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ABSTRACT

New results are given on the relationships between closed loop
eigenstructures, state feedback gain matrices of the linear state feed-
back problem, and quadratic weights of the linear quadratic regulator.
Previous results are presented and gaps in current knowledge are pointed
ou:. Equations are derived for the angles of general multivariable
root loci and linear quadratic optimzl root loci, including angles of
departure and approach. The generalized eigenvalue problem is used
for the first time to compute angles of approach. Equations are also
derived to find the sensitivity of closed loop eigenvalues and the
directional derivatives of closed loop eigenvectors (with respect to a-
scalar multiplying the feedback gain matrix or the guadratic control
weight).

An equivalence class of quadratic weights that produce the same
asymptotic eigenstructure is defined, sufficient conditions to be in
it are given, a cancnical element is defined, and an algorithm to f£ind
it is given. The behavior of the optimal root locus in the nonasymp-
totic region is shown t» be different for quadratic weights with the
same asymptotic properties.

An algorithm is presented that can be used to select a feedback
gain matrix for the linear state feedback problem which produces a
specified asymptotic eigenstructure. Another algorithm is given to
compute the asymptotic eigenstructure properties inherent in a given
set of quadratic weights. This is inherently a structurally unstable
problem, unless the system is "generic". Finally, it is shown that
optimal root loci for nongeneric problems can be approximated by gen-
eric ones in the nonasymptotic region.
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CHAPTER I

Introduction

1.1 Motivation and Summary of Results

The linear state feedback problem [l1] is an important tool used
for control system design. While any practical design must take many
factors into consideration, a very common design objective is to
achieve a specified closed loop eigenstructure. By "eigenstructure"
we mean both the eigenvalues and the eigenvectors of the closed loop
system. Hence, an important relationship in design is between the
state feedback gain matrix and the resulting closed loop eigenstructure.

A version of the linear state feedback problem that has recently
emerged as an important design is the linear quadratic regulator [2].

It was first studied by theoreticians because of its optimal properties,
but it is primarily due to several other properties that design engineers
have begun to use it. The linear quadratic regulator is simple to
implement provided a full state or at least a reconstructed state is
available, it has inherent multivariable capability, and the design
algorithms are fully computerized. Desirable closed loop properties
exist such as guaranteed stability, guaranteed gain and phase margins
[3]1, and reasonable eigenstructures. Here we are primarily concerned
witﬁ the relationship between the guadratic weights and the closed loop
eigenstructure.

In Chapter II the linear control problems of interest are defined;

and then the relationships between the feedback gain matrix, the

quadratic weights, and the closed loop eigenstructure are discussed in

L e
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terms of maps betwees: parameter spaces. Previous results are presented
in a tutorial style, references are given, and it is noted where the
new results fit in. Some previous results on transmission zeroes are
presented, also in tutorial style, in the Appendix.

The new results are now summarized, first for the linear state
feedback problem and then for the linear quadratic regulator. In the
first problem the feedback gain matrix and the closed loon eigenstruc-
ture are points in parameter spaces, and under certain conditions the
map between them is one-to-one. 1In the forward direction this map is
an analysis problem and in the reverse direction it is a synthesis
problem (selecting a feedback gain matrix to achieve a specified closed
loop eigenstructure). ’

If the state feedback matrix is multiplied by a scalar and this

scalar is varied, a curve is traced out in each of the two paramenter

spaces. Also, the closed loop eigenvalues trace out a multivariable

root locus on the complex s plane. Chapter III derives equations for
the angles of the root locus, for the sensitivity of the closed loop
eigenvalues (how much they change with respect to a change in the
parameter), and for the directional dexrivatives of the closed loop
eigenvectors.

As the feedback gain matrix becomes very large the closed loop
eigenstructure approaches certain asymptotic properties. These proper-
ties can be parameterized and a map defined between the parameters and
the feedback gain matrix. Using this map to f£ind a feedback gain matrix
is a synthesis prcblem that is solved in Chapter V. It is one of many
ways to select a feedback gain matrix, but has not to cur knowledge
appeared in the literature.

A similar procedure is used for the linear quadratic regulator.

R P
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The quadratic weights and the closed loop eigenstructure are points
in parameter spaces but the map between them is not one-to-one. Many
different quadratic weights produce the same closed loop eigenstruc-

ture. As an analysis problem this map has received a lot of attention,

T

but as a synthesis probleti it has not been used@ extensively (selecting

quadratic weights to achieve a specified closed loop eigenstructure ;
and then computing the feedback gain matrix). !
If the weights on the control are multiplied by a scalar and this

scalar is varied, a curve is traced out in the parameter spaces of

)

§
i

quadratic weights and the closed loop eigenstructures. Also, the closed
loop eigenvalues trace out a multivariable optimal root locus on the
complex s plane. In Chapter III the behavior of the closed loop

eigenstructure is analyzed and equations are derived for angles, sensi-

T AR R e St e UL i e s

tivities, and directional derivatives. The same is done when the v

quadratic weights are dependent in a more general way on a single para-
meter, and the particular case of analyzing the inverse sgquare method

of selecting gquadratic weights is treated. Also, in Chapter V it is

rip

shown that optimal root loci for so-called "non-generic" problems can

ot

; be approximated with loci of "generic™" ones.

;

% : As the control weights become very small the closed lcop eigen-

E structure approaches certain asymptotic proper?ies. Some of the eigen-
values remain finite and others approach infinity. An algorithm is
presented in Chapter V that determines how many of each there are and

in what manner they approach their limit. The associated eigenvectors

are also described.
The asymptotic properties can be parameterized and a map defined

between the parameters and the quadratic weights. Using this map to
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select quadratic weights in a synthesis ozoblem that was first studied
by Harvey and Stein [4] and later generaljzad by Stein [5]. It turns
out that many diiferent quadratic weights produce the same asymptotic
properties, and in Chapter IV an equivalence class of these quadratic

weights is defined. Sufficient conditions are given to be in a parti-

N Y

cular equivalence class, a canonical element is defined, and an
algorithm is presented which computes the canonical element. Finally,
the behavior of the cptimal root locus for different members of this F

equivalence class is discussed.

1.2 Notation

a

Matrices are indicated by capital letters. Scalars and vectors
are indicated by small letters. No underlines are used and whether the

variable is a scalar or vector is clear from the context. Subspaces .
ch _

are indicated by script letters, with the exception of the Rn, the n
order real vector space. "Im A" and "ker A" are the image and kermel
of A. The symbols E® and E  indicated equivalence classes as defined
in Chapter IV. AT is the transpose of A, and xiH is the Hermitian

transpose of the vector xi. A-T indicates (A—l)T or equivalently (AT)-l.

e

Equations, examples, lemmas, and theorems are numbered starting
from ona at the beginning of each chapter. When referenced from within f
the same chapter only the number is used, otherwise (4.1l) means the %
first occurence in Chapter IV.

A permutation matrix P is a zero matrix with a one ian each row and

column. PA rearranges the rows of A and AP rearranges the columns of A.
K1l of the root locus diagrams are in the complex S plane. The x's

are the open loop poles and the 0's are the transmission zerces.
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CHAPTER II

Background

2.1 Introduction

11

The linear control problems studied in this thesis are defined;

and then the relationships between the state feedback gains, the

quadratic weights, and the closed loop eigenstructure are discussed

in terms of maps between parameter spaces. Emphasis is placed on both

the general case of the linear siate feedback problem and the specizl

case of the linear quadratic regulator.

2.2 Linear Control Problems

2.2.1 Linear State Feedback

Consider the following linear, time invariant system with full

state feedback:
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where x € R

m
ueR.

We will always assume that B is full rank. The
either controllable, stabilizable, or neithler.

system matrix is

(1)
(2)

matrices (A,B) will be

The closed loop

(3)

As k is varied from infinity down to zerc the clcsed loop eigenvalues

trace out a rwot locus.
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2.2.2 Linear Qutput Feedback

The - .uts and not the full state are used for feedback. Only
the case of the same number of inputs and outputs is considered. The

equations are

X = Ax + Bu (4)
y=
u=Zxy (6)

where y ¢ R,

We make the same assumptions about (A,B) as for the linear state feed-
back problem. C will always be full rank and (C,3) will be either
observable, detectable, or neither. The closed loop system matrix is

A = A - BKC, (7
and k again sweeps out a root locus.

Important quantities associated with the system S(A,B,C) are the
transmission- zeroces. Here we use the definition of transmission
zeroes due to Rosenbrock [6], which is equivalent to the following def-
inition wiign the numper of inputs and outputs are equal [7]. The trans-

mission zeroes are those values of s, not including unceontrollable or

unobservable modes, which reduce the rank of

A-sT B
- -C o]

See Appendix A for further discussion.

2.2.3 Linear Quadratic Requlator

This is an important class of linear state feedback centrollers.
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The gain matriw, F is chosen so that x and u minimize the cost function

m -
3= (x 0x + pu Ru)dt (8)
0
where Q = QT >0
R = RT >0

and 0<p <o,

The state weighting matrix can be factored into
Q= MM
where Rank(Q) = Rank(M) = p and M is p x m. The matrix is arbitrary

to within a premultiplicéatibn by a p x p anitary matrix (W such that

WTW = I). When Rank(Q) = m then we will use
Q = HH,

where H is m ¥ n. Assume that (A,B) is étabilizable and (M,A) is de-
tectable. The assumptions on Q will sometimes be downgraded to
symmetric and not necessarily non-negative definite.

The optimal gain matrix is found by first solving the algebraic

Riccati equation [2]

0=0+A'P + pa - %PBR—]'BTP (2)
to obtain
F=2RT8"p (10)
p
u = -Fx .
The closed locp system matrix is
Acl(p) = A - BF. (12)

L e bneres &N
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The parameter p is included to emphasize the dependence of Abl on it.

As p variss from infinity down to zero thke closed loop eigenvalues

trace out an optimal root locus.

2.2.4 Hamiltonian System

The Hamiltonian system is defined to be

z = 2z (13)
a - L gr71gT
where Z = ' (14)
-Q -AT
X
and z = .
g

It is of interest because it describes solutions of the linear avadratic

.regulator problem [8]. The eigenvalues of Z are symmetric about the

imaginary axis. Therefore if s is an eigenvalue so is -s;. Those in
the left half plane (LHP) ars the same as the closed loop eigenvalues
of the linear quadratic requlator. If (xiT, EiT)T is an eigenvector
of 2 associated with a LHP eigenvalue then the portion X is an eigen-
vector of the linear quadratic requlator. Furthermore, Ei = Pxi.

The following trick is a useful way of applying root locus methods
derived for linear output feedback systems to the optimal root locus.

We define a linear output feedback system that has a closed loop system

matrix equal to the Hamiltonian system matrix. Let

AL
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then
Z=A-LXBKC.
p

As p is varied from infinity down to zero the eigenvalues of Z in the
LHP tract out an optimal root locus. This trace is similar to one

used by Shaked [9].
2.3 Maps

It is convenient to discuss the linear control problems in terms
of maps between parameter spaces. This helps to organize the presen-

tation of previous results and to show where the new results fit in.

For quick reference the maps are listed in Table 2.1. In the following

sections each map is defined and discussed.

2.3.1 LSF Map

This is a map associated with the linear state feedback problem
as described in section 2.2.1. Here we think of the control problem
as a map between the space of m x n matrices and the space of closed

loop eigenvelies and eigenvectors. The notation used is

ILSF: F -+ s,, X..
2 1

Given an F matrix it is always possible to. compute Acl and then to
compute the eigenstructure of Acl' For the examples in this thesis
EISPACK [10] subroutines were used to do this. We note here that non-

trivial numerical problems arise when the eigenvalues get too close

togethexr or too far apart.
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Asymptotic
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Table 2.1
Maps
Linear State Linear Quadratic
Feedback Regulator
ILsF: F =+ si,xi IQR: Q,R = si,.xi
ILSF: S;e%; * F ILOR: S;0%; ¥ Q/R
1
LSF (k) : -EF-*si(k),xi(k) LOR( ): Q,pR-*si(p),xi(p)

0O<k<e=

IALST: lim s, (k),lim x, (k)

k>0 k0

0 <p <=

I R: lim s, (p),
A p>0 1

1lim xi(p) +Q,PR
p-+0
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2.3.2 1ILSF Map

This is the inverse of the linear state feedback problem and thé

notation used is
ILSF: s,,x, = F,
i’7i

The ILSF map represents a synthesis problem: given a desired eigenstruc-
ture find F such that the closed loop system has this desired eigen-
structure.

System controllability is an important issue in the ILSF map.
Here we think of controllability as the ability to move eigenvalues
with state feedback. (For a different type of definition see Willems
and Mitter [l11l]). One way to test for controllability is to pick an
F matrix by picking at random each element of F from a dense subset of
the real number line, and then using this F to compute the closed loop
eigenvalues. Those eigenvalues that do not move are almost surely
uncontrollable. If all move then the system is controllable.

A simplified version of the ILSF map is the modal control problem.
An F matrix is sought which will result in a desired set of eigenvalues,
called modes. The eigenvectors are not specified. A good treatment
of this problem is given by Wonham [12]. The main results are given
in the form of a lemma. The multiple input results are due to Wonham.

Lemma 1 (A,B) is controllable if and only if there exist F

matrices (many in general) which place the eigenvalues in

arbitrary locations. If the system is not controllable then

only the controllable modes can be moved. In the single input

case F is unique.

