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1. INTRODUCTION

Significant research effort has been devoted to the development of an improved
crop area estimation procedure. This procedure would be a replacement for
Procedure 1, which was used extensively for crop area estimation in the Large
Area Crop Inventory Experiment (LACIE) at the National Aeronautics and Space
Administration, Lyndon B. Johnson Space Center (NASA/JSC).

Ir view of the deficiencies of Procedure 1 (ref.), the goal of this research
has been to develop a procedure which is efficient in the sense of having a
small mean squared error relative to simple random sampling and which, at the
same time, uses a minimum number of labeled pixels. These two goals are in a
sense complementary. An efficient procedure is one which obtains a specified
acceptable variance with a minimum number of labeled or training pixels.

2. CLUSTER-BASED PROPORTION ESTIMATION

As a result of evaluations of Procedure 1 by Jess Carnes (ref.), it became
clear at the beginning of the development effort that the classification which
followed the clustering in Procedure 1 did not significantly improve the
stratification of the scene. Thus, from the outset, cluster-based procedures
were developed. That is, the candidate procedures were of the stratified
sampling variety, where the strata would be obtained by using an unsupervised
clustering procedure. This approach had the advantage of eliminating the
type 1 dots used for initiating and labeling the clusters in Procedure 1. In
addition, stratifying with clusters was expected, on theoretical grounds, to
be more efficient than stratifying with the two strata produced by the
classifier.

In order to begin development of the procedure, it was necessary to choose an
unsupervised clustering algorithm. Three algorithms, the Iterative Self-
Organizing Clustering System (ISOCLS), the Texas A&M University-developed
program (AMOEBA), and the CLASSY program, were tested by applying them to 21
LACIE Phase III blind sites and evaluating the average purity of the resultant
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clusters and the theoretical reduction in variance for the stratification.
These evaluations were made using the ground-truth label for every pixel in
the image. A complete statement of the results of this is found in appendix
A. The basic finding was that the average performance vor the three
algorithms tested was remarkably similar. The only significant difference was
in the number of clusters generated. CLASSY generated an average of about 9,
AMOEBA had an average of about 17, and ISOCLS had about 37 clusters. It was
concluded that the similarity of performance probably indicated that a limit
had been reached in the separability of the data. The fact that this parallel
performance was obtained with very few clusters was seen as an advantage for
the CLASSY and AMOEBA algorithms.

The next stage in the development was to test each of the candidate clustering
algorithms in combination with various schemes for forming proportion
estimates. Six different proportion estimation techniques were chosen for
testing. Three of these were techniques which resulted in the labeling of
entire clusters. They may be described as (1) proportional allocation
followed by majority-rule labeling, (2) a sequential allocation technique for
labeling with a fixed degree of confidence, and (3) a Bayesian sequential
technique for labeling with a fixed degree of confidence. Three techniques
for stratified proportion estimation using clusters as the strata were also
tested. They may be described as (4) proportional allocation followed by
stratified proportion estimation, (5) a sequential allocation technique for
minimizing the estimated mean squared error of the proportion estimate at each
step, and (6) a Rayesian sequential allocation technique for minimizing the
estimated mean squared error of the proportion estimate of each step. Each of
these techniques is described in detail in appendix A.

The evaluation involved testing each of these six techniques in combination
with each of the three clustering algorithms. Each combination of clustering
algorithm and estimation technique was used with 100 different psuedorandom
allocations of ground-truth-labeled pixels for each segment. Initially, each
technique was evaluated using five segments. Promising techniques were subse-
quently evaluated using all of the 21 Phase III blind sites used in evaluating
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the clustering algorithms. The results of this study, as presented in
appendix A, were that only two of the techniques appeared to perform
consistently better than simple random sampling. These were proportional
allocatior, followed by stratified proportion estimation and sequential
Bayesian allocation for minimizing the mean squared error of the stratified
proportion estimate at each step. The proportional allocation technique had a
reduction in mean squared error over simple random sampling of about 0.65 for
each of the three clustering algorithms. The Bayesian sequential allocation
technique had a reduction in mean squared error of about 0.51 for CLASSY and
ISOCLS and about 0.73 for AMOEBA. Because the CLASSY program generated many
fewer clusters than ISOCLS, it was possible to estimate the purity of each
cluster using a much smaller number of total labeled pixels. Hence, the
Bayesian sequential stratified proportion estimate, using CLASSY clusters as
the strata, emerged as the best technique of those tested with respect to the
goals of this study.

3. ANALYST LABELING WITH BAYESIAN SEQUENTIAL TECHNIQUE

Because all of the preliminary testing had been done with ground-truth labeled
pixels, it was desirable to test this new Bayesian sequertial technique with
CLASSY clusters as the strata using analyst-interpreter (AI) labels. This was
the focus of the second study, which is reported in appendix B. In this test,
each of 10 LACIE Phase IIl blind sites was evaluated using the Bayesian
sequential procedure. A total of 45 Al-labeled dots were allocated to each
segment. The result was that the Bayesian sequential procedure performed
significantly better than either Procedure 1 or simple random sampling. The
reduction in mean squared error adjusted for sample size was approximately
0.51 for the Bayesian sequential technique compared to simple random sampling
and approximately 0.29 for the Bayesian sequential technique compared to
Procedure 1. In addition, the Bayesian sequential procedure obtained a lower
average bias than either simple random sampling or Procedure 1. This led to
the investigation of the Al error rate on the sequentially labeled pixels
versus the pixels allocated as random samples. In each of the segments
tested, the Al error rate for small-grain pixels was lower for the dots




i e ——————— i s+ i

allocated using the Bayesian sequential technique. This phenomenon appears to
be due to the influence of the prior distribution on cluster purities used in
the Bayesian scheme. In effect, the prior distribution considers pure small-
grain clusters to be fairly rare. Hence, if they occur, they are sampled more
heavily to verify their reliability. Since pure smail-grain clusters are more
accurately labeled, this reduces the overall Al error rate.

4. CONCLUSION

Based on the results of tests using both ground-truth and Al labels, it is the
conclusion of these studies that stratified proportion estimaticn using CLASSY
clusters as the strata and Bayesian sequential allocation as the allocation
and estimation technique for minimizing the mean squared error of the propor-
tion estimate offers significant advantages over Procedure 1. It is the
recommendation of these studies that this new techniqu. be considered as a
replacement for Procedure 1 and further tested in a semioperational
environment.
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1. BACKGROUND AND INTRODUCTION

In performing machine classification of remotely sensed data, clustering has
typically been used to analyze and determine the inherent data signatures. In
the proportion estimation system developed during the Large Area Crop Inventory
Experiment (LACIE) and called Procedure 1, the multispectral land satellite
(Landsat) data was first clustered to obtain the spectral signatures. These
signatures were then labeled and used to train a maximum likelihood classifier
which classified each picture element (pixei) in the image into one of the
labeled classes. The final step was to evaluate the performance of this clas-
sifier on an independent labeled data set and to use the estimates of the
omission and commission errors resulting from this evaluation to correct the
bias in the classivied data. Procedure 1, thus, required two sets of labeled
data. A set of approximately 40 labeled pixels, called type 1 dots, was used
to initiate the clustering and to label the resulting clusters. Another set
of approximately 60 labeled pixels, called type 2 dots, was used to evaluate
the classifier and correct any bias in the overall proporiion estimates for
the labeled classes.

Within the past year, different investigations have resulted in several impor-
tant conclusions regarding the Procedure 1 system. One study (ref. 1) con-
cluded that the labeled clusters. agreed very closely with corresponding
classifier results. This seems to imply that the classification is unnecessary.
In a second series of studies (refs. 2 and 3), it was found that the overall
varfance of the proportion estimates, resulting from Procedure 1, were only
smaller by a factor of about 0.7 (on the average) than the proportion estimates
resulting from a simple random sample of 60 labeled pixels. The conclusion was
that the machine processing, which comprised Procedure 1, was relatively
inefficient.

The current study was designed as a response to the observed deficiencies in
Procedure 1. [t appeared that the classification step was unnecessary and

that a more efficient procedure would be to simply cluster the data using a
completely unsupervised clustering algorithm and then use any labeled pixels

1-1 A-9
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to either label the resulting clusters directly or to perform a stratified
estimate using the clusters as the strata. Such an approach would have the
advantage of eliminating the need for the type 1 dots as well as the machine
classification step.

Since clustering was to be the primary machine processing step in the new
procedure, it was important to choose the most efficient clustering algorithm
available. Three algorithms were ultimately chosen for testing. These algo-
rithms were:

a. CLASSY (refs. 4, 5, and 6) — an adaptive maximum likelihood algorithm
developed at the National Aeronautics and Space Administration (NASA),
Lyndon 8. Johnson Space Center (JSC)

b. AMOEBA (ref. 7) — an algorithm developed at Texas A&M University,
employing both spectral and spatial information

¢. The Iterative Self-Organizing Clustering System (ISOCLS), (ref. 8) ~a
variant of the ISODATA algorithm of Ball and Hall (ref. 9), and the algo-
rithm used in Procedure 1

These algorithms were applied to each of 25 LACIE segments collected during
the 1976-77 crop year. The details of the clustering algorithms and the meas-
ures used in evaluating the clustering results are discussed in section 2 of
this report.

An equally important part of defining 3 new proportion estimation procedure
was the selection of a scheme for obtaining a stratified estimate or a method
of Yabeling each cluster. In this regard, three stratified estimation schemes
and three labeling schemes were considered. The details of these schomes are
described in section 3. A description of the data set and the experimental
design {s included in section 4. In section 5 is a summary of the primary
results, and section 6 consists of the conclusions drawn from the observed
results with appropriate recommendations,

A-10 -




2. CLUSTERING ALGORITHMS AND EVALUATION CRITERIA

The clustering evaluation portion of the study consisted of running each of
three different clustering algorithms on each of the 25 LACIE segments selected.
The clustering algorithms tested were CLASSY, AMOEBA, and ISOCLS.

CLASSY was run using three complete passes through the data where the data set
consisted of every other pixel in the image. Clusters smaller than 2 percent
of the scene were eliminated.

FYRTW Smorey

ISOCLS was run with the standard iterative parameter set recommended by Wylie
and Bean (ref. 10) and known as the MPAD cluster parameter set. The values
of these parameters are given in table 2-1. The algorithm was started with
40 randomly selected and unlabeled pixels from each image.

AMOEBA was run with parameters specified by its developers at Texas A&M Uni-
versity. The minimum number of clusters was set at five.

e o

Both CLASSY and AMOEBA were run on data which had been transformed to Kauth 1
brightness and greenness coordinates on each pass (ref. 11). This reduced the
dimensionality of the data by a factor of 2. ISOCLS was run on the full dimen-
sfonal data in accordance with the standard practice during LACIE Phase III.

