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This report is the final documentation of a blade flutter prediction
} model evaluation performed at UTRC by comparing the analytical predictions

with corresponding flutter test data available for a part-span shrouded fan
assembly.
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SUMMARYa

An analytical technique for the prediction of fan blade flutter, is
e valuated ''by utilizing first-stage fan flutter data available from tests
conducted at the National Aeronautics and Space Administration (NASA), Lewis
Research Center on an advanced high performance engine. " Me formulation
includes both aerodynamic and mechnicai coupling among all the blades of the
assembly.	 Mistuning is accounted for in the analysis so that indivtdua1
blade inertias, frequencies, or damping can be considered. 	 Airfoil stability
is predicted by calculating a flutter determinant, the eigenvalues of which
indicate the extent of susceptibility to flutter.

When blade-to-blade differences in frequencies are considered in the
analysis a stable system is predicted for the test points examined in this
report.	 For a tuned system, however, it was found that torsional flutter can
be predicted at a limited number of interblade phase angles. 	 An examination
of these phase angles indicated that they were "close" to the conditionof
acoustic resonance. 	 For the range of Mach numbers and reduced frequencies
considered here, the so-called subcritical flutter cannot be predicted.

x
The essential influence of mechanical coupling among the blades is to

change the frequencies of the system with little or no change in damping;.
But,; aerodynamic coupling together with mechanical coupling could change not

;- only frequencies but also damping in the system, with a trend toward
{ instability.

:,	 x



f INTRODUCTION

An important factor which influences the development program of any
e	 h	 advanced engine is the susceptibility of rotor blades to flutter instabilities.

In order to understand more fully the mechanism of fan blade flutter instabil-'
ities and the parameters that influence flutter, several tests on an advanced`
engine were conducted at NASA Lewis. 'These tests covered a wide range of
realistic operating conditions appropriate to a modern high Performance Jet

r	 engine.	 Considerable data were generated for the component under study (i.e.,
r	 the part-span-shroud fan assembly).	 Documentation of the steady-state aero-
,-	 dynamic conditions prevailing at the several test points, compilation, and

analysis of flutter data may be found in reference 1 	 Detailed analysis of
i	 x	 aerodynamic data obtained from high response pressure probes and optical

probes are presented in reference 2.
f	 3E	

a

The nature of flutter observed in all these tests was subsonic stall>
flutter and a study of the flutter mode of vibration revealed the presence of
several harmonics in a nearly pure torsional mode. 	 Frequency measurements
made on each blade fully restrained at its shroud revealed blade-to-blade
differences.	 Considerations of all these ;aspects of the problem pointed to	 j
the need to develop an analytical model which can account for blade'mistuning
in the analysis.	 This report summarizes the results of a preliminary effort

n	 to model the flutter characteristics of a mistuned rotor.'

In as much as the observed flutter mode was concluded to be essentially
an above shroud first torsional mode, the ;analytical 'model represents each r

blade as a-torsional oscillator.	 The oscillators are assumed to be 'mounted on
a ring representing the shroud.	 The formulation allows for blade-to-blade
differences in any or all of the following:	 frequency, inertia, damping.	 The

unsteady aerodynamic coefficients used in this `study are based on the analysis'

due to Smith (reference 3). 	 The problem is formulated along the lines out-
lined by Whitehead (reference 4) and leads to aflutter determinant, the
solution of which yields the eigenvalues at which flutter is likely to occur. 
The real parts of the ' eigenvalues represent the frequencies at which flutter

'	 may occur and the corresponding imaginary parts represent the level of
damping.

