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ABSTRACT

To facilitate geologic interpretation of satellite elevation

potential field data, analysis techniques are developed and verified

in the spherical domain that are commensurate with conventional flat

earth methods of potential field interpretation.

A powerful approach to the spherical earth problem relates potential

field anomalies to a distribution of equivalent point sources by least

squares matrix inversion. Linear transformations of the equivalent

source field lead to corresponding geoidal anomalies, pseudo-anomalies,

vector anomaly components, spatial derivatives, continuations, and dif-

ferential magnetic pole reductions.

Correlation of gravity and magnetic anomalies combined with other

geological and geophysical data is useful for enhancing the quality

and uniqueness of the geological interpretation of potential anomaly

fields. Equivalent point source inversion is used to investigate

qualitative visual spatial correlations of surface free-air gravity

and POGO satellite magnetic anomalies and regional heat flow and tec-

tonic data for North America and adjacent marine areas. A more quan-

titative analysis of the regional potential field anomaly correlations

at satellite elevations also is considered utilizing Poisson's theorem

in a moving-window linear regression analysis between suitable derivatives

of the anomalous gravity and magnetic potentials.

An inverse relationship is observed qualitatively and quantitatively

between long-wavelength gravity and magnetic anomalies over continental

terrane. Regional correlations of negative gravity and positive magnetic

anomalies characterize areas of large relative crustal thickness and

• magnetization as exemplified by a prominent magnetic high which cor-

responds to a gravity minima trend extending from the Anadarko Basin

to the Cincinnati Arch. Negative magnetic and positive gravity anom-

alies characterize thinner crust and regions of higher heat flow such

i

e

4
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as the Cordillera of North and Central America and the Yellowstone geo-

thermal region. Over oceanic areas gravity and magnetic anomalies show

limited correlation.

The capacity to model potential field anomalies is essential to

verifying and detailing the lithospheric inter¢ketation of these data.

Gauss-Legendre quadrature integration is used to develop a versatile

procedure for numerically modeling anomalous gravity and magnetic

potentials and their spatial derivatives on a spherical earth due to

a geologic body of arbitrary shrpe and physical properties. The •
procedure is well suited for satellite potential field modeling be-

cause the accuracy and efficiency improves with increasing distance

between source and observation points.

The spherical earth modeling procedure is used to investigate

Mississippi Embayment crustal structure synthesized from published

surface wave dispersion, seismic refraction and Bouguer gravity

anomaly studies of the region. Modeled gravity and magnetic anomaly

comparisons with upward continued free-air gravity and reduced to

the pole POGO satellite magnetic anomalies of the area support the

failed-rift (aulacogen) hypothesis for the origin of the Mississippi

Embayment. These results indicate that an aulacogen at satellite

elevations is characterized by observable positive gravity and negative

magnetic anomalies derived primarily from a high-density rift com-

ponent of non-magnetic lower crustal material.

The procedures and results of this investigation provide a com-

prehensive approach to the lithospheric analysis of potential field	 4

anomalies in the spherical domain and, hence, have widespread appli-

cation in the analysis and design of satellite gravity and magnetic

surveys for geological investigation.
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I. INTRODUCTION

A. Statement of the Problem

The theory of plate tectonics has revolutionized the geosciences

by explaining paleo and contemporary geodynamics, as well as providing
s

new insight into the processes which lead to mineral and petroleum

deposits and unifying much of our geological knowledge into a coherent

principle. The origin and much of the development of this concept has

been based largely upon regional surveys and observations made in remote

areas of the earth. The plate tectonics concept was triggered in fact

by regional magnetic surveys of the ocean basins and earthquake epi-

center and foci locations in areas generally remote from the scientific

centers of the world.

Today we have entered a period where technological developments

offer the promise of another quantum jump in our knowledge of the earth.

This technological development, satellite observations, already has had

a tremendous impact upon surface-derived spectral information through

the ERTS and LANDSAT programs. Now t..ese observations are being turned

toward the study of the subsurface and in particular the earth's litho-

sphere.

Satellite observations have three principal advantages for the

measurement of potential fields that are related to lithospheric varia-

tions. First, data can be obtained from the entire earth - no region

is too remote for observation - and patterns difficult to measure and

perceive in surface or near-surface data are delineated by the broad

data coverage. Second, satellite observations form a consistent data

set free from non-uniformity caused by problems such as secular varia-

tions in force fields and differences between continental and oceanic

observations. Lastly, force fields observed from satellites, such as
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magnetic fields, are potential fields whose intensity fs strongly
dependent on the source to sensor distance. Thus, satellite-elevation

observations are largely free from the near-surface geologic sources

which tend to mask or distort the signatures of deep, broad litho-

spheric variations.

Of course, these advantages are negated in many applications

because of the loss of resolving power with increased source to sensor

distance. However, this is not necessarily the case for applications

related to defining lithospheric provinces. On the contrary, the

integration of the field expression of multiple sources permits the

characterization of attributes of geologically significant litho-

!	 spheric regions measured in hundreds or even thousands of kilometers.

These zones identified and characterized on a global basis should

provide useful information for deciphering earth history including

paleo and contemporary geodynamics, delineation of segments of the

lithosphere into resource provinces, and for numerical modeling of

lithospheric processes.

The realization of the importance of these observations has led

to increased availability of highly accurate data for analysis. Hot-

ever, commensurate advances in procedures to analyze and interpret

these data for lithologic information have not kept pace and are

unavailable generally. The overall objective of this investigation is

aimed toward rectifying this problem which currently limits the utility

of satellite potential field data in lithospheric studies.

B. Objectives

Geologic interpretation of conventional low-level or ground-based

gravity and magnetic survey data relies on a sophisticated arsenal of

procedures to analyze the anomalies in the Cartesian plane. Conventional

applications of procedures such as continuation, differentiation, magnetic

reduction to the pole, etc., involve simplifying assumptions which gen-

erally do not hold over large areas of a spherical earth that also exhibit

considerable variations of geomagnetic field amplitude, declination and
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inclination. Accordingly, attempts to directly adapt these procedures

for analysis of regional-scale survey data registered in degrees of

latitude and longitude are problematic and difficult to accomplish.

An alternative approach is described and demonstrated in section

II whereby many of the objectives of conventional processing technology

can be achieved accurately and efficiently for gravity and magnetic

anomalies registered in spherical coordinates. The procedure involves

relating the potential anomaly "field to a spherical distribution of equi-

valent point sources by least squares matrix inversion. The processing

i	 objective then can be computed in spherical coordinates directly from

the equivalent point source distribution.

However, the geologic interpretation of gravity and magnetic anomaly

data, even when suitably processed, often leads to ambiguous results

because of interfering anomalies, inadequate anomaly resolution and the

multiplicity of equivalent anomaly sources. An important and time-

honored technique for reducing this ambiguity is to analyze the cor-

relations between the potential field anomalies along with other classes

of geophysical data. Gravity and magnetic data are particularly suited

for correlation analysis because anomalies in gravity and magnetic fields

often are related genetically, although it is clear that the lack of

anomaly correlation also can provide significant information for the

geologic interpretation of these data.

In section III, equivalent point source inversion is used to pre-

pare long-wavelength gravity and magnetic anomaly fields over North

America and adjacent oceanic regions for visual spatial correlation with

each other and regional heat flow and tectonic data. POGO satellite

magnetic anomalies are differentially reduced to the pole so that the

data uniformly reflect source magnetization characteristics. Surface free-

. air gravity anomaly values also are upward continued to satellite ele-

vations for comparison with the magnetic data and the long-wavelength,

low order and degree spherical harmonic representation of heat flow.

A more quantitative approach to the correlation of these potential

field anomalies is investigated in section IV. Here, Poisson's theorem

is used in a moving-window linear regression analysis performed between
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suitable derivatives of the anomalous gravity and magnetic potentials

which are developed from equivalent point source inversion processing.

The regression parameters generated by moving-window Poisson's analysis

are useful for establishing patterns of correlation and non-correlation

between the potential field anomalies. For spatially correlating

gravity and magnetic anomalies these results include an initial estimate

of the ratio of physical property contrasts for the inferred source to

facilitate further investigation and modeling.	 •

Modeling provides critical data for effective survey design and

serves as an efficient approach for verifying and detailing anomaly

interpretation. A technique is described and demonstrated in section V

which utilizes Gauss-Legendre quadrature integration to numerically

model gravity and magnetic anomalies in spherical coordinates due to a

geologic source with arbitrary shape and physical properties. This

procedure is used in section VI to model satellite-elevation gravity and

magnetic signatures of the crustal structure of the Mississippi Embay-

ment for comparison with the POGO satellite magnetic data and upward

continued free-air gravity anomalies.

In general, sections II through VI attempt to describe and verify

techniques for generalized processing (e.g., differentiation, continuation,

regridding, etc.), correlation analysis and modeling of potential field

anomalies in the spherical domain that are commensurate with geophysical

procedures of potential field interpretation enjoying widespread

acceptance in conventional flat earth applications. These sections

are documented so that they are individually complete and, hence, each

section can be considered on an independent basis. However, because

the spherical earth procedures are demonstrated principally by analyses

of POGO satellite magnetic and surface free-air gravity anomaly data

for North America, this documentation style includes some unavoidable s

repetition regarding the description of these data sets.

Finally, in section VII the results of this investigation are

reviewed in the context of utilizing satellite potential field mea-

surements for lithospheric analysis.
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II. SPHBRICAL RAM GRAVITY AIM EPIC ANCHALY ANALYSIS
BY vuxmm Pon o saun8 nmRSIQN

_	 A. Abstract

Artificial, earth-orbit 	 satellites are making increasingly^J	 g	 ^9 Y

available consistent, regional-scale potential field data which offer

the promise of greatly enhancing our understanding of the structure,

dynamics and geological history of the earth's crust and upper mantle.

To realize this promise, procedures are required for lithospheric

analysis of gravity and magnetic anomalies registered in spherical

coordinates. An efficient and powerful approach to the spherical

earth problem is to relate regional potential field anomalies to a

spherical distribution of equivalent point sources by least squares

matrix inversion. Simple linear transformations of the corresponding

equivalent point source field yield a number of geophysically interesting

quantities for the potential field anomalies because the anomalous

potential and its spatial derivatives of all orders are linearly related.

For gravity anomalies, for example, equivalent point source inversion

can be used to compute corresponding geoidal deflections, anomaly

continuations, vector anomaly components and derivatives at any point

in source-free space. Similarly, for magnetic anomalies equivalent

point source inversion can give least squares estimates at any point

in source-free space of the vector anomaly components, anomaly contin-

uations and spatial derivatives, as well as the magnetic anomalies

differentially reduced to the pole. Pseudo-potential field anomalies

•	 also are available from equivalent point source inversion. A number

of examples using lo-averaged surface free-air gravity ana.ialies and

POGO satellite magnetometer data for the United States, Mexico and

Central America illustrate the capabilities of the method.
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B. Introduction

Regional-scale anomalies of the earth's magnetic and gravity

fields provide important constraints for refining the basic model

of plate tectonics and understanding intra-plats dynamics. These

anomalies, especially when combined with other geophysical and

geological data, may be anticipated to yield much information con-

cerning regional physical property variations that are important for

determining the structure, dynamics and geological history of the 	 •

earth's crust and upper mantle. The realization of the importance of

these observations has led to increased availability of highly accurate

regional-scale potential field data for analysis. Coamensurate

advances in data analysis for lithospheric interpretation, however,

have not kept pace and generally are unavailable.

Regional gravity and magnetic surveys represent spherically

composited data for areas ranging in size from a few degrees to

complete global coverage by satellite measurements. Typical processing

objectives include data regridding, continuation, differentiation,

and other wavelength filtering operations. For regional magnetic

surveys it also is desirable from the standpoint of lithospheric

i	 interpretation to reduce the data for the variable geomagnetic field

effects of inclination, declination and intensity.

Spherical surface harmonic functions are a natural representa-

tion for spherically registered gravity and magnetic anomaly fields.

In general, spherical harmonics also are well suited for accomplishing

the processing objectives described above because these operations

involve only modifications of the geometric variables of the anomalies.

However, the problem of representing potential field measurements over

a spherical domain with an orthonormal set of spherical harmonic func-

tions in general is a formidable task of computation (e.g., Kaula, 1967),

especially when it is desired to retain for analysis higher order and

degree terms involving wavelengths of the order of a few hundred kilo- 	 •

meters or less.

When potential field anomalies are spherically registered at

constant elevation, Fourier transform methods yield a simpler
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numerical representation of the data which is suitable for strike-

sensitive and wavelength filtering. These filters are applicable

because the frequency response of the potential field anomaly is

invariant for any uniform orthogonal translation of the degree-

coordinates of the anomaly over the spherical domain. As an example,

low-pass filtering a not of lo-averaged free-air gravity anomalies

can be useful to help eliminate topographic mass contributions, where

•	 it is noted that topographic mass effects tend to be minimized when

free-air gravity anomalies are averaged over areas of the order P
and larger (Woollard, 1962s Strange and Woollard, 1964).

Fourier transform methods applied in the spherical domain to

discriminate anomaly source characteristics, however, normally neces-

sitate regridding of the data to a Cartesian plane. The regridding

procedure with all its attendant problems is required in such cases

because the Fourier frequency characterization of an anomaly is

variant for spherical translations of the anomaly source. Continua-

tion and differentiation by Fourier transform methods also require

Cartesian reregistration of the data to avoid distortions due to a

Nyguist degree-wavelength which is variable in terms of the linear

radial dimension of these operations.

Another approach to spherical earth processing is to invert

potential field anomalies on a spherical distribution of equivalent

print sources. In contrast to processing by spherical harmonics

or Fourier transform methods, equivalent point source inversion

yields numerically efficient representations of potential field

anomalies to any desired degree of wavelength resolution which can

be directly processed in the spherical domain.

In principle, equivalent point source inversion takes advantage

of the ambiguity of source physical properties ani distributions

•	 which is a feature inherent to all potential field anomalies. Every

potential field observation, for example, represents the integrated

•	 effect of sources which may be characterized with equal facility by

an infinite number of combinations of source physical properties and

geometric parameters (e.g., Ramsey, 1940; Kellogg, 1954). The

objective, then, is to relate a set of spherically registered potential

field measurements to a distribution of equivalent sources with

numerical properties which are amenable to spherical earth processing

objectives.

F_
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Rapecially convenient from a numerical standpoint are equiva-

lent point sources because the characteristics of their gravity and

magnetic potentials are simplest to describe mathematically. As will

be demonstrated, the point source potential and all its geophysically

interesting derivatives can always be expressed as the product of an

appropriate physical property value and a purely geometrical point

source function which describes the inverse distance between source

and observation points. By specifying the geometrical distribution

of the equivalent point sources, the problem reduces to one of deter-

mining a set of physical propscty values by matrix inversion techniques

such that the potential field anomalies due to the equivalent point

source distribution approximate the observed anomalies to a specified

precision. Thus, once a suitable set of physical property values has

been found, the equivalent source field representation of the observed

anomalies is calculated by summing at each observation point the

anomaly effect due to each of the equivalent point sources. To

obtain an equivalent source field representation of the continuation,

differentiation, etc. of the c4iserved anomalies to the same degree of

precWon as reflected in the original approximation, the summation

procedure is simply repeated using the appropriate geometrical point

source function.

To further illustrate the mechanism and versatility of equivalent

point source inversion, it is desirable to develop explicitly the prop-

erties of gravity point poles and magnetic point dipoles which facilitate

analyses of potential field anomalies in the spherical domain for sub-

surface information that are analogous to conventional flat earth methods

of geophysical interpretation.

C. The Gravity Point Pole Potential

The gravity point pole is defined as a source of negligible dia-

meter when compared to the distance between the source and observation

points. Its scalar gravitational potential GP(R) at :; point with

spherical coordinates (r,94) located a distance R from the source point

(rl•gl `^l) is given by

S



n	 n8	 1 - (-1 _ * (k+n-1)I

8Rn(Rk)	 Rk+n	 --(k---rTT—
(II-3)

9

GP (R) _ Q*Am - G*^ .	 where	 (11-1)

1 r-r11	
R

G - universal gravitational constant (=6.67R10 8cm3/(gmasec2)),

m - mass contrast of the point pole,

(II-2)R = ! ♦r ♦-r1	 (ra+r1Z-2rrlcosd)

r - radius vector directed from observation point (r,9,4) to
sarth ' s center,

•	 r1 - radius vector directed fy m source point (rl ,e l ,41) to earth's
center,

•

	

	 a - angle between r and R at the observation point (r,e,4), such that
Cosa - cosecose l+sinesin9 lcos (4-4 1) ,

e,e 1 = co-latitude coordinates of observation and source points,
respectively, and

414 1 - longitude coordinates of observation and source points, respectively.

The geometric characteristics of the point source potential are illus-

trated in Figure 1I.1.

Because of the dependence of the potential on the inverse of

the distance 1, the derivatives of the point pole potential GP(R)

are linearly related by the relationship

This result provides a useful function for considering derivatives of

the potential.

Now, the vector gravitational force field GF(R) at the distance

R is given in spherical coordinates by the negative gradient of the

scalar point pole potential as

GF (R) _ -' (GP (R) ) = aR { GP (R) }fit = { -G	 aRR}aa, where

the gradient of R is

= Or
b
r + r ae ee + rsin9 a4 se 

such that

OR r-rlcosa A

y
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For o set of n-observations (088) and o »t of p -point Sooft isometric
functions (0) find o set of p - physical properly values (OX) such that
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riQUre II.1 Gravity and magnetic anomaly analysis in spherical coor-
dinates by equivalsnt point source inversion (sea text for
details).
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C

1 aR 
ri (sinecoseI-coassir*lCos	 I

s We 	 R	 (II-S)

	

I SR 
r 

1	 1

sine cos(-4 )

rsine i	 R	 R' and	 (II-6)

ar , do and •o are the spherically orthogonal basis vectors. Accordingly,

the gravitational force fieldat (r,e,#) is given by

-7 (1) - {-G aR (R)(A &r + R a9 + g a^)}dm,	 (II-7)

•	 where the radial scalar component is

69 { a (^ aR}aa . { G=A}^,,	 (Ii—e)

	

SRR	 ar	 R3

the horizontal 0-co-latitude scalar component is

{ 
_G 

aR (1 " (r IR 	}6id (G2* )an, and	 (II-9)
R

the horizontal ^-longitude scalar component is

{ 
-6 !

_ ( 1 	 ( 1	 aR) }aa . { G•C
}6m.	 (II-10)

aR R	 rsine 8m	 R3

Also, because

{ 3GP(R ) } 2 = { aGP(R) ) 2 * { (3R ) 2 + ( 1 BR) 2 + ( 1	 IR)2}.
BR	 aR	 ar	 r ae	 rsine a^

the total horizontal component of the gravitational force field

(11-7) can be expressed in terms of the radial component (II-e) as

aGP (R { ( 1 aR) 2 + ( 1	 3R) 2}S f 69 { (R) 
2
-1}^.	 (II-11)

aR	 r ae	 rsin8 am	 A

In relating a ret of gravity observations to equation (II-7),

it is important to recognize the distinction between the total gravity

anomaly and the gravity 07,,^t due to local geologic mass variations.

In geophysical practice, uh;; quantity which is considered is the anom-

alous perturbation of the radial component of the earth's geocentric

gravitational field. The use of this quantity, which commonly is called

the gravity effect, 69, for lithospheric analysis assumes the gravity

anomaly due to geological mass variations is so small that perturbations

of the earth's gravity field in an; direction other than the normal

are negligible. Thus, when relating an observed gravity anomaly value
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to the gravitational force field of a point pole, the objective is to

express the observed gravity effect as the radial corqxonent of equation

(11-7) which is given by equation {ii-B).

For lithospheric interpretation, it frequently is desirable

to analyse the spatial derivatives of the gravity anomalies. Dif-

ferentiation of a set of regional-scale gravity observations, for

uxAmple, can help identify the higher frequency crustal components

of the anomaly field. The derivatives also provide useful information 	 •

for modeling the geometric characteristics of anomalous sources.

To obtain equivalent source field representations of the spatial

derivatives for a not of gravity observations it is necessary to

develop the spatial derivatives of the gravity effect of the gravity

point pole. The first order derivative components of the point pole

gravity effect can be calculated from the negative gradient as

^f(6$) • -6 { (R3) }dm • -G { A
V (R3 ) + (L3)UMM

{ -^ { 
A8R (1 3) + (13) 8R} 1̂R}6m, 	 (Ii-12)

R	 R

where the components of U are given by equations (I1-4, 5 and 6).

Row, to evaluate (3A/SR) note that PA/ar) • 0A/U) (War) • ], and,

hence,

(8A/8R) • R/A.	 (II-19)

Accordingly, equation ( II-12) becomes

►(6g) • {-6(RZA - R4) (R it + R S® + R 
i^))Am,

where the scalar first radial derivative of 69 is given by

2
Or • {-6( 13 - 5̂ ) }6m,	 (II-14)

`	 R	 R
t

the scalar first horizontal 9-co-latitude derivative of Ag is derived from

(II-15)
R A R

and the first horizontal 4-longitudinal derivative of 69 is obtained from
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rsia9 
a _ { -G ( 3 - ^) }Am.