Many papers have been written about what to do with the extra

design freedom available when F is not unique. One significant paper

[P

(2
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is by Moore [13]. He shows that the extra freedom can be used to
select eigenvectors. His main result is:

Lemma 2 For the case of distinct closed loop eigenvalues

a unigque F exists which places the eigenvalues and eigen-
vectors at specified locations if and only if the system

is controllable and for each x5 there exists a v; such that

[Arsir B] X1 = 0

v,
1

So we see that the closed loop eigenvectors must lie in certain m
dimensional subspaces determined by the si's. If socme of the modes

i are uncontrollable then they must be included in the specified set of |

{ eigenvalues, but some freedom still exists in selectihg the associated

eigenvectors.

g .

i Mocore's proof is constructive and he gives the following algorithm * N

E for finding F. Select the desired s (distinct) and the desired eigen-
vectors Xig- These eigenvectors may or may nét lie in the permissible #
subspace, so compute Xy and vy by projecting X:a onto the permissible
subspace (using, for instance, singular value decomposition). Then

form the matrices

X = [xl,...,xn}

N = Ivyseee,v ] , g
%
If Xer Xgoq and Vir Vi, axe complex conjugates replace them by Re(xi),
Im(xi), and Re(vi), Im(vi). The gain matrix is then given by
F=-Nx T

In the single input case no extra freedom exists to select the xi's

because they are each constrained to.a one dimensional subspace.
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2.3.3 LsF(k) Map

When k is varied from infinity down to zero a family of linear
state feedback problems is produced, which will be denoted by

LSF (k) : %-F -> si(k), xi(k) for 0 <k < = .

As k approaches zero the closed loop eigenstructure approaches certain
asymptotic pfoperties. As k varies over its range the si's trace out
a root locus, which in the single input case is the classical root

locus. The multiple input case is more involved and is still an area
of current research. As k varies over its range the xi's rotate in R

(if x. and x.
i

141 are complex conjugates then use instead Re(xi) and

Im(xi)). Histo;ically very little attention has been given to the
behavior of the xi’s.

In Chapter III some new results are derived about the behavior of
the closed loop eigenstructure as a function of k. Angles on the root
locus are defined, and by using the generalized eigenvalue problem
equations are derived to compute the angles. See= Appendix A for a
brief explanation of the generalized eigeﬁvalue problem. The advantage
of using it is that angles can be computed when k=0, even though 1/k
is not defined. Also in CHapter III, equations are derived to compute

directional derivatives of the xi's.
2.3.4 Root Locus

In the single input case the root locus methods of classical con-

trol can be used to describe the behavior of the closed loop eigenvalues.

These methods were first developed by Evans in 1948 [14]. They are

described in Eveleigh [15], Melsa and Schwartz [16], and most other

N P P oy S ot o et e Skl ik e at
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classical control textbooks. Descriptions of computer aided plotting
routines have appeared in literature as recently as 1978 [17].

For the purpose of analyzing the rocot locus it is always possible
to rephrase the state feedback problem (1-3) as an output feedback
problem (4-7). Simply let RC = F.

The starting point for the classical root locus is the output
‘feedback problem with a single input and output. The time domain des-
cription (4~6) is lLaplace Transformed in order to get the following

transfer function, which is the ratio of two polynomials:

L(ELx c(sI - A)-l"b = q r—:-.(i).-

u(s) D(s)
P
where N(s) = I (s-zi)
i=1
n
and D(s) = 1 (s=-p;) .
i=1.

The zi's are transmission zeroes and the pi's are open loop poles. The

feedback loop is closed by letting
1 -
u(s) = - £ y(s) + u(s),
where u(s) is an external input. The closed loop transfer function is

yv(s) = o N(s)

uls)  pg) + 2 §()

. (15)

The closed loop eigenvalues are those values of s which make the denomin-
ator equal to zero, and may be plotted as a function of k.

Generalizing the classical root locus methods to the multiple

e A e o 4 e e

i e o e
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input case has proven to be a difficult task. Kouraritakas, Shaked,

and Postlethwaite [18-22] have addressed various aspects of the problem.
Progress was slow at first due to a debate over the definition of multi-
variable transmission zerces. That debate is beginning to subside and
attention is shifting to the behavior of modes that asymptotically
approach infinity.

As is often the case in control theory, root locus problems can
be attacked with either time or frequency domain techniques. In the
frequency domain, the closed loop transfer function must be replaced
by a transfer function matrix. Then the closed loop poles are no
longer characterized by the denominator in (15) but by an algebraic
function (a polynomial in s with coefficients that are polynomials in

k). In order to discuss solutions of this algebraic equation concepts

~such as Riemann surfaces must be introduced. Asymptotic results can

be found by using a Newton chart. These complications are sidestepped
here by staying in the time domain whenever possible.

Of particular interest is the case when Rank(CB) = m. Why this
case is of interest is motivated by Wonham [12], and also ([18-22].
This is called the generic case, and it is the only one that will be
reviewed in depth. The word "generic" will be used to describe a pro-
perty which holds everywhere on a set of points except those belonging
+o a mathematical variety. A "variety" is a locus of points which satisfy
a finite number of polynomials [12]. 1In this case the property is that
Rank (CB) = m. The only points for which this property does not hold

is when the polynomial det(CB) = 0. 1In the following example Rank (CB)<m:

0 0 1 1 0 -0 0
CB={0 1 O 0O 1|=[0 1}.
0 O

SR T

5 i o
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This is the nongeneric case. However, if the 1,1 element of ¢ is per-
turbed a2n arbitrarily small amount ¢ then Rank(CB) = m, which is the

generic case.

The following facts are known about the multivariable root locus
for the generic case. We assume that (A,B) is controllable and that
KCB has no Jordan blocks of size greater than 1 x 1. Then

1) The root locus has n branches, and these are symmetric about
the real axis.

2) Por large k the branches originate at the open loop poles.

3) For m=1 and a>0 (<0), where a is defined in (15), the real
axis to the left (right) of an odd number of singularities lies
on the locus. This rule does not apply when m>1l.

4) As k + 0, (n-m) of the branches stay finite. These are
characterized by

0 . 0 .
s” = diag(s, ,.--,Sg_m)

« o (o}
0= [xy7yeeex 1,

where each pair s.°, x{ris a solution of the generalized eigen-
value problem

The (n-m) finite branches approach the transmission zeroes s; o,

and the elgenvectors approach the zero directions xl?

5) As k -+ 0, m branches tend to infinity. These are characterized
by

-]

® . -]
S =&wml“”ﬁn)

- -

® ®
N = [Vl l---r\)m]l

© . , . :
where each pair si r Xy is a solution of the eigenvalue problem

[=-] [=-]
{(s. I - KCB)v. = 0.
i i
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The m branches approach infinity along asymptotes that have angles
with respect to the positive real axis given by arg(-s. ), where

"arg(x)" means the argument of the complex number x. he asymptotic

radius ls |s [/k. The associated eigenvectors approach.Bvl If

the s, are not distinct then the eigenvectors are arbitrary to

within a subspace.

Some results are available for the root locus in the nongeneric
case [18,22]. The final answers are not in yet and the state of the
art is best described as messy. As k -+ 0, fewer than (n~m) modes re-~
main finite, and these are characterized by the same generalized eigen-

value problem. The rest of the moedes group into m patterns that

approach infinity. The asymptotes of each pattern meet a pivet point.

2.3.5 Definition of Angles

There are n values of si on the root locus for each value of k.

If k is perturbed an amount Ak then each S will be perturbed by a

. (possibly very large) amount Asi. As Ak -+ 0 then Asi/Ak will approach

the constant dsi/dk, and the angle on the root locus is defined to be

arg(dsi).
The angles at the open loop poles (k + «) will be called "angles of
departure”, and the angles at the transmission zeroes (k - 0) will be
called "angles of arrival". An example of angles on the root locus

is shown in Figure 2.1.

For the single input case standard root locus formulas are available

to f£ind the angles of departure and approach. Postlethwaite [21] extends

these results to the multiple input case using frequency domain methods.
Shaked [19] does so using time domain methods. Here we use new time

domain methods (the generalized eigenvalue problem) to extend Shaked's

results.
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2.3.6 IALSF Map

; This is called the inverse asymptotic linear state feedback map.

It is the inverse of the LSF(k) map as k - 0 and is denoted by

. . 1
IALSF: 1lim si(k), lim xi(k) - E-F.

k~+0 k>0

o U

The IALSF map represents a synthesis problem: given the desired

asymptotic properties of the LSF(k) map characterized by

? s®, x°, s, and N ;

find F such that the closed loop system has these desired asymptotic
properties. This problem is solved for the first time in Chapter V.
It is similar to synthesis problems solved by Moore [13], Harvey and

Stein [4], and Stein [5].

2.3.7 LQR Map

This map is associated with the linear quadratic regulator as
described in section 2.2.3. Here we think of the regulutor as a map
between the matrices Q and R and the closed loop eigenstructure. The

nota I-i on used i S
LQR : Q R + s 3 x s @
! i ! b

The LOR map is one of the cornerstones of modern control theory. Major

credit is due to Kalman [23].

The steps used to compute the closed loop eigenstructure are

symbolically shown by

g e e

- - - > S. .
QR+ P +F +A S, 0%y

1

The most important step is first finding the Riccati solution. Wonham

-
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{24] gives the necessary and sufficient conditions on A, B, Q, R for
the existence of a stable closed loop solution.

An active area of research is developing algorithms to compute
Riccati solutions. One standard way is to use the eigenvectors of the
Hamiltonian system matrix [8]. This method is usually referred to in
the control literature as Potter'; method but it predates him, (see
the references of [25]). The method is symbolically shown by

QR > Z >z, *P.
A variation of this method with improved numerical properties is by
Laub [25] and uses the Schur vectors of Z.

For the example calculations used here we were not interested in
P or F, so the following shortcut was used to £ind the closed loog
eigenstructure:

QR+ 2 + si,xi.

A simple example shows that the Q and R matrices that produce an
optimal gain matrix (and hence a closed loop eigenstructure) are not
unigque. Multiply Q and R by the same positive constant a. Then the
Riccati solution changes from P to aP but F stays the same. Therefore.
we can define a mathematical equivalence class [26] of Q and R matrices
in terms of the property that they produce the same optimal gain matrix.

Perhaps not so well known is that any Q with Q > 0 and Rank(Q) > m
is equivalent (in the sense used above) to a é with Rank(é) = m. This
result is used and diécussed by Molinari ([27] and Harvey and Stein [4],
and is due to Popov [28]. As a consequence it is always possible to
define a response vector

r = Hx

m
where r € R
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~ T
Q = HH,

and such that é is eguivalent to any specified Q. The system S(A,B,H)
is important to this thesis.

Necessary and sufficient conditions for (Q,R) and (é,i) to be in
the same eqguivalence class have been developed by Molinari [27] and
Jameson and Kriendler [29]. Molinari constrains R so that R=I and
presents the following result (which is also valid for any R = RT > 0):

Lemma 3 Assume (A,B) is coﬁtrollable and F is optimal for some

(Q,R). Then (Q,R) is in the same equivalence class if and only
if there exists a real symmetric Y satisfying

(1) d=a-2"Y-va
(ii) YB = O.
The Riccati solution changes from P to P+Y, but F = -RnlBT(P+Y) remains
constant becuase BTY = U. There is no guarantee that P+Y > O or é > 0.

When R is not constrained to be constant then a similar result can be

extracted (with some difficulty) from the paper by Jameson and Kriendler.

2.3.8 ILOR Map

This map describes the inverse of the linear quadratic regulator

and is denoted by

ILOR: S; X, > Q/R.

The ILQR map represents a synthesis problem and can, in principle, be
used to select quadratic weights. This turns out not to be very prac-
tical, as we will show in the following discussion. The asymptotic
version of this map, presented later, is much more convenient.

The first step is to find the feedback gain matrix which produces

the desired eigenstructure. To do this use the ILSF map discussed in

o e e
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section 2.3.2 (specifically the algorithm due to Moore [13]). If (A,B)
is controllable then'the s; can be located anywhere, and the x; must
lie in certain m dimensional subspaces.
If the feedback gain matrix exists then a check can be made that
it is optimal for some (Q,R). Kalman [30] solved tiiis problem for
the single input case. Anderson and Moore [13] generalized this result
to the multiple input case. The version of this result presented here
is due to Molinari [27].
Lemma 4 Assume_(A,B) is controllable and R=I. hen F is optimal
for some Q=Q >0 if and only if s; < 0 and (Jw)T(Jw) > I,
where T(s) = I + F(Is-a)~1l
Unfortunately this result is difficult to implement because it must be
true for all w. If Q ;s only required to be symmetric then we have the

following result, also due to Molinari.

Lemma S Assume (A,B) is controllable and R=I. Then F is optimal
For some g = QT if and only if S; < 0 and FB is symmetric.

Jameson and Kriendler [29] extend this result to amore general class of
A, B, and R matrices, again only requiring that ¢ be symmetric.

If the check on F succeeds then F is optimal for some (Q,R).
Jameson and Kriendler give an algorithm that can reach every (Q,R) in
the equivalence class of matrices that produce the same F (there is no
guarantee that Q > 0). However, if the check on F f#ils then no hint
is given as to how F, S;s OF X should be changed. This is the main
problem with using the IALQR map as a way to select quadratic weights.

We note here that T(s) defined in lemma 4 is the return difference

equation for the system S(A,B,F), and as such it plays a fundamental

+ role in control system design. It is used to measure the disturbance

rejection properties of the system, the ability of the system to faollow

commands, and the robustness of the system.