In this report, the technical approach, along with a discussion of itsw	
principal features, is outlined first.	 The application of the analytical

'	 model, to four test points is discussed next, followed by a discussion and
summary of the results covering the conclusions drawn from the comparisons
made between the analytical model and test results. 	 The 'detailed derivations
are shown separately in the APPENDICES.
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NOMENCLATURE

A Aeroelastic moment

(A) Matrix of aerodynamic effects

f'
r CM Unsteady aerodynamic moment coefficient

13

' (-C) Matrix of CM

9

,r c Blade chord

_

E Modulus of elasticity;

(E) Matrix of interblade phase anglesq see Eq. (11) ofAPPENDIX A

f Force between blade and support structure

I Mass moment of inertia of a blade/unit length or
moment of inertia of ring cross section

(^) Matrix of blade inertia ratios

K Blade stiffness

M Mach number

(M) Matrix of mechanical effects

n Nodal diameter (harmonic number)
9

N Number of blades

W Wo
P Frequency parameter (	 w02

S Gap between blades

t Time

u, Aerodynamic modal twist

U Steady fluid velocity relative to blade
r
R,

w Amplitude of vibratory rotation of support structure'

3

;

r



y Amplitude of vibratory rotation of support s .tUeture

z y-w

Q Dynamic influence coefficient`

Q Interblade phase angle

}
y Individual blade frequency departure parameter

E S Logarithmic decrement

Ratio of aerodynamic inertia to blade inertia

B 410 a	 2
V Frequency parameter W2

71 Elastic axis position expressed as a percentage of chord from the

leading ;edge

W Circular	 frequency of vibration t

X Reduced frequency C W /U

,n.
9 Blade stagger' relative to tangential plane

4

a Air densit;►

C Damping ratio

Subcripts ;z

AR Acoustic resonance
;A

C1 Twist

F Force

I Imaginary part

M Moment'
x

;. o Leading edge position (or reference blade)

q Translation

R Real part
x

T Tangential
- 4



TECHNICAL APPROACH

4 Overview

The approach adopted; here considers the differential equations of motion
governing the vibration of a cascade of blades in a uniform flow field. 	 Thus,,

€	 _ the forces acting on each member of the cascade include aerodynamic forces in
addition to mechanical (inertial, restoring, and damping) forces.	 The aero-
dynamic forces acting on the system not only influence the vibratory motion of
the blades but 'are, in turn, influenced by vibration.	 These aeroelastic

' forces are generally dependent on the prevailing steady-state aerodynamic
conditions, cascade geometry, and the mode of vibration.- For -a ccanplete
description of the aerodynamic force it is also necessary to know the location

- of the elastic axis.	 As each blade is a member of an assembly of blades
vibrating in a flow field, the vibration of each member influences every other
member and thus all blades are aerodynamically coupled. 	 In addition, the

-blades can also be coupled mechanically through the disk on which they are
mounted or through the shrouds at which each blade comes into ;contact with its
neighbors due to blade untwist at speed.

The above considerations lead to a formulation which describes the motion
of a system of blades coupled aerodynamically and mechanically. 	 By virtue of
mistuning'in which one or more characteristic (frequency, damping, etc.) of
each blade is "slightly" different from those of a reference blade, the system
of equations leads to a flutter determinant, the solution of which yields the

' possible frequencies of vibration at which the system is susceptible to
flutter.

The construction of the mathematical model proceeded on the basis of
representing only the above-shroud-torsion vibration mode of an advanced fan.
Thus the analysis is restricted to modeling the blades as linear torsional
oscillators supported on a flexible "shroud ring". ` The validity of the model
and the associated computer program was established by making comparisons with
appropriate published analytical results.	 Upon validating the model, several
flutter test points were chosen from available data and analyzed to determine
if the analytical results indicated trends observed in tests.

<a

1

• 1

a

5

a



t

^

i

',
i

s

r, Analytical Model Development

F The details of the analysis are presented in APPENDIX A. 	 The complex 3
eigenval,ues are sought as a solution to the matrix equation

f

M +	 A) i f } = v {^}	 l i

where the matrix /{^= Gt	 - I ' represents mechanical ta ffects and the matrix
(a)(E)(C)(E)-1 represents the aeromechanical effects; (Ci) is a matrix

whose elements include the dynamic influence coefficients of the support
structure;fix represents the inertia ratio'; and 'X is the reduced frequency. 	 In

} terms of Whitehead ' s notation the eigenvalues p are calculated from v using
the simple relationship

l
P =	

y	 v	 (2)

` Unless otherwise indicated * the results presented in this report show the
values of p rather than v. 	 The real part of p re presents the departure of the

^R
(0U2frequency of vibration from that of the reference blade (i.e., 	 --

( PR I- 2	)w  W

and the imagiminry part of p represents damping in the system in terms of the
loss factor..	 The latter is a commonly used measure of structural damping and
is defined as the ratio of specific damping energy to the maximum strain
energy per unit volume of the vibrating body.