R A R
(II-16)

Also, by the same argument which led to the development of equation

(II-11) it can be shown that the total horizontal gradient of Ag

may be expressed in terms of its radial derivative according to the

relation

•	 a^ { ( 1 3R) 2 + ( 1 aR ) 2} = aeq { (R) 2 - 1}	 (II-17)
aR r ae	 rsine ao	 Br A

Another useful tool for lithospheric interpretation is the

Laplacian which, in terms of the gravity effect of the point pole,

is given by

02 (Ag) = 1 a (r2 ate) +	 1 a 
(sine 

aag ) +	 1	 a-^L
r2 ar	 ar	 r2sine ae	

ae	 r sine 
am

_ { a- 2A9 + 2 a
-^} + { 1 â  + 1 cote a- A + { 1	 a 2^9} .

art r ar	
r2	 2	

aeae2 r
	 r2sin20 a^2

Now, V2 (Ag) = 0 because Ag

- { a 2Ag + 2 aA^c } = 1

art r ar	 r2

is a potential function and, hence,

{ 
a^ 

+cote 
a + 1 

2 
a }, (II-18)

ae	 sin e 4

where Mg/ar) is evaluated in (II-14) and the second radial derivative

is given by

a2Ag = a { Mg, aR = G {15A3 - 9A}Am.	 (II-19)
art aR ar ar	 R7	 R5

Equation (II-18) relates the horizontal gravity anomaly curvature

to the radial curvature which is the Laplacian component normally

computed for analysis. Because of the dependence of the Laplacian

on first and second order derivatives it is especially sensitive to

higher frequency anomalies. Hence, relating a set of regional scale

gravity observations to the radial Laplacian component given by (II-18)

can be useful for studying the shallower crustal anomaly components

of the data. Also, the zero contour of equation (II-18) can be used

to roughly delineate the lateral extent of the anomaly source because

the edges of the source are approximated by the inflection points of

the anomaly which correspond to zero curvature. From the sign con-

vention used in equation (II-18) it is obvious that the zero contour
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which delineates regions of positive or negative radial Laplacian

values outlines, respectively, regions of positively or negatively

contrasting densities.

In consideration of the foregoing derivations it is clear that

the results of this section are linearly related by geometry through

ff";	 E	 equation (11-3). Hence, once a set of gravity observations has been

suitably related to a distribution of point poles according to equation

(II-8), then all the variables necessary for evaluating the gravita-

tional potential, anomaly vector components and spatial derivatives,

as well as the continuation of any of these quantities, also have

been determined for the observation set.

D. The Magnetic Point Dipole Potential

The magnetic point dipole is defined as a dipole of negligible

length when compared to the distance between the dipolar source and

observation points. Its scalar magnetic potential MP(R) evaluated

I.at the observation point ( r,A,f) located a distance R from the source

point (rl ,e l ,f l) is given by

MP(R) = Aj •Vl (R) = -.Aj .V(R), where	 (II-20)

-►
O1 = the gradient operator in source point coordinates such that

Vl (R) = V (R) in observation point coordinates,

R = given in (II-2), and

Aj = the magnetic polarization contrast vector of the source point.

The relationships between source point and observation point geo-

metry are illustrated in Figure II.1.

As shown in Figure II.2, the polarization contrast vector may be

expressed in terms of its inclination, Il , and declination, D l , and

the spherically orthonormal basis vectors of the source point as

Aj = Aj*ul = Aj *( (sinl l )er+ (cosllcosD1 ) ee +(cosl 1sinD1 )e^}, (II-`1)

where ul = the unit polarization field vector. Here, it should be

noted that if polarization is induced only, then the polarization con-

trast is given by
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(II-22)

Ak = the magnetic susceptibility contrast, and

F1 = the geomagnetic field vector at the source point such that

F1 = F1*ul.

According to equations'(II-21) and (II-4, 5 and 6) the magnetic

scalar potential of a point dipole reduces to

MP (R) _ -Aj • V(R) = { ul•^7(R)}0j

_	 *{sinI ( a R) + cosI cosD (1 3R
) 
+ cosI sinD

 (7s 
1 8R)}

R2 	 1 8r	 1	 1 r 89	 1	 1	 inO 8m

*{sinI l (A) + cosI lcosDl (B) + cosIlsinDl(C)}

3 *E
•	(II-23)

R

Now, the vector magnetic ..orce field, MF(R), at distance R due

to the point dipole scalar potential is given by

MF (R) = 0(MP (R) ) _ - { 0(R3) *E + R3 *VE}Aj

- { aR ( 13) *E + 1 3 (')^},&j
R	 R

= MF (r) er + MF (6) e  + MF (m) e^ ,	 where	 (II-24)

MF (r) = { R4 *J}Aj , MF (A) = { R4 *J}Aj , 	 MF (m ) = { R *J}Oj , 	 and

R 3A	
RrcosdI
	

3B
J = (A - R) sinI 1 +( s	 - R) cosl lcosD1 +

i
Rrl sine lcos(^-^	 3C

(	 C	
- R) coslsinDl	 l.

Equation ( II-24) is useful for representing vector magnetic anomaly

data. However, most magnetic data taken for geophysical applications

represent scalar total anomaly intensity measurements which contain no

information to discriminate the vector components. For geophysical

5
P

J
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interpretation, then, the assumption is made that the magnetic anomaly

due to geological magnetization variations is so small that perturbations

of the geomagnetic field in any direction other than its direction are

negligible. Kontis and Young (1964) have shown this assumption to be

reasonably valid for anomalies with amplitudes less than about 10,000

gamma* in the earth's magnetic field. Hence, for geophysical interpre-

tation purposes, a total magnetic anomaly measurement is taken to repre-

sent a perturbation of the geomagnetic field along its direction at the

point of measurement.

Thus, to represent a set of total intensity measurements in terms

of the magnetic field of point dipoles it is necessary to compute equa-

tion (II-24) in the direction of the geomagnetic field at the obser-
vation points. This can be achieved by taking the vector dot producti
between equation (II-24) and the unit geomagnetic field vector, u, at
the observation point. Accordingly, the total magnetic anomaly, AT,

at R due to the point dipole is

AT = u •MF(R) = { u•^ (ul•^1(R))}Aj

= MF (r) sinI + MF (9) cosIcosD + MF (^) cosIsinD, (II-25)

where I and D are the inclination and declination, respectively, of

the geomagnetic field at the observation point. In the application of

equation (II-25) geomagnetic field models such as the IGRF-1965 (Cain 	 5
et al., 1967) commonly are used to obtain pertinent values of (I1,D1,F1)

	 r

at the source point and (I,D) at the observation point.

Consideration of equation (II-25) in its expanded form suggests

that the derivation of derivatives for total anomaly fields is likely

to yield fairly complicated algebraic expressions. Fortunately, these

expressions can be considerably simplified by reducing the data to the

pole which in effect is an adjustment of the anomalies to what they

would be if radially (vertically) polarized by a magnetic field of

uniform intensity. In conventional applications the spatial scale of

the magnetic survey is small enough that a single value of geomagnetic

field inclination, declin.l::ion and amplitude may be assumed for the

pole reduction. Over regional-scale areas, however, magnetic anomalies

must be differentially reduced to the pole for values of geomagnetic

inclination, declination and amplitude which are variable at all source

and observation point locations.

*) 1 gamma = 1 nanoTesla, nT
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For total magnetic anomaly observations referenced to a distri-

bution of equivalent point dipoles according to equation (II-25),

differential reduction to radial polarization is readily achieved by

setting I-I 1=90
0
, D-Dl=Oo and using the normalized polarization Aj'

given by Aj' - Aj(N/FI) where N is the desired polarizing amplitude.

Accordingly, equation (II-25) reduced to the pole leads to a consider-

ably simplified radial polarization anomaly ATM given by

2	 •
AT(N) _ - {R3 - 3R5 	(II-26)

An assumption which is implicit in the application of (II-26)

is, of course, that the magnetic anomalies contain no appreciable

component of remanence. When this condition holds, equation (II-26)

can be used to adjust the magnetic observations so that they uniformly

reflect anomaly source characteristics of geometry and magnetization.

Because of this considerable practical significance to geophysical

interpretation, the radially polarized anomaly, AT(N), in general is

more suitable for derivative analysis than the total field anomaly, AT.

The first order spatial derivatives of a set of vertically

polarized magnetic anomalies may be obtained from the negative gradient

of (II-26) which is	 b
r

2	 2
-^ (AT (N) ) _ { 1 - 3A5}Aj' _ iR { 9

4 - 156 )Aj3	 ' .
R	 R	 R	 R

where the scalar first radial derivative of AT(N) is given by

aAT (N) _ { IIA3 - 9A )Aj ,
a	

(II-27)
r	 R7	 R5 

the scalar first horizontal 6-gradient component of AT(N) is

_ 1 aAT(N) _ 15A2B _ 9B

R	 R

	

and the scalar first horizontal m-gradient component of ATM is 	 •

rsin6 
a aT(N) - { 15A 2C _ 95)Aj'.	 (II-29)

	

R	 R

t

	

	 Also, because AT(N) is a potential function its Laplacian is

zero, so that the radial Laplacian component of AT(N) may be equated

with the horizontal component according to the relation
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_ { a 2aT (19 + 1 BAT (N)}

3r2
	 r ar	

(II-30)

1 { a20TtN) + cote MT(N) + 1 21 2AT N }.

r2	 ae2
	 Be	 8,2,2e	 3^2

where the second derivative of AT (N) is given by

a2dT (N) _ { lEa9A4 - Poe + 9 
}S j 

^ •	
(II-31)

3r2 	R9	 R7	 RS

•	 E. Combined Gravity and Magnetic Point Source Potentials

For a point mass which also is magnetized, the observation-to-

source point geometry is invariant so that the magnetic and gravitational

potentials of the point source can be compared directly. Consideration

of equations (II-14 and 26), for example, shows that for a common point

source the gravity effect and radially polarized magnetic anomaly are

related by

AT (N) = AL * 3AgG*Am	 3r

_ a3' * Ag { 1 _ 3A1 .
G*Am	 A R2

(II-32)

When the magnetic anomaly is calculated directly from the gravity

potential as in equation ( II-32), the result commonly is called the

pseudo-magnetic anomaly. The corresponding pseudo-gravity anomaly,

on the other hand, is given by

69 = 
G	 *R 

2
(II-33)Qjm	

R
* AT(N) { 2A
	 2}
- A

Pseudo-potential field calculations facilitate enhanced geologic

interpretation of gravity and magnetic anomalies. The procedure, for

example, is to relate an observed gravity anomaly to a set of point masses,

Am, by one of the least squares matrix inversion techniques described

in the next section. Comparing an estimate for the bulk magnetization

contrast-to-density contrast ratio of the anomalous body :o the equiva-

lent point masses, Am, gives corresponding equivalent point magnetizations,

Aj', which can be used to calculate the pseudo -magnetic anomaly from
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equation (I1-32) or, even more simply, from equation (II-26). A similar

procedure can be used to develop from an observed magnetic anomaly the

corresponding pseudo-gravity anomaly using equations (II-33 or 8). If

the pseudo-potential field anomalies are similar to the observed

potential field anomalies, common source structure can be inferred for

both magnetic and gravity anomalies, thus, minimizing the ambiguity

inherent to the analysis of each of the anomalies by itself. Of course,

dissimilarity between pseudo and observed anomalies also can lead to

	

d	
valid inferences regarding source lithology and structure.

q
Equations (11-32 and 33) are special consequences of a more

general result noted by Poisson (1826) as a theorem which describes

the relationship between the gravitational and magnetic potentials

of any uniformly dense and magnetized body. In its geophysical

context Poisson's theorem states that at an observation point the
s

resultant magnetic anomaly is related to the first derivative of the

	

f	 gravity anomaly taken in the direction of magnetization by the

magnetization contrast-to-density contrast ratio of the body. By

equation (II-3) it is clear that Poisson's theorem also can be extended

to relate the n-th magnetic anomaly derivative to the appropriate

(n+l)-th gravity anomaly derivative. Equations (II-19 and 27), for

example, combine to relate the second order radial gravity anomaly

derivative to the radially polarized first order magnetic anomaly

derivative for a common point source. In general, then, Poisson's

theorem provides an important quantitative basis for comr-aring gravity

and magnetic anomalies and, hence, for minimizing the ambiguity

associated with the lithologic interpretation of these potential fields.

4

F. The Inversion Problem

As described previously, the measured potential field anomaly at

z,	 any observation point is the summation at the observation point of the

potential field effects due to each of the anomalous sources. Because

of source ambiguity of potential fields it is clear that distributions

of point sources exist for any measured anomaly such that the integrated

anomalous effect of the point sources represents with equivalent racility

the observed integrated effect of the true sources. The current

objective, then, is directed toward resolving the problem of obtaining
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for a given set of observed potential field anomalies, a distribution

of equivalent point sources suitable for processing purposes.

The effort begins from a consideration of equations (11-8 and 25)

which relate equivalent point sources to measured anomalies of the

earth's radial gravity field or total magnetic intensity field,

respectively. Both of these equations may be generalized as shown

in Figure II.1, so that the incremental anomaly effect due to the p-th

•	 point source at the n-th observation point is given by gnp(R)*Axp,

•	 where gnp (R) is the geometric point source function and Ax p is the

appropriate physical property value. Accordingly, the relationship

between a set of n-observations (obs l , obs2 , ..., obsn) and a set of

p-point sources can be expressed by the system of linear equations

qll*Ax1 + q12*Ax2 + ... + ql P *Ax
P
 = obs1

q21*Ax1 + q22*Ax2 + ... + q2p*Axp = obs2

qnl*Ax1 + qn2*Ax2 + ... + qn p *Ax
P
 - obsn .

In matrix notation the linear system is more conveniently described by

Q*AX - OBS•	 (II-34)

where Q is an (r-row by p-col) matrix with elements given by the geo-

metric point source functions (gnp (R)), AX is a (p by 1) column

matrix containing the physical property values (Ax), and OBS is an

(n by 1) column matrix of the anomaly observations (obsn).

Now, the geometric variables of the observation points are known,

so that the complete determination of the elements of Q can be made by

•	 simply specifying the geometric distribution of the equivalent point

sources. Hence, by pre-determining the equivalent point source loca-

tions equation (II-34) can be solved for a set of physical property

values AX by a number of well known matrix inversion techniques.

For example, when p - n, Q is a square matrix and the exact

solution given by

AX - Q 1*OBS	 (II-35!
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can be obtained by well documented numerical methods (e.g., Carnahan,

1969) if Q is not near-singular. Theoretically, Q has singular values

only if the source point and observation point are specified at the

same location, in which case the classical singularity of potenti.l

fields arises and the inversion effort is rendered meaningless. In

practice, however, care must be taken to insure that the elements of Q

are not made near-singular with respect to the working precision of the

computer by improper scaling practice. An extreme example of bad

scaV.ng procedure is to specify source point locations so close to

the observation point locations that the significant figures of the

difference in their spatial location is in meters, whereas all other

spatial variables of the Q elements have significant figures given in

hundreds or thousands of kilometers. In such instances, the computer's

ability to distinguish the spatial difference in source and observation

point locations from its representation of zero may be so impaired

that the resultant Q matrix can be considered singular within the

computer's working precision. On the other hand, good scaling

strategy as suggested by the example requires that all variables of any

physical dimension of the problem be computed with roughly equivalent

precision. With respect to the applications considered in this paper,

experience has shown that proper scaling of the Q matrix in general

is not difficult to achieve.

The solution given by (II-35) normally requires p 2 = n2 machine

storage locations for determining Q -1
.
 Hence, because of the large

number of anomaly observations usually being considered, the exact

solution often is impractical to compute even when the problem is

suitably scaled. In most applications, then, computer storage con-

straints require that problem (II-34) be set up so that the number (p)

of equivalent point sources is substantially less than the number (n)

of observations.

When p <n, the solution to the overconstrained system of equation

(II-34) is given by

OX - (QTQ) -1*QT•OBS.	 (II-36)

t
)

r

i
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This solution is well known in the literature of numerical methods

as a least squares solution in the sense that it minimizes the

Euclidean vector norm of the residual, SOBS - Q*AX1 2. Assuming

the problem is properly scaled so that Q is not near-singular,

procedures for obtaining (1I-36) fall generally into two basic

categories depending on how the values of the solution vector are

to be used in subsequent analysis.

For processing purposes such as continuation, differentiation,

etc., the solution AX merely represents a set of weighting coef-

ficients which operate on suitably modified geometric point source

functions to achieve a least squares approximation of the processed

observations. The physical reality of the property values contained

in AX are of limited consequence to these processing objectives and

all that is required, simply, is a set of property values which

provide a least squares fit between the observed anoma;ies and equi-

valent point source anomalies. To obtain this type of solution,

numerous methods are available in the general literature for application.

The Choleski decomposition algorithm (Lawson and Hanson, 1974),

for example, can be recommended when it is desired to minimize machine

computation time because the method yields a least squares solution

set of weighting coefficients without the necessity of directly computing

the product matrix QTQ or its inverse. Choleski factorization is
s

applicable when Q is properly scaled because the product matrix Q TQ

is positive definite with Q as its Choleski factor. The application

of Choleski decomposition requires at least (p2 ) storage allocations

and, hence, the algorithm may not be optimal when machine storage is

the primary constraint.

Machine storage requirements can be reduced to roughly (p(p + 1)/2)

• allocations when the inverse (QTQ) -1 is used to determine the solution.

Because the product matrix QTQ is symmetric, its inverse may be deter-

mined using only those values contained in either the upper or lower

triangular half of the product matrix. In general, then, the product
t'

matrix QTQ can be operated on 'r, "packed" form where, for instance, the

columns of the upper triangle of the product matrix are stored sequen-

tially in a singly-dimensioned array of length (p(p + 1)/2). Hence,
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to determine the solution (II-36) only about one half of the entries

of the product matrix need to be calculated to yield the inverse (QTQ)-1

Although slower than the Choleski decomposition algorithm, the procedure

minimises machine storage requirements for determining the least squares

solution vector Ax.

The second major solution category occurs when i* is desired to

constrain the values of the solution vector AX for subsequent analysis.

This situation arises, for example, when physically realistic property

values are required for modeling volume elements of the crust or some

other geologic feature of the earth. Constrained solutions to equation

(II-34) can be achieved by the eigenvalue-eigenvector matrix decom-

position analysis suggested by Lanczos (1961).

Accordingly, the eigenvalue-eigenvector decomposition of Q is

given by Q - U*S*VT to yield the solution vector

AX - (V*S-1*UT)*Ow. 	 (II-37)

Sere, U and V are orthogonal matrices with columns which are the eigen-

vectors associated with the columns and rows of Q, respectively, and

S is a diagonal matrix with elements which are the eigenvalues, 1, of

Q. The eigenvalues and eigenvectors are obtained from the square

symmetric product matrix QTQ and the inverse 8-1 is a diagonal matrix 	 r

of eigenvalue inverses, 1/k. Jackson (1972) has shown that the Lanczos

solution (II-37) is a least squares solution for the overconstrained

system (i.e., p <n) and, hence, is identical to the conventional solu-

tion (11-36) when Q is not near-singular. In contrast to conventional

algorithms such as Choleski decomposition or packed form solutions,

however, numerical procedures for obtaining the Lanczos solution require

substantially greater machine computation time and storage of at least

(p2 + p(p + 1)/2) allocations.

The main advantage of the Lanczos solution is that eigenvalues

contained in S can be manipulated to constrain the values of the solu-

tion vector AX without altering its least squares property. Eliminating

eigenvalues found near each end of the eigenvalue spectrum, for example,

minimizes the occurrence of extreme property values in the least squares

solution vector that may be difficult to rationalize physically. An



23

example of a more sophisticated procedure is presented by Vigneresse

(1978) for tapering the eigenvalus spectrum to obtain a solution which

is constrained to lie within a restricted range of density contrasts

in an application to gravity interpretation.

The Lancaos procedure also provides a generalissd least squares

solution for the case where Q is near-singular and, hence, where the

conventional techniques are not applicable. here, near-singularities

f

•

	

	 of Q correspond to small eigenvalues which can be eliminated from the

problem by comparing the eigenvalues to an acceptable threshold value.

The surviving eigenvalues and associated eigenvectors are then com-

bined as in (II-37) to obtain a generalised solution which is a least

c—wares fit of the observed anomalies. Bowman et al., (1979) present

a fuller discussion of the procedure as applied to equivalent point

source processing and some applications to gravity and magnetic

anomaly invorsion.