AR s s s
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2.3.9 IQR(p) Map

When p is varied from infinity down to zero a family of linear

quadratic regulaterxs is produced, which will be denoted by
LoR(P): Qs PR > s, (P), %;(p) for 0 < p < =.

Only the case where R is linearly dependent on p is considered. Similar
results, especially for eigenvectors, do not necessarily hold when Q
and R are dependent on p in an arbitrary way. The closed loop eigen-
values trace out an optimal root locus. Its behavior is studied, as
described in section 2.2.4, by using the Hamiltonian system. Of special
interest is the asymptotic behavior of the si(p) and xi(p) as p - 0.

Several new results are derived that concern the LQR(p) map. In
Chapter III equations are derived that compute angles on the optimalA
root locus and directional derivatives of the xi(p).‘ In Chapter V an
algorithm is presented that computes the asymptotically infinite be-~
havior of the optimal root locus, and a result is presented that

shows how an optimal root locus can be approximated by another.

2.3.10 Optimal Root Locus

In the single input case the optimal root locus can be described
using classical root locus techniques. The trick is to recognize
that the optimal closad loop poles are the left half plane eigenvalues
of det(sI~Z) = 0. Assume that Q = hTh, where h is 1 x n, and that
R =¥ > 0. Then by using determinant identities it can be shown that

(8]

det(sI-2) = (-1)"[4(s)é(~s) + ;}p- V()b (-9)] (16)

o ntE N

BT P R

T AR R
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n
where ¢(s) = det(sI-a) = I (s-pi)
i=l

- P
and () = ¢(s)h"(s1-8) b =all (s-z,).
i=]
The pi's are the open loop poles and the zi's are the transmission

2 zeroes of the system S(A,b,h). Equation (16) is analogous to the

% dencminator of (15).

Before the heyday of Kalman, state space techniques, and Riccati

equations it was recognized by Chang [32] that (16) can be used to
plot the =ingle input optimal root locus. He suggested using the

root square locus, which is done by rewriting (16) as a polynomial in

o st = 52, and then plotting the classical root locus on the s° plane.

Kalman [30] and Rwakernaak and Sivan [8] give rules for plotting the
single input optimal root locus on the s plana. These rules involve

‘ pPlotting (16) on the s plane using classical root locus techniques and

then only keeping the left half side.

PRI G a5

Now we move on to the multiple input case of the optimal root locus.
Rynaski [33] developed a multivariable version of the root square locus,
5 but it is very cumbersome even for the case of two inputs. The proce-
dure used here is to use the Hamiltonian system S(A,B,XKC) and apply
the multivariable root locus results [34]. The generic case is when MB
is full rank (where Q = MTM). Both this and the nongeneric case will
be reviewed. The symmetry about the imaginary axis of the eigenvalues

of the Hamiltonian system makes the analysis easier. The notation used

here is the same as used by Stein {5].
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1) The optimal root locus has n branches, which stay entirely in the
LHP, and are symmetric about the real axis.

2) For p large the branches originate at -|Re pll + 3 Im p .
(This is equal to p, if pl is in the LHP, otherwise to the mirror
image of Py about tfie imaginary axis).

3) For m=1 and (n~p) even (odd) the negative real axis to the left
of an odd (even) number of singularities lies on the locus. This
rule does not apply whenm > 1.

4) As p + 0, p of the branches stay finite. These are characterized
by

s = diag(sic’ ,...,sp°)
0 0
X = [xl ,...,xp°],

where each pair s ; ’ xf is a solution of the generalized eigen-
value problem

~ 0 ~ o)
A - '.si I B zi
o™ 0,
-C o] V.
i
0
X.
‘1
o]
where z. = .
* o]
&;

If H is available then a lower dimensional generalized eigenvalue
problem can be solved using c;:he system S(A,B,H). If s, and :t::L are
the finite solutions then s, = -|Re s,| + 3 Im s, buii x0 =
only if the corresponding s, is in the LHP. The p branchés tha%
stay finite approach the S and the associated eigenvectors
approach the x.°. In the generic case p = n - m, in the non-
generic case 0°< p<n - m

5) In the generic case the asymptotically infinite behavior is
characterized by

c . <) @
dJ.ag(sl reesiSy )

wn
]

=] [==] @

N = [vi reee VL 1,

[>=) o«
where each pair S; r vy 1sa solution of the eigenvalue problem

e g e
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[(si°)2 r-grt BTQB]vi° = 0.

The m branches which approach infiaity stay on the negative
real axis with an asymptotic radius of s.,®/p% . (These are first

order Butterworth patterns, contrary to ﬁbnham {12] p. 318). The
associated eigenvectors approach Bvi°.

6) In the nongeneric case the infinite behavior is characterized
by the same S® and N and also by a multi-index y. The (n-p)
branches that approach infinity group into m Butterworth patterns.
The ith pattern is nith order, with asymptotic radii equal to

3 ® l/ni

Properties of Butterworth patterns are summarizud in Table 2.2.

There are n., vectors which form a basis for the subspace associated
with each pattern. These are

n:=1
Bvi°, ABvi°,...,A 1 Bvi°.

The multi-index y lists the ni's in the following way:
.Y = (01’ ll' 21,.-.,[!11-1]1, 02,-.-,[1’12-1]2,-..,[nm"l]m).

If we define the controllability matrix

u = [BN®,...,ABN",...,a" % BN],

which is an n x (nm) matrix, then each term (i,j) of the multi-~
index defines the column A*Bv.” of U. The collection of all
columns defined by y we call % » therefore

gy = {Bvl?,...,Anl‘le ® Anmflsvmml.

The columns of o’ form a basis for the subspaces spanned by all m
Butterworth patterns. In the generic case U’ = BN®™.

Computing S, N”, and Y in the nongeneric case is numerically
an ill-posed problem because arbitrarily small changes in B or H
cause the problem to become generic with only first order patterns.
The s.®'s and v,”'s associated with first order patterns are the
nonzero solutions of the eigenvalue problem given in step 5.
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Table 2.2

Butterworth Patterns

Order Angles that the asymptotes make with the negative
real axis
1 o°
2 +45°
3 0°, x60°¢
n (odd) + L1800 g=0,1, ..., 2L
n 2
. 1 o n
n (even) * ;-(2+§)180 , 2 =0,1, ..., 5 - 1
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.and v are given by Shaked [19] and Postlethwaite [36], but neither
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A

The results for the multiple input case have been established

over the last several years. The attraction of the finite branches to
the transmission zeroces of S(A,B,H) is stated in Kwakernaak and Siwan
[8]. Both Kouvaritakas [34]'and Shaked [19] use the Hamiltonian
system to find the transmission zeroes. Neither use the generalized
eigenvalue problem, as done here, which can easily be used to compute
the transmission zeroces and angles of arrival. Kwakernaak and Sivan
[8] conjecture that the infinite modes group into Butterworth patterns,
and Kwakernaak [35] later used some algebraic function theory.to prove
this. Wonham [12] gives a theorem which describes the behavior of the
optimal root locus in the generic case. The asymptotic behavior of the
eigenvectors was established by Harvey and Stein [4] in the generic

case and by Stein [5] in the nongeneric case. Algorithms to find S

addresses the inherent numerical instability of their solutions. Aan

algorithm to find S®, N, and y is given here in Chapter V.

2.3.11 The IALOR Map

The last of the maps to be defined is the inverse of the LQR(p) g

map as p + 0, and it is denoted by

IALQR: lim s; (p), lim x; (P} *~ Q,PR.
p+0 p+0

This again represents a synthesis problem: given the desired asymptotic

properties of the LQR(p) map characterized by

0 © Y
s, x°, s7, N, and v;
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find Q and R such that the optimal regulator has these desired properties.
This synthesis problem is posed and solved by Harvey and Stein [4] in
the generic case and by Stein [5] in the nongeneric case.
The algorithm presented by Stein starts with the following assump=-
tions: The s° matrix has p stable diagonal elements. The p columns
of x° are linearly independent and for each there exists a vio such that
(,A—siolxiO + Bvi° = 0. Furthermore, the xio do not lie in the image of
UY . (To avoid complex arithmetic s® can be made block diagonal and
the complex conjugate columns Xy and X;,.1 ©an be replaced by Re xg and
Im xi). The S* matrix has m nonzero and positive diagonal elements.
The N matrix in invertible, and the multi-index ¥y is such that
n

+ ce. + N =n~-p.
1 m P

Let P be a permutation matrix that switches around the columns of

Y

U' in an arbitrary manner except that the last m columns of UYp are

Anl-l Bvlm,...,Anm~l vaw. Then we have

Lemma 6 The quadratic weighting matrices (not unique) that produce
the desired asymptotic properties are given by

g = [0,1] x°, u¥p] ™t

o =T o =2

R= @) T %)t

0 = HH.

The last step in the synthesis problem is to solve the linear
quadratic regulator problem for several values of p and "trade off"

control energy with eigenvalue and eigenvector placement.

2.3.12 Selecting Quadratic Weights

The following quote from Athans [2] in 1971 is still true today.
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The selection of weighting matrices in the quadratic

criterion is not a simple matter. Usually they are

selected by the designer on the basis of engineering

experience coupled with altermate simulation ruans for

different trial values. There is no universal agree-

ment on precisely how these are to be selected for any

given applicatien.
At the heart of the problem is that many differenit and someitimes
contradictory specifications have to be lumped into a single cost
“Ffunction. Over the years several ad hoc methocds have been developed,
the best known being the inverse square methed due to Bryson. A few
remarks are made in Chapter III about this method. See the references
in Harvey and Stein [4] for otlier methods. None can be considered
uniquely satisfactory.

Some encouraging prograss has been made on the problem of selecting
quadratic weights to produce a desired asymptotic eigenstructure. The

" algorithm due to Stein [5] presented in the previous section is an
[

example of this. There remain, however, other types of specifications
which cannot adequately be described using a clcosed loop eigenstructure.
For example, constraints may exist on feedback gain levels, or adequate
stability margins may have to be assursd. The relationship between

quadratic weights and these types of specifications needs further

reseaxch.
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CEAPTER III

angles

3.1 Introduction

Equations are derived for the angles on the root locus of the out-

put feedback problem. The angles can be computed at any point including -

the points of departure and approach. By using the generalized eigen~
value problem the angles of approach can easily be computed. These
results are then applied to the optimal root locus of the linear
quadratic regulator by using the Hamiltonian system. Egquations are
also derived to find thé sensitivity of the closed loop eigenvalues and
the directional derivatives of the closed loop eigenvectors. Finally,
a more general dependence of Q and R on p is csnsidered and equations
for angles and sensitivities are used to analyze the inverse square
method of selecting quadratic weights.

Only the case of distinct closed loop eigenvalues is considered.
The equations derived in this chapter are not valid at the points
where there are multiple closed loop eigenvalues, and the equations

cannot easily be extended to handle these cases.

3.2 The Ouput Feedback Problem

3.2.1 Finding the Closed Loop Eigenstructure Using the Generalized
Eigenvalue Problem

The closed loop system matrix for the output feedback problem is

1
Acl = A - E’BKC. (1)

The closed loop eigenvalues, eigenvectors, and left eigenvectors are

L WA
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defined in the usual way by
(Acl - siI)xi = 0 (2)
H .
Yi (Acl - SiI) = 0 (3)

Now we state a lemma which we shall use in the remainder of this

chapter.
- ol

Lemma 1 The 3., X and yiH are solutions of the generalized
eigenvalue préblems

A - siI B xi
-1 =0 (4)

-C ~-kK v
e - i

q

g _u][
[yi ni ] A~ siI B
= 0. (5)

-C -kX L

Reﬁark k=0 is now allowed, in which case (4) and (5) can be used
to find the transmission zeroces, zero directions, and left zero
directions.

Remark When k > 0 there are exactly n finite solutions to (4)
and (5), and when k=0 there are anywhere from O to n-m £f£inite
solutions.

To prove lemma 1, from (4) we see that
(AmsiI)xi + Bvi =0
_ 1
vi = % XC xi

) 1 _
(A—siI)xi ~ BXKCx, =0, (8)

and then. (2) follows immediately from (6). Therefore the si and e

that are solutions cf the generalized eigenvalue problem are the closed

e L

e ke L
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loop eigenvalues and eigenvectors. In a similar way (5) can be reduced
to (3), and the proof is complete.

Lemma 1 is not a new result, but it is not well known. Its proof
is simple and direct, and it provides valuable insight into the feedback
control problem. For example, Laub used this result to show the
relationship of two methods of computing transmission zerces (see
Appendix A). It turns oué that the vi's and ni's can be used to com-
pute angles of arrival to the transmission zerces.

3.2.2 Finding dsi/dk Using the Eigenvalue and Generalized Eigenvalue
Problems

In the eigenvalue problems (2) and (3) the first derivative of Acl

with respect to k exists everywhere in the open interval (0,»). We use

this fact to find dsi/dk, the derivative of the closed loop eigenvalue

with respect to k.