Some of the principal assumptions inherent in the analysis are worth
noting.	 The dynamic Influence coefficients of the "shroud ring" which are j

derived in APPENDIX B are dependent on tht, frequency of vibration of the
entire system.	 Thus the ring is characterized at a reference frequency in much a
-the same way the disk was' characterized in reference S. 	 Further, the manner
in which a enters into the analysis is such that the calculations are made for
a fixed a

The analysis and the associated computer program are developed in such a
way that the unsteady aerodynamic coefficients needed in the calculations may
be obtained from any available analysis and used as input. 	 However, the
tQsults,repq,x,ted.here are all,based,on the . use of the complex coefficients
calculated by the method given by Smith (reference 3).	 Smith's analysis is
based on the assumption that the blades can be represented by flat plates at

6



zero mean incidence, that the flow is subsonicp Isentropic, and taro-dimension-
s al and that the Kutta-Jqukowski condition at the trailing edge to satisfied

Calculation Procedure

The unsteady aerodynamic coefficients were first calculated for a given
r cascade geometry and these were transferred to the appropriate elastic axis
a position.	 The extent of mistuning;in terms of departure of blade frequency

s. and/or damping and/or blade inertia from those of the corresponding mean
,. values are used as input.	 To include mechanical coupling among the blades

through :-the supporting "ring", the dynamic influence coefficients appropriate
at the reference frequency were calculated and used in `computing the matrices

E	 s # and 0q.,	 gigenvalues and eigenvectorsrwere then computed using the method
of approach available in the gISPAK package (see reference 6).

For a single degree of freedom representation, a positive sign on the
imaginary part of the aerodynamic coefficient ;implies negative aerodynamic
damping and, therefore, for a tuned rotor no further calculations will be
needed to determine which of the test points were likely to indicate flutter.
The condition for incipient flutter is therefore obtained by setting the

. imaginary part of the aerodynamic coefficient to zero.	 i.e.,

'7(CFa 2 )o	X77 ^Mq"). +^.^CFQR)o= 0	 (3)
\CMCI).

A solution of this quadratic in77 provides the positions of the elastic axis 9
appropriate for flutter to occur for prescribed values Of ,\ ando, 	 However,
when mistuning Is included, a'complete solution of the flutter determinant is
necessary so that only the nature of the complex eigenvalues for the system
can determine the extent Of flutter.

a

Analytical Model Verification

A series of results was generated for a twelve-bladed system inorder to
validate the accuracy of the computer program and to illustrate the various
features of an aeromechanically coupled assembly of vibrating blades.
Figure 1 illustrates the eigenvalues for the undamped and tuned blades.
supported on a`flexible ring. 	 Only mechanical coupling effects are shown in
figure 1. 	 As the support structure does not distinguish between forward and
backward traveling waves,' only six °(N/ 2)*distinct eigenvalues are calculated.
The ring was characterized at a reference frequency ( fo = 1098 cps).	 As
expected,` some of the eigenvalues for the mechanically coupled system are

k higher than those of the reference frequency and some lower. 	 The extent of
departure depends entirely on the proximity of the ring eigenvalues to the
frequency at which the ring is characterized.`

r
7

'
r	 c
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On the other hand, if the same system is coupled through aerodynamics,

t the eigenvalues are unsymmetrically distorted as shown in figure 2 and result
in a locus, the real part of which represents the frequencies of vibration of
the system and the imaginary part represents the damping.	 The asymmetry
(i.e., the frequencies of the forward and backward traveling waves being some-`
what different from each other) is due to the dependence of the aerodynamic
coupling forces on the direction of the wave (Lea, the sign of the interblade
phase angle).

