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John K. Park? Yung H. Chen, Daryl B. Simons,
and Lee D. Miller4

Introduction

Many diverse techniques have been devised to discover structure within complex
bodies of data by unsupervised fashion, i.e., cluster analysis (B-Ll, 1965;
Cormack, 1971; Anderberg, 1973; Duran et al., 1974; Everitt, 1974). The tech-
niques attempt to group data points, usually in a multidimensional space, into
cluster such that all points within a cluster possess intrinsic similarity
relatively distinct from the others.

Hence, application of the techniques to the data often reveals unexpected
characteristics inhibited in the data structure. But it has often suffered
from lack of adequate mathematical description. and either too many subopti-
mal solutions, or requirements: of astronomical enumerations, in the course of
searching for the optimal solution.

The objective of this paper was to present an approach for extraction of
Gaussian clusters using discrete probability density estimates as the first
step for an iterative unsupervised classification. The approach is based on
the presumpti	 that there are parts of the feature space in which data popu-
lations are - y dense, separated by parts of low density. An attempt was
made to devil, a method suitable for processing a moderate volume of multi-
variate measurements, such as satellite multispectral scanner (MSS) data.

Parameterization for Clustering Function

Clustering is often the first step in analyzing a set of data whose character-
istics have not yet been revealed. It is common to begin with the assumption
of normal distribution if no knowledge about the data structure is available.
Tn multivariate mixture distribution, the normality means multimodal Gaussian
distribution in multidimensional space. Data surrounding each mode can be
interpreted as a cluster. A group of data representing a real class may con-
sist of two or more unimodal clusters and have multimodal distribution. Such
data are divided into two or more subgroups so that the unimodal distribution
can be applied to each subgroup.

1. This paper was presented at the joint Soil and Machine Processing of
Remotely Sensed Data Symposia, Purdue University, West Lafayette, Indiana,
June 3-6, 1980.

2. Earth Survey Applications ^ivision, National Aeronautics and Space Admin-
istration/Goddard Space Flight Center (NASA/GSFC) Greenbelt, Maryland.

3. Colorado State University, Fort Collins, Colorado.
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Under the assumption of unimodal normality in a cluster, the probability
density function is given by (Duds and Hart, 1973)

P i (x) -
	 Pi	 - 2(x-P-D'r Ci- 1 (x -ui)	 (1)

(2Tr)d/2ICj 2 
a

where	 Pi	 a priori probability of cluster i (w i)

C i 	d-by-d covariance matrix of cluster i

C ` -1	 - inverse of the covariance matrix C 

X	 = pattern (d-component column) vector

Pi	 = mean vector of patterns of cluster i

( ) 1	= tranpose of a matrix

d	 = dimension of feature space (integer)

e	 = base of natural logarithm.

This is the multivariate normal distribution function for the cluster called
.'w i ". The clustering process is carried out by finding all sets of cluster
parameters: mean vector Li , covariance matrix C and a priori probability P
for all the clusters. !Iora given set of N measurements, X = {x )n-N, the i
multivariate mixture probability p(x) may be estimated and then -postulated as
the sum of all the cluster probabilities pi(x):

P(X) - E P1(?0	 (2)
all i

It may be computed from discrete measurement data by

P(x)

	

	 sum of population in a volume e lement AV (or cell) (3)
total population (N)

This is the probability density of the mixture of all probable clusters.
Decomposition of the mixture probability into a set of subgroups having unimodal
distribution is the task of the clustering process. It is intuitive to divide
the region into two parts by the boundary where

p i (x) = p 	 i	 1	 (4)
r

y
_4
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t hen,

G i (x) = kn P (X) 
> 0.

Pi(x)

(q.e.d.)
r

^R

i

Furthermore, it is likely to declare that x belongs to the cluster i (i.e.,
xew i ) if

pi(x) > pj (x) for all j 0 1	 (5)

and, otherwise, x does not belong to the cluster i (i.e., x e w i). This is
the maximum likelihood classification or decision rule (Duda et al., 1975).
The region R i is defined by the subspace where the inequality (Eq. 5) is satis-
fied. This intuition will be exploited to extract a cluster from the data
set b7 a clustering function propcsed as

p 
Gi(x) - kn pi(x)

where kn denotes natural logarithm.

The usefulness of the clustering function for the maximum likelihood decision
rule may be seen in the following properties:

1. G i (x) - 0 for the distribution of a single (unmixed) class,	 (7)

2. G i (x) >— 0 for any mixture distribution of two or more different
clusters,	 (8)

3. For a two-cluster mixture distribution,

a. G 1 (x)	 G2(x)	 kn2 on the boundary between the clusters,	 (9)

b. G i (xER i) < kn2 1-1 ,
2.

