prior distribution, g(e), satisfy the follow-

ing criteria.

g(e)t0 for &I10<e<1

f1

	 (14)

	g(9)d9	 1
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and

f1 eg(9)de

where

Y

	

r	 i NT ni

and is computed following the fixed allocation of pixels to clusters.

These three conditions allow the specification of the three coefficients in

the equation

g(e) = ae2 + be + c

These coefficients are

a=6

	

b - 12(P - 1)	

for 0.211 < P < 0.789	 (15)
c-5-6P

It should be noted that the b and c coefficients are only appropriate for a

specified range of P values. If P is not in this range, then g(e) will be
negative at some point.

The fact that a quadratic prior is only appropriate over a limited range of

P values also seemed to be validated by empirical evidence. Figures 3-4 and

3-5 show histograms of cluster purity for eight segments which had low ground-

truth proportions of small grains. Clearly a quadratic prior is not appro-

priate. On this basis, it was decided to select an alternate prior for seg-

ments which had a small portion of the crop of interest. The prior for

segments with a very large proportion of the crop of interest might reasonably

be thought to be like a "flipped" version of the prior for small proportion

segments.
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It was decided that the form of the prior for small proportion segments would be

g(e) - Be' - d - d(s
-a
 - 1)	 (16)

and that this distribution should satisfy the following constraints

g(e)>-0 for all 0 <9 <1

f0 

1
g(a)ds - 1

g(1) - 0

1

0
69(8)de = P
	

(17)

These constraints may be used to determine the parameters a and 6 which are

1 - 4P )

l	
2P^ for 0 < P < 0.25

aa- 

S	 1 as	 (18)

This prior will be called the exponential prior. In order to see how well the

quadratic and exponential priors fit the empirical cluster purity histograms,

the following calculations were made:

a. The average ground-truth proportion of small grains in the 10 segments used

to obtain the data reflected in figures 3-1, 3-2, and 3-3 was computed.

b. The average ground-truth proportion of small grains in the eight segments

used to obtain the data reflected in figures 3-4 and 3-5 was computed.

The first proportion, call it P 1 , was then used to calculate the coefficients

a, b, and c [equation (15)] specifying a quadratic prior. This prior is

plotted in figures 3-1, 3-2, and 3-3 as a smooth curve for comparison with the

empirical histograms. Similarly, the average ground-truth proportion for the

eight small proportion segments, call it P 2 , was used to calculate the coeffi-

cients a And 8 for an exponential prior. This prior is plotted as a smooth_

curve on figures 3-4 and 3-5. It is evident from examining figures 3-1 through

3-5 that both prior distibutions seem to fit the empirical cluster purity dis-

tributions well.
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In actual practice, both the sequential and the Bayesian sequential procedure

were initiated with random allocation of two pixels per cluster. Following

this allocation, the Bayesian sequential procedure computes two different

estimates of the segment proportion. One is given by

P = 2: Ni xi
	i 	

NT 
ni

	 (19)

whereas the other is the Bayes posterior estimate based on a quadratic prior

and an average proportion estimate of P = 0.34. The equation for this estimate

is

8 _ E Ni d (ni •xi)	 (20)
t	 T

where

e[(xi + 1)(x i + 2)(x i + 3)] + b[(x i + 1)(x i + 2)(n i + 4 )] + c [( x i + 1)(ni + 3)(n i + 4)]
9(n i ,x i ) •

a[(x i 	1)(x i + 2)(n i + 4)] + b[(x i + 1)(n i + 3)( n i + 4 )] + c [ ( n i + 2)(n i + 3)(ni + 4)]

(21)

If 0.211 < P, then the quadratic prior is selected and a is used to reset the

parameters a, b, and c. Sequential selection then proceeds with

AC  = (Ni 2 
8(n i ,x i )[1 - '(ni,xi)]

i	 NT	 ni -

a(n i ,x i k n i + l,x i + 1)[1 - e(n i + l,x i + 1)]

"	 ni

[1 - A( n i x i )]^( n i + l, x i )[ l - a(n i + 1,xi)]1

ni
	 J

After a number of dots have been allocated, an overall proportion estimate is

obtained via equation (20), using the current values of the a(n i ,x i ) estimates.

If 0.211 > P. then the exponential prior is used to calculate the parameters a

(22)
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and B. Sequential selection then proceeds with Aoi given by equation (22),

using

xi+1 -a	 xi +1

n +2-a +7 Y2
e(n i ,x i ) S	

i	 Y1	 Y2 i	 (23)-

where

Yl ' (n i + 1)(n i)(ni - 1) ... (x i + 1)

Y2 ' (n i + 1 - a) (n i - a) ... (xi + 1 - a)

After a number of dots have been allocated, an overall proportion estimate is

obtained as before using equation (20).

Figure 3-6 shows a comparison of the quadratic and exponential priors at the

value	 0.211, where the switch occurs from one to the other. The curves
A

are close enough for this value of P that the decision as to which one to use

is not critical.

Outlined in this section are six different techniques for cluster based pro-

portion estimation. As a way of summarizing these developments, a brief dis-

cussion on some of the expected characteristics of these techniques follows.

Three cluster-labeling and three stratified proportion-estimation schemes have

been considered. If the clusters are very pure, then cluster labeling should

produce proportion estimates with small bias and very small variance. In

addition, relatively few labeled pixels should be required to obtain these

estimates, and the estimates themselves should not be very sensitive to occas-

ional labeling errors. Cluster labeling using sequential allocation or Baye-

sian sequential allocation provides a specified confidence in the labels of

clusters. These techniques should require fewer dots to be labeled on the

average than does cluster labeling using proportional allocation.
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If the clusters are significantly mixed, all of the cluster-labeling schemes

will suffer. In this case, a more appropriate technique is provided by strat-

ified proportion estimation. Stratified proportion estimation, using propor-

tional allocation, provides theoretically unbiased estimates. The stratified

proportion estimation, using sequential and Bayesian sequential allocation,

are not theoretically unbiased but should produce estimates with a lower mean-

square error for a given number of dots allocated than the proportional allo-

cation approach. Both of the sequential techniques incorporate information

about both the size and the estimated purity of clusters in performing the

dot allocation.
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4. DATA SET AND EXPERIMENTAL DESIGN

The data set for this study consisted of 25 LACIE segments selected at random

from the Phase III (1976-1977) blind site data base. Eighteen of the segments

are the same as those used in the secondary error analysis study (refs. 2

and 3). Seven substitutions in the secondary error analysis data set were

necessary because the original segments were not well registered to the digi-

tized ground truth. The segments selected represent a cross section of the

U.S. Great Plains. Both winter- and spring-wheat segments were included.

Three segments in the data set were discovered to have significant amounts of

strip fallow small grains where the strips were not resolved in the ground

truth. These segments, 1648, 1739, and 1544, were clustered but were not eval-

uated using the proportion-estimation schemes because reliable labels were

not available for the strip fallow area. One other segment, 1079, was not

evaluated using the proportion-estimation schemes because it was found to con-

tain 27 percent abandoned winter wheat and was, thus, a very atypical segment.

In table 4-1 is a listing of the 21 segments actually used in the testing,

their location, the acquisitions used, and the proportion of small grains from

the digitized ground truth.

The experimental design for the evaluation of the six proportion-estimation

techniques was that each of them were evaluated on a subset of five seg-

ments selected from the set of 21 acceptable segments. The subset that was

selected consisted of segments 1005, 1853, 1520, 1231, and 1060. After eval-

uating these preliminary results, the most promising techniques were selected

and run on the remainder of the 21 segments.

Each proportion-estimation technique — clustering algorithm 'combination — was

repeated 100 times for each segment. Each repetition used a different pseudo

random sequence in selecting pixels. Thus, it was possible to calculate the

average bias in the proportion estimate, the mean-square error of the esti-

mate, and the R factor as compared to simple random sampling. These results

are reported in the appendix. Averages and variances of these results over

segments were also calculated. These results appear in section 5.
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TABLE 4-1.- DESCRIPTION OF THE TWENTY-ONE SEGMENTS USED IN THE STUDY

Segment Location Acquisitions used
Ground-truth
proportion of
small grains

1005 (W) Cheyenne, Colorado 7177, 7159, 6326, 6254 0.348

1032 (W) 'Wichita, Kansas 7194, 7086, 6326, 6254 .371

1033 (W) Clark, Kansas 7156, 6288 .095

1853 (W) Ness, Kansas 7193, 7067, GZ:3 .306

1166 (W) Lyon, Kansas 7190, 7154, 7082, 6286 .066

1512 (S) Clay, Minnesota 7193, 7156 .340

1520 (S) Big Stone, Minnesota 7174, 7156, 7120 .301

1577 (W) Platte, Nebraska 7120, 6306 .029

1604 (S) Renville, North Dakota 7143, 7125 .524

1606 (S) Ward, North Dakota 7197, 7125 .330

1661 (S) McIntosh, North Dakota 7159, 7123 .414

1899 (S) Walsh, North Dakota 7193, 7175, 7157, 7122 .596

1231 (W) Jackson, Oklahoma 7156, 7066, 6288 .744

1239 (W) Noble, Oklahoma 7155, 7082, 6268 .167

1367 (W) Major, Oklahoma 7155, 7101, 6287 .606

1675 (S) McPherson, South Dakota 7230, 7176, 7123, 6254 .291

1686 (S) Beadle, South Dakota 7194, 7140, 6307, 6254 .194

1803 (W) Shannon, South Dakota 7178, 7159, 7123, 6255 .032

1805 (M) Gregory, South Ik kota 7211, 7158, 6307, 6290 .164

1059 (W) Ochiltree, Texas 7157, 7121, 6325, 6307 .437

1060 (W) Sherman, Texas 7158, 7068 .231

Symbol definition:

M - Mixed

S - Spring wheat

W - Winter wheat
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5. RESULTS

The results of the study are summarized in two parts. The first part pertains

to the evaluation of the clustering algorithms, and the second part is an

evaluation and comparison of the six techniques for proportion estimation.

The R, as compared to simple random sampling, and the PCC, using majority rule

labeling, are given in table 5-1 for each of the three algorithms tested as

applied to each of the 21 segments. Averages for each measure over segments

are given at the bottom of the table along with an estimate of the standard

deviation over segments. None of the iverages are significantly different.