Lemma 2 For any k in the interval (0,»), and for any distinct S;v

B

dsi - JL.Yi BKC xi -
dk k2 ‘ HK '
¥y %4

To prove lemma 2 differentiate {2} o get

g - - 4. =
ak (RSl %y + A y=s;I) G x; = O (8)

Multiply on the left by the left eigenvector yiH, which cancels the

second term and leaves

4
yiH Ix (Acl-siI) X, = 0.

ok R e e o PR i s 8
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Rearrange to get

H(dAcl)x
¥; \Tak /*i
yin

ds,

i

=
dk
i
Differentiate Acl to get (7). It is always possible to normalize the
eigenvectors so that Yini = 1, in which case the denominator in (7)
can be removed. This completes the proof.
Lemma 2 is a standard result that can be extracted from the

higher mathematics of Kato [37]. Wilkinscn [38] gives a more readable

derivation of a similar result - the sensitivity of s to changes in
e

A

o1 Shaked [19] derives and uses (7).

In the generalized eigenvalue_ problems (4) and (5) the first

derivative of the large matrices with respect tc k exist everywhere in

“the semi-open interval [0,»). We use this fact to again find dsi/dk.

Lemma 3 For any k in the interval [0,«) and for any distinct si,

ds -n.H K-ln
1.= 1 1 (9)
dk H, B
¥ *5

To prove lemma 3 use obvious substitution of (4) to get
L) - s;Mlv, = 0.

Differentiate to get

EE'(L - SiM) v, + (L - siM):ﬁ?-= 0.

Multiply on the left by the left eigenvector, call it uiH, which will

cancel the second term and leave

; .
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i
|
Rearrange to get i

i
1:
ds u H (QE) v i
i 7i dk: i
u v,

iHM .

|
1

Differentiate L and substitute back the original terms to get (9).

This completes the proof. Stewart [39] has worked on a problem similar

to this - the sensitivity of S; to changes in L and M.

3.2.3 Angles on the Root Locus

Theorem 1 The angles on the root locus, for any value of k in the
interval [0,»] and for any distinct s;, are found by

H
¥y BKC X,

e —p——

arg (dsi) = arg m O<k <= (10) ‘
Y. X. ;
i Ti i
niH k1,
arg (ds;) = arg — 0<k<w. (11)
\ y. x

ey

Remark The angles of departure are found using (10) with k = =
(to be more precise, let £ = 1/k and use £ = 0).

The angles of
approach are found using (11) with k = 0.

Remark (10) is due to Shaked {191, (11) is new.

We prove theorem 1 by showing (10) and then (11) are correct. To

derive (10) start with (7) of lemma 2, the formula for the derivative

of an eigenvalue. We have that

H \
(dsi> ; ¥, BKRKCx,
arg = arg| —

dk k2 y.Hx.
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and then the angle is

arg{ds.) = arg(dk) + arg($L>+ arg(=-1)
i 12

-y.I'I B KCx,
i i
+ arg .

: X,
Yl 1

Now arg(=-1) = 180°, and because k is positive and varies negatively
from infinity to zero it follows that arg(l/kz)'= 0° and arg(dk) = 180°.
Therefore (10) is true.

We cannot use k=0 in (10) becuase Acl is not defined for k=0. It
is very awkward to use a3 limiting argument as k -+ 0 (as does Shaked
[19]) because Cxi <+ 0 and yiHB -+ 0, as seen from (4) and (5).

To derive (ll) start with (9) of lemma 3, the formula for the

derivative of a generalized eigenvalue. We note that (9) is well

“defined for k=0. The formula for the angle is

arg(dsi) = arg(dk) + arg(-1) + arg —EL—E;~————.

Since arg(dk) = 180° and arg(~l) = 180°, (il) follows. This completes
the proof.
When k is in the interval (0,») either (10) or (1l1l) can be used

to find angles. To show this we note from (4) and (5) of lemma 1 that

-k Kalv.
i

{2

i
w

i
o

=
~

i e i S s




R - @ - = 7 o e’ R S AN /S R LT ST e e T e A AR e T e e e TR T T T A T T mmee T TR

43
Substitute these into (10), and the result by inspection is (11).

|
|
|
|
Except for k very close to or equal to zero, (10) is better to use for i
computing angles because it involves solving an eigenvalue problem of 1

i

lower dimension than the corresponding generalized eigenvalue problem. 2

When k is very close to zero, however, (11) is a more reliable equation. |
The tradeoffs when k is very close to zero are the same as those for
solving transmission zeroes using (2), an eigenvalue problem with high
k gain feedback; or (4), a generalized eigenvalue problem. Laub [20]

f

gives a good discussion of these tradeoffs and concludes that the

generalized eigenvalue problem is better (for computing transmission

zeroes).

3.2.4 Sensitivity of the Closed Loop Eigenvalues

For each eigenvalie. on the root locus we can write the approxima-

e

|

| .

g tion

i

{ ds, As,

1 — N

| &k VA

? Therefore

] g
rt s,

las | % | - lax| .

The term [dsi/dk| is defined as the sensitivity of S, - One use of the

sensitivity is that to a first order approximation a change iAkl will

move the closed loop eigenvalue s, a distance !Asi[ in the direction

arg(dsi). It is immediate from lemmas 2 and 3 that
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H
ds, Y, BKCzx,
i 1 i i X
= > = O<k g = (12)
k Y. X,
i1
dsll niH Kﬁl Vi
dkl= Hx 0 <k <o (13}
Yy %

Wilkinson [38] discusses in detail the sensitivity of eigenvalues |

and eigenvectors, including the case of multiple eigenvalues. It

turns out to ke much easier to derive bounds on ldsi/dkl for the multi
ple eiéenvalue case than to derive an expression for dsi/dk. For our

purposes we will continue to assume that the eigervalues are distinct.

Examgle

Several root loci are plotted for an output feedback problem, and
the angles are computed in order to verify the preceding results. The

same system S(A,B,KC) is used as by Shaked [19].

p- -y
-4 7 =1 13

. ;
A = Q 3 0 2 B = o] C = 0 =5 2 =2
4 7 =4 8 0 8 -14 O 2
0 -1 0 0 -2 0
L’ - oy -

Three different output feedback matrices are used, Shaked used K = I.

Casu # 1 Case # 2 Case # 3

10 0 10
=l o1 k=1 = 1o so

~
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Figure 3.1

Root Loci of a Linear System with Output Feedback
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Table 3.1 |

|

Angles of Departure and Approach for Example 3.1

) |

|

Case Angles of Departure Angles of Approach |

1

-4 * 2i 1 2 lxi

%

1 * 173° 0° 180° ¥ 170° ~ |

|

2 t 149 0 180 ¥ 121 |

3 + 135 0 180 ¥ 114 ;

|

|

,L
¢

i :
i/.
:
t.
1
!
3
L

| s

i J
]
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Points and Angles on the Root Loci of Example 3.1

Angles are in parentheses

‘Case k Left half plane Right half plane
1 100 | = 4.45%2.02i (+ 177°) 1.14 (0°) 1.94 (180°)
10 | -11.4 (180) =5.16 (0) 1.65£0.42i  (* 81)
1| -84.1 (180) =-6.69 (180) 1.53+0.85i  (* 137)
1078 -sx10? (180) -3x10° (180) 1.00£1.00i  (+ 170)
2 100 | - 4.10%#2.06i (+ 151) 1.15%(0) 1.93 (180)
10 | - 4.86+2.40i -(+ 161) 1.81£0.65i (* 57)
1| -10.34%0.71i (+ 113) 2.34x1.331 (& 85)
10| -ex10° (180) -3x10° (180) | 1.00+1.00i (F 121)
3 100 | - 5.85+3.18i (* 161) 2.57£1.161i (¢ 15)
10 { -20.5 (180) =8.7 (0) 4.20%0.481  (+ 62)
5 | =37 (180) -8.6 (180) 4.01 (0) 5.00 (0)
1 i-159 (180) =-12.0 (180) 3.84%1.75 (+ 140)
107%]-1.5x10% (180) -8x10® (180) 1.00£1.00i  (+ 114)

Ty
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Numerical results are given in Tables 3.1 and 3.2, and the root loci
are plotted in Figure 3.1.

As expected in all three ¢ases the branches of the locus depart
from the open loop poles. Two of the branches stay entirely in the LHP
with different angles of departure in all three cases. The branches
meet on the negative real axis and then continue in opposite directions
as might be expected in the single input case. However, the branch
that goes to the right eventually turns around, and then both branches
approach infinity on the negative real axis with different asymptotic
radii in each case. The other two branches stay entirely in the RHP,
so the system is always unstable. These branches eventually arrive at
the transmission zeroces at 1 * i with different angles of arrival in
each case. The path taken in the third case is unusual, '$0 say the
least. |
| Shaked's paper from which this example is taken contains some
errors which will be pointed out here. His calculation for the angles
of &eparture contains numerical errors. More importantly, his formula
for the angles of arrival (3.16b) is incorrect due to an error in
the derivation after (3.15). This leads to the incorrect conclusion

that angles of arrival are.independent of the output feedback matrix K.

3.3 The Linear Quadratic Requlator

Theorem 2 The angles on the optimal root locus, for any value of p
in the interval [0,«], and for any distinct s;, are found by

o BR BT
vz, 'alo o % ML
H i

arg(dsi) = arg

T o R e A R U e e e A S b

T T
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arg(ds;) = arg 0<p<m= (15)

Remark The angles of departure are found using (14) with p ==,
and the angles of arrival by using (15) with p = 0.

Theorem 2 is proved by applying (10) and (11) of theorem 1 to the
Hamiltonian system S(i,ﬁ,i&). The vectors z; and wiH are the right and
left eigenvectors of Z, the Hamiltonian system matrix; and the vectors

vy and niH are found by solving generalized eigenvalue problems analogous

to (4) and (5). ©Note that

éi& - 0 BR "B .

This completes the proof. An example c¢f an optimal root locus is

given in Chapter IV after a discussion of asymptotic equivalence classes.

The sensitivity of the optimal closed loop eigenvalues is found
by applying (12) and (13) of lemma 4 o the Hamiltonian system.

The number of computations needed to compute (14) and (15) can
be reduced by using the following identities. First, using (4) and (5)

it can be shown that

v, =mn,.
Now let z, = (xi ' Ei )" be the eigenvector associated with s; in the
. . - - H —H,H
LHP, let si be the mirror of s; in the RHP, and let s; = (xi ’ Ei )

be the associated eigenvector. Then

T R

s

T
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3.4 Directional Derivatives of the Closed Loop Eigenvectors

We found dsi/dk for the eigenvalue problem in secticn 3.2.2.
Now we continue that discussion and find dxi/dk. The references are
again Kato [37] and Wilkinson [38]. The results are

Lemma 5 For any value of k in the interval (0,=), and for any
distinct si,

dsi
Tl B‘:‘fi (16)
ax, ,
il Vi + bixi (17)
LfdA
7, 5(Set)s,
3 dk i
where Bji = a
Yj xi
n -B.i
eIt
j=1 Si7S3
j#l
-xi Vi
bi = _?I;— . (18)
X5 *5

Equation (16) is derived in section 3.2.2 and is included here for
convenience. To derive (17) we will need the following:

g &y
X, = = 0. (19)

This can be explained as follows: xi(k) and xi(k+Ak) can be normalized
to lie on the same hypersphere,as Ak -+ 0 then [xi (k+Ak) - xi(k)]/Ak -
dxi/dk, which is tangent to the hypersphere, and therefore is orthoganol

to x..
i

. . . n .
Now, since the eigenvectors x5 form a basis for R™ we can write

) AT o e s 7 . i

PP S poe

B P P T

L
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-l @ -s.nlx = xe (20)

dk “cl i i

ax;

e Xb, (21)
where b and ¢ are vectors and bi and c; are components of these
vectors. Substitute (20) and (21, into (8) to get

(Acl - siI)kb = Xc. (22)

Multiply (20) on the left by yjH, note that yiji =0 for 1 # 3,
and then after some algebra
B.. 1AL

J 0 j=1i

By manipulating (22) we see that (sj—si)bj = cj for j=1,...,n. Solve

for bj to get

- 8.,
ji . .
Si-=s; 1#4
b, =¢ 7 . (23)
J undetermined j=1i

Substitute (23) into (21) to get (17). The only thing not determined
is bi' which we can find by multiplying (17) on the left by xiH to get

X B Efi = x H.V + b.x Hx

i dk i i iti i c
By (19) the left hand side is zero, and therefore (18) follows. This
completes the proof of lemma 5.

The directional derivatives for the optimal eigenvectors can be

found in a similar way. Use (17) with the Hamiltonian system to get
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[ax,
—_t
dk
dz,
——i o= ’
dk
dEi
dk

and then extract dxi/dk@

3.5 Inverse Square Quadratic Weights

One common ad hoc method for selecting quadratic weights is the
inverse square method. Here we give a brief explanation of the method
and show one way to analyze it if the first quess of quadratic weights
is not satisfactory.

Start with the quadratic cost function

~

[+ - Y
J = | (%70x + u'Ru)dt.
0

Require that Q and R be diagonal, and then the cost function can be

rewritten

n 2 m 2

J = L og.., x,. + I r,.,u, jdt.

. ii i . ii 7i
i=1 i=1

0

Decide on a maximum allowable deviation for each state and contrxrol and

call these x. and u, . Then select the weights so that each

term has equal contribution to the cost function at maximum deviation,

i.e.
1 . . oL
94 2 ’ ii 2 .
X. u
imax max

Wwith Q and R chosen in this manner, compute the optimal gain matrix.