(10)
	G i lxfR i) > on2	 '

PROOF:

1. It is evident by the definition since p(x)=p i (x) for the single class
data,

2. P(x) =E pi (x) a p i (x) .

all j

(6)

3a. On the boundary between the two clusters,

P1. (X) = P2(X) = P1(X)-

Gi (x) = kn PI (x) 
+ P2(x) = kn 2p i(x) = kn2 for i=1,2.

P i (x)	 Pi(x)

3
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That is,

C 1 (x) - C 2 (x) - Rn2.

3b. Let i ¢ J. And the maximum likelihood decision rule shows

p i (xER i ) > pi(xERi).

Therefore,
pi(xERi) + pi (Y:ERi)

G i (xER i l = 211

(1	
pi(xERi)

pi (xERi)

Zn 1 + pi(xERi)	 (11)

< JZn 2 .

Similarly, for the two -cluster mixture

p ;(x^R i ) = p l (xER ) < p^(xFR^) = p)(x&R.

p j (xORi)

Ci (xf R i ) = Zn 1 +- P (x¢R )P i	 i

> kn2•	 (q.e.d.)

The last property of the clustering function suggests that a feature space R
can be divided into two regions: 1) a region belonging to cluster i and
2) another out of the region, in the case of two -cluster mixture, as such
x E w  (cluster i) if

and otherwise, x ^ w i . This criterion will be utilized in this study for the
extractec • of one-cluster data from the whole set of data. It requires only
:nowledg%: of a set of the parameters for a single cluster each time. Elements
of a prosGective cluster can be extracted from the set of data without knowing
characteristics of the other clusters based on this criterion. This fact is
the beauty of the clustering function Gi(x).

Hill-Slidin g Strategy

The clustering function, however, cannot be evaluated unless the set of cluster
characteristic parameters are estimated. The first problem in clustering is
to find good initial estimates of the parameters employed in most cases. It is
intuitively viewed that a cluster has a mode, which has the highest probability

W_

4



density in the cluster. The location of a cluster mode depends on the charac-
teristics of distribution type or governing law of the distribution, but it is
usually observed near the gravitational center (centroid) of the cluster
(Fig. 1) .

Suppose this presumption is acceptable in a set of data to be analyzed. Then
at least one candidate mode which has the highest probability density can be
picked up. Such a mode initiates the first clustering by fusing all proba-
bility cell points that may be categorized into one cluster.

A major problem faced in clustering is that the types of data distribution are
generally not known in advance; thus each cluster may have a different char-
acteristic shape In its distribution. Due to the absence of prior knowledge
on characteristics of expected clusters, each cluster was initiated with the
assumption of isotropic normal distribution, at least in the immediate neigh-
borhood of a mode candidate. The group of data initially coalesced into a
cluster reflects the distribution characteristics of the forming cluster in
some degree since the theoretical shape of its probability contour surface
maintains near the mode as well as throughout the region Df a cluster. Dis-
tortion of its shape may be observed usually in the regions of its tails or
valleys where distributions are affected by neighbor clusters. A simple
guclidean distance measure between measurement points can be used in cluster-
ing data near an apparent centroid without introducing large trial errors.
The question is where to terminate the fusing process to avoid picking up
data points probably originated from different clusters. The values of param-
eters for termination of ihitial fusion process are threshold values of
clustering.

One of the threshold parameters id derived in d-variate space. A differential
volume AV(r) at radius r from a cluster center is defined by

AV(r) a rd-1 Ar	 (13)

where Ar is a small segment of the radius r and symbol - denotes the propor-
tionality. This differential volume can be viewed as a hyper-shell (called
simply shell hereafter) enclosed by two concentric hyperspherical surfaces
(Fig. 2). A series of concentric shells around a mode are drawn with in-
creasing r by Ar. The number of cluster elements, AN(r 2 ), in a shell is
proportional to the volume of the shell multiplied by average population
density in the shell:

r2

AV(r)
2Q2

AN(r 2 ) a exp (14)

The exponential term in Eq. 14 is that of an isotropic normal distribution with
standard deviation a. This relation can be rearranged by employing squared
radius r 2 as

AN	 - expr2	 (15)

r	 ;1r
d-2 2	

- 2Q 
1)

"
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Fig. 1. Bivariate Population Distribution of 400 Landsat Data
and the First Three Most Probable Candidates for Modes
of Clusters ( in circles). These typical example data
were taken from the Landsat data giver a portion of
Korean west coast (Park and Miller, 1978). The num-
bers are occurrences of bivariate data in each block
formed by both discrete MSS bands 6 and 7 data. Visu-
ally, three clusters and their probable mode positions
were distinguished without difficulty.