Finally, the problem of specifying the geometric distribution

-f equivalent point sources for purposes of efficient inversion must

be considered. In practice, machine computation time and storage

requirements frequently dictate the source distribution characteristics

for inversion. As discussed by Bowman at al., (1979), these requirements

can be minimized by the strategic assignment of a point source to

eacts feature of the observed data that is to be modeled. Here, the

geometric characteristics of the strategic source distribution can be

specified according to well known rules relating the depth and wave-

length characteristics of point sources (e.g., Nettleton, 19421 eaellie,

1956) .

Another numerically convenient approach which is more automatic in

its application, is to perform the inversion an a spherical grid of

j	 point sources at constant depth. For this application, the initial

depth of the source grid should be on the order of the source grid

spacing (e.g., Dampney, 1%91 Ku, 1977). In practice, the source grid

density of unknowns generally is specified according to available

computer resources, so that adjustments of the equivalent source field

to more precisely reflect wavelength characteristics of the observed

data normally reduce to straightforward adjustments of the source grid

depth.
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It also should be noted that edge effects frequently are observed

In radial continuations of the equivalent souse* field when the lateral

dimensions of the source grid are roughly coincident with the observation

grid. This result reflects the decreased energy density associated

with point sources located near the edges of the distribution that

tends to be emphasised by continuation. Edge effects are particularly

trw&lesome when the observed data set is so large that processing has

to be accomplished via subsets at one elevation which must be rejoined

at a new elevation. Experience has sham, however, that edge effects

can be minimised b; including in the inversion a peripheral rind of

observed data which extends laterally beyond the source grid a distance

roughly equal to or greater than the radial distance between the source

grid and the desired elevation of continuation.

G. Examples of Geophysical Processing Applications

To illustrate the equivalent point source inversion tos:hnique

and its processing capabilities, regional gravity and magnetic anomaly

data obtained from MRSA-GSFC for the United States, Mexico and Central

America are considered. Accordingly, Figure II.3.A shows a stereo-

graphic equal-area polar (SEAP) prGjection of smoothed lo-averaged

free-air gravity anomalies observed for the region ;239.5-280.5)02

longitude and (9.5-50-5) 
0 
N latitude. The observation grid consists of

(42,42)-values at l0 spacing where the relative elevation (Z) of the

observations is 0.0 km. The amplitude range (AR) of the observations

is between 41 mgal and -53 mgal and the amplitude mean (AM) is -0.61 raal.

The least squares representation of the observations by #.!duivale,

point source inversion is given in Figure II.3.9. Here, the observations

are inverted on a source grid of (15,15)-values to obtain the least

squares solution vector of density contrasts given by equation (II-36).

The point source grid spans the region (240-260) 0E, (10-50) 010 at a depth

of 400 km below the relative elevation of the observation grid. The

point sources are uniformly spaced at 2.8570 intervals over the ounce

grid. is shown by a consideration of the amplitude means of Fi;t>:.s

II.3.A and 3.8, the m.tan error of the least squares fit of the

observed gravity data is negligible.

i
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An obvious by-product of the inversion is a least squares dene-,ty

model for the observed gravity anomalies. By Brun's formula (Heiskanen

and Moritz, 1967), if the anomalous potential of the model is known,

then the geoid height anomaly due to the anomalous mass is given by

the ratio of anomalous potential to normal gravity (-9.8 m/sec 2 ). A

least squares estimate of the gravitatt-_ qal potential of the observed

anomalies can be readily computed by integrating at each observation

point the potentials due to each of the source points according to
	 a

equation (11-1). Hence, by dividing this result by the normal accelera-

tion of gravity a least squares approximation of the geoidial anomalies

can be obtained. Accordingly, Figure IIA.A illustrates a least 3quares

representation of the geoidal deflections due to the mass anomalies

responsible for the observed free-air gravity anomaly data of Figure 11.3.A.

The geoidal deflections given in Figure 11.4.A are accurate on a relative

basis. However, when compared to global-scale geoids, these anomalies

must be Pdjusted by a nearly constant value that reflects the broad-

scale geoidal deflection due to long-wavelength variations of the

gravitational potential which are too large to be adequately sampled

by the restricted spatial coverage considered in this illustration.

Another processing example is given in Figure IIA.B where the

results of the inversion are used to obtain a least squares representa-

tion of the observed gravity anomalies upward continued to a typical

satellite elevation. In this application, the gravity effect of the

equivalent point sources was recomputed at 450 km elevation using equa-

tion (11-8). Further processing applications are shown in Figures II.S.A

and 5.B where the inversion results are used to obtain least squares

representations at 450 km elevation of the radial first derivative and

Laplacian component of the observed gravity data according to equations

(11-14 and 18). respectively. At 450 km elevation, it turns out that

the radial Laplacian is nearly identical to the second radial derivative

field of the gravity anomalies. Note also, that the anomalies given

in Figures IIA.A, 4.B, 5.A and 5.B all have now been reregistered to

integral degree nodes of the spherical grid spanning the region (240-

280) OE, (10-50) ON at lo-station intervals.
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In Figure II.6.A, an equivalent source dipole field representation

of POGO satellite magnetometer observations conducted during 1968 is

presented. The magnetic data were reduced in profile form according

to the procedures described by Mayhew (1979) to yield 4271 anomaly

values from 345 satellite tracks ranging in elevation between 240 km

and 700 km over the study area. To reduce the total magnetic anomalies to

a common elevation the profile data were inverted on a spherical grid

of (15,15) spherical prisms* to obtain the least squares solution

vector of dipole moments given in (11-36). The equivalent prism source

grid was located .t r..e surface of the earth and uniformly spanned

the region (240-280) 0E, (10-50) oN at 2.8570 intervals. The dipoles

were oriented along the main geomagnetic field directions given by

the IGRF-1965 updated to 1968. The fit of the equivalent source field

to the observed profile data is to 1 gamma standard deviation.

Examples illustrating the general degree of this fit for an arbitrary

selection of profiles between 10ON and 50ON are given in Figure II.7.

Recomputing the equivalent source field at 450 km elevation using

equation (II-25) modified to include spherical prismatic volumes gives

the least squares representation shown in Figure II.6.A of variable

elevation satellite magnetic anomaly data reduced to a common elevation

of 450 km.

Assuming that the magnetization is predominantly by induction, the

variable influence of the geomagnetic field on the total magnetic inten-

sity anomalies recorded in Figure iI.6.A can be eliminated by differen-

tially reducing the data to vertical polarization. This result is

achieved by recomputing the equivalent source field using equation

(II-26) modified for spherical prisms. Accordingly, Figure II.6.8

illustrates the least squares representation of the total magnetic

•	 anomaly data of Figure II.6.A differentially reduced to the pole using

a normalized polarizing amplitude (N) of 60,000 gamma.

*) To convert the spherical prismatic dipolar moment formulation of
Mayhew (1979) to point dipole moments, it is necessary only to
multiply the prismatic moments by the spherical volumes of the
corresponding prisms.
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Figure II.7 Total magnetic intensity anomaly comparisons (after Mayhew
(1979)) illustrating the fit between arbitrarily selected
tracks of POGO satellite magnetic measurements (dots) and
the corresponding equivalent source values (crosses). The
solid line in each comparison corresponds to the elevation
of the POGO satellite magnetometer data.
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A comparison of Figures 11.6.A and 6.B shows that anomalies

in the southern portion of the radially polarized map generally are

shifted differentially from 3° to as much as 5° to the north. Larger

amplitudes also are observed for these anomalies because of the pos-

itive difference between the scalar intensities of the radially polar-

izing field and the IGRF-1965 updated to 1968 at low latitudes.

Northern amplitudes, on the other hand, show only slight relative

alterations which include principally northward displacements that

rarely exceed 10 or 2°. The behavior of the radially polarized data,

then, is consistent with that anticipated for the conventional pole	 -

reduction.

In consideration of the foregoing examples it is clear that

once a set of potential field anomalies have been related to a set

of equivalent point sources by least squares matrix inversion, then

a number of geophysically interesting characteristics of the observed

data also are known with equivalent least squares precision. In

general, these characteristics include the associated potentials,

vector anomaly components and spatial derivatives, as well as con-

tinuations of these elements.

H. Conclusions

Equivalent point source inversion is an efficient and versatile

approach to spherical earth processing of regional potential field

anomalies. The procedure is to relate observed anomalies to a set

of equivalent point sources by a system of linear equations. By pre-

determining the locations of the point sources, the problem simplifies

to solving the linear equation system for a solution vector of physical

property values. In practice, the system of equations normally is

overconstrained in the sense that the number of point source physical

property values of the solution is less than the number of observed

anomaly values. From the general literature of numerical methods,

however, several well-known matrix inversion methods are available

to obtain the solution vector such that the resultant equivalent source

field is a least squares representation of the observed data.

G
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The anomalous potential and its spatial derivatives of all orders

are linearly related so that when an equivalent point source least

squares representation for any one of these elements has been determined,

representations with equivalent least squares precision also are avail-

able for the rest of the elements by simple linear transformations.

This result has great practical significance because considerable geo-

physical information is related to the anomalous potential and its

spatial derivatives. From the least squares inversion of observed

gravity anomalies, for example, geoidal anomalies, vector anomaly

components and derivatives at any point in source-free space also may

be computed with equivalent least squares precision. Similarly, the

results of equivalent point source inversion of observed magnetic

anomalies can be used to obtain least squares representations at any

point in source-free space of the vector anomaly components, dif-

ferential pole reductions and spatial derivatives. Pseudo-potential

field calculations also can be readily performed using the equ^vaient

point source inversion formulation.

In consideration of these results, it is concluded that equivalent

point source inversion represents a powerful and efficient method

for spherical earth processing of regional-scale gravity and magnetic

anomalies. Accordingly, the method has widespread application in the

analysis and design of regional-scale gravity and magnetic surveys

for lithospheric investigation.
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III. QUALITATIVE CORRELATION ANALYSIS OF REGIONAL
NORTH AMERICAN GRAVITY AND MAGNETIC ANOMLINS

A. Abstract

Regional free-air gravity anomalies of North America and adjacent

oceanic areas mapped by low-pass filtering and upward continuing to 450

km elevation are compared to 450 km elevation POGO satellite magnetic

anomalies differentially reduced to the pole, published 12th degree

spherical harmonic representation of heat flow, and regional geologic

information. In general, gravity anomalies of the continental areas

parallel the prevailing north-south structural trends, while the pre-

dominant oceanic anomalies strike east-west. The oceanic areas are

more negative than the continental area except for the minimum over

the Hudson Bay region. Free-air anomalies upward continued to 450 km

elevation tend to correlate with the regional heat flow pattern. The

positive free-air gravity anomaly associated with the Cordillera cor-

responds to regional high heat flow values and the negative anomaly

over Hudson Bay is correlative with a heat flow minimum. In addition,

the generally negative anomalies of the oceanic areas correlate with

low heat flow values. Comparison of gravity and satellite magnetic

anomalies indicates little correlation over oceanic areas, although

the oceanic areas have a more subdued anomaly pattern in both data sets.

Over the continent, several prominent free-air gravity anomalies have

an inverse correspondence to magnetic anomalies. Magnetic anomalies

in contrast to gravity anomalies show limited correlation to the heat

flow pattern. It is concluded that combined interpretation of the

three geophysical data sets can decrease the ambiguity of the inter-

pretation process because of the different parameters mapped and the

variable range of the depth of the anomalous sources.
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B. introduction

Long-wavelength geophysical anomalies covering several degrees

of surface area have long been of interest in studying the mega-

tectonic features of the earth. However, their potential usefulness

has been hindered by limited areal coverage and the inherent ambi-

guity in their interpretation. Recently, these problems have been

alleviated somewhat by improved compositing and processing of data

covering both continents and oceans and the availability of multi-

data sets which when used in combined analysis tend to decrease

possible alternative interpretations. Accordingly, regionally cor-

relatable free-air gravity anomaly, differentially reduced to the

pole satellite magnetic anomaly and regional heat flow maps of North

and Central America and adjacent oceanic areas are presented and

the correlation and potential significance of selected anomalies are

discussed.

Free-air gravity anomalies reflect differences in the mass per

unit surface area of the subjacent earth which Are calculated by

comparing observed gravity with theoretical gravity values based on

planetary (latitude) and elevation effects. Thus, free-air anomalies

correspond to the combined gravity effect of topography and deeper

geologic mass variations which may be difficult to separate for pur-

poses of interpretation. This problem is compounded because major

elevation variations occur as an effect of tectonism which is also

the primary cause of geologic mass variations. Nonetheless, free-

air anomalies sometimes are preferred to Bouguer anomalies for regional

tectonic studies because the Bouquer topographic mass reduction

eliminates the effect of large segments of mass that are involved in

tectonism.

When averaged over regional-scale areas, free-air anomalies are

reduced in amplitude and tend toward a zero value, suggesting the

mass per unit surface area down to some level in the earth is approxi-

mately equal When considering large surface elements (Woollard, 1962).

This is strong direct support for the hypothesis of isostasy. Empir-

ical evidence suggests that areas on the order of 3 o and larger gen-

erally tend to be characterized by free-air anomalies that approach
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zero (Woollarde 19621 Strange and Woollard, 1964), aithaugh the size

of a specific area will be a function of local strength character-

istics. Thus, regional scale variations of free-air gravity anomaly

values on the order of 30 or larger frequently are considered to

reflect iaostatic variations within the earth's crust and mantle.

Averaged positive free-air anomalies correspond to regions of mass

excess or crustal loading, whereas negative anomalies correlate with

regions of mass deficiency and, hence, the anomalies indicate the

degree of isostatic equilibrum.

A number of mechanisms have been postulated which may cause

mass variations within the earth. These include density variations 	 I

in the mantle due to convection, relatively static compositional or

petrological variations, and the delayed response of the earth to

loading phenomena such as glaciation, de-glaciation, erosion and

pediment deposition. In general, free-air gravity anomalies by
	

I

themselves cannot be used to distinguish the causative mechanism

due to the interpretational ambiguity inherent to potential fields.

However, when combined with other geophysical and geological data,

regional-scale free-air gravity anomalies may yield information con-

cerning regional mass variations that are important to understanding

the structure, dynamics and geological history of the earth's crust

and upper mantle. Accordingly, regional anomalies in magnetics and

heat flow also are presented and correlated with gravity anomalies

to facilitate their interpretation.

The correlation between these data sets is complicated because

of the dissimilarity in causative characteristics and range of depth

of origin. The relationship between rock properties which cause

magnetic and gravity anomalies, for example, often is complex,

non-linear and non-universal. Nonetheless, the correlation of these

anomalies derived from continental crystalline crust is a standard

approach to geological and geophysical interpretation (Hinz* at al.,

1975). This is a consequence of the general correspondence between

densities and magnetizations of specific crystalline litholugies

(Nettleton and Elkins, 1944). However, there are many exceptions to

the generalities because magnetic minerals are a minor constituent

of rocks and are subject to alteration to non-magnetic forms and the
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effects of strong remanent magnetisation. Blailarly, heat flow will

be reflected in temperatures that, in turn, alter the density of rocks

by thermal expansion or contraction and control at least in part the

effects of mineral alteration. Furthermore, heat flow and associated

temperatures will control rock magnetization through the Curie tempera-

ture of ferrimagnetic minerals which is the temperature above which

geologically significant magnetizations are eliminated. Thus, the three

physical characteristics, density, magnetization and temperaturo may

be related within the crystAlline crust of the continents, but they

are subject to numerous complicating variations.

The difference in source depth range further complicates the

correlation of force fields, although this can be turned to the

advantage of geologic interpretation. Gravity anomalies may originate

from the surface to deep within the mantle or even the core, but the

source of magnetic anomalies is limited by the depth of the Curie

isotherm ( w 5750C) which may be as deep as 70 km, but generally is

at a depth of 9 40 km. For source depth of heat flow, Pollack and

Chapman (1977) have found that within continental regions 40% of the

mean heat flux is derived from radiogenic sources within about the

upper a 8 km of the crust. The remainder is obtained from radiogenic

contributions of the lower crust and upper mantle and a deeper portion
	 5

that enters the base of the lithosphere which varies in thickness

from roughly 50 to 300 km. Thus, magnetic anomalies are limited to

sources within the crust and uppermost mantle while gravity anomalies

and variable surface heat flux have origins which may reach several

hundred kilometers or more into the mantle.

In general, then, correlation of these data sets, either direct

or inverse, or even the lack of correlation can be useful in limiting

the possible geologic interpretation of specific anomalies. Accord-

ingly, the data sets provide different, but inter-related evidence

which, when combined with surface geologic information, car. hb.lp to

clarify the tectonic history of North America.
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C. Data Sources and Preprocessing

To investigate the regional wavelength features of North America's

free-air gravity anomaly field, a data set of l o-averaged surface

values based on the GRS-1967 and IGSN-1971 was obtained from NASA's

Goddard Space Flight Center for the region (214.5-307.5) oE longitude

and (4.5-58.5) 0N latitude. The observed data set consisted of 5170

values (- 94 cols,55 rows) at 1 0 intervals of which approximately

600 were unassigned. Nearly all of the unassigned values were re-

stricted to the regions (214.5-242.5) 0E, (4.5-27.5) oN and (242.5-

272.5) 0E, (4.5-14.5)°N which are located in the Pacific Ocean of the

southwest portion of the data set. In order to extend coverage to

these regions, the missing values were interpolated from the surround-

ing observations. The contoured stereographic equal-area polar

(SEAP) projection in Figure III.1 illustrates the resultant data

set with an amplitude range (AR) from 185 to -285 mgal and amplitude

mean (AM) of -7.63 meal.

To minimize the effects of local topography as well as to enhance

the longer wavelength characteristics of the data which are import-

ant at satellite elevations, the gravity data were subjected to a

low-pass filter that strongly attenuated anomalies of wavelengths

less than 80 . The wavelength characteristics of the high-cut filter

are illustrated in Figure III.2 and the filtered gravity anomalies

are presented in Figure III.3. .lassically, unshaded anomalies

(10 to -10 mgal) in Figure III.3 correspond to regions of approxi-

mate isostatic equilibrium.

A further consideration in the design of the adopted filter was

to obtain low-pass filtered anomalies which could be adequately re-

sampled at 20 intervals to optimize available computer resources for

subsequent inversion processing. Accordingly, the smoothed gravity

anomalies were resampled at 20 intervals to yield the set of (46,27)

anomaly values for the region (216-306)°E, (6-58) 0N illustrated in

Figure III.4.

To effectively project the gravity anomalies to the satellite

elevations of the magnetic anomalies, the resampled data were inverted

on a spherical grid of (19,14) equivalent point gravity poles. The
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equivalent source grid was located at a depth of 400 km below the

relative elevation of the observation grid and spanned the region

(216-306) oE, (6-58) 0N. The station spacing of the source grid was

5o in longitude and 4o in latitude. The resultant equivalent source

field approximation of the resampled data is given in Figure III.5.

The field of the equivalent point source model was calculated at

450 km elevation above sea level in Figure III.6 to provide an esti-

mate of the upward continued gravity anomalies for comparison with

the satellite magnetic anomaly data.

POGO satellite magnetometer observations obtained during 1968

were processed using the procedures described by Mayhew (1979) to

yield a magnetic anomaly map of North America at 450 km elevation.

Briefly, data processing consisted of removal of the POGO 13th degree

geomagnetic field from the original orbital profiled data. Next,

data profiles were selected in the elevation range (240-700) km and a

least squares quadratic function was fitted to the profiles and

removed to account for DS variation arising from ring current flow

in the magnetosphere during storm time. An inversion then was per-

formed on a spherical surface grid of prismatic dipolar moments which

were oriented in the local direction of the IGRF-1965 updated to 1968.

The field of these dipolar moments was recomputed at 450 km elevation

in the local direction of the IGRF-1965 updated to 1968 over the

region (220-300) oE, (10-50) oN to obtain the total magnetic intensity

anomaly map for North America given in Figure III.7.

Assuming that the anomalies are derived primarily by induction

in the earth's present geomagnetic field, the magnetic map was dif-

ferentially reduced to radial (vertical) polarization to remove dis-

tortions incorporated in the data by variable inclination, declination

and amplitude effects of the geomagnetic field. Differential reduction

to the pole was achieved by recomputing the field of the equivalent

sources assuming a normalizing induction field with an amplitude equal

to 60,000 gammas and oriented radially at both source and observation

grids. The differentially reduced to the pole magnetic anomaly map for

North America is shown in Figure III.8.
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Finally, the regional heat flow map for the study area (Chapman

and Pollack, 1975) is shown in Figure III.9 for comparison. This

map is a smoothed, degree 12 spherical harmonic representation of

e	 observed heat flow which is supple asrted in areas without observations 	 s

by geologically predicted heat flow values. Major physiographic
t

provinces and selected structures also are generalized for North

America and adjacent marine areas in Figure III.9.