If the system behaves well with this controller then do not make any

changes in @ and R.
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If the system does not behave well with this controller then Q
and R must be changed. Suppose the state xi(t) is sluggish and needs
to be speeded up. It may suffice to increase qii or to decrease the
wéighting on the control that predominantly controls X, . This scheme,
hoﬁever, may not work. Suppose the predominant mode of X is S; e in
other words xi(t) ¥ ¢ e-sit, where ¢ is a constant. If s is near a
transmission zero then decreasing the control weight wiil cause s, to
move closer to the transmission zero, and this may even "slow down" si.

Now we .give .a method to determine how the modes change with respect
to a change in one or more of the diagonal elements of Q or R. Simply
use the following lemma which follows easily from the previous results
of this chapter.

Lemma 6 Let Q(p) and R(p) be dependent on p, and let

A -BR(p) 18T
z ="
-Q(p) -aT

Then for any p such that dzZ/dp is well defined, and for any dig-

tinct s,,
i
' “'iH(g_g)"i
arg(dsi) = arg(dp) + arg 4 (24)
W, 2z,
i i
[ds. w.H QE . .
- |2 do 2 (25)
dp H :
w. zZ,
i ‘i

Supposie R is constant and

Q = diag(dyqre--sPqg rev-rq )

L

o ah
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Then déZ/dp will have all zerces except for Iy Each of the modes s i

will move an approximate distance
, d
, las, | % Il Lol

in the direction arg(dsi).

: .
) k
. ]
:

i

z

|
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CHAPTER IV

Baquivalence Classes of Quadratic Weights

4.1 Introduction

As noted in Chapter II, quadratic weighting matrices are not unique.
Rather, many choices produce the same controller gains. This chapter
provides a characterization of two classes of equivalent weights, and
for one of them defines a unique canonical element. These characteri-
zations may prove useful in design.

Both E° and E equivalence classes are defined. Then sufficient
conditions are given for different quadratic weights to be in the same
E equivalence class (in other words to have the same asymptotic pro-
pertie;). A canonical element of the E class is defined, and an

algorithm is given to find it. Finally,it is shown by example that

- the closed loop eigenstructure (and hence the optimal root locus) in

the nonasymptotic region can be different for members of the same E

equivalence class.

4,2 Definitions of the E° and E Equivalence Classes

(Q,R) and (é,ﬁ) are members of an equivalence class if they

produce the same optimal gain matrix. We use the following notation:
o ~ ~
(Q/R) E- (Q,R),

where E° has the meaning "produces the same optimal gain matrix as."
This is not the only type of equivalence class that can be defined.
(Q,pR) and (é,pﬁ) are memhers of an equivalence class if they produce

the same asymptotic properties (which are So, Xo, Sm, Nm, and v). We

N o

i P o
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use the following notation:

® o~ o~
(Q,PR) E (Q,pR),
where E“ has the meaning "produces the same asymptotic properties as."

The p is included in the parenthesis to emphasize the dependence on the

control, weight.

4.3 sSufficient Conditions to be in the E. Equivalence Class

In the form of two lemmas we present sufficient conditions for
(Q,pR) and (é,pi) to be in the same Ecn equivalence class.

Lemma 1 Assume (A,B) is controllable and F is optimal for some
(Q 14 R) . Then

(Q.0R) E (Q,0R)
if there existsann x n real symmetric ¥ such that
ey - T
(i) Q=Q-A"Y - ¥A
(ii) ¥B = 0.
To prove this we first show that for any p > 0 the closed loop
eigenvalues of the optimal regulator are the same when either Q or é
is used (the R is the same in both cases). The closed loop eigen-

values are the eigenvalues of Z, the Hamiltonian matrix, and the

eigenvalues are invariant under the following similarity transformation:

- 1 o|[a -2 BT[]z o
uzw - = e
v 1|l-0 -a -y I
a - L pr71gT
~o+aTy+yA -aT

Using the same transformation the eigenvectors o- Z change from

T T
z, = (x.
i

T_\T =
i ’ xi Py to zi (xi

' xiT(P+Y))T. The %, portions are the

. N 9 5 e emealdn
s . L P . R
I T U S XU Wt - Iin fo 9

k
]
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closed loop eigenvectorsof the optimal regulator and these do not change.
Since for any p > 0 the closed loop eigenstructure is invariant, the
asymptotic properties as p -~ 0 are invariant. This completes the proof.

To show that the closed loop eigenstructure is the same for any
p > 0 we could alternatively have used a result due to Meolinari [27]
that was reviewed in section 2.3.8. We note that it is not necessarily
true that é > 0 or p+Y > 0. The conditions given here are only suffi-
cient. We were not able to prove (and not able to find a counterexample)
for the éonverse.

For the next lemma let D and E be diagonal matrices with positive
diagonal elements di and e, sueﬁ that

DE =8 .

All of the other terms are defined in sections 2.3.10 and 2.3.11.

Lemma 2 Assume that (A,B) is controllable; that F isooptgmalmfor

some {Q,R); that the asymptotic properties are s, X , S, N,
and v; and that

v, vV =1 for i=1,...,m

(Q,pR) E (Q,pR)

if there exists a D and ¥ such that

u = [0, D] [x°, ul P17 (1)
R= @ TEZ )7t 2)
O =84H-AY - YA (3)

Before proving this we note that equations (1-3) are similar to
those used by Stein [5] in his algorithm for selecting gquadratic weights,

as reviewed in section 2.3.11. He sets D=I, E=Sm, and ¥=0; and he

.
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places no restriction on the magnitudes of the viw's.

The proof of lemma 2is in two parts. The first part is to show
that subtracting ATY + YA in (3) does not change the asymptotic proper-
ties,but this was established in lemma 1. The second part is to show
that s~ can be split into D and E without changing the asymptotic
properties. The proof that Stein uses to prove his algorithm is only
trivially changed when s” is split into D and E, so we will not repeat
it here. This completes the proof.

Only sufficient conditions are given in lemma 2 for quadratic
weighting matrices to be in the same E egquivalence class. We do not
yet know if these conditions are necessary, in other words if by chang-
ing D and Y every member of the Ec° equivalence class can be reached.

The assumptions about the magnitudes of the vim's are made without

loss of generality. These vectors are used to specify directions, and

their magnitudes do not change the asymptotic properties. If the vim's
are not of unit magnitude then it is always possible to find a diagonal
matrix G such that the columns of N = N G are of unit magnitude.
Then.in (1) and (2) we can replace N by ﬁa, E by EG-l, and D by DG
without changing H and R.

Several other changes can be made in (1-3) without affecting R and
é. The H in (1) can be premultiplied by an m x m unitary matrix (W
such that WW‘T = I). Then in (3) when Q is formed the influence of W
is lost. In (1) the magnitudes and the order of the columns of x° and
all but the last m columns of UYp can be changed without changing H.
In (1) the order of the last m columns of UYp, and in (2) the order of

the viw's can be changed without changing either H or R, as long as the

corresponding di's and ei's are changed.
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4.4 A Canonical Element of the E Equivalence Class

We define the canonical element of the E equivalence class to be
the (Q,pﬁ) reached by (1-3) when D=I, E=Sw, and Y=0. By "canonical"
we mean unique, but by changing D and Y many other canonical elements
could be defined. The choice used here has an uncomplicated struc-
ture and agrees with Stein's algorithm [5] when the vim's are unit
magnitude.

Given any (Q,pR) it is always possible to find the canonical
element. Use a generalized eigenvalue problem to find s® and Xo, as
described in section 2.3.10. Use the algorithm in section 5.2 to find
Sm, Nm, and Y. Then use (1-3) with D=I, E=Sm, and Y=0 (and with

T

vi vim = 1) to find the canonical element (é,pi).

4.5 Behavior of the Optimal Root Locus in the Nonasymptotic Region

Members of the E equivalence class have the same asymptotic pro-
perties. They may or may not, however, have the same closed loop eigen-
structure for p > 0. As a consequence the optimal root loci may lock
very different in the nonasymptotic region. This is important because
when selecting a Q and R using (1-3) the final choice of pR uses a p>0.

Suppoée a (Q,pR) is computed using equations (1-3). If£f D and E
are kept the same and Y is changed to get a different Q then the closed
loop eigenstructure will be the same for any p>0. This we know is true
by the proof of lemma 1 (and also due to Molinari [27]). For any
scalar @ > 0 if D is changed to oD and E to (1/a)E then (Q,pR) will
change to (azQ,pazR), and it is easy to see that the closed loop eigen-
structure is the same for any p > 0. However, if D and E are changed

in a more complicated way (change di to aidi and e, to (l/ai)ei, where




the ai's are all positive and not all egual) then the closed loop eigen-
structure will not be the same for any p > 0. Example 4.1 shows how

the optimal root locus can change in the nonasymptotic region.

Example 4.1 3

We consider a linear system with the following A and B matrices.

] i 0 1 0 dT ro 0 )
% -5 -4 0.1 1 0 0
A= B =
: 0.1 0 -1 O 1 o
:
!
3 i 0 0 0 5. EO 1l ]
i
!
§

The asymptotic properties of an optimal linear quadratic regulator are

e TT MR

specified, and equations (1-3) are used to compute the quadratic weighting !

matrices. Six different values of D and E are chosen. The purpcse of

R it s

this example is to show that the choice of D and E does not change the
asymptotic properties but dramatically changes the behavior of the op=-
timal root loci in the finite region.

The linear system has four states and two inputs. The first input
drives a first order subsystem with a pols at -1.0. The second input E
drives a third order subsystem which can be broken down into a damped

oscillator with poles at -2 *i and a first order "actuator” with a pole

at =5. The 0.1 terms in the A matrix couple the two subsystems. i

The asymptotically finite properties are specified by ;

oG s

o . o 1 1 :
s 1,2 = 0.5 £ 3.04 x l'zd = . * . i i
an h.v ]




s

6l

The "d" means that the eigenvectors are desired and not necessarily
obtainable. The "v" means that the element is not specified. The

result of projecting the complex eigenvectors onto the obtainable sub=-

spaces is

” ‘1 r
.341 ~-.244

o .561 1.146

X = + 1.

1.2 0 0
.232 4.476
5 J - J

The asymptotically infinite properties are specified by

1

(-~} o0

s” = , N =1I, y= (01, 02).
2

In each of the six cases there are two first order Butterworth patterns.

The D, E, R, and H matrices are shown in Table 3.1l. The optimal

root loci are in'Figure 3.1. We see that the behavior of the loci in

the finite region is dependent on the choice of D and E. The angles
of departure and approach are different in each of the six cases aﬁd
are listed in Table 3.2. Points on the loci for different values of p
are listed in Table 3.3.

In the first case the 2,2 element of R is bigger than the 1,1
element by a factor of 3200, and for p "not too small" this causes the
subsystems to decouple. Since the second input is heavily weighted
the pole at -1 does not move much. On the other hand the branches of
the locus associated with the third order subsystem (driven by the
first input) start to behave like the optimal root locus of a single
input system. Two of the branches form a second order Butterworth

pattern and the third branch approaches a transmission zero somewhere

L aiiagg o 2 e T
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to the left of =-5. FinalLy, as p gets "very small" the subsystems
couple together and the specified asymptotic properties are achieved.
The branches that start at -2 + i eventually meet on the real axis and
form two first order Butter%orth patterns.

In the second case the decoupling of the two subsystems is less

apparent. The branches of the locus that start at -2 + i meet on the

A

negative real axis at about -4.8. One of the branches goes to the left *
and forms a first order pattern. The other goes to .the right, joins
the branch that starts at -1, and then they approach the transmission
; zerces.

In cases 3 through 6 the branches that leave the open loop poles

at =2 + i eventually make it to the transmission zerces at -.5 % 3i.

Given just the locations of the open loop poles and the transmission,

the locus in case 4 is probably the most "desirable" pattern. This
case allows a meaningful tradeoff between control weight and asymptotic
properties. It happens to correspond to the canonical member of the

A E" equivalence class, as defined in the previous section. For a wide
range of values of D and E the locus does in fact look like the one

in case 4. Not until the 2,2 element of R is smaller than the 1,1
element by a factor of one million does the behavior of the locus in
the finite region change significantly. The behavior in cases S and 6

cannot easily be explained. The subsystems do not appear to decouple

as in cases 1 and 2.

From the above example it i# not obvious how to choose the D and
E matrices. Since only the ratios of the diagonal elements of the D
and E matrices are important there are m-1 degrees of freedom available
to the designer. (In the single input case there are no extra degrees

of freedom). It may be true that the extra degrees of freedom can be

o
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used up by specifying angles of approach and departure, but we do not
know of any algorithms that allow you to do this, nor do we know of a

check to determine which angles are valid.

e
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Table 4.1

Matrices Used in Example 4.1
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- Case D E R B (where O = H'H)

_ po - o -

8 1 1 1 1M T o 0 o

2 |

{ 56.6/ | .0353]| goo| | 240 -170 56.6
- 1r ar -

g 2 {1 1 1 K 0 o ]

F i 46.0 ' .0435 s28( |195 -138 46.0|

, - ar. Tr 1r .

| 3 1 1 1 0 0 0

| 40 .05 4cc| {170 -120 40

? s [1 IR 1 1Mo 0 o ]

t | 1| 2 || .25) |4.25 -3 1

s

a - r r T .