Example Shell Volumes:

AV4 , 4 I OA  cc r 2Ar2

AV.. ,, r2Ar cc rAr2

AV2 _ a ac r Ar ac Ore

AVI _ a ac Ar ac Are/r

Fig. 2. A Differential Volume (liyperspherical
Shell) in Three-Dimensional Space. Ex-
ample formulas are given for one- through
four-dimensional shells. Subscript i-d
denotes i-dimension.
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where the term in the left-hand side is ageneralized mean population density
in a shell at distance r. The parameter a is the variance in the population
distribution. The right -hand side of this relationship is a monotonically de-
creasing function with increasing r 2 (Fig. 3).

Plots of Xn A r 2 vs. r 2 may reveal a family of straight linesr

1

having the slope of -	 (Fig. 3b). A group of date. can be considered as
2Q2

originating from t:te same class if the estimates of shell population densities
fall near a straight line. The slope of shell population data will remain
fairly constant near the center of a cluster, but may change significantly
when populations of other clusters enter into the shell. The squared radius
at which the first significant change of the slope is detected is the threshold
value ( rt)  for initiation of clustering. Such a change occurs when the se-
quential searching point attempts to cross a valley and then to climb a hill
consisting of other cluster data (Fig. 4).

There are several possibilities which may introduce elope changes in the caba
of anistropic distribution of the data. A plot of two-dimensional population
distribution will be utilized to visualize some of these causes (Fig. 4). One
of them is the case where a cluster is well separated from the others even
though the isotropic assumption is employed and the threshold value covers
nearly the whole region where most of cluster data are located ( for example,
cluster A in Fig. 4). Another case is when the group of one-cluster data are
closely neighbored with the others (for exatcple, cluster B in Fig. 4). Con-
siderable overlaps between clusters may exist in this case.

The threshold value r t was given by the largest value of r 2 satisfying that

0(r2 ) < Min ( 6c , 0)	 (16)

where

1

0(r2 ) = -
2a2

_ 2̂ 

Zn Ird-2
A Art	

(17)

0
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e_.f.=.

r _:e lnrr^1

Lr4"Ar=JN _^rd"=arl
^ w .

(a)
	

(b)

Fig. 3. A Curve of Eq. 15 and Data of a Hypothetical Two-
Cluster Mixture. Data of a unimodal isotropic
distribution yields an exponential curve shown in
(a). Discrete data of a two-cluster mixture may
produce a plot shown in (b), where two straight lines
are a3proximate moving averages of two parts divided
by r t . The first straight line represents the popu-
lation distribution of the first cluster with the
parameter o 1 2 . rt2 will be used as a threshold value
for the cluster.

.,

Fig. 4. Contours of a Mixture Probability
Density Function (or Population Dis-
tribution) in a Two-Dimensional Feature
Space. The mixture p.d.f. consists of
three unimodal p.d.f.'s. A, B and C
points are the modes of the clusters.
rtA or rtB may be one of the threshold
values estimated by the method shown
in Fig. 3 (b). They are interpreted
as the shortest Euclidean distance to
a valley, which is the natural boundary
between the cluster and its neighbor
one.
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ec-9+feSo

and

ec - updated critical slope up to the previous estimate

A - updated average slope of all previous estimates

fe - positive empirical constant (about 2)

Se - updated standard deviation of e.

The first criterion (e<ec) given in Eq. 16 prevents other cluster cells from
merging into the cluster under formation. The second criterion ( 0<0) dis-
tinguishes the cluster cells from the others which may cause violation of the
normal distribution laws when they merge into the clusters. Values of the
slope parameter must be less than zero for normally distributed data. Once
the threshold value is found, a nc-,! initial cluster is formed by fusing cells
closer than the distance corresponding to the threshold value. This initial
cluster leads to computation of a set of parameters which will characterize
the early stage of the cluster.

Updating the Initial Cluster

A group of data immediately surrounding (i.e., within the threshold value rt
from) a mode candidate formed an initial cluster under the assumption of the
isotropic normal distribution. The parameters estimated for this initial
cluster reflects to a certain degree the distribution characteristics even at
its early stage, since the shape of its probability contour is retained through-
out all the region of a cluster. Hence, the isotropic assumption is no further
needed when the clustering function given by Eq. 6 is evaluated.

