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ABSTRACT

New results are given on the relationships between closed loop
eigenstructures, state feedback gain matrices of the linear state feed-
back problem, and quadratic weights of the linear quadratic regulator.
Previous results are presented and gaps in current knowledge are pointed
out. Equations are derived for the angles of general multivariable
root loci and linear quadratic optinrl root loci, including angles of
departure and approach. The generalized eigenvalue problem is used
for the first time to compute angles of approach. Equations are also
derived to find the sensitivity of closed loop eigenvalues and the
directional derivatives of closed loop eigenvectors (with respect to a-
scalar multiplying the feedback gain matrix or the quadratic control
weight).

An equivalence class of quadratic weights that produce the same
asymptotic eigenstructure is defined, sufficient conditions to be in
it are given, a canonical element is defined, and an algorithm to find
it is given. The behavior of the optimal root locus in the nonasymp-
totic region is shown ti be different for quadratic weights with the
same asymptotic properties.

An algorithm is presented that can be used to select a feedback
gain matrix for the linear state feedback problem which produces a
specified asymptotic eigenstructure. Another algorithm is given to
compute the asymptotic eigenstructure properties inherent in a given
set of quadratic weights. This is inherently a structurally unstable
problem, unless the system is "generic". Finally, it is shown that
optimal root loci for nongeneric problems can be approximated by gen-
eric ones in the nonasymptotic region.
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CHAPTER I

Introduction

1.1 Motivation and Summary of Results

The linear state feedback problem [1] is an important tool used

for control system design. While any practical design must take many

factors into consideration, a very common design objective is to

achieve a specified closed loop eigenstructure. By "eigenstructure"

we mean both the eigenvalues and the eigenvectors of the closed loop

system. Hence, an important relationship in design is between the

state feedback gain matrix and the resulting closed loop eigenstructure.

A ve:°zion of the linear state feedback problem that has recently

emerged as an important design is the linear quadratic regulator [2]. 	 s

It was first studied by theoreticians because of its optimal properties,

but it is primarily due to several other properties that design engineers

have begun to use it. The linear quadratic regulator is simple to

implement provided a full state or at least a reconstructed state is

available, it has inherent multivariable capability, and the design

algorithms are fully computerized. Desirable closed loop properties

exist such as guaranteed stability, guaranteed gain and phase margins

[3], and reasonable eigenstructures. Here we are primarily concerned

with the relationship between the quadratic weights and the closed loop

eigenstructure.

In Chapter II the linear control problems of interest are defined;

and then the relationships between the feedback gain matrix, the

quadratic weights, and the closed loop eigenstructure are discussed in
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terms of maps between parameter spaces. Previous results are presented

in a tutorial style, references are given, and it is noted where the

new results fit in. Some previous results on transmission zeroes are

presented, also in tutorial style, in the Appendix.

f	 The new results are now summarized, first for the linear state

feedback problem and then for the linear quadratic regulator. In the

first problem the feedback gain matrix and the closed loon eigenstruc-

ture are points in parameter spaces, and under certain conditions the

map between them is one-to-one. In the forward direction this map is

an analysis problem and in the reverse direction it is a synthesis

problem (selecting a feedback gain matrix to achieve a specified closed
e

loop eigenstructure).

If the state feedback matrix is multiplied by a scalar and this

scalar is varied, a curve is traced out in each of the two paramenter

:paces. Also, the closed loop eigenvalues trace out a multivariable

root locus on the complex s plane. Chapter III derives equations for

the angles of the root locus, for the sensitivity of the closed loop

eigenvalues (how much they change with respect to a change in the

parameter), and for the directional derivatives of the closed loop

eigenvectors.

As the feedback gain matrix becomes very large the closed loop

eigenstructure approaches certain asymptotic properties. These proper-

ties can be parameterized and a map defined between the parameters and

the feedback gain matrix. Using this map to find a feedback gain matrix

is a synthesis problem that is solved in Chapter V. It is one of many

ways to select a feedback gain matrix, but has not to our knowledge

appeared in the literature.

A similar procedure is used for the linear quadratic regulator.

.wi
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The quadratic weights and the closed loop eigenstructure are points

in parameter spaces but the map between them is not one-to-one. Many

different quadratic weights produce the same closed loop eigenstruc-

ture. As an analysis problem this map has received a lot of attention,

but as a synthesis problem it has not been used extensively (selecting

quadratic weights to achieve a specified, closed loop eigenstructure

and then computing the feedback gain matrix).

if the weights on the control are multiplied by a scalar and this

scalar is varied, a curve is traced out in the parameter spaces of

quadratic weights and the closed loop eigenstructures. Also, the closed

loop eigenvalues trace out a multivariable optimal root locus on the

complex s plane. In Chapter III the behavior of the closed loop

eigenstructure is analyzed and equations are derived for angles, sensi-

tivities, and directional derivatives. The same is done when the

quadratic weights are dependent in a more general way on a single para-

meter, and the particular case of analyzing the inverse square method

of selecting cpaadratic weights is treated. Also, in Chapter V it is

shown that optimal root loci for so-called "non-generic" problems can

be approximated with loci of "generic" ones.

As the control weights become very small the closed loop eigen-

structure approaches certain asymptotic properties. Some of the eigen-

values remain finite and others approach infinity. An algorithm is

presented in Chapter V that determines how many of each there are and

in what manner they approach their limit. The associated eigenvectors

are also described.

The asymptotic properties can be parameterized and a map defined

between the parameters and the quadratic weights. Using this map to
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select quadratic weights in a synthesis problem that was first studied

by Harvey and Stein [4] and later gener k^.' 1zi%d by vein (5]. It turns

out that many different quadratic weights produce the same asymptotic

properties, and in Chapter IV an equivalence class of these quadratic

weights is defined. Sufficient conditions are given to be in a parti-

cular equivalence class, a canonical element is defined, and an

algorithm is presented which computes the canonical element. Finally,
I

the behavior of the optimal root locus for different members of this

equivalence class is discussed.

1.2 Notation

a

Matrices are iaidicated by capital letters. Scalars and vectors

are indicated by small letters. No underlines are used and whether the

variable is a scalar. , or vector is clear from the context.. Subspaces

ire indicated by' script letters, with the exception of the 0, the nth

order real vector spa,-,e. "Im A" and "ker A" are the image and kernel

of A. The symbols E and E00 indicated equivalence classes as defined

in Chapter IV. AT is the transpose of A, and x. H is the HermitianI
transpose of the vector; x i . A T indicates (A 1) T or equivalently (AT) -1.

Equations, examples, lemmas, and theorems are numbered starting

from one at the beginning of each chapter. When referenced from within

the same chapter only the number is used, otherwise (4.1) means the

first occurence in Chapter IV.

A permutation matrix P is a, zero matrix with a one in each row and

column. PA rearranges the rows of A and AP rearranges the columns of A.

All of the root locus diagrams are in the complex S plane. The x's

are the open loop poles and the 0's are the transmission zeroes.

a
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CHAPTER II

Background

2.1 Introduction

The linear control problems studied in this thesis are defined;

and then the relationships between the state feedback gains, the

quadratic weights, and the closed loop eigenstructure are discussed

in terms of maps between parameter spaces. Emphasis is placed on both

the general case of the linear state feedback problem and the special

case of thfi linear quadratic regulator.

2.2 Linear Control Problems

2.2.1 Linear State Feedback

Consider the following linear, time invariant system with full

state feedback-

x =Ax +Bu	 (1)

u —
k F

•x.	 (2)

where x E R 

u e Rm.

We will always assume that B is full rank. The matrices (A,B) will be

either controllable, stabilizable, or neither. The closed loop

system matrix is

Acl=A - - BF.	 (3)

As k is varied from infinity down to zero the closed loop eigenvalues

trace out a root locus.

r	 -

3



a .
12

2.2.2 Linear Output Feedback

The - .)uts and not the full state are used for feedback. Only

the case of the same number of inputs and outputs is considered. The

equations are

x=Ax+Bu	 (4)

y=Cx

U = k KY	 (6)

where y e e.

We make the same assumptions about (A,B) as for the linear state feed-

back problem. C will always be full rank and (C,A) will be either

observable, detectable, or neither,. The closed loop system matrix is

Act = A - k BKC,	 (7)

and k again sweeps out a root locus.

Important quantities associated with the system S(A,B,C) are the

transmission- zeroes. Here we use the definition of transmission

zeroes due to Rosenbrock [6], which is equivalent to the following def-

inition waan the number of inputs and outputs are equal [7]. The trans-

mission zeroes are those values of s, not including uncontrollable or

unobservable modes, which reduce the rank of

A-sl	 B

-C	 0

See Appendix A for further discussion.

2.2.3 Linear Quadratic Regulator

This is an important class of linear state feedback controllers.
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The gain matrix. F is chosen so that x and u minimize the cost function

J =2 j (xTQx + puTRu)dt	 (8)

0

where Q = Q  > 0

R = RT > 0

and 0<p <^,

The state weighting matrix can be factored into

Q = MTM

where Rank(Q) Rank(M) = p and M is p x m. The matrix is arbitrary

to within a premultiplicatibn by a p x p tnitary matrix CW such that

WTW = 1). When Rank(Q) = m then we will use

Q HTH,

where H is m x n. Assume that (A,B) is stabilizable and (M,A) is de-

tectable. The assumptions on Q will sometimes be downgraded to

symmetric and not necessarily non-negative definite.

The optimal gain matrix is found by first solving the algebraic

R.iccati equation [2]

0 = Q + ATP + PA --LPBR 1BTP	 (9)

to obtain

F = p R 1BTP	 (10)

u = -Fx

The closed loop system matrix is

Ac1 (p) = A - BF.	 (12)



.14

The parameter p is included to emphasize the dependence of A cl on it.

As p vari s from infinity down to zero the closed loop eigenvalues

trace out an optimal root locus.

2.2.4 Hamiltonian System

The Hamiltonian system is defined to be

z = Zz	 (13)

A	 - 1 BR 1BT
P

where Z =	 (14)
-Q	

-AT

x
and z	 .

It is of interest because it describes solutions of the linear av-:kdratic

regulator problem [8]. The eigenvalues of Z are symmetric about the

imaginary axis. Therefore if s  is an eigenvalue so is -si. Those in

the left half plane (LHP) az-- the same as the closed loop eigenvalues

of the linear quadratic regulator. If (xiT, ^iT)T is an eigenvector

of Z associated with a LHP eigenvalue then the portion x i is an eigen-

vector of the linear quadratic regulator. Furthermore ,
i = Pxi.

The following trick is a useful way of applying root locus methods

derived for linear output feedback systems to the optimal root locus.

We define a linear output feedback system that has a closed loop system

matrix equal to the Hamiltonian system matrix. Let

	

A	 0	 _ [B]
A	

-Q	 -AT	
B	

0

	

C = [0	 BTJ	 K=R1,

V
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then

Z= A- p B K C.
As p is varied from infinity down to zero the eigenvalues of Z in the

LHP tract out an optimal root locus. This trace is similar to one

used by Shaked (9].

2.3 Maps

It is convenient to discuss the linear control problems in terms

of maps between parameter spaces. This helps to organize the presen-

tation of previous results and to show where the new results fit in.

For quick reference the maps are listed in Table 2.1. In the following

sections each map is defined and discussed.

2_3.1 LSF Map

This is a map associated with the linear state feedback problem

as described in section 2.2.1. Here we think of the control problem

as a map between the space of m x n matrices and the space of closed

loop eigenvr),aes and eigenvectors. The notation used is

LSF : F -} s , x
'

Given an F matrix it is always possible to,compute A cl and then to

compute the eigenstructure of Acl . For the examples in this thesis

EISPACK [10] subroutines were used to do this. We note here that non-

trivial numerical problems arise when the eigenvalues get too close

together or too far apart.

41
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Table 2.1

Maps

Linear State
	 Linear Quadratic

Feedback
	

Regulator

LSF : F -r si ,xi 	LQR: Q, R -^ si,xi

ILSF: si ,xi -* F	 ILOR: s i ,xi -* Q,R

LSF(k) : k F-}s i (k) xi
 (k)	 LQR( ) : Q,PR-'si (P).xi(P)

0<k<m	 0<P<-0°

IALS7: 
l 0 s

i (k) ,^ xi (k)-}k F IALQR: 
l 0 s

i (P) .

lim xi ( P) '} Q, PR
P-*0

Forward

Inverse

Forward,
dependent on
a parameter

Inverse
Asymptotic

s
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2.3.2 ILSF Map

This is the inverse of the linear state feedback problem and the

notation used is

ILSF: Si ,xi ; F.