In fact, it is striking how similar the average results are in view of the

differences in the algorithms. This similarity will be further discussed in

section 6.

One significant difference is in the number of clusters produced by each algo-

rithm. At the bottom of table 5-1, the average number of clusters and the

standard deviation in the number of clusters are indicated. The average number

of clusters nearly doubles when going from CLASSY to AMOEBA and doubles again

in going from AMOEBA to ISOCLS. Economy in the number of clusters produced

is generally considered a distinct advantage for a clustering algorithm. It

is clearly an advantage in the stratified proportion-estimation techniques.

Indeed the sequential stratified techniques require that a fixed number of

pixels (usually 2) be allocated to each cluster initially. Thus, a large

number of clusters means that a large number of pixels must be allocated

before sequential allocation even begins.

Presented in tables 5-2, 5-3, and 5-4 are the results for the three cluster-

labeling schemes; and in tables 5-5, 5-6, and 5-7 are the results for the

three stratified proportion-estimation schemes. The results presented in each

table are averages and variances over the segments processed for each of the

measures recorded, using a given scheme. For each scheme, with the exception

of stratified proportion estimation using proportional allocation, the meas-

ures recorded were the average bias, the mean-square error, and the reduction
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TABLE 5-i.- PCC VALUES USING MAJORITY RULE LABELING AND

R VALUES FOR CLASSY, AMOEBA, AND ISOCLS

CLASSY AMOEBA ISOCLS
Segment

PCC R PCC R PCC I 

1005 (W) 0.8398 0.6471 0.9132 0.6372 0.8659 0.6571
1032 (W) .8975 .3450 .8541 .4585 .8367 .4978
1033 (W) .9050 .8208 .9151 .7363 .9247 .6247
1853 (W) .8948 ,4073 .7926 .6966 ,8859 .4655
1166 (W) .9333 .8287 .9388 .7851 .9386 .6994
1512 (S) .7110 .8269 .7621 .7481 .7576 .7767
1520 (S) .8361 .5758 .8522 .5213 .8546 .5735
1577 (W) .9678 .9055 .9678 .9076 .9684 .8814
1604 (S) .6877 .8419 .7318 .7538 .6749 .7893
1606 (S) .8229 .6071 .8002 .6511 .7958 .7201
1661	 (S) .7260 .7395 .7523 .6745 .7184 .7767
1899 (S) .8427 .4852 .8555 .4684 .8426 .5196
1231	 (W) .8773 .4849 .8926 .4450 .8788 .4941
1239 (W) .8508 .7175 .8702 .6586 .8601 .7322
1367 (W) .8023 .5654 .8198 .5644 .8051 .6238
1675 (S) .7929 .7056 .8060 .6243 .7890 .7282
1686 (S) .8352 .7847 .8485 .6933 .8400 .8128
1803 (W) .9681 .8313 .9701 .7339 .9733 .6502
1805 (M) .9052 .5007 .9199 .4680 .9219 .4839
1059 (W) .8448 .4515 .8667 .4126 .8768 .4062
1060 (W) .8583 .5984 .8824 .5227 .8757 6002

,6435Average .8476 .6472 .8521 .6258 ,8488

Standard .0754 .1663 .0688 .1333 .0771 .1316
deviation

Average number 9.32 + 2.15
-

17.46 * 10.15 36.84 • 2.32
of Clusters. -
• 1 standard
31vistion
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in mean-square error as compared to simple random sampling. Because stratified

proportion estimation (using proportional allocation) is theoretically unbiased,

the bias was not recorded; the variance'and the R, rather than the mean-square

error and reduction in mean-square error, were recorded. The techniques using

sequential allocation for majority-rule labeling did not allocate a fixed num-

ber of pixels, and hence, only the average number of pixels allocated is

reported. The sequential Bayesian technique used an initial allocation of two

pixels per cluster, whereas the sequential technique without prior used a

three-pixel cluster initial allocation. The same initial allocation was used

for the Bayesian and "no prior" sequential techniques that were used in strat-

ified proportion-estimation. The missing values in tables 5-6 and 5-7 indicate

that in some cases sequential allocation could not begin until a larger number

of dots had been allocated.

After examining the results for the subset of five segments, it was clear that

all of the cluster-labeling schemes as well as the stratified proportion esti-

mation using sequential allocation were not competitive with stratified pro-

portion estimation using either proportional allocation or Bayesian sequential

allocation. This is most readily apparent in a comparison of the reduction in

mean-square error or R results.

The technique using sequential allocation in obtaining stratified proportion

estimates does look competitive at an allocation of 30 pixels. Because it

was not significantly better than stratified proportion estimation using

Bayesian sequential allocation, it was decided to place the most emphasis on

a comparison of the Bayesian sequential and the proportional allocation tech-

niques as used in obtaining stratified proportion estimates. Consequently,

tables 5-5 and 5-7 represent results for the full 21 segments, whereas 5-2,

5-3, 5-4, and 5-6 represent the results for five segments.

Figures 5-1 and 5-2 are a presentation in histogram form of the same data

which are summarized in tables 5-5 and 5-7. Figure 5-3 is a comparative histo-

gram plot of R values for Procedure 1, which are reported in reference 3. In

this plot, it is assumed that there is an allocation of pixels equal to the
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0	 0.4 0.8 1.2

30 dots

CLASSY

90 dots 120 dots

0	 0.4 0.8 1.2

90 dots

0	 0.4 0.8 1.2

120 dots

Figure 5-1.— Histogram plots of the R for stratified proportion estimation
using proportional allocation.
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0	 0.4 0.8 1.2

30 dots

0	 0.4 0.8 1.2

90 dots

0	 0.4 0.8 1.2

120 dots

AMOEBA

ISOCLS

Figure 5-2.— Histogram plots of the reduction in mean-square
error for-stratified proportion estimation using Bayesian
sequential allocation.
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0	 0.4 0.8 1.2

Procedure 1

Figure 5-3.— Histogram plot of the R for Procedure 1
based on approximately 60 pixels (type 2) per
estimate.

number of type 2 dots used in each estimate (approximately 60 pixels). The

complete data for each of the six proportion-estimation techniques studied are

in the appendix of this report.

The results in table 5-5 are essentially an empirical verification of the

results in table 5-1. In particular, the R averages may be compared. In

theory, the R (using this technique) should be independent of the number of

dots allocated. Indeed, there are no significant differences among the values

of average R calculated for 30, 60, 90, or 120 dots. In addition, the averages

for each algorithm tend to agree well with the theoretical average R values

appearing in table 5-1.

In examining table 5-7, it is clear that the Bayesian sequential allocation

technique, as used in obtaining stratified proportion estimates, has an ex-

tremely low bias for all three algorithms even though the procedure itself is

not theoretically unbiased. None of the average bias results in this table

for any of the algorithms are significantly different from zero.

A comparison of the average reduction in mean-square error for the Bayesian

sequential allocation technique (table 5-7) with the average R for the pro-

portional allocation technique (table 5-5) shows that using the Bayesian
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sequential approach with the CLASSY algorithm gives results which are consis-

tently lower than proportional allocation for all numbers of pixels allocated.

If the variances for each technique-algorithm combination are pooled over the

various numbers of pixels allocated, the results are given in table 5-8.

TABLE 5-8.— POOLED VARIANCES FOR SEQUENTIAL ALLOCATION TECHNIQUES

Bayesian sequential
allocation

Proportional allocation

Pool
Variances CLASSY AMOEBA ISOCLS CLASSY AMOEBA ISOCLS

0.038699 0.079350 0.019605 0.036897 0.024976 0.033507

In table 5-9 are the least significant differences (LSD) for comparisons

between the two sequential techniques within the results for a given family.

The LSD is computed as

^2	 2
1/2

	

LSD - t Sl--?	 (24)

A	 A
where S l and S2 are the pooled variance estimates of the groups to be compared

and t is the 0.975 percentage point of the Student's-t distribution with

80 degrees of freedom Y 1.99.

TABLE 5-9.— LEAST SIGNIFICANT DIFFERENCES FOR COMPARISONS BETWEEN
BAYESIAN SEQUENTIAL AND PROPORTIONAL ALLOCATION TECHNIQUES

FOR STRATIFIED PROPORTION ESTIMATION

LSD in
R values

CLASSY AMOEBA ISOCLS

0.119397 0.140262 0.100078
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The differences between the corresponding R values for tables 5-5 and 5-7 are

given in table 5-10.

TABLE 5-10.— VALUES FOR R
Prcportional - RBayes sequential

Pixels CLASSY AMOEBA ISOCLS

30 aO.200682 b-0.140867

60 bO.119384 -.086566

90 a O.168540 -.066107 "0.182187

120 bO.116789 -.075886 bO.096402

aSignificant at the 0.05-percent level.

bMarginally significant at the 0.05-percent level.

An examination of table 5-9 shows that the CLASSY results for each number of

pixels and the ISOCLS results for 90 and 120 pixels are either significant or

very nearly significant at the 0.05-percent level. ISOCLS results are not

available for 30 and 60 pixels as there were more pixels than 60 allocated

following the two-pixel per cluster allocation in the Bayesian sequential pro-

cedure. The AMOEBA results for the Bayesian procedure are consistently higher

than for the proportional allocation procedure, and in the case of 30 pixels

allocated, the reduction in mean-square-error value was significantly higher.
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6. CONCLUSIONS AND RECOMMENDATIONS

The clustering algorithms CLASSY, AMOEBA, and ISOCLS performed comparably with

respect to the PCC using majority-rule labeling and the R measures. The fact

that the average results for all three algorithms were so similar and that the

average R value for Procedure 1 has been reported in several independent

studies to be about this same value (0.65 - 0.70) suggests there is a funda-

mental limitation in the separability of the data which precludes better per-

formance. This idea should be tested further in later studies. The fact that

CLASSY had, on the average, only about 9 clusters, whereas AMOEBA had about

17, and ISOCLS had almost 37 is seen as important. Given the same overall

level of performance, an economy in the number of clusters produced is to be

preferred.

The cluster-labeling techniques appear to suffer from the same fate. The pro-

portion estimates obtained using these techniques were generally biased; the

R-values were always greater than 0.9 and typically they were gre,.ter than 1.