; 5 1 1 1 0 0 0

‘ .002| | 10° || 107%|.0085 -.006 .002

oo > -~ - - -

| 6 1 1 1 0 0 0

f .0002 10* 1078|{.00085 -.0006 .0002

% ks - - b - b -

;,

F

DT
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|
Table 4.2 |
4
Angles of Departure and Approach for Example 4.1
‘
|
Case Angles of Departure. Angles of Approach |
|
-2+i -5 -1 -.5+3i |
i
1 + 100.8° 180° 180° + 11.7°
2 + 99.3 180 180 + 11.9
3 + 98.1 180 180 +12.1
f‘ 4 + 70.5 180 180 + 21.5
‘ 5 "+ 4.9 180 180 1.4
6 + 10.2 0 180 + 9.3
t
F: o
{
:
§?
!ﬁ 2
L“ E
;
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Table 4.3
Points on the Optimal Root lLoci of Example 4.1
Case o) Closed ILoop Eigenvalues
1 10 -2.20%1.53i -5.08 -1.28
1 -3.03 +2.664 -5.55 -1.42
I -5.16 +3.324 -6.93 -1.67
.01 | -18.5 -13.8 -2.17+2.011
10”16 -2x108 -108 -0.50 + 3.00i
2 10 -2.13+1.41i -5.09 -1.24
1 -2.77+2.42i -5.60 -1.42
.1 -4.30%2.944 ~7.68 -1.79
.01 | -19.7 -12.2 -1.90+ 2.284
10™16 -2x108 -108 ~0.50+ 3.004
3 10 -2.09+1.344 -5.09 -1.21
1 -2.61 +2.28i -5.63 ~1.42
.1 -3.84 + 2.76i -8.01 -1.91
.0l -1.73+2.421 -20.1 -11.6
10-16 «0.50 % 3.001 .- ~-2x108 -108
4 10 -2.00+£1.07i -5.09 -1.04
" 1 -1.82+1.47i -5.72 -1.41
.1 -1.334 2.331 -8.85 -3.32
.01 -0.74 +2.88i -21.1 -1.01
10~-16 ~0.50 + 3.004 -2x108 =108
5 10 -1.73+1.18i -5.08 -1.87
1 ~1.65 + 2.06i -5.69 -2.77
.1 -1.66+2.89i -8.84 -3.88
.01 -1.04 + 2.99i ~21.1 -10.1
10716 -0.50 + 3.001 ~2x108 ~-108
6 10 ~1.89 +3.11i ~4.81 +0.89i
1 -2.36 +4.52i ~5.99 + 2.89i
.1 -3.05 * 5.91% -8.31+1.58i
.01 -3.72%5.501 -21.1 -10.9
1016 -0.50 £ 3.004 -2x108 -108

N
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CHAPTER V

Related Results

The three sections in this chapter contain new results concerning
the relationships between linear state feedback, quadratic weights,

and the closed loop.eigenstructure.

5.1 An Algorithm for Selecting F to Produce Desired Asymptotic Properties

In this section an algorithm is given to implement the IALSF map.
Given the asymptotic properties of the linear state feedback problem
characterized by So, Xo, sm, and Nm; we find a feedback gain matrix
(1/k)F tl.:t produces these properties as k + 0. Only the generic case
is considered, when Rank(CB) = m; and (A,B) is assumed to be controllable.

The algorithm presented here is analogous to Harvey and Stein's

‘algorithm [4] for selecting quadratic weights (the IALQR map). The

IALQR map gives a way to trade off eigenvalue and eigenvector placement
with control energy, and indirectly this affects the feedback gains.
The IALSF map gives a way to directly trade off eigenvalue and eigen-
vector placement with feedback gains, and indirectly this affects con-

trol energy.

So, XO, Sm, and N are assumed to satisfy the following conditions:

The s° matrix has (n-m) distinct diagonal elements. The columns of Xo,
as is always the case for closed loop eigenvectors, must be linearly
independent gnd for each there must a vio such that (A - siOI)xi°+Bvi°=O.
Furthermore, it is assumed that the xio are not in the image of B.

(To stay in real arithmetic, let s? be block diagonal and replace com-

plex conjugates xio and xi+1° with Re(xig) and Im(xio)). The Sm matrix
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is assumed to have m nonzero diagonal elements and N is assumed to be

invertible.

Theorem 1 The unique F matrix which produces the specified
asymptotic properties is

F = 8"s" ™) " o,1] x°,81 L. (1)
To prove this we first show that F has the desired asymptotically
finite eigenstructure. It suffices to show that the sio and xio satisfy

the generalized eigenvalue problem

This is true because by assumption there exists a vio such that
a -~ sioI)xi° + Bvio = 0, and by the way F is constructed ino = 0.
Since FB is full rank there are n-n solutions to this generalized eigen-
0
‘Next we must show that F has the desired asymptotically infinite
eigenstriucture. It suffices to show that the s: and vi° satisfy the

eigenvalue problem

(sI - FB)v, =0
1

-8,
1

" .

where s =

The parameter s is tne ith infinite mode as a function of 5: and k.
The si°° and vim satisfy the eigenvalue problem because by the way that
F is constructed
B = Ns (v L.
The last thing to show is that F is unique. We know that FB is

uniquely defined by s” and N . (I£f some of the sim's are equal then
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the vim's are arbitrary within a subspace but FB remains unchanged).

From the way that F is constructed we see that no extra freedom exists

to choose F. (If F is multiplied by a scalar o' then each sim changes

: to asim, and the asymptotic properties are not the same.) The proof
is complete.

Example 5.1 The same 2 and B matrices are used as in example 4.1,

namely that

- 1 - -

0 1 0 1l 0 0

-5 -4 0.1 1 0 0

A= B = .

| 0.1 0 -1 1 1 0 -
s
| B
L 0 _ i

L 0 0 5. i o l~

: The asymptotic properties of this system are specified for three cases,

and for each the F matrix is computed using (1). The root loci are

: shown in Figure 5.1.
E

The asymptotically finite behavior for each case is specified by

. 0 -.28
M ey 0| O5TL|L| 8%
’ 14 0 0
‘* -1.14 =371

The infinite behavior is different for each case. The specifications
and the resulting F matrices are shown in Table 5.1. g
In the first case we have that slm = 1 and 52cn = 2. There are two

infinite modes that stay on the negative real axis. In the second case

[+ <]

Sl 5 ) = * 120°, the two infinite modes
’

=1+ V3 i.. Since arg(~a ®
1,2

approach infinity along asymptotes that make angles of + 120° with the

@

positive real axis. In the third case ) = -/3 = i, and therefore
14
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- Figure 5.1 |
Root Loci of a Linear System with State Feedback 1
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mable 5.1
Matrices Used in Example 5.1
L
Case NS (N) F
po -
1 ‘1 o | 0 0 1 0
0 2 16 4 0 2
= - b -
2 0 1 8 2 .0 1
| -4 2 | 16 4 -& 2
. - . T
3 o 1 ] 8 2 0 1
-4 =273 | -27:713 -6.928 -4 -3.464
Table 5.2
Angles of Departure and Approach for Example 5.1
Case Angles of Departure Angles of Approach.
-2+i -5 -1 -3+ 2i
1 + 98,1° 180° 180° * 161.7°
2 + 92.8 180 180 ¥ 34.3
3 ¥ 79.1 0 180 + 32.5
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the two infinite modes approach infinity along asymptotes that make

o .
angles of + 30 with the positive real axis. For high enough gain this
closed loop system goes unstable. The angles of departure and approach

are different for each case and are listed in Table 5.2.

5.2 2An Algorithm for Finding the Asymptotically Infinite Behavior of

the Optimal Root Locus

Given the A, B, Q, and R matrices the objective is to find Sm, Nm,
and yv; which are used to characterize the asymptotically infinite be=-
havior of the optimal root locus. We assume that (A,B) is controllable
and (M,A) is observable (where Q = MTh, Rank(Q) = Rank(M) = p, and M

is p x n).

The algorithm described here is a variation of Shaked's [9], which

can be used to find s” and Y. The changes made to N simplify the

algorithm, the main reason £for that being the use of subspaces of "
spanned by the vectors vi“. After some definitions the algorithm is
presented in the form of 2 theorag. The theorem is proved, the Ui
matrices are discussed, and then an example is given.

Define the matrices

T
Gl-BQB
T
G2 = (AB) "QAB
6, = a'7'm Toa’ s,
and
G, = J.%7,
1 1 1
7. = ma* g,
1

Define the subspaces of "
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u =gr*

=
]

Uo ) ker Jq

=U
u 1ﬂ ker J,

a.=u. n ker J.p
1 i-1 i

with the dimensions such that
dim¥, | - dimUi = D.,

i=-1 i

Finally, define the matrices

(=}
]

matrix whose columns form a basis forlli,

without loss of generality let Uo = I.

2
1

m X Pi matrix whose columns are the vi's
correspouniing to the Py ith order Butterworth
patterns. If p, = 0 then Nicn is missing and
there are no ith order Butterwdrth patterns.

s, = pi b Pi diagonal matrix whose elements are the
sjm's corresponding to the Py ith order Butter-

worth patterns. If p;, = 0 then siw is missing.

Using the above definitions we see that

©

N

[N1 ,...,Nk]

R [+-) o
s = dlag(sl e rSy ),

where k < n - m + 1 is the highest order Butterworth

pattern.

T s S ST T
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In the generic case k = 1 and Ul = 0.

Theorem 2 For i =1,...,k congsider the Jordan canonical forms

T -1 T -1
@2 8y 7T 6 v = by, Wz][A 0] [y Wl = @

A is a diagonal métrix with real eigenvalues > 0, and

i T 0N

Remark If there are no ith order Butterworth patterns then W and ;
A will be missing.

The proof is by induction and uses the fact that all S; and Vi

(including those describing the asymptotically infinite behavior) must

satisfy
[OR + &7 (=s)d(s)]v = O (3)
where ®(s) = M(sI - A)"'B
: 1 1 ﬁ
=M(ET + 22+ ...)B.
} | ‘ (S 52 ) 1

Equation (3) is derived by Harvey and Stein {4]. It can also be found 3§
by plugging A, B, &, and K of the Hamiltonian system (defined in section
2.2.4) into (3.4) and manipulating the result. An expanded version of
@T(-s)b(s) is shown below.

8T (-s)8(s) = - =G

2
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1 iy T T T
+ s ( Jl J4 + JZ J3 J3 32 + J4 Jl )
1 T T T T
+ = ( T, 05+ T,T, G3 + 3,0, , s Jl)
¢ i-1 .
+ = 1 0T
S :‘;:l J

The first step is to show that the theorem is valid for i = 1.

Assume without loss of generality that first order patterns exist.

Rewrite (3) as

{pR + JL-BTQB +. o(jh> v = 0.
s? s?

As p - 0 the j; term dominates and this baoomes
s

[XI - gt BTQB]v =0

where A = psz.

1

The eigenvalues of R BTQB are real and > 0. (Tki% 's because the

=% T 3

eigenvalues are the same as those of R ° B OBR -, whizh ls a matrix of

the form XTX, which is known to have real eigenvalusi * 0). From the

1

BTQB we see immediately that Nlm = Wl'

For each nonzero eigenvalue we have that 52 = ~A/p, and the solutions of s

Y %

axe *A°/p°. As p ~ Q the branch of s in the LHP is a first order Butter-
e

worth pattern with si°° = A°., The \aja° not associated with first order

Jordan canonical form (2) of R

patterns lie in the kernel of R-lBTQB, which is equal toL&.These vjw's
are not "trapped" by R—lBTQB. -

The next step in the induction is to assume that Ni— ®

1 and Si_

1
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are valid and . then show that Nic and Sin a:e valid. The vjé's

corresponding to ith order patterns must lie in ui-l’ therefore

Niu * U;_yW, for some W,. The case where there are no ith order patterns
ig trivial, because the Wl is missing. Therefore assume that there
exists at least one ith order pattern. The next step is crucial. Fac-

tor out of (3) the influence of ‘the vjc's corresponding to lower order

patterns. Do so by multiplying (3) on the left and right as shown be-

low:

T T
U;_; (PR +97(~s)¢(s)]U, w = 0.

After some work this reduces to

T i-1 1 T 1 -
[?Uiml RUi-l + (=1) SZi Ui-lGiUi-l +<}<§Ziﬁw 0.
As p + 0 the first term dominates and this can be written

T

T, .
[AT - @ RO U, Teu e =0

where A = (-1)19521.

The eigenvalues are real and > 0. From the Jordan canonical form (2)
we see that Niw = Ui-lwl' The solutions of s in the left half plane
form an ith order Butterworth pattarn with s.” = Aa. The v.  not

corresponding to 15¢ through ith order patterns must lie in Ui. This

completes the proof.

The Ui subspaces ara shown in Figure 5.2. The following properties

of the Ui are simple consequences of the definitions and the above

theorem.

(i) o=l el ...l =r"
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Figure 5.2

The Ui Subspaces |

- 86945AW001

it 3
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(ii) Ui = ImNi+1 + c.. + Im Nk

(iii) ui = ui—l if there are no ith order patterns.

Use the following algorithm to f£ind the Ui matrices. In simple
examples this can be done by hand. In more difficult examples use the
scftware described below.

1) Find a basis for Ul = ker J,, call it U,.

we2) If dim Ul = 0 then let k=1 and stop.

3) Let i=2.

4) Find a basis for ker J;-

5) Find a basis for Ui =Ui_lf‘ ker J., call it U,.

6) If dim Ui = 0 then let k=i and stop.

7) Go to 4.