The ILSF map represents a synthesis problem: given a desired eigenstruc-

ture find F such that the closed loop system has this desired eigen-

structure.

System controllability is an important issue in the ILSF map.

Here we think of controllability as the ability to move eigenvalues

with state feedback. (For a different type of definition see Willems

and Mitter (11]). One way to test for controllability is to pick an 	 j

F matrix by picking at random each element of F from a dense subset of

the real number line, and then using this F to compute the closed loop

eigenvalues. Those eigenvalues that do not move are almost surely

uncontrollable. If all move then the system is controllable.

A simplified version of the ILSF map is the modal control problem. 	
i

An F matrix is sought which will result in a desired set of eigenvalues,

called modes. The eigenvectors are not specified. A good treatment

of this problem is given by Wonham [12]. The main results are given

in the form of a lemma. The multiple input results are due to Wonham.

Lemma 1 (A,B) is controllable if and only if there exist F
matrices (many in general) which place the eigenvalues in
arbitrary locations. If the system is not controllable then
only the controllable modes can be moved. In the single input
case F is unique.

Many papers have been written about what to do with the extra

design freedom, available when F is not unique. One significant paper
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is by Moore [13]. He shows that the extra freedom can be used to

select eigenvectors. His main result is:

Lemma 2 For the case of distinct closed loop eigenvalues
a unique F exists which places the eigenvalues and eigen-
vectors at specified locations if and only if the system
is controllable and for each x.

3.
 there exists a vi such that

[A-siI B] xi - 0

v.
i

So we see that the closed loop eigenvectors must lie in certain m

dimensional subspaces determined by the s i I s. If some of the modes

are uncontrollable then they must be included in the specified set of

eigenvalues, but some freedom still exists in selecting the assotiated

eigenvectors.

Moore's proof. is constructive and he gives the following algorithm

for finding F. Select the desired s  (distinct) and the desired eigen-

vectors xid . These eigenvectors may or may not lie in the permissible

subspace, so compute xi and vi by projecting xid onto the permissible

subspace (using, for instance, singular value decomposition). Then

form the matrices

X = [xl , . . ,x,,]

N = [vl,...,vm]

If xi , xi+l and vi' vi+l are complex conjugates replace them by Re(xi),

Im(xi), and Re(vi), Im(vi). The gain matrix is then given by

F = -NX 1.

In the single input case no extra freedom exists to select the xi°s

because they are each constrained to.a one dimensional subspace.
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2.3.3 LSF (k) Map

When k is varied from infinity down to zero a family of linear

state feedback problems is produced, which will be denoted by

LSF (k) : k F -* si (k), xi (k) for 0 < k.< 	 .

As k approaches zero the closed loop eigenstructure approaches certain

asymptotic properties. As k varies over its range the si 's trace out

a root locus, which in the single input case is the classical root

locus. The multiple input case is more involved and is still an area

of current research. As k varies over its range the xi 's rotate in Rn

(if xi and xi+l are complex conjugates then use instead Re(x i) and

Im(xi )). Historically very little attention has been given to the

behavior of the x.'s.1
In Chapter III some new results are derived about the behavior of

the closed loop eigenstructure as a function of k. Angles on the root

locus are defined, and by using the generalized eigenvalue problem

equations are derived to compute the angles. Se p Appendix A for a

brief explanation of the generalized eigenvalue problem. The advantage

of using it is that angles can be computed when k=0, even though 1/k

is not defined. Also in.Chapter III, equations are derived to compute

directional derivatives of the x.'s.I

2.3.4 Root Locus

In the single input case the root locus methods of classical con-

trol can be used to describe the behavior of the closed loop eigenvalues.

These methods were first developed by Evans in 1948 [14]. They are 	 l

described in Eveleigh [15], Melsa and Schwartz [16], and most other
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classical control textbooks. Descriptions of computer aided plotting

routines have appeared in literature as recently as 1978 [17].

For the purpose of analyzing the root locus it is always possible

to rephrase the state feedback problem (1-3) as an output feedback

problem (4-7). Simply let RC - F.

The starting point for the classical root locus is the output

feedback problem with a single input and output. The time domain des-

cription (4-6) is Laplace Transformed in order to get the following

transfer function, which is the ratio of two polynomials:

y(s) = c(sI - A) lb =N( s)
u(s)	 a	 a D(s)

p
where N(s) = R (s-zi)

i=1

n
and D (s) = R (s-p i) .

i=1.

The zi 's are transmission zeroes and the p i 's are open loop poles. The

feedback loop is closed by letting

u(s) _ - k y ( s ) + U(s),

where u(s) is an external input. The closed loop transfer function is
s
)

y(s) _	 a N(s)	 (15)

u(s)	 D(s) + k N(a)

The closed loop eigenvalues are those values of s which make the denomin-

ator equal to zero, and may be plotted as a function of k.

Generalizing the classical root locus methods to the multiple
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input case has proven to be a difficult task. Kouraritakas, Shaked,

and Postlethwaite [ 18-22] have addressed various aspects of the problem.

Progress was slow at first due to a debate over the definition of multi-

variable transmission zeroes. That debate is beginning to subside and

attention is shifting to the behavior of modes that asymptotically

approach infinity.

As is often the case in control theory, root locus problems can

be attacked with either time or frequency domain techniques. in the

frequency domain, the closed loop transfer function must be replaced

by a transfer function matrix. Then the closed loop poles are no

longer characterized by the denominator in (15) but by an algebraic

function (a polynomial in •s with coefficients that are polynomials in

k). In order to discuss solutions of this algebraic equation concepts

such as Riemann surfaces must be introduced. Asymptotic results can

be found by using a Newton chart. These complications are sidestepped

here by staying in the time domain whenever possible.

of particular interest is the case when Rank (CB) = M. Why this

case is of interest is motivated by Wonham [12], and also [18-22].

This is called the generic case, and it is the only one that will be

reviewed in depth. The word "generic" will be used to describe a pro-

perty which holds everywhere on a set of points except those belonging

to a mathematical variety. A "variety" is a locus of points which satisfy

a finite number of polynomials [12]. In this case the property is that

Rank(CB) = m. The only points for which this property does not hold

is when the polynomial det(CB) = 0. In the following example Rank(CB)<m:

(^0 0 l^ 1 0	 0 0

CB = ILO 1 0 0 1 = [0 1^

0 0

a
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This is the nongeneric case. However, if the 1,1 element of C is per-

turbed an arbitrarily small amount a then Rank(CB) - m, which is the

generic case.

The following facts are known about the multivariable root locus

for the generic case. We assume that (A,B) is controllable and that

KCB has no Jordan blocks of size greater than 1 x 1. Then

1) The root locus has n branches, and these are symmetric about
the real axis.

2) For large k the branches originate at the open loop poles.

3) For m=1 and a>0 (<0), where a is defined in (15), the real
axis to the left (right) of an odd number of singularities lies
on the locus. This rule does not apply when m>l.

4) As k --)-0,  (n-m) of the branches stay finite. These are
characterized by

S° = diag(s °,...,s° )1	 n-m

	

0	 0	 0x = [xi , ---,x   n-ml

where each pair si°, xi
, is a solution of the generalized eigen-

value problem

A-s.°I	 B	 x.°i	 i = 0 .

	

-C	 0	 v.°i

The (n-m) finite branches approach the transmission zeroes S. ,
and the eigenvectors approach the zero directions x1 .
5) As k -*-0, m branches tend to infinity. These are characterized
by

Sm = diag(sl ,...IsnCO

-	
o*
	 C

CO

where each pair s i , xi is a solution of the eigenvalue problem

CO	 CO

(s i I - KCB)vi = 0.
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The m branches approach infinity along asymptotes that have angles
with respect to the positive real axis given by arg(-s.

00
), where

"arg(x)" means the argument of the complex number x. +he asymptotic
radius COIsi l/k. The associated eigenvectors approachf3v, 	 If
the s. are not distinct then the eigenvectors are arbitrary to
within a subspace.

Some results are available for the root locus in the nongeneric

case [18,22]. The final answers are not in yet and the state of the

art is best described as messy. As k -> 0, fewer than (n-m) modes re-

main finite, and these are characterized by the same generalized eigen-

value problem. The rest of the modes group into m patterns that

approach infinity. The asymptotes of each pattern meet a pivot point.

2.3.5 Definition of Angles

There are n values of s. on the root locus for each value of k.i

If k is perturbed an amount Ak then each s  will be perturbed by a

(possibly very large) amount As i . As Ak -> 0 then As i/Ak will approach

the constant ds i/dk, and the angle on the root locus is defined to be

arg (dsi ) .

The angles at the open loop poles (k -)- -) will be called "angles of

departure", and the angles at the transmission zeroes (k -> 0) will be

called "angles of arrival". An example of angles on the root locus

is shown in Figure 2.1.

For the single input case standard root locus formulas are available

to find the angles of departure and approach. Postlethwaite [21] extends

these results to the multiple input case using frequency domain methods.

Shaked [19] does so using time: domain methods. Here we use new time

domain methods (the generalized eigenvalue problem) to extend Shaked's

results.

I
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Figure 2.1
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2.3.6 IALSF Map

This is called the inverse asymptotic linear state feedback map.

It is the inverse of the LSF(k) map as k } 0 and is denoted by

IALSF: lim s(k), lim x(k) -> 1 F.
i	 i

k->0	 k-*0 
	 k

The IALSF map represents a synthesis problem: given the desired

asymptotic properties of the LSF(k) map characterized by

S°, X°, S te , and NW^

find F such that the closed loop system has these desired asymptotic

properties. This problem is solved for the first time in Chapter V.

It is similar to synthesis problems solved by Moore [13], Harvey and

Stein [4] , and Stein [5] .

2.3.7 LQR Map

This map is associated with the linear quadratic regulator as

described in section 2.2.3. Here we think of the regul ,'Ator as a map

between the matrices Q and R and the closed loop eigenstructure. The

notation used is

LQR: Q,R -} si,xi.

The LQR map is one of the cornerstones of modern control theory. Major

credit is due to Kalman [23].

The steps used to compute the closed loop eigenstructure are

symbolically shown by

Q,R -} P -> F - A c 1 -' s i' Xi -

The most important step is first finding the Riccati solution. Wonham
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[24] gives the necessary and sufficient conditions on A, B, Q, R fnr

the existence of a stable closed loop solution.

An active area of research is developing algorithms to compute

Riccati solutions. One standard way is to use the eigenvectors of the

Hamiltonian system matrix [8]. This method is usually referred to in

the control literature as Potter's method but it predates him, (see

the references of [25]). The method is symbolically shown by

Q,R-,I-Z}zi-}P.

A variation of this method with improved numerical properties is by

Laub [25] and uses the Schur vectors of Z.

For the example calculations used here we were not interested in

P or F, so the following shortcut was used to find the closed loop

eigenstructure:

Q,R °' Z i si,xi.

A simple example shows that the Q and R matrices that produce an

optimal gain matrix (and hence a closed loop eigenstructure) are not

unique. Multiply Q and R by the same positive constant a. Then the

Riccati solution changes from P to aP but F stays the same. Therefore.

we can define a mathematical equivalence class [26] of Q and R matrices

in terms of the property that they produce the same optimal gain matrix.

Perhaps not so well known is that any Q with O > 0 and Rank (Q) > m

is equivalent (in the sense used above) to a Q with Rank(Q) = m. This

result is used and discussed, by Molinari [27] and Harvey and Stein [4] ,

and is due to Popov [28]. As a consequence it is always possible to

define a response vector

r = Hx

where r e Rm
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Q = HTH,

and such that Q is equivalent to any specified Q. The system S(A,B,H)

is important to this thesis.

Necessary and sufficient conditions for (Q,R) and (Q,R) to be in

the same equivalence class have been developed by Molinari [27] and

Jameson and Kriendler (29]. Molinari constrains R so that R=I and

presentj the following result (which is also valid for any R = RT > 0):

Lemma 3 Assume (A,B) is controllable and F is optimal for some
(Q,R). Then (Q,R) is in the same equivalence class if and only
if there exists a real symmetric Y satisfying

(i) Q=A - ATY - YA

(ii) YB = 0.

The Riccati solution changes from P to P+Y, but F = -R -1BT (P+Y) remains

constant becuase BT  = 0. There is no guarantee that P+Y > 0 or Q > 0.

When R is not constrained to be constant then a similar result can be

extracted (with some difficulty)from the paper by Jameson and Kriendler.

2.3.8 IL R Map

This map describes the inverse of the linear quadratic regulator

and is danoted by

ILOR: si ,xi -^- Q,R.

