
N A S A  TECHNICAL 

MEMORPNDUM 

NASA T! ', - y8295 

TORQUES ON A NEARLY R I G  I D  BODY IN A 
RELATIVISTIC GRAVITATIONAL FIELD 

By Alessandro Caporali 
Space Sciences Laboratory 

- 
August 1980 // 

--. 

(~ASA-TH-782 95) TORQUES OY A NEAhLY h l G I D  N80-3 1289 
BODY AN A B h L A T I V I S T I C  G h A V I I ' A T I O N A L  t IELD 
(NASA) 25 p tlC A32/HF A u I  CSCL 338 

Guclas 
G3/90 28541 

NASA 

George C. Marshall Space Flight Center 

M'zrsball Space Flight Center, A l ~ b a ~ z ~  

MSPC - Form 3190 (Rev Jlmt 1971) 



ACKNOWLEDGMENTS 

The author thanks Dr. Peter  Eby for many h e l p f u l  d i s c u s s i o n s .  
The f i n a n c i a l  support o f  t h e  National  Research Council  is  grate -  
f u l l y  acknowledged. 



TABLE OF CONTENTS 

Page 

. . . . . . . . . . . . . . . . . . . .  I. INTRODUCTION 1 

11. FORMALISM . . . . . . . . . . . . . . . . . . . . .  4 

. . . . . . .  111. THE POTENTIAL OF THE ROTATIONAL MOTION 10 

. . . . . . . . . . . . . . . . . . . .  IV. CONCLUSION. 17 

REFERENCES . . . . . . . . . . . . . . . . . . . . . . .  19 

iii 



I. INTRODUCTION 

In order to describe the motion of massive bodies in post- 

Newtonian approximations to General Relativity and other metric 

theories of gravity, one is led to define certain relativistic 

potentials. They simply add to the Newtonian potential, 

inducing perturbations on the Keplerian motion of a body in the 

grlvity field of another body. Well-known examples of such 

perturbations are the Einstein and Lense-Thirring rotations of 

the orbit in inertial space. 

The question is whether the same relativistic potentials 

also induce perturbations in the rotational motion of a nearly 

rigid body and, if they do, how can these perturbations be 

observed? 

Recently [l] the author has developed an approach for an 

approximate description of the motion of extended bodies. The 

approach is based on the local hydrodynamical equations of 

motion for a perfect. fluid in the PPN approximation [27 and, 

as such, is well adapted to the description of perfect fluid, 

weakly gravitating bodies, a class to which a large fraction of 

systems of astronomical interest belong. 

After a review of the formalism (Section II), the main 

result is obtained in Section 111: given a body A with spin 

vector sA - and traceless part of the tensor of inertia (or 

quadrupole moment) S a g  A in the field of a body B with mass mg, 

the potential which depends on the orientation of the ellipsoid 



of inertia of A has the structure 

where fi is defined exactly in (3.14); f, g, and h are scalar - 
functions; - R is the position vector of the Newtonian center- 

of-mass of A with respect to the one of 8:  k is the unit 
A* 

vector; and R = ds/dt. 

Thus the modification of the classical torque-inducing 

potential: 

basically the second term in (1.1), consists of a potential 

inducing a relativistic spin-precession about the direction nf 

n, and of two new potentials which induce velocity-dependent - 
torques. 

In the case of the Stanford Gyro Relativity Experiment 

131, it is known that the detection of the first few terms in 

fl and of the classical ;ravity-gradient tern1 inauced by (1.2) - 
is within the capabilrty of the readout system. It is natural 

to ask whether the velocity-dependent torques could also be 

measured in the experiment. The answer is negative; the reason 

is that both g and h depend linearly on the product of velocity 

of body A (the gyroscope) and the velocity of body E (the Earth), 

measured in any inertial frame. Because of the large mass of 



the Earth in comparison to that of the gyro, we can always 

choose an inertial frame in which the Earth is at rest, so 

that g = h = 0. 

This analysis then, in particular, confirms that the only 

gravitational causes which may affect the rotational motion of 

the gyroscope are the first few terms of the relativistic spin 

precession and the Newtonian gravity gradient (1.21. 

Throughout thisreport use will be made of the notion of 

a nearly rigid bod)-. While in an exact relativistic context 

Born's concept of rigid rotation h3s no meaning and dynamical 

conditions (see [ 4 1 )  must instead be used, in the approximate 

framework used here the Born kinematical condition can never- 

theless be assumed valid in an approximate sense. Also, 

deviations from Born's rigid rotation will be assumed as small 

as terms of seccnd post-Newtonian order. 