Singular value decomposition (SVD) can be used to find an orthonormal hasis

for the ker Ji. Since ker Ji = ker Gi and Gi is symmetric, another way

to find a basis for ker Ji is to use the eigenvectors associated with

the zero eigenvalues of Gi' SVD can also be used to find an orthonormal
basis for the intersection of two subspaces, see section 3 of

Laub's report [41] for more det%ils. An orthonormal basis is not necessary
for our purposes. FORTRAN subroutines exist in EISPACK [iO] to compute

the SVD and the eigenvalue decomposition.

The problem of finding Butterworth patterns of order greater than
one is numerically an ill-posed problem because an arbitrarily small
change in A, B, or Q can cause a change in the order of the Butterworth
patterns. By using proven software we have tried to minimize the
numerical problems, but we cannot get rid of them.

Example 2° Use the same A and B matrices as in example 1. Given
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H and R the problem is to find so, Xo, Sm, NQ, and v for the optimal

root locus. Let

=65 0 0 1 .01 =-.01

100 10 0 O -.01 L1211

Using a computer program that finds the transmission zeroces of S(A&,B,H)

by using a generalized eigenvalue problem we see that

" -.089]
.891

0

=5.79
L .

We now implement the algorithm described in this section for finding

(=~} ao
S, N, and v.

y 0 1 1
Gl = HB = ‘a'l =
0O o0 0

4 0 -5 3y
G.® = HAB = U2=Ulnker G," =0

1
[
L)

The number of lSt order patterns is dimUo - dimlll

1]
[

The number of 279 order patterns is dimlll - dimU2

The Jordan canonical forms are

N N

T -1 T -
(Ul RUl) Ul G2Ul 100

Therefore

éﬂﬂu_}a-—.-.mw TV T S

PSS L)

i f RxT e
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1 1 ‘
s,” =3 No=[v. "= 3
1 o1 2 1 0 |
-
s, = 10 vy = (01, 02, %12) 5

U T S

5.3 Approximating the Optimal Root locus

In this section we are concerned with optimal root loci that have

e me

Butterworth patterns of order greater than one. What we will show is
that any optimal root loci can be approximated by another that has only
first order Butterworth patterns, and this approximation can be made
arbitrarily precise for an arbitrary distance out aleng the asymptotes.
This result is significant because it allows any optimal root locus
problem to be treated as a generic problem, and the generic problem is
numerically better conditioned than the nongeneric problem. .

The basic idea will first be presented in words. Then a more for-
mal proof will be given using two lemmas and a theorem. Finally, an
example will be given.

Start with the well known fact that if Rank(HB) = m then the optimal
root locus will have m first order Butterworth patterms. (If Q cannot

be factored into HTH then use M instead of H). In the first lemma it

is proved that if Rank(HB) < m then H can always be perturbed an arbi-
trarily small amount such that the new H times B is full rank. 1In the
second lerma an old result is quoted that essentially says that the
eigenvalues of a matrix are continuous with respect to the elements of
the matrix. Then in the theorem the Hamiltonian system matrix, for -
some fixed value of p, is perturbed a small amount so that the eigen-

values move less than a prespecified amount and the rank condition on
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HB is changed. For p smaller than this the infinite modes of the

optimal root locus will fall into first order patterns.

Lemma 1 Let H be a real m x n m-trix and B a real n X m matrix.
If B is full rank then there exists a AH such that for all a # 0
Rank (H+AH)B = m.

Proof Lét AH = W', where Im(W) = Im(B) - Im(H') A Im(B).

The poxt lemma is copied from Wilkinson [38] and is due to

Ostrowski. The bound given is not computationally useful dueé to the

a

n
term.

Lemma 2 Let A and B be n x n matrices with elements that satisfy
the relationships

la,.] <1 - lbijl <1

!
Then if M is an eigenvalue of A + aB, there is an eigenvalue A of
A such that
v
A" =a] < (a+2) (a2 Y/

Now we consider two optimal root loci. Let A be an eigenvalue on

the root locus generated by A, B, H, and R. For some p = Po specify
a ball of radius e centered around each A. Let A' be an eigenvalue

generated by A, B, H + a¢AH, and R. We have the following result.

Theorem 3 For every o > 0 and € > 0 there exists an o > O and

AH such that

(i) Rank(H + cAH)B =m
and for every p in the interval Py <P <
(ii) [A' = Al < e

The proof for the case Rank(HB) = m is trivial because we can

let AH = 0. When Rank(HB) < m choose a AH such that Rank(H + oAH)B = m
for all a > O, which is always possible from lemma 1. Next, use the

fact that the optimal root loci corresponds to the LHP eigenvalues of

A - L g 1571
7 = o .

I Y (UL

BN
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Let p = po. When H is changed to H + wAH then Z changes to

Q 0

2 +al2 =2 + ¢ T r » .
H'HAH + AH'H + alAH AH 0

The qAHTAH term can be dropped because for a sufficiently small the
largest element of aAHTAH will be less than the largest of HTAH +AHTH
Choose B such that tha largest element of (1/8)2 is less than cne
in absolute magnitude. Wiéﬁgut loss of generality assume also that
the largest element of (1/ B)AZ is less than one in absolute magnitude,

which will be true for o sufficiently small. Apply lemma 2 to get

| = A| < 8(2a + 2) (4n%a) I/

where 2n is used instead of n because Z is 2n x 2n. The B termm is

included because if A is an eigenvalue of Z then A/f is an eigenvalue

of (1/B)Z. Now choose a such that

za)l/Zn <

A" = A] < 8(2n + 2) (4n £.

this can always be done, even thoﬁgh o may be very small. The theorem
has been proved for p = Por

For p > s recompute Z and call it z'; Let B' be its largest
element and note that B8' < B8. Then‘using the same ¢ in (4) we see
that the distance between the eigenvalues of Z' and 2' + aAZ is also
less than . This completes the proof.

Example 3 Use the same A and B matrices as in examples 1 and 2,

[o 0 1 o}
1 0 0 0

©i .- : ., - RS il e i it KM D o i R BB
B I T T Pv Egr | 7 "3 L

and let

o
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H
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The optimal root locus has no finite modes. The four infinite modes
group into a first and third order Butterworth pattern with N = I,
s” = I, and vy = (01, 02, 12, 22). Now suppose H is perturbed in such
a way that Rank(H + c¢AH)B = m. Let

0 0 0 O 1 o

AR = r (H + aAH)B = J .

g 0 0 1 0 a
The optimal root locus is plotted for o« = 0, .01, and .00l. The results
‘are in Table 5.1 and Figure 5.3. We see that when a > O the third
order pattern shifts into a first order pattern and two new trans-
mission zeroces appear. For the case when o = .01 the two optimal root
loci are within € = .1 until p is less than .00l1. For the case when

o = .001 the approximation is within ¢ = .13 until p is less than 10-54

PR PR, . TR e .. |

P T NPT VLI
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Figure 5.3
A Third Order Butterworth Pattern Shifting to First .Order
86945AW003
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? |
Table 5.3
Approximations of an Optimal Root Locus

o) Closed lLoop Eigenvalues

Case #1: a=0
1071 -3.31 -5.00 -2.00+i 1.01
1073 -31.6 -5.17 -2.23+1i 1.68
1073 -316 -7.61 -3.75+4i 5.25
10718 -10% -464 -232 +i 402

-3

Case #2: =10
107t -3.31 -5.00 -2.00+i 1.01
1073 -31.6 -5.18 -2.22%4i 1.69
10"5 -316 -7.74 -3.66+1i 5.27
10716 -108 -10° -2.00+4i 31.6

-2

Case #3: a=10
107t -3.31 -5.00 -2.00+4i 1.01

1072 -31.6 -5.27 -2.19+1i 1.76
1073 -316 -8.97 -2.96+1i 5.33
10716 -108 -10° -2.00+4i 10.0

wmw_ - S e
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CHAPTER VI

Conclusion

The linear state feedback problem was studied in this thesis, and
as a sgpecial case the linear quadratic requlator was studied. Of
primary intereéf was the relationship between the state feedback gain
matrix and the closed loop eigenstructure of the linear state feed-
back problem, and the relationship betweén the quadratic weights and
the closed loop eigenstructure of the linear quadratic requlator.
Several new results were derived which will help both the analysis and
the design ¢f multivariable linear ccntrol systems.

The relationships were discussed in terms of maps between parameter
spaces. The names of the maps used here are not standard and not
important, but this seems to be a natural way to discuss the relation=-
'éhips.. The similarities between the linear state feedback problem and
the linear quadratic regulator become clear when using these maps, and
these similarities were exploited in this thesis.

In Chapter -ITI equations were derived to compute angles on the
root locus and the optimal root locus, including angles of departure
and approach. For the first time the generalized eigenvalue problem
was used to compute the angles of approach.' Then the quadratic weights
were defined to be continuously dependent on p and equations were given
for the direction and rate of change of the closed loop eigenvalues
with respect to p. These equations were used to analyze the inverse
square method of selecting quadratic weights. All of the above results
are valid only at the points where eigenvalues are distinct. Extending

these results to multiple eigenvalue points appears to be a nontrivial
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problem.

In Chapter IV two different kinds of equivalence classes of

quadratic weighting matrices were defined. Most of the attenticn was
given to the E equivalence class - those quadratic weighting matrices
that produce the same asymptotic eigenstructure. Sufficient conditions
were given for matrices o be in the E equivalence class, a canonical
element was defined, and an algorithm given to find the canonical ele-~
ment. Then it was shown by example that the closed loop eigenstructures
can be different in the nonasymptotic region for members of the same

E equivalence class.

More research needs to be done concerning the E® and E equivalence
classes. Necessary conditions need to be derived for matrices to be in
the same E equivalence class, and these conditions are probably not
much more complicated than the sufficient conditions already derived.

‘it would also be beneficial *o divide up the E equivalence class
according to the eguivalence relation that the closed locp eigenstruc-
‘ture be the same in the nonasymptotic region. Having the same angles
of departure énd approach may be a way to do this, having the same D
and E may be another. Similar gquestions apply to the £° equivalence
class. We do not yet know if all members of the E° equivalence

class (those quadratic weighting matrices that produce the same éptimal
gain matrix) have the same asymptotic properties. If not then the g°
equivalence class can be further split up. Within this (possibly)
smaller set of‘quadratic weighting matrices a canonical element can be
defined that has the following properties {and possibly others in oxder to

assure uniqueness): the Q is of rank m and S(A,B,H) (where Q = HTH)
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has transmission zeroes in the left half plane. To find this canonical
element the asymptotie prouperties of the original (Q,R) can be found,
aprropriate D, E, and Y matrices can be chosen, and then using equations
(4.1-4.3) the canonical (Q,R) can be computed.

Three related results were derived in Chapter V. The first was
a syhthesis solution for the linear state feedback problem. An
algorithm was given thaﬁ finds a feedback gain matr;x %»F that produces
specified asymptotic properties as k + 0. Only the generic case was
considered, so the obvicus next thing to do is to extend this algorithm
to handle nongeneric cases. Also, this technique may yield insight
into selecting a feedback gain matrix XK for the outpué feedback problem5
In the generic case K can be chosen to arbitrarily select s” and N° ’

but K has no effect on s°, X°, or Yo

The next result was an algorithm to compute S”, N“ﬁ and vy

implicit in a set of quadratic weights. With this algdrithm and previous

results for s° and x° ; all of the implicit asymptotic regulator pro-
perties can now be found. With obvious similarity to the output feed-
back problem, the asymptotic properties s°, x°, and y can be found from
A, B, ang Q; and s” and N* can be found from A, B, @, and R. The next
thing to do is to modify this algorithm to £ind sm, N, and a multi-
index similar to y for the ocutput feedback problem. This will be

more difficlut because the closed loop eigenvalues are no longer guaran-
teed to be symmetric about the imaginary axis. The elements of s” are
found by solving various eigenvalue problems, and because symmetry is
not guaranteed the eigenvalue problems may have Jordan blocks of size

2 X 2 or greater.
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The final result shows that an optimal root locus with Butterworth
patterns of order greater than one can be approximated by an optimal root
locus with all first order Butterworth patterns, and this approximation

can be made arbitrarily precise for an arbitrary distance out along

the asymptotes. This result may help to analyze optimal root loci.

Determining the order of Butterworth patterns is numerically a badly
conditioned problem, so by restricting our attention to a finite region

of the complex s plane we can use the better conditioned problem of

analyzing first order patterns.

B Y W



L2 il

F}
?
:
N

10.

1l1.

12.

13.

14.

S e TRt N e A ST T Rt e e = ey oY

92

REFERENCES

Chen, C.T., Introduction to Linear System Theory, Holt, Rinehart
and Winstcn, Inc., New York, 1.970.

Athans, M., "The Role and Use of the Stochastic Linear-Quadratic-
Guassian Problem in Control System Design," IEEE Trans. Auto. Control,
Volc Ac-lep No. 6’ pP- 529-5511 Dec. 19710

safonov, M.G., and M. Athans, "Gain and Phase Margins for Multi-

loop LQG Regulators," IEEE Trans. Auto. Control, Vol. AC-22, No. 2,
April 1977.

Harvey, C.A., and G. Stein, "Quadratic Weights for Asymptotic
Regulator Properties,"” IEEE Trans. Auto. Contrel, Vol. 23, No. 3,
June 1978.

Stein, G., "Generalized Quadratic Weights for Asymptotic Regulator.
Properties,"” to be published in IEEE Trans. Auto. Control, Aug. 1979.

Rosenbrock, H.H., State Space and Multivariable Theory, Thomas
Nelson and Sons Ltd., London, 1970.