The ILQR map represents a synthesis problem and can, in principle, be

used to select quadratic weights. This turns out not to be very prac-

tical, as we will show in the following discussion. The asymptotic

version of this map, presented later, is much more convenient.

The first step is to find the feedback gain matrix which produces

the desired eigenstructure. To do this use the ILSF map discussed in

I	 4
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section 2.3.2 (specifically the algorithm due to Moore [131). If (A,B)

is controllable then the s  can be located anywhere, and the x i must

lie in certain m dimensional subspaces.

If the feedback gain matrix exists then a check can be made that

it is optimal for some (Q,R). Kalman [30] solved this problem for

the single input case. Anderson and Moore [13] generalized this result

to the multiple input case. The version of this result presented here

is due to Molinari [27].

Lemma 4 Assume (A,B) is controllable and R=I. i(jw)T(jw)hen F is optimal
for some Q = QT > 0 if and only if si < 0 and 	 > T,
where T(s) = I + F(Is-A) -1 B.

Unfortunately this result is difficult to implement because it must be

true for all w. If Q is only required to be symmetric then we have the

following result, also due to Molinari.

Lemma 5 Assume (A,B) is controllable and R=I. Then F is optimal
for some Q = QT if and only if s  < 0 and FB is symmetric.

Jameson and Kriendler [29] extend this result to amore general class of

A, B, and R matrices, again only requiring that Q be symmetric.

If the check on F succeeds then F is optimal for some (Q,R).

Jameson and Kriendler give an algorithm that can reach every (Q,R) in

the equivalence class of matrices that produce the same F (there: is no

guarantee that Q > 0). However, if the check on F fails then no hint

is given as to how F, s i , or xi should be changed. This is the rain

problem with using the IALQR map as a way to select quadratic weights.

We note here that T(s) defined in lemma 4 is the return difference

equation for the system S(A,B,F), and as such it plays a fundamental

role in control system design. It is used to measure the disturbance

rejection properties of the system,the ability of the system to follow

commands, and the robustness of the system.
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2.3.9 L_R(p) Map

When p is varied from infinity down to zero a family of linear

quadratic regulate*;s is produced, which will be denoted by

LQR(P) : Q, PR '} s i (P), xi (p)for 0 < p < -.

Only the case where R is linearly dependent on p is considered. Similar

results, especially for eigenvectors, do not necessarily hold when Q

and R are dependent on p in an arbitrary way. The closed loop eigen-

values trace out an optimal root locus. Its behavior is studied, as

described in section 2.2.4, by using the Hamiltonian system. Of special

interest is the asymptotic behavior of the s i (p) and xi (p) as p -* 0.

Several new results are derived that concern the LQR(p) map. In

Chapter III equations are derived that compute angles on the optimal

root locus and directional derivatives of the x i (p). In Chapter V an

algorithm is presented that computes the asymptotically infinite be-

havior of the optimal root locus, and a result is presented that

shows how an optimal root locus can be approximated by another.

2.3.10 Optimal Root Locus

In the single input case the optimal root locus can be described

using classical root locus techniques. The trick is to recognize

that the optimal closed loop poles are the left half plane eigenvalues

of det (sI-Z) = 0. Assume that Q = hTh, where h is 1 x n, and that

R = r > 0. Then by using determinant identities it can be shown that

[8l

det (sI-Z) _ (-1) n [^ (s) ^ (-s) + 1 ^ (s) ^ ( -s) ]	 (16)
rpS

"A A
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n
where O (s)	 det (sl-A) = R (s-pi)

i=1

p_]^
and	 O(s) _ o(s)hT (sI-A) b = aIt (s-zi ) .

i=1

The pi 's are the open loop poles and the zi 's are the transmission

zeroes of the system S(A,b,h). Equation (16) is analogous to the

denominator of (15) .

Before the heyday of Kalman, state space techniques, and Riccati

equations it was recognized by Chang [32] that (16) can be used to

plot the single input optimal root locus. He suggested using the

root square locus, which is done by rewriting (16) as a polynomial in

s t = s 2 , and then plotting the classical root locus on the s' plane.

Kalman [30] and Kwakernaak and Sivan [8] give rules for plotting the

single input optimal root locus on the s plane. These rules involve

plotting (16) on the s plane using classical root locus techniques and

then only keeping the left half side.

Now we move on to the multiple input case of the optimal root locus.

Rynaski [33] developed a multivariable version of the root square locus,

but it is very cumbersome even for the case of two inputs. The proce-

dure used here is to use the Hamiltonian system S(A,B,KC) and apply

the multivariable root locus results [34]. The generic case is when MB

is full rank (where Q MTM). Both this and the nongeneric case will

be reviewed. The symmetry about the imaginary axis of the eigenvalues

of the Hamiltonian system makes the analysis easier. The notation used

here is the same as used by Stein [5].

...J
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1) The optimal root locus has n branches, which stay entirely in the
LHP, and are symmetric about the real axis.

2) For p large the branches originate at -IRe 
Pi I 

+ j Im pi.
(This is equal to p. if p. is in the LHP, otherwise to the mirror
image of pi about tie imaginary axis).

3) For m=1 and (n-p) even (odd) the negative real axis to the left
of an odd (even) number of singularities lies on the locus. This
rule does not apply when m > 1.

4) As p } 0, p of the branches stay finite. These are characterized
by

So = diag (s1 , ...,s 
p 
0..,sp° )

0
[x

0X =	 1 ,...,xp°^,

where each pair s  , xi is a solution of the generalized eigen-
value problem

A- s .° I	 B	 z .°
1	 1 = O

-C	 0	 v .°i
0

x.1
where z 

i
° =

i

if H is available then a lower dimensional generalized eigenvalue
problem can be solved using the system S(A,B,H). If s. and x. are
the finite solutions then s.° 	 -IRe s.I + j Im s., bui x.° ='x.
only if the corresponding sl is in the'LHP. The p branches thai
stay finite approach the s°1 , and the associated eigenvectors
approach the x °. In the generic case p = n - m, in the non-
generic case 0 < p< n - m

5) In the generic case the asymptotically infinite behavior is
characterized by

00	 CO
S = diag ( s l , ... FSm

N = [v i 
.
......vm 1,

ao	 CO

where each pair s i 1 vi is a solution of the eigenvalue problem
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[(s i '=)  I - R-1 BTQB] vi = 0.

The n branches which approach infiti,ty stay on the negative
real axis with an asymptotic radius of s. /p§ . (These are first
order Butterworth patterns, contrary to Wonham [12] p. 318). The
associated eigenvectors approach By i w.

6) In the nongeneric case the infinite behavior is characterized
by the same S o* and N°D and also by a multi-index y. The (n-p)
branches that approach infinity group into m Butterworth patterns.
The ith pattern is pith order, with asymptotic radii equal to

s, m 1/ni
i

wi = p§
 )

Properties of Butterworth patterns are summarized in Table 2.2.
There are n. vectors which form a basis for the subspace associated
with each pattern. These are

Bvi^, ABvi , ... ^ AnI 
1Bvim.

The multi-index y lists the n i 's in the following way:

Y = (01, 11, 21,...,[n 1 -11 1, 02,...,[n 2 -1] 2, ... , [n m -11m).

If we define the controllability matrix

U _ [Be ,̂ .
	 n-1  , ABN , ... , A	 BN ] ,

which is an n x (n m) matrix, then each term (i,j) of the multi-
index defines the column AlBv .00 of U. The collection of all
columns defined by y we call	 therefore

m
UY = [Bv1 ...... Anl-1Bvi , ....Anm-1Bvm ] .

The columns of UY form a basis for the subspaces spanned by all m
Butterworth patterns. In the generic case U Y = BN.

Computing S", N= , and y in the nongeneric case is numerically
an ill-posed problem because arbitrarily small changes in B or H
cause the problem to become generic with only first order patterns.
The s." s and v.°°'s associated with first order patterns are the
nonzero solutions of the eigenvalue problem given in step S.
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Table 2.2

Butterworth Patterns

Order	 Angles that the asymptotes make with the negative
real axis

1	 0°

2	 ±45°

3	 00, ±604

n (odd)	 ±.n 180 0 Q = 0, 1, .,,F n-1

n (even)	 ± n (2+12)180°, z = 0, 1, ..., 2 - 1

I	 I
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The results for the multiple input case have been established

over the last several years. The attraction of the finite branches to

the transmission zeroes of S(A,B,H) is stated in Kwakernaak and Sivan

[8]. Both Kouvaritakas [34] and Shaked [19] use the Hamiltonian

system to find the transmission zeroes. Neither use the generalized

eigenvalue problem, as done here, which can easily be used to compute

the transmission zeroes and angles,of arrival. Kwakernaak and Sivan

[8] conjecture that the infinite modes group into Butterworth patterns,

and Kwakernaak [35] later used some algebraic function theory,.to prove

this. Wonbam [12] gives a theorem which describes the behavior of the

optimal root locus in the generic case. The asymptotic behavior of the

eigenvectors was established by Harvey and Stein [4] in the generic

case and by Stein [5] in the fiongeneri,c case. Algorithms to find Sm

and y are given by Shaked [19] and Postlethwaite [36], but neither

addresses the inherent numerical instability of their solutions. An

algorithm to find S', Nw , and y is given here in Chapter V.

2.3.11 The IALQR Map

The last of the maps to be defined is the inverse of the LQR(p)

map as p -; 0, and it is denoted by

IALQR: lim si(P), lim xi (P) } Q, PR.
P-*O	 P-*O

This again represents a synthesis problem: given the desired asymptotic

properties of the LQR(p) map characterized by

S 0 , Xp , Ste , Nom , and y;
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find Q and R such that the optimal regulator has these desired properties.

This synthesis problem is posed and solved by Harvey and Stein [4] in

the generic case and by Stein [SJ in the nongeneric case.

The algorithm presented by Stein starts with the following assump-

tions: The S° matrix has p stable diagonal elements. The p columns

of X0 are linearly independent and for each there exists a v i c such that

(A-si°lxi0 + Bvi° = 0. Furthermore, the xi° do not lie in the image of

UY . CTo avoid complex arithmetic S° can be made block diagonal and

the complex conjugate columns xi and xi+l can be replaced by Re x i and

Im xi). The S"O matrix has m nonzero and positive diagonal elements.

coThe N matrix in invertible, and the multi-index y is such that

n1 + ... +nm=n-p.

Let P be a permutation matrix that switches around the columns of

UY in an arbitrary manner except that the last m columns of U Yp are

A
nl-1 

Bvl
CO
, ... ,Anm-1 Bvm00 . Then we have

Lemma 6 The quadratic weighting matrices (not unique) that produce
the desired asymptotic properties are given by

H = [0,I] 
(0, UYP] -1

R = (N') -T CS,)-2 (N
,) -1

Q = HTH.

The last step in the synthesis problem is to solve the linear

quadratic regulator problem for several values of p and "trade off"

control energy with eigenvalue and eigenvector placement.

2.3.12 Selecting Quadratic Weights

The following quote from Athans [2] in 1971 is still true today.

,1
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The selection of weighting matrices in the quadratic
criterion is not a simple matter. Usually they are
selected by the designer on the basis of engineering
experience coupled with alternate simulation runs for
different trial values. There is no universal agree-
ment on precisely how these are to be selected for any
given application.

At the heart of the problem is that many different and some-times

contradictory specifications have to be lumped into a single cost

="function. over the years several ad hoc methods have been developed,

the best known being the inverse square method due to Bryson. A few

remarks are made in Chapter III about this method. See the reverences

in Harvey and Stein [4] for other methods. None can be considered

uniquely satisfactory.

Some encouraging prograss has been made on the problem of selecting 	 !
i

quadratic weights to produce a desired asymptotic eigenstructure. The

algorithm dui: to Stein [5] presented in the previous section is an

example of this. There remain, however, other types of specifications

which cannot adequately be described using a closed loop eigenstructure.

For example, constraints may exist on feedback gain levels, or adequate 	
R

ti

stability margins may have to be assured. The relationship between 	 x

quadratic weights and these types of specifications needs further

research.
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CHAPTER III

Angles

3.1 Introduction

Equations are derived for the angles on the root locus of the out-

put feedback problem. The angles can be computed at any point incliiding-

the points of departure and approach. By using the generalized eigen-

value problem the angles of approach can easily be computed. These

results are then applied to the optimal root locus of the linear

quadratic regulator by using the Hamiltonian system. Equations are

also derwed to find the sensitivity of the closed loop eigenvalues and

the directional derivatives of the closed loop eigenvectors. Finally,

a more general dependence of Q and R on p is c-7msidered and equations

for angles and sensitivities are used to analyze the inverse square

method of selecting quadratic weights.

only the case of distinct closed loop eigenvalues is considered.