Units such that G = C = 1 are used throughout. Greek 

indices range from 1 to 3, Latin indices from 0 to 3. 



XI. FORMALISM 

In this section we proceed to summari7e some of the 

definitions and the main results in References 1 and 5 .  

In post-Newtonian hydrodynamics for a perfect fluid it 

is convenient to introduce the following four independent 

variables bird an equation of state as the basic set of quanti- 

ties in a given coordinate system: 

p mass density 

v coordinate three-velocity 
a 

9 = T ( p )  equation of state relating the internal 

specific energy density ¶ to p .  

In terms of the basic set (2.1), the following quantities 

are now introduced: 

components of the metric tensor: 

gravitational red-shift factor: 

coordinate four-velocity of the matter-stream: 

va: = (1, Val , 

pressure defined by the equation of state and the 

restriction to adiabatic processes: 



energy-momentum tensor of a perfect fluid: 

The energy momentum tensor (2.6) is entirely defined in 

terms of the basic set (2.1), provided that one knows how to 

explicitly specify-in the given coordinate system-the metric 

tensor in the form (2.21, or, in other words, how to solve the 

field equations. For a large number of systems of astrophysical 

interest a "slow motion" approximate representation of the 

type (2.2) is possible in a neighborhood of the material source 

and in harmonic coordinates by means of an iterative solution 

method of a reduced Einstein equation [1,6,7] or by means of 

the method originally devised by Chandrasekhar [ 8 1  or Fock [91. 

In the following the metric, and correspondingly (2.3) 

and (2.6) , will be considered known in the form (2.2) in the 
first post-Newtonian approximation. 

Besides the Newtonian potential at the point (x,t) - 

one defines the post-Newtonian potential 

which is a gravitational analog of the vector potential in 

classical electrodynamics. 

Let f3 and y be PPN parameters ( B  = y = 1 in General 

Relativity), and 



-, 
0 

p * :  = p c u  = p ( l  + v L. 

Z + 3yV) , 

the "conserved energy density" [21. 

Given an isolated (in the sense of [lo]) two-body system 

i A , B ! , '  at any point inside the spatial support of A,  say, one 

can uniquely decompose each potential into the sum of an 

"internal" and "external" part by simply restricting the domain 

of integration in (2.7) and ( 2 . 8 )  to the spatial support oF 

body A (internal potential) and of body B (external potential). 

(A)  Let U , w ( ~ )  denote the external potentials on A ,  and Ek, E 
P' 

El the nonrelativistic kinetic, potential, and internal energy 

densities, respectively, of a given body, as measured by a 

comoving observer. 

Define for each body an inertial mass-density 

along with the corresponding inertial mass 

and a gravitational mass-density 

along with the corre~pondl~g gravitational mass 

1. The same considerati.ons can be readily extended to any 
iso!~,ted system containing N > 2 bodies. 



which in some metric theories of gravity may be different from 

the inertial mass (2.11) [ll] . 
Let the bodies ( A , B )  be homogeneous and in rigid rotation, 

a,b the coordinates of the respective Newtonian centers of mass, - - 
and sA,& the relative positions in A,B with respect to a,b, - - 
respectively. 

If one defines the PPN linear momentum of A 

( =  : = d,'dt; ,a : = a/axa)  

and the PPN force on A , ~  

1 3 3 ,  
+ 7 &PV I P'V' Ix-xt I ,aBY 

6 B  Y 
d x d x ,  

2. In the terms of post-Newtonian order the densities of 
gravitational and inertial mass can be replaced by p because 
the difference is neglig'bly small in this approximation. 

-1 



then one can show [l] that the local equations of motion for 

the material source 

imply 

modulo quantities of second post-Newtonian order. 

Expanding the gradient of the potentials in (2.15) into 

multipoles and considering only the monopole term, one can 

construct out of (2.17) a Laqrangiar? which proves to be identical 

to the so-called "Einstein-Infeld-Hoffmann" Lagrangian [12,13], 

valid for spherically symmetric field-singularities, provided 

one identifies the mass (2.11) or (2.13) of a perfect fluid, 

rigidly rotating body with the "mass" of a field-singularity. 

Considering one further term in the multipole expansion of 

the potentials introduces a relativistic dependence of the 

Lagrangian on the spin of the bodies. Use of the theory of 

perturbation of the initial data (i.e., the orbital elements 

of the osculating Keplerian ellipse) leads to a secular precess:.on 

of the direction of the orbital angular momentum or, equivalently, 

of the longituce of the ascending node of the relative orbit. 