Each of the algorithms tested produced cluster maps which were subsequently
compared with digitized ground-truth maps. The ground-truth maps were pre-
pared from ground-truth images having a resolution six times that of Landsat
imagery. The higher resolution ground truth was converted to Landsat resolu-
tion by applying majority rule to each six-subpixel area corresponding to one
Landsat pixel. In the event of ties, the first label to receive the tying
number of subpixels was chosen as the Landsat pixel label.

N N U UL (AT ey TOR VRt G

By comparing the digitized ground truth with a cluster image, the proportion 3
of each ground-truth class, making up each cluster, was determined. The pro- !
portions for the small-grains classes were then combined to give the proportion

2-1 A-11
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TABLE 2-1,— MPAD CLUSTER PARAMETER SET

Number of channels
Parameter
8 12 16
CLUSTERS 60.0 60.0 60.0
THRESHOLD | 8191 8191 8191
SEP 1 1 1
PERCENT 100 90 90
STDMAX 3.6 3.6 3.6
DLMIN 3.9 4.1 4.5
NMIN 50 50 50
ISTOP 8 8 8
SEQUEN Split- Split- Split-
combine | combine | combine
DOTFIL (a) (a) (a)

aRandom]y selected starting dots.

ro

ro
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of small grains (Pi) in each cluster. These data were used to calculate two
different evaluation criteria for each clustered image. These criteria are
called the variance reduction criterion (R) and the percent of correct classi-
fication (PCC), using majority rule labeling.

The R criterion represents the ratio of the variance of a proportion estimate
based on a stratified random sample allocation (in which strata are the clus-
ters) to the variance of a simple random sample proportion estimate. The
equation for this ratio (when samples that are allocated to clusters are pro-
portional to the size of the cluster) follows:

¢ N.

I LA

R = i=1 T (1)
P(T - P)

- — et - = . - - —— ——

where

¢ = total number of clusters

=
L]

§ total number of pixels in cluster i

=
n

T total number of pixels in the segment

o
n

§ the proportion of small grains in cluster i

©
L]

the overall proportion of small grains in the segment.

The parameters Pi and P were evaluated using the Accuracy Assessment {AA) digi-
tized ground-truth data for each segment.

The PCC criterion measures the proportion of pixels that would be correctly
labeled or classified if each cluster were labeled by majority rule. The equa-
tion for computing the PCC criterion may be written as follows:

N N
PCC = p ( ‘) 1-° (—‘)
‘ p;;(.s W/ * pzc':‘.s O P @

where Pi’ Ni‘ and NT are defined above. The first term represents the summa-
tion over all clusters having Pi > 0.5. These clusters would be labeled "small

2.3 A-13




grains" by majority rule. The second term represents the summation over all
clusters having P1 < 0.5. These clusters would be labeled "other" by majority
rule.

The R criterion serves as a measure of the E?ficiency of a clustering a1gol
rithm as used in a stratified sampling proportion estimation scheme. The PCC
criterion, on the other hand, serves as an overall indicator of sluster purity
and of the quality of a proportion estimate obtained by labeling clusters.

The results of evaluating these criteria for each of the three clustering
algorithms as applied to the 25 LACIE segments are given in section 5.




3. TECHNIQUES FOR CLUSTER-BASED PROPORTION ESTIMATION

The objective of performing clustering in the context of Procedure 1 replace-
ment is to use the results of the clustering as a basis for obtaining a pro-
portion estimate for a crop of interest. In this study, six different tech-
niques for obtaining proportion estimates by labeling a subset of pixels from
the image were explored. Three of these techniques result in a labeling of
each cluster, whereas the other three produce estimates of the proportion of
the crop of interest in each cluster. We will refer to the first three tech-
niques as cluster-labeling techniques and the last three as stratified propor-
tion estimation technigues.

The various cluster-labeling techniques differ from one another in the manner
in which the subset of pixels to be labeled is selected. In one technique,
pixels are allocated to each cluster, proportionally to the size of that
cluster; that is, if Ny total pixels are to be labeled, then

N
ng, = er- ne (3)

is the number of pixels to be labeled from each cluster. It should be noted
that if ny is not an integer, it is rounded up or down. If this produces a
total number of pixels less than n, the remaining pixels are selected first
from the largest cluster, then the next largest, continuing in this manner.
Clusters too small to receive a single pixel are lumped together, and an
allocation is made to that lumped group. Following the pixel allocation,
majority rule may be applied to label the cluster; that is, if

Pym— (4)

where Xy ® the number of pixels out of the ny pixels labeled in cluster § |
that are the crop of interest.

3-] A-15




Then the labeling rule is as follows:

a. Label cluster i as the crop of interest if

1
Py23
b. Otherwise, label cluster 1 as being other than the crop of interest.

The proportion estimate is obtained as

~ A N ( )
P = 5
P->J- N;
i=2
The procedure just described will be called cluster labeling by proportional
allocation.

The other two cluster-labeling procedures tested were developed by M. D. Pore
of Lockheed Electronics Company, Inc, (ref. 12). One approach, called cluster
labeling by sequential aliocétion, labels pixels, selected at random, from a
given cluster until a confidence interval for the estimated proportion of the
crop of interest no longer contains one-half.

The final cluster-labeling approach tested is called cluster labeling by
sequential Bayesian allocation. In this approach a Bayesian estimate for P{,
the probability that the true proportion of the crop of interest is less than
or equal to one-half is developed. The formal equation is

172
p; = Prob[O 9 s %] j; (9, |x,)de

172
- ﬂé;y/o F(x, l6,)g(8,)de, (6)

where 61 = the true proportion of the crop of interest in cluster 1,

9(61) = the unknown prior distribution for the ai's and as before X; = the
number of pixels out of the ny pixels labelled in cluster 1 that are the crop
of interest.

A-16 3-2




The strategy is to select a form for g(ei) and calculate the form of P;. Then
one may continue sampling at random and labeling the samples selected until

P; is smaller or larger than a fixed threshold. If P; is §m911er than a, then
label cluster 1 as other than the crop of interest, If P; is greater than

1 - a, then label the cluster as the crop of interest. Thus, in both cluster
labeling by sequential allocation and cluster labeling by Bayesian sequential
allocation, labeling frem a given cluster continues until a specified confi-
dence on the labei of that cluster is obtained. The Bayesian scheme uses the
additional information of an estimated prior distribution on the true cluster
purities produced by a given 2lyorithm. The necessary labeling rules and
equations for thase two techniques are developed in (ref. 12) and repeated
here.

For cluster labeling by sequential allocation, the labeling rule is as follows:

a. Continue labeling if

X4 . -

Xg\Ng = X4
oiﬁ —2_
"i("i - 1)

or until 35 camples have been allocated.

where

b. Otherwise, label by majority rule

This interval provides an approximate confidence of 1 - 1/8 = 0.875 in the
label for each cluster.

For cluster labeling by sequential Bayesian allocation, the labeling rule is
as follows:

a. Label two pixels from a given cluster. I[f Xy " 0 or 2, stop and label by
majority rule. Otherwise, go to step b.

b. Label three more pixels. If x; = 1 or 4, stop and label by majority rule.
Otherwise, go to step c.
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¢. Label two more pixels., If X( 2 or 5, stop and label by majér1ty rule.
Otherwise, go to step d.

d. Llabel three more pixels. If x, = 3 or 7, stop and label by majority rule.
Otherwise, go to step e,

e. Label three more pixels and label the cluster by majority rule.

This labeling rule is derived using a uniform prior for g(9) and also provides
an approximate probability of correct labeling of 1 - 1/8 = 0,875.

The three techniques for stratified proportion estimation parallel the three
cluster-labeling techniques just discussed. One possibility is to allocate

a total of ne pixels such that each cluster receives an allocation proportional
to fts size. This proportional allocation is accomplished as described earlier
in this section. The proportion estimate is then computed as

N X . .
a i\ (%4
p= L 7
;(W)(“i) )
X

The term — represents an estimate of the proportion of cluster i which is the
i
crop of interest. The remaining two techniques for stratified proportion

estimation differ in the rules used for allocating pixels to cluster and in
the equation used for obtaining the final estimate. As was the case for clus-
ter labeling, both techniques are sequential in nature with one employing a
Bayesian prior distribution., Both techniques were developed by M. D. Pore
(ref. 13).

The concept of sequential sampling as it is used in these two techniques is

to apply information obtained from previously allocated samples in determining
which cluster should receive the new sample. Suppose n, pixels have been
allocated to cluster i, and X4 of these pixels are of the crop of interest.
Then

NP -B)
a2 E i i i
°"=1(W)T1_ (8)
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where

is an estimate of the variance of the usual stratified proportion estimator
as given in equation (7). Now the estimated expected value of an is (i1f one
more sample from the izh cluster is taken)

E[aﬁ*,] = Biohabxy + 1)+ (1= Bl (xy) (9)

where oi*](x’ + 1) is the variance based on n + 1 total samples {f the last
sample selected is frcn cluster 1 and is also the crop of interest, and
°:+1(x1) is the varia~ce if the last sample selected is from cluster 1 and is
other than the crop of interest.

The expected change in the estimated segment proportion variance due to an
additional labeled sample from cluster i is then

2 2 af.2
8% = &2 - E[cn,,_]] (10)

Written in terms of the basic variables this equation becomes

a0l = (N*)z ny 3 x,(n, - x,) (1)
o \Ry (ny - l)nz(n1 RETEAE A

The strategy for the first technique, which we shall call stratified propor-
tion estimation using sequential allocation, is to first allocate at random
2 fixed number of pixels to each cluster for the purpose of obtaining an ini-
tial estimate of the proportion of each cluster which is the crop of interest.

Then Aaf is computed for each cluster, and the next sample to be labeled is

allocated to the cluster with the largest value of Aof. This process con-

tinues until a fixed number of pixels have teen labeled. The proportion esti-

mate is then
N
- PR :
;n?"i (12)
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The last technique, which is called stratified proportion estimation using
Bayesian sequential allocation, is similar to the technique just described
except that the additional information of a prior distribution on cluster
purities is used. In this case we use the posterior Bayes estimate

1
P " E(e1]x1) . ?&1—7{ 91'(x1|ei)g(ei)de1 (13)

in place of the minimum variance unbiased estimator

Although e1 is not unbiased, it is the minimum mean-square-error estimator.
Following an initial fixed allocation to each cluster, one may then use 91

in place of P1 in equations (8) and (9) to calculate Aaf for each cluster and
proceed to allocate sequentially as before. The only difficulty is in the
selection of a prior distribution on cluster purities.

The prior distribution on cluster purities was chosen following an examination
of the empirical distribution for each of the three clustering algorithms

on 3 subset of 10 segments. These histograms representing percentage of clus-
ters versus ground-truth percentage of small grains are given in figures 3-1,
32, and 3-3. The similarity of these histograms and their general shape led
to the belief that at least for segments having a moderate to large amount of
small grains, a prior distribution which was quadratic in form would be
appropriate.