The equations derived in this ghapter are not valid at the points

where there are multiple closed loop eigenvalues, and the equations

cannot easily be extended to handle these cases.

3.2 The Ouput Feedback Problem

3.2.1 Finding the Closed Loop Eigenstructure.Using the Generalized
Eigenvalue Problem

The closed loop system matrix for the output feedback problem is

Acl - A - k BKC .	 (1)

The closed loop eigenvalues, eigenvectors, and left eigenvectors are

..A
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defined in the usual way by

(Acl - si2)xi = 0 (2)

f	 yiH (A cl - s i I)	0
(3).

j	 Now we state a lemma which we shall use in the remainder of this

chapter.

Lemma 1 The a., xi , and yiH are solutions of the generalized
eigenvalue problems

i

A - siI 	 B	 xi

{
t

-C	 -kK 1
0 (4)

v.z

yiH	
TI	

A - siI	 B

= 0. (5) --1C	 -kK

ra.
Remark k=0 is now allowed, in which case (4) and (5) can be used
to find the transmission zeroes, zero directions, and left zero
directions.

:hark When k > 0 there are exactly n finite solutions to (4)
and (5), and when k=0 there are anywhere from 0 to n-m finite
solutions.

To prove lemma 1, from (4) we see that

(A-SI) xi + BV. = G
3.

vi = - kKCxi

(A-siI)xi - k B K C xi = 0,	 (6)

and then. (2) follows immediately from (6) . Therefore the s i and xi

that are solutions of the generalized eigenvalue problem are the closed
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a

loop eigenvalues and eigenvectors. In a similar way (5) can be reduced

to (3), and the proof is complete.

Lemma 1 is not a new result, but it is not well known. Its proof

is simple and direct , and it provides valuable insight into the feedback

control problem. For example, Laub used this result to show the

relationship of two methods of computing transmission zeroes (see

Appendix A). It turns out that the vi ' s and ni I s can be used to com-

pute angles of arrival to the transmission zeroes.

3.2.2 Finding dsi/dk Using the Eigenvalue and Generalized Eigenvalue
Problems

In the eigenvalue problems (2) and (3) the first derivative of Aci

with respect to k exists everywhere in the open interval (0,-). we use

this fact to find ds i/dk, the derivative of the closed loop eigenvalue

with respect to k.

Lemma. 2 For any k in the interval (0,-), and for any distinct si,

dsi 	1 yih B K C A.i

dk	 2	
H(7)

k	
yi Xi

To prove lemma 2 differentiate (2) toqet

d (Aclii-sI) x + (Acli-sI) 
dk
^

dk	
x i. = 0.	 (8)

Multiply on the left by the left eigenvector y iH , which cancels the

second term and leaves

H d
yi
	

dk- cl i(A -sI) x i. = 0.
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Rearrange to get

dA l
l

dsi _ Y. H( dkl/xi
dk	 H

yi xi

Differentiate Acl to get (7). It is always possible to normalize the

eigenvectors so that 
yiHxi 

1, in which case the denominator in (7)

can be removed. This completes the proof.

Lemma 2 is a standard result that can be extracted from the

higher mathematics of Kato [37]. Wilkinson [38] gives a more readable

derivation: of a similar result - the sensitivity of si to changes in

Acl . Shaked (19] derives and uses (7).

In the generalized eigenvalue_ problems (4) and (5) the first

derivative of the large matrices with respect to k exist everywhere in

the semi-open interval [0,-). We use this fact to again find dsi/dk.

Lemma 3 For any k in the interval [0,-) and for any distinct si,

H -1dsi	 TI
	

?c ni
dk	 H	 (9)

yi xi

To prove lemma 3 use obvious substitution of (4) to get

[L (k) - s 
i	 ^ ,
M]v. = 0.

Differentiate to get

d	 dvi
(L - s iM) vi + (L - siM) dk = 0.

Multiply on the left by the left eigenvector, c.all it u. , which will

cancel the second term and leave

1

i
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uil3 dk (L - siM) vi = 0.

Rearrange to get

dsi uiH (dL) vi

u .BNiv

Differentiate L and substitute back the original terms to get (9).

This completes the proof. Stewart [39] has worked on a problem similar

to this - the sensitivity of s  to changes in L and M.

3.2.3 Angles on the Root Locus

Theorem 1 The angles on the root locus, for any value of k in the
interval [0,m] and for any distinct si , are found by

-y H B K C x.
arg Cds	 ii) = arg	

B	
i	 0< k< co	 (10)

yi xi

H -1

	

arg Cdsi) = arg nl K
H vl	

0 < k < co	 (11)

yi Xi

Remark The angles of departure are found using (10) with k =
(to be more precise, let k = 1/k and use k = 0). The angles of
approach are found using (11) with k = 0..

Remark (10) is due to Shaked [19], (11) is new.

We prove theorem 1 by showing'(10) and then (11) are correct. To

derive (10) start with (7) of lemma 2, the formula for the derivative

of axi eigenvalue. We have that

dsi	 1 yix B K C xi1
	arg dk = arg --	 H

	

k2	yi xi

.4.a

i

I.
k
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and then the angle is

arg (ds i) = arg(dk) + arg 2 + arg (-1)k

-yiN B K C xi
+ arg

A
Yi xi

Now arg(-1) - 180°, and because k is positive and varies negatively

from infinity to zero it follows that arg(l/k 2 ) •= 0° and arg(dk) - 180°.

Therefore (10) is true:.

We cannot use k=0 in (10) becaase Ail is not defined for k=0. It

is very awkward to use a limiting argument as k -> 0 (as does Shaked

[19]) because Cx1
 

-).. 0 and yiRB -r 0, as seen from (4) and (5) .

To dexive (11) start with (9) of lemma 3, the formula for the

derivative of a generalized eigenvalue. We note that (9) is well

"defined for k=0. The formula for the angle is

ni I3 K1 vi
arg (ds i )	 arg (dk) + arg (-1) + arg	 H

Yi xi

Since arg(dk) - 180 0 and arg(-1) = 180 0 , (11) follows. This completes

the proof.

When k is in the interval (0,-) either (10) or (11) can be used

to find angles. To show this we note from (4) and (5) of lemma 1 that

Cx . = -k K-'\).

yiNB k niH K 1.
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Substitute these into (10), and the result by inspection is (11).

Except for k very close to or equal to zero, (10) is better to use for

computing angles because it involves solving an eigenvalue problem of

lower dimension than the corresponding generalized eigenvalue problem.

When k is very close to zero, however, (11) is a more reliable equation.

The tradeoffs when k is very close to zero are the same as those for

solving transmission zeroes using (2), an eigenvalue problem with high

gain feedback; or (4), a generalized eigenvalue problem. Laub [40]

gives a good discussion of these tradeoffs and concludes that the

generalized eigenvalue problem is better (for computing transmission

zeroes).

3.2.4 Sensitivity of the Closed Loop Eigenvalues

For each eigenvaluue.- on the root locus we can write the approxima-

tion

dsi	 As.
tidk	 ^k

Therefore

ds.
lasiI ti 

Idk 	

Ipkl .

The term Ids i/dkj is defined as the sensitivity of s i . One use of the

sensitivity is that to a first order approximation a change jAkI will

move the closed loop eigenvalue s  a distance IAs i l in the direction

arg(ds i ). It is immediate from lemmas 2 and 3 that

,A
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M.

Lwima 4 For any k in the interval [0,m] and for any distinct sip

	Idsi	 1 
JYIH 8 K C xi

_--	 0<k<®	 (12)
k2	 yigxi

	

dsi	
niH K 

1 Vi 0<k<m,	 (13)

	

dk	
yi xi

Wilkinson [38] discusses in detail the sensitivity of eigenvalues

and eigenvectors, including the case of multiple eigenvalues. it

turns out to r,,e much easier to derive bounds on Ids i/dkj for the multi-

ple eigenvalue case than to derive an expression for dsi/dk. For our

purposes we will continue to assume that the eigenvalues are distinct.

Exam le

Several root loci are plotted for an output feedback problem, and

the angles are computed in ordE_r to verify the preceding results. The

same system S(A,B,KC) is used U by Shaked [19].

-4 7 -1 13 0 1

0 3 0 2 1 0
A=

B=

4 7 -4 8 2 0

0 -1 0 0 -2 0

C	 0 -5 2 -2 ]s
8 -14 0 2

Three different output feedback matrices are used, Shaked used K = I.

CaS^ # 1
	

Case # 2
	

Case # 3

[10 0
K =	 0 1

1 0
K= I	

K= 0 50
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Figure 3.1

Root Loci of a Linear System with Output Feedback
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Table 3.1

Angles of Departure and Approach for Example 3.1

Case	 Angles of Departure 	 Angles of Approach

-4t2i	 1	 2	 lti

1 t 173° 00 1800

2 t 149 0 180

3 t 135 0 180

+ 170°

121

+ 114

a
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Table 3.2

Points and Angles on the Root Loci of Example 3.1

Angles are in parentheses

Case k Left half plane Right half plane

1 100 - 4.45±2.02i (+ 177°) 1.14	 (0°) 1.94	 (1800)

10 -11.4	 (180) -5.16	 (0) 1.65±0.421 (± 81)

1 -84.1	 (180) -6.69	 (180) 1.53±0.85i (± 137)

10-6 -8x107 (180) -3x106 (180) 1.00±1.00i (+ 170)

2 100 - 4.10±2.06i (± 151) 1.15±(0) 1.93	 (180)

10 - 4.86±2.40i (± 161) 1.81±0.651 (± 57)

1 -10.34±0.71i (+ 113) 2.34±1.331 (± 85)

10-6 -8x106 (180) -3x1.06	(180) 1.00±1.00i (+ 121)

3 100 - 5.85±3.18i (± 161) 2.57±1.16i (± 15)

10 -20.5	 (180) -8.7	 (0) 4.20±0.48i (+ 62)

5 -37	 (180) -8.6	 (180) 4.01	 CO) 5.00	 (0)

1 -159	 (180) -12.0	 (180) 3.84±1.75 (± 140)

10-6 I-1.5x1:08	(180) -8x106 (180) 1.00±1.00i (+ 114)
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Numerical results are given in Tables 3.1 and 3.2, and the root loci

are plotted in Figure 3.1.

As expected in all three gases the branches of the locus depart

from the open loop poles. Two of the branches stay entirely in the LRP

with different angles of departure in all three cases. The branches

meet on the negative real axis and then continue in opposite directions

as might be expected in the single input case. However, the branch

that goes to the right eventually turns around, and then both branches

approach infinity on the negative real axis with different asymptotic

radii in each case. The other two branches stay entirely in the REP,

so the system is always unstable. These branches eventually arrive at

the transmission zeroes at 1 i i with different angles of arrival in

each case. The path taken in the third case is unusual.,. ,-to say the

least.

Shaked's paper-from which this example is taken contains some

errors which will be pointed out here. His calculation for the angles

of departure contains numerical errors. More importantly, his formula

for the angles of arrival (3.16b) is incorrect due to an error in

the derivation after (3.15). This leads to the incorrect conclusion

that angles of arrival are.independent of the output feedback matrix K.

3.3 The Linear Quadratic Regulator

Theorem 2 The angles on the optimal root locus, for any value of p
in the interval [0,-], and for any distinct si , are found by

0 BR 1BT

	

arg(dsi) = argw z wEiH 0	 0	 Zi	
.0 < p <	 (14)

^ i

.... ..._ ` 	 e.....:.e...:.r..1:_'..doo..	 ',;a®^a.>i*;.,w.^r-w ...... ^^yA	 ..,.	 ^	 ....	 .._......	 Y..	 .,.^^..	 ... ,	 ..._ ,_ ._	 ...u.._.,....	 ..	 .. .......v.._._.,.

M.
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arg (ds	
^iHRVi

i) = arg
	H
	 0 < p < 00
	

(15)

w, z.

Remark The angles of departure are found using (14) with p= W,
and the angles of arrival by using (15) with p = 0.

Theorem 2 is proved by applying (10) and (11) of theorem 1 to the

Hamiltonian system S(A,B,KC). The vectors z  and w iH are the right and

left eigenvectors of Z, the Hamiltonian system matrix; and the vectors

V i	 nand Hi are found by solving generalized eigenvalue problems analogous

to (4) and (5) . Note that

BKC = 0 BR 15T

0	 0

This completes the proof. An example cf an optimal root locus is

given in Chapter IV after a discussion of asymptotic equivalence classes.