Since '.he spin-dependent Lagrangian has been c lined from 

the equation of the translational motion (2,171, it cannot be 

used in order to study the rotational motion of the bodies of 

the system. Caporali and Spyrou [ s ]  have, however, shown that 



if one introduces a generalized definition of the spin which 

includes terms of post-Newtonian order, the equations of motion 

of the spin can be obtained, for each body, from the theorem of 

conservation of the total ~ngular momentum of the system and 

the equation of motion of the orbital angular inomentum, which 

is already known from orbital analysis. In this way they were 

able to show that the resulting equation of motion of the spin 

of each body was the same as that which could be obtained by 

standard techniques from the Lagrangian of the translational 

motion. The proof can in principle be repeated at any order of 

the multipole expansion. It can then be stated that at any order 

of the multipole expansion in (2.17) the corresponding Lagrangian 

contains for each body the correct dependence on the three 

coordinates of its center of mass and on its three Euler angles. 

A Lagrangian with the same dependence on ~hese six Cegrees 

of freedom per body was obtained by Barker and OIConnell using c 

quantum approach to the relativistic equations of motion of 

extended bodies, assumed to be described by the energy-momentum 

tensor of spin 1/2 particles [14]. 

The following section is dedicated to the study of the 

relativistic rotational motion of the bodies in the isolated 

system. The strategy will be ss follows: in the multipole 

expansion of the relativistic potentials, the terms depending 

on the Euler angles of a given body will be singled out from those 

depending on the translational degrees of freedom to obtain the 

potentials entering the rotational (Euler) equations of motion cf 

that body. 
9 



111. THE POTENTIAL OF THE ROTATIONAL MOTION 

In this section I L I L . '  1 sketch the calculation which leads 

us to recognize the dependence of the relativistic Lagrangian 

corresponding to (2.17) on the Euler angles of a given body A, 

say (the formulae valid for B can be obtained from those of A 

by simply interchanging the labels). Once this dependence 

has been established, the Euler equations give straightforwardly 

the time-evolution of the spin of the body. 

Let - a,b - be the coordinates of the Newtonian center-of-mass 
of A,B,  respectively. Replacing in the force (2.15) the quantity 

Ix - x '  I - ' ,  by its Taylor expansion in a neighborhood of (x - = - a, 

x' = b), one obtains a collection of terms which can be classi- - 
fied according to whether they are "torque-free" or "torque- 

inducing". 

Let us first examine the torque-free terms; that is, those 

ccrresponding to a potential of the form Sl - - sA, for some Q, - 
A S being the spin of A, defined below. Let - 

be the relative position-vector in A. 

In (2.15) one recognizes that tb.e terms which have nonzero 

spin dependence are 

(1 + 2y)&$ P LA ig p' I x-x' I- '  3 3 d x 3 x '  
I a 

and 



The l a t t e r  contr ibutes  through 

-2 (1 + y )  4-IA &, g p 8  1.-xv 1-I 
r a d3x  d3xg 

and 

-2(1 + Y )  J P i p 8  i t B  IX -X I  1 - 1  3 3 
A -A- d x d x ' .  

I Q 

Define the spin according to classical mechanics 

and the tensors as 

which are symmetric in the indices vl...v 
no 

The spin-dependent part of (3.1) or ( 3 . 3 )  is the gradient 

of 

contracted with - i, 6 ,  - respectively. 

Only the traceless part of the I's, defined by Reference 

@k) 

a , 

int (n/2) $ ;  
k k  sB C c-u 

.. 
6 '% - : = - '(V1O 2...  Y '31.. .vn zk-1v2k Vlk+t Ovn) U ~ V Z *  . *bnpn - <  i 

k=2 (;:) Z ,  i :  
i ;  

.;5 3 
( 3 . 7 )  

m m 5 .  int (-) denotes the integer part of ;-; parentheses 
2 L -* 

'1, : 
on indices denote complete symmetrizztion, ..F . 