To compute the clustering function, the a priori probability of the cluster
should be known as well as the other parameters. It is one of the uncertain
parameters especially at this very initial step. The a priori probability of
a cluster in the mixture distribution is computed by

P	 population in cluster 1	 (19)
i	 total population

This value changes whenever any data are merged into or deleted from a cluster. 	
IV

Other changing parameters are the position vector of the cluster centroid
(mean) and covariance matrix. All of these parameters as well as random com-
ponents of the data, contribute to fluctuation of G i estimates.

it was shown that the expected value of th,^ clustering function would be smaller
than Zn2 for any cell data within a well-defined cluster region. Values of

Gi (x) computed at this stage, however, may not be close to those expected at
the final stage. They may range from negative to large positive values mainly
because initial estimates of cluster characteristic parameters deviate from
reasonable values and /or because the data contain random or noisy components.

9
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To allow for a certain level of fluctuations in G i estimates, especially at a
formative stage, a flexible criterion value rather than W as in Eq. 9 is
employed as

Gc W Gi -Y f,,-; 
* SG	 (20)

where

Gc W critical value of Gi(x)

Gi - average value of Gi(x)

f  - empirical constant (about 2.)

SG - standard deviation of Gi(x)

A cell is tested for the membership of the cluster under formation by the
criterion:

Gi(x) - Max(Gc , Q.n2)	 (21)

it will be rejecte' if this inequality is not satisfied. The criterion value
is continuously ujN'.Ated as a new member is merged into the cluster. The empir-
ical constant fG an well as fe in Eq. 18 is not a sensitive parameter, but
selection of itn value depends upon the Jetail required in cluster divisions
in th,. end result.

The criterion test is always applied first to the cell having the highest
probability :tensity among the remaining cells and then the next test is per-
formed. In this way the present estimate of Gi(x) would be very close to those
of the Sample points that just joined the group in the previous steps, if the
point is a strong candidate of the cluster. Otherwise, it would be of far
greater valise than those in the region, especially at the earlier stage of
cluster formation. In this case it is thought that the point is picked up
from a hill aide of another group (Fig. 1). The way to jump up and down from
a hypothetical hill to the others creates distinct distance (G i value in a
precise term) gaps between points within the cluster being formed and that of
other cluster candidates. These distance gaps allow gradual updating of
cluster characteristic parameter values by first merging cells only closer	 P
to the centroid. Gradual updating is important in this approach since esti-
mated parameters at the earlier stage have larger uncertainty factors thrn
those at later or final steps. Testing membership candidacy for each point,
merging or rejecting, and updating of the parameters continue until the last
point is checked. After all the above-mentioned steps are processed,
searching for the next cluster is repeated.. The test stops if no single
cell element is left over (or if the maximum number of clusters set up in the
program is reached). This procedure is similar in manner to "hill-sliding."
One who is sliding down from the highest point on a hill will eventually

10
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arrive at the bottom. Geometrical interpretation, of the algorithm developed
here in multidimensional space is not directly comparable to the pathway of
hill-sliding by an ob j ect. But the general procedure may be considered as a
"hill-sliding" aspect. Actual paths from the present position to the next lower
density point will be zigzag motion due to randomness of the estimated probe-
biliLt density function in the discrete space. The pathway is alwa ys descend-
ing oe leveling, ending at the bottom of a valley.

Cluster Compactness

Moat of the measures to examine goodness of clustered results give relative
comparisons on the basis of original data structure or among clusters them-

C	 selves. The sum of squared errors within clusters and divergence between
clusters are typical examples of such measures. The former evaluates the
deviation of cluster samples from each cent roid, while the latter measureq
separability between two clusters. In either example, the quantities of the
measures increase with increasing dimensions of the feature space (Too Ot al.,
1974). Thus, difficulties are encountered in standardizing criteria of these
measures. It is desirable to formulate a cluster measure independent of the
number -)f variables and the number of sample data employed for clustering.

A measure is proposed to evaluate the goodness of an individual cluster as

	

1/d``

	

1/d

	

L i
	 ^T f	 (22)

	

i	 Ni-d	 N-d

where

Li - compactness of cluster i

Ni - population of cluster i

d - dimension of feature space

T - total scatter matrix of the data

and the determinants O Ci ) and ( TI) of both matrices, C i and T, exist.