The sensitivity of the optimal closed loop eigenvalues is found

by applying (12) and (13) of lemma 4 to the Hamiltonian system.

The number of computations needed to compute (14) and (15) can

be reduced by using the following identities. First, using (4) and (5)

it can be shown that

Vi = 71i.

Now let zi = (XiH^ H)H be the eigenvector associated with si in the

LHP, let si be the mirror of si in the RHP, and let s i = (xiH,1H)H

be the associated eigenvector. Then

p

H	 H — H^
wi = ^^^i r xi

i
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3.4 Directional Derivatives of the Closed Loop Eigenvectors

We found ds i'/dk for the eigenvalue problem in section 3.2.2.

Now we continue that discussion and find dx i/dk. The references are

again Kato [37) and Wilkinson [38]. The results are

Lemma 5 For any value of k in the interval. (0,m), and for any
distinct si,

ds.

dk	 sii.	 (16)

dx.

dk = Vi + bixi	(17)

y 
H

(!d!Zk -
11

} 	xiwhere Bji	
H

yj xi

n	 -g
V. a E	 x]

j=1
j#1

-x.HV.
bi	

I  11
	 (18)xi xi

Equation (16) is derived in section 3.2.2 and is included here for

convenience. To derive (17) we will need the following:

H
dx

xi i
 = 0.	 (19)

This can be explained as follows: x i (k) and xi (k+Ak) can be no+°malized

to lie on the same hypersphere , as A -} 0 then [xi (k+Ak) - x i (k) ] /Ak -^

dxi/dk, which is tangent to the hypersphere, and therefore is orthoganol

to x..1

Now, since the eigenvectors xi form a basis for R  we can write
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b
L (Acl - siI xi = Xc	 (20)

1

dx.	 {

V 
= Xb,	 (21)

where b and c are vectors and b, and c, are components of these

vectors. Substitute (20) and (21. into (8) to get
l
6
b

(Acl - siI)Xb = Xc.	 (22)
1

Multiply (20) on the left by y jH , note that y j xi = 0 for i 3 j,

and then after some algebra

s	 j#i

0	 j = i

By manipulating (22) we see that (s j -si)bj = cj for j=1,...,n. Solve

for bj to get	 !

ji
s.-s.	 j 34 i

b =	
i	 (23)

undetermined	 j = i

Substitute (23) into (21) to get (17). The only thing not determined

is bi , which we can find by multiplying (17) on the left by x iH to get
i

dx.
xiH dk =xiH vi + bixiHxi .

By (19) the left hand side is zero, and therefore (18) follows. This

completes the proof of lemma 5.

The directional derivati•Fes for the optimal eigenvectors can be

found in a similar way. Use (17) with the Hamiltonian system to get

..w,. A
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dx.i
dk

dzi

dk

d9i
dk

and then extract dxi/dk..

3.5 Inverse Square Quadratic Weights

One common ad hoc method for selecting quadratic weights is the

inverse square method. Here we give a brief explanation of -the method

and show one way to analyze it if the first guess of quadratic weights

is not satisfactory.

Start with the quadratic cost function

m

J =f (:KTQx + uTRu)dt.

._	 0

Require that Q and R be diagonal, and then the cost function can be

rewritten

 f( n
J	 E q[ii xi2 + E rii 

ui2 
dt.

	

i=1	 i=1
0

Decide on a maximum allowable deviation for each state and control and

call these x.	 and uimax;. 
Then select the weights so that each

term has equal contribution to the cost function at maximum deviation,

i.e.

__
qii	 2	 '	 rii	 2

X.	 U.
unax	 imax

With Q and R chosen in this manner, compute the optimal gain matrix.

If the system behaves well with this controller then do not make any

changes in Q and R.
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If the system does not behave well with this controller then Q

and R must be changed. Suppose the state x i (t) is sluggish and needs

to be speeded up. It may suffice to increase qii or to decrease the

weighting on the control that predominantly controls x i . This scheme,

however, may not work. Suppose the predominant mode of xi is sie in

other words xi (t) ^d c e-sit , where c is a constant. If s i is near a

transmission zero then decreasing the control weight will cause s  to

move closer to the transmission zero, and this may even " slow down" si.

Now we •give.a method to determine how the modes change with respect

to a change in one or more of the diagonal elements of Q or R. Simply

use the following lemma which follows easily from the previous results

of this chapter.

Lemma 6 Let Q(p) and R(p) bG dependent on p, and let

	

A	 -BR(p)-1B
Z =

Q(P)	 -AT

Then for any p such that dZ/dp is well defined, and for any dis-
tinct si,

wiH^dparg(dsi) = arg(dp) + arg	 H

	

W.	 'L.
1 1

asi __ WiH dp zi
dp	 H

	

w,	 z.
1 1

Supposte R is constant and

(24)

(25)

Q = diag(gll,...,pgii,...,gnn).

wry	 ` _..^,,.	 aa,^aa.,s^•^.^„mss ^.,_._^._	 ..^ . . ^:^,t,^..^^.,,^..ek,,^.v,a^,.^.^..^_,^	 _. ....w:.,_Wa..._._,^^:_.. _ : .._^__	 ^:^:-
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Then dZ/dp will have all zeroes except for q ii . Each of the modes si

will move an approximate distance

ds.
Iasi I ti I dp I I I OP

in the direction arq(dsi).

M,

d



55

CHAPTER IV

Equivalence Classes of Quadratic Weights

4.1 Introduction

As noted in Chapter II, quadratic weighting matrices are not unique.

Rather, many choices produce the same controller gains. This chapter

provides a characterization of two classes of equivalent weights; and

for one of them defines a unique canonical element. These characteri,-

zations may prove useful in design.

Both E° and E^ equivalence classes are defined. Then sufficient

conditions are given for different quadratic weights to be in the same

EQO equivalence class (in other words to have the same asymptotic pro-

perties). A canonical element of the E class is defined, and an

algorithm is given to find it. Finally,it is shown by example that

the closed loop eigznstructure (and hence the optimal root locus) in

the nonasymptotic region can be different for members of the same E

equivalence class.

4.2 Definitions of the E° and E co Equivalence Classes

(Q,R) and (Q,R) are members of an equivalence class if they

produce the same optimal gain matrix. We use the following notation:

(Q ^ R) E° (Q ^ R)

where E° has the meaning "produces the same optimal gain matrix as."

This is not the only type of equivalence class that can be defined.

(Q,pR) and (Q,pR) are members of an equivalence class if they produce

the same asymptotic properties (which are S°, X°, Ste , Nom , and Y). We
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use the following notation:

(Q ^ PR) Em (Q ^ PR) ^

o^
where E has the meaning "produces the same asymptotic properties as."

The p is included in the parenthesis to emphasize the dependence on the

control, weight.

4.3 Sufficient Condition: to be in the a Equivalence Class

In the form of two lemmas we present sufficient conditions for

m
(Q,pR) and (Q,pR) to be in the same E equivalence class.

Lemma 1 Assume (A,B) is controllable and F is optimal for some
(Q,R) . Then

co

(Q ^P R) E (Q ^PR)

if there exists an n x n real symmetric Y such that

ATY- YA

(ii) YB0.
To prove this we first show that for any p % 0 the closed loop

eigenvalues of the optimal regulator u:e the same when either Q or Q

is used (the R is the same in both cases). The closed loop eigen-

values are the eigenvalues of Z, the Hamiltonian matrix, and the

eigenvalues are invariant under the following similarity trsmsformation:

I 0 A	 - 1 BR 1BT	 I 0

	

UZU
1

=	 P
Y I -Q	 -AT	 -Y I

A	
m 

1 BR-^1BT

	

_	 P

-Q+ATY+YA	 -AT

Using the same transformation the eigenvectors o- Z change from

zi 	(xiT , xiTP )T to zi = (xiT , xiT (P+Y)) T. The xi portion s are the

..d
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closed loop eigenvectors o-f the optimal regulator and these do not change.

Since for any p > 0 the closed loop eigenstructure is invariant, the

asymptotic properties as p -* 0 are invariant. This completes the proof.

To show that the closed loop eigenstructure is the same for any

p > 0 we could alternatively have used a result due to Molinari [27]

that was reviewed in section 2.3.8. We note that it is not necessarily

true that Q > 0 or F+Y > 0. The conditions given here are only suffi-

cient. We were not able to prove (and not able to find a counterexample)

for the converse.

For the next lemma let D and E be diagonal matrices with positive

diagonal elements d i and ei such that

DE = S

All of the other terms are defined in sections 2.3.10 and 2.3.11.

Lemma 2 Assume that (A,B) is controllable; that F is optiimal.,for
some(Q,R); that the asymptotic properties are S0 , X°, S , N
and y; and that

v 
WTv

i = 1	 for i = l,...,mi 
Then

(Q, PR) E (Q, pR)

if there exists a D and Y such that

H = 10, D] [X°, UY PI-1
	

(1)

R = (N-) -T E-2 (N-) 
-1	

(2)

Q= H T H - A T Y - YA	 (3)

Before proving this we note that equations (1-3) are similar to

those used by Stein [5] in his algorithm for selecting quadratic weights,

coas reviewed in section 2.3.11. He sets D =I, E=S , and Y=O; and he
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m
places no restriction on the magnitudes of the v i 's.

The proof of lemma Zis'in two parts. The first part is to show

that subtracting ATY + YA in (3) does not change the asymptotic proper-

ties,but this was established in lemma 1. The second part is to show

that S. 
cc 

can be split into D and E without changing the asymptotic

properties. The proof that Stein, uses to prove his algorithm is only

trivially changed when S is split into D and E, so we will not repeat

it here. This completes the proof.

Only sufficient conditions are given in lemma 2 for quadratic

weighting matrices to be in the same EO* equivalence class. We do not

yet know if these conditions are necessary, in other words if by chang-

m
ing D and Y every member of the E equivalence class can be reached.

m
The assumptions about the magnitudes of the vi 's are made wi.l.,hout

.loss of generality. These vectors are used to specify directions, and

their magnitudes do not change the asymptotic properties. If the vial's

are not of unit magnitude then it is always possible to find a diagonal

matrix G such that the columns of N = N G are of unit magnitude.

Then in (1) and (2) we can replace N^ by N , E by EG 1 , and D by DG

without changing H and R.

Several other changes can be made in (1-3) without affecting R and

Q. The H in (1) can be premultiplied.by an m x m unitary matrix (W

such that WWT = I). Then in (3) when Q is formed the influence of W

is lost. In (1) the magnitudes and the order of the columns of X° and

all but the last m columns of U Yp can be changed without changing H.

In (1) the order of the last m columns of U Yp, and in (2) the order of

the vi
CO
's can be changed without changing either H or R, as long as the

corresponding di I s and e.'s are changed.

-x	 x
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4.4 A Canonical Element of the E w Equivalence Class

00We define the canonical element of the E equivalence class to be

the (Q,pR) reached by (1-3) when D=I, E =S , and Y=O. By "canonical"

we mean unique, but by changing D and Y many other canoe-ical elements

could be defined. The choice used here has an uncomplicated struc-

ture and agrees with Stein's algorithm I51 when the vico 's are unit

magnitude.

Given any (Q,pR) it is always possible to find the canonical

element. Use a generalized eigenvalue problem to find S° and X°, as

described in section 2.3.10. Use the algorithm in section 5.2 to find

W m
S , N , and y. Then use (1-3) with D=I, E=S , and Y=0 (and with

vi' Tvi^ = 1) to find the canonical element (Q, pR) .

4.5 Behavior of the Optimal Root Locus in the Nonasymptotic Region

Members of the E"O equivalence class have the same asymptotic pro-

perties. They may or may not, however, have the same closed loop eigen-

structure for p > 0. As a consequence the optimal root loci may look

very different in the nonasymptotic region. This is important because

when selecting a Q and R using (1-3) the final choice of pR uses a p>O.

Suppose a (Q,pR) is computed using equations (1-3). If D and E

are kept the same and Y is changed to get a different Q then the closed

loop eigenstructure will be the same for any p>O. This we know is true

by the proof of lemma 1 (arid also due to Molinari [271). For any

scalar a > 0 if D is changed to aD and E to (1/a)E then (Q,pR) will

change to (a 2Q,pa 2R), and it is easy to see that the closed loop eigen-

structure is the same for any p > 0. However, if D and E are changed

in a more complicated way (change d i to a i d i and e  to (1/ai)e i , where



a .

60

the ai I s are all positive and not all equal) then the closed loop eigen-

structure will not be the same for any p > 0. Example 4.1 shows how

the optimal root locus can change in the nonasymptotic region.