The results of mistuning alternate blades is shown in figure 3.	 Figure 3
also illustrates the manner in which the locus of the eigenvalues shifts with

=z' (a) the addition of mechanical damping, and (b)- the removal of all aerodynamic
coupling.	 From figure 3 it: is clear that the locus of eigenvalues shifted

° upward (toward more stable condition) indicating a correct: trend.	 Further,
with the removal of all aerodynamic coupling, the locus reduces to clusters;.
of points.	 The magnitude of the imaginary part of the eigenvalue (i.e.,
0.0044) is Shr so that	 S= 0.0137 which agrees with the logarithmic
decrement input.`

Y'

# The cascade parameters used to generate the loci of figure L are the

same as those of reference 4. 	 The unsteady aerodynamic coefficients were
calculated for interblade phase angles Q =2irn/N from 'n=1 to N.	 The departure

x- of each blade frequency from the mean (y ) and the damping distribution (S)
were obtained by enlarging; figure 18 of reference 4 and picking out'the=i
numbers from the enlarged figure (se: TABLE I). 	 These were then iised in cal-?
-culat:ing the effects of mistuning and the results are shown in figure 2.

TM- The eigenvector`correspondi.ng to the least stable eigenvalue is shown in.
figure 4. The lack of correlation at one point in figure 2 is attributed to
the fact that Q=0 ( or 270 is specifically excluded in the computer program

used to calculate the unsteady coefficients.	 The combination M=0,Q =01s of
little interest in practice and therefore no further studies were made. 	 The

strength of each harmonic present in 'a mistuned mode is calculated as a part

of the computer program as shown in figure 5.	 As observed by Whitehead in
reference '4, the eigenvector has a predominantly two nodal diameter pattern,

r	 R as can be seen from figure 5.

t Figure 6 shows the effects of both aerodynamic and mechanical coupling on

k the locus of eigenvalues.	 Due to the addition of mechanical coupling, the
locus of eigenvalues ` does snot shift uniformly and the frequencies correspond-,
ing to an interblade phase angle may increase, decrease, or experience little

or no change at all. 	 Comparison of figures 6 and l indicates the nature ofF
frequency shifts shown in figure 6 corresponds closely to those shown in

,.., figure 1.	 Thus, the eigenvalues corresponding; to nodal dimaeter patterns ±3

,
and ±4 in figure ,6 are affected most and in a manner similar to that shown in a
figure 1. The mechanical coupling corresponding to figure 6 was obtained for a

8
r

x
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stiff and "oversized shroud ring".	 A more realistic case corresponding to a
more flexible coupling among the blades will be considered later in connection
with the analysis of a 38 bladed rotor.

Reference to figure ;7 confirms the nature of the eigenvectors typical of
a mistuned system.	 The waviness present in the phase angle confirms the non-
constant nature of the interblade phase angle; an important feature of a mis-
tuned system.	 Further, an eigenvector corresponding to an eigenvalue for a
mistuned system contains in it contributions from several modes of the tuned
system.

r Mechanical Coupling Among Blades^

Since the vibration modeling is restricted tc considerations of above-
shroud torsional mode only, the shroud is assumed to serve as a support for
the blades.	 Thus the deformation of the shroud couples all the blades.	 The
shroud is modeled as a eoutinuous ring whose dynamic influence of ficients were
calculated at a frequency of 1098 Hz; this frequency being the average of the
38 blade frequencies. 	 The latter were obtained from reference 1. 	 The
influence coefficients exhibited the expected characteristics which included,
(a) identical numbers on theprincipal dia onal(	 g	 (b) complete symmetry,- and
(c) identical numbers on each subdiagonal. For a 38 bladed rotor, calculations
were made; using the actual dimensions of the "shroud ring" supported by
springs in a plane perpendicular to that of the ring. 	 The stiffness of the
springs (139.931 N/m/.radian) was obtained from an available NASTRAN run for
the zeroth harmonic of the fan assembly.`
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APPLICATION OF ANALYTICAL MODEL

The test points at which flutter was observed in the advanced fan are
marked on the fan map shown in figure 8.	 The analysis procedure and the
associated computer program were applied to calculate the susceptibility to
flutter for four test points (i.e., Nos. 118, 123, ,125, and 127).	 The
steady-state aerodynamic ,conditions 'for these test points are fully documented
In reference 1.	 The first step was to calculate the unsteady aerodynamic