D. Discussion

)
Comparing Figures 11I.3, 6, 8 and 9 shows a number of interesting

associations which are outlined below. The possible geological signif-

icance of these correlations also are considered.

t
t

1. Free-Air Gravity Anomaly Field

Although free-air anomalies near zero are generally considered

indicative of isostatic equilibrium, it should be noted that care

must be exercised with this interpretation because the averaged free-

air gravity anomaly of the data set is approximately -7 mgal. This

is reflected in the negative geoidal deflection over North America

(Chapman and Talwani, 1979) and suggests a mass deficiency over the

entire study area. Therefore, all observations regarding the isostatic

state of selected portions of the study area should be considered on

a relative basis.

A study of the low-pass filtered surface free-air gravity anomalies

(Figure III.3) shows the continents characterized by near zero or local

positive anomalies, whereas negative anomalies predominate in the

oceanic regions. The major exception is the broad negative (-40 mgal)

anomaly centered over Hudson Bay which has been interpreted to reflect
w

incomplete isostatic adjustment of the crust following Pleistocene

de-glaciation (Inns, et al., 1968), although this explanation has

been questioned (Jeffreys, 1975).

In general, the Pacific Ocean is gravitationally more quiet

than the Atlantic Ocean. The anomaly values in the Pacific Ocean
R

increase to the west with increasing age of the oceanic crust, thus,

suggesting a possible direct relationship between age and mass.

However, oceanic ridge areas (e.g.,the East Pacific and Juan deFuca

i

i
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Ridges) of the Pacific are characterized by relative positive anomalies.

In contrast, the western Atlantic along the eastern seaboard, despite

its age and relative tectonic st.-AL-ility, is a broad negative gravity

anomaly. Talwani and Le Pichon (1969) have postulated lateral inhomo-

genieties in the upper mantle to explain this anomaly, although it is

t	 closely related to a deep oceanic plain.

The largest variations of the entire free-air gravity data set

•	 are the negative (-60 mgal) anomalies associated with the Puerto Rico

Trench. A common interpretation for these large negative free-air

anomalies, which frequently are observed over oceanic trenches (e.g.,

Vening Meinesz, 1964; Worzel, 1976), is that the earth's crust it
being subducted resulting in a mass deficiency. The Sigsbee Deep of

the western portion of the Gulf of Mexico also is characterized by a

large negative (-50 mgal) free-air gravity anomaly. This is an

unusually large amplitude minimum for the observed bathymetry and,

thus, raises questions regarding the nature of the crust beneath the

Gulf of Mexico.

Both oceans are characterized by pronounced east-west striking

anomalies which contras'. sharply to structurally compatible, general

north-south orientations of the continental anomalies. Off the west

coast of California and the Baja Peninsula, the east-west trending arms

of the broad Pacific low (-20 mgal) show a particularly interesting

correspondence to a number of major fracture zones. For instance, the

northern-most west striking aria of this negative anomaly is closely

boundea on the north by the Mendocino-Pioneer fractuit zones and to the

south by the Murray fracture zone.

Within the continent, the Appalachians are associated with a

weakly positive, free-air gravity anomaly which continues south across

Florida and Cuba. The Mississippi Embayment also is affiliated with

a weakly positive north-south trending linear anomaly. The mass excess

of the Mississippi Embayment and Delta probably is due in part to an

anomalously dense crust that may be a relic of the Mississippi Embayment

aulacogen (Ervin and McGinnis, 1975) and not simply the added mass of

the sediments.

Within the eastern U.S., east of the Cordillera, the relation-

ship between gravity anomalies and cratonic basins and uplifts is
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inconsistent and poorly defined. The Ocala Uplift, for instance,

is a relative positive anomaly while the Cincinnati Arch and Sioux

Uplift are negative. The Anadarko Basin is associated with a negative

anomaly in r.c^ntrast to the Michigan, Illinois, Williston and Alberta

Basins whic;n are all characterized by relative positive free -air gravity

anomalies.

In genexal, positive gravity anomalies characterize the Cordillera

of North and Cent:al America. Maxima are located over the geothermal

region of the Yellowstone area, the southern Rocky Mountains, the

central plateau of Me .cico, much of Central America south of Mexico

and northern South America. Most of these areas are regional elevation

highs, although the relationships are much too complex for the maxima

to be explained simply by the excess topographic mass. A few examples

illustrate this point with reference to Figures III.10 and 11 which show,

respectively, the l o-averaged topography of the study region and topo-

graphic variations high-cut filtered for wavelengths roughly smaller

than 8o using the filter of Figure II1.2. The Yellowstone and southern

Rocky Mountain areas are topographic highs, but a topographic high over

the Idaho Batholith area which is larger than the Yellowstone area is

not a maximum. The maximum over central Mexico is related to a high

plateau area, buc is confined within higher mountainous belts. It is

bordered on the north by the Cross Range Province which terminates the

Basin and Range Province and on the south by the east-west Neovolcani.c

Province. In contrast, a maximum gravity anomaly occurs over the

relatively low-lying Yucatan Peninsula. In southeast Mexico, the

Cordillera gravity maxima are separated by a minimum which projects

onto the northern extension of the Techuantepec Fracture Zone.

The Coast Range of the U.S. and the Basin and Range Province of

the U . S. and northern Mexico are generally free of gravity anomalies

suggesting that they are approximately in isootatic equilibrium.

However, the Basin and Range Province grades into a Volcanic Rift

Province in northeastern California and southern Oregon and Idaho

(Hamilton and Myers, 1966) which i,i a gravity maximum. This maximum

appears to be related to a mass excess which is related to Mesozoic

crustal thinning and Cenozoic rifting and volcanism. This contrasts

with the relative gravity minimum over the Columbia River Plateau

basalts of Washington and adjacent states.
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A study of Figure III.6 shows that the major anomalies are still

represented, although much of the anomaly detail has been lost in

upward continuing the free-air gravity field to 450 km. The positive

anomalies affiliated with the Cordilleran System of the U.S., southern

Mexico and Central America have survived the upward continuation process,

but with this exception eae anomaly field is dominated by the negative

anomalies centered over the Puerto Rico Trench, Hudson Bay, the Gulf

•	 of Mexico and the Pacific Plate.

2. Magnetic Anomaly Field

The most obvious feature of the radially polarized magnetic

anomaly map of Figure III.8 is a prominent east-west nigh across

the midcontinent which is breached by a negative anomaly in the

Mississippi Embayment region (Mayhew, 1976; 1977). The closures of

this magnetic high correspond to a trend of free-air gravity anomaly

minima which extends from the Anadarko Basin of the eastern panhandle

of Texas to the tri-state area of Indiana, Ohio and Kentucky (Figures

III.3 and 6). It is interesting to note that these areas of increased

magnetic anomalies and decreased gravity anomalies also are shown by

seismic evidence to be areas of thicker crust (Warren and Healy, 1973) 5
as illustrated in Figure III.12. Accordingly, the combination of

negative gravity and positive magnetic anomalies can be interpreted

to reflect displacement by anomalously thick crustal material of the

denser and less magnetic material of the mantle.

To the west, the large transcontinental magnetic high appears

to overprint a northwest trend of negative magnetic anomalies which

corresponds to the Cordillera and affiliated positive free-air

gravity anomalies. Here the inverse correlation of gravity and

•

	

	 magnetic anomalies may be related to increased heat flow from	 y

beneath the lithosphere which is likely to deflect the Curie isotherm

to a shallower depth, thus, producing a region of relative net negative

magnetization. Simiiarly, a neqative magnetic closure over eastern

Idaho which corresponds to a prominent positive free-air gravity anomaly,

is interpreted ds due to a lower net crustal magnetization related to

a thinner magnetic crust over the path of the Yellowstone hot spot.
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Other prominent features of Figure i11.8 include the magnetic

high over the Antilles-Bahamas Platform which extends to southern

Florida and the broad negative magnetic anomaly that projects along

the Gulf Coast of the U.S. from Louisiana westward across Mexico. The

eastern component of the negative anomaly appears to correspond with

the southern terminus of the weakly positive free-air gravity anomaly

of the Mississippi Embayment, whereas the western component roughly

correlates with a large positive gravity feature of the Cordillera.

The magnetic anomalies of the western third of the continent

(i.e., the Cordillera) are relatively subdued in contrast to the char-

acteristics of the eastern two-thirds of the continent. The western

portion has relatively broad strong positive gravity anomalies and a

regional heat flow maximum (Figure III.9) with a shallower Curie iso-

therm. Thus, the subdued magnetic anomaly pattern appears to be the

result of a relatively thin and laterally homogeneous magnetic crust.

In general, the correlation of magnetic and gravity anomalies

over continental regions may be restricted because the gravity data con-

tain long-wavelength effects of deep crustal or upper mantle sources

which are too deep to be magnetic anomaly sources as a result of regimes

where the temperature exceeds the Curie point of magnetite. The con-

trasting north-south gravity trends and east-west magnetic trends

over North America may be evidence of this effect. The correlation

of anomalies also may be hindered by remanent magnetization effects

which are at a large angle to the present field or may even be reversed.

Finally, correlations may be limited by anomaly sources with incon-

sistent density and magnetization distributions. However, even this

information from restricted gravity and magnetic correlations can be

useful as a guide to delineating and modeling sources by pointing out,

for insta :e, remanent magnetization effects and possible depths of

anomaly sources.

3. Heat Flow Field

other than the previously noted correlation of the high heat

flow region of western U.S. (Figure III.9) with a subdued magnetic

anomaly pattern (Figure III.8), there is no general correlation of

the two maps. However, in a regional sense, the direct correlation



i

i
60

of the heat flow map with the upward continued gravity anomaly map

(Figure II1.6) is rather striking. This supports the suggestion

that regional gravity and heat flow anomalies may have a deeper source

than magnetic anomalies and, thus, may be more prone to correlation.

The positive gravity anomalies of the Cordillera correlate with

anomalously high heat flow values (>60 mWm 2 ), but the axis of the

heat flow high lies west of the axis of the gravity anomaly. This is

believed to be the result of the very broad wavelength of the heat

flow high (12th degree spherical harmonic) which has superimposed the

effect of the heat flow high of the magmatic region of western North

America with the heat flow maxima associated with the Gorda and Juan

deFuca Oceanic Ridges off the northwest coast of the U.S. In general,

the negative gravity anomalies of the oceans correlate with low heat

flow values, although an exception occurs for the observed heat flow

maximum centered over the Baja Peninsula (Chapman and Pollack, 1975)

which correlates with negative gravity anomaly values. The negative

gravity anomalies of Hudson Bay and the western Atlantic Ocean also

are correlative with relative heat flow minima.

E. Conclusions

Regional continental free-air gravity anomalies of North America

parallel prevailing north-south structural trends, while the anomalies

of the adjacent oceanic areas are more negative and subdued and strike

roughly east-west. The mean free-air anomaly of the area is approxi-

mately -7 mgal suggesting a broad general mass deficiency which is

reflected in negative geoidal deflections. Western North America and

much of Central America are characterized by broad positive free-air

gravity anomalies in contrast to more areally-limited maxima and minima

of the eastern protion of the continent. Hudson Bay and western Gulf

of Mexico are marked negative anomalies. Some regional gravity

anomalies are related to surface elevation or bathymetry, but the

number of exceptions are sufficient to suggest that the sources of

the anomalies are largely deeper geologic mass variations. This is sub-

stantiated by the correlation of several regional gravity and magnetic
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anomalies, although there are exceytions wri!^h may have different

explanations. However, it appears that several gravity anomalies

are derived from beneath the magnetic crust.

The magnetic anomaly map shows a more complex pattern with

positive anomalies over the continents and Antilles-Bahamas Platform

as compared to generally negative anomalies for the oceans. The

entire area has an unexplained eAst-west striking bias to the magnetic

anomalies. The general relationsr,ip between gravity and magnetic

anomalies over the continents is inverse. Regions of large relative

crustal thickness in particular appear to be characterized by negative

free-air gravity and positive magnetic anomalies. Negative magnetic

and positive gravity anomalies, on the other hand, may be related to

regions of increased heat flow.

Free-air gravity anomalies upward continued to 450 km directly

correlate with a 12th degree spherical harmonic representation of

the heat flow, but little correlation is observed between specific

magnetic anomalies and this heat flow pattern. Nevertheless, high

heat flow areas tend to have a subdued magnetic pattern as a result

of the lower net crustal magnetization associated with shallow Curie

isotherm regions.

These broad conclusions suggest that combined interpretation of

long-wavelength gravity, magnetic, and heat flow anomalies can

significantly decrease the ambiguity of the interpretation process

because these anomalies map not only different parameters, but their

potential sources tend to cover different depth ranges within the earth.

In general, gravity anomalies and heat flow are derived from both

crustal and sub-crustal sources, while magnetic anomalies have prin-

cipally crustal sources. Therefore, the mapping of long-wavelength

magnetic anomalies provides a valuable complementary set of data to {

gravity and heat flow anomalies for the investigation of megatectonic^

features of the continents and oceans.
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IV. QUANTITATIVE CORRELATION ANALYSIS OF REGIONAL
NORTH AMERICAN GRAVITY AND MAGNETIC ANOMALIES

A. Abstract

	

U	 To quantitatively investigate the regional correlations of

gravity and magnetic anomalies over North America, Poisson's theorem

is used in a moving-window linear regression analysis performed

between suitable derivatives of the anomalous potential fields at

450 km elevation. The results of moving -window Poisson ' s analysis

are useful for establishing patterns of anomaly correlation and pro-

vide initial physical property constraints to facilitate further

investigation of correlating anomalies. The statistical correlation

of regional gravity and magnetic anomalies over continental terrane

is predominently inverse. In particular, regions of large relative

crustal thickness are associated with negative gravity and positi^!'s

	

j	 magnetic anomalies, as well as exceptionally large magnetization:.*

(= 1.8x10
-2
 emu/cm 3 ). This characterization is exemplified by a

prominent east-west magnetic high across the midcontinent which

corresponds to a trend of gravity maxima that extends from western

Texas to the Cincinnati Arch. Negative magnetic and positive gravity

anomalies, on the other hand, are related to thinner crust and regions

of higher heat flow. Typical examples include the Cordillera of North

and Central America and the Yellowstone geothermal region. Over

oceanic areas regional anomaly correlations are poorly developed

probably because of decreased crustal magnetization. Statistically,

however, these regions are characterized primarily by direct gravity

and magnetic anomaly correspondences.

*) 1 emu/cm3 - 1 oersted - (103/4n)A/m

!.
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B. Introduction

The utility of long-wavelength gravity anomalies covering several

degrees of surface area,for geologic analysis has been recognized for

many years. More recently magnetic anomalies which have significant

energy in wavelengths of several hundred kilometers or more have been

identified as originating from within the earth's crust and perhaps

the uppermost mantle (Alldredge et al., 1963). The geological inter-

pretation of these regional anomalies is hindered by the effect of

anomaly superposition and the source ambiguity which is inherent to

the analysis of potential fields. A common approach to minimizing

these interpretational limitations, especially in continental terrane,

is to evaluate the correlation between anomalous gravity and magnetic

potentials.

The basis of correlation analysis is the hypothesis, commonly

validated in continental areas, that variations in lithology and physical

properties of the crystalline crust are reflected in both their bulk

mineralogy, which controls rock density and, thus, gravity anomalies,

and their minor mineral content, specifically magnetite, which is the

primary cause of magnetic anomalies. Consideration of the general mag-

netic and density properties of the crust and upper mantle and the

geologic causes of their variations suggests that correlation between

long-wavelength magnetic and gravity anomalies, both direct and inverse,

are anticipated, but not on a universal basis. Seismic and other geo-

physical and geologic evidence shows that the lithosphere is marked by

vertical variations, principally by the Moho which separates the crust

and mantle and by a much more poorly defined and less consistent boundary

between the upper and lower crust. Increasing evidence points to lateral

variations in the petrophysical and chemical attributes of these so
r

called "layers." The vertical and lateral variations plus temperature

perturbations are all potential sources of gravity and magnetic anomalies.

Geophysical and geologic evidence clearly indicates that the den-

sity of the crust increases from a mean value of approximately 2.7 gm/cm3

at the surface to roughly the 2.9 to 3.0 gm/cm 3 range at the base of

the crust where there is a sharp increase to roughly 3.3 gm/cm 3 in the

upper mantle. The magnetic properties of these layers are much less

precisely known, but generally the lower crust is believed to have a
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magnetization of roughly 5x10 3 emu/cm3 made up equally of induced

and viscous remanent magnetization, which is several orders of mag-

nitude greater than the mean magnetization of the upper crust.

Wasilewski at al., (1979) present a strong case for a non-ferrimagnetic

upper mantle. As a result for a constant thickness crust, we

anticipate a direct correlation between gravity and magnetic anomalies

as the thickness of the layers of the crust change. In contrast,

if the upper crust is relatively constant in thickness and the depth	 1
1

to the Mcho is accomodated by varying the thickness of the lower

crust, an inverse relationship is anticipated between gravity and mag-

netic anomalies.

Intra-layer lithologic variations caused by plutonic differentiates

and regional and local metamorphism and alteration are known to be

common in the upper crust and are almost certainly present on a wide-

spread scale in the lower crust and upper mantle. Where ground-truth

is available from direct observation of the upper crust, gravity and

magnetic anomalies from these variations often are correlatable. There

are many exceptions, and even these are geologically informative, but

in the main both the density and magnetization increase as the plutonic

and metamorphic rocks become more mafic. Thus, we anticipate that

lithogic variations within the lower crust will produce correlative

anomalies. In fact, the correlation generally should be better from

lower crustal rocks because slower cooling of the mafic rocks at depth

will lead to increased exsolution of magnetite from the essentially

non-magnetic components of the titanomagnetite series, thus, increasing

the magnetization of the denser mafic rocks. Furthermore, remanent

magnetization which so commonly complicates the correlation of upper

crustal rocks, particularly the eruptive rocks, will be decreased in

lower crustal rocks by the higher ambient temperatures and the increased

age of the rocks. Thus, in general, intra-layer lithogic variations

of the lower crust will yield directly correlative gravity and magnetic

anomalies, although the correlations will not be universal or always

direct.

Finally, temperature variations, both regional and local within

the crust, will affect the correlation of gravity and magnetic anomalies.
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Although the density of rocks will vary with temperature as a function

of the volume coefficient of thermal expansion, the effect is minimal

when considering the profound effect that temperature has upon magnetic

properties. Magnetic susceptibility will be increased over certain

temperature ranges and remanent magnetization will be decreased and

viscous magnetization in the direction of the earth's magnetic field

will be increased as temperature increases. However, the critical

temperature is the Curie temperature, above which ferrimagnetic minerals

are transformed into the essentially non-magnetic, paramagnetic form.

Thus, increased temperatures which reach the Curie point range of

ferrimagnetic minerals within the lower crust (500°-550°C) will

decrease the thickness of this highly magnetic layer. The decreased

magnetic anomaly will have an inverse relationship to the free-air

gravity anomaly because regionally higher temperatures are associated

with geodynamic processes which produce a thinned crust and an inflated

elevation which may not be isostatically compensated. Both of these

conditions will lead to an increase in mass and a relative positive

free-air gravity anomaly correlating with a negative magnetic anomaly.

Correlation of anomalies generally has been accomplished by sub-

jective visual correlation of anomalies over regional areas. To

decrease the subjectivity of the correlation techniques it is desirable

to utilize a more quantitative approach, preferably a method based

upor, Poisson's theorem which theoretically relates magnetic and gravity

anomalies from a common source.

One such method is given by Chandler at al., (1980) which employs

Poisson's theorem in a moving-window linear regression analysis that

traverses across multiple uource gravity and magnetic data sets to

quantitatively identify regions of spatially coincident anomalies.

•	 For regions of high correlation, the method also gives initial estimates

of the physical property contrast ratios for the inferred sources. To

investigate its applicability to the study of regional-scale potential field

data, moving-window Poisson's analysis was performed between a number

of gravity and magnetic anomaly maps prepared at satellite elevations

°for North America and its marine environs south of 50N latitude.
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C. Quantitative Correlation Procedure

Poisson's theorem relates at an observation point the magnetic

potential of a uniformly dense and magnetized body to the first

derivative component of the gravity potential taken in the direction

of magnetisation by the ratio of the body's magnetization-to-density

properties. Accordingly, Poisson's theorem can be extended to equate

the total vagnetic intensity anomaly reduced to normal (radial) polari-

zation, AT(N), and the first radial derivative of the gravity anomaly,

369/3r by the relation

AT (N) - a  a MI 	 where	 (IV-1;
G•Am	 ar

Ag - gravity anomaly,

Am - density contrast of the source,

G - universal gravitational constant, and

Aj - magnetization contrast of the source.

Equation (IV-1) shows that the property contrast ratio (&J/Am) for a

single anomalous source can be obtained at a common observation point

from its gravity and total magnetic field anomalies by calculating

the radial gravity derivative and reducing the magnetic anomaly to

radial polarization.

For regional-scale, complex data sets containing interfering 	 5

anomalies due to multiple sources, spatial segments may occur where

the anomaly of a particular source is dominant. The approximate

Poisson's relationship in such instances is given by the linear

equation

AT (N) -A+-' ♦ as
G*Am	 ar

(IV-2)

where the intercept A reflects the anomaly base level within the

spatial segment considered, and the slope (Aj/Am) is a weighted

average for the interfering sources that is most heavily weighted r

towards the dominant source.