Example 4.1

we consider a linear system with the following A and B matrices..

0 1 0 0 0 0

-5. -4 0.1 1 0 0
A = B =

0.1 0 -1 0 1 0

0 0 0 -5 0 1

The asymptotic properties of an optimal linear quadratic regulator are

specified, and equations (1-3) are used to compute the quadratic weighting

matrices. Six different values of D and E are chosen. The purpose of

this example is to show that the choice of D and E does not change the

asymptotic properties but dramatically changes the behavior of the op-

timal root loci in the finite region.

The linear system has four states and two inputs. The first input

drives a first order subsystem with a pole at -1.0. The second input

drives a third order subsystem which can be broken down into a damped

oscillator with poles at -2 ±i and a first order "actuator" with a pole

at -5. The 0.1 terms in the A matrix couple the two subsystems.

The asymptotically finite properties are specified by

1	 1

1	 1
•s 01,2 = 0.5	 3.Oi	 X01,2d	 ±	 i

  0	 0

V1	 i v
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i

The "d" means that the eigenvectors are desired and not necessarily

obtainable. The "v" means that the element is not specified. The

result of projecting the complex eigenvectors onto the obtainable sub-

spaces is

	

.341	 -.244

	-561	 1.146
o	 ±
X 1,2 = 0	 0	 i.

	

.232	 4.476

The asymptotically infinite properties are specified by

co

	 «0

S = 1
	

, N = I, y= (01, 02) .
2] 0'

In each of the six cases there are two first order Butterworth patterns.

The D, E, R, and H matrices are shown in Table 3.1. The optimal

root loci are in Figure 3.1. We see that the behavior of the loci in

the finite region is dependent on the choice of D and E. The angles

of departure and approach are different in each of the six cases and

are listed in Table 3.2. Points on the loci for different values of p

are listed in Table 3.3.

In the first case the 2,2 element of R is bigger than the 1,1

element by a factor of 3200, and for p "not too small" this causes the

s.3,bsystems to decouple. Since the second input is heavily weighted

the pole at -1 does not move much. On the other hand the branches of

the locus associated with the third order subsystem (driven by the

first input) start to behave like the optimal root locus of a single

input system. Two of the branches form a second order Butterworth

pattern and the third branch approaches a transmission zero somewhere

4 _A
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to the left of -5. Finally,, as G gets "very small" the subsystems

couple together and the specified asymptotic properties are achieved.

The branches that start at -2 ± i eventually meet on the real axis and

form two first order Butterworth patterns.

In the second case the decoupling of the two subsystems is less

apparent. The branches of the locus that start at -2 t i meet on the

negative real axis at about -4.8. one of the branches goes to the left

and forms a first order pattern. The other goes to.the right, joins

the branch that starts at -1, and then they approach the transmission

zeroes.

In cases 3 through 6 the branches that leave the open loop poles

at -2 ± i eventually make it to the transmission zeroes at -.5 t 3i.

Given just the locations of the open loop poles and the transmission,

the locus in case 4 is probably the most "desirable" pattern. This

case allows a meaningful tradeoff between control weight and asymptotic

properties. It happens to correspond to the canonical member of the

E" equivalence class, as defined in the previous section. For a wide

range of values of D and E the locus does in fact look like the-one

in case 4. Not until the 2,2 element of R is smaller than the 1,1

element by a factor of one million does the behavior of the locus in

the finite region change significantly. The behavior in cases 5 and 6

cannot easily be explained. The subsystems do not appear to decouple

as in cases 1 and 2.

From the above example it is not obvious how to choose the D and

E matrices. Since only the ratios of the diagonal elements of the D

and E matrices are important there are m-1 degrees of freedom available

to the designer. (In the single input case there are no extra degrees

of freedom). It may be true that the extra degrees of freedom can be

M.



M.

.J

63

used up by specifying angles of approach and departure, but we do not

know of any algorithms that allow you to do this, nor do we know of a

check to determine which angles are valid.

}
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Figure 4.1

Optimal Root Loci
86945AW005

_	 V
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Figure 4.1 Contii:aed

86945AW006

^.
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Table 4.1

Matrices Used in Example 4.1

Case D E R H (where Q HTH)

1 1 1 1 0 0 1 0

56.6 .0353 800 240 -170 0 56.6

2 1 1 1 0 0 1 0

46.0 .0435 528 195 -138 0 46.0

3 1 1 1 ^ 0 0 1 0

40 .OS 400
F
L1.70 -120 0 40 

4 1 1 1 1 0 0 1 0

1 2 .25 [4.25 -3 0 1

5 1 1 1 0 0 1 0

.002 103 10-6 .0085 -.006 0 .002

6 1 1 1 0 0 1 0

.0002 104 10 8 .00085 -.0006 0 .0002

M,

F



case Angles

-2 ± i

of Departure.

-5	 -1

1 ± 100.8° 180 0 1800

2 ± 99.3 180 180

3 ± 98.1 180 180

4 ± 70.5 180 180

5 ± 4.9 180 180

6 + 10.2 0 180

Angles of Approach

-.5 ± 3i

± 11.7°

t 11.9

± 12.1

+ 21.5

} 1.4

7 9.3

M.

_4
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Table 4.2

Angles of Departure and Approach for Example 4.1



-5.08 -1-28
-5.55 -1.42
-6.93 -1.67
-2.17± 2.01i
-0.50 ±3.00i

-5.09 -1.24
-5.60 -1.42
-7.68 -1.79
-1.90 ±2.28i
-0.50 ±3.00i

-5.09 -1.21
-5.63 -1.42
-8.01 -1.91

-20.1 -11.6
-2x10 8 -108

-5.09 -1.04
-5.72 -1.41
-8.85 -3.32

-21.1 -1.01
-2x10'8 -108

-5.08 -1.87
-5.69 -2.77
-8.84 -3.88

-21.1 -10.1
-2x10 8 -108

-4.81± 0.89i
-5.99± 2.89i

58i-8.31 ± 1-58i
-21.1 -10.9
-2x10 8 -108

1 10 -2.20 ±1.53i
1 -3.03± 2.66i

.1 -5.16 ±3.32i

.O1 -18.5
10 16 -2x108

2 10 -2.13± 1.41i
1 -2.77 ±2.42i

.1 -4.30± 2.94i

.O1 -19.7
10-16 -2x108

i 10 -2.09± 1.34i
1 -2.61± 2.28i

.1 -3.84 ±2.76i
* 01 -1.73 ±2.42i

10- 16 -0.50± 3.00i.

4 10 -2.00 ±1.07i
1 -1.82± 1.47i

.1 -1.331 2.33i

.01 -0.74± 2.88i
10-i6 -0.50± 3.00i

5 10 -1.73 ±1.18i
1 06i-1.65 ±2.06i

.1 -1.66 ±2.89i

.01 -1.04± 2.99i
10-16 -0,50 ±3.00i

6 10 -1.89± 3-11i 
1 -2.36 ±4.52i

.1 -3.05 ±5.91i

.O1 I -3.72±5.50i
10-16	 -0.50 ±3.00i

-13.8
-108

-12.2
-108

68
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Table 4.3

Points on the Optimal Foot Loci of Example 4.1

Closed
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CHAPTER V

Related Results

The three sections in this chapter contain new results concerning

the relationships between linear state feedback, quadratic weights,

and the closed loop_.eigenstructure.

5.1 An Algorithm for Selecting F to Produce Desired Asymptotic Properties

Tn this section an algorithm is given to implement the IALSF map.

Given the asymptotic properties of the linear state feedback problem

characterized by S°, X°, Ste , and Nom ; we find a feedback gain matrix

(1/k)F tl.:t produces these properties as k - € 0. Only the generic case

is considered, when Rank(CB) = m; and (A,B) is assumed to be controllable.

The algorithm presented here is analogous to Harvey and Stein's 	 '

algorithm [4] for selecting quadratic weights (the IALQR map). The

IALQR map gives a way to trade off eigenvalue and eigenvector placement

with control energy, and indirectly this affects the feedback gains.

The IALSF map gives a way to directly trade off eigenvalue and eigen-

vector placement with feedback gains, and indirectly this affects con-

trol energy.

S°, X°, Soo , and Nco are assumed to satisfy the following conditions:

The S° matrix Chas (n-m) distinct diagonal elements. The columns of X°,

as is always the case for closed loop eigenvectors, must be linearly

independent and for each there must a v.° such that (A - s.°I)x.°+Bv.°=0.

Furthermore, it is assumed that the xi° are not in the image of B.

(,To stay in real arithmetic, let S° be block diagonal and replace com-

Alex conjugates x i° and xi+1° with Re(x iCI ) and Im(xi0 )). The Sm matrix
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is assumed to have m nonzero diagonal elements and a is assumed to be

invertible.

Theorem 1 The unique F matrix which produces the specified
asymptotic properties is

F	NHS=(N^)-1[0,I] CXO ,Bl
-1 _	

(1)

To prove this we first show that F has the desired asymptotically

finite eigenstructure. It suffices to show that the si° and xi° satisfy

the generalized eigenvalue problem

A - s. °I B x.°
1 z

0	 .

-F 0 v.°
e

This is true because by assumption there exists a v i° such that

(A - si0I ) xi0 + Bvi° = 0, and by the way F is constructed Fxi° = 0.

Since FB is full rank there are n-R solutions to this generalized eigen-

'value problem - namely the n-m specified values of s. and x.

Nett we must show-that F has the desired asymptotically infinite

eigenstr+7°ture. It suffices to show that the s  and v
i
0* satisfy the

eigenvalue problem

(sI - FB)v i  = 0
m

-s.
where s = 1

k

The parameter s is the ith infinite mode as a function of s. and k.
i

The s.1 	 v.3. satisfy the eigenvalue problem because by the way that

F is constructed

FB - N-S-(N-)-l.

The last thing to show is that F is unique. We know that FB is

uniquely defined by Soo and N * .  (If some of the s itu 's are equal then

k
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00
the vi 's are arbitrary within a subspace but FB remains unchanged).

From the way that r is constructed we see that no extra freedom exists

to choose F. (If F is multiplied by a scalar a , then each s

00
to as i , and the asymptotic properties are not the same.)	 The proof

is complete.

Example 5.1	 The same A and B matrices are used as in example 4.1,

namely that

0 1	 0	 1 0 0

-5 -4	 0.1	 1 0 0
If	 A = B =

0.1 0	 -1	 1 1 0

0 0	 0	 -5 0 1

The asymptotic properties of this system are specified for three cases,

and for each the F matrix is computed using (1). The root loci are

shown in Figure 5.1.

The asymptotically finite behavior for each case is specified by
0	 -.28

s	 0 = -3 ± 2i	 x	 0 
= 0.571 + .859 i

1,2	 1,2	
0	 0

-1.14	
.571

The infinite behavior is different for each case. The specifications

and the resulting F matrices are shown in Table 5.1.

	

0'
	 CO

In the first case we have that s1l = 1 and s 2 = 2. There are two

infinite modes that stay on the negative real axis. In the second case

81,2
00
 = 1 ± V-3 i.• Since arg(-2 1,2CO _ ± 120°, the two infinite modes

approach infinity along asymptotes that make angles of ± 120 0 with the

positive real axis. In the third case sl'2w _ -Y^3 ± i, and therefore
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Figure 5.l

Root Loci of a Linear System with State Feedback
86945AW 007
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Table 5.1

Matrices Used in Example 5.1

-A

73

1 ± 98.1 0 1800 1800

2 ± 92.8 180 180

3 + 79.1 0 180
r

+ 161..7°

+ 34.3

t 32.5

w	00 -1
'L
	

Case	 N S (N ) F

1	 1 0 0 0 1 0

r

0 2 16 4 0 2

I.	
2	 0 1 8 2 0 1

1-4 2 16 4 -41 2

f	 3 0 1 8 2 0 "1

'j

-4 -2^ -27.':713 -6.928 -4 -3.464
d

1

k

Table 5.2
k

E
	

Angles of Departure and Approach for Example 5.1

Case	 Angles of Departure 	 Angles of Approach.

-2 ± i	-5	-1	 -3 t 2i
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the two infinite modes approach infinity along asymptotes that make
0

angles of ± 30 with the positive real axis. For high enough gain this

closed loop system goes unstable. The angles of departure and approach

are different for each case and are listed in Table 5.2.

5.2 An Algorithm for Finding the Asymptotically Infinite Behavior of

the Optimal Root Locus

Given the A, B, Q, and R matrices the objective is to find S n, No,

and y; which are used to characterize the asymptotically infinite be-

havior of the optimal root locus. We assume that (A,B)	 is controllable

and (M,A) is observable (where Q = MTM, Rank (Q) - Rank (M ) = p, and M

ispxn).

