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ABSTRACT

New results are given on the relationships between closed loop
eigenstructures, state feedback gain matrices of the linear state feed-
back problem, and quadratic weights of the linear quadratic regulator.
Previous results are presented and gaps in current knowledge are pointed
ou:. Equations are derived for the angles of general multivariable
root loci and linear quadratic optimzl root loci, including angles of
departure and approach. The generalized eigenvalue problem is used
for the first time to compute angles of approach. Equations are also
derived to find the sensitivity of closed loop eigenvalues and the
directional derivatives of closed loop eigenvectors (with respect to a-
scalar multiplying the feedback gain matrix or the guadratic control
weight).

An equivalence class of quadratic weights that produce the same
asymptotic eigenstructure is defined, sufficient conditions to be in
it are given, a cancnical element is defined, and an algorithm to f£ind
it is given. The behavior of the optimal root locus in the nonasymp-
totic region is shown t» be different for quadratic weights with the
same asymptotic properties.

An algorithm is presented that can be used to select a feedback
gain matrix for the linear state feedback problem which produces a
specified asymptotic eigenstructure. Another algorithm is given to
compute the asymptotic eigenstructure properties inherent in a given
set of quadratic weights. This is inherently a structurally unstable
problem, unless the system is "generic". Finally, it is shown that
optimal root loci for nongeneric problems can be approximated by gen-
eric ones in the nonasymptotic region.
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CHAPTER I

Introduction

1.1 Motivation and Summary of Results

The linear state feedback problem [l1] is an important tool used
for control system design. While any practical design must take many
factors into consideration, a very common design objective is to
achieve a specified closed loop eigenstructure. By "eigenstructure"
we mean both the eigenvalues and the eigenvectors of the closed loop
system. Hence, an important relationship in design is between the
state feedback gain matrix and the resulting closed loop eigenstructure.

A version of the linear state feedback problem that has recently
emerged as an important design is the linear quadratic regulator [2].

It was first studied by theoreticians because of its optimal properties,
but it is primarily due to several other properties that design engineers
have begun to use it. The linear quadratic regulator is simple to
implement provided a full state or at least a reconstructed state is
available, it has inherent multivariable capability, and the design
algorithms are fully computerized. Desirable closed loop properties
exist such as guaranteed stability, guaranteed gain and phase margins
[3]1, and reasonable eigenstructures. Here we are primarily concerned
witﬁ the relationship between the guadratic weights and the closed loop
eigenstructure.

In Chapter II the linear control problems of interest are defined;

and then the relationships between the feedback gain matrix, the

quadratic weights, and the closed loop eigenstructure are discussed in

L e
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terms of maps betwees: parameter spaces. Previous results are presented
in a tutorial style, references are given, and it is noted where the
new results fit in. Some previous results on transmission zeroes are
presented, also in tutorial style, in the Appendix.

The new results are now summarized, first for the linear state
feedback problem and then for the linear quadratic regulator. In the
first problem the feedback gain matrix and the closed loon eigenstruc-
ture are points in parameter spaces, and under certain conditions the
map between them is one-to-one. 1In the forward direction this map is
an analysis problem and in the reverse direction it is a synthesis
problem (selecting a feedback gain matrix to achieve a specified closed
loop eigenstructure). ’

If the state feedback matrix is multiplied by a scalar and this

scalar is varied, a curve is traced out in each of the two paramenter

spaces. Also, the closed loop eigenvalues trace out a multivariable

root locus on the complex s plane. Chapter III derives equations for
the angles of the root locus, for the sensitivity of the closed loop
eigenvalues (how much they change with respect to a change in the
parameter), and for the directional dexrivatives of the closed loop
eigenvectors.

As the feedback gain matrix becomes very large the closed loop
eigenstructure approaches certain asymptotic properties. These proper-
ties can be parameterized and a map defined between the parameters and
the feedback gain matrix. Using this map to f£ind a feedback gain matrix
is a synthesis prcblem that is solved in Chapter V. It is one of many
ways to select a feedback gain matrix, but has not to cur knowledge
appeared in the literature.

A similar procedure is used for the linear quadratic regulator.