The concept of Poisson's analysis restricted to limited segments

of a complex anomaly has been used successfully by Lyubimov and
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Lyubimov (1968), Wilsca (1970), and Chandler et al., (1980). For com-

bined analysis of multiple source gravity and magnetic data sets,

Chandler et al., (1980) utilize the generalized Poisson's relationship

(N-2) in a moving-window linear regression analysis. The procedure

is to center a window of specified size on each node of a uniform grid

to which the appropriate gravity and magnetic data have been registered.

Within the window, a least-squares linear regression is performed

between the spatially coincident data where the radial gravity deri-

vative serves arbitrarily as the independent regression variable. For

each window position, the regression yields 1) a correlation coefficient 	 !

that is indicative of the linear fit of the data within the window,

2) a slope (Aj/Am) coefficient, and 3) an intercept coefficient (A)

which gives the anomaly base level for the data within the window.

The regression parameters are assigned to the central grid node of the

window position. The window is shifted next one grid position and the

regression analysis repeated. This procedure is continued until the

entire data space has been subjected to moving-window Poisson's analysis.

The size of the operational window chosen for a given appli-

cation must be large enough that a minimum number of data points are

involved to achieve a credible linear regression, yet small enough to

resolve the anomalies of interest from the interference of neighboring 	 S

anomalies. Currently, no quantitative method is evident for making

this choice. However, Chandler et al., (1980) have obtained useful

results with windows that include at least 5 data points and are between

0.5 and 1.0 times the half-width of the primary anomalies of interest.

The behavior of the linear regression coefficients can be useful

in establishing patterns of correlation between gravity and magnetic

anomalies. The most significant linear regression exhibits correlation

coefficients approaching either 1.0 or -1.0 which reflect, respectively,

either direct (+) or inverse (-) correspondence between gravity and

magnetic anomalies. Variations of the intercept parameter (A) reflect

•

	

	 base level chanrTes due to regional anomalies and the effects of

localized anomaly interference.
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For a particular window position, the slope of the regression

line gives an estimate of (Aj/Ana for the dominant anomaly source.

However, this ratio is not uniquely definitive of the anomaly source

lithology because (Aj/Am) is a function of the physical properties

of both the source and country rock. Also, different combinations

of Aj and Am will give the same source ratio. The estimated slope

value (Aj/Am) can serve, however, as an initial constraint for facil-

itating further interpretation.

Due to anomaly interference, variations of the slope values

across multiple source data sets reflect both geologically signifi-

cant and erroneous (,&j/Am) estimates. There is no quantitative

criteria for discriminating geologically significant slope values.

However, Chandler et al., (1980) recommend emphasis on slope values

corresponding to the high-gradient limbs and peaks of spatially well

matched gravity and magnetic anomalies which generally are character-

ized by higher correlation coefficients and zones of spatially stable

regression parameters. Particular emphasis should be placed on

anomaly gradients because slight shifts of anomaly peaks will cause

a marked decrease in the correlation over the peaks, but will not

cause a marked change over the high-gradient areas. The dominance of

a particular anomaly source is reflected in the spatial stability of

the regression parameters. Spatial instability of these parameters

generally characterizes transition zones between the dominance of

( adjacent anomalies. In such instances, the regression coefficients,

particularly the intercept values, can exhibit marked local fluctua-

tions.
T

	

	

Spatial differentiation of equation (N-2) shows that tho moving-

window Poisson's analysis readily can be extended to investigate

r.

	

	 correlations of the n-th magnetic spatial derivative anomaly field and

the (n+l)-th gravity spatial derivative anomaly field. Spatial dif-

ferentiation tends to emphasize the near-surface, higher frequency

components of potential field anomalies. This can Le important to

regional correlation analysis of satellite gravity and magnetic anomalies

because spatial differentiation will minimize the interfering effects

r̀.

	

	 of gravity sources located deeper than the depth of the Curie isotherm

which effectively defines the maximum depth extent for magnetic anomaly

sources.
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Suitable wavelength filtering in general can enhance the geologic

significance of the results of moving-window Poisson's analysis by

enhancing the spectral compatibility of gravity and magnetic anomaly

data which contain the effects of common sources. Chandler et al.,

(1980) present a number of examples which illustrate the utility of

wavelength filtering for moving-window Poisson's analysis.

D. Data Sets and Processing

To implement moving-window Poisson's analysis pertinent gravity

anomaly derivatives and radially polarized magnetic anomalies and

derivatives must be computed over a common observation grid. These

processing procedures and the characteristics of the resultant data

sets are considered below.

1. Gravity Anomaly Maps

The gravity maps used in this investigation all are derived from

the smoothed, lo-averaged surface free-air gravity anomalies illus-

trated in the contoured stereographic equal-area polar (SW) projection

of Figure IV.1. As described by Bowman et al., (1979), the smoothed

gravity anomaly map was obtained by high-cut filtering anomalies with

wavelengths less than about 8o from a data set of lo-averaged values

provided by ',ASA-GSFC. The data set in Figure IV.1 consists of (82,42)

values uniformly spanning the region (219.5-300.5) oE, (9.5-50.5)'13

at to intervals. The amplitude range (AR) of the data set is between

40 mgal and -62 mgal and the amplitude mean (AM) is -7.87 mgal.

In general, the continent is characterized by relatively positive

anomalies which trend roughly NS along the prevalent geological strike

of the region. The Applachian and Ouachita Mountain Systems exhibit

a slightly positive free-air gravity anomaly which continues south across

Florida and Cuba. The Mississippi Embayment also is characterized by

a weakly positive anomaly. The Cordilleran System is delineated by a well

defined trend of positive free-air anomalies which attain maxima of

roughly 30 mgal over Mexico and the Yellowstone geothermal region.

_ --_.. _. ...e.:.-""^..nYa.9 ^.^ _ - 	
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By contrast, oceanic anomalies are generally negative and trend

EW along major fracture zones and trench systems. A number of fracture

zones are well delineated by the EW striking components of the broad

Pacific low (-20 mgal) off the west coast of California and the Baja

Peninsula. The largest variations of the entire data set are the

negative (-60 mgal) anomalies associated with the Puerto Rico Trench.

The Gulf of Mexico also is characterized by a prominent negative

(-50 mgal) free-air gravity anomaly.

To project the smoothed free-air gravity anomalies to satellite

elevations for comparison with POGO satellite magnetic anomalies, the

data of Figure IV.1 were related by least squares matrix inversion to

a spherical grid of 435 gravity point poles. The grid of equivalent

point sources was located at a depth of 400 km below the earth's

surface and uniformly spanned the region (220-300) °E, (10-50)°N at a

station interval of 2.8570 . Computing the gravity effect of the

point sources over the observation grid of Figure IV.1 gives the

equivalent source approximation of the smoothed free-air gravity

^nomaly field shown in Figure W.2. A comparison of the amplitude

means for the gravity anomaly maps of Figures IV A and 2 shows that

the equivalent point source approximation fits the original data with

negligible error. :S
To upward continue the smoothed free-air gravity anomalies to

satellite elevations the equivalent point source field was computed

next at 450 km elevation as shown in Figure IV.3. Here the upward

continued data set consists of (81,41) values computed at integral

degree nodes of the spherical grid uniformly spanning the region (220-

300)°E, (10-50)°N at a station interval of 1°. Besides the obvious

loss of resolution, Figure IV.3 shows that the only positive anomalies

surviving upward continuation are affiliated with the Cordilleran

System of the U.S., Mexico and Central America. Otherwise, the upward 	 1^

continued data are dominated by negative anomalies associated with

the Puerto Rico Trench, the Gulf of Mexico, and the Pacific Plate. 	 .

In Figure IV A , the first order radial derivative of the free-

air gravity anomaly field at 450 km elevation is computed from the

equivalent point source distribution for quantitative correlation via

Poisson's theorem with satellite magnetic anomaly data reduced to the

pole. The first radial derivative data provide enhanced resolution
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of the higher frequency components of the upward continued gravity

anomaly field. The Cordilleran System is characterized by a distinct

positive zone of first order radial gradients which is flanked on the

west by the broad negative zone of the Pacific Plate. To the east a

well-defined zone of negative radial first derivative anomalies is

evident which extends from the Great Lakes region SW across the mid-

continent and terminates abruptly over the Gulf of Mexico as a large

amplitude negative anomaly. Weakly positive first order gradients

are affiliated with the Appalachian Mountain System which project

SE across Florida and Cuba. The Atlantic is characterized by a broad

zone of negative first order radial derivative anomalies with minimum

values over the Puerto Rico Trench.

The second radial derivative of the upward continued gravity

anomalies is shown in Figure IV.5 as derived from the equivalent point

source distribution for comparison by a straightforward extension

of Poisson's theorem with the first radial derivative of the satellite

magnetic anomaly data reduced to the pole. The second derivative

data provide further enhancement of the higher frequency (crustal ?)

components of the upward continued gravity anomaly field. The

spectral characteristics of the second derivative field are very

similar to the characteristics of the surface free-air gravity anomalies

of Figure IV.1 which have been low-pass filtered for wavelengths of

the order of 90 and larger. Accordingly, the second derivative

anomalies show many of the associations previously noted for the

smoothed lo-averaged surface free-air gravity anomalies of Figure N.1.

In addition, the second radial derivative map of Figure IV.5 shows

a distinct arcurate banding of alternating positive and negative

long-wavelength anomalies which extends westward across the Atlantic

Ocean onto the eastern seaboard of the U.S. This arcuate banding of

anomalies appears to project even further westward, although the

pattern is disrupted frequently across the continental U.S.

2. Magnetic Anomaly Maps

POGO-1968 satellite magnetometer observations reduced to the pole

at 450 km elevation are mapped in Figure IV.6. This map was prepared
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by least squares matrix inversion of multielevation satellite magnetic

profiles on an equivalent source distribution of spherical prismatic

dipolar moments in the IGRF•-1965 updated to 1968 according to the proce-

dures described by Mayhew (1979). Assuming these anomalies are derived

primarily by induction, the satellite magnetic data were reduced dif-

ferentially to radial polarization by recomputing the equivalent source

fields using a uniformly polarizing amplitude of 60,000 gamma and normal

geomagnetic field inclination at all source and observation points. 	 •

U

	

	 The main features of Figure IV.6 include the prominent EW trans-

continental high which is breached in the region of the Mississippi

Embayment. To the west, this high appears to overprint a NW trend of

lows that corr+ssponds to the Cordilleran System. The larger amplitudes

of the transcontinental positive magnetic anomaly also correspond to a

well-defined trend of gravity lows that extends from the Anadarko Basin

of the eastern panhandle of Texas to the tri-state region of Indiana,

Ohio and Kentucky (see Figures IV.1 and 5). This trend of gravity lows

also characterizes a region of enhanced crustal thickness according to

seismic evidence (Warren and Healy, 1973).

Additional features of the radially polarized magnetic data of

Figure IV.6 include the high over the Antilles-Bahamas Platform and

the prominent magnetic low along the northern Gulf of Mexico which

extends westward into Mexico. The magnetic relief of the Atlantic

Ocean is considerable in comparison to the Pacific Ocean which appears

as a region of relatively subdued magnetic character.

Continental magnetic anomalies exhibit pronounced EW trends in

contrast to the NS trends of the gravity anomaly field. This result

is an apparent manifestation ut the ivnger wavelength components of

the satellite magnetic data which are illustrated in Figure IV.7. To

construct Figure IV.7, .he radially polarized data of Figure IV.6 were

high-cut filtered ror wavelengths smaller than about 120 . The resultant

map shows that major sources of positive long-wavelength magnetic

anOsidalies include the previously discussed transcontinental region, the

Antilles-Bahamas Platform and the southeastern coast of Mexico along

the Middle America Trench. Negative long--wavelength magnetic anomalies

characterize northern Mexico and the northwestern third of the U.S.

where the western component of the latter anomaly is centered over the

Yellowstone geothermal region.
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For comparison with the second derivative map (Figure IV.5) of the

upward continued gravity anomalies, the first order radial derivative
e	 i
C

	

	 of the radially polarized magnetic anomaly field as shown in Figure IV-

.8 is computed from the equivalent source field. To make the first

derivative magnetic anomalies more compatible spectrally with the

second derivative gravity anomalies, and thereby more amenable to

correlation analysis via Poisson's theorem, the data of Figure IV.8

were high-cut filtered for anomaly wavelengths smaller than about 8
0

.	 .

The resultant smoothed first order radial derivative magnetic anomalies

	

	 i
i

are illustrated in Figure IV.9.

The magnetic derivative maps provide an increased resolution of
s

the previously mentioned anomalies. In addition, more subdued anomaly

trends become apparent. For example, a series of negative anomalies

is observed to extend along the continental side of the eastern sea-

board of t.ne U.S. to Georgia where the trend turns westward along the

southern margin of the U.S. and then across northern Mexico to the Gulf

of California. On the oceanic side of the eastern U.S. seaboard, a

trend of positive derivative anomalies is evident which projects from

the Baltimore Canyon area southward until it intersects the positive 	
S

anomalies of the Antilles-Bahamas Platform. Further eastward across

the Atlantic Ocean, an arcuate pattern of banded negative and positive

anomalies begins to emerge which shows a direct correspondence to the

previously discussed gravity anomaly pattern of the Atlantic. The

Pacific coast of North America by contrast generally is characterized

by a trend of positive first order magnetic derivative anomalies.

E. Quantitative Correlation Results and Discussion

To investigate quantitative regional correlations of satellite-
P

elevation gravity and magnetic anomalies over North America, moving-
6

window Poisson's analysis was performed on the data sets described in

the previous section. The results of these correlation analyses and

their potential geological significance are outlined below.

1. Correlation Analysis (I-5)

Correlation analysis (I-5) was performed between the first radial

gravity derivative map of Figure IV A and the radially polarized magnetic



85

anomaly map of Figure N.6 using a 5x5 data poin. (-40x4°) operational

window. The positive and negative correlation coefficients derived

from the moving-window Poisson's analysis are plotted separately in

Figures IV.10 and 11, respectively. These correlation coefficients

1raphically characterize the oceans by direct correspondences of

gravity and magnetic anomalies, whereas the continental correlations

are predominantly inverse.

A histogram of the correlation coefficients is given in Figure

IV.12 where the oceanic and continental anomaly correspondences are

reflected as two distinct peaks of relatively high statistical cor-

relation. Roughly 328 of the correlation coefficients have absolute

values greater than or equal to ± 0.7, thus, indicating that a signi-

ficant portion of the gravity and magnetic anomalies exhibit strong

statistical correlation.

An analysis of the correlation coefficient patterns in Figures

IV.10 and 11 shows that broad-scale regions of high correlation coef-

ficients generally are associated with anomaly gradients. Correla-

tions of anomaly peaks normally exhibit slight phase shits of as much

as a degree or two and, hence, tend to be characterized by fluctuating

correlation coefficients. The slope and intercept coefficients as

shown in Figures IV.13 and 14, respectively, also have much the same 	 S
pattern as the correlation coefficients. These results suggest that

the regression parameters generally are more sensitive to phase shifts

of the anomaly peaks than to phase shifts of the gradients.

Accordingly, it is difficult to make broad geological generali-

zations from these regression parameters except on an anomaly-by-

anomaly basis. As an example, consider the previously discussed trans-

continental region of negative gravity and positive magnetic anomalies.

Much of this region is characterized by relatively stable intercept

values and correlation coefficients which range between -0.6 to -0.8.

The corresponding distribution of slope values, .nich gives an initial

constraint on the physical properties of the possible source for sub-

sequent interpretation, is roughly equal to -0.06 oersted*cm 3/gm. If

the source of this gravity low and magnetic high corresponds to a

thickened crust as suggested by previous arguments and seismic evidence
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GRAVITY AND MAGNETIC ANOMALY
CORRELATION	 ANALYSIS	 ( I-5)
CORRELATION	 COEFFICIENTS

Z = 450 km
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Figure IV.12 Histogram of correlation coefficients derived from corre-
lation analysis (I-5).
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(Warren sad Healy, 1973), and the density contrast at the base of

the crust is -0.3 gm/cm 3 , then this slope value indicates a magnetic

polarisation for the source of roughly 1.8x10 emu/cm3. This polari-

sation value suggests source magnetisation that is several orders of

magnitude greater than the value a 5x10 3 emu/cm3 commonly accepted

for the lower crust (Hall, 3974= Shuey et al., 1973).

2. Correlation Analysis (II-5)

• Correlation analysis (12-5) was performed between the second

radial gravity derivative map of Figure N.5 and the first radial

magnetic derivative anomalies of Figure IV.8 using a 5x5 data

point moving-window. This analysis should emphasise correspondences

between nearer surface, crustal anomalies because both data sets are

radial derivative maps.

Positive and negative correlation coefficients derived from

this analysis are plotted separately in Figures IV.15 and 16,

respectively. Again, these coefficients statistically characterise

prevailing inverse and direct anomaly correspondences, respectively,

for continental and oceanic regions. The histogram of the correlation

coefficients given in Figure M17 shows two broad peaks for the con-

tinental and oceanic anomaly correlations. Approximately 23% of the

anomaly correlations exhibit correlation coefficients with absolute

magnitude greater than or equal to t 0.7. However, inspection of

Figures IV.5 and 8 shows that a greater number of spatial correlations

of anomalies appear evident than for the data sets considered in the

previously described analysis. Hence, the decrease in the number of

high correlations with respect to the results of analysis (I-5) sug-

gests that the 4ox4o window may be too large to effectively resolve

many of the higher frequency derivative anomaly correlations.

Correlation coefficient fluctuations are similar to those

observed for the slope and intercept values as shown in Figures MIS

•	 and 19. However, broad-scale variations of these coefficients

generally correspond to anomaly gradients which make geologically

significant generalizations unclear except on an individual anomaly

basis. The results for the transcontinental anomaly correspondences

are essentially the same as those obtained from the previous analysis.



M

H

N
-4
N

r-1

Gro

ro

O

a-^
ro

.-1

N
i4
0
u

0
w
v
v>
N

Ql

N
4J

d
•.4
u

w
w

G
0
u
ro
r-i
v
w

0
U

r-1

O41
0

0

v

.-i
.H
N

G
a

W

0
roV

Ln

u
►4

w

92

s

yo"Cii

^	 1

l

	

U V	 C

1	 1	 ^

N 
t

z W

	

Li
Q 

L 0 N	 T

	

n	 i	 L	 \1
0 Q U
v 0	 ,

c
0	 r Q

zx (0 L 1

a 0 mv	
_y,

L)

v	 r^	 ryN
z > Cmw	 4r3̂ /

d

^	 I

o 
v	

F

Al
do

^o

v



HHJ
N

rj

.-I
ro

ro

C
J

u
ro

v
N
N
0

8
w
v

N
v
lu
N

C
v

w
w

0
u

ro
f-^
v
N
N0
O
0

0

0

ro
a^
v
z

W
O
^o
N

^I

v
N
a

1

93

In

't

••O' C4,

r-QI	 ^^I

Ln o	 t	 ^:	 ^t
J	 _ b " ^ •o "}^ ^	 I 1

z	 r	 Yz w

Lk 0 cm

O U ^	 ! ^ N IR 	 ^
i	 1,1

11 Q	 Q

W O It O	
D .^	 i

cr U	 ff	 1,°^

O	 a U	 ,	 e

r O	 I	 i	 .1	 i	 t	 1 N	 .j

I
a	 j 0, ac	 '-	 f	 . I m	 O
^ W I Q	 f

Z	 j
U .^ n

II	 '	 ',^jg	 / IoV	 N	 r
W	 L vim'	 D	 i	 N

W az^
ui

N /f ` r!l

Z
a	 e	 •

n	 I	 ^^
r	 ^	 ^

^

DLO

^o

' !RIGI,1.11



44

Its

Is?

Ie!

let
lea
lea
lea
124

127

146

lss

164

tea
172

lea

184

170

10,

as

--	 a

-•	 a

..	 I

--	 .a

•-	 .a

--	 e

s
!
s
s
4

a

a

1

v

-.I

-.2

..a

-.4

..s

-.e

•.7

-.S

-1

94

GRAVITY AND MAGNETIC ANOMALY
CORRELATION ANALYSIS (II-5)
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V.17 Histogram of correlation coefficients derived from corre-
lation analysis UZ-5).
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3. Correlation Analysis (III-3)

Correlation analysis (III-3) using a 3x3 point (- 2°x2°) moving

window was performed between the second radial gravity derivative map

of Figure IV.5 and the first radial magnetic derivative anomalies of

Figure IV.9 low-pass filtered for wavelengths roughly 8° and larger.

The data sets considered here should be more spectrally compatible

than those used in the previous analysis because the second radial

gravity derivative map exhibits similar wavelength characteristics

to the surface data of Figure IV.1 which has been high-cut filtered

ter wavelengths roughly smaller than 8°. Also, the smaller operational

window can be expected to better resolve the higher frequency cor-

relations of the derivative anomalies.