1 1- '4 1 :  ' 4  
r . 
.3 

. -  .. . 



is invo1,ved in (3.6). Also, introducing the operator 

and the notation 

the spin-dependent part of (3.1) is the gradient of 

and likewise for (3.3) . 
The spin-dependent part of (3.4) is given by the gradient of 

(3.11) 

Again, only the traceiess part - P of the P's in ( V  l...~n), 

defined according to the same rule as in (3.7), contributes in 

3.11. Defining the \.actor-valued uperator p P S  in ( 3 . 8 )  - 

and using the same notation as (3.9), with P replacing a?, the - - 
spin-dependerrt part of (3.6) can finally be written as the 

gradient of 

Introduce the total and reduced mass 



and center-of-mass coordinates: 

The torque- free  potential i s  f i n a l l y  given exactly def in ing  

A The torque-free potential is  then VTF = - n S . In an - - 
inertial frame locally comoving with A, the torque-free 

potcnt.ia1 induces a  prcccssion of t hz  s p i n  of A about t h e  

d i r e c t i o n  of b:: - 

The first two terms in the right-hand side of (3.14) have 

already been computed, though by means o f  different techniques 

6 1 7 .  The lowest order contributions t o  - C from the l a s t  t w o  

terms can be w r i t t e n  d e f i n i n g  

@no o b t a i n s :  



This expression agrees with a formula obtained by Barker and 

O'Connell when mA << mB 1181. 

Let us consider now the torque-inducing potential1 that is, 

the one depending on the instantaneous orientation of the 

ellipsoid of icertia of A w.r.t. the position of B and vice versa. 

An exact formula in the same fashion as (3.14) must represent 

the coupling of all the multipoles of A with those of B, and it 

is not very illuminating, in general. In the foilowing I shall 

consider for the bodies the multipoles up to and including the 

quadrupole, neglecting in the potential terms of order 0[(5/R) '1. 

It is convenient to define 

where the label C indicates that the mass and the quadrupule 

moment correspond to the gravitational mass density (2.12). 

The contribution to the torque-inducing potential coming 

from the first term in (2.15) is readily seen to be 

modulo terms of second post-Newtonian order. 

Likewise, the contribution from the second term in (2.15) is 

while the third integral gives no contribution, at this order. 



Fl~ally, the contributions from the fourth and fifth 

integral in (2.15) are, respectively, 

and 

Writing 

M a v  : = M,,,, fc 
IJ 

Mfiff : = Mliv Rv 8 

the torque-inducing potential is: 

A,ain8 making use of the centey-of-mass coordinates, we 

note that 

so that 

aaB kail = ic r-- RR + R sg; 

and 



The first term in the right-hand side. of (3.19) and (3.20) 

contributes to the first term in the right-hand side of (3.18). 

By contrast, Ia and Ici introduce in the torque-inducing 

potential a nonclassical dependence of the orientation of the 

ellipsoil of inertia of one body with respect to the instantaneous 

position and velocity of the other body. 

If the body A has a mass much smaller than that of B, the 

last term in (3.18) tends to zero and can be neglected. In fact, 

it will always be possible to choose an inertial system in which 

b = 0. Accordingly, the velocity-depender 5 ,  torque-inducing - 
potentials will not be involved in the equation of the cotational 

motion of A. 



IV. CONCLUSION 

We have proved that in the post-Newtonian approximation the 

potential governing the rotational motion of an extended body 

of mass mA, spin - sA and quadrupole moment I in the relativistic 
a$ 

field of a mass mg has the structure 

(G) r 1 ( ~ ' / 2  R~ . (4.1) + [I + P (6, y , orbital parameters) ] 3 
RR 

The potential (4.1) is then the post-Newtonian generaliza- 

tion of (1.2). 

An exact expression for - il has been derived in Section I11 

in terms of the differential operators ( 3 . 8 1 ,  (3.12). 

The second term in (4.1) is responsible for a nonclassical 

dependence of the orientation of the ellipsoid of inertia of 

one body wi.th respect to the instantaneous position and velocity 

of the other. When the body A has a much smaller mass than that 

of B, the effect of this term on the rotational motion of the 

body tends to zsro. 

The fact that the nodal line of an orbiting body, defined 

by the intersection of the equatorial plane and orbital plane, 

rotates on the orbital plane is confirmed by the third term in 

(4.1). Only the frequency of rotation needs to be redefined. 

In practice, this consists of multiplying the classical frequency 

by the sum of 1 and the numerically small function, of order 

2 (V/C) contained in the parentheses. 



It is worth noting that the framework developed in 

Reference 1 leads to the association with each body of not 

only a gravitational mass but also of a countable set of 

infinitely many gravitational multipole momenta. This fact 

is h consequence of the existence of a gravitational mass 

density (2.12) which may differ from the inertial one (2.10) 

in some metric theories of gravitation. 