It seemed reasonable that the prior distribution, g(8), satisfy the follow-
ing criteria.

g(e) 20 for al1 0 ¢ 8 < 1

1 (14)
j[ g(e)de =
0
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and

1
/ 8g(8)de = P
0

N.\ v
f = LI R
; (N?) "y

and is computed following the fixed allocation of pixels to clusters.

where

These three conditions allow the specification of the three coefficients in
the equation

g(s) = aez +b8+c

These coefficlients are

a==6
b =12(F - 1)

. for 0.211 ¢ P < 0.789 (15)
c=5-6P

It should be noted that the b and c coefficients are only appropriate for a
specified range of P values. If P is not in this range, then g{(8) will be
negative at some point.

The fact that a quadratic prior is only appropriate over a limited range of

P values also seemed to be validated by empirical evidence. Figures 3-4 and
3-5 show histograms of cluster purity for eight segments which had low ground-
truth proportions of small grains. Clearly a quadratic prior is not appro-
priate. On this basis, it was decided to select an alternate prior for seg-
ments which had a small portion of the crop of interest. The prior for
segments with a very large proportion of the crop of interest might reasonably
be thought to be like a “flipped" version of the prior for small proportion
segments.
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Percent of clusters

Percent of small grains

Figure 3-4._ Empirical purity distribution for CLASSY clusters over eight
small proportion segments compared with exponential prior.
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Figure 3-5.— Empirical purity distribution for AMOEBA clusters over eight
small proportion segments compared with exponential prior.
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It was decided that the form of the prior for small proportion segments would be

g(8) =837% -3 =3(s7%-1) (16)
and that this distribution should satisfy the following constraints
g(e) >= 0 forall 0 <9 <1

1
/ g{9)de = 1
0

g(1y =0

1
,/” 9g(a)ds = P (17)
0

These constraints may be used to determine the parameters a and 8 which are

-~

1 -4p

for 0 < P < 0.25

g=l-2 (18)

This prior will be called the exponential prior. In order to see how well the
quadratic and exponential priors fit the empirical cluster purity histograms,
the following calculations were made:

a. The average ground-truth proportion of small grains in the 10 segments used
to obtain the data reflected in figures 3-1, 3-2, and 3-3 was computed.

b. The average ground-truth proportion of small grains in the eight segments
used to obtain the data reflected in figures 3-4 and 3-5 was computed.

———

The first proportion, call it P], was then used to calculate the coefficients
a, b, and ¢ [equation (15)] specifying a quadratic prior. This prior is
plotted in figures 3-1, 3-2, and 3-3 as a smooth curve for comparison with the
empirical histograms. Similarly, the average ground-truth proportion for the
eight small proportion segments, call it P2. was used to calculate the coeffi-
cients a and 3 for an exponential prior. This prior is plotted as a smooth
curve on figures 3-4 and 3-5. It is evident from examining figures 3-1 through
3-5 that both prior distibutions seem to fit the empirical cluster purity dis-
tributions well. .
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In actual practice, both the sequential and the Bayesian sequential procedure
were initiated with random allocation of two pixels per cluster. Following
this allocation, the Bayesian sequential procedure computes two different
estimates of the segment proportion. One is given by

N X. |
a i j
P = =) =+ 19

21:(“7)“1 (19)

whereas the other is the Bayes posterior estimate basec on a quadratic prior
and an average proportion estimate of P = 0.34., The equation for this estimate

is
N
3= 2 (<t} 3, .x,) (20)

s \ N i*7
i T

where

i a((x' + l)(n‘I + 2)()(i +3)] - b[(x, +* l)(x{ + 2)(n1 +8)) c[(x1 + ”("1 + 3)(n‘ + )]
n

WX} e -

PR allxg = 10xy + 2)(ny ¢ 93« 80(x; + Viny + 3)ny ¢ 8]+ cllng + 2)(n, + 3)(n, + 4)]
(21)

If 0.211 ¢ P, then the quadratic prior is selected and 3 is used to reset the

parameters a, b, and ¢. Sequential selection then proceeds with

2 _ &-2 ’é(n'ivx‘)[] = g("i'xi)]
t - N ng -1

Ao

6("i’xi)é("i +lxg + no - §(ni + l,xi + 1))
. >

(22)

) - §(n1xi)1§(ni + 1,xi)[1 - é(ni + 1,xi)]J
n

i
After a number of dots have been allocated, an overall proportion estimate is

obtained via eauation (20), using the current values of the 5("i'xi) estimates.
If 0.211 > P, then the exponential prior is used to calculate the parameters 3
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and 8. Sequential selection then proceeds with Ao? given by equation (22),

using
e1-a) (4T
ny+ 2 - o n, + 2 Y2
Yy < Y2

8(nyux,) = (23)

where

Y] 2 (ni + ])(ni)(ni - ]) s (x’l + ])

Y, ® ("i +1 -a)(n, = &) eoo (xi +1-a2a)

1

After a number of dots have been allocated, an overall proportion estimate is
obtained as before using equation (20).

Figure 3-6 shows a comparison of the quadratic and exponential priors at the
value P = 0.211, where the switch occurs from one to the other. The curves
are close enough for this value of P that the decision as to which one to use
is not critical.

Outlined in this section are six different techniques for cluster based pro-
portion estimation. As a way of summarizing these developments, a brief dis-
cussion on some of the expected characteristics of these techniques follows.

Three cluster-labeling and three stratified proportion-estimation schemes have
been considered. If the clusters are very pure, then cluster labeling should
produce proporticn estimates with small bias and very small variance. In
addition, relatively few labeled pixels should be required to obtain these
estimates, and the estimates themselves should not be very sensitive to occas-
ional labeling errors. Cluster labeling using sequential allocation or Baye-
sian sequential allocation provides a specified confidence in the labels of
clusters. These techniques should require fewer dots to be labeled on the
average than does cluster labeling using proportional allocation.
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If the clusters are significantly mixed, all of the cluster-labeling schemes
will suffer. In this case, a more appropriate technique is provided by strat-
ified proportion estimation. Stratified proportion estimation, using propor-
tional allocation, provides theoretically unbiased estimates. The stratified
proportion estimation, using sequential and Bayesian sequential allocation,
are not theoretically unbiased but should produce estimates with a lower mean-
square error for a given number of dots allocated than the proportional allo-
cation approach. Both of the sequential techniques incorporate information
about both the size and the estimated purity of clusters in performing the
dot allocation.
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4. DATA SET AND EXPERIMENTAL OESIGN

The data set for this study consisted of 25 LACIE segments selected at random
from the Phase II! (1976-1977) blind site data base. Eighteen of the segments
are the same as those used in the secondary error analysis study (refs. 2

and 3). Seven substitutions in the secondary error analysis data set were
necessary because the original segments were not well registered to the digi-
tized ground truth. The segments selected represent a cross section ot the
U.S. Great Plains. Both winter- and spring-wheat segments were included.

Three segments in the data set were discovered to have significant amounts of
strip fallow small grains where the strips were not resolved in the ground
truth, These segments, 1648, 1739, and 1544, were clustered but were not eval-
vated using the proportion-estimation schemes because reliable labels were

not available for the strip fallow area. One other segment, 1079, was not
evaluated using the proportion-estimation schemes because it was found to con-
tain 27 percent abandoned winter wheat and was, thus, 2 very atypical segment.
In table 4-1 is a listing of the 21 segments actually used in the testing,
their location, the acquisitions used, and the proporfion of small grains from
the digitized ground truth.

The experimental design for the evaluation of the six proportion-estimation
techniques was that each of them were evaluated on a subset of five seg-
ments selected from the set of 21 acceptable segments. The subset that was
selected consisted of segments 1005, 1853, 1520, 1231, and 1060. After eval-
vuating these preliminary results, the most promising techniques were selected
and run on the remainder of the 21 segments.

Each proportion-estimation technique — clustering algorithm ‘combination — was
repeated 100 times for each segment. Each repetition used a different pseudo
random sequence in selecting pixels. Thus, it was possible to calculate the
average bias in the proportion estimate, the mean-square error of the esti-
mate, and the R factor as compared to simple random sampiing. These results
are reported in the appendix. Averages and variances of these results over
segments were also calculated. These results appear in section 5.
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TABLE 4-1,— DESCRIPTION OF THE TWENTY-ONE SEGMENTS USED IN THE STUDY

Ground-truth
Segment Location Acquisitions used proportion of
. small grains
1005 (W) | Cheyenne, Colorado 7177, 7159, 6326, 6254 0.348
1032 (W) | Wichfta, Kansas 7194, 7086, 6326, 6254 SN
1033 (W) | Clark, Kansas 7156, 6288 095
1853 (W) | Ness, Kansas 7193, 7067, €233 .306
1166 (W) | Lyon, Kansas 7190, 7154, 7082, 628§ 066
1512 (S) | Clay, Minnesota 7193, 7156 .340
1520 (S) | Big Stone, Minnesota 7174, N56, 7120 .30
1577 (W) | Platte, Nebraska 7120, 6306 .029
1604 (S) | Renville, North Dakota | 7143, 7125 524
1606 (S) | Ward, North Dakota 7197, Nas .330
1661 (S) | McIntosh, North Dakota | 7159, 7123 414
1899 (S) { Walsh, North Dakota 7193, N718, Ns7, Naz 596
1231 (W) | Jackson, Oklahoma 7156, 7066, 6288 744
1239 (W) { Noble, Oklahoma 7155, 7082, 6268 A67
1367 (W) | Major, Oklahoma 71585, 7101, 6287 .606
1675 (S) | McPherson, South Dakota ] 7230, 7176, 7123, 6254 29N
1686 (S) | Beadle, South Dakota 7194, 7140, 6307, 6254 64
1803 (W) | Shannon, South Dakota 7178, 7189, 7123, 6255 .032
1805 (M) | Gregory, South Dakota 7211, 7188, 6307, 6290 164
1059 (W) | Ochiltree, Texas 7157, N2, 6325, 6307 437
1060 (W) | Sherman, Texas 7168, 7068 231
Symbol definition:
M = Mixed

S = Spring wheat
W = Winter wheat
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5. RESULTS

The results of the study are summarized in two parts. The first part pertains
to the evaluation of the clustering algorithms, and the second part is an
evaluation and comparison of the six techniques for proportion estimation.

The R, as compared to simple random sampling, and the PCC, using majority rule
labeling, are given in table 5-1 for each of the three algorithms tested as
applied to each of the 21 segments. Averages for each measure over segments
are gfven at the bottom of the table along with an estimate of the standard
deviation over segments. None of the iverages are significantly different.

In fact, it is striking how similar the average results are in view of the
differences in the algorithms. This similarity will be further discussed in
section 6.

One significant difference is in the number of clusters produced by each aligo-
rithm. At the bottom of table 5-1, the average number of clusters and the
standard deviation {n the number of clusters are indicated. The average number
of clusters nearly doubles when going from CLASSY to AMOEBA and doubles again
in going from AMOEBA to ISOCLS. Economy in the number of clusters produced

is generally considered a distinct advantage for a clustering algorithm. It
is clearly an advantage in the stratified proportion-estimation techniques.
Indeed the sequential stratified techniques require that a fixed number of
pixels (usually 2) be allocated to each cluster initially. Thus, a large
number of clusters means that 2 large number of pixels must be allocated
before sequential allocation even begins.