R P
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The quadratic weights and the closed loop eigenstructure are points
in parameter spaces but the map between them is not one-to-one. Many
different quadratic weights produce the same closed loop eigenstruc-

ture. As an analysis problem this map has received a lot of attention,

T

but as a synthesis probleti it has not been used@ extensively (selecting

quadratic weights to achieve a specified closed loop eigenstructure ;
and then computing the feedback gain matrix). !
If the weights on the control are multiplied by a scalar and this

scalar is varied, a curve is traced out in the parameter spaces of

)

§
i

quadratic weights and the closed loop eigenstructures. Also, the closed
loop eigenvalues trace out a multivariable optimal root locus on the
complex s plane. In Chapter III the behavior of the closed loop

eigenstructure is analyzed and equations are derived for angles, sensi-

T AR R e St e UL i e s

tivities, and directional derivatives. The same is done when the v

quadratic weights are dependent in a more general way on a single para-
meter, and the particular case of analyzing the inverse sgquare method

of selecting gquadratic weights is treated. Also, in Chapter V it is

rip

shown that optimal root loci for so-called "non-generic" problems can

ot

; be approximated with loci of "generic™" ones.

;

% : As the control weights become very small the closed lcop eigen-

E structure approaches certain asymptotic proper?ies. Some of the eigen-
values remain finite and others approach infinity. An algorithm is
presented in Chapter V that determines how many of each there are and

in what manner they approach their limit. The associated eigenvectors

are also described.
The asymptotic properties can be parameterized and a map defined

between the parameters and the quadratic weights. Using this map to
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select quadratic weights in a synthesis ozoblem that was first studied
by Harvey and Stein [4] and later generaljzad by Stein [5]. It turns
out that many diiferent quadratic weights produce the same asymptotic
properties, and in Chapter IV an equivalence class of these quadratic

weights is defined. Sufficient conditions are given to be in a parti-

N Y

cular equivalence class, a canonical element is defined, and an
algorithm is presented which computes the canonical element. Finally,
the behavior of the cptimal root locus for different members of this F

equivalence class is discussed.

1.2 Notation

a

Matrices are indicated by capital letters. Scalars and vectors
are indicated by small letters. No underlines are used and whether the

variable is a scalar or vector is clear from the context. Subspaces .
ch _

are indicated by script letters, with the exception of the Rn, the n
order real vector space. "Im A" and "ker A" are the image and kermel
of A. The symbols E® and E  indicated equivalence classes as defined
in Chapter IV. AT is the transpose of A, and xiH is the Hermitian

transpose of the vector xi. A-T indicates (A—l)T or equivalently (AT)-l.

e

Equations, examples, lemmas, and theorems are numbered starting
from ona at the beginning of each chapter. When referenced from within f
the same chapter only the number is used, otherwise (4.1l) means the %
first occurence in Chapter IV.

A permutation matrix P is a zero matrix with a one ian each row and

column. PA rearranges the rows of A and AP rearranges the columns of A.
K1l of the root locus diagrams are in the complex S plane. The x's

are the open loop poles and the 0's are the transmission zerces.




— €y T e e M S TR R TS S M R4 T A

CHAPTER II

Background

2.1 Introduction

11

The linear control problems studied in this thesis are defined;

and then the relationships between the state feedback gains, the

quadratic weights, and the closed loop eigenstructure are discussed

in terms of maps between parameter spaces. Emphasis is placed on both

the general case of the linear siate feedback problem and the specizl

case of the linear quadratic regulator.

2.2 Linear Control Problems

2.2.1 Linear State Feedback

Consider the following linear, time invariant system with full

state feedback:
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where x € R

m
ueR.

We will always assume that B is full rank. The
either controllable, stabilizable, or neithler.

system matrix is

(1)
(2)

matrices (A,B) will be

The closed loop

(3)

As k is varied from infinity down to zerc the clcsed loop eigenvalues

trace out a rwot locus.
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2.2.2 Linear Qutput Feedback

The - .uts and not the full state are used for feedback. Only
the case of the same number of inputs and outputs is considered. The

equations are

X = Ax + Bu (4)
y=
u=Zxy (6)

where y ¢ R,

We make the same assumptions about (A,B) as for the linear state feed-
back problem. C will always be full rank and (C,3) will be either
observable, detectable, or neither. The closed loop system matrix is

A = A - BKC, (7
and k again sweeps out a root locus.