This poor performance for all of the clustering algorithms indicates that

clusters were simply not pure enough for cluster labeling to function effi-

ciently as a proportion-estimation technique. For all three clustering algo-

rithms, the average PCC value, which may be thought of as a measure of cluster

purity, w.!s about 0.85. Apparently, much greater cluster purity is needed for

cluster labeling to be a viable approach.

The stratified proportion-estimation techniques generally worked well. The

sequential allocation approach with no prior distribution on cluster purities

produced good results for an allocation of 30 pixels; however, the results for

allocations of 60, 90, and 120 pixels were biased and had much larger reduction

in mean-square error values for all of the clustering algorithms. In addi-

tion, these results were obtained with an initial allocation of three pixels

per cluster, which means that in many cases, sequential allocation did not

begin until more than 30 pixels had been allocated.

The study eventually focused on a comparison of the Bayesian sequential allo-

cation technique and the proportional allocation technique for stratified
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proportion estimation. Both of these techniques are unbiased. The propor-

tional allocation technique has an R value of about 0.67 which does not differ

significantly from algorithm to algorithm or for different numbers of pixels

allocated. This result is also not much different from the Procedure 1 value.

However, the Bayesian sequential allocation technique, when used with the

CLASSY or ISOCLS clustering algorithm, has significantly lower reduction in

mean-square-error values than does proportional allocation. The fact that

CLASSY has many fewer clusters than ISOCLS and, thus, is able to begin allo-

cating sequentially at a much lower number of dots makes it the preferred

algorithm.

The recommendation of this report is that studies be undertaken to determine

how best to implement stratified proportion estimation using CLASSY clusters

as the strata and the Bayesian sequential technique for pixel allocation. It

appears that a total allocation of 30 pixels would achieve the minimum R. The

average mean-square error for this number of pixels is 0.002853, which com-

pares very favorably with the average variance of 0.002515 calculated from

the results of the Procedure 1 secondary error analysis study (ref. 3). This

variance for Procedure 1 was obtained with about 100 labeled pixels for each

estimate (= 40 type 1 pixels plus = 60 type 2 pixels). Thus, an allocation

of only 30 total dots represents a very clear advantage for the proposed

replacement procedure for Procedure 1.
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APPENDIX

CALCULATION RESULTS OF THE AVERAGE BIAS IN THE PROPORTION ESTIMATE,

THE MEAN-SQUARE ERROR OF THE ESTIMATE, AND THE VARIANCE REDUCTION

FACTOR AS COMPARED TO SIMPLE RANDOM SAMPLING



MAJORITY RULE LABELING USING PROPORTIONAL ALLOCATION

1005	 rLACSY	 Am.IE -;iA	 I!--1CL^;

t.: I e e

30 0.0p?3?11 1 ).n25.14n 0	 nn7720
^n n.01114n (I.n 15A00 - 1).0?•i? 20
90 n.n14tiS'1 -,1.014170 -1).0?36,70

120 0.01 1 11 + x ( 1 0.0023140 0.01.6) in

Mc,F

3n n.n	 7 1). ,11n?_la 0. 1111F+55y
so n.n147"A4 1).1)1141430 n. o ')4A6ej
oO n.Ong7A4 11.0> 44 1)4 n.u?rtaol

1?0 n.010 1  nS 0.012 7 14 1 11.0 14421

OF_h.k1SE

3n I.3-v-ah6-4 1.444nSS 1.130024
61 0 1.90441Q S. a 4 ? 1 14 '+. 4461791
91) 7.f17444ti 4.h7L+S5S "x. 11133e

1 2n 5.34?.3vA ;,.7626+n4 ?.337	 95

1A53	 CLASSY	 AM(1FHA	 IS()CLS

ri I AS

3n -n00;)A 150 -0.n15030 -O.nn3P31)
60 _n.01S4Q,' -0.015740 -n.003150
90 -n.34-,34nn -0.(11', ?30 - 0.01)21201

120 -n.047APn -0.016170 -1).On4?30

uSF

1 0 0.61 Olt, 11 11.010?g4 1).(11(1463

60 n.nl17Q4 (I.00'4045 41.009pg6
91) n.0^4^1n^^ n.n1)r( 'AS1 n.nu5124

120 n.00?iy1 0	 00951-'14 n	 n,)on4I

QEt1.MSF

i n 2.74611?7 1 .44N1N5 1.477770

60 A	 C. q (1 14? 2	 69,1A 14 7.6?Sh51;
9p 12.	 3f1 3.gAn799 ?.171n91)
1?O 29.541404 S.41to4o3 3.41aa44

A-1
	

A-55

,^5



M.

152n	 CLACSY	 AMOERA	 15uCL5

±IAS

30 -0.0474RO -0. n45070 0	 Jn 7990
A0 -A,06A • 7 n - 0.03146n -n.I3gs,An
9n - n.1n045n - 1).0P94an - 0.,142cn0

17n -n,oAAAAn -n.0333?0 -n.04150o

ti15 F.

3n n.OSntiA., 0.n ~9013 A.0nS191
An n. 113o-171 00263 44A 0.03+730
QO n.?..1154? q.n?3371 (1.0fi6h732
120 n.lg4mll O.n3nn93 n.04N556

WkU.MSE

30 7.?1Ar-6+? A.421125 n.7:.,1	 95
60 37.3^ N4r,4 7.1;13A75 9.91171h
90 90.S6olQA lo.n115219 )n.nn5707
120 91.7_1909f, 17.177n3? ?7.715195

1231 Cl- ASSY AMO FAA IS()CL5

HIA^

a0 0.0'>617n 0.nIq>,?0 n.0.3yK+30
60 n.n789ln - 1).n4.. y 1A - 0.0171` 0
90 n. n4675n -11.032100 - 11.01 1 M20

1?0 0.074A0n -0.038390 0.414050

MSF

30 n.011S8r, 0.n?7r113 0.0251..0
60 0.110-6514 ().n r ll a l 0.085126
Q() 0.n^11 ggA n.1142Q tI? 0.0134131

110 n.nnQbQ4 0.0 15^304 O.40b1O2

OEI1.,ASE.

30 1 . A?t+hSA 4.3h5l q" 7.9-68119-6
fin 34.9176AP ?x.45 39.1 4 7.g2444-4
QO 15.11 79Q Q 20. ?4044.A t, . 377e,00

12A 6.113nSz 35.`i156 A a ?.449n34

A-56	 A-2

^^4



1050	 CL A r% SY	 A%i()FF A	 I SO CLS

NIA

30 —n.npl4nn —J.nA?23u 0.017711)
50 0.0^5(17A —1. 1)5.4670 —'1. f)4P910
90 n.01960n —o	 nri5Q40 —1.Uti4?5O

120 n.016.1 ?n — 0.0 4 2350 —0.0b h4 0n

-^SF

30 n.Otay l4 o.157 yA4 n..1na^55
60 n.nn3»3 1).064340 u.152742
90 n.n^)7tj7Q ► .151>.Sa n.,1^2493
120 0.nn774, n. 14 0'44 9 0	 0U4953

.)E,).MSF

30 3.10'Ac;q 2A.x,71nEF, 1.?a3622.
60 1.Oglnac, ?1.723 9 F4 17.o?lc;79
90 14.17n4&6,4 76.607nA6 II.h45f,45

120 5.2P975l 95. l a l n 7A 57	 3

A-3
	

A-57

r



	

AVERAGES	
VARIANCEq

CLASSY	 AMOFRA
	 ISOCLS	 CLASSY	

AMOE-46	 ISOCLS

'

	.Min	

N[AS	
0

	

-0.009^Q38	 -0:026A5^	 -O	
:

	

:o24a3u	 0:0^222e2n	
00^05(06	 0:0001951

	

-0 ' 87 628	 -0:033S6A	•O:Olb^pn
	 O:On195^	 0:o0ots0^	

0:0010339

•0.01
MSE

	

0:81441 904	 0:n381nl16	 0:o21a^5o	
0.^02262	 0:0006(01§	

0 0004*3

	

0:022 221	 O.OSOC^7A	
0.0291'5'+	 O.On^63^	

0.002679	 0.000463

	

0.047921	 O.n49945	
0,0'31n15	 0.00340Q	

^.002345	 a ool 39A

55 11	

RED•M5E 333
	

1	 11

3• Fl	 11:9n4SU	 4 945074 0^3d22y2?36 719:922 199	1125: p966e.

7 ; 936	 14 010651	
20:952250 1191.703857 1113.507686 631.753 2

A-58	 A-4

V)s



MAJORITY RULE LABELING USING SEQUENTIAL ALLOCATION

I nn5 CL 45SY Ak o .. b4 I Srl('L5

alAc

30 010 11.11 11.0
Fin 0,0
90 n . 0 n , n .t	 .:^

120 -0.091946 -O. nh2759 -11.()L)3459

uc^

10 n.n rl.(► (..f ►
A0 n.0 1.0 11.0
510 0.C, il.n 11..,

1?0 11.011 -177 0.nn6 h r, 3 0.003432

^E ! ). ASE:

30 11.0 :).0 11.11
0+0 n.n n.n n.o
90 0 0.n 1.1.0

12n ;I:160 701, 4, A.h?(4H?6 -4.h57.1,7o

1 A 93 rLASSY A1.14) F - ► A 11-r)CLS

ALAS

30 n.0 o.n r).0
60 0.0 rl . n 0. )
90 n.0 11.11 11,4
I?n -n.n41740 -n.nn7?39 -n.o+i A02

ti► ti k:

30 n.0 n.n 11.0
60 010 0.0 0.11
90 n.n (1.1) 11.0

120 n.On;>4A7 010110nc? 0.(103061

66 n.0 n.n 11.'1
90 n.n r).(I (,.0

1?0 n.Fi;)i7;K, rr,-tn7SO6 ±,y7 %A96

A-5
	

A-59

61/



152 1) r(_AC%SY AMOE,+A ISn('L5
+I ^S

3n 010 n.n 0
60 O.n n.n 0.0
90 n.0 01.A u.0

120 -n.nA25SS -n.013257 -n.044603

M1F

I n 0.0 n.n n.n
60 n.0 000 ((.0
90 n.o r(.n n .0
120 n.On95?K 0.000176 o.nn ?524

O E : -) o 'ASE

30 0.0 u.0 r).n
A0 0.n n.0 n.0
4n 0.0 0.0 6.0
120 2.A7474a n.n23190 3.34n642

1231 CLA5^Sv A,-,()EAA IcnCLS
041 &-;

30 n.n O.n n.0
60 n.0 n.n 0.0
9n n.n ri.n 000

120 n.On54Qn -0.025415 0.O?Q109

aSF

30 n.0 O.n 0.0
x50 n.0 n.0 0.0
90 090 n.n 0.n

120 O.On36?n 0.001527 0.001045

OEO.MSE

3 n n.n rl.n n.n
40 A;0 }^•^ n.n

1 ?0 0.Aio3c)n 1 . n 73 +11 1.272133

A-60
	

A-6

UU



ln6n CL A V, AM0Er3A IcOCLc

aloS

60 ^ ► ' nn, n 010
9n 0.0 n:n a;n

120 -1).nl0A1c; -i ► .n59542 -( ► .0~3117
MtiF

3o 0.0 0.0 0.n
60 0.0 010 n.7
90 n.n n.n (1.4)

120 On 3 A 4? •1.004325 0.Lin3170
QEi ► .MSE

10 n.0 k).0 11
60 n.n 0.n n.0
9 0 n.0 000 090

120 1.311174 1.4729--58 /A.jI15766

A- 7
	

A-61

Ul



AVERAGES VARIANCES

CLASSY AMAEbA ISOCLS	 CLASSY	 44OE4A	 ISOCLS

SIAS

30 A.Q 000 000 000 000 0.

8
8 '0

o 00.0
0.0

O.A O.g
00.

120 -.Q44h9496 -.005424?.5 7 -.0320143+1 0 :001V104 8. 00 0nS3136 0.00094196

MSE

0 010 0.0 n.0 0.0 O.n 000
O 0.0 000 O.n 000 0.0 000
o

120
n.0
0.00%74(lAn

000
O O OORS48AO

n.0
q .On?SFA 4*O

0.0
09On ,A novil

0.0
n.00n00e60

000
0.00000073

RF.O.MSE

30 0.0 000
0.0

m.0
0.11

0.n
000

0.0
090

000
.0b

1
0

120
8
.0

i:97^+06n6a 1.24I44I73 3.414^,n51 4 0.90543My2 1.75y i3252 1.39696312

OF POOR

A-62
	

A-8

01



MAJORITY RULE LABELING USING BAYESIAN SEQUENTIAL ALLOCATION

1005 CLA95Y AmOFbA TSnCLq

! ► I e 4

28 Q e

94
O:A
n.0 n.0

non
n.0

120 -0.0^7757 -11:1A033A -4. 044491

M5c

0 000 (1011 f).,)
120 0.007431 U.004AgS u.an3•438

We^.^S F

30 000 n.^) n..)

$o n' n n' n A*O
124 1.2AR 14W l.o3yn7a ?0139337

1A53 CLAgSY Ai4OE?; I50t:).5

41A S

30 000 004 000
Ao (100 )► .n 000
94 0.0 n.0 000

124 -0.0?5405 -n.0n y llt -0.0?4x26

MyF

0 10
$o

n 'O n:n
0 A.0 lion n.0

1?.O 0.003551 n.nnP482

O F ).•4SF

10 n.0 r1.n non

9A
,).n not)

A:A Ion II.0
1?n ()0331351 1.4AI740

A-9
	

A-63

I

^3



1 y70 r,LeCS. Amu1 ►i(7A 190CLS

r1 1 C:

30 n60 1.0 Ion
An non n.n 0011
90 n.(1 11.41 00.1

1 20 -0 6 04300 -A,0?3170 - 0*03441A

4%6

^^ n6Q 1101 11611
n. vq 1161) 11.11

on O.n non n,p
1?0 n60nAwn 116 1141P3a94 1)0011j9111

30 non loon 1).n
60 4641 (16n non
40 n. Qo n.n 0.11

1211 163A47A1 4).7?514A 1. 7,1hA15

12, 31 CL ACS r AMMFHp iSOCLq

d14S

30 060 0.41 000
An 000 n,j) 116 %
90 A.0 non 001)

120 n.nf+7730 -0009436 1.111jA15h

NKF

30 non .1641 11.0

60 41.0 0601 0 
o A non 116n n.I

120 n6pnSo7A n6n1t2757 n6n(I14%)n

30 n.n 4100 4160

Q0 A,n A,fnl P,i
1 ?n n6671741 10775n? noie)1436

A-64	 A-10

10



1040 CLASSY AMOEAA ISOCLC;

y 1 A
g o n f1, ie^ 0011 0
40 n.A non 090
120 -4.014R74 -0.0 4 11"1 mf1.04466S

.CSC

in n•0 ' ► •n (tell
n n,n n o n non
0 0.p O.n 00111	 0 0.0AS..7'+ ► .0044164, 0.0,1?477

7^1.MC^

r).l1
60 000 41.A 0.0

90 non !).n n.0

1?0 4.840n4tm 1.A'+?4 wS l.010iJ2

A-11
	

A-65

3



AvFwAGES VARIANCES

CLASSY AMUF,riA ISOCLS	 CLASSY	 AMUE-IA	 ISOCLS

ti1AS

30 000 000 n.n 0.0 0.0 000
60 0.0 000 n.0 000 000 000
90 010 0.0 n0 000 090 000
120 -.03277557 -.02864778 -.02S448?d O.0n060669 0.00038843 0.00079368

MSE

a
8

000 000
90 I.0 0.0 n00 0 ^0120 O.00A04460 0.00682a59 7 4.0026+	 9	 0 0	 90.	 0 003 3 90.00000	 16 60.000000 2

REO.MSE

• 8 •8 8 8
. 0 0.

0*0 0:03923180 0 :15401 917 .1:185339sp.1 0 11 08240 1.385612 49 7	 71. 5233 0

A-66
	

A-12

I

^4	
--Aj



STRATIFIED PROPORTION ESTIMATION USING PROPORTIONAL AL

SEG DOTS

ul to
0
8
05 120

e1B is
853 120

} 90
1120

1
060 30

20

060 60

0 60 10

S 0 90
50120

1 104

0is

1 0

W t°
01675 12

85 as
805 120

577 30
577 60

1 77 90
1577 1320

6086 60

606 120

8666 30

26 120

vAeMY

°:n0
01
> 93s.^471

01116g
000157?
0:000870
0.0nn74S

0:001$'11
O.00A 4
0.000070

0:004174
0	 9.00107
0.004919

0.001945
00OP014
0:001Js4
0.000 52

s:0IM11
0.00744
0.001959

.004480.60»
0:00107

0.00 14
0.0005. 3

0.004951
0.004381
0.004349Mon?"
0.004AS4
O.00PA
0.00175
0.001235

00.007599

8:003%90
.001304

AMAF. 11 A
VAR 

60:002 A
n.nnl 9
0.001430

0003914
0:00 1 4  4
0.00 064
0.000990

0.001090
n.on1 S215
n.on ^^
0.000 6

0.009369
6.04

1?
?044

R.00^1644
0.00'1094
0.001590
0.00 03
0 000Ai

0.ons17181

0:001545

0:A0e2y^
0.001516

0
.001476
.00 0

0.000 4A
0.0007+62

0.000827
0.000434
0.000313
0.040196

0.004377
0.002297
0.001644
OoOO1306

OoOO6141
n. on 62
0.00 b4
0.00 49

tVARLS	 VAR r)

0:00944 0:640707
0.00117 0.616830

a 0042 k 1 0.3 39S
0.0021" .4 dab
n.00147A 0.368437

O.n01147 0.412508101

o:001n7 0^4459Z
000A
n.. 06	 1 6.54++598+

0.00364A 0.68722.4
n.nn146S 0.579929
0.001079 0.54663'17
0.000810 0.620411

0906469P 69S62V30
09001790 4.5804Ab
0.001337% 0.536641
0.000815 0.543179

0.00%145 1.IJ4145
0.00^4A% 0. 6 1
0.002226 0: 8113S41  
0.001ti46 09410

0.404]1+4 0.62401
O.nn2 47 0. 6 4841
0:001066 0 :62e5yx

O.0n1434 0.578474
0,nOORISA 0.53 4477
0.000742 0 50100b
0.000494 0.466463

0.006874 10005363
0.000'1%0 0.810335
00000391 1.40722 0
n.0nn106 n. 69014

n.0042?0 0.6588%0
0.00 407 0.773940
0.00 969 0.7113459
0.00 7%6 0.671120

0 0048I 0.939657
0:00271A 0.762772

O:002711 OO :69a9o4:

AMOEbe
VAR RV

0.61 079

$:MCI!
0.76p0133

0:4590089
0.55 0477

0.487349
0.479664
0.41,

820n•364

0.5688

n66673256
0.569 b7

0.441525
0.4S3R94
0.44 37
0:46686

0.69336
0.68 4 6
0.7624 6
0.762

31

4 1

0:87399983
0.8852dd
0.88112610

0:52278539

0:57 475

0. MOOS
0.918121
0.994042
0.0328247

0646
09
43 2 944

0.7219

0.5j784008
0:76527
0.766334

1 SOC49 .
o:Myls
0.606595

n.
6 dS

0.
182ff

0.6 
'1440.647 38

0.5' 66861
0.318534
0.5 S654
0.448341

00615791
0.494569
n. 46269
0. 46967

0.670451
0.51316
0.5886 0
0.476820

"6:803771
0. NOS

0 224610
0.620400

0.42386 1

O:S12964
0 431611

0.929719
1.164354
1.?^398 14
0. 706770

0.57 003
0.05 4

0:9S 581

0.59657349

0595749
0.670387

r

s	 ;,	 A-13 A-67
'1 v '`^111 ^^V

C^^



1686
16A6

30
6O

•00 4 A7,
0 .001	 70

4.00337
0.00235 7

n.no?	 7
0.401810

0.84	 >7
0.7 8877

0.64K 02
q .9p5	 3es

0.465787
11.7	 A1009

96 O 0.001?3 Q 0.nn13A 7 ( ► .401 07#4290 0.799-422 0.75030
16A6 120 O.00 n _96 o. g nll.j 6 0.000 54 O:

.
6A862') O.A7379U O.5 4641

1803 30 O.nonQQQ n.nnO936

1 18, 801

n.nnn2Z13111 0.9062A1y10
,259 n.587o59

5nlo
0
0.806631

o.4061503

O:6226391200 0 oon179 0 Ono 0A O.nno1^1 n:6913x5

A99
99

30 00017Sh
:001A73

0.004340 0.nn4334 0.468j9v 0.544992 0.540168

99
60 0 0.00166? n. n Ol'j4 ?