Presented in tables 5-2, 5-3, and 5-4 are the results for the three cluster-
labeling schemes; and in tables 5-5, 5-6, and 5-7 are the results for the
three stratified proportion-estimation schemes. The results presented in each
table are averages and variances over the segments processed for each of the
measures recorded, using 38 given scheme. For each scheme, with the exception
of stratified proportion estimation usingAproportiona1 allocation, the meas-
ures recorded were the average bias, the mean-gquare error, and the reduction
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TABLE 5-1.— PCC VALUES USING MAJORITY RULE LABELING AND
R VALUES FOR CLASSY, AMOESA, AND ISOCLS

CLASSY AMOEBA 1SOCLS
Segment -
PCC R PCC R PCC R

1005 (W) 0.8398 | 0.50671 | 0.9132 | 0.6372 | 0.8659 | 0.651
1032 (W) 8976 | ,3450 | .8541 | .4%85 | .8367 | .4978
1033 (W) .9050 | .8208 1 9181 ,.7363| .9287 | .6247
1853 (W) 8948 | ,4073 ) .7926 | .6966 | .8859 | .4655
1166 (W) 9333 | 8287 ] .9388( .7857 | .9386 | .6994
1512 (S) J110 | .8269 | .7621 | .7881) .7576 | .7767
1520 (S) 8361 | .85758 | .8522} .5213| .8546| .5735
1577 (W) 9678 | 9055 | .9678 | ,5076 | .9684 | .8814
1604 (S) 6877 | .8419 ) .78 .7538| .6749| ,7893
1606 (S) 8229 | 607 | .8002| .6511| 7958 .7200
1661 (S) JJ60 | .7395 | ,7523| .6745) .7184| .7767
1899 (S) 8427 ) .4852 | .8555| .4684 | .8426 | .5196
1231 (W) 8773 | .4849 | ,8926 | .4450| .8788 | .494)
1239 (W) 8508 | 7175 | .8702 | .6586| .8601 | .7322
1367 (W) .8023 | ,5654 | .81981 .5644| .8051 | .6238
1675 (S) 71929 | ,7056 | .8060 | ,6243| .7890( .7282
1686 (S) 8352 ,7847 | .840S| .6933| .s400| .8128
1803 (W) 9681 1 .83} ,9701 | ,7339| .9733| .6502
1805 (M) 9052 | .5007 | .9195 | .4680| .9219| .4839
1059 (w) .8448 | 4515 | ,8667 | .4126 | .8758 | .4062
1060 (W) .8583 | .5984 | .8824 | ,.5227| .8757 6002
Average 8476 | .6472 | .8521| .6268| .8488 ] .6435
Standard 0754 | 1663 .0688 1 .1333] .0771 ] .1316
deviation

Average number | 9,32 + 2.15 | 17,46 + 10,15 35.8¢ 223
of clusters,

+ 1 standard

deviation
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in mean-square error as compared to simple random sampling. Because stratified

proportion estimation (using proportional a]1dqation) is theoretically unbiased,

the bias was not recorded; the variance and the R, rather than the mean-square
error and reduction in mean-square error, were recorded. The techniques using
sequential allocation for majority-rule labeling did not allocate a fixed num-
ber of pixels, and hence, only the average number of pixels allocated is
reported. The sequential Bayesian technique used an initial allocation of two
pixels per cluster, whereas the sequential technique without prior used a
three-pixel cluster initial allocation. The same initial allocation was used
for the Bayesian and “no prior" sequential techniques that were used in strat-
ified proportion-estimation. The missing values in tables 5-6 and 5-7 indicate
that in some cases sequential allocation could not begin until a larger number
of dots had been allocated.

After examining the results for the subset of five segments, it was clear that
all of the cluster-labeling schemes as well as the stratified proportion esti-
mation using sequential allocation were not competitive with stratified pro-
portion estimation using either proportional allocation or Bayesian sequential
allocation. This is most readily apparent in a comparison of the reduction in
mean-square error or R results.

The technique using sequential allocation in obtaining stratified proportion
estimates does look competitive at an allocation of 30 pixels. Because it
was not significantly better than stratified proportion estimation using
Bayesian sequential allocation, it was decided to place the most emphasis on
a comparison of the Bayesian sequential and the proportional allocation tech-
niques as used in obtaining stratified proportion estimates. Consequently,
tables 5-5 and 5-7 represent results for the full 21 segments, whereas 5-2,
5-3, 5-4, and 5-6 represent the results for five segments.

Figures 5-1 and 5-2 are a presentation in histogram form of the same data
which are summarized in tables 5-5 and 5-7. Figure 5-3 is a comparative histo-

gram plot of R values for Procedure 1, which are reported in reference 3. In
this plot, it is assumed that there is an allocation of pixels equal to the
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Figure 5-1.— Histogram plots of the R for stratified proportion estimation
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Figure 5-2.— Histogram plots of the reduction in mean-square

error for. stratified proportion estimation using Bayesian
sequential allocation.
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i
0 0.4 0.8 1.2
Procedure 1

Figure 5-3.— Histogram plot of the R for Procedure 1
based on approximately 60 pixels (type 2) per
estimate.
number of type 2 dots used in each estimate (approximately 60 pixels). The
complete data for each of the six proportion-estimation techniques studied are
in the appendix of this report.

The results in table 5-5 are essentially an empirical verification of the
results in table 5-1. In particular, the R averages may be compared. In
theory, the R (using this technique) should be independent of the number of
dots allocated. Indeed, there are no significant differences among the values
of average R calculated for 30, 60, 90, or 120 dots. 1In addition, the averages
for each algorithm tend to agree well with the theoretical average R values
appearing in table 5-1.

In examining table 5-7, it is clear that the Bayesian sequential allocation
technique, as used in obtaining stratified proportion estimates, has an ex-
tremely low bias for all three algorithms even though the procedure itself is
not theoretically unbiased. None of the average bias results in this table
for any of the algorithms are significantly different from zero.

A comparison of the average reduction in mean-square error for the Bayesian

sequential allocation technique (table 5-7) with the average R for the pro-
portional allocation technique (table 5-5) shows that using the Bayesian
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sequential approach with the CLASSY algorithm gives results which'are consis-
tently lower than proportional allocation for all numbers of pixels allocated.
If the variances for each technique-algorithm combination are pooled over the
various numbers of pixels allocated, the results are given in table 5-8.

TABLE 5-8.— POOLED VARIANCES FOR SEQUENTIAL ALLOCATION TECHNIQUES

Bayesian sequential

allocation Proportional allocation

Pool
Variances CLASSY AMOEBA ISOCLS CLASSY AMOEBA I1SOCLS

0.038699 | 0,079350 | 0.019605 | 0.036897 | 0.024976 | 0.033507

In table 5-9 are the least significant differences (LSD) for comparisons
between the two sequential techniques within the results for a given family.
The LSD is computed as '

LSO = t\ =7 (24)

where §] and §2 are the pooled variance estimates of the groups to be compared
and t is the 0.975 percentage point of the Student's-t distribution with
80 degrees of freedom = 1.99,

TABLE 5-9.— LEAST SIGNIFICANT DIFFERENCES FOR COMPARISONS BETWEEN
BAYESIAN SEQUENTIAL AND PROPORTIONAL ALLOCATION TECHNIQUES
FOR STRATIFIED PROPORTION ESTIMATION

- . — ————— -

CLASSY AMOEBA 1S0CLS
LSD in
R values | 0.119397 | 0.140262 | 0.100078
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The differences between the corresponding R values for tables 5-5 and 5-7 are
given in table 5-10.

-- ——— s e ———— s -

TABLE 5-10.— VALUES FOR Prcportional = RBayes sequential

Pixels CLASSY AMOEBA ISOCLS

30 | %0.200682 | °-c.140867
60 |bo.119384| -.086566
90 |20.168540| -.066167 | 20.182187
120 [Po.116789 | -.u75886 | Po. 096402

aSign1f1cant at the 0,05-percent level,
bMarg1na11y significant at the 0.05-percent level,

An examination of table 5-9 shows that the CLASSY results for each number of
pixels and the ISOCLS results for 90 and 120 pixels are either significant or
very nearly significant at the 0.05-percent level. ISOCLS results are not
available for 30 and 60 pixels as there were more pixels than 60 allocated
following the two-pixel per cluster allocation in the Bayesian sequential pro-
cedure. The AMOEBA results for the Bayesian procedure are consistently higher
than for the proportional allocation procedure, and in the case of 30 pixels
allocated, the reduction in mean-square-error value was significantly higher.
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6. CONCLUSIONS AND RECOMMENDATIONS

The clustering algorithms CLASSY, AMOEBA, and ISOCLS performed comparably with
respect to the PCC using majority-rule labeling and the R measures. The fact
that the average results for all three algorithms were so similar and that the
average R value for Procedure 1 has been reported in several independent
studies to be about this same value (0.65 - 0.70) suggests there is a funda-
mental limitation in the separability of the data which precludes better per-
formance. This idea should be tested further in later studfies. The fact that
CLASSY had, on the average, only about 9 clusters, whereas AMOEBA had about
17, and ISOCLS had almost 37 is seen as important. Given the same overall
level of performance, an economy in the number of clusters produced is to be
preferred,

The cluster-labeling techniques appear to suffer from the same fate. The pro-
portion estimates obtained using these techniques were generally biased; the
R-values were always greater than 0.9 and typically they were gre.ter than 1,
This poor performance for 211 of the clustering algorithms indicates that
clusters were simply not pure enough for cluster labeling to function effi-
ciently as a proportion-estimation technique. For al1 three clustering algo-
rithms, the average PCC value, which may be thought of as a measure of cluster
purity, was about 0.85. Apparently, much greater cluster purity {s needed for
cluster labeling to be a viable approach.

The stratified proportion-estimation techniques generally worked well. The
sequential allocation approach with no prior distribution on cluster purities
produced good results for an allocation of 30 pixels; however, the results for

allocations of 6O, 90, and 120 pixels were biased and had much larger reduction

in mean-square error values for all of the clustering algorithms. In addi-
tion, these results were obtained with an initial allocation of three pixels
per cluster, which means that in many cases, sequential allocation did not
begin until more than 30 pixels had been allocated.