Obgervable consequences on the relativistic rotational 

motion of a smal.1, nearly rigid body can be induced only by 

the torque-free term -Q-S under the form of a precession of - - 
the spin - S about the direction of Q. The feasibility studies - 
of the Stanford Gyro Relativity Experiment (see, e.g., [ 3 1 )  

have pointed out that this precession can be observed as a 

variation in the orientation of the London magnetic moment of 

a spinning quark2 ball in geodetic motion about the Earth. 

Careful evaluation of the attainable level of accuracy has 

shown the feasibility of a measure of the leading part (3.16) 

of the vector 32. - 



REFERENCES 

Caporali, A. (1979): preprint, M. Planck Institut ffir Physik 
und Astrophysik, Munich (W. Germany). 

Will, C. M. (1974): in "Proceedings of the International 
School of Physics CcEnrico ~ermi>>" Course 54, 'Experimental 
Gravitation" (B. Bertotti, ed. ) , Varenna (Italy) , ~cademic 
Press, New York-London, 1. 

Everiti, C. W. F. (1974): in "Proceedings of the International 
School of Physics <<Enrico J?ermi>>* Course 54, "Experimental 
Gravitation" (B. Bertotti, ed. ) , Varenna (Italy) , Academic 
Press, New York-London, 331. 

Ehlers, J. and E. Rudolph (1977) : J. Gen. Rel. and Crav. 
8, 197. - 
Caporali, A. and N. Spyrou (1980) : submj tted to J. Gen. Rel. 
and Grav. 

Anderson, J. L. and T. C. Decanio (1975) : J. Gen. Rel. and 
Grav. 6, 197. - 
Caporali, A. and J. Ehlers (1980) : ir >reparation. 

Chandrasekhar, S. (1965): Ap. J. - 142, 1488. 

Fock, V. (1966): "The Theory of Space, Time and Gravitation," 
2nd ed., Pergamon Press, New York. 

Ehlers, J. (1977): in "Proceedings of the International 
School on General Relativistic Effects ic Physics and 
Astrophysics" (3rd Course) (J. Ehlers, ed. ) , Erice (Italy), 
MPI-PAE Astro 138, Max Planck Institut fcr Physik and 
Astrophysik, Munich (W. Germany). 

Nordtvedt, J., Jr. (1968): Phys. Rev. - 169, 1017. 

Einstein, A., L. Infeld and B. Hoffmann (1938): Ann. Math. 
39, 65. - 
Infeld, L. and J. Plebanski (1960): "Motion and Relativity," 
Pergamon Press, New York. 

Barker, B. M. and R. F. OgConnell (1976): Phys. Rev. D.14, - 
8 6 1. 

Pirani, R. (1964): in "Lectures in General Relativity," 
Brandeis Summer School of Theoretical Physics, Prentice Hall, 
New York, 288. 



REFERENCES (~mcluded) 

16. Barker, B. M. and R. F. OtConnell (1975) : Phys. Rev. D. - 12, 
329. 

17. Bcrner, A., J. Ehlers, and E. Rudolph (1975): Astronomy and 
Astrophysics - 44, - 417, 

18. Barker, B. M. and R. F. OtConnell (1970): Phys. Rev. - D2, 
1428. 



APPROVAL 

TORQUES ON A NEARLY RIGID BODY IN A 
RELATIVISTIC GRAVITATIONAL FIELD 

By Alessandro Caporali 

The information in this report has been reviewed fo r  
technical content. Review of any information concerninq 
Department of Defense or nuclear energy activities or programs 
has been made by the MSFC Security Classification Officer. 
This report, in its entirety, has been determined to be 
unclassified. 

- 
r, /3 

L @ ~ ~ ~ ~ ~ ~  
RU OLF DECHE 
Chief, s p a d  Physics  ibisi ion 

1 

&A#* 
CHARLES A. LUNDQUIST 
Director, Space ~ciencks Laboratory 


	0001A02.TIF
	0001A03.TIF
	0001A04.TIF
	0001A05.TIF
	0001A06.TIF
	0001A07.TIF
	0001A08.TIF
	0001A09.TIF
	0001A10.TIF
	0001A11.TIF
	0001A12.TIF
	0001A13.TIF
	0001A14.TIF
	0001B01.TIF
	0001B02.TIF
	0001B03.TIF
	0001B04.TIF
	0001B05.TIF
	0001B06.TIF
	0001B07.TIF
	0001B08.TIF
	0001B09.TIF
	0001B10.TIF
	0001B11.TIF