The algorithm described here is a variation of Shaked's [9], which

can be used to find S® and y. The changes made to N simplify the

algorithm, the main reason for that being the use of subspaces of Rm

spanned by the vectors v. After.5onme definitions the algorithm is

presented in the form of a theorem. The theorem is proved, the Di

matrices are discussed, and then an example is given.

Define the mi

G 

G2

Gi

and

itrices

= BTQB

= (AB)TQAB

= (Ai-1B)TQAi-1B
€

G. - J.TJ.

J = MAi-lB.

Define the subspaces of Rm
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U	 = Rm
O

U1 = Uo n ker J1

U	=
2

U 11 ker s
1	 2 i

t

L	=
i

U
i-1	 ker Ji,

with the dimensions such that
3

dim U - dim U i - pi,i-1 s

a

E pi = 
M.

Finally, define the matrices

U.= matrix whose columns form a basis for UV3.

without loss of generality let U 	 = I.
0

Ni0 =
m x pi matrix whose columns are the v.'s

corresponding to the pi ith order Butterworth

patterns.	 If pi = 0 then Ni
W
 is missing and

there are no	 ith. order Butterworth patterns. (

Si 	 - pi x Pi diagonal matrix whose elements are the t

m

s 
	 's corresponding to the p i ith order Butter-

00worth patterns.	 If pi = 0 then S i	 is missing.

Using the above definitions we see that

_N' W[N1	 y ..	'N 
k  ]

W
S	 = diag(Sl^,...,Sk ).

where k < n - m + 1 is the highest order Butterworth

pattern.

5,
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In the generic case k > 1 and Ul = 0.

Theorem 2 For i = 1,...,k consider the Jordan canonical forms

(U i-1RUi-1)
 - 'T

 ii-1 Gi Ui-1 = [Wl' W2] CA 0 
J 

[Wl' W2] -1 _	(Z)

A is a diagonal matrix with real eigenvalues > 0, and

m
Ni = Ui-1W1

CO
Si = A

Remark If there are no ith order Butterworth patterns then Wl and
A will be missing.

The proof is by induction and uses the fact that all s, and v.

(including those describing the asymptotically infinite behavior) must

satisfy

[PR + @T(-s)(D(s)]v = 0	 (3)

where 0(s) = M(sI - A)-1B

= M(1 I + 1 A + ...)B.
s2

Equation (3) is derived by Harvey and Stein [4]. it can also be found

by plugging A, B, C, and R of the Hamiltonian system (defined in section

2.2.4)into (3.4) and manipulating the result. An expanded version of

^T(-s)^D(s) is shown below.

(DT (-s) (D (s) _	
1 G1
S2

+ s

	
T(°J1J2 + 

J T2J1	
)

+ 1 (-J1TJ3 + G2	
J3TJ1 )S-4
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i

+
 5

(-J1TJ4
 + J2TJ3 - J3TJ2 + i 

T 1	 )
S5

+ 1 (-J1TJ^ + J2TJ4 - G3 	 + 
i TJ2 

+ JSTJ1)
s6

+ 1 i-1
3J T J.

s2 y=1	
3 1-3

The first step is to show that the theorem is valid for i = 1.

Assume without loss of generality that first order patterns exist.

Rewrite (3) as

pR +
s2

BTQB+ 0	/ v=0.

As p -} 0 the 1 term dominates and this b ±;ome-s
S2

IXI - R-1 B T QB
] V = 0

where a = ps2.

The eigenvalues of R 1BTQB are real and > 0.	 Is because the

eigenvalues are the same as those of R BTQBR ^Sq yt; is a matrix of

the form XTX, which is known to have real eigenvalu	 0). From the

CO
Jordan canonical form (2) of R 1BTQB we see immediately that N3 = W1.

For each nonzero eigenvalue we have that s 2 = -a/p, and the solutions of s

are tai/p 12 . As p ->- Q the branch of s in the LHP is a first order Butter-

worth pattern with s i* = a	 The v o w not associated with first order

patterns lie in the kernel of R 1BTQB, which is equal to(11. These v^00's

are not "trapped" by R-1BTQB.

CO	 00
The next step in the induction is to assume that Ni-1 and Si-1

-d
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are valid.and-then show that Ni	 mand S i are valid The v^^'s

corresponding to ith order patterns must lie in 
Ui-1' 

therefore

m
Ni Y 

Ui-1W1 
for some Wl . The case where there are no ith order patterns

is trivial, because the W1 is missing. Therefore assume that there

exists at least one ith order pattern. The next step is crucial. Fac-

tor out of (3) the influence of-the v im 's corresponding to lower order

patterns. Do so by multiplying (3) on the left and right as shown be-

-
low:

Ui-1T [PR 
+0T ( -s) (P (s) ] Ui.-lW = 0.

After some work this reduces to

pQa -1TRUi-1 + (-l) i -1 
s2i Ui-1GiUi-1 } ° (s21i)](u 0.

As p -> 0 the first term dominates and this can be written

(Al	(Ui-1TRUL-1 )  (II TG . U. ) W = 0i-1 i i-1

where a	 (-l)ips2i.

The eigenvalues are real and > 0. From the Jordan canonical form (2)

m
we see that Ni	 Ui-1W1. The solutions of s in the left half plane

form an ith order. Butterworth patt^.rn with sum a	 The 
vJm 

not

corresponding to 1 st through ith order patterns must lie in Ui . This

completes the proof.

The Ui subspaces are shown in Figure 5.2. The following properties

of the Ui are simple consequences of the definitions and the above
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Figure 5.2

The U  Subspaces
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Ca
(ii)	

Ui 	
TMNi+l + ... + IM N 

(iii) Ui Ui-1 if there are no ith order patterns.

Use the following algorithm to find the U  matrices. In simple

examples this can be done by hand. In more difficult examples use the

software described below.

1) Find a basis for U1 = ker J1 , call it Ul.

.,.^ 2) I£ dim U1 = 0 then let k=1 and stop.

3) Let i=2.

4) Find a basis for ker Ji.

5) Find a basis for U  =U i_1 tl ker Ji , call It Ui.

6) If dim U  = 0 then let k=i and stop.

7) Go to 4.

Singular value decomposition (SVD) can be used to find an orthonormal basis -	 k

for the ker J.. Since ker Ji = ker Gi and G.3. is symmetric, another way

to find a basis for ker Ji is to use the eigenvectors associated with

the zero eigenvalues of Gi . SVD can also be used to find an orthonormal

basis for the intersection of two subspaces, see section 3 of

Laub ' s report [41] for more details. An orthonormal basis is not necessary

for our purposes. FORTRAN subroutines exist in EISPACK [10] to compute

the SVD and the eigenvalue decomposition.

The problem of finding Butterworth patterns of order greater than

one is numerically an ill-posed problem because an arbitrarily small

change in A, B, or Q can cause a change in the order of the Butterworth

patterns. By using proven software we have tried to minimize the

numerical problems, but we cannot get rid of them.

Example 2 Use the same A and B matrices as in example 1. Given



81

H and R the problem is to find S°, X°, S te , Nom , and Y for the optimal

root locus.	 het

0	 0	 1 .O1
	 -- 01H =

[-65
R =

100	 10	 0	 0 -.01	 .1211

Using a computer program that finds the transmission zeroes of S(A,B,H)

i	 by using a generalized eigenvalue problem we see that

-.089

.891
si° 	 -10	 x1° =

0

- -5.79

We now implement the algorithm described in this section for finding

co
	 w

S , Pv	and y.

k

0	 1 1
G1=HB= ^1=

0	 0 0

G2	 = HAB = I
r0	 -5

U2 = U lnker G2	 = 0
(Li	 10,,

^i

is

The number of 1st order patterns is dim U	 - dim U	 = 1.O	 1t	
The number of 2nd order patterns is dim U	 - dim U	 = 1.1	 2

The Jordan canonical forms are

0	 9 1	 1 9 0 0	 1
R

_
 1G1 _ _

0	 9	 1	 0	 0 0	 1	 -1

(U1TRU1)-1 U1TG2U1 = 100

Thee°efore



a2

l 1
sly 3	 N [vl°Dv20m3

.[1
1 0

s2m = 10	 y - (01, 02, i2)

5.3 Approximating the Optimal Root Focus

In this section we are concerned with optimal root loci that have

Butterworth patterns of order greater than one. What we will show is

that any optimal root loci can be approximated by another that has only

first order Butterworth patterns, and this approximation can be made

arbitrarily precise for an arbitrary distance out along the asymptotes.

This result is significant because it allows any optimal root locus

problem to be treated as a generic problem, and the generic problem is

numerically betty conditioned than the nongeneric problem.

The basic idea will first be presented in words. Then a more for-

mal proof will be given using two lemmas and a theorem. Finally, an

example will be given.

Start with the well known fact that if Rank(HB) = m then the optimal

root lows will have m first order Butterworth patterns. (If Q cannot

be factored into HTH then use M instead of H). In the first lemma it

is proved that if Rank(HB) < m then H can always be perturbed an arbi-

trarily small amount such that the new H times B is full rank. In the

second lerna an old result is quoted that essentially says that the

eigenvalues of a matrix are continuous with respect to the elements of

the matrix. Then in the theorem the Hamiltonian system matrix, for

some fixed value of p, is perturbed a small amount so that the eigen-

values move less than a prespecified amount and the rank condition on

u.
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HB is changed. For p smaller than this the infinite modes of the

optimal root locus will fall into first order patterns.

Lemma 1 Let H be a real m x n ma= -rix and B a real n x m matrix.
If B is full rank then there exists a AH such that for all a 3 0 0
Rank (H+AH) B = M.

Proof Let OH = WT , where Im (W) = Im (B) - Im (HT) A Im (B) .

The aext lemma is copied from Wilkinson [38] and is due to

Ostrowski. The bound given is not computationally useful due to the

al/n term.

Lemma 2 Let A and B be n x n matrices with elements that satisfy
the relationships

	

(aij I <1	 1hijI < 1

Then if M is an eigenvalue of A + aB, there is an eigenvalue A of
A such that

X - a I < (n+2) (n
2 
a)l/n•

Now we consider two optimal root loci. Let A be an eigenvalue on

the root locus generated by A, B, H, and R. For some p = p  specify

a ball of radius E centered around each A. Let V be an eigenvalue

generated by A, B, H + aAH, and R. We have the following result.

Theorem 3 For every p  > 0 and E > 0 there exists an a > 0 and
AH such that

O Rank(H + aAH)B = m

and for every p in the interval p  < p <

.(ii) 
I 
X' - X I < E.

The proof for the case Rank(HB) = m is trivial because we can

let AH = 0. When Rank(HB) < m choose a AH such that Rank(H + aAH)B = m

for all a 0, which is always possible from lemma 1. Next, use the

fact that the optimal root loci corresponds to the LHP eigenvalues of

A	- 1 BR-1B

Z =	 p

	

-HTH	 -Ar

I 	 $

^:s^
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Let p - p o . When H is changed to H + aAH then Z changes to

0	 0
Z+aBZZ+a

HTHt1.H + MTH + aMTM	 0

The aAETAR term can be dropped because for a sufficiently small the

largest element of aAHT6H will be less than the largest of HTAH +AIJH

Choose S such that t?^n largest element of (1/0)Z is less than one

,'rin absolute magnitude. Without loss of generality assume also that

the largest element of (1/ S)4Z is less than one in absolute magnitude,

which will be true for a sufficiently small. Apply lemma 2 to get

ix' - a' < 0(2n + 2)(4n2a)1/2n

where ?--,n is used instead of n because Z is 2n x 2n. The S term is

included because if a is an eigenvalue of Z then a/5 is an eigenvalue

of (1/3)Z. Now choose a such that

Ix I  - XI < 0(2n + 2)(4n 2 a) 1/2n < e.

this can always be done, even though a may be very small. The theorem

has been proved for p = p .0

For p > p  recompute Z and call it Z'. Let $' be its largest

element and note that s' < S. Then using the same a in (4) we see

that the distance between the eigenvalues of Z' and Z' + aAZ is also

less than e. This completes the proof.

Example 3 Use the same A and B matrices as in examples 1 and 2,

and let

0 0 1 0
H =	 R = I.