The study eventually focused on a comparison of the Bayesian sequential allo-
cation technique and the proportional allocation technique for stratified

6-1 : A-49
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pFoportion estimation. Both of these techniques are unbiased. The propor-
tional allocation technique has an R value of about 0.67 which does not differ
significantly from algorithm to algorithm or for different numbers of pixels
allocated. This result is also not much different from the Procedure 1 value.
However, the Bayesian sequential allocation technique, when used with the
CLASSY or I1SOCLS clustering algorithm, has significantly lower reduction in
mean-square-error values than does proportional allocation. The fact that
CLASSY has many fewer clusters than ISOCLS and, thus, is able to begin allo-
cating sequentially at a much lower number of dots makes it the preferred
algorithm,

The recommendation of this raport is that studies be undertaken to determine
how best to implement stratified proportion estimation using CLASSY clusters
as the strata and the Bayesian sequential technique for pixel allocation. It
copears that a total allocation of 30 pixels would achieve the minimum R. The
average mean-square error for this number of pixels {s 0.002853, which com-
pares very favorably with the average variance of 0.002515 calculated from
the results of the Procedure 1 secondary error analysis study (ref. 3). This
variance for Pro.edure 1 was obtained with about 100 labeled pixels for each
estimate (= 40 type 1 pixels plus = 60 type 2 pixels). Thus, an allocation
of only 30 total dots represents a very clear advantage for the proposed
replacement procedure for Procedure 1.
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APPENDIX

CALCULATION RESULTS OF THE AVERAGE BIAS IN THé PROPORTION ESTIMATE,
THE MEAN-SQUARE ERROR OF THE ESTIMATE, AND THE VARIANCE REDUCTION
FACTOR AS COMPARED TO SIMPLE RANDGM SAMPLING
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MAJORITY RULE LABELING USING PROPORTIONAL ALLOCATION

1005

CLaSSy

-0 ,072A150
-0.01‘54““
-N,353400
=0,047R2%

J\W')E;in\
BIas

N.N293a4N
NeaN155800
=1.N1e]70
0.002390

MGF

NeVTAIN2]AR
N ,N19830
N0 2eL1K
NeN)2791
OEM 4MSE
1.996408%
Se?421 )%

Y,6786558
A, TR2ANG

AMOF KA
A1AS

=N 015740
-1,018230
usE
N,NY1N2%4
0, 0090465
0,00 ReS]
BeNYYSEN

QE‘-‘.“SE

ISACLS

NeNATT20
-0.02‘3920
«0,023A70

N.014130

0.“08555
N, 26”4
NJU2NGo]
“IO‘\QQE]

0N,010463
OV AT )
N, 0yS12ce
N.0%0041]

A-55

55



A-56

cLASSY

), 06T9IRND
=0, 067N
=0,100460
0 QRRARN

DIDD
AV E SRV RV
&rx>
D~ Sl

o~
2533>

DODDD
LI Y

S953°
e & o ¢
DO~
DJ—‘—‘
Cre O
FLEN
oONLx
&Fron

AMOER A
“[AS
=0.065170
=)e03l4AN
-4 N294 0
=Ng,N33320

MSE

MSFE

OE) ¢ MSE.

a4 ARS9%K
22.4539346
2V e 29006439
IN.H156Rnk

1S0CLS

D011 7999
NN INAKAN
-0 4J42%00
«N,Na1500

F4990099
74924469
63774800
A.%690N 30



1060

NO P
DOOO

—
NDOMD
DOCDO

N O
[=F=Fo Yo

CLASSY

AVOFRA
Rras

=) NML230)
=1 N53A70
1) o MR 3890
= «0K2350

“SF

e 1ST9RG
Ne0bL3IGN
1,18]1259
0160949

oEﬁoMqE

A-3

ISOCLS

Ny17710
«)aNa29]0
‘00054?50
=0,06h409

N ,103255
Qe'tog?782
Ne)R26R]
N,04%Q953

] JHBBA

A-57

ﬁ



1SOCLS

VARTIANCES
AMQE 48

CLASSY

—,mmﬂ BRI R P A

1SQCLS
wias

B D

AVERAGES
AMOFRA

R A L

CLASSY

e e T TR TR

A A ki e 2

NN

e
OO~
(=11l
[~1=1=3=3
CIE 3N I J
0000

(o X' Tl =
CIPO
ondy o
—_D0CO
cCcco
coCco
e e o
cooe

gc~u

. L . L m e

MSE
RED «MSE

A-58

94




N A e D I LY WU s

MAJORITY RULE LABELING USING SEQUENTIAL ALLOCATION

1o0s CL ASSY AN OFESA [SACLS

=148
30 OQO 0.“ n.U
&40 0,0 DI Dol
Q0 n,0n NgN T
120 21, 091R4” =0, NA2T89 «n, 053459
VI
0 0,0 V.0 (g
AQ 0,0 Jal 040
90 0.0 Ve N hl
170 NONI277 N NNBAASJ N, 03432
Qe MSE
30 n,0 J.0 NN
&0 n,on Ny N fL 0
90 0.9 e} et
120 2, 7507h4 1,62491826A 1.652670
1883 CLASSY AMOF HA 1S0CLS
Qras
30 0,0 1.0 0ed
60 5.0 NeN V1)
S0 0.0 0.0 Ne1)
120 =N ,NG3749 N ,NNT7239 -0, 03AR02
MGE
30 N,.0 2.0 041
60 0.0 Je0 \ P
90 0,0 0D NeN
120 N, 0NPLAT DL, 000082 . 0,003061
DE"Q“QE
30 0.0 e N0
60 0,0 NN 04}
90 0.0 l'.n ”o”
120 N.62122¢ 0 VNTSOA 3,97VR9N
SR
N :\.Ji.rl
A-5

A-59



AMNE 1A
28 LA
0,0
n,n
NN
MSF
N0
Q.0
0N
N.0N0176
OF 14 MSE
1}e0
0,0
NG
N.N23190
AMOERA
R[45

l)on
NN

HheN
-00028“16
“SF

e
N0

N.0
N,001527

°E|) [} MQE
NeN

42

1.0736]11

A-6

Isorgs

Ve l)
0,0

(VY]
«0,046603

NeN

040

0.0
V002624

Ve )
00
1.272133



1060 CLAGSY AMOERA [SOCLS
A1A8
30 0,0 (e (e
60 NN e 0.0
90 N.0 NN 0.0
120 "00010an '".0‘595“2 ‘()0053117
mMSF
30 0.0 0.0 0.0
60 0.0 0,0 N0
90 n.n 0.0 O.l\
120 N.0N3R42 1,004325 Na0N3170
REI1  MSE
30 0,0 Vel () Y
&0 N0 0.0 0.0
90 N.0 ‘ 060 0.0
120 14311178 1.,472958 L,HIATHE

A-7 A-61




OO W
0000

N oW
OO0

[
NOW
000

A-62

M et ocae

AVERAGES VARIANCES
CLASSY AMOEHBA 1S0CLS CLASSY AMOERA 1SOCLS
RIAS '
0.0 040 0.0 0.0 0.0 e
ge0 9.0 0.0 0.0 0.0 0.
0D 9496 2101026257 2203201434 8:80107109 3180053136 8230094198
MSE
0.0 0.0 00 0.0 0.0 0.0
0:0 0.0 0.0 0.0 0.0 0.0
020 0.0 0.0 0.0 0.0 0.0
000574680 0:00254RA0 0:0024kA0 0,00009913 0,00900660 0,00000073
REN MSE
.0 n,0 0.0 0.0 0.0
%:3 §.o 0.0 g:g 0e0 §:o
:27~oaosa 002166173 3201440514 029056302 Pe9sns328e 29696312

‘-5“"&""-M'.. #,
o 5




MAJORITY RULE LABELING USING BAYESTAN SEQUENTIAL ALLOCATION

PO

1005 CLASSY AmOF s A 1SOCLS

Mias
28 88 fed R
90 N0 __. Ne0 040
120 o0,0A7797 =0,NA073RA =0,06249]
MgE
] n n,n "e)
38 0:8 Ve N 0 e
o n.o n.l’ ".!’
120 0,00n793) Ve NNSARS VeliNIIIA
wEN, 4SF
3n 0.0 1) o1 Netd
80 N0 ) 0,0
0 0.0 n,0n Ned)
120 1.2RRGLH 2e939NTA 2,139337
1R83 CLASSY AMNE = A 1SQ0LS
wlas
30 0.9 0.9 0.0
60 N0 ) 0)el)
1)) 0.0 NN NeN
120 =0.07299N8 <N 009112 «0,026A326
MSE
30 0.0 0.0 0.0
80 0.0 0,0 N0
0 n,0 )] Ne0
120 N,ANn3]5m N.N03S51 N.NN206A2
OF )SE
30 n,n NN NN
a0 LY N, n N,
90 0.0 L 0o
120 Y LTSA Ne33375) 4R 7HO

A-9 A-63




e viro o et

19720 CLASS> AMOERA If0CLS

]
30 N.0 Ne0 NeN
Al 0,0 el (Y]]
90 ) I 0ed
1?0 -000“367° -n.0’3l7ﬁ -n.p:&Qalﬂ
asE
3 0 Ve Vel
hg 0:8 0 eh 0ot
Q0 0.0 AN n, o
120 0,00’%9n0 NeNIRASL Vel 291 1)
QENJMSE
an 0,0 e Nel
AQ N,0 NeN NN
Q0 0.g NN Nel)
12N CLASSY AMOFHA 1socCLs
$148
30 h.0 0l0 Jof
&0 0.0 N Qe
90 0,0 NN e
120 0.007730 <=0.009436  N.028156
9SE
30 0,0 V.0 el
e o8 b ne
(1 i
129 02005074  NeAN27ST 03001490
N ASF
30 non "oo “.U
60 n,0 v,0 N,
°o 0.0 ‘\.0 Nenl
120 N.62174) )N77802 Ne9234636




1060 CLASSY amMOER A 1SOCLS

414s
30 0 0.0 N0
&0 0oh neh 0N
Q0 0,0 NeN 0e0
120 = ,0W274A = PO R L] al) g lbbhS
nee
30 N0 40 nen
0 N,0 Nef 1)
0 0.0 e Ve1)
120 N, 008,70 V00964 0.0n2877
6, MQp
0 0.0 ) Del)
60 0.0 Ve Mot
90 N0 )l Ne0
120 08460094 IFLL YA T 7.,010332

A-1 A-65

———n
h.,_,m-__;._,_#u . a PP P Ty

.



s

N O
[-1-1-1.]

e
N
00

[
NOOLS
0000

A-66

cLaSSY

oo s o0
oO0DO

327718487

0:00606460

gégtloazao

AVEWAGES VARIANCES
AMOFHA 1S0CLS CLASSY AMUE=A 1SOCLS
slas
040 Ne 0.0 0.0 0.0
9.0 0.0 040 0.0 0.0
0.0 0.0 0.0 0.0 0.0
1028664778 «,02554878 0,00060669 0.00038843 0,00079368
MSE
0. o0 )
R, R 8!8 g8 8:3
0.0 0.0 0.0 0.0 040
0:00682059 1200267940 0,00000393 0,00000916 0.00000062
RED «MSE
°| o. [ [ ]
SR T T - T
1.3 0.1 $401917 0.18533%%2

o0
8561249 1.65233707

A-12

3923180 0.