A number of the derivative anomaly correlations are shown in

Figure IV.20 where selected second derivative gravity anomalies

(heavy contours) are plotted on the smoothes: magnetic anomaly

derivative map. The spatial coincidence of the anomalies in Figure

IV.20 clearly demonstrates the continental area as a region char-

acterized basically by two types of inversely correlating gravity and

magnetic anomalies. One type of inverse correspondence is exemplified

by the positive gravity anomalies which are associated with breaches

of the transcontinental magnetic- high by the Cordillera and the northern

Mississippi 1-hbayment. The Yellowstone area also is characterized Ly

well-defined positive gravity and negative magnetic anomalies. The

second type of continental anomaly correspondence is illustrated by

the trend of negative gravity and positive magnetic anomalies which

extends from the Anadarko Basin to the tri-state region of Indiana,

Ohio and Kentucky. Oceanic anomaly correspondences are less clear,

although direct anomaly correlations generally appear to characterize

the Gulf of Mexico, Caribbean and Atlantic Ocean rvgiuns of the castor"

third of the study area.

These generalizations, again, are supported statistically by the

distributions of positive and negative correlation coefficients derived

from analysis (III-3) which are mapped in Figures IV-21 and 22,

respectively. The histogram of the correlation coefficients illustrated

in Figure IV. 23 shows the continental and oceanic anomalies exhibit

relatively strong statistical correspondences. Roughly 41% of the

i
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derivative anomalies show correlation coefficients of absolute mag-

nitude greater than or equal to 3 0.7. The increased number of relatively

strong correlations reflects both the decreased size of the operational

window and the enhanced spectral compatibility of the data sets.

Fluctuations of the correlation coefficients tend to emphasize

the slight phase shifts of the correlating anomaly peaks that are

evident in Figure IV.20. This behavior also is illustrated by the

slope and intercept values which are plotted in Figures IV.24 and
	 .

25, respectively. Hence, despite the increased number of high statis-

tical correlations, the relationship between the regression parameters

and potential field anomalies remains essentially complex and must be

considered on an individual anomaly basis.

In the complicated behavior of the regression coefficients, however,

continental inverse anomaly correlations tend to be characterized in

a fairly uniform manner. Gravity lo•os corresponding to the peaks of

the transcontinental magnetic high all ccatinve to exhibit correlation

coefficients of -0.8 to -0.6 and slope values of the order of -0.06

oersted*cm3/gni. Gravity maxima corresponding to magnetic lows, on the

other hand, as observed for the Yellowstone area And the breaches of

the transcontinental magnetic high by the Cordillera and the northern

Mississippi Embayment tend to all be characterized by correlation co-

efficients up to -0.8 and slope values ranging between zero and -0.03

oersted*cm3/gm.

To investigate the possibility that the regression parameters con-

tain significant long-wavelength information, the correlation, slope

and intercept coefficients of analysis (III-3) were low-pass filtered

for wavelengths roughly greater than 8 o Positive and r:egative low-pass

filtered correlation coefficients are given in Figc,res IV.26 and 27,

respectively, whereas the smoothed slope and intercept coefficients are	
y

illustrated, respectively, in rigures IV.28 and 29. The regression para-

meters all exhibit similar fluctuating behavior which generally emphasizes

the slight spatial disparity between correlating anomaly peaks. However,

these variations are ccnsiderably simplified by the smoothing process and,

hence, facilitate a more generalized interpretation of the correlating

gravity and magnetic anumalies than the previously discussed results.
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Ĥ
II

f0

c

O
•f^

v
ti

O
u
E0
w

v

G)

N
ai
C
v
U

ww
0
O
u

E
V

va
0

v
N
GJ

r-1

W

O
CD

v^

IK

a^

U

.0 H
^ H



i

1 ` W

I	 o.o
N

I

HHH

N

N

C

0
u
ro

v
w
N
0
u

E
0
i"W
b
v

NvC
v
.14

U

W
W
v
0
u

41a
a.u
i4
v
N
C

v
v
w
v

4
w

C
CD

v 

,K

u
7
u

4
tr+

x

rn

N}
Fr

v
^4
7
t
G,

108

^0 C6

	

4	 ^

o	 p ^l
K1	 ,	 N N V ^^

V)	 o	 t
cn	 E

z	 .'^	 o
0W	 oo v N E	 1.^	

r

i-	 o
J W ^^	 .1,	 ..^	 J	 1y+

It V Q O	 ' TJ

u
u	 1 L926`-

	 f

CL E u

cr
v	 g	 ^. I

o	 E l/

Q Z O SC
	

1	
, 
1 

,^	 f ^.

WZ O
0	

m N	 , 1 '`^ ,
m0

p	 0)

>^ da	 .

Co

."v
O

xO

, 1Z^.1 _^ 1•Y^

LA



109

For example, oceanic regions are broadly characterized by small

slope values in contrast to the continents. In consideration of the

large magnetizations previously inferred for major portions of the

continent, this result perhaps reflects decreased polarization of the

oceanic crust relative to continental crust because of the marked effect

of temperature and time on the remanent magnetization properties of

%;rustal extrusive rocks. The smoothed regression parameters also

indicate more readily than in previous examples the uniform relation-

ship between continental inverse anomaly correlations and the regres-

sion coefficients. The transcontinental positive magnetic peaks, for

example, which correspond inversely with gravity lows are uniformly

characterized in the slope map of Figure IV.28 by (Aj/Am) values

ranging between -0.06 and -0.09 oersted•cm3/gm.

The general characteristics of continental inverse gravity and

magnetic anomaly correlations are further exemplified by the results

for the profile along 370N between 2380E and 2840E illustrated in

Figure IV.30. The top set of profiles (Figure IV.30.A) shows the first

radial derivative gravity data (dotted profile) and radially polarized

magnetic data taken from Figures IV.4 and 6, respectively, along the

37°N parallel of latitude. The next set of profiles (Figure IV.30.8)

corresponds to the second radial gravity derivative data (dotted profile)
S

and smoothed first radial derivative magnetic anomalies along 37ON 	 t

taken from Figures IV.5 and 9, respectively. The third profile set

(Figure IV.30.C) gives both low-pass filtered (dotted profile) and

unfiltered correlation coefficients corresponding to analysis (III-3),

and the final set of profiles (Figure IV.30.U) shows the slope values

along 370N extracted from Figures IV.24 and 28 (dotted profile).

These profiles clearly demonstrate the strong inverse correlation

of regional gravity and magnetic anomalies that generally typifies

North America. For the anomalies east of 270 0E which rse related to	 ip

the gravity minima and magnetic highs discussed previously, the large

(&J/Am) values suggest crustal magnetization which is appreciably higher

than indicated by conventional arguments, so that the magnetic high may a
be due to an intra-layer magnetic polarization variation.
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free-air air gravity derivatives (dotted profile) and
smoothed first radially polarized magnetic anomaly deri-
vatives from Figures IV.5 and 9, respectively. C) Unfil-
tered and high-cut filtered (dotted profile) correlation
coefficients from correlation analysis (III-3). D) Unfil-
tered and high-cut filtered (dotted profile) slope values
from Figures'IV.24 an3 28, respectively.
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The Mississippi Embayment is associated with a well-defined

gravity maximum and magnetic minimum. As described in section VI,

seismic and surface gravity data indicate that the crustal structure

of the Embayment consists of essentially four components. The major

gravity source for the Embayment, however, corresponds to a portion

of the lower crust with density contrast equal to 0.20 gm/cm 3. This

particular feature also can account for the POGO satellite magnetic

•	 data of the region if a polarization contrast equal to -0.0024 emu/cm3

is assumed. The resultant physical property contrast ratio (=-0.012

oersted*cm 
3 
/gm) of the major gravity and magnetic source inferred for

the Embayment compares very favorably with the slope value (--0.011

oersted*cm3/gm) given in Figure IV.30.D.

An especially broad band distribution of relatively strong inverse

correlations is evident between the Mississippi Embayment and the

Colorado Plateau. Uniform apparent (Aj/om) values roughly equal to

-0.037 oersted*cm3/gm tend to characterize this region, except for

the marked local fluctuation in the vicinity of the 10 phase shift

between the gravity anomaly peak at 2590E and the magnetic anomaly

peak at 2600E.

The pronounced gravity maximum and magnetic low over the eastern

margin of the Colorado Plateau probably reflects the increased heat

flow and decreased crustal thickness of the region (Keller et al., 1979).

Crustal thickening and lower heat flow over the Plateau result in a

substantial decrease of gravity anomalies and slightly enhanced mag-

netics. However, west of the Plateau the effect of high heat flow

and complicated tectonic styles yields an overall deterioration of

anomaly correlations that is reflected in the general behavior of the

correlation coefficients for this region.

F. Conclusions

Anomaly correlations as well as non-correlations provide useful

t
information for the geologic interpretation of anomalous gravity and

magnetic sources within the subsurface. To quantitatively assess

patterns of anomaly correlation for multiple source data sets, Poisson's

.0
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theorem can be used to perform a regression analysis on appropriate

gravity and magnetic anomaly data within a window that traverses the

data sets. The regression parameters derived from this moving-window

Poisson's analysis include 1) correlation coefficients which provide

a statistical measure of the coincidence and uniformity of the anomaly

sources, 2) slope coefficients (Aj/Am) which provide initial con-

straints on source physical properties to facilitate subsequent modeling

for more detailed interpretation, and 3) intercept coefficients which

reflect base level changes due to interfering anomalies.

To investigate quantitative regional correlations of long-wave-

length qravity and magnetic anomalies over North America and adjacent

marine areas a number of data sets were prepared at 450 km elevation

which satisfy the theoretical considerations of Poisson's theorem in

regions of common potential field sources. These data sets indicate

the general relationship between gravity and magnetic anomalies: over

the continent is inverse. 	 Regions of large relative crustal thickness

such as the midcontinent appear to be characterized by negative gravity

and positive magnetic anomalies at satellite elevations. Accordingly,

this continental type of inverse anomaly correlation may reflect dis-

placement of denser and less magnetic mantle material by an anomalously

thick crust. However, the magnetic maxima probably also reflect an

increase in the magnetic polarization of the crust in these areas.

Negative magnetic and positive gravity anomaly correlations, on the

other hand, as exemplified by the Yellowstone geothermal region may be

related to regions of increased heat flaw where the Curie point iso-

therm is likely to be deflected to shallower depths to yield anomalous

sources of net negative magnetization.

The distinct inverse characterization of continental gravity and

magnetic anomaly correlations is supported statistically by the appli-

cation of moving-window Poisson's analysis to the regional data sets.

These results indicate that. satellite elevation gravity and magnetic

anomalies derived from continental crust demonstrate remarkable regional

correlations that are useful in decreasing the ambiguity of lithologic

and structural interpretation.

5
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Oceanic regions tend to exhibit overall poor anomaly correlations

perhaps as a result of decreased crustal magnetization. Statistically,

however, oceanic anomalies appear to be characterized by generally positive

correlations which probably are best exemplified by the anomalies of

the Caribbean, eastern Gulf of Mexico and the Atlantic Ocean.

Poisson's moving-window regression analysis has been shown in

this investigation to be particularly sensitive to phase shifts of

anomaly peaks which complicates the interpretation of the quantitive

correlations. Hence, in the application of this method it is desirable

to obtain a high degree of spectral compatibility between the data sets

to be correlated. This objective perhaps can be best achieved by

simply filtering one of the data sets in the frequency domain using the

spectral characteristics of the other data set as the filter.

A number of reasons can be suggested which may account for the

apparent phase shifting of anomaly peaks. Geologically significant

mechanisms include sources with appreciable moments of remanent magneti-

zation, sources with inhomogeneous properties of magnetization or

density, and the differential response in time of magnetic and density

properties to dynamic heat sources. Data reduction and processing

problems also may lead to inadequate definition of anomalies. In the

magnetic data set, however, this situation will soon be alleviated by

the availability of scalar and vector magnetic anomaly data from the

current Magsat program (Langel, 1979) which should provide higher

resolution data to upgrade the quantitative correlation analysis of

regional North American gravity and magnetic anomalies.
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V. SPHERICAL EARTH GRAVITY AND MAGNETIC ANOMALY MODELING
BY GAUSS-LEGENDRF. QUADRATURE INTEGRATION

A. Abstract

Increasing interest in the geologic significance of long-wave-

length geophysical anomalies has focused attention on spherical gravity

and magnetic modeling. Gauss-Legpndre quadrature integration provides

an especially powerful approach to the spherical earth modeling

problem. A procedure has been developed using this numerical inte-

gration scheme for calculating the anomalous potential of gravity and

magnetic fields and their spatial derivatives on a spherical earth

for an arbitrary body represented by an equivalent point source dis-

tribution of gravity poles or magnetic dipoles. The distribution of

equivalent point sources is determined directly from the coordinate

limits of the source volume. Variable integration limits for an

arbitrarily shaped body are derived from interpolation of points which

approximate the body's surface envelope. The versatility of the
S

method is enhanced by the ability to treat physical property varia-

tions within the source volume and to consider variable magnetic fields

over the source and observation surface. The method is particularly

well suited for satellite gravity and magnetic anomaly modeling because
r

the accuracy and efficiency of the application improves with increasing 	 4

distance between source and observation point. A number of examples

verify and illustrate the capabilities of the technique.

B. Introduction

Computation of theoretical anomalous gravity and magnetic fields

due to geologic models is an important element in interpreting poten-

tial field data and designing surveys. For regional gravity and mag-

netic: surveys measuz-ed in degrees of latitude and longitude, procedures

are required which model directly in spherical coordinates potential

field anomaV.es due to large-scale, arbitrarily shaped sources with

variable density or magnetization characteristics.
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In a review of computer modeling techniques, Shattacharyya (1978)

presents methods that in principle are suitable for spherical earth

modeling of region? features. These procedures generally are based

on approximations of the anomalous source as a group of prisms or

polygonal laminae, the effects of which are evaluated and summed at

each observation point to yield the total anomaly. However, for

typical spherical earth modeling applications, the bookkeeping problem

involved with subdividing the large-scale source into simple forms to

reflect arbitrary characteristics of geometry and physical properties

commonly is formidable.

A simple and more efficient procedure is to represent quadratures

of the source volume by equivalent point sources according to the

well known technique of Gaussian quadrature integration. In principle,

the appropriate geometric distribution of equivalent point sources

can be determined directly from the coordinate limits of the source

volume, so that an accurate estimate of the source affiliated anomaly

is obtained by evaluating and summing at each observation point the

differential anomaly values due to each point source of the equivalent

source distribution.

Gaussian quadrature is a time-honored technique for numerical inte-

gration that has been well studied in the general literature of numerical

methods (e.g., Carnahan, 1969). Potential field modeling by Gauss-

Legendre quadrature was used by Ku (1977) to evaluate gravity and

magnetic anomalies in Cartesian coordinates due to bodies of arbitrary

shape and magnetic polarization. In this discussion, the method is

extended to spherical coordinates and the general problem of sources

with arbitrary shape and variable density and magnetization properties.

C. Description of the Method

As illustrated in Figure V.1 which outlines the main results of

this section, it is convenient for gravity and magnetic modeling pro-

blems to consider the anomalous body as being composed of :s source

volume distribution of gravity point poles or magnetic point dip,,.)les,

respectively. Hence, to estimate the anomalous gravity or magnetic

field at some observation point, it is necessary to evaluate and sum

the anomaly values due to each of these paint sources at the observation

point.
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GRAVITY AND MAGNETIC MODELING BY
GAUSS-LEGENDRE QUADRATURE
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Figure V.1 Gravity and magnetic anomaly modeling in spherical coor-

dinates of a geologic body with arbitrary shape and
physical properties by Gauss-Legendre yuadrature inte-
gration (see text for details).
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In particular, the radial anomaly, 69, due to a gravity point

pole referenced to a geocentric coordinate system as shown in Figure

V.1 is given by

Ag 
{ _G* 8(1)8R}*Am,
	 where	 (V-1)8R R Sr

G - universal gravitational constant (-6.67*1Q -8 cm, 3/(gm*sect)),

R - distance from observation point (r,0,0) to source point (r',A',m'), 	 •

r,r' - radial distances from earth's center to the observation point
and source point, respectively,

0,e' - co-latitude coordinates of observation and source points,
respectively,

f W - longitude coordinates of observation and source points,
respectively, and

Am = mass contrast of the point pole.

For a magnetic point dipole, on the other hand, the total magnetic

intensity anomaly, AT, is given by

AT - { u•^(u'•^'(R))} *Aj, 	where	 (V-2)

Me = gradient operators in observation point and source point
coordinates, respectively,

Aj - magnetization contrast of the point dipole, and

u,u' = unit geomagnetic field vectors at the observation point and	 j b'
source point, respectively.

Conventionally, the unit vectors u and u' are expressed in terms of

geomagnetic field inclination (I,I') and declination (D,D'). Also,
i

when the point dipole polarization is by induction

Aj = Ak•F',	 where	 (V-3)

Ak - magnetic susceptibility contrast of the point dipole, and

F' - scalar geomagnetic field intensity at the source point.

Hence, in regional-scale applications of equation (V-2) geomagnetic

field models such as the IGRF-1965 (Cain et al., 1967) normally are

	

used to obtain pertinent values of (I',D',F') at the source point 	 .

and (I,D) at the observation point.

Consideration of equations (V-1) and (V-2) shows that the incre-

mental gravity and magnetic anomaly values due to a point source located

a distance R from the observation point can be generalized according

to the relation
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q(R)*ex,	 where	 (V-4)

q(R) - the geometrical point source function which essentially
describes the inverse distance between the observation
point and source point, and

Ax - the appropriate physical property contrast of the point source.

Hence, to determine the total potential field anomaly it is necessary

to evaluate at each observation point (r,A,O) the volume integral given

•	 by

J% !b 1% (q(r,9,O1r',9 1 ,#')*Ax)dr'de'd# 6 0	(V-5)
a	 a	 a

where the primed variables refer to the coordinates of the anomalous

body such that

oa. ,mb - lower and upper longitude limits of the source volume,

91,9b - lower and upper co-latitude limits of the source volume, and

ra,rb - lower and upper radial limits of the source volume.

Consider, now, the numerical evaluation of the innermost integral

in equation (V-5). Most numerical integration techniques involve the

use of interpolation polynomials to approximate the integrand according

to a summation formula of the general type given by
ni

J% (q(r')*,&x)dr' s E Ai*q(ri)*dx,	 (V-6)
a	 i-1

where the ni values Ai are the weights to be given to the ni func-

tional values (q(ri) *ex) evaluated at the interpolation coordinates,

ri. Conventional integration formulae such as Simpson's rule or the

trapezoidal rule assume equal spacing of the arguments ri which is

generally appropriate when dealing with an integrand that is not well

known analytically. However, as shown in equations (V-1) and (V-2)

the integrand being considered here involves a familar analytic function

which may be computed for any argument to great precision. In such

instances, Gaussian quadrature formulae can be developed to yield

selected values of interpolation ri and coefficients Ai so that the

sum in equation (V-6) gives the integral exactly when (q(r')*Ax) is a

polynomial of degree 2ni or less (e.g., Carnahan, 1969).

In general, it may be shown that the Gaussian coefficients Ai can

be obtained from a polynomial of order ni which is orthogonal over

the interval of integration each that the ni points of interpolation



ri are the zeros of the polynomial. Families of orthogonal polynomials

which commonly are used to develop Gaussian quadrature formulae include

Legendre, Laguerre, Chebyshev and Hermite polynomials. However, in

this discussion only Legendre polynomials are considered which is

the prototype of the Gaussian method.

Legendre polynomials Pni (r') of order ni which are orthogonal

over the interval -1 <;' <1 are given by

ni

Pni W ) _ ( ni )( d	 (r'2
-1)ni), where P o (r') - 1. (V-7)

2 nit dr'
ni

Accordingly, the standard Gauss -Legendre quadrature over the interval

(-1,1) is given by

_	 ni

!i (q(r')*dx)dr' 2 E Ai*q(ri)*dx,
i=1

r

where the interpolation points ri at which the integrand is evaluated

are the zeros of equation (V-7) and the Gaussian coefficients are

2 (1-r f2)
A	 (V-9)
i	

ni2(pni-1 (;1))2 .