The duster compactness parameter L i is a dimensionless quantity. The denomi-
nator is constant for a given set of data and has the dimension of length-square.
It can be considered a characteristic value of the data (say CO. The deter-
minant of a scatter matrix is proportional to the product of the variances in
the direction of the principal axes, which are defined by the canon! cal trans-
form of the scatter matrix. It is the volume of a hyper -ellipsoid definsd by
the unit Mahalanobis distance (i.e., ( x-j^ i ) TCi-1 (x-pi )=!) from the cluster
centroid. The volume measures the average scatterness (or squared Euclidean
distance) of the pattern vectors within the cluster around their mean pattern
vector. The length between the centroid and a point on the hyper-ellipsoid
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may be interpreted as the mean equarod-error in the direction of the feature
space. For this reason, the hyper-ellipsoidal volume defined by the deter-
minant of a cluster covariance matrix will be called simply the "scatterness
volume" of the cluster. The value in the bracket of Eq. 22 is approximately
proportional to the average volume per cluster element if the number of ele-
ments defining the covariance matrix is sufficiently larger than that of
dimensions. Subtraction by d from N or Ni in the denominator of each bracket
is devised for the unbiased estimation of the parameter. Note that pattern
vectors less than or equal to the number of dimensions cannot form any hyper-
volume and the covariance matrix of those pattern vectors is always singular
Duda et al., 1973). However, the value of d may be any nonnegative value,
if desired for the purpose of defining the parameter only.

Analysis of the Landsat data in this study indicates that clusters having a
compactness parameter less than 0.4 are distinctly separable from others and
that those with a parameter larger than 1 are scattered around in a region
rather than distributed normally.

Separability between Clusters

Distinctness of a cluster against the rest of the data has been evaluated in
terms of various measures, such as Mahalanobis distance and divergence (Duran
and Odell, 1974). Mahalanobis distance was introduced for a measure of metri'.
distance between two population centroids (Atchley-et al., 1975). Its original
definition ie different from the concept employed here, which is a distance
measure between a pattern vector and r, cluster centroi.d. The original formula
uses a pooled covariance matrix of two distributions. Application of this
formula to all possible pairs of classes requires considerable computational
time if the number of classes is large.

1_^

Divergence is another commonly used measure of divsimilarity between two dis-
tributions (Tou et al., 1974; Swain, 1972). It is defined by the s ,Ym of ex-
pectations of log-likelihood ratios in favor of one class against the other:

Dij v r ( pi (x) - pj (x)) fn 
pi(_x)pi(x) dx	 (23)

X

The divergence is inferred as the total average information for discrimination
between two classes. Higher values of the divergence estimates indicate better
separability. between the pair. It also possesses other interesting properties
(Tou Pt al., 1974; Swain, 1972).

The divergence is used in this paper to analyze the clustering performance.
The major reason for employing the parameter is that it can be computed by a
simpler formula under Gaussian assumption. For two Gaussian classes with un-
equal a priori probabilities, Eq. 23 is reduced to

12



Gi j =
2Di j

( P i+Pj) E(X)
(26)

Dij - ^ tr [(PiCi - PjCj) (C.)-
i - Ci-1))

+ 11 tr [ (P iCi-1 + P j C i -1 ) (.L-i - ^^ ) N	 T)

+ (P i - P j ) Pr. 
pilCjl^	

(24)
PjlCil^

where tr denotes the trace of the matrix in the bracket. This is an extended
formula of the relationship usually seen in the literature (Tou et al., 1974)
in the case of two distributions with different mixing proportions. It is
noteworthy that the Mahalanobis generalized distance is the divergence between
two Gaussian populations with unequal mean vectors but equal a priori proba-
bilities and covariance matrices (Tou et al., 1974). The divergence is
normalized by the sum of two class a priori probabilities as 2Dii /(Pi + Pj).
The additive property of divergence for independent variables indicates that
no universal value of a divergence criterion is acceptable for any combinations
of multivariate measurements. It is desirable to reduce the effects of dimen-
sionality as well as the sample size in cluster analysis. For this reason,
the estimates of divergence divided by the entropy of the data is used in this
study, whenever any comparison is made regarding divergence. The entropy E(X)
is a statistical: measure of uncertainty defined by (Young et al., 1974)

E (X) - f p (x) Rn [1 /n(x)] dx.	 (25)
A

It is interpreted as the expected value of an information unit, kn[1/p(x)] ,
that is, the average uncertainty of the information source. Ae indicated by
its functional form similar to that of divergence, Eq. 23, the entropy possesses
properties similar to those for divergence. The normalized divergence to the
entropy given by

W

iR comparable in any combination of variable . This value can determine rel-
ative separability of one cluster against the other regardless of the number
of variables employed. Higher values indicate distinctive separability between
the pair of clusters while smaller ones mean high resemblance of the pairs in
their data characteristics.

On the Overall Objective of Partitioning

Remote sensing data of natural scenes may contain countless subcategorical
information on natural land-cover/land-use classes. One of the best partition-
ing in an established mathematical frame may not satisfy a user (or analyst)

13



who desires the class categorical information at a cartain level. Tuning of
the mathematical goal at a user's desired level is not easily achievable by a
numerical scale. Existence of various levels for classification schemes
(Anderson et al., 1976) inevitably introduces heuristic parameters to obtain
the desired level of the resultant classification or clustering.