7

9
8
g
8
A-67

STRATIFIED PROPORTION ESTIMATION USING PROPORTIONAL ALLOCATION
C
R
¢
]
&
2
1
1
3
i
3
1
1
0
O
1
1
0
S
bd
2
1
[
2
1
1
]
0
[
0

0.0N0879

PR TR T T e

%
'
2
4
2
A-13

t

aMOFuA
VAR
0
0
0
]
0
0
0
0
0
0
0
0
n
0
0
0
0
0
0
0
0
§
§
0
n
0
n
0
n
0
0
]
0
0
0
0
0
0
0
0

CLASSY
VAR
0
0
0
0
0
1]
0
0
0
0
0
0
0
0
0
0

012¢
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

SEG DOTS

,m
vw.
;
w
3
m ,
]
m
!
1
WA
.W.
3
|




%

0.5
Dot

3L

o00Q

CcCOoOC
MO0N
-

NN
0000

!
¢

‘).

002028 9,
oA
NNARR
00342

N, 001654 9,
0.0Nn0632 0,
S n,n
2 0.0
A-14

N.00067
N, 00046

A-68




SEG NOTS
3n

80
0
120

SEG NOTS

30
38

120

- b ——

AVERAGES .
CLASSY AMOFR) 1S)CLS CLA%SV AMQFBA I1SOCLS
vao VAR vaw VAR = VAR RN VAR =)
«0QIRE289% 003591754 .nns;6q51e .687~u90; «B275201 A4 .elsalusil
Lo lahiase toal2eada tontatanas t833310te so2eal °¥“3 1880830762
o) Llo Hleba [+ 'Y 'y
LARBRBSaT] LANASaSass halakaddd :63675?771 822362417 152432838
VAwTANCES
CLASSY AMOF HA I1SACLS CkAS *AMOERA xsocbs
vae VAR vaw NY) VAR wi) vae &0
«NO0NNL]IST .annno?u?g JONNNA20”T (NSIVGAHDNLR L0 905«&05 « 025356943
JNONNONAGLA .nnnnon?g .nonnnoa9a 0214002u7 «N 31229204 .na$3a2359
«0000003A1 L0N0AANTINT ADONONAT] JNeLm02A4S 0264649927 042262435
SNO0NONTLT L00NN0NT1AG 200000ATISH o02HIIGSAR N2e1]15830 0238613912

A'ls ‘ A'69

AT AN,

| T PPy S N T Y N

(Y




Jvr

STRATIFIED PROPORTION ESTIMATION USING SEQUENTIAL ALLOCATION

100S

A-70

CLASSY

AMOEHA
RTAS

0.0
n."

N.0N&0NK6
REN JMSE

AMOEMHA
RIAS
'0“12030
-.ul?ago
“onl?‘.ﬁ 0

MSF

A-16

1SO0CLS

Qe
N0

0.0

-2 340

Nel)
Ne0

0.0
n. 001736

Neh
1
NgN
0.98070R

P -




Lahat e LA A el st Dl aiad )

1 ASSy

« SANIQN

0.0
i.oa74nl
« NOWRGARA

CLASSYy

AMNIFAA

vl as

=e210200
-.N120090
-.“210&0
-."33090

MQF

N, 008203
0N,003297
0 NN2NH6A
N 0028]0

WE1) 4 MSE

n,743120
04334933
1:603928

0e)
NeN]067T
Ne0N]l6h

RED 4MSE

0.0
Ne0
n.eaaa?

7
0,722813

A-17

IsocLs

et
o

N
o.001900

29

Dllee

non
(VL)
NenS]7TRY

[SaCLs

0.n
0y

041
0, 007820

2599

0uen?




SR e vt ORI o L

S
L »
[ &
[
v SccCcc cCccc ST OoC
— oo oo e o eoe LI Y
feg g ol CoOCC ocCC
[~ ~1 -] LN rac
< o N SO u 3 N~
» v N ™ M=} ~T™
w a wrare o [ag aal A VD 4 Lo\,
o I Mg o cccC 4 MW
F T €COTOD 3 TCTES O Coeif=
< ® o0 0 s 000 ¢ o 00 0
cLe CCCCT O Coemi\ —
]
Lo o
cocc Lol =4, WX 4 ~axouU
> [agf 17208 ~30 N~ N> LS
74 NS Oow ChC~- 0 0\
v N30 »m JOAN g e
< e~ cCcCccC TONCH
- cocc oocc <« I a
(&) LI LI B e e oo
10801 CcC oo OO rtem
Q COOC [~2-1-1~] oCoC
«£ MO N MLCoON Laad =1- X\ V)
[ =3 — - -
3
.
o
"~
[
g




[ it e il o ai don o TSI .

1
E A
<
B
g N 4 w./
M N ~ L 4 .
i x o wn <
‘ ~ o 0
[~ [~ [ o
> -4 D
|4 [ -] -
' [~1-X -1~ (=1 ~]~1~] oococC
1 w o e oo s e o0 o e o0
po | CDOO DOOO COOO
(9
1 ] 20002 —_ry D~ ~N103
v A& ~L cCooD nNNa e
- N o CcCO0O ~MD
A W~ cCCcoc AN
DO e coce LN
_ v cCcCo cococo cmu-L
s 2002 SO0 [ 4
(5 B - 4 cocc QOO OC ~\y
e T e e oo oo 00 ® e ee
- ] “ oC Co coco L2ccc
——
lx % . csoun N g
{4 <« PP D NN INNC
i > =L W~ cTOT N X T~
. NONO cooS @ SN
3 ! [t & 4 cCcCcc ZOCN
4 1 -S9O =2 >~ 0L
1 . > cCcCce cecocc vt ot s
. 74} cCOoOCD (=111 -] ODC~
! v. e 0 o0 eo o e X
1 L1 DD SO0DC [~ =1~ 3]
- |
(& = 1 O
o ~ c hodd
W Un M. n
] i .“
x (L) ~ <
o -, PEIERY 4 ~
. -4 v S W c 3 =
: U 4 TCcTdO v Dcoc ¢ O
. C o= o0 o0 T o ee s e e o
H S g ccod ccee W CccC
S o
. oS 0D cCccc 3 Nt
H cL o cCIx cycd
: SC e~ v o NEL S
v nwarcm "y Te croce
BTV ) X 3§ ot~ —rYOr P~ < NN
3 [C N C SN o x>
aq A TN ccece NLCTome
3 C cC oC cCgccc ~O7e
u ¥ o0 o0 *c 000 e e 00
W ] "8 00 cocT CCores
"o <TOoCce YN -3
~ooQ chve 2 NIy
o oQ —tf MU ca3c
> TS A v L~ [TALLVE Ko
¢ v [ Tod- 5 ¢ QPO s CoeC
h v c3I o COANN ~LIS
L] € oo o CCOO L LadagnY
_ - ccco ocoe NDAE
(5] *e oo LI I ) e e e
_ L I ] CcCOoCOoO O C oot
OC OO oOCOO cCoCC

ML oN O T LRN
- -

w. | i
; T




TN MY T YL

TN T DI

B e )

A-74 -

1008

CLASKY

STRATIFIED PROPORTION ESTIMATION USING BAYESIAN SEQUENTTAL ATLOCATION

— . G e s, e

AMNE=Q

«1as

Ne"

112140
= NNS4LRN
N,000030

MSF

N0
N,003142
Ne001211
N, 000852
RWE ) JUSF

N,

0N, RIGAHY
Ne6301Sa
N,6eHNGaN

AMOERA
“lAS
N 017160
N017A20
N,1127260
N, 0123AN
MSF

Nenlvlds
NedRALLS
N,4A205%4
N.[0A0RM]

A-20

IS0CLS

N0
Nel
- N8 349

Oen
Denh
”o{h)“-,:.ﬂ
[T} L Y7y

a0
N0
04001 36K
a0 ]n2|




TR

DL R i Rt

CLASSY

AMOERA
A1AS

0.0

e NN7S60
- 005‘070
-0001700

MSF

N.heh901
0.519750
0.,574634
0 ha5198

A-21

[sNCLs

Qe
0N
-."?6110

0.0
e
N,00n] 2464
NN 0a9

Nyt
Do

- NAQNHN
e N16920




AvMDE A 1SOCLS
nlas

cLASSY

1520

HI§90
011520

n
n
o

N
n
D
|

4120
“h1n
= N)3IRGN
=,0072580

Zi0b

MSE

DR yMSF

I1SOCLS

CLASSY AVNEmA

1604

LIELS

MSF,

QEN MSE

A-22

‘A-76 -




1678 CLaesy ANIFA 1<nCLS
“14aS
30 -, NONLEA NN Nen
33 -'83Q§qg 2enz193n 2ch 177
- L) - ! 9 =Ny )
120 -3009790 -:nﬁlngn -.nnsloh
MG F
0 WL EETS N0t el
60 §:ootgal Dot 0en
90 N1216 ALD0206e7 2,00130)
120 0.N0NANR Net)01 702 N.000923
PE) JMSE
30 D818} 99 1, NGt
60 O:gSA K& AN Do lh
90 0.530034 N _RA91894 N ,SAY)]Ak
120 0,400A9 N, Q090AKT 1,9 37abN
1R0S CLASSY AMUE M A 1s0CLS
RIaAS
30 0.00n230 0N )
88 -'38A§lq q'?);j N “)?
- 20 @), 3 ) @ 0y )]
120 “e0ANS30  =2034230 < inf9swn
’ WQF
a0 0.001767 0,0 ]
&0 0.001027 a.n NeD
90 0.000871 A, NN1ARG 00,0008
120 0.000560 0,0013]10 N,n0NheAR
QE').MQE
a0 0.3%41900 a0 Ve
60 0.“63“80 Dol Ne0
Q9 N.06N0RN 1,091A485 N0,020}8%
120 0,490000 1,1a822& n,437027
A-23 A-77

77




"

1877

A-78

—

C1.ASSY AVNIERA
“]as
= 002710 N0
=*,0076n0 «,N0S546N
=, 000060 «,0076M0
., 000020 e N08RGO
ASE
8.0on§6n Nen
000300 A, 000674
0.0001S80 0N, 0NN29A
0,000176 0,000238
PF0,MSE
“'2252"3 ?'g 1959
® «NIY’
a:hbaaan Ne93dinn
s TG 2uli 1M1 ]A19
C1ASNY AMOFRA
ulas
0.,NOPREN o, 0046409
0.0120n0 «,000200
0.N)INARP0 <, 00]1480
0.012200 0,00067H
w§k
.8010n7 o.oo;auo
o 2?06ﬁ 0,002360
N0157) N0l
001202  a 0n|nug
OF M) 4 4SE,
0.,60R1&2 0Nn,S2%uY>
0.5AN62 ) .5N=68
o.zoﬂna7 NeSTHAAM
0.682AnT7 0 ,8090%42
A-24

[socLs

ISuCLS

Ny
Ve
-, 1029010
N30 10K0

et

ALnn 99
0100979




!.