1 0 0 0

M	 9
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The optimal root locus has no finite modes. The four infinite modes

group into a first and third order Butterworth pattern with N OO = I,

02S = I, and Y = (01, 02, 12, 22). Now suppose H is perturbed in such

a way that Rank (ji + aAH) B = m. Let

AR1

0 0 0
=	 0 , CH + aeH) B = 1
0 0 0 1	 0 CX

The optimal root locus is plotted for a = 0, .01, and .001. The results

are in Table 5.1 and Figure 5.3.. We see that when a > 0 the third

order pattern shifts into a first order pattern and two new trans-

mission zeroes appear. For the case when a = .01 the two optimal root

loci are within e = .1. until p is less than .001. For the case when

a = .001 the approximation is within e = .13 until p is less than 10-5:

w	 _._	
-A
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Figure 5.3

A Third Order Buttervorth Pattern Shifting to First•Order

I
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Table 5.3

Approximations of an Optimal Root Locus

Closed LooA Eiaenvalues

Case #1: a=0

10-1 -3.31 -5.00 -2.00± i 1.01

10-3 -31.6 -5.17 -2.23 ±i 1.68

10-5 -316 -7.61 -3.75 ±i 5.25

10
-16

-108 -464 -232 ± i 402

Case #2: a=10-3

10-1 -3.31 -5.00 -2.00-+ i 1.01

10-3 -31.6 -5.18 -2.22+- i 1.69

10-5 -316 -7.74 -3.66 ±i 5.27

10-16 -108 -105 -2.00-+i 31.6

Case #3: a=10-2

10 1 -3.31 -5.00 -2.00± i 1.01

10-2 -31.6 -5.27 -2.19 ±i 1.76

10-3 -316 -8.97 -2.96 ±i 5.33

10
-16

-108 -106 -2.00± i 10.0
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CHAPTER VI

Conclusion

The linear state feedback problem was studied in this thesis, and

as a special case . the linear quadratic regulator was studied. of

primary interest was the relationship between the state feedback gain

matrix and the closed loop eigenstructure of the linear state feed-

back problem, and the relationship between the quadratic weights and

the closed loop eigenstructure of the linear quadratic regulator.

Several new results were derived which will help both the analysis and

the design of multivariable linear control systems.

The relationships were discussed in terms of maps between parameter

spaces. The names of the maps used here are not standard and not

important, but this seems to be a natural way to discuss the relation-

ships. The similarities between the linear state feedback problemlinear

the linear quadratic regulator become clear when using these maps, and

these similarities were exploited in this thesis.

In Chapter•III equations were derived to compute angles on the

root locus and the optimal root locus, including angles of departure

and approach. For the first time the generalized eigenvalue problem

was used to compute the angles of approach. Then the quadratic weights

were defined to be continuously dependent on p and equations were given

for the direction and rate of change of the closed loop eigenvalues

with respect to p. These equations were used to analyze the inverse

square method of selecting quadratic weights. All of the above results

are valid only at the points where eigenvalues are distinct. Extending

these results to multiple eigenvalue points appears to be a nontrivial
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problem.

in Chapter IV two different kinds of equivalence classes of

quadratic weighting matrices were defined. Most of the attention was

given to the Ew equivalence class - those quadratic weighting matrices

that produce the same asymptotic eigenstructure. Sufficient conditions

were given for matrices to be in the E  equivalence class, a canonical

element was defined, and an algorithm given to find the canonical ele-

ment. Then it was shown by example that the closed loop eigenstructures

can be different in the nonasymptotic region for members of the same

E  equivalence class.

More research needs to be done concerning the E° and E^ equivalence

classes. Necessary conditions need to be derived for matrices to be in

the same E(:q equivalence class, and these condit`;,^,jns are probably not

much more complicated than the sufficient conditions already derived.

It would also be beneficial to divide up the E m equivalence class

according to the equivalence relation that the closed loop eigenstruc-

tune be the same in the nonasymptotic region. Having the same angles

of departure and approach may be a way to do this, .having the same D

and E may be another. Similar questions apply to the E° equivalence

class. We do not yet know if all members of the E° equivalence

class (those quadratic weighting matrices that produce the same optimal

gain matrix:) have the same asymptotic properties. If not then the E°

equivalence class can be further split up. Within this (possibly)

smaller set of quadratic weighting matrices a canonical element can be

defined that has the following properties (and possibly others in order to

assure uniqueness): the Q is of rank m and S(A,B,H) (where Q = HT H)

:.d

t
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has transmission zeroes in the left half plane. To find this canonical

el-ment the asymptotic properties of -the original (Q,R) can be found,

appropriate D, E, and Y matrices can be chosen,and then using equations

(,4.1-4.3) the canonical. (Q,R) can be computed.

Three related results were derived in Chapter V. The first was

a synthesis solution for the linear state feedback problem. An

algorithm was given that finds a feedback gain matrix k F that produces

specified asymptotic properties a3 k -€ 0. Only the generic case was

considered, so the obvious next thing to do is to extend this algorithm

to handle nongeneric cases. Also, this technique may yield insight
e

into selecting a feedback gain matrix K for the output feedback problem.

In the generic case K can be chosen to arbitrarily select S o* and N33

but K has no effect on S°, X°, or y.

The next result was an algorithm to compute S o* , Nom, and y

implicit in a set of quadratic weights. With this algorithm and previous

results for S c and.X° ,, all of the implicit asymptotic regulator pro-

i'_.

perties can now be found. With obvious

back problem, the asymptotic properties

m
A, B, and Q; and S and N can be found

thing to do is to modify this algorithm

similarity to the output feed-

s°, X°, and y can be found from

from A, B, Q, and R. The next

to find S
cc

, N
Go

, and a multi-

index :similar to y for the output feedback problem. This will be

more difficlut because the closed loop eigenvalues are no longer guaran-

teed to be symmetric about the imaginary axis. The elements of S are

found by solving various eigenvalue problems, and because symmetry is

not guaranteed the eigenvalue problems may have Jordan blocks of size

2 x 2 or greater.
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F

The final result shows that an optimal root locus with Butterworth
qi

patterns of order greater than one can be approximated by an optimal root 	 i

locus with all first order Butterworth patterns, and this approximation
9

can be made arbitrarily precise for an arbitrary distance out along

the asymptotes. This result may help to analyze optimal root loci.
3

Determining the order of Butterworth patterns is numerically a badly

conditioned problem, so by restricting our attention to a finite region

of the complex 3 plane we can use the better conditioned problem of

analyzing first order patterns.

{

f
I>
i
f

il
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APPENDIX A

Transmission,Zeroes

Definition

Several definitions of transmission zeroes exist in the literature

and all have some validity. Common sense dictates that-.the definition

reduces to the usual one in the SISO case Cthe roots of the numerat-^4r

polynomial of the transfer function) and that the transmission zeroes

have some physical meaning. One definition that meets these require-

ments is due to Rosenbrock [6], which is the one used here. Though it

is too early to know for sure, the control community appears to be

settling down to this definition.
e

Rosenbrock defines the system matrix

A - sI	B
P Cs) =	 (l)

-C	 0

and his definition of transmission zeroes is given in terms of the

minors of P(s). An equivalent definition uses the Smith McMillan form

of P(s) [42]. Since for our purposes we have the same number of inputs

and outputs we use the following equivalent definition [7,43]: The

transmission zeroes are those values of s, including multiplicities but

not including uncontrollable or unobservable modes, that reduce the

rank of P(s). We note that this definition allows the degenerate case

where the whole complex plane reduces the rank of PCs); this can happen

even if B and C are full rank and the system is controllable and obser-

vable. We note also in the square case that the determinant of P(s) is

equal to

	

rdet (A-sI) det [C (A-sI) -1B] ,	 (2)

w,
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and another equivalent definition of transmission zeroes is the roots

of (2) . This definition is used by Iewakernaa, and Sivan [8] .

To demonstrate that Rosenbrock's definition has physical meaning

[421 we consider the linear output feedback system of section 2.2.2.

Assume that it is controllable and observable and then Laplace transform

(2.4, 2.5) to get

A - sl	B x 0

-C	 0 u -y

Transmission through the system is blocked (the output will be zero)

for certain values of s, x, and u. Those values of s for which this is

true are trans;ussion zeroes, and the corresponding values of x are called

zero directions.

The Generalized Eigenvalue Problem

The problem is to find all finite X and their associated eigenvectors

v which satisfy

Lv = XMv,	 (3)

where L and M are real p x p matrices not necessarily full rank. There

will.be from 0 to p finite solutions. if M is invertible then premulti-

plication by M-1  changes the generalized eigenvalue problem into an

eigenvalue problem and there will be exactly p solutions. Stable and

reliable FORTRAN subroutines exist in ETSPACK [10] to solve the generalized

eigenvalue problem.

Computing Transmission Zeroes

Three different methods f= computing	^- on fez-yes are dis-

{
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cussed. The ti^lationship between the first two methods is an unpublished

result due to Laub. Only the special case of an equal number of inputs

and outputs ,and no feedforward term is discussed.
i

Laub and Moore [40] discuss in detail using, the generalized eigen-

value problem as a way to compute transmission zeroes. In place of (3)

use

A B [X]0I 	x
= 11

iC 0 v	0 0 v

The finite solutions a reduce the rank of Rosenbrock ' s system matrix (1)

and therefore are transmission zeroes. There are anywhere from 0 to

(n-m) transmission zeroes, and in the generic case when Rank(CB) = m

there are exactly (n-m) solutions. The portion x of the associated eigen-

vector is the zero direction.

Davison and Wang [44] use high gain feedback and an eigenvalue

problem to compute transmission zeroes. First they prove that as k -€ 0

the finite closed loop eigenvalues of

A i =A -
 k

- BKC	 (5)

approach the transmission zeroes. Their method is to find a "suitably

small" value of k, compute the eigenvalues of Acl , and then determine

which are finite. The eigenvectors associated with the finite eigen-

values are the zero directions.

These two methods are closely related. The connection is the result

derived in section 3.2.1 that the closed loop eigenvalues and eigenvectors

are solutions of the generalized eigenvalue problem
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A - 1I B 	x

-C	-kK 1 v

Equations (5) and (6) give the s;,me answers for k > 0 and in the limit as

k ¨ 0. The only difference is that in (6) k can be set exactly to zero.

Equation (6),incidentally,is an obvious way of proving that as k ¨ 0

the closed loop eigenvalues approach the transmission zeroes.

A third approach is found in various papers by MacFarlane, KArcanias,

Kouvaritakas, and Shaked [for instance 42,18]. Taaey define N and M

such that the rows of the (n-m) x n matrix N form a basis for the ker

(BT) and the columns of the nx (n-m) matrix M foam a basis for the ker (C) .

Then the transmission zeroes are the roots of the polynomial

det	 (I! RM - XNM) = 0. 	 (7)

This result can be derived using similarity transformations on the

matrices in (4), see [42,181 for details. In the generic case when

Rank(CB) " m then Rank(NM) _ (n-m) and (7) is an eigenvalue problem, ie

the (n-m) eigenvalues of (Nk, ) -lNAM are the transmission zeroes. In the

nongeneric case when Rank(CB) < m then it is not clear how to continue,

other than to treat (7) as a generalized eigenvalue problem.

The first method, by Laub and Moore, has the best numerical proper-

ties and is the one to use. While all three methods give excellent

results in some cases, Laub and Moore give examples where the other two

methods break down. in Davison and Wang's method it is not obvious

how to choose a suitably small k, and in some cases the accuracy of the

answer is critically dependent on this choice. Furthermore, Davison and

Wang's method; gives no indication when the answers are in error; and

therefore `heir method is unreliable. The method by MacFarlane et al.



a.
99

unnecessarily requires L)ank determination, which numerically is a very

difficult thing to do, and can introduce errors into the computations.



Errata

page 14, paragraph 2, line 7:

change "-si ll to " -Re(s i ) + ilm(si)"

page 15, paragraph 1, line 4:

change "trace" to "trick"

page 23, paragraph It line 4:

CO	 00

Change " ^v i ll to11 BV i 11

page 32, paragraph 2, line 16:

change "call U" to "call U
Y,.

page 35, paragraph 3, line 2:

change "UYp" to "UyP"

page 48, Theorem 2:

-1
change wHzl w HH

-1	 H
to	 w•

H	 i
w. z.

page 49, paragraph 4, line 6•

change to: LHP, let s. be the mirror image about the imagin ary 3

axis of s., and let	 r.

—H	H) H
Z. _ (x.,

.ju



page 75, ;paragraph 1, line 11:

CO
Charge "V , o s" to "V 'S41

page 81, paragraph 1, line 9:

change "G1/2 " to "J1	 1

page 81, paragraph 1, line 10:

r

change the 2 occurances of "G1^ 2 " to "J2"
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