E,

` coefficients for each of these points for a representative section of the

blade and examine their behavior.	 The tip section was chosen as the a

representative section in this study.
i

Figure 9 shows the loci of the aerodynamic coefficients.	 An examination
of the coefficients for points 118 and 125 shows the extent of sensitivity of

the unsteady aerodynamic coefficients to the parameters `X and M. 	 Although the
difference in a and M between these; test points is only 0.01 and 0.002,

} respectively, test point 125 indicates flutter (C I >0) whereas test point 118
does, not.- ` While computing these coefficients it was noted that their magni-
tude varied somewhat with the number of collocation points used on the airfoil.

An initial study of this was made for test point 125 using four collocation

points (instead of five used in all other calculations) and the results are
shown in figure 10.	 It is noted that even for four collocation points, 'the,

M: results are within experimental accuracy.

At the Mach numbers (M--0.8) and reduced frequencies (a';:t: 1.8), it was
noted that the aerodynamic coefficients formed a nearly continuous curve
except for a few (three in the cases of test points 118 and 125, for example)

coefficients which appeared separate and distinct from the rest. 	 The inter-'
blade phase angles corresponding to these particular coefficients were checked
to see ifithey are "close" to either Ass atisfying the acoustic resonance
condition.	 The latter is discussed in some detail in reference 7 and the

x' interblade phase angles can be calculated from the "cut-off" condition to be

PAR = ` c	
M	

M sin e t	 1= MZCOS26 	 1	 (4)2 1
\ i -M

The regions of flutter in the (7),j' domain are obtained by solving Eq. ;(4), and
are shown in figure 11 for certain cascade conditions which include those of
test point 125.	 Values of 0 calculated from Eq. (4) are also shown in figure
11.	 It is clear that under the assumptions discussed earlier, the nature of
flutter implied for the test conditions of points 118 and 125 is acoustic
resonance'.	 As' can .be seen from figure 11, this phenomenon occurs over an

extremely; narrow region of interblade phase angles corresponding to backwardt}
traveling,waves.	 The physical significance of this phenomenon in the case of

P a real machine is not clear.

10''
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Individual blade frequencies were available for the fan assembly under
study and these had been measured (reference 1) with each blade fully

r	 ; restrained at the shroud. 	 The nature of variation of these frequencies is
shown in figure 12.	 Using these frequencies, the`mistuned system was
analyzed first with aerodynamic coupling only and the results are shown in
figure 13.	 While these results show the system to have positive aerodynamic
damping,it is essential to bear in` mind ;that (1) the aerodynamic coefficients
are very sensitive to changes in X and M, as can be seen from a comparison
of the coefficients for test points 118 and 125 (see figure g), and (2) a

` mistuned mode consists of many interblade phase angles. 	 Thus it is likely
` that with slight changes in the magnitudes of important parameters, some of

the interblade phase angles coincide with those calculated earlier in the
acoustic resonance' condition.

E For the_eigenvalue corresponding to the lowest aerodynamic damping in z

figure 13, the mode shape was calculated and is shown in figure 14.	 The
features of this mode are similar to those of the twelve-bladed system shown
in figure 7 and include'nonconstant interblade phase angle around the rotor.
The mixture of "tuned modes" in the eigenver_tor calculated at the least
positive eigenvalue is clear from figure 15.	 These calculations show 'pre-

x dominant backward traveling waves of nodal diameter patterns 5 and 6 in con-
trast to a mixture of several forward and backward harmonics Kurkov k,.eference
8) obtained via analysis of optical displacement data recorded during flutter
(see figure 16).

Figure 17 shows the effect of including aerodynamic and mechanical
coupling on the eigenvalues of the system. 	 In obtaining these results the
"shroud ring" was modeled.by ;using; the actual dimensions of the shroud. 	 Two
features` of these results are worth noting: 	 (1) the lowest aerodynamic damping
level dropped from 0.0196 (see figure 13) to 0.0056 upon including mechanical
coupling; and (2) the frequency at which damping is the lowest changed' from
1175 Hz (7 percent higher than the average blade frequency) to 994 Hz '(9.5
percent lower than the average blade frequency).