011994x,1794

0.465 76 0.4141N4 n.3980bb
90
120

0.00 150 0.00136 0.00194 0.5^46A4 0.21425 0.441+	 1
A?.000 0.041044 n.nn0 26 0499648 O.5 00342

03
0

30
60

0.00?914
0.001153

0.003676
0.002096

0.004294 0.374400 0.4724 8 0.55 776
0.550p11

03 90 0.000906 n.n01264
0.00?175
0.00140.1

0.347100
0.349243

0.538653
0 0 3d679?

032 120 0.000749 O.Qon969 n.4O0e48 0:3

1

N4

1

E130
794

11.
. 48
497 (10 0.435841

3
60 000014 9 n:000780 n :Onl3QI 0:752239 0.5 43644 0.97133

1

033
033 90 0.00049 4O.no07640.0 nO616 11.93507V 77
033 1 20 0.00052?. 0.4nn531 0.00047 0) 0.727264

0.&S48
0.740112

0.7990 7
0.663843

1059 30 O.OnI6461 0.00136 A 1I.n113591 0.44411• 0.4;0574 0 43AO39

1
1059 60 0.00190n n.nn1553 0.nn1415 0.46'

1
3251 003

0
AS

0
79 0.3415070

1059 O.n0^AS6 11:0 08 7S O :noo969 o:417471 0 :42693212o 0.4724755

1166 30 0.noisg o n.0016SA 1.002n25 0.77?634 O.A04740 0.984205
1166 60

9n
O.Onn77x+ O.Onn63?

0.00n474
A * WN If06 0.75490; 0.614148 0.980271

166 O.00A444 O.Onna4A 0 . 64	 1A`i 0.698611 1.002g99
166 120 O.00 n40? n.,100467 n00034? 0.76()424 0.999565 0.665585

2
239 30 11.001A17 n.003167 q .nn

1
7.7S4 0.e+1?615 0.6

p
83444 0.S94p169

239 90 0. 00110 11 0:00^P5n 1):nn1134 0084145o 0:550304 A:7343411
239 120 0.000926 0 #0047 149 0.000614 0979Q 1ot 0.681252 0.530059

1317 6
311 0.0044 9

0. OOPS
u
34

11.004675 11.003899
n.n017 ?7

0.55503:3
0.636640

0.5971 46 0.489705

1136
0 noon

l
?.101 0.5

0
2
3
772

4
7 0.433927

:04^97 A 0 041034 0.491563 0.521841 0.6621241367 120 0 09n0111A

630 O:n01954 0040150 O:nO?94 71 0 :970270 1

1 5111
9A 11.00P 235

0
0.001917 n.0023AA

:0872Q700 0:7885
0.496620 0.769146 09958286

120 0.001295 0. 1 01311 0.0017ti1 0.92A910 0.702395 0.942318

A4-9
	

A-14



s

AVERAGP'S
P

CLASSY AMAFWA I9')('L%	 CLASSY AMOFSA ISOC`S
SEG QOTS VAO V44 VAw	 VAR qn	 VAk Rh	 VAR «^1)

3n .003AS284S
.n01A15QS]

.00359l?SA
1.nO1414a

.401 6 15516

. O nj7 t^yyd
•h874490 8 .927;ebj64 .635414411

Q0

40 .A0410JArkS .441164474 •141444 ►!55 .614 7 lOb44
.636	 1711 4 .hl64 b AO

.656 49 1 y
.b 9446
.64483174

124 .On A04%70 .4044455?? .nAoQAhS70 .6 6 S 771 •6ht 65417 .b2434691i

VAW16NCF S

#7LA- 4;Y AMOFHA ISOCLS ASSY	 'AMOEO& ISOCg
SEG SOTS VAC VAR VAN	 V k K o1	 V4R wi)	 VA4 0

in •400404147
.nnonanh4A

•,I A A002433
9.nnnnon7

•01WA020A3 •n5344hPIA
.n21444247

. 4 1 99l440b •na5356948
to
n 000004101 .9.00000 4 3

. nO40n0464
1.nAAAOAA •041-020)4%

.n 11225?n4

.074444%27.
.A42^45319

422 6224335
120

.

.004004143 .004004164 044440350 0 441 1 1450k .O2411Shc4 .023863912

A-15	
A-69

CP ^



STRATIFIED PROPORTION ESTIMATION USING SEQUENTIAL ALLOCATION

1005 CLAgSY AHOEHA ISOCLS
AIRS

30 060 0011 non
60 - .0?771n n o t) n.p
90 - .03437n -.n?196n 000

120 - 90343 ?n -.O?7500 -.n12560
"SSE

30 0.0 040 O.nFO 0.001361 non 00090 0.007456 n.nn4429 060
120 0.001771 0.0n4n66 n.nO)41R

REO.MSE

60 0.11 0.11
008P0,419

00 1.17738 1:756413 n:°
120 l.hOP32o ?.149 k95 ti.74a571

1P53 CLACyY AMOFHA I9rJCLS

HIIt>

30 -0006AA0 - 1 0014011 n.o
60 -.0215nn -0120so o.n90 -907.40An -.11124o n.n

1211 -*0;)41 I n --012630 -.(11P30S0
M.;

30 O.n0»04 0.0f)SOF? n.0
60 0.007A74 n.nn3n84 n.n
911 0.007045 n. g 03n27 non

1?0 0000193q n .i ► 02862 0.On1736
JE•N.MSE

in 0 452494 A 71440; 11. n60 0.647237 n:4	 1107 non9n 0.A64474 1.2876 61 non
120 1.1192956 1:617064 0.9R07nA

A-70	 A-16



15?n Cl A«,Y ArAOFaA 1ti')CLS
1+1 Aq

10 010 — ..)1 O 'e l n i) . U
60 •.n?1i1:in - o fwn9n n.^
90 Apt 47 , —01140 non

120 -. 0PQ440 -.033090 0. c10190n

' M^F

30 0 n.nn%pe; non
60

:0
0.001470 n.nn 247 nod

90 0100169Q 0.nn ,M6h 060
120 O.On3,%4A n. ►►n?H10 0.00114a

OE,).MSE

in
4 0 .0474111

0 .0 n674 31211 0,11
0. 441034 non

90 .C,Al%ign 12?7132 0.11
120 .n9lh4a I:hn3925 7HI

1?31 CLAGSv AMOFAA 1',-)CL^;
►+ 1 A A

30 0.0104140 001) n.n

q f0)
1N ..

p :10134?fin
^ n ^

-:011114 n 0.11
120 p.0»QQn -,nn 04n n.nl)?A ?0

.+IMF

3n 0.0010 73 non non

q^ 0:00PSOS A^^1144 7: pall
120 0.OnP31q 0	 01)114h n.nnobm7

QECP * MSE

30 0.48464n 0 6 0 000
SO 0087ASHA

n o n non
90 1.18572 n.684467 0•n

120 1.46? 73 0.7;12813 0.43313?	 .

A-17	 A-71



I nAo Cl Ac5 v A40FIlA 1 SOCKS

^1a4^

30 -.n1223n n.n 000
60 -.024400 - .03SR9 0 il.n
90 -.02()OSf1 -.019940 0.0
120 -.03lS7n -.042390 n.n

MSC '

'	 30 n.on4n76 No n.n
60 OoOOP74A n.nO3396 o.n
90 0.0n;)69? 0.1101143 o.n
M O.00P774 O.On:?96S O.n

REi3.MSL
10 0 6A Q I?7 n00 00r1

60
0:924499

1.1 46745 O.ngo
1:473120 ?4S ?.ou p 31n n;n

A-72	
A-18



A-19 A-73

4vruAr,Eq VAR IA NCES
-	 •--

CI.A CC Y A-40e.0IA I%nCLS	 CLACSY	 AMOFNA	 ISOCLS

BIAS

30 -.nnn11 g l l j -.nnS H SIIOO n . f) O.4nillto lv7 O.nOn037A4 0.0
Al) - 0141 1;09 -.n224RWS n.n 0.04)136b71 n.00nOV26b 000
qo : n 1 7Aloa9

: : 0
-.02010199 q.11 0* 0 0045 l3 O.00n1J612 0.0

O.n0007423120 04AgQ8 -.n?l	 3498 -.0114»5000 U.00046 03 0.0()011 F164

MRF

30 0000?4%ln,) n.01S1l5nn n .0 0.00%)00020 0000nonnnl 000
60 Q .oO?.9b R?o O.nn32%9nn n.n 0.000001124 0.00000002 000
90 .00?77940 0.10?98244 n.O 0.00()00030 O.00n00090 090
1?O 0.00P74940 t).nn?769An n.n01.24S7S O.Ononun95 O.OUn0 p 097 0.00000015

QEn.^cF

10 0.54175025 O.7PQn1204 n.n O.Olt#A9542 O.On n 34721 0.0
60 q .98624h55 0.11 0.011318 2% n.n

1
l3aa125 0.0n.873^.0294

n u.11A P2 701 n4;146340 0 *0i.3d6d544120 1.F?^nn954 1.61'A+lo4ah^ ;7u 4/Q $306



STRATIFIED PROPORTION ESTIMATION USING BAYESI'AIV SfQutN^7AL--ALC	 0

inns	 CLACgY	 AMnE• t%	 VWCLS

-+I a^

n Q.nna3^,n n.,^ ^^^

40 0 (MA i4Q -.rl1?140 1).n
90 0	 00;1 71 n -. nn54Kn -. no pim 70

120 0	 (1011%1 n.n00n30 -.n AS 14o

NSF.