Important quantities associated with the system S(A,B,C) are the
transmission- zeroces. Here we use the definition of transmission
zeroes due to Rosenbrock [6], which is equivalent to the following def-
inition wiign the numper of inputs and outputs are equal [7]. The trans-

mission zeroes are those values of s, not including unceontrollable or

unobservable modes, which reduce the rank of

A-sT B
- -C o]

See Appendix A for further discussion.

2.2.3 Linear Quadratic Requlator

This is an important class of linear state feedback centrollers.
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The gain matriw, F is chosen so that x and u minimize the cost function

m -
3= (x 0x + pu Ru)dt (8)
0
where Q = QT >0
R = RT >0

and 0<p <o,

The state weighting matrix can be factored into
Q= MM
where Rank(Q) = Rank(M) = p and M is p x m. The matrix is arbitrary

to within a premultiplicéatibn by a p x p anitary matrix (W such that

WTW = I). When Rank(Q) = m then we will use
Q = HH,

where H is m ¥ n. Assume that (A,B) is étabilizable and (M,A) is de-
tectable. The assumptions on Q will sometimes be downgraded to
symmetric and not necessarily non-negative definite.

The optimal gain matrix is found by first solving the algebraic

Riccati equation [2]

0=0+A'P + pa - %PBR—]'BTP (2)
to obtain
F=2RT8"p (10)
p
u = -Fx .
The closed locp system matrix is
Acl(p) = A - BF. (12)

L e bneres &N
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The parameter p is included to emphasize the dependence of Abl on it.

As p variss from infinity down to zero thke closed loop eigenvalues

trace out an optimal root locus.

2.2.4 Hamiltonian System

The Hamiltonian system is defined to be

z = 2z (13)
a - L gr71gT
where Z = ' (14)
-Q -AT
X
and z = .
g

It is of interest because it describes solutions of the linear avadratic

.regulator problem [8]. The eigenvalues of Z are symmetric about the

imaginary axis. Therefore if s is an eigenvalue so is -s;. Those in
the left half plane (LHP) ars the same as the closed loop eigenvalues
of the linear quadratic requlator. If (xiT, EiT)T is an eigenvector
of 2 associated with a LHP eigenvalue then the portion X is an eigen-
vector of the linear quadratic requlator. Furthermore, Ei = Pxi.

The following trick is a useful way of applying root locus methods
derived for linear output feedback systems to the optimal root locus.

We define a linear output feedback system that has a closed loop system

matrix equal to the Hamiltonian system matrix. Let

AL
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then
Z=A-LXBKC.
p

As p is varied from infinity down to zero the eigenvalues of Z in the
LHP tract out an optimal root locus. This trace is similar to one

used by Shaked [9].
2.3 Maps

It is convenient to discuss the linear control problems in terms
of maps between parameter spaces. This helps to organize the presen-

tation of previous results and to show where the new results fit in.

For quick reference the maps are listed in Table 2.1. In the following

sections each map is defined and discussed.

2.3.1 LSF Map

This is a map associated with the linear state feedback problem
as described in section 2.2.1. Here we think of the control problem
as a map between the space of m x n matrices and the space of closed

loop eigenvelies and eigenvectors. The notation used is

ILSF: F -+ s,, X..
2 1

Given an F matrix it is always possible to. compute Acl and then to
compute the eigenstructure of Acl' For the examples in this thesis
EISPACK [10] subroutines were used to do this. We note here that non-

trivial numerical problems arise when the eigenvalues get too close

togethexr or too far apart.
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Forward,
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a parameter

Inverse
Asymptotic
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Table 2.1
Maps
Linear State Linear Quadratic
Feedback Regulator
ILsF: F =+ si,xi IQR: Q,R = si,.xi
ILSF: S;e%; * F ILOR: S;0%; ¥ Q/R
1
LSF (k) : -EF-*si(k),xi(k) LOR( ): Q,pR-*si(p),xi(p)

0O<k<e=

IALST: lim s, (k),lim x, (k)

k>0 k0

0 <p <=

I R: lim s, (p),
A p>0 1

1lim xi(p) +Q,PR
p-+0




R T R P A S TR T T M.._,,w—u._w«..c-n.—...:;"..-mc-q-um—

T

AN e et R S ~~ S L % - T ST - R ST T = - -~ - = <

17

2.3.2 1ILSF Map

This is the inverse of the linear state feedback problem and thé

notation used is
ILSF: s,,x, = F,
i’7i

The ILSF map represents a synthesis problem: given a desired eigenstruc-
ture find F such that the closed loop system has this desired eigen-
structure.