'ro evaluate the performance of clustering, the following overall objective
function was set forth:

lc

F 'E (N i -d)1.i	 (27)
is 1

subject to

Ci(xn t wi) s G J (xn c w i) for all i, j and n,	 (28)

1 ^ I c .	 (29)

0 < Li ^z Lc if Min Gij < Ds for all i and J, 	 (30)

Mc < Mi :s N for all i ,	 (31)

where l c , D s , Lc and Mc are the number of resultant clusters, th `	R-I	ac-
ceptable value of the normalized divergence, the maximum acceptable value of
the compactness parameter, and the minimum number of probability cells in a
cluster, respectively. Mi is the number of cells in cluster i. The minimum
number Mc of cells in a cluster should be larger than the number of variates
(dimensions) d, so that a covariance matrix might not be singular. This is a
better statement than that Nc < N i 5 N where Nc is the minimum number of
identities required in a cluster. Tne reason is that Mi < Ni and hence it
gives better assurance of a covariance being nonsingular. Note that a co-
variance matrix is always singular if N i < d or Mi < d (Duda et al., 1973).
Parts of the constraints: 1) I c ?1, 2) Li - 0, and 3) Mi < N are self-
evident and there is no requirement for specification of these criteria in
the algorithm. However, an investigator may input any other desired values
which do not exceed the limits as parameters. It is also worthwhile to note
that cluster or class identities less than ten times the dimensionality d will
usually Lead to an increase in probability of error if predictions are made
based on their covariance matrices (Ball, 1965). The constraint Eq. 28 is
equivalent to the decision r;tle of the maximum likelihood classification
(Eq. 1.1), since the only other variable in clustering function G i (xn) defined
by Eq. 6 is p QSn), which is common in both sides. Hence, the inequality,
Eq. 28, can be called the "maximum likelihood constraint" for each data point.

The objective function F can be expressed in terms of covariance matrices:

Ic
N-d

F	
I1	

Icil	
(27a)

i=1

14



Minimizing F is equivalent to minimizing the sum of the determinants of indi-
vidual cluster covariance matrices. Therefore, the objective of clustering is
to obtain a partitioning of the data which minimizes the sum of cluster scatter-
ness volumes under the imposed constraints. The objective function is generally
nonlinear and its usual multidimensional form carnot be described in easily
manageable terms.

'There are substantial differences between the presnnt formulation and those
which use frequently-cited clustering criterion function (wI, where

lc

W

	

	 Ci .	 (d2)

i-1

The simple algebraic sum of all t1le cluster covariance matrices, w, is commonly
referred to the total intragroups (or pooled-within clusters) scatter matrix
(Friedman et al., 1907; Fukunaga et al., 1970; Duda ut al., 1.973). It has
been shown that the determinant of the matrix Is invariant to nonsingular
linear transfurmattons of the data an.:. is rJole to produce well-definable
natural cluster boundaries when it is used as a clustering criterion (Fukunaga
et al., 1910). 'rile determinant of the scatter matrix alone is of no use as a
clustering ertterton function if the number of clusters is not known in ad-
vance, since more subdivisions of the datr.t space tend to reduce the v.:!I+e of
the determinant. An essential difference between the prosont objective ft'lic-
tion F and the determinant of the total intragroups scatter matrix, IWI, as it

clustering criterion comes from the fact:

l c 	 lc

IWI	 I	 ci I	 f	 Ic;il .

The determinant 1 141 llat4 born used : ► s a measure of cumpactIlVI3S of the clusters
(Duda et al., 1913), but this interpretation is somewhat misleading. 'Tile two
wimple examples (Fig. 5) illustrate thv inappropriateness of using IWI as a
clustering objective function or an overall clu- a ter compactness measure.

C1	
C,1 0 ) ,

CZ _ ( 
0 C' , . \ U 1

w- CI+C-,)	 U-	
,

IWI =	 16,
0 

W 1 `i	 U
c;^ l	 + Cl., Iwo I

()	 ri

Ic,i I 	 + IC2 	 I c., 1 I 	 +	 Ic,^^ I 4 + 4	 R.

The first case is that two-dimensional covariance matrices of two clusters are
identical except for their locations, :,nd the second that the two have the
same 9catterness volumes (determinants) but different orientations and locations.
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Legend.