Now for arbitrary limits of integration ouch as indicated in

equation (V-6) it is necessary to map the standard interval -1 <r! <1

into this interval of integration ra <ri < rb according to the trans-

formation

(V-8)

0

ri (rb r;) + (rb+ra)

ri =	 2	 .
(V-10)

Accordingly, the integral in equation (V-6) can be approximated as

(r'-r')	 r'(r' -r') + (r'+r')
rb (q(r')*©x )dr' = b2 a ^i (q( i b a 2	 b a)

*Ax)dr'
a

(r' -r' ) ni
b2 a 

E Ai*q(rP *Ax. 	 (V-11)
i=1

Extending this procedure to volume integrals is straightforward. Thus,

the Gauss-Legendre formula for the general evaluation of equation (V-5)

is given by

1	 j



121

@b {eb	 rb (q(r',e',4')*Ax)dr'de'dO' *	 (V-12)
a	 a	 a

&' -m'	 nk	 e' e'	 n j	 r' -r'	 ni
( kb  ka ) E {( b2 a ) E {( ib2

 ia) E (q(r I 'ei N)*Ax)Ai)Aj)Ak

	

kal	 Jul	 iml

where

ri - 0.5 { ri (rib ria ) + rjb+rsa)if

ei - 0.5 { A j (9 jb-e ja) + A ib+eia),

f  - 0.5 { mk (^kb-^	 ) + fkb+f") 0

- coordinates of the subdivision in the limits of integration
from -1 to 1 which correspond to zero nodes of equation (V-7), 	 i

Ai ,Aj ,Ak s Gauss-Legendre quadrature coefficients given by equation (V-9),

ka,^kb lower and upper volume limits of the body in the k-th
coordinate of longitude,

eja ,ejb - lower and upper volume limits of the body in the j-th
coordinate of co-latitude, and

ria ,rib - lower and upper volume limits of the body in the i-th
radial coordinate.

The quadrature formula given in equation (V-12) shows that gravity

and magnetic anomalies can be accurately computed by summing at

each observation point the anomalous effect of nk*nj*ni equivalent

point sources located at source point coordinates (ri,ej,mk), where

each of the differential point source anomalies is appropriately

weighted by Gauss-Legendre quadrature coefficients and the volume coor-

dinate limits of the anomalous body being modeled. This result is

well suited for machine computation where the input consists prin-

cipally of values of the integrand for selected source points (ri,ej,mk),

affiliated subdivision coordinates (ii,9j,mk) and coefficients

(Ai ,Aj ,Ak), and the volume coordinate limits of the body for each

dimension of every source point coordinate (ri,ej,Y.	 S

The selected values of the integrand for gravity or magnetic

modeling purposes are readily obtained from equations (V-1) or (V-2),

respectively. Also, the Legendre subdivision coordinates of the interval

(-1,1) and associated Gaussian coefficients may be computed directly

from equations (V-7) and (V-9), respectivelyt although, it generally is	 {

found to be more machine efficient to input these values from tables
S
a

i
s



122

using an algorithm such as described by Carnahan (1969). Values Which

are applicable for such algorithms are tabulated to 30 digit precision

for orders n - 2 to 512 by Stroud and Secrest (1966). However, for

most regional lithospheric modeling applications experience suggests

subdivision coordinates and associated coefficients to 10 digit pre-

cision for orders up to n - 16 normally are sufficient.

For a uniformly dimensioned body such as a prism, the integration

limits for the evaluation of equation (V-12) are easy to specify. In

this case, for example.(m,^)	 (mA.1D) , (e ja ,e jb) - (8 0;) and
(ria,rib) - (ra,rb). However, for the more general case of a body with

arbitrary shape the integration limits are known in one dimension only

so that the problem of determining the integration limits in the remaining

cwo dimensions for each equivalent polmt source coordinate must be

considered.

Procedures can be developed to efficiently handle this problem,

such as the method described by Ku (1977) where a modified cubic spline

!unction is used to interpolate the desired integration limits from a

set of body point coordinates which provide a rough approximation of

the surface envelope of the body. Typically, the procedure is to

specify, for example, the longitudinal limits of integration of the 	 i

body to obtain the nk Gauss-Legendre nodes mk as described above.

Interpolations of the body point coordinates are performed next to

determine the maximum and minimum latitude coordinates of the body

for each longitude coordinate mk. These values of course provide the

latitude limits of integration for evaluating the nj nodes ej. Simi-

larily, the radial coordinates of the body points are interpolated at

each horizontal coordinate N,ej) to yield appropriate radial limits

of integration from which the ni nodes ri can be determined. Pro-

cedures such as this are readily adapted for efficient machine processing

r	 so that the integration limits of arbitrarily shaped bodies can

be determined accurately for evaluation of the quadrature formula

given in equation (V-12) .
The quadrature formula in general has considerable versatility

in modeling applications because anomalous gravity and magnetic

potentials and their respective spatial derivatives of any order are

all linearly related. Bence, to model the radial derivative of the
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potential field anomaly due to an arbitrary source, for example, it

is necessary simply to exchange q(R) for 8q(R)/8r in equation W-12).

Additional geophysically interesting quantities which can be modeled

from stele linear transformations of the integrand of equation N -12)

include the anomalous potential, vector anomaly components and the

spatial derivatives of any order.	 Relative geotdal anomalies can be

modeled as well by computing the anomalous gravitational potential 3

of the body at the surface of the earth and dividing it by normal

gravity ,according to Brun's formula (Heiskanen and Moritz, 1967). i	 .
Bodies with variable physical property contrast also are accom-

modated readily by the quadrature solution. 	 To emphasize the fact that

Ax can be expressed as a function of source position (i.e., 8x -

dx(r',8 1 4 1 )) when necessary, the generalized point source anomaly

(q(R)*Ax) has omen carried intact throughout the foreg,)ing developments.

Conventional modeling procedures normally assume bodies with uniform

physical properties so that each property variation must be modeled

as a separate body.	 To model the total magnetic intensity anomaly due $

to a regional source subject to regional variations of geomagnetic

field induction by the well known method of Talwani (1965), for example,

requires that the source be subdivided into blocks wherein the geo-

magnetic field polarization is uniform. 	 Each block in turn must be 5
subdivided into a group of approximating polygonal laminae to insure

accuracy of the numerical integration which evaluates the anomaly. 	 By

contrast, the Gauss-Legendre quadrature approach is to simply polarize

each point dipole in the quadrature formula according to the polevi-

nation characteristics of an acceptable numerical model of the go mag-

netic field (e.g., the IGRF-1965 by Cain et al., 1967)). 	 This

also illustrates the technique for modeling bodies with remaanent

magnetization by quadrature formulation. 	 Here, the magnetization of
3

the point dipoles is achieved using a polarization field Uhat represents b
the vector sum of induced and remanent magnetic polarizations.

Finally, considerable computational flexibility is available for

the practical implementation of the quadrature formulation.	 Ku (1977)

noted the tradeoffs which occur in applications of the metP , . , 4etween

efficient computation and the accuracy of the solution. 	 A large

number of Gauss-Legendre nodes insures a very accurac y quadrature

solution, although the same degree of accuracy often can be achieved '
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by a substantially smaller number of equivalent point sources. In

fact, the accuracy of the solution remains essentially unchanged for

different numbers of nodes as long as the node spacing is smaller

than the distance to the observation point. Hence, the minimum number

ci kiodes to specify in a given application should be such that the

distance to the observation point is greater than the node spacing.

In genera, then, the accuracy of the quadrature formulation can readily

be controlled by adjusting the number of Gauss-Legendre nodes relative

(	 to the elevation of the observation point.

D. Illustra.-Lio-i .;r the Method

A computer program is described in von Frese et al., (1980) which

was developed for regional lithospheric gravity and magnetic modeling

applications by Gauss-Legendre quadrature. The program was used to

construct the examples of this section which illustrate some of the

capabilities of the method.

To demonstrate and verify the method for regional scale modeling

applications, gravity and magnetic anomalies due to a three-dimensional

spherical prism were modelcA %n a spatial scale small enough that the

results could be compared readily with conventional modeling techniques

in Cartesian coordinates. In Figure V.2, for example, a comparison of

gravity anomalies is given due to a 6.67 km thick prism with density

contrast 0.25 gm/cm 3 . The observation grid consists of (16,16) stations

uniformly spanning the region (273-274) 0E, (40-41) 0N at an elevation

(Z) of 6.67 km above the top of the prism.

The well known method of Talwani and Ewing (1960) was used to

calculate the gravity effect of the prismatic model as shown in Figure

V.2.A. The gravity anomaly was determined by evaluating and summing at

each observation point the gravity anomalies due to 11 horizontal poly-

gonal laminae used to approximate the prism. As shown in Figure V.2.A,

the resultant anomaly has an amplitude range (AR) between 36.0 mgal

and 0.3 mgal and an amplitude mean (AM) of 5.4 mgal. The anomaly

was computed and contoured in Cartesian ^oordinates assuming t o = 100 km.

This assumption distorts slightly the true geometry of a spherical

prism in this to x to region in northwestern Indiana where to in longi-

tude and latitude is more nearly equal to 88 km and 112 km, respectively.
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a

In Figure V.2.B, the gravity anomaly of the spherical prism computed

by Gauss-Legendre quadrature integration is contoured on a stereo-

graphic equal-area polar (SEAP) projection. In this zase, the gravity

anomaly was calculated in spherical coordinates by evaluating at each

observation point an nk*nj *ni - 8*8*2 = 128 point quadrature formula

where the integration limits were specified directly from the spherical

coordinate limits of the prism volume. The results shown in Figure V.2

indicate the two methods agree very well with respect to the relatively

small spatial scale under consideration. The slight disparity between

the results probably is due to geometric distortion introduced by the use

of Cartesian coordinates for calculation of the spherical prism anomaly.

A comparison of magnetic anomaly fields is illustrated in Figure V.3

for the prism model wi th volume magnetic susceptibility contrast* equal

to 0.0005 emu/cm' and uniform polarizing intensity F' = 60,000 gamma,

inclination I' = 750 and declination D' - 0°. Over the observation

grid, uniform geomagnetic field attitude characteristics of inclination,

I = 75° and declination D = 0° also are assumed. The total magnetic

intensity anomaly of the spherical prism calculated in Cartesian coor-

dinates according to the method of Talwani (1965) is shown in Figure V.3.A.

The resultant anomaly corresponds well with the magnetic anomaly cal-

culated in spherical coordinates by Gauss-Legendre quadrature in Figure

V.3.B. This correspondence also holds for the exact closed form solution

for the magnetic anomaly of the prism in Cartesian coordinates given by

Andreasen and Zietz (1969) which is illustrated in Figure V.4.A.

Figure V.4.B illustrates the magnetic anomaly calculated by Gauss-

Legendre quadrature integration using the algorithm described previously

to interpolate the limits of integration from a set of points which

sample the surface envelope coordinates of an arbitrarily shaped body.

Here, the set of body points used in the algorithm comprise the longitude, 	 `b
latitude, and top and bottom radial coordinates of the prism for each

node of the observation grid that overlies the boundary or interior of

the prism. The actual interpolation was performed using the "mean slope"

cubic spline function described by Ku (1977). The excellent agreement

between Figures V.4.B and V.3.B shows that the algorithm can be used to

obtain interpolated integration limits for arbitrarily shaped bodies with

sufficient precision to insure accurate anomaly determinations.

*) 1 emu/cm = 1*4n
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Some of the versatility of potential field modeling by the Gauss-

Legendre quadrature formulation is illustrated in the next two figures.

In Figure V.5, the radial and horizontal components of the magnetic anomaly

are shown due to the spherical prism model. These anomaly components

were obtained by evaluating and summing at each observation point the

vertical and horizontal components of the point dipole anomalies

(i.e., equation (V.2)) due to the 128 equivalent point sources used in

the quadrature formula. Other geophysically interesting characteristics

of the prism's anomalous gravity and magnetic potentials can be deter-

mined in this fashion as well, including the associated geoidal anomaly,

vector anomaly components and spatial derivatives of any order.

In Figure V.6, the effect of including a remanent component in the

polarization of the prismatic model is demonstrated. The polarization

of a source represents the vector sum of its remanent magnetization

field and the inducing geomagnetic field. For the case considered

here, the effect of remanence yields a uniform polarization field

with inclination I' = 30 o and declination D' = N30 0E in contrast to

the attitude of the geomagnetic field over the observation grid which

is I = 900 and D = 00 . The anomaly for this case in Cartesian coor-

dinates according to the closed form solution given by Andreasen and	 t

Zietz (1969) is illustrated in Figure V.6.A. Comparing this result

with the spherical coordinate solution given by Gauss-Legendre quadrature

in Figure V.6.B again demonstrates good correspondence with respect to

the small spatial scale being considered.

The foregoing examples show that the formulation of the quad-

rature solution in spherical coordinates for bodies of arbi*rary

shape and physical properties gives results which reduce to well studied

solutions under relevant modeling circumstances. Accordingly, these

examples help provide useful practical incentives for implementing

potential anomaly field modeling of regional geologic sources by Gallss-

Legendre quadrature integration. Ku (1977) also presents a number of

comparisons, although in Cartesian coordinates, which further illus-

trate the excellent agreement between the quadrature formulation and

other published solutions for such idealized sources as the step model,

rectangular prism, sphere, and vertical and inclined dykes.

r.



131

TE

J E
w
LL	 I0̂

O

J o

Q u

G
Z
Q y Tit

c

Uj

0 m

V v rn

z
r

U

Q

u
J ^
Q v E

Y

0 E O
Y ^

_f	 n II

L]

c
p u

G N
m
C

_U u

Q
F-

c F
c	 F.

N

a

v

a

[a4

1

^O	 z n0 N
O

v
O
Q

Li

pp-

F

I

z
c

_
N

c cz

y Q O

D•

.•
Q

y	 „y

•

•	 •	 •	 •	 •QII	 ~ •	 • • I	 Q

m E
0

• • .O•

c

I " • 10	 •	 «^. •	 •	 •	 •	 • • •

•

0	 41

tll
7	 I •	 . •	 •	 •	 ••	 •	 •	 •	 . • N

•	 •	 •	 •	 •	 •y •O •	 •	 •	 •
b,

w . .	 m

C	 ^ ^
¢ n

p	 ^	 N
0W t^^^ t* w

O. ^	 O

°	 z
E

p
o
O ^..	 4

a'' o° 0'	 a
L ^ P	 0

O• ^
H

E
In

'-1
ro
U

4J

a
N

ro

0
W

In
r-0
In

ro

O
U

ro
E
O

V
.lq
J-I
Q1
C

ro
E

a^
L.
v
ro5
a

S01I ^
^D N
O^ .D

L
N j
y m C

•^ a
N	 n

v 6
L• 4	 i••1
m W	 .

.-1
C •p v

m Q	 11

v m

cl p a

m

7
v

V
O
O
.r

u

c

«

k	 C

S	 0
ti

( U
d

O

a

C
_m

H
dy
m
U



132

As a more regional-scale example, consider the application of Gauss-

Legendre quadrature integration for modeling gravity and magnetic anomaly

signatures at the satellite elevation of 450 km due to the crustal

thickness anomaly which is gridded in Figure M.A. This zone of enhanced

crustal thickness, extending from the Texas panhandle northeastward

into Kansas, is portrayed by seismic evidence (Warren and Healy, 1973)

as roughly 10 km of lighter crustal material displacing denser (mantle)

material to a depth of 50 km. To illustrate the gravity modeling pro-

cedure, a density contrast of -0.3 gm/cm 3 was assumed for this feature.	 j

Magnetic considerations, on the other hand, suggest that the crustal

thickness anomaly also may represent a zone of positive magnetization

contrast due to downward deflection of the Curie isotherm in the region

of thick, cooler crustal material or thicker magnetic :rust extending

into non-magnetic mantle material. 	 For the purposes of this example,

a volume susceptibility contrast of 10x10
-3
 emu/cm3 was assumed for the

i
zone of enhanced crustal thickness which is representative of the general 	 i

magnetization reported for the 	 lower crust (e.g., Hall, 1574; Shuey

et al.,	 1973).

To determine the variable limits of integration for the evaluation

of the quadrature formula, the crustal thickness anomaly was referenced

to the body point grid shown in Figure V.7.A. 	 For each Gauss-Legendre
3

node in the m-longitude coordinates of the body, the e- latitude limits

of the body were interpolated from the 6 points describing the body's

boundary.	 The radial limits, in turn, were interpolated from the 6

boundary points and 3 interior points of the body for each Gauss-

Legendre node with horizontal (0,e) -coordinates.	 For the particular

model considered here, of course, the radial coordinates of the 9 body

points used to approximate the subsurface configuration of the body

were specified to represent a uniform thickness of 10 km.

The resultant gravity anomaly at 450 km elevation due to this	 .
s

feature is illustrated in Figure V.7.B. 	 The gravity effect was cal-

' culated by evaluating an nk*nj*ni - 16*16 *2 - 512 point Gauss-Legendre 	 y
F
' quadrature formula over the (41,41) grid of observations. 	 The magnetic

effect of the crustal thickness anomaly also was computed in this manner
r

at 450 km elevation.	 The resultant total magnetic intensity anomaly in

the IGRF-1965 updated to 1968 is demonstrated in Figure V.S.A. 	 To

remove anomaly distortion due to regional variability of the
a

i
3r
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reference field, the magnetic effect was canputed next assuming a

uniform polarising field intensity of 60,000 gamma and radial geo-

magnetic field inclination at both source and observation points.

Accordingly, Figure V.8.B illustrates the resultant magnetic anosualy

field reduced to radial polarisation at 450 km elevation for the

crustal thickness model.

Finally, Ku (1977) noted that for accurate implementation of the

method the distance between the equivalent source points and the obser-

vation point must be greater than the equivalent source point spacing

within the bode. This limitation can be minimised in practice by either 	 -

subdividing the body into an appropriate number of smaller bodies,

or increasing the number of equivalent point sources, or increasing

the distance between the observation point and the body. The latter

consideration suggests that the Gauss-Legendre quadrature formulation

is especially well suited for modeling satellite level gravity and

magnetic anomalies because of the large elevations involved with these

measurements.

The principle is demonstrated in Figure V.9 where the gravity

anomaly and total magnetic intensity anomaly due to the crustal thick-

ness model are computed at 450 km elevation using an nk*nj*ni - 4*4*2

32 point quadrature formula rather than the 512 point formula. The

comparison of the mean gravity anomaly amplitudes of Figures V.7.9 and

9.A shows accordingly that a 93.75% reduction in the number of equi-

valent point sources results in only a 1.67% reduction in the relative

precision of the gravity anomaly calculation. A slightly smaller

reduction of 1.37% is evident for the relative precision of the magnetic

anomaly calculations illustrated in Figures V.B.A and 9.B.

E. Conclusions

Regional gravity and magnetic anomaly modeling for arbitrarily

shaped lithospheric sources with variable physical properties can be

achieved accurately and efficiently in spherical coordinates using

Gauss-Legendre quadrature integration. The procedure involves repre-

sentation of the anomalous source as a distribution of equivalent point

gravity poles or point magnetic dipoles which contribute incremental
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anomaly values that are evaluated and summed at each observation point

to obtain the total anomaly. The distribution of equivalent point

sources is determined dirzztly from the volume limits of the anomalous

body. For an arbitrarily shaped body, the variable limits of inte-

gration can be obtained from interpolations performed on a set of

body points which approximate the surface envelope of the anomalous

source.

-

	

	 A chief practical advantage of the method is its considerable

versatility. The physical properties of the e quivalent point sources,

for example, can be individually varied to reflect physical property

variations of the body that is being modeled. The method also can be

extended readily to model the geoidal anomaly, vector components, and

spatial derivatives to any order of the body's anomalous gravitational

and magnetic potentials. Finally, the accuracy of the method can be

controlled by adjusting the number of equivalent point sources or

the distance between the source and observation point. In this regard,

the method is particularly well suited for satellite gravity and

magnetic anomaly modeling because the efficiency and accuracy of the

application increases with increasing distance between source and

observation points.

In consideration of the foregoing results, it is concluded that

Gauss-Legendre quadrature integration facilitates a powerful and

efficient approach to spherical earth modeling of regional-scale litho-

spheric gravity and magnetic anomaly sources. Accordingly, the method

has widespread application in the analysis and design, of regional-scale

gravity and magnetic surveys for lithospheric investigation.
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VI. GRAVITY AND MAGNETIC ANOMALY MODELING OF MISSISSIPPI
EMBAYMENT CRUSTAL STRUCTURE AT SATELLITE ELEVATIONS

A. Lostract

A model for the three-dimensional crustal structure of the northern

Mississippi Embayment is generalized from published surface wave disper-

sion, seismic refraction, and gravity studies of the region. The gravity

and magnetic anomaly signatures due to this model are computed at 450 km

elevation by Gauss-Legendre quadrature integration for comparison with

observed anomalies at satellite elevations. The computed positive gravity

anomaly compares well with upward continued free-air gravity data sug-

gesting that the generalized model is representative of the crustal

structure of the Embayment. Magnetic anomaly calculations show that the

pronounced minimum observed over the Embayment in the POGO satellite 	 (

magnetometer data can be accounted for by a decrease in the magnetization
	 9

of the lower crust which corresponds to the major gravity source of the

region. The results of this investigation support the failed-rift

hypothesis for the origin of the Mississippi Embayment. Accordingly,

these results suggest that observable gravity and magnetic anomalies

characterize failed rifts (aulacogens) at satellite elevations, where

the primary source of both anomalies is a high density rift component

of non-magnetic lower crustal material.