ClLASSY

1. as3yY

‘.ﬂ ‘ﬂ7ﬂ

-:0]0020
-:01<83a

P LY IX]
rugns

AMNE X 3
4] AS

=ei)] 479N
..0 ) h("
-.012930

ASF

A NN IS
Nedlon]
LML ELTY
NeND Ve

ke MSE

AmMNF A
31AR

LYY L)
L N

-.:‘?7 RN
-."’1 “n

“e s

NLANTG0N
(1 I

NP5 7
n,nnl1727

gtl‘.‘.gﬁ

| I Y N PPl )
N

16354937
1o ?773”

A-25

1SOCLS

A}
Ne0
e, MN(]N

(L]
(et
VNN ALY
N NN jUTe

nen
Deh

Ng&uY 720
0.5;{’03
IS0CLS

(1}

ngn |
=,N¥1150
e , N0 3”20

.1
heh
N, A00Q7
D NNNING

N
glr
NeSAN2N .
(L LD

79

C e, e - et

€ motitan i s ©



l?ﬂ

a8y

AMNFw )
AN
ﬂ.ﬂ

- S Wy
-:§gh£7 (]

MSE
N
Ne?
N,M00/06
ﬂ.»,‘lﬂ'“ﬂ
O, “&E
Ne"
n.\‘
N, 83307
0,578n069
ANFia

miaN

LY L1
0 DY ¥

mSF
ﬂ."

N0

N ONIPTAR
N, AINP42A
OF 1) 4 USE

0
N
0,
he

N,

N
NGl N2?
AU IN

A-26

1S9CLS

N0 jtad
WenAN] 20

ﬂ.ﬂ
UL
o 6]?7’Q
Voon]lvw)n

1SaCLS

n o
c)’
l)l' &N
o0 V2w

0
U.n
TMILIICT LY
0.“05“‘1'

Ne37¥Imn
Neb i



18NCLS

CLASSY AMNE XA

1032

nRlaS

coCco
"o N
L and

MSE

0.NNN0AK2
N,000H68

0,0
NeN

o0

«N01630
000907
«NNDA3A

cccco

—F
UL
e~
——C <
ceccc
[ < ~1 -3
o0 00
cceccoc

OCOO
MCoON
-4

ittt

QE‘.‘. MsE

N0

n

oc
332384
3632413

L B )

1))
0
0
0

N,4al90nQ
N 3GTTY
0.32530A

214039
350564
RG4S
390AKAL

0.
0,
0.
0.

cooC
MmCoN

AMNE+A [soces
<1245

CLASSY

1033

(=1 =

- ot
T~
NS
o<

[ =] =1 =7 &)
e 900
(=X =38 BN |
(=3~
~t~
~ree
~ooem
C rmtone
el ~f X
o0 0o
<1
cocc
20
s
camc~~
~CCco
cCccocc
o000
U B ]
ScSCCOo
Mmoo N
-t

MSF

MLGET Y

)
0

Ne (ONBK0

0
0
0

RE1 ¢ MSE.

A-81

A-27




Ty VW T - e o T T

A-82

NOOO

AMOF4a

CLASSY
Rlas
=,0072100 040
0.N000RN  a n0NN2(0
0.000360 0, 008500
0.,001970 N, 0085660
MSE
0.002183 0.0
N0N1378  N.NO1]1SA
0.00nR24 N, NNT73A
0.,000A18 0,000829
REQMSE
26246137 n.u
e 335275 «2R2373
«3012413 0 269240
«301517 0,25%177
CLARSY AMOF 54
Hlas
= N085A0 0.0
= 01NGH0 <, 0071920
009740 <=,0]12AS0
~00RT7AN <, nN]122uN0
ASE
N.N014148 0,0
0.000RS5A 0O,001070
0000581 N, NONGEA
0.000607 0,N0036RK
DE"-MSE
0.69753A 0,0
0.RB314R0 1.0391
0, H6NSGN ala
0e7917RA 0 71495
A-238

ISOCLS

Ngh
N0
N, 00R470
0,0074%40

0.0
0.0
0000689
0,000397

ﬂ.l"
() 33
-.0A3)0
= NNANLD

NN
e
N,000507
0,000300

BT S

PV Y



CL ASSy

DODOO
o o o 0
@PDIID
O0DOO
- Y O
v Sl J
~»O0LX
39925

QDO
oo e
(=R~
DIDD
DD DO
SPR
PAY il
nroé&

0.3P261
0370272
0,4046%07
0,4NRRT7

CL 4SSy

=.0N0A12N
-4, 00827N
= N0RT720
«.0037/0

T

AMOE A

Blas

‘00,3130
e N1nRNN
we1]1S1an

AMOERA
rlAS

0.01852n
N,007/00
0.005100
N ,NDIAEN

MSE

0.0N8137

6l
N NN]AJA
00001138

RED 4MSE

NefMaS30N
Nendlan|
N,A1AHBNT
N.571998

A-29

IsncLs

29
.
>

oN
D 1NN I42
000"0533

D¢
Jatd
N AOYITT
) HeSI26

IS0CLs

n.ﬁ
N.0
-, 01669
-.UUI“ ‘0

0,0
NN
N,r01018
(16 NN NAGE

an
N.0

N IRINY]
Ng3PallAR

o
T e a0 e e A

s

Y

e o




A-84

1512

N OO
[~1—-1-1~]

N O P
[=1=2-2-]

N LoV
OODO

CLASSY

-, 002900
-.00‘] ln
=,0058]10

AMOERA
4143

A-30

tancCLs

N0
040
- ,N?2] 740
‘onlA3q0

NN



- e SR T L L ——

wn S TR E T R T T R T R R ¥ ode il & FIR Sk Al §

i B —
| S N
T o i e o
w m
L
¥ 1
, M ! :
| /,> !
Os
D ’
(o] :
00 —0 S0 < :
i N os .
"~ [-1-4 N
~r~ o0 ~
H co co ~e
o0 oD e
ceo cC -y
oO0CO (=1 -1—1 ] 000o
N e e eoe ®eeoeoe eo oo
F ﬂu— ocooco oOQO oCOoO0
= rX~N RPN NN
[74) (=200 ol O™ [\ U V]
— N T =D et OO N~
—_YC~ oCcCoo oG O
D =0 \Jome COCC DM
7 4 coCcC occCo NN ©
at SCoC oCTO oo~ D
U 9q T =oC coco Ll -1 -1
2 e o0 e es o0 s e e
< ._” oCcCDC [ 1] ocoR
-~ -
x 3 X~ ~en oM
< o I T 14 Mae] L OM=e o~ O
> ? Beaid kY MC OV ~oyrm ._
oNT L cceT § s (\Jome
———C cCcoC cormna
2= 2 cCc o f Or=-N
> [ =1 ol =14 ceccc K el st Ol
v 3114 cCTO D200 m
o e e e e e e s e e s e
1 coa> cc=2 ccoo i
w ke 200 o rm™ N
—y ——rr —~ - ‘
<3 Lang A <3 -
"3 3 33 [ 1
AN bo 4 o S Y | Lo -4
r -~ cs v N~
’ - 0 ST W e Z -\ E
g L &L oSS BB TCTZ ¢ cCofN
: C e ees e JF o s 0o (O *e e 00
,\ S D ST zccc u ccce “
,, O —~'f L TN aToOCH
‘ U 0 ~CCL nILo
: L L~ NnNTXT Dbl Tomd 1
v Ed—d. Aond WL o Q Lol
2 « -2 N 3O Mo
A ) FIr1 |\ Sl DNNONT
o g cCcCcC cCceceC O™
x © cCc=eT coce [l ol g
-~ X oo s 0 o s 00 s e 060
M. < 1000 coos cooe 1
rroc L% 2300
cace JCOo™ CIUN
ACCo \NCcJSLY L moa
> CL~-c rxor ¥ g )] i
w Mg a QO 0 D
(4] cCccCcC A= C T &~ ] i
< ccee occe @ rof\poms
- ccco cCcec SN
] (8] e e o0 e s e so 00 ;
_ oci oocCo ococoe N
1
! :
1
QOO Q000 0000 w
MOooN MO N Mo N 1
~ - -t !
' {
| i
1
_ 1
; A
L
¥
= it snasatbiirt aomi g — .
o ey sne W stnapmivecne e SRSl SRR o R N VY- SO S P . Y I e




P
t
1
¢

APPENDIX B

EVALUATION OF BAYESIAN SEQUENT IAL PROPORTION ESTIMATION
USING ANALYST LABELS

1%

AR AL D M e o

Nt T I v T T D




APPENDIX B

EVALUATION ‘OF BAYESIAN SEQUENTIAL PROPORTION ESTIMATION
USING ANALYST LABELS*

By R. K. Lennington and K. M. Abotteen

1. INTRODUCTION

A previous study by R. K. Lennington and J. K. Johnson (ref. 1) concluded by
recommending a new procedure for crop proportion estimation. The procedure
consisted of two steps. First, the Landsat data were to be clustered using
the CLASSY clustering algorithm. Then, picture elements {pixels) were to be
allocated to each cluster strata and labeled using a sequential Bayesian allo-
cation scheme developed by M. D. Pore (ref. 2). The labeled pixels were used
to form a posterior distribution Bayes estimate of the proportion of the class
of interest. In tests involving ground-truth data from 21 blind sites used in
Phase 11l of the Large Area Crop Inventory Experiment (LACIE), this procedure
was unbiased and had an estimated mean squared error (MSE) aﬁbroximately equal
to that of a procedure called Procedure 1 (which is based on the sampling of
individual pixels) and uses only one-third of the total number of labeled
pixels (ref. 1).

In order to explore the feasibility of the new procedure in an actual labeling
situation and to perform a preliminary evaluation of its characteristics using
analyst labels, a test involving 10 Phase 11l segments was undertaken.

Section 2 describes the procedure used for selecting pixels to be labeled and
the method for obtaining proportion estimates. The data set used in the
experiment is described in section 3, while the results pertaining to the
accuracy of the andlyst labels and the bias and MSE of the proportion esti-
mates obtained using these labels are described in section 4. Section 4 also
presents the conclusion and recommendations.

RS

1}ub11shed by Lockheed Engineering and Management Services Company, Inc.,
LEMSC0-14355, NASA/JSC (Houston), April 1980.
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2. LABELING PROCEDURE

For the purposes of this test, the Bayesian sequential allocation procedure
was implemented on a Texas Instruments TI159 programmable calculator. The
version of the allocation procedure implemented was slightly different from
the procedure used in the previous study (ref. 1) in that a beta distribution
was used for the prior distribution of cluster purities rather than a
quadratic or exponential distribution. The form of the distribution used was
as follows.

9(61) - rraa;b (61)8-1 (l_ei)b-l (1)
where
b=1
a =2 .
1-p

B = the estimated proportion of the class of interest in the whole
segment )

ei = the proportion of the class of interest in cluster i

g = the prior distribution of cluster purities

The choice of the parameters a and b ensures that the mean of the distri-
bution will be B. The parameter b was chosen to be fixed at a value of 1
because that value seemed to give the best fit to the previously obtained
empirical prior distributions (ref. 1). Initially, the parameter a was
chosen to be 0.515, corresponding to a 5 of 0.34.