Ellipses of 2-dimensional Covortoncee
^%	 ore Orown Based on Two A g ee, o„ and ofe

I	 where a,.ond 'l, off Two 040gonol
1	 1	 Elements of Co.anonce MatrKhrf thlu

"^ r —W	 Off d oponol Elements ore Zero.
1	 f

(A).

M2' 1

(B)	 ^`^ lam ,	 c':

it

F1 g. 5. Illustration of the Total Intragroups
Scatter Matrices for Two Separable
Cluster in Two-Dimensional Space. Each
cluster has the same scatte.ness volume
but different mean (coiiLroid) from the
other in either case. The pool ed co-
varianve matrices W(= (: i + (',) and W'(=(,
+ C•? ') are different from cash other
since cluster orientations are not the
same in both cases, even though ICI

C 2 1 _ (C 1' I =

Under the :assumption that two clusters are completely separated in both cases,
their total intragroups scatter matrices have different shapes and determinant
values. The first case yields smaller determinant values of the resultant
scatter matrix than the latter does. This Indicates that minimizing the deter-
minant of the total intragruup scatter matrix 14 forces all the clusters to be
partitioned in the shapes and orientations as similarly as possible. Any set
of separable clusters would not make much difference whatever their natural
shapes or orientations. This is another drawback in using IWI criterion for
clustering. The present clustering formulation has boon devised to circumvent
these difficulties by employing the sum of the determinants of individual
cluster covariance matrices as the obJective function. The set of consLraints
has provided some guidelines to overcome various undesirables aspects commonly
encountered in clustering the heterogeneous natural scene data in this formula-
tion.

The global solution to this optimization problem may be found by a systematic
but exhaustive enumeration of all partitioning alternatives. Search of the
solution by such an enumeration is often not permitted clue to requirement of
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excessive computation and memory storage for a large volume of data. It is
noted that the objective function is proportional to (N-d). Hance, a data
partition index to evaluate the clustered results is proposed as a sample-
size-independent indicator:

PI - (F/(N-d)j1/d

-r	

1ITI	 i	
IC:ill t/d
	

(33)

This index is an overall measure of the goodness for the data partitioning.
The smaller Lhe index value is, the better optimal partitioning is achieved.

Results and Discussion

The proposed cluster initialization method was programmed and tested using the
Landsat data of May 11, 1976, over Chippewa River Basin, Wisconsin. Sample
data of the Multi-Spectral Scanner (MSS) bands 4 and 5 were extracted from the
satellite's computer-compatible tape by the Landsat Mapping System of Colorado
State University, Fort Collins, Colorado (Park et al., 1979). The data covered
two different locations of the study area. Of the total 200 pixels (picture
elements), 111 population cells were identified (Fig. 6). The test was made
with the input parameters of fe - 2.7 and f G - 1 for the criterion functions,
Eqs. 18 and 20, respectively. Fifteen initial clusters were formed (Fig. 7),
but one of them which did not meet the criterion, Eq. 31, was excluded from
various cluster evaluations (Table 1).

The results suggested that there would be

a compact cluster if L i < 0.2,

a scattered cluster if L i > 0.4, and

a well-separated cluster from the others if Gij > 50 for all J ¢ i.

Several test runs with varying input values of both parameters yielded similar
partitioned patterns of the data and most of significant clusters (like
clusters 1 through 5) were identified.

Summary

A method was developed to extract significant Gaussian clusters on the basis
of discrete multivariate probability density estimates. Tile key idea was that
a proposed clustering function could distinguish elements of a cluster under
formation from the rest without knowledge of the other clusters. The algorithm

n described here showed effectiveness in extracting Gaussian-type clusters from
Landsat MSS data. The partitioning obtained by this technique was not optimal,
but it could be used as reasonable input data to other iterative clustering
programs for further improvement.

NN
i
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A dimensionless cluster :ompactness parameter was set forth as a universal
measure of cluster goodness and used favorably in test runs. Separability
between clusters was examined by employing a normalized divergence which was
defined by the divergence divided by the entropy of the entire sample data.
The overall clustering objective function and the partition index were form-
ulated in terms of cluster covariance matrices. They were good indicators
of the overall achievement for evaluation of the partitioned results obtained
under various conditions or at different stages.
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17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