30 n.nO;lS,^ (I ' ll 0.n
60 0Onl3n n.nn316? no
90 0.. 00044; n.r)n)211 0.nn11140

120 O . nnnh-a-i n . nnr)As2 n.nnnAA2

30 0.	 '1A	 t4 (1.11 n.C,
^n 0. 4c 14 n.A1546,) n.A
90 0..33cnb7 0.430754 0.w%/7 41

12u 0.3A11;jn n.4sn 4e P4 n.4Aoh,j17

ISS3 CLACcY AmoF_W A BOCLS

-41 A;

30 0.021	 4;1 n.01716n 0.11
is n.l?n11n n.r)17 r+21) n.n
90 0.61A3wn n.;rt7>bn 1).n0w7r-o

120 q.r)l^l /n n .u123 1'n 0.11116%41.0

%45

3 0 0000;)2 14c n.f)0 I 's 74 rt., ►
ho 0.nnln17 n.,1 n 1712 n.,,
90 0.non75f+ n.r+nlo g l o,onI is#%

17o o.nnnS?.0 n.nn"96 010011121

0f.r1.miF

30 0.3?4141 0.ti1 y 1d5 n.n
Fn n.797o72 n.4A4P4y n.n
90 0032nt a2 n.4n?ns4 n.574apa

120 0.203559 n. r,0(0t,3 n.S7e l?

A-74	 A-20



1231 CL4CS Y 4MnEN4 lSOCLS

1.4145

30 0OnI3PO n,1) +^.+t
60 -,00164n -.00754A n.n
90 -.401 Rnn -. nOS4 7n -.11 i4 14A

1?n - On33 1in —.41411700 —.n?4110

MSF

zn 0,00^0?7 A90 41.41
FO 0.0411101 0.+101831 n.n
90 O.00nhAQ n . 10112n n.(I+tlaot,

120 0.n0n4o-4 n.+lnn 151 n.All 1 n4v

7 4 ) 4.314( 71 A.A , ► .n
60 A047131 n,s74».1 n.o
941 0.z 1aga7 n,5?yh77 n.0,1er.37

1 p n n.39 J4kk n.47519 m 0,h6l9,S3

10+50 CLACSY A'A(IF.RA I	 CLI"

10 n.Oln30n —. n ?S?541 n.r
60 n.00C^4nn —.n15r y n O.n
40 090AP3" -.ninlSn —.nrn4it4n
120 O.Onll:in -.On725n -.n149.n.

MS f

30 00n0104f"^ n.un3831 n..I
60 41.41nlnn? n90n1S19 n.n
Q(j 0900n670 O. nO113S O.nnloln

1 20 0.00nh4n n.nno y55 n.nnnyOH

P EO. MSE

30 0931414iA n.546 ,)b1 o 

941 n,33°151 n.574h33 y 0 Ci l 	 .+73
1?0 0.4374QW O,h45195 n.:,l.^44P

A-21 A-75



1520 CLASSY A%InFtiA ISUCLS

hIA e,

3 0.0042An -.^)	 4124 n.n
66 0.007^hn -.n 46 10 n.n
40 0.007S In -.n03F5n ^),I+wasg0

120 0.004160 -.On ps8n n.nll;,^n

110 0.4np7h0 n.nn ia3Q a,o
60 0.00i41A n.nnlhh5 n.n
90 0.n nA44 n.nnl>h7 n.4n#17 0

1 ?n 0:OnMA410 4.1)00421 A, (so 11hah

OF., ).MSE
30 0039c; l mp 1) 1 4 43ou i Gen
60 0.4044404 n.-?SO n.1)
90 0.3611n7 n.SSo a l h n.11623h

1 ?0 O:IAAh 1 S n. S?5469 4.3E+04449

1604 CLAeSr AoOE^A TCUCLS

MI AC

30 0.01109k n A,O;)104n Gen
6n 0.01i7^n n.o21 1M 011)
90 0.n0: 0,4n n.n136 n -.n04-;7n

1 21) O.O0n.r4n n.n1NnAn - . nonman
MSF

30 0.007777 n.007740 n.n
60 0.00znra n,nn1494 n.n
90 0.00??23 4.042467 n. n f , 1 vof,

120 0.001	 ?S 0.001764 0.4l+1?yN

QEil.MSE

30 4.9i^4a1 n04 W94? n.n
60 n.73cA1l 0,44nh g l^ n.0
90 0A0?iil n.A90n5 n.77n 1 3n

n.hktAM120 O0:132096A n. 44ARSA

A•76
	

A-22

94



l h 7% CLASSY A -1119-4A T QnCLS

-i T V;

30 •,nnn4an n,n n,n
040 -.n0,%15n n,•1 r).n
90 • ,0n4ohn •.rl?	 M	 I - .nO117ir

120 -.n0^7Yn -,n3 n.M -.nn710n

m%;,;

in p.nn-1ggh M " l ll,n
60 001	 IA n.0 l^,n
Q O nnnOil1214 4 .0n;)r1f* 7 n, nir l In 3

120 ONO M SM A 0 9 on17u? A"100921

30 n.a a yQ
0.^^A n. n,r1

60
40 O'Wniy

n,n
n.A 141594

000
n . 5h%jq11h

12 0 0. 4 nn h?Q n.99 llhh'j +l , y 474

1405 CLACCY AMOEmA Ic-rrCLS

p1 AS

10 O.nompin n,n n,^
60 -.n01510
90

120
00A%V0

n3S? n

NSF

in O.nn176;7 n.il A,n
An 0,001OP7 n,n n,n
90 O.nOn671 0, ,tnl gh4 n.nncth4;

120 0.00n560 O. nn I l In n.n104AA

RCS). MSF.

10 0134414n n, n
60 0.4441410 n,lt n.n
Q 4 0,44n0An I.ri y 1h45 n.42111r,3

120 0.440044 0"070?? 

A-23
	

A-77



I V)?? lr.I.ACS Y A-441F04A 1SOCLS
.41 AS

30

128

•.n0p71n
-.A47490

• .0$O"PO
4.11
-.nn yon

•. )0	 40

O.n
non

- .n°+.»g7n
•4SE

qq
bt1
QO
120

8 .0AA56A
O.Onnian
004001?6

Aoi

n.nnnp9A
n .Jnn73 14

11.0

0;^40141
n.nnnlil

PFO.•ASE

I0
9A

174

4.SQP449
.4306. 0
.h^1i3Pn
0741p•.(;

n.o
1. Afig'i5Q
o.,l	 O mh
1 0 4	 A19

n.^
non
n•Slh 4044
n.5hj>>n

1446 rl.4rtir A'40F14A tSOCLS

MIAti

30
40

.	 90
120

OnopAw n
0:01POnn
0.n1As.pn
0,4120110

- * 044404
- 0040-21M
-.# ► 01450
n. nOn47n

(1.i1
1190
- .nnPann
n.4+1)1 A!%0

'NSF

R
A

174

. Ainia

.^ ??n^^

.001:.71

.0017!?,

noon 3446 .4
O.aA	 :1	 a
0.00114T
o.QtllA y11

0.11
non
A	 oin l I Q4
4.c ► O^V7Q

ol:q^acF.

30
AO

1P0

04AW ^47
0:%AA 6:1
0.bS	 117

n•52?4yP

1.Sohti4;P

0.t.
to

11	 .417y2

A-78
	

A-24

l^



16AI CLAcSof AMnS^Nq 115 CL^

-41 Ac

'111 -;n v4nn
•n^c^4n

n47 511 11._ ::0
_.Q^A

n
hn 11.11

411 -.n074^n -.n1447n _,.,^^wfi14
1 ?n -.n071`^n - .AIP430 - .u^ti7141

,4SF

'10 0n.nna777 n.nn4 y tia p . ii
9n A;DOPOLk A ilnpk l%l 41 ,no)I

1^0 0.nn+ 27P 4,A01 y4.. oi.nn1o74
1)h ► . MSt

10 A.A774
?
1il% 1. Is 7 o o, fl .n

0 pp.74oAyj ^; 4A37IQP an 7^r►
120 A.a^a4iPI n.a r,lh?5 11.5	 ^P11a

1bAb (*I.AC,Y AAM FMA 15^CL5
X11 A C

31) -.(^?1 q 74 _.(^4A46 ?n (1.	 '►
An -.n n7Sn n.Pi 11.11

90 '•n} °^in .`177^h n _ ;ni'^1 ;n
ltn -.o a =.OPI 40 _ nA3A?sl

MC..

711 0.1)41741 n,0n?Sv 11. 11
An p .002AAA 0.') U.
an 1► .001444, n. • 111 ^1g7 n. n p•:u7t

1?0 0.11011464 n.nn17 21 a:Anni%%
at'.•^CF.

f n A? 1 7; A 7Q
noon

irl
:n

'in 11.4?n;pPA 1.33444^j n.c.:n?n"
1?0 n.AIcaSfic 1.i777J n ^^.^.h^ih?y

A-25
	

A-79



1##A3 rt. a rts I AMnIP".1 tt")CIA

.41 a^

10 -.44 4 41 n 4.11 nor,
y4 7

^0'A 	A•.	 h%
y1^

.. , ^^1. 7Z^)Q115 441) •
120 -.nopn3•n ..Anf,;^rn - .p^4740

1A 0."(lA441 R.n p.:l
AA 0,411AP44 n o el R,^
90 A,nflAlwq A* no	 0004 11,11011 Abo

1?4 ^.II A n11A n,,lrtfi 4 •il n,^InA I4

10 0041P4ph no e l 1^. n
¢0 (1, 16 VIP A.,1 ,i,ft

A 0.g^1tli7 R. ,;01p07 n	 41p,
ITA A:4%711/ n.57S0,4a -1,4 0 1v104

1499 cl. &cc r AWW'4 A i SnCIA

,.1 A

Ao
4,444A in A,4, n,h

0011 An 1)	 !1 1%	 11

94
124

..n4n ,n hNhOpa► 11
(1 .4..1 41

4#1
a.n112tit^

2 .3,1

MSF

7A O.II49r%(.;O 4,n 0•n
b Q.AAi,1 ,•4 0,41 O.n
9 8.840,41% n,nA.7AC ,),11Altyyy

12 0.04401	 1 n,=1t1P4tA 1),,110434 It
ok,1.McF

d4 0: 27117601
a0

A,.1 11.,,	 ..
0. j047Aj 1,4&1 .4 A. n,1ii	 h11

1TA A. 4444 1,1,U •4431 n,4i4^40

A- 26A-80



103? CLASgv AMnFNe IqnCLS

►+lnc

30 00n I SO 10 n.n n.0
60 0.n2S,iin n.nnIISn n.n
90 0.n 2a^tn n.pn-S33n n.nnogin
120 0.n1094A n.On?.64i) n.nn4760

^"Sr'

30 0.0n1661 n.n n.0
60 000139y n.nn163A q.n
90 n.nnnoc7 n.onn907 O.nnnh62
120 0. (I nn 76n n.4nn6jj A*n(1n6hA

QEI)o.+SE

30 0.2p+n39 0,0 ^.n
60 0.35QS-eA n.4lanno n.n
90 0.3A4431; n .34a774 n.33?3A4
120 0.39n6(%4 n. 325306 0.3432.4'4

1033 CLACSY AmnEyA ISOCLS

alai

30 -.nln..4n n.0 0.0
6 n -.0n771n 0,0
90 -.007740 -.01247n -.002810

120 -.0075 Qn - .0132.Fn -.cn&

M5F

30 00001661 n.0 0.1)
60 O.On4994 0,3013b3 0.0
90 0900ASAP A9000600 0. ►► 0oSV

12n 0.000526 n,00nS54 0.000460

OE0**ASE.