System controllability is an important issue in the ILSF map.
Here we think of controllability as the ability to move eigenvalues
with state feedback. (For a different type of definition see Willems
and Mitter [l11l]). One way to test for controllability is to pick an
F matrix by picking at random each element of F from a dense subset of
the real number line, and then using this F to compute the closed loop
eigenvalues. Those eigenvalues that do not move are almost surely
uncontrollable. If all move then the system is controllable.

A simplified version of the ILSF map is the modal control problem.
An F matrix is sought which will result in a desired set of eigenvalues,
called modes. The eigenvectors are not specified. A good treatment
of this problem is given by Wonham [12]. The main results are given
in the form of a lemma. The multiple input results are due to Wonham.

Lemma 1 (A,B) is controllable if and only if there exist F

matrices (many in general) which place the eigenvalues in

arbitrary locations. If the system is not controllable then

only the controllable modes can be moved. In the single input

case F is unique.

Many papers have been written about what to do with the extra

design freedom available when F is not unique. One significant paper

[P

(2
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is by Moore [13]. He shows that the extra freedom can be used to
select eigenvectors. His main result is:

Lemma 2 For the case of distinct closed loop eigenvalues

a unigque F exists which places the eigenvalues and eigen-
vectors at specified locations if and only if the system

is controllable and for each x5 there exists a v; such that

[Arsir B] X1 = 0

v,
1

So we see that the closed loop eigenvectors must lie in certain m
dimensional subspaces determined by the si's. If socme of the modes

i are uncontrollable then they must be included in the specified set of |

{ eigenvalues, but some freedom still exists in selectihg the associated

eigenvectors.

g .

i Mocore's proof is constructive and he gives the following algorithm * N

E for finding F. Select the desired s (distinct) and the desired eigen-
vectors Xig- These eigenvectors may or may nét lie in the permissible #
subspace, so compute Xy and vy by projecting X:a onto the permissible
subspace (using, for instance, singular value decomposition). Then

form the matrices

X = [xl,...,xn}

N = Ivyseee,v ] , g
%
If Xer Xgoq and Vir Vi, axe complex conjugates replace them by Re(xi),
Im(xi), and Re(vi), Im(vi). The gain matrix is then given by
F=-Nx T

In the single input case no extra freedom exists to select the xi's

because they are each constrained to.a one dimensional subspace.
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2.3.3 LsF(k) Map

When k is varied from infinity down to zero a family of linear
state feedback problems is produced, which will be denoted by

LSF (k) : %-F -> si(k), xi(k) for 0 <k < = .

As k approaches zero the closed loop eigenstructure approaches certain
asymptotic pfoperties. As k varies over its range the si's trace out
a root locus, which in the single input case is the classical root

locus. The multiple input case is more involved and is still an area
of current research. As k varies over its range the xi's rotate in R

(if x. and x.
i

141 are complex conjugates then use instead Re(xi) and

Im(xi)). Histo;ically very little attention has been given to the
behavior of the xi’s.

In Chapter III some new results are derived about the behavior of
the closed loop eigenstructure as a function of k. Angles on the root
locus are defined, and by using the generalized eigenvalue problem
equations are derived to compute the angles. See= Appendix A for a
brief explanation of the generalized eigeﬁvalue problem. The advantage
of using it is that angles can be computed when k=0, even though 1/k
is not defined. Also in CHapter III, equations are derived to compute

directional derivatives of the xi's.
2.3.4 Root Locus

In the single input case the root locus methods of classical con-

trol can be used to describe the behavior of the closed loop eigenvalues.

These methods were first developed by Evans in 1948 [14]. They are

described in Eveleigh [15], Melsa and Schwartz [16], and most other
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page 81, paragraph 1, line 9:

change "Gi’-/z'l to IIJ n
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page 81, paragraph 1, line 10:
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