I

52 Q
51
50 1
49
48 1	 2	 2 1 2	 2	 1
47 I	 1
46 Q 1
45 2	 3	 1	 1 1	 1	 1
44 1	 4	 1	 1 1

43 1
42 1	 © 1 2
41 1
40 2	 I	 2	 1
39 I	 2
38 Q	 1	 I	 I 1
37 1	 1	 1	 1	 1 Q
36 t	 1	 © 1
35 1	 2
34 1	 2	 2
33 @ 2	 1

W	 32 2	 2 I

Z 31 1	 1	 1	 I	 I
Q	 30 Q
m	 29 1	 1	 ►

N	
28 ©	 1	 I
27	 1 1	 7	 4	 1
26 3	 e	 3	 1
25 ► 	 1
24 I	 1	 s
23 1Q	 2
22 I
2;
20
19
18
17 0 Cluster seeding point
16 (mode candidate)
15	 2
14	 I	 1 I
13 I
12	 Q I q Cluster seeding point
11	 I whose cluster was
10	 1 discarded later due to
9	 1	 I the constraints imposed
8	 3	 3
7	 1	 C7s
6	 1

17 18 19 20 21 22 23 24 25 26'27 28 ' 29 30 31 32 33 34 35 36 37 38

MSS BAND 4

Fig. 6., Bivariate Population Distribution of Landsat
Sample Data. Cluster seeding points were
identified by the hill -sliding algorithm.
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e
52
51
50 A

49
48 3 3 3 o	 e	 e	 e
47 3
46 3 15
45 3 3 3 1 14	 14	 15
44 3 3 3 I	 15	 e
43 3
42 II 11 I II

41 11
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36 10 1 0 8 9
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33 4	 4 4
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z	 30 12

m	 29 7 12 12

28 7 7 1
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13 1
1

1	 1
1	 I

1
1

25 1	 1 1

24 1	 1 1
23 13 1
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17
16
15 5
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13 s
12 5	 5 Input parameter values
11 5
10 5 fG=1.0	 fe =2.7
9 2	 2
8 2	 2
7 2	 2
6 2

5.

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35:16 37 38

MSS BAND 4

Fig. 7. Initial Clusters of the Test Data. Toe
numbers are cluster labels.
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TABLE 1. COMPARISON OF INITIAL CLUSTERS

Cluster
No.

(1) N1 M1 rt' Li

Cij
three email-at valued Q cluster)

Map eye-
bel in

Fig.	 8
?Jentitled
Clur

1 6C 17 11.5 .058 20(12) 31	 (7) 47	 (4) crop 1

2 15 7 7.0 .064 35	 (5) 340 (1) 850(12) Y water

3 21 15 15.0 .20 13(11) 25(10) 29 (6) H crop 2

4 19 l0 6.5 .11 9.1(12) 18(10) 24	 (8) mixture

5 12 9 183.0 .25 35	 (2) 130	 (1) 210(12) I shallow

(18.019 water

6 10 6 22.5 .52 28(15) 29	 (3) 14(11)
^

1,P healthy veg.

(21.6

7 4 3 3.5 .098 29(12) 13	 (1) 44	 (4) (+J"

(•.')©8 4 3 3.0 .092 2100) 24	 (4) 33	 (9)

9 8 6 11.5 .19 14(11) 24(10) 33	 (8) - mixture

10 13 II 14.5 .29 14(11) 18	 (4) 21	 (8) mixture

11 it 8 11.0 .28 13	 (3) 14(10) 14	 (9) / mixture

(23.6)

12 9 8 139.5 .44 9.1(4) 20	 (1) 29	 (7) + mixture

(26.3)

Il 2 2 262.5 - - - - (a.+)

('29.1)

14 ) 1 15.0 .14 32(11) 60(15) 63	 (3)

(I.X)©15 3 3 - .42 28	 (b) 41(11) 60(14)

O(^F	 .	 4.17

PI"'- 0.146

of c.

Adjusted value in the bracket was used.

O Cluster was split Into two parts when Figure 8 was produead because of high Lt.

0 Elements of the cluster were merged into other clusters in Figure 8.

(" C.luuter was discarded and merged into other clusters due to the singularity of its covariance

matrix.

O Cluster no. 13 had no contribution to this value.

^i

it
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COLUMN 000O CIO 000U UUODUUUUOU
AND LINE 33333-43,134 00o 1 1 1 1 1 1 1
NUMBERS I c J4')67d90 7b90 12345b
IN THE AREA
MAPS

41 XX/c•aaaoo 151 ../...=aWW
42 XX/•oaaaaa 151 - - ..••WwHs
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46 XXX = aoeaaa 156 Nwwwq•.=nq
47 157 W##* == =A1/
48 XXX•aaoaoo 1511 —/=•==.x11
49 XX/•aaoaao 159 1= =.-/^ Il
50 X/ /••adaa • 160 ll== —*%%%l

(a)
	

(b)

CROP FIELDS
	

RIVER AND SURROUNDINGS

Fig. 8. Cluster Maps of the Study Area with Final
11 Clusters at a Scale 1: 24,000.
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