B. Introduction

Satellite-level magnetic and gravity anomaly interpretational methods

largely have been limited to visual spatial correlation of anomalies

with known geological features and simple flat earth modeling approxi-

mations. However, the full importance of satellite-level anomalies,

which map the anomalies of large scale geologic features that are difficult
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to recognize and isolate in low-level data, will not be achieved until

direct modeling of large-scale structural features is accomplished

utilizing the spherical earth condition. Modeling of geologic features

incorporating available geologic and geophysical data as constraints

can be employed as an interpretive technique by altering tt. ,e model until

the computed anomalies match the observed anomalies. Furthermore,

spectral analysis of the calculated satellite-level magnetic and gravity

anomalies of geologic models provides critical information for designing

filters to isolate the observed anomalies of these features.

In the previous discussion a technique was described and demon-

strated for numerically modeling potential field characteristics due to

regional-scale geologic sources by Gauss-Legendre quadrature integration.

Herein, the method is used to obtain a preliminary view of the gravity

and magnetic anomaly characteristics for the Mississippi Embayment at

450 km elevation. This information, in turn, is pertinent to evaluating

the feasibility of using satellite gravity and magnetic surveys for

detecting anomaly signatures due to failed rifts. The Mississippi Embay-
ment is particularly suited for this application because a number of

geophysical constraints are available for developing a first-order model

of its crustal structure.

C. Model Description

The Mississippi Embayment represents a broad, spoon-shaped reentrant

of Mesozoic and Cenozoic sedimentary rocks which extends into the

Paleozoic terrane of the North American craton from the south. As

shown in Figure VIA, the axis of this feature roughly parallels the

Mississippi River tapering northward into the tectonically active region

of the New Madrid seismic zone.

Based on the regional geology, Burke and Dewey (1973) suggested

the embayment is a Mesozoic aulacogen developed from a triple junction

located in the vicinity of Jackson, Mississippi. However, an integrated
analysis of gravity, seismic, stratigraphic and petrologic data by

Ervin and McGinnis (1975) suggests the embayment is a late Precambrian

aulacogen which was reactivated most recently in the late Cretaceous by

tensional forces initiated during the formation of the present Atlantic

ocean basin by subsidence of the Gulf Coastal Plain.
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studied by McCamy and Meyer (1966), and S is the surface
wave propagation path studied by Austin and Keller (1979).
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in Figure VI.2.0 for this study also is indicated.
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Figure VI.2.A is a cross-section of the density structure of the

Mississippi E=.iyment given by Ervin and McGinnis (1975) along a profile

between Yellville, Arkansas and Scottsboro, Alabama (hereafter called

Y-•S profile). This density model was synthesized from regional gravity

data derived from the D.S. Bouguer gravity anomaly map of Woollard and

Joesting (1964) and the results of a reversed seismic refraction profile

between Little Rock, Arkansas and Cape Girardeau, Missouri as described

by McCamy and Meyer (1966). Austin and Keller (1979) integrated the work

of McCamy and Meyer (1966) with an analysis of Rayleigh wave dispersion

•	 along a propagation path between Oxford, Mississippi and Florissant,

Missouri to obtain a similar density model for the Y-S profile which is

illustrated in Figure VI.2.B. An index map for locating these various

studies is given in Figure VI.1. In general, the crustal cross-sections

shown. in Figures VI.2.A and B support the failed-rift model for the origin

of the Mississippi Embayment.

The agreement of surface wave, seismic refraction, and gravity data

in the region of the Enb-ayment suggests that the crustal cross-section

given in Figure VI.2.B can be useful for developing a reasonably valid

three-dimensional model of the I_'mbayment. Accordingly, the crustal

cross-section that was generalized from Figure VI.2.B for the purposes

r	 of thin study is given as the 4-body model shown in Figure VI.2.C. The

gravity analysis due to Cordell (1977) was used to project the charac-

teristics of this generalized czusta.l cross-section north and south of

P

	 the Y-S profile.

Cordell (1977) corrected the smoothed positive Bouguer anomaly of
T 

the Embayment for the low-density sediments and observed the long con-

tinuous positive anomaly with an amplitude of 15 to 45 mgal increasing

southward that is illustrated in Figure VI.2.D. The axis of this anomaly

a •	 follows closely the Mississippi Ricer northward beyond its confluence

with the Ohiu River into southern Illinois. The anomaly exhibits fairly

uniform behavior south of the Y-S profile until about 33
0
N where it

increases sharply, thus, suggesting that the crustal cross-section may

be uniformly projected southward along the Mississippi River to approxi-

mately 330N. Northward decreasing gravity anomaly values in conjunction
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with the northward tapering surface configuration of the Embayment

suggest a commensurate northward tapering projection of the crustal

cross-section along the Mississippi River into southern Illinois.

Hence, to obtain the first-order, three-dimensional generalization

of the crustal structure of the Embayment used in this investigation,

the crustal cross-section of Figure VI.2.0 was projected uniformly

south of the Y-S profile and tapered uniformly northward as indicated

in Figure VI.1. The northern ends of the 4 bodies of this generalized

model as projected onto the cross-section along the Y-S profile are

given by the shaded regions of Figure VI.2.C.

To compute the potential field anomalies at 450 lam elevation,

each of the 4 bodies of this generalized model was represented by a

Gauss-Legendre quadrature formula consisting of 128 equivalent point

sources. The latitude and longitude limits of each body were repre-

sented each by 8 point sources and the radial limits by 2 point sources.

Pertinent body volume limits were interpolated from a set of body

points that sampled the coordinates of the surface envelope for each

body. The quadrature formulae were next evaluated and summed over a

(21,13) observation grid spanning the region (260-280) 0E, (33-45)oN

and compared to observed gravity and magnetic anomaly data at 450 km

elevation.

D. Results and Discussion

Free-air gravity anomaly values upward continued from the surface

of the earth to an elevation (Z) of 450 km by equivalent point source

inversion are illustrated for the study area in the stereographic

equal-area polar (SEAP) projection in Figure VI.3.A. The amplitude

range (AR) of the data set is between 1.9 and -7.4 mgal and the amplitude

mean (AM) is -3.6 mgal. These data exhibit a pronounced relative

positive anomaly with slightly greater than 3 mgal of relative

amplitude in the region of the Embayment. The gravity effect (Figure

VI.3.B) of the generalized 4-body model described above is roughly a

4 mgal anomaly that, in general, corresponds to the observed

data. The general degree of this correspondence for profiles along 35ON

and 370N is illustrated in Figures VIA and 5, respectively. Here,
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the profile peaks of the modeled gravity anomaly have boen adjusted

to the respective peak values of the observed profiles over the

Embayment model to facilitate the comparison.

A study of the profile comparisons shows increasing disparity

between the modeled and observed data along the anomaly flanks away

from the model. This may reflect contributions to the observed data

from sources outside the study area that have not been modeled. None- 	 •

theless, the general agreement between the modeled and observed data

over the Embayment suggests that the observed gravity anomaly can be

accounted for reasonably well at 450 km elevation by the 4-body model

generalized in the previous section.

POGO satellite magnetometer observations reduced to radial polari-

zation using a normalization amplitude of 60,000 gamma by equivalent

point source inversion are given for the study area in Figure VI.3.C.

These data show a prominent east-west magnetic high that is breached

in the vicinity of the Embayment by a magnetic low. Inverse correla-

tions of positive gravity and negative magnetic anomalies that char-

acterize the Embayment also have been observed at satellite elevations

for features such as the Yellowstone geothermal area where it is proposed

that the net negative magnetization may be due to upward deflection of

the Curie isotherm (von Frese at al., 1979). In this regard, Mitchell

et al., (1977) using travel time residuals of teleseismic P-waves

also have speculated that the New Madrid seismic zone may be underlain

by a mantle hot spot such as suggested for the Yellowstone region.

To better resolve the characteristics of the magnetic anomaly for

the Embayment region, the radially polarized data were high-pass

filtered for anomaly wavelengths smaller than about 10 0 . The high-

pass filtered data are illustrated in Figure VI.3.D and show a negative

anomaly of roughly -3 gamma over the Embayment. Wasilewski et al., (1979)

found that all of the information from analysis of medium to long-

wavelength magnetic anomalies indicates that the sources probably are

contained in the lower crust which, in general, may be substantially

more magnetic than the upper crust. Typical estimates of deep crustal

magnetization are on the order of 5x10
-3
 emu/cm3 (e.g., Hall, 1974;
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Shuey It al., 1973). Wasilewski st al., (1979) propose that conditions

for coherent regional magnetization are enhanced as crustal depth

increases. Remanence and thermal overprints are diminished, and

viscous magnetization and initial susceptibility are enhanced with

increasing temperature especially within 100 OC-1560C of the Curie point.

The thickness of the crust within this thermal regime of the Curie

•	 point may be 5 to 20 km depending on the steepness of the geothermal

gradient. Accordingly, they suggest that deep crustal magnetic sources

probably are related to lateral variations of petrologic factors or

Curie isotherm topography.

Consideration of the foregoing remarks indicates that the most

obvious deep crustal source for the observed magnetic anomaly is body

M2 which also represents the major gravity source of the Embayment

model. Austin and Keller (1979) propose that the combination of

bodies N1 and M2 was formed as a manifestation of a mantle upwarp

beneath the Embayment comprising of a mixture of crust and upper

mantle material that cooled subsequently to form a block of high

density material. Magnetic hypotheses which are consistent with this

view include body 112 as a zone of negative magnetization contrast with

respect to the lower crust due to depletion of magnetic minerals.

Negative magnetization for body N2 also can result from temperatures

which exceed the Curie point, although present heat flow data (Sass

t
	 et al., 1976) do not appear to warrant this hypothesis for the Embayment.

Body 113 may represent an additional magnetic source for the Embay-

ment assuming crustal magnetization increases with depth. However,

the positive magnetic contribution of body N3 will be relatively weak

if the Curie isotherm depth i q about 40 km or more. Arguments for

including bodies N1 and 114 in a magnetic model of the Embayment appear

to be lacking, so that body N2 probably represents the primary source

for the observed magnetic anomaly data if the Curie isotherm is at

•	 about 40 km of depth in the region of the Embayment.

Accordingly, the magnetic anomaly due to body 02 was calculated in

Figure VI.3.E using a magnetization contrast of -2.4x10 3 emu/cm3 . These

results show that the anomaly amplitude observed for the region of the
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the Embayment at 450 km elevation can be well matched by a source Such

as body #2 located near the base of the crust with magnetic properties

which correspond with the magnetization characteristics anticipated for

the lower crust. Hence, body #2 as determined for gravity modeling

considerations represents at least a preliminary magnetic model for

the Embayment

Substantial differences are apparent, however, between the spatial

characteristics of the observed and mc,aeled magnetic anomalies. Pro-

'	 file comparisons between Figures VI.3.D and 3.E along 35 0N and 370N

are given in Figures VI.S and 7, respectively, which illustrate

this disparity. Here again, the modeled profile peaks are adjusted to

the observed anomaly peaks over the Embayment model to facilitate com-

parison. In general, these comparisons indicate that body #2 is mag-

netically more extensive to the north and more restricted in longitude

than it is gravitationally, although care must be taken with this inter-

pretation because the observed data obviously contain the magnetic

effects from sources outside the Embayment. Further refinements of

the magnetic model are necessary and will'be particularly warranted

when the data are available from the current Magsat program (Langel,

1979) to verify and further upgrade the POGO satellite magnetic anomalies

for lithospheric applications.

E. Conclusions

A preliminary three-dimensional model of crustal structure for

the Mississippi Embayment was generalized from analyses of surface

wave dispersion (Austin and Keller, 1979), seismic refraction data

(McCamy and Meyer, 1966) and gravity data (Ervin and McGinnis, 1975;

Cordell, 1977). The agreement between the gravity anomaly calculated

s
	 for the 4-body model and the gravity data observed at 450 km elevation

suggests that this model represents a reasonably valid generalization

Y	
of the crustal density structure of the Embayment. The magnetic anomaly

calculations show that the magnetic data observed at 450 km elevation

0
	 can be modeled by a non-magnetic portion of the lower crust located

'c
	 along the axis of the Embayment that also corresponds to the major

gravity source of the region. These results are consistent with the

failed-rift hypothesis for the origin of the Mississippi Embayment.
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This investigation further indicates that an aulacogen may be

characterized at satellite elevations by observable positive gra.3.ty

and negative magnetic anomalies. The primary source of both anomalies

is the portion of the rift that defines a lateral variation in the

physical properties of the lower crust. Finally, these results

demonstrate the basic difficuli.y of separating pertinent anomalies

at satellite elevations which perhaps is a major limitation to

interpretation of satellite observed gravity and magnetic anomaly data.

However, the application of the modeling capacity demonstrated in

this investigation will help to alleviate this problem.
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VII. SUMMARY AND CONCLUSIONS

Artificial, earth-orbiting satellites are making increasingly

available consistent, regional-scale gravity and magnetic anomaly data

which are largely free from the effects of near-surface geologic sources

•	 that otherwise tend to distort the signatures of deep, broad litho-

spheric variations. Accordingly, satellite potential field obser-

vations facilitate a unique characterization of the attributes of

geologically significant regions measured in hundreds or even thou-

sands of kilometers. These zones identified and characterized on a

global basis can provide useful information for deciphering earth

history including paleo and contemporary geodynamics, delineation of

segments of the lithosphere into resource provinces, and for numerical

modeling of lithospheric processes.

To realize this promise, however, procedures are required to

accurately and efficiently analyze potential field anomalies for

lithospheric information directly in spherical coordinates. As demon-

strated by this investigation, an especially powerful and efficient

approach to generalized spherical earth processing of satellite potential

field observations is to relate the gravity or magnetic anomalies to

spherical distributions of equivalent point sources by methods of least

squares matrix inversion. Linear transformations of the resultant

equivalent source field permit generalized processing of the potential

field anomalies in the spherical domain that is analogous to conven-

e	tional geophysical processing methods routinely employed in the

Cartesian plane.

For example, spherical earth processing of gravity anomalies by

equivalent point source inversion can yield corresponding geoidal

deflections, vector anomaly components, anomaly continuations and

differentiations at any point in source-free space. Similar elements

for magnetic anomalies can be obtained in the spherical domain by

equivalent point source inversion as well. In addition, equivalent

S'

y
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point source inversion can be used to differentially reduce regional
r

magnetic anomalies to the radial polo. In general, the precision of

these generalized spherical earth processing procedures is equivalent

to the accuracy of the least squares fit achieved by the matrix inver-

sion between the equivalent source field and the observed anomalies.

Equivalent point source inversion was used to investigate regional

correlations of surface free-air gravity and POGO satellite magnetic
1

anomalies and regional heat flow and tectonic data for North America 	
a

a
and adjacent marine areas. The combined analysis of these different

classes of geophysical data is useful for improving the quality and

uniqueness of their geologic interpretation, particularly in consid-

eration of the general absence of regional ground-truth information. i

The qualitative analysis by visual spatial correlation indicates 	 j

that regional gravity anomalies reflect the prevailing structural trends

of both oceanic and continental terranes. When upward continued to

450 km elevation, the gravity anomalies show strikingly direct cor-

respondences to the regional heat flow pattern, whereas magnetic

anomalies demonstrate limited correlation.

Over continental terrane gravity and magnetic anomalies exhibit

basically an inverse correlation at satellite elevations. One type

of inverse correspondence is exemplified by the transcontinental mag-

netic maxima and gravity minima that span the midcontinental region

between the Anadarko Basin and Cincinnati Arch. Seismic evidence shows

this region is characterized by enhanced crustal thickness, thus,

suggesting that the regional combination of negative gravity and positive

magnetic anomalies may reflect displacement of denser and less magnetic

mantle material by an anomalously thick crust.
t

The second type of inverse correlation is typified by the magnetic

minimum and gravity maximum observed for the Yellowstone geothermal

region. Here the regional inverse correspondence of positive gravity

and negative magnetic anomalies may be related to increased heat flow

which is likely to produce a region of relative net negative magnetization

by deflecting the Curie isotherm to a shallower depth, as well as a

thinned crust and inflated elevation that may not be isostatically com-

pensated.

6k _.
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A more quantitative investigation of these regional correlations

was developed utilizing Poisson's theorem in a moving-window linear

regression analysis performed between suitable derivatives of the

anomalous gravity and magnetic potentials at satellite elevations.

These results are useful for establishing patterns of anomaly cor-

relation and provide initial physical property constraints to facilitate

further investigation of correlating anomalies.

.	 Over continental terrane, for example, the previously described

inverse correlation of regional gravity and magnetic anomalies is well

delineated by the regional patterns of the statistical correlation

•	 coefficients derived from the moving-window Poisson's analysis. In

addition, these results indicate surprisingly large magnetizations

1.8x10 2 emu/cm 3 ) for the transcontinental magnetic sources.

Over the oceans, regional correlations of gravity and magnetic

anomalies appear limited and poorly developed. The results of the moving-

window Poisson's analysis suggest this observation may reflect decreased

magnetic polarization of the oceanic crust relative to continental

crust due to the influence of temperature and time on the remanent

moments of crustal extrusive rocks. Statistically, however, oceanic

regions are characterized primarily by direct regional anomaly correla-

tions. This correspondence perhaps is best exemplified by the higher

order gravity and magnetic anomaly derivatives of the Caribbean, eastern

Gulf of Mexico and Atlantic Ocean.

In general, the broad conclusions suggested by the correlation

analyses developed during the course of this investigation indicate

that long-wavelength magnetic anomalies as mapped by the POGO and more

recently the Aagsat programs provide a valuable complementary data set

to gravity and other classes of geophysical data for investigating the

megatectonic features of continents and oceans.

The capacity to directly model potential field anomalies observed

in spherical coordinates was investigated as an essential element to

complement the spherical earth processing and correlation procedures

described above. Accordingly, a technique was developed and demon-

strated which employs Gauss-Legendre quadrature integration to numer-

ically model gravity and magnetic anomaly potentials and their derivatives

in the spherical domain due to arbitrarily shaped geological bodies

11 with arbitrary physical properties.
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The modeling procedure involves representing the anomalous body

by a distribution of equivalent point sources which is determined

directly from the volume limits of the body. 	 Calculating and summing

at each observation point the effects of the equivalent point sources

located at these selected coordinates within the body's volume gives

an accurate estimate for the potential field anomaly of the arbitrary

body.	 The method is especially well suited for satellite gravity and

magnetic anomaly modeling because the efficiency and accuracy of the

application increases with increasing distance between source and

observation points.

The Gauss-Legendre quadrature modeling procedure was used to

investigate a 4-body model of northern Mississippi Embayment crustal

structure that was generalized from analyses of surface wave disper-

sion, seismic refraction and surface Bouguer gravity anomaly data.
t

The modeled gravity anomaly signature compares favorably to the

relative positive free-air gravity anomalies upward continued to 450 km

E elevation, thus, suggesting that the 4-body model is a geologically
a

reasonable representation of the density structure of the Embayment.

Magnetic modeling shows that the pronounce minimum observed in

the POGO satellite magnetic anomaly data differentially reduced to

radial polarization can be accounted for by a block of non-magnetic

material located at the base of the crust along the axis of the Embay-

ment.	 This particular block of lower crust also corresponds to the

primary gravity source for the region according to the gravity modeling

considerations.

The results of the modeling application are consistent with the

failed-rift (aulac vgen) hypothesis for the origin of the Mississippi

Embayment.	 More generally, these results suggest that an aulacogen

may be characterized at satellite elevations by observable positive

gravity and negative magnetic anomalies, due principally to the rift

component which defines a non-magnetic block of high-density material

within the lower crust.

In contrast to the widespread use of potential field anomalies

referenced in the Cartesian plane for geologic analysis, there has

been in the past a general inability to routinely analyze gravity
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and magnetic anomalies in spherical coordinates for subsurface infor-

mation that has limited the utility of satellite potential field obser-

vations in lithospheric studies. During the course of this investiga-

tion, however, procedures have been developed and verified for generalized

processing, correlation analysis and modeling of potential field

anomalies in the spherical domain that are analogous to the essential

geophysical methods of interpretation commonly employed in conventional

flat earth applications.

0	 In general, then, these spherical earth techniques can be used to

•	 routinely perform on spherically registered potential field anomalies

nearly any type of geophysical analysis that finds widespread use in

the flat earth domain. Accordingly, it is concluded that the ultimate
F

utility of satellite potential field observations for lithospheric

analysis now is basically a technological question of how accurately

lithospheric potential field signals can be measured and reduced by

satellite programs. Clearly, the results and procedures of this inves-

tigation can play a significant role in helping to resolve this survey

design problem.

In summation, the results and procedures developed during the

course of this investigation have been shown to represent a powerfui

and efficient approach to the geological analysis of gravity and magnetic

anomalies in the spherical domain. Accordingly, it is concluded that

the methods and results of this study have widespread application in

the analysis and design of regional-scale gravity and magnetic surveys

for lithospheric investigation.
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