10 P,A7 Ay is nn 1)on
60 0.692971 0.950061 n.n
0 0.597~14 n.6?775 +1.At36>n

120 0.7114,11 0.771743 n,b41211

A-27
	

A-81

51



1054 CLASSY aWOF4A ISOCL S

0I4 S

30 -.0071nn n.o
6n o.n000an -.nnnn;^o n.n
90 O.nnni4n O.nnSSnn n.nn W4 7n

120 0.00197n n.00S660 n	 744,n

M,;F

30 0.0215l 4.(? 0.0
6n O.On1375 n. n nl)SA n.,j
Qo O.nona24 I * onn736 u.nn, ► 6•.i
120 O.nOn618 0.00n529 n.nr)03y7

PEO.mSE

In o.P62417 n.0
60 0.339275 n.l92373 n.n
90 0001763 0.769240 n.P44444
1?n* '0.301517 0.25 M 177 0.193431

1166 CLASSY AmOF_ iA ISOCLS

HIaS

30 - .noASAn n.n n.n
60 -.n1n4.0 - ,001920 n. n
90 - .0097141 - .U1?O+SO -,OOA31n

170 -.00R70n -. f)1?2Kn - .nnsbjj

"5F

30 O.no14,4S 0.0 41.41
6o 0.00nA16 A,nn1n70 r).n
90 O.nOn5t41 n.00046A 0.nnn507

1?.0 O.00n4n7 0.000369 n.(!Onlyn

JE,1.-ASE

3n 0.697136 n.n n.n
60 0.A 316hn 1.139394 0.0
90 O.k6n94 ►, n.691686 n.7.3ai71

120 0.7917AA n.714a66 0.757564

A-82	
A-28	 `



1219 CL Ac,t aN+gFRA ISnrLS

►f I ^
30 0•00ON411 •.o2 l% v%in ')on
hA A.n0>l"A -.01 3130 non
90 0.001590 - .nINA bo -.nnll3n

1 ?n n0n011in -4o1 g 14n -.nn?6Q0

NSF

'i0 O.n01 A14 O.AII?dtiK Q.il
AA 0.4nA45 A 0,n01564 A 
90 0.nnn5^g, n.nn1n57 1.1100442

120 O . n0n4 NA 0.,1-1A#4 49 0.1'0115 33

I-%F_;1..44;E

i0 0.74Ap4 •; n.hlFShc 1'..1
An A.37n?721 (I	 "Is115 ,)..1
90 0.4044(17 A:bg4474 n,6n9177

1?n 0,40'14A? n. 7244 P4 S4 S4?6

1:J4? Cl. A¢Sv A14'T 1A I SOCLS

MISS

30 -.nnAlpn 0.1111192n non
hA -. o0al7n 4	 1)07tiun non
90 -.00047 ?n 0.00	 100 -.^1n16o0

1?I1 - .0(177>n n.nn336tt - .uU1y1J

«ISF

71' 0.n07nln n.nnA 37 A.1'
40 O.nnl7^.r, n.nn2Uj 11.n
90 0.onlll? n o ollI hif, n."If)1018

120 0,onnA3o 0. I10113A 0 0(101546
PEi). MSt

30 003a05h? n.h4 c;jnn n.l,
60 0.441?1'a Ae%434b1 n.ng o A.4o4S1 ;) 0.61 ;Sol r.3r13tia3

120 0 . 4p153? n .571 y95 n.:4?4716

A-29
	

A-83



151? rL4SS'( AmnEPO iS^ ► CL9

AIAS

30 0,1) n.0
60 -.00911n -.0156441 0,0
90 -.005910 -.01450 -.07174n
120 -,00^Q5n -,0 49g n -,n1k350

4

30 n,0071 47 n.n n,n
b0 0.007774 n.no1 ,#6:i 0.n
90 0,001411 n.(1 0 ?42'3 n.an17A5
120 O,n01300 n.0n1h43 I),nn1533

PEI'I.MSE

30 0,95446a n.0 0.11
60 0.74Pnr;7 1,n5QKy n 0.o
90 0.11476 4 n, ,i ??-o1h n,6441da

120 0,69g613A n, ►+70-44P r ► ,a^?71n

A-84	 A-30

(^k



€

IMF ME

 a
^	 P

7

t

~^-	 AVt RMO. c VA W I ANCtS

CLASSY Ai40ESA 15A(.L5	 CLASSY	 AMOFAA	 ISO CLS

BIAS

30 0 AOn3h 4 I+ -.nA%*lh6h G.i) 0.00I,10'y0 0. 110 4)515nv 0.0
60 O. AAW aq -.n"inf%?.S 1.11 0.0q- ► 1213 54 0.00413438 0.0

193
-.04437000 -. On44914t - . ^^^ ► QJh19 O . 00"AA P. 77 O.u0n201 g 7 0.00007368
-.nOn4nl g n •.41045la4s 0.00017815 0.00007746

MSF:

30 O4n0pR57y6 !1.nn ,%22?11 n.0 0.00000367 n.0000OSOJ 0.0
60 0.04149AA4 0.00217406 0.0 0.00000065 O.o0non119 0.0
90 4Oon9Q^+90 o.nnl40Rn0 0.uungg 719 o.Ondon030 U.n00000B 0.00000021

120 O . AAn7^ti^E► o.nnlOh86? 1.4101175913 U.OnOA O OlS O.00n0003S 0.00000012
. RFn.MSE

g

0

0.44676A64 0.7683Q .15R n.n 0.045047110 0.10229522 0.0
6 0.	 11 8

1
91 3344 0.722Z2d

1
h340 n.n	

1]
0 03ft610A4 0.0628

0
9 

1
72 0.0

120 0. 19b^A?Q 0. 73hh 107 0.52744492 0:03SP1393 0,08057 29 0.02143240

A-31	 A-85

^S



r.

EVALUAI

5^



APPENDIX B

EVALUATION-OF BAYESIAN SEQUENTIAL PROPORTION ESTIMATION

USING ANALYST LABELS*

By R. K. Lennington and K. M. Abotteen

1. INTRODUCTION

A previous study by R. K. Lennington and J. K. Johnson (ref. 1) concluded by

recommending a new procedure for crop proportion estimation. The procedure

consisted of two steps. First, the Landsat data were to be clustered using

the CLASSY clustering algorithm. Then, picture elements (pixels) were to be

allocated to each cluster strata and labeled using a sequential Bayesian allo-

cation scheme developed by M. D. Pore (ref. 2). The labeled pixels were used

to form a posterior distribution Bayes estimate of the proportion of the class

of interest. In tests involving ground-truth data from 21 blind sites used in

Phase III of the Large Area Crop Inventory Experiment (LACIE), this procedure

was unbiased and had an estimated mean squared error (MSE) approximately equal

to that of a procedure called Procedure 1 (which is based on the sampling of

individual pixels) and uses only one-third of the total number of labeled

pixels (ref. 1).

In order to explore the feasibility of the new procedure in an actual labeling

situation and to perform a preliminary evaluation of its characteristics using

analyst labels, a test involving 10 Phase III segments was undertaken.

Section 2 describes the procedure used for selecting pixels to be labeled and

the method for obtaining proportion estimates. The data set used in the

experiment is described in section 3, while the results pertaining to the

accuracy of the andlyst labels and the bias and MSE of the proportion esti-

mates obtained using these labels are described in section 4. Section 4 also

presents the conclusion and recommendations.

Published by Lockheed Engineering and Management Services Company, Inc.,
LEMSCO-14355, NASA/JSC (Houston), April 1980.
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2. LABELING PROCEDURE

For the purposes of this test, the Bayesian sequential allocation procedure

was implemented on a Texas Instruments TI159 programmable calculator. The

version of the allocation procedure implemented was slightly different from

the procedure used in the previous study (ref. 1) in that a beta distribution

was used for the prior distribution of cluster purities rather than a

quadratic or exponential distribution. The form of the distribution used was

as follows.

9(e,) ° rraafb ( 6 j ) a-1(1-ei)b-1
	 (1)

TW

where

b-1

a a

1-p

p - the estimated proportion of the class of interest in the whole
segment

the proportion of the class of interest in cluster i

g - the prior distribution of cluster purities

The choice of the parameters a and b ensures that the mean of the distri-

bution will be p. The parameter b was chosen to be fixed at a value of 1

because that value seemed to give the best fit to the previously obtained

empirical prior distributions (ref. 1). Initially, the parameter a was

chosen to be 0.515, corresponding to a p of 0.34.

The beta prior distribution, although not identical to the prior distributions

used in the previous study, is not greatly different and does offer some

advantages. It may be used over the entire range of segment proportions;

hence, the use of a prior distribution for large proportion segments and

another for small proportion segments is unnecessary. Also, the similarity.of

B-2



the beta distribution to the binomial distribution allows the calculation of

the Bayes posterior distribution estimator for e i and the expressions for the

bias and variance of this estimator with comparative ease. In fact, the beta

distribution is called a "natural conjugate prior distribution" to the binom-

ial distribution for this reason. In addition, tests performed subsequent to

the work reported in reference 1 showed that use of the beta prior distribu-

tion with ground-truth labels produced results which were at least as good as

those produced using the combination of a quadratic and exponential prior

distribution.