The beta prior distribution, although not identical to the prior distributions
used in the previous study, is not greatly different and does offer some
advantages. It may be used over the entire range of segment proportions;
hence, the use of a prior distribution for large proportion segments and
another for small proportion segments is unnecessary. Also, the similarity of
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the beta distribution to the binomial distribution allows the calculation of
the Bayes posterior distribution estimator for 8 and the expressions for the
bias and variance of this estimator with comparative ease. In fact, the beta
distribution is called a "natural conjugate prior distribution" to the binom-
fal distribution for this reason. In addition, tests performed subsequent to
the work reported in reference 1 showed that use of the beta prior distribu-
tion with ground-truth labels produced results which were at least as good as
those produced using the combination of a quadratic and exponential prior
distribution.

Using the beta prior distribution for °i’ the Bayes posterior distribution
estimator for e1 becomes

R X, +a
0y = (2)
i ng+a+
where
n; = the total number of pixels sampled from cluster 1
Xy = the number of sampled pixels which belong to the class of interest
The bias and MSE of this estimator are

-~ a(l-ei) + be,l
Bias; = E(8; - #,) = ng+a+b (3)

om0yt - 0y) + [all - 8y) - b, 7

MSE 3
("i + a3+ bh)

; (4)

where € = the expected value operator.

The allocation procedure begins with the allocation of two random pixels to
each cluster. At this point, p {s calculated as

b &)

(5)




where

Ny = the number of pixels in cluster i

Ny = the total number of pixels in the segment
¢ = the number of clusters

The parameter a is then reset using the equation

-~

a-—lr
1-p

At this point, the sequential allocation of pixels begins. Succeeding pixels
are allocated to clusters which will minimize the expected value of an esti-
mator of the overall MSE for the segment proportion estimate p.

The MSE for p may be written as

| MSE 12‘_’1N’21~1sr (6)
" )

By using Si in place of 6, in equation (4), MSE; may be estimated. We will
denote this estimator as MSEi(xi.ni).

The expected reduction in the estimated MSE by labeling another pixel from
, cluster { becomes

. M2y . )
aMSE, '('N':T)g"sgi(xi’"i) . [e1 MSE,(x, + 1,n, + 1)

+ (1 - 8,)MSE, (x,,n, + 1)]; (7)

Thus, each successive pixel is chosen at random from the cluster having the
largest value of AMSE1.

E In practice, the CLASSY clustering algorithm was first run on a given
: segment. Then each of the 209 grid intersection pixels was associated with
! the cluster in which it was placed, and the grid intersection pixels falling

T =y AT PP T Y

fn each cluster were 1isted in a randomized order. The randomized list also
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contained the label of each pixel that had been previously labeled by an
analyst and indicated whether the labeled pixel was a type I or type II dot.

In selecting pixels from clusters, the first to be selected from the random-
fzed 1ist were the type Il dots for which analyst labels were available. When
these pixels were exhausted, others were chosen according to the randomfzed
order within clusters. If a type ! dot fell in this sequence, its label was
used. Dots other than type I were labeled by one of the authors (K. Abotteen)
using standard analyst procedures. A total of 45 pixels were allocated and
labeled for each segment.

3. DATA SET AND EXPERIMENTAL DESIGN

The data set for this experiment consisted of 10 phase III blind sites chosen
as a subset of the 21 segments used in the previous study (ref. 1). These seg-
ments were chosen to be representative of the previously used, larger data set
with regard to geographical location and range of segment proportions of small
grains. These segments and acquisitions along with their location and the
ground-truth proportion of small grains in each segment are given in table 1.

The experimental design consisted of selecting and labeling 45 grid inter-
section dots from each segment. Repeated processings were not attempted due
to the 1imited number of analyst labels available.

4. RESULTS

This study provides the data for answering two important questions relative to
the use of analyst labels with the Bayesian sequential allocation procedure.
The first question concerns analyst accuracy in labeling pixels. Since in the
Bayesian sequential procedure more pixels are allocated to mixed clusters, it
was thought that the analyst labeling accuracy might decrease. The second
question concerns the bias and MSE of the proportion estimate resulting from
the procedure as compared to the bias and MSE of a Simp1e random sample of the

B-5
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TABLE 1.- DESCRIFTION OF THE DATA SET

Segment

Ground-truth

Location Acquisitions used proportion of
small grains
1005(w) | Cheyenne, Colorado 7177, 7159, 6326, 6254 0.348
1033(w) | Clark, Kansas 7156, 6288 .095 -
1060(w) | Sherman, Texas 7158, 7068 231
1231(w) | Jackson, Ok1ahoma 7156, 7066, 6288 734
1520(w) | Big Stone, Minnesota 7174, 7156, 7120 301
1604(s) | Renville, North Dakota | 7143, 7125 524
1675(s) | McPherson, South Dakota | 7230, 7176, 7123, 6254 291
1803(w) | Shannon, South Dakota 7178, 7159, 7123, 6255 032
1805(m) | Gregory, South Dakota 7211, 7158, 6307, 6290 164
1853(w) | Ness, Kansas 7193, 7067, 6253 306

Symbol definition:

w = winter wheat

s = spring wheat

m = mixed wheat

I T



same size. Analyst accuracy will be examined first, followed by results
concerning the proportion estimate itself.

Table 2 shows the error rate in labaling sm2'1 grains (percentage of ground-
truth small grain pixels labeled "other") and the error rate in labeling
"other" (percentage of ground-truth "other” pixels labeled small grains) for
the 45 pixels that were sequentially allocated to each segment. The corres-
ponding error rates for the type Il dots that are selected as a simple random
sample are also given. It should be noted that in every case the error rate
in labeling small grain pixels was lower for the sequentially allocated pixels
than for the type Il dots. The error rate in labeling "other' pixels was
lower in two cases for the sequentially allocated pixels; however, the error
rate in 1abeling "other" pixels was generally fairly low for both types of
allocations.

As another test, one may examine the total number of labeling errors using a
sequential Bayesian allocation and compare this to the expected total number
of errors based on the error rate for the type Il dots. The expected number
of errors was calculated by multiplying the total error rate calculated from
the type Il dots by 45. These data are given in table 3. A chi-square test
of these observed and expected number of errors yields a value of

X2 « 14.811

With 9 degrees of freedom, the 5 percent significance level of the %2 random
variable is 16.9. Hence, at tins lovel of significance, we fail to reject the
hypothesis that the observed :umber of errors are not different than the
expected number of errors based on the simple random sample of type Il dots.
It should be noted that the chi-square test may fafl to hold si .- three of
the segments have an expected number of errors less than five. However, the
test may be taken as an indication of very little difference in the error
rates for the two labeling procedures.
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TABLE 2.- ANALYST ERROR RATES FOR SEQUENTIALLY
ALLOCATED DOTS VERSUS THE TYPE 11 DOTS

Sequentially allocated dots Type 11 dots
Segment
Error rate for | Error rate Error rate for | Error rate
spring grains for “other" | spring grains for "other"
1005 0.4286 0.0417 0.5000 0.0270
1033 .7000 0286 8571 .0189
1060 2778 0370 2857 .0000
1231 0294 .0909 .0851 .1818
1520 2353 .1429 2500 .0909
1604 .4800 2000 4839 .3158
1675 3571 .0323 8333 .0208 4
1803 2500 0244 .5000 .0000 3
1805 .2000 0857 3636 .0460
1853 1429 1613 .2000 .0889
-
Averages 0.3101 0.0845 0.4359 0.0790

.




TABLE 3.- OBSERVED AND EXPECTED TOTAL
NUMBER OF ANALYST LABELING ERRORS

Total number of errors
Segment

. Observed® | Expected®
1005 10 9.135
1033 8 5.265
1060 6 3.015
1231 2 4,635
1520 8 5.985
1604 16 15.750
1675 6 8.235
1803 3 0.765
1805 5 3.690
1853 7 5.265

umber of errors observed out of 45
sequentially allocated pixels.

bNumber of errors expected based on
the error rate on the type II dots.

. - . oo b o
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Regarding the actual proportion estimates, table 4 shows the posterior distri-
bution Bayes proportion estimates produced following the sequential allocation
of 45 pixels, the proportion estimates based on the type Il dots used as a
simple random sample, and the Phase IIl Procedure I estimates. The deviation
of each of these estimates from the ground-truth proportion of small grains
for each segment also appears in this table.

Several observations may be made from table 4. First, the average bias com-
puted over segments is smaller for the Bayesian sequential estimates than for
the simple random sample estimates or the Procedure I estimates. Thus, the
Bayesian sequential estimates appear to be somewhat less sensitive to the
effects of analyst bias. Also, the MSE computed over segments is smaller for
the Bayesian sequential procedure than for the other two procedures. In fact,
if we correct the MSE for the type !l dot estimates and the Procedure ! esti-
mates to reflect an average sample size of 45 pixels rather than the average
sample size of 63.5 or 105.5 pixels as given in table 4, we obtain

MSEType 11 adjusted * 833 (.0118325) = 0.0166970
105.5
MSEpy adjusted = —q5— (-0126021) = 0.0295449

These values, when compared to the MSE for the Bayesian sequential procedure,
yield the following reduction in MSE values.

MSEBayes Seq
3 Type II adjusted

MSE

W_B_QQ_S_S_eﬁ_ = 0.2903 = R,

Pl adjusted

= 0.5137 = Ry

The reduction in the MSE for the type II dots, Ry, is very close to the value
reported in reference 1 for the reduction in the MSE of the Bayesian sequen-
tial procedure as compared to a simple random sample of the same size using
ground-truth labels. Both Ry and R, represent very favorable reductions in

MSE values and tend to validate the results of the previous study obtained
using the ground truth.
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5. CONCLUSIONS AND RECOMMENDATIONS

This study indicates that the Bayesian sequential dot allocation and propor-
tion estimation procedure does not significantly increase the analyst labeling
error rate. In addition, as compared to a simple random sample, the procedure
reduces tﬁe MSE by a factor of two. When compared to Procedure I, it reduces
the MSE by a factor of approximately three. These results validate the advan-
tages to be obtained in using this procedure with analyst labels.

The fact that the procedure was implemented on a small programmable calculator
indicates that it is operationally feasible. However, it should be mentioned
that the dot selection part of the program was slower than the normal analyst
dot-labeling rate. Another yet-to-be-resolved issue is the development of a
technique for selecting pixels from clusters without revealing to the analyst
the identity of the cluster in which the pixels fall. [t is felt that the
knowledge that pixels fall in the same or different clusters may bias the
analyst decision. One sbvious solution to the computer-time problem and the
cluster identity problem would be to implement the procedure on a main-frame
computer with interactive analyst access via a terminal. Using this approach,
the cluster identities of all the grid intersection pixels could be retained
in the computer and therefore would not have to be revealed to the analyst.

A larger computer should also be able to select pixels faster than an analyst
can label them.

In conclusion, it is recommended that steps be initiated for incorporating
this procedure in a large-scale test using fully developed analyst procedures.
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