Davison, E.J., and S.H. Wang, "Properties and Calculations of
Transmission Zerces of Linear Multivariable Systems," Automatica,
Vol. 10, pp. 643-658, 1974.

Kwakernaak, H., and R. Sivan, linear Optimal Control Systems,
Wiley-Interscience, New York, 1972.

Shaked, U., "The Asymptotic Behavior of the Root-Loci of Multi-
variable Optimal Regulators," IEEE Trans. Auto. Control, Vol. AC-23,
No. 3, June 1978. '

Garbow, B.S., et al., Matrix Eigensystems Routines - EISPACK Guide
Extension, Lecture Notes in Computer Science, Vol. 51, Springer-
Verlag, Berlin, 1977.

Willems, Jan C., and S.K. Mitter, "“Controllability, Observability,
Pcle Allocation, and State Reconstruction," IEEE Trans. Auto. Control,
Vol. AC-16, No. 6, Dec. 1971.

Wonham, W.M., Linear Multivariable Control: A Geometric Approach,
Springer~Verlag, Berlin, 1974.

Moore, B.C., "On the Flexibility Offered by State Feedback in Multi-
variable Systems Beyond Closed Loop Eigenvalue Assignment," IEEE
Trans. Auto. Contreol, Vol. AC-21, No. 5, pp. 689-691, Oct. 1l976.

Evans, W.R., Am. Inst. Elect. Electron. Engrs., Vol. 67, p. 547,
1948.




R TP

I RS

= A

i g e —

15.

lse.

17.

18.

1s.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

N TS ST TR T T TR

93

Eveleigh, V.W., Introduction to Control Systems Design, McGraw-
Hill Book Co., New York, 1972.

Melsa, J.L., and D.G. Schultz, ILinear Control Systems, McGraw-Hill
Bock Co., New York, 1969.

Pan, C.T., and K.S. Chao, "A Computer-Aided Root-Locus Method,"
IEEE Trans. Auto. Control, Vol. AC-23, No. 5, Oct. 1978.

Kouvaritakas, B., and U. Shaked, "Asymptotic Behavior of Root-Loci
of Linear Multivariable Systems," Int. J. Control, Vol. 23, No. 3,
Pp. 297-340, 1975.

Shaked, U., "The Angles of Departure and Approach of the Root-Loci
of Linear Multivariable Systems," Int. J. Control, Vol. 23, No. 4,
Pp. 445-457, 1376.

Shaked, U., "The Intersection of the Root=Loci of Multivariable
Systems with the Imaginary Axis," Int. J. Control, Vol. 25, No. 4,
pp. 603-607, 1977.

Postlethwaite, I., "The Asymptotic Behavior, The Angles of Departure,
and the Angles of Approach of the Characteristic Frequency Loci,"
Int. J. Control, Vol. 25, pp. 677-695, 1977.

Kouvaritakas, B., "Gain Margins and Root Locus Asymptotic Behavior
in Multivariable Design, Parts I and II," Int. J. Contreol, Vol. 27,
No. 5, pp. 705-751, 1978.

Kalman, R.E., "Contribution to the Theory of Optimal Control,"
Bol. Soc. Mat. Mexico, pp. 102-119, 1960.

Wonham, W.M., "Gn a Matrix Riccati Equation of Stochastic Control,"
SIAM J. Control, Vol. 6, No. 4., pp. 681-697, 1968.

Laub, A.J., "A Schur Method for Solwving Algebraic Riccati Equations,"”
Lab. for Infor. and Decision Systems; MIT, LIDS-R-859, Oct. 1978.

Denham, M.J., "Canonical Forms for the Identification of Multivariable
Linear Systems," IEEE Trans. Autc. Control, Vol. AC-19, No. 6,
Dec. 1974.

Molinari, B.P., "The Stable Regulator and Its Inverse," IEEE Trans.
Auto. Control, Vol..AC-18, No. 5, pp. 454-45%, Oct. 1973.

Popov, V.M., "Hyperstability and Optimality of Automatic Systems
with Several Control Functions," Rev. Roam. Sci. Tech. Electrotech.
Energ., Vo. 9, pp. 629-690, 1964.

Jameson, A., and F. Kreindler, "Inverse Problem of Linear Optimal
Control," SIAM J. Control, Vol. 11, pp. 1-19, Feb. 1973.

R I

s e K et g e B

T T



4
F

30.

3l.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41'

42.

43.

44.

S TR IR Tee R R VT e R

94

Kalman, R.E., "When is a Linear System Optimal?," Trans. ASME J.
Basic Engr., ser. D, Vol. 86, pp. 51~-60, Mar. 1964.

Anderson, B.D.O., and J.B. Moore, Linear Optimal Control, Prentice=
Hall, Englewood Cliffs, N.J., 1971.

Chang, S.S.L., Synthesis of Optimal Control Systems, McGraw~-Hill,
New York, 196l1.

Rynaski, E.G., "The Multivariable Root Square Locus = An Optimal
System Design Aid," Cornell Aeronautical Lab., Inc., about 1965.

Kouvaritakas, B., "The Optimal Root Loci of Linear Multivariable
Systems," Int. J. Control, Vol. 28, No. 1, pp. 33-62, 1978.

Kwakernaak, H., "Asymptotic Root Loci for Multivariable Linear
Optimal Regulators," IEEE Trans. Auto. Control, Vol. AC-23, No. 3,
June 1978.

Postlethwaite, I., "A Note on the Char. Frequency Loci of Multi-
variable Linear Optimal Regqulators," IEEE Trans. Auto. Control,
Vol. AC-23, No. 4, August 1978.

Rato, T., Perturbetion Theory for Linear Operators, 2nd Edition,
Springer-Verlag, Berlin, 1976.

Wilkinson, J.H., The Algebraic Eigenvalue Problem, Oxford University
Press, London, 1965.

Stewart, G.W., "On the Sensitivity of the Eigenvalue Problem
Ax = ABx," SIAM J. Numer. Anal., Vol. 9, pp. 669-686, 1972.

Laub, A.J., and B.C. Moore, "Calculation of Transmission Zeroes
Using Q2 Techniques," Automatica, Vol. 14, pp. 557-566, 1978.

Lauvb, A.J., "Linear Multivariable Control. Numerical Considerations,"
Electronic Systems Lab., MIT, ESL-P-833, July 1978.

MacFarlane, A.G.J., and N. Karcanias, "Poles and Zeroes of Linear
Multivariable Systems: A Survey of the Algebraic, Geometric, and
Complex-Variable Theory," Int. J. Control, V»l. 24, No. 1, pp. 33-74,
1976.

Davison, E.J., and S.H. Wang, "Remark on Multiple Transmission Zeroes
of a System," Automatica, Vol. 12, p. 195, 197s6.

Davison, E.J., and S.H. Wang, "An Algorithm for the Calculation of
Transmission Zeroes of the System (C,A,B,D) Using High Gain, Output
Feedback," IEEE Trans. Auto. Control, Vol. AC-23, No. 4, pw. 738-741,
Aug.  1978.

R e e T e T T N e e e T T e e e T .ﬂ_/.rw_——-.m—_g—v‘




N

95

APPENDIX A

Transmission Zeroes

Definition

Several definitions of transmission zeroes exist in the literature
and all have some validity. Common sense dictates that -the definition
reduces to the usual one in the SISO case (the roots of the numerainr
peolynomial of the transfer function) and that the transmission zeroces
have some physical meaning. One definition that meets these require-

ments is due to Rosenbrock [6], which is the one used here. Though it

is too early to know for sure, the control community appears to be
settling down to this definition.

Rosenbrock defines the system matrix
P(s) = : )

and his definition of transmission zerces is given in terms of the
minors of P(s). An equivalent definition uses the Smith McMillan form
of P(s) [42]. Since for our purposes we have the same number of inputs ;

and outputs we use the following equivalent definition [7,43]: The i

et e

transmission zeroes are those values of s, including multiplicities but
not including uncontrollable or unchservable modes, that reduce the
rank of P(s). We note that this definition allows the degenerate case
where the whole complex plane reduces the rank of P(s); this can happen
even if B and C are full rank and the system is controllable and obser-
vable. We note also in the square case that the determinant of P(s) is
equal to ;

1

det (A-sI)det[C(a-sI) ~B], (2)
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and ancther equivalent definition of transwission zeroes is the roots

of (2). This definition is used by Kwakernaak and Sivan [8].
To demonstrate that Rosenbrock's definition has physical meaning

[42] we consider the linear output feedback system of section 2.2.2.

i
H
i
4
H
P
[
2

Assume that it is controllable and observable and then Laplace transform

(2.4, 2.5) to get
A - sI B X 0

-C Qi fu -y

Transmission through the system is blocked (the output will be zero)
for certain values of s, x, and u. Those values of s for which this is
true are transmission zeroes, and the corrusponding values of x are called

zero directions.

The Generalized ﬁigenvalue Problem

The problem is to find all finite A and their associated eigenvectors

v which satisfy

RS

Ly = AMv, (3)
where L and M axe real p x p matrices not necessarily full rank. Thers
will be from 0 o p finite solutions. If M is invertible then premulti-

plication by M—l changes the generalized eigenvalue problem into an 3

eigenvalue problem and there will be exactly p solutions. Stable and
reliable FORTRAN subroutines exist in EISPACK [10] to solve the generalized

eigenvalue problem.

R T T I T ¥ ST ST FUPT

Computing Transmission Zeroes

vage e aeden e &

Three different methods £y computing #uaus  .siion zerdes are dis- ;
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cussed. The r2lationship between the first two methods is an unpublished
result due to Laub. Only the special case of an equal number of inputs
and outputs 2nd no feedforward term is discusse%.

Laub and Moore {40] discuss in detail usinglthe generalized eigen-
value problem as a way to compute transmission zeroes. In place of (3)

use

: [’A Bl Ix I 0]fx
= A .
C 0 v 0 0 \
The finite solutions A reduce the rank of Rosenbrock's system matrix (1)
and therefore are transmission zeroes. There afe anywhere from C to
(n-m) ftransmission zeroes, and in the generic c¢ase when Rank{CB) = m
there are exactly (n-m) solutions. The portion x of the associated eigen-
vactor is the zero direction.
Davison and Wang [44] use high gain feedback and an eigenvalue
problem to compute transmission zeroes. First they prove that as k + 0
the finite closed loop eigenvalueéﬂof

=a-41
A, =A - BKC (5)

approach the transmission zeroes. Their method is to find a "suitably
small" value of k, compute the eigenvalues cf Acl' and then determine
which are finite. The eigenvectors associated with the finite eigen-
wvalues are the zero directions. .

These two methods are closely related. The connection is the result
derived in section 3.2.1 that the closed loop eigenvalues and eigenvectors

are solutions of the generalized eigenvalue problem

L-2
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= Q. (6)

Equations (5) and (6) give the same answers for k > 0 and in the limit as
k =+ 0. The only difference is that in (6) k can be set exactly to zero.
Equation (6), incidentally, is an obvious way of proving that as k + 0

the closed loop eigemnvalues approach the transmission zeroes.

A third approach is found in various papers by MacFarlane, Karcanias,

Xouvaritakas, and Shaked [for instance 42,18]. They define N and M

such that the rows of the (n-m) x n matrix N form a basis for the ker

MR & Ao i

r (BT) and the colunns of the nx(n-m) matrix M form a basis for the ker(C).

Then the transmission zerces are the roots of the polyncmial

J det (NAM - ANM) = 0. N
This result can be derived using similarity transformations on the
matrices in (4), see [42,18) for details. In the generic case when
Rank (CB) » m then Rank(NM) = (n-m) and (7) is an eigenvalue problem, ie

1nau are the transmission zeroes. In the

the (n-m) eigenvalues of (M)~
nongeneric case when Rank(CB) < m then it is not clear how to continue,
other than to treat (7) as a generalized eigenvalue problem.

The first method, by Laub aind Moore, has the best numerical proper-
ties and is the one to use. While all three methliods give excellent
results in some cases, Laub and Moore give examples where the other two
methods break down. In Davison and Wang's method it is not obvious
how to choose a suitably small k, and in some cases the accuracy of the
answer is critically dependent on this choice. Furthermore, Davison and

Wang's methed gives no indication when the answers are in error; and

therefore their method is unreliable. The methcd by Mac¥arlane et al.

o
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unnecessarily requires 2ank determination, which numerically is a very

difficult thing to do, and can introduce errors into the computations.
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Errata §

page 14, paragraph 2, line 7: é

:

" " "_ $ " 1

| change s to Re(si) + llm(si) :
) >

page 15, paragraph 1, line 4:

change "trace" to "trick"

I & Shashan

page 23, paragraph 1, line 4: E
w @
change "3v." to "BV " |
1 bR
page 32, paragraph 2, line 16: f
change "call U" to "call UY" f
; page 35, paragraph 3, line 2: ﬁ
| change "UYp" to "UYP" ;
i
7
page 48, Theorem 2: §
, change =1 w, H f
- w_Z . H 3
H 1 2
-1 H
to H Yy %
W, 2.
1 5
;

page 49, paragraph 4, line 6:
change to: LHP, let E; be the mirror image about the imaginary
axis of 7 and let

Z, = &L EHT
1




page 75, paragraph 1, line 11:

o0
. "\) . L S" llv . ] Su
change i to i

page 81, paragraph 1, line 9:

change "Gi’-/z'l to IIJ n

1

page 81, paragraph 1, line 10:
1/2

change the 2 occurances of "Gz " to "Jz"
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