Using the beta prior distribution for e i , the Bayes posterior distribution

estimator for e  becomes

Xi + a

ei	 ni+a+

where

n i = the total number of pixels sampled from cluster 1

X i = the number of sampled pixels which belong to the class of interest

The bias and MSE of this estimator are

a(1- e ) + be
Blas i	E(ei - Ai)	 n

i 
+ i a + b	 (3)

MSE = n
i e i (i - e i ) + [a(i - e i ) - bei]2	

(4)i	
(ni + a + b)

where E = the expected value operator.

The allocation procedure begins with the allocation of two random pixels to

each cluster. At this point, p is calculated as

, _
p	

(T"ti-);,
	 (5)

(2)

B-3

Y



where

N i n the number of pixels in clutter i

Nt = the total number of pixels in the segment

c = the number of clusters

The parameter a is then reset using the equation

a = ^-
1 - p

At this point, the sequential allocation of pixels begins. Succeeding pixels

are allocated to clusters which will minimize the expected value of an esti-

mator of the overall MSE for the segment proportion estimate p.

The MSE for p may be written as

MSE._ _ TT 2 MSI 1 	(6)

A P t

By using e i in place of e iw in equation (4), MSEi may be estimated. We will

denote this estimator as MSEi(xi,ni)-

The expected reduction in the estimated MSE by labeling another pixel from

cluster i becomes

oMSE i = 
Nit
Ni2 MSE i (x i ,n i ) - le i MSE i ( x i + 1,n i + 1)
t

+ (1 - e i )MSE i (x i ,n i + 1)11 1 	(7)

1
Thus, each successive pixel is chosen at random from the cluster having the

I argent value of ViE 1 .

In practice, the CLASSY clustering algorithm was first run on a given

segment. Then each of the 209 grid intersection pixels was associated with

the cluster in which it was placed, and the grid intersection pixels falling

in each cluster were listed in a randomized order. The randomized list also
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contained the label of each pixel that had been previously labeled by an

analyst and indicated whether the labeled pixel was a type I or type II dot.

In selecting pixels from clusters, the first to be selected from the random-

ized list were the type II dots for which analyst labels were available. When

these pixels were exhausted, others were chosen according to the randomized

order within clusters. If a type I dot fell in this sequence, its label was

used. Dots other than type I were labeled by one of the authors (K. Abotteen)

using standard analyst procedures. A total of 45 p`Kels were allocated and

labeled for each segment.

3. DATA SET AND EXPERIMENTAL DESIGN

The data set for this experiment consisted of 10 phase III blind sites chosen

as a subset of the 21 segments used in the previous study (ref. 1). These seg-

ments were chosen to be representative of the previously used, larger data set

with regard to geographical location and range of segment proportions of small

grains. These segments and acquisitions along with their location and the

ground-truth proportion of small grains in each segment are given in table 1.

The experimental design consisted of selecting and labeling 45 grid inter-

section dots from each segment. Repeated processings were not attempted due

to the limited number of analyst labels available.

4. RESULTS

This study provides the data for answering two important questions relative to

the use of analyst labels with the Bayesian sequential allocation procedure.

The first question concerns analyst accuracy in labeling pixels. Since in the

Bayesian sequential procedure more pixels are allocated to mixed clusters, it

was thought that the analyst labeling accuracy might decrease. The second

question concerns the bias and MSE of the proportion estimate resulting from

the procedure as compared to the bias and MSE of a simple random sample of the

B-5
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TABLE 1.- DESCRIPTION OF THE DATA SET

•

Segment Location Acquisitions used
Ground-truth
proportion of
small grains

1005(w) Cheyenne, Colorado 7177, 7159, 6326, 6254 0.348

1033(w) Clark, Kansas 7156, 6288 .095

1060(w) Sherman, Texas 7158, 7068 .231

1231(w) Jackson, Oklahoma 7156, 7066, 6288 .744

1520(w) Big Stone, Minnesota 7174, 1156, 7120 .301

1604(x) Renville, North Dakota 7143, 7125 .524

1675(s) McPherson, South Dakota 7230, 7176, 7123, 6254 .291

1803(w) Shannon, South Dakota 7178, 7159, 7123, 6255 .032

1805(m) Gregory, South Dakota 7211, 7158, 6307, 6290 .164

1853(w) Ness, Kansas 7193, 7067, 6253 .306

Symbol definition:

w - winter wheat
s - spring wheat
m - mixed wheat
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same size. Analyst accuracy will be examined first, followed by results

concerning the proportion estimate itself.

Table 2 shows the error rate in labeling sm--- I l grains (percentage of ground-

truth small grain pixels labeled "other") and the error rate in labeling

"other" (percentage of ground-truth "other" pixels labeled small grains) for

the 45 pixels that were sequentially allocated to each segment. The corres-

ponding error rates for the type II dots that are selected as a simple random

sample are also given. It should be noted that in every case the error rate

In labeling small grain pixels was lower for the sequentially allocated pixels

than for the type II dots. The error rate in labeling "other" pixels was

lower in two cases for the sequentially allocated pixels; however, the error

rate in labeling "other" pixels was generally fairly low for both types of

allocations.

As another test, one may examine the total number of labeling errors using a

sequential Bayesian allocation and compare this to the expected total number

of errors based on the error rate for the type II dots. The expected number

of errors was calculated by multiplying the total error rate calculated from

the type II dots by 45. These data are given in table 3. A chi-square test

of these observed and expected number of errors yields a value of

X2 - 14.811

With 9 degrees of freedom, the 5 percent significance level of the X 2 random

variable is 16.9. Hence, at Viis lovet of significance, we fail to reject the

hypothesis that the observed ::umber of errors are not different than the

expected number of errors based on the simple random sample of type II dots.

It should be noted that the chi-square test may fail to hold si 	 three of

the segments have an expected number of errors less than five. However, the

test may be taken as an indication of very little difference in the error

rates for the two labeling procedures.
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TABLE 2.- ANALYST ERROR RATES FOR SEQUENTIALLY
ALLOCATED DOTS VERSUS THE TYPE II DOTS

Sequentially allocated dots Type II dots
Segment

Error rate for Error rate Error rate for Error rate
spring grains for "other" spring grains for "other"

1005 0.4286 0.0417 0.5000 0.0270

1033 .7000 .0286 .8571 .0189

1060 .2778 .0370 .2857 .0000

1231 .0294 .0909 .0851 .1818

1520 .2353 .1429 .2500 .0909

1604 .4800 .2000 .4839 .3158

1675 .3571 .0323 .8333 .0208

1803 .2500 .0244 .5000 .0000

1805 .2000 .0857 .3636 .0460

1853 .1429 .1613 .2000 .0889

Averages 0.3101 0.0845 0.4359 0.0790
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TABLE 3.- OBSERVED AND EXPECTED TOTAL
NUMBER OF ANALYST LABELING ERRORS

Segment
Total number of errors

Observeda Expectedb

1005 10 9.135

1033 8 5.265

1060 6 3.015

1231 2 4.635

1520 8 5.985

1604 16 15.750

1675 6 8.235

1803 3 0.765

1805 5 3.690

1853 7 5.265

aNumber of errors observed out of 45
sequentially allocated pixels.

bNumber of errors expected based on
the error rate on the type II dots.
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Regarding the actual proportion estimates, table 4 shows the posterior distri-

bution Bayes proportion estimates produced following the sequential allocation

of 45 pixels, the proportion estimates based on the type II dots used as a

simple random sample, and the Phase III Procedure I estimates. The deviation

of each of these estimates from the ground-truth proportion of small grains

for each segment also appears in this table.

Several observations may be made from table 4. First, the average bias com-

puted over segments is smaller for the Bayesian sequential estimates than for

the simple random sample estimates or the Procedure I estimates. Thus, the

Bayesian sequential estimates appear to be somewhat less sensitive to the

effects of analyst bias. Also, the MSE computed over segments is smaller for

the Bayesian sequential procedure than for the other two procedures. In fact,

if we correct the MSE for the type II dot estimates and the Procedure I esti-

mates to reflect an average sample size of 45 pixels rather than the average

sample size of 63.5 or 105.5 pixels as given in table 4, we obtain

MSE ype II adjusted - 
63.5
^ (.0118325) - 0.0166970T	 "

MSE	
- 105.5
^T"PI adjusted	 (.0126021) - 0.0295449

These values, when compared to the MSE for the Bayesian sequential procedure,

yield the following reduction in MSE values.

	

S MSE
Ba es Se	

- 0.5137 - R1
Type II adjusted

MSE
MSE Ba es Se - 0.2903 - R2

PI adjusted

The reduction in the MSE for the type II dots, R 1 , is very close to the value

reported in reference 1 for the reduction in the MSE of the Bayesian sequen-

tial procedure as compared to a simple random sample of the same size using

ground-truth labels. Both R 1 and R2 represent very favorable reductions in

MSE values and tend to validate the results of the previous study obtained

using the ground truth.
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5. CONCLUSIONS AND RECOMMENDATIONS

This study indicates that the Bayesian sequential dot allocation and propor-

tion estimation procedure does not significantly increase the analyst labeling

error rate. In addition, as compared to a simple random sample, the procedure

reduces the MSE by a factor of two. When compared to Procedure I, it reduces

the MSE by a factor of approximately three. These results validate the advan-

tages to be obtained in using this procedure with analyst labels.

The fact that the procedure was implemented on a small programmable calculator

indicates that it is operationally feasible. However, it should be mentioned

that the dot selection part of the program was slower than the normal analyst

dot-labeling rate. Another yet-to-be-resolved issue is the development of a

technique for selecting pixels from clusters without revealing to the analyst

the identity of the cluster in which the pixels fall. It is felt that the

knowledge that pixels fall in the same or different clusters may bias the

analyst decision. One obvious solution to the computer-time problem and the

cluster identity problem would be to implement the procedure on a main-frame

computer with interactive analyst access via a terminal. Using this approach,

the cluster identities of all the grid intersection pixels could be retained

in the computer and therefore would not have to be revealed to the analyst.

A larger computer should also be able to select pixels faster than an analyst

can label them.

In conclusion, it is recommended that steps be initiated for incorporating

this procedure in a large-scale test using fully developed analyst procedures.
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