The mode shape corresponding to the lowest value of aerodynamic damping
in figure 17 is shown in figure 18. 	 The strength°of several harmonics present
in the mode is shown in figure 19. 	 Clearly, `,a five nodal diameter backward
traveling wave is the predominant component.

It may be noted that the position of the elastic axis (77= 0.44) was
chosen on the basis of optical displacement data obtained during flutter.
Reference 8 discusses the details of the method used. 	 In order to determine
the sensitivity of the aerodynamic coefficients to small changes in ^, it was
decided to calculate the coefficients for M - 0.795, 	 X= 1.79, and 71 = 0.40
and compare these with the locus obtained for conditions prescribed for test
point 125 (see figure 20).
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DISCUSSION OF RESULTS

Among all the 'factors that enter into the calculation of aerodynamic
damping, "the most significant is the aerodynamic theory from which the unsteady
forces acting; on the blade are calculated. The theory chosen for use in this

k

	

	 study is based on assumptions of a' flat ,plate cascade and no loading effects
are included.`

It would be appropriate to repeat these calculations with alternate
aerodynamic coefficients. For a given cascade geometry the calculations were
found to be very sensitive to changes in Mach number and reduced frequency
but less so to inertia ratio. The reduced frequency and Mach number vary
from root to tip but considerations of a single representative section such
as the tip section does not take into account these variations. Needless to	 '.
say, a realistic solution should consider modeling the entire blade from root

u

to tip. However, with mistuning included, the problem size can be large
unless aerodynamic modal representations are used, in much the same way
structural dynamic modal representations are made by use of generalized mass/
inertia and stiffness.	 w

The importance of the phenomenon of acoustic resonance arises from the	 111

4

	

	 implication that at the interblade phase angles satisfying Eq. (4), the waves
carry energy in a purely tangential direction. The prediction of this type of
flutter for the fan considered here is similar to that made in reference 7.
The range of Interblade phase angles at which acoustic resonance flutter can
occur is very narrow and may not correspond to any of the discrete phase angles
calculated for a finite number of blades Ina cascade. However, as the
unsteady pressures acting on blades include a variety of harmonics which are
not necessarily integral: multiples of the first harmonic, only a detailed
analysis of pressure data can answer the question of the relevance of acoustic
resonance phenomenon to fan blade flutter,

Mechanical coupling among the blades could change both the real and 	 P

imaginary parts of the eigenvalues The extent of such change appears; to
depend upon the level of stiffness of the support as can be seen from a
comparison of figures 6, 13, and 17. The dimensions of the ring used in
obtaining the results shown in figure 17 lead to a much more flexible ring
than the one used in obtaining the results shown in figure 6. The model used
in this report characterizes the " `shroud ring" at any one frequency and this

4	 r
was chosen to be the average of all blade frequencies. A drop in frequency

F

	

	 of nearly 10 percent from the average suggests a support somewhat more
flexible than is present in the real structure as the observed flutter
frequency was in the vicinity of 1078 Hz, a mere 2 percent below the average.
While the size of the ring cross section could be adjusted to obtain a'

12
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APPENDIX A.	 FORMULATION OF ANALYTICAL MODELR
p

Governing Equations of Motion

The vibration of k th blade is given by
V1

fi
IkYk " A

k + C k Z k + K  2  --0 (1)
,: y

Fy

where

Lk" y k 	 Wk (2)

Let a

fk = Ckkh +KkZk (3)

`where Ik = Mass moment of inertia of k th blade blade/unit length

Kk = kth blade stiffness
r

ck =Mechanical damping associated with k th blade

yk	 amplitude of vibratory motion of kth blade

wk = amplitude of vibratory motion of support structure at kth blade
4

Ak = aeroelastic forces acting on k th blade.
P
r The vibratory motion around the support structure (shroud "ring" or disk) at

f

any blade location may be written as
N

Wk	 a kl' fi (G)

's Where aSkp	 represents the vibratory motion of the support structure at k due

to a unit stimulus at f.

h

Clearly, ^kq = Ci kp(w) 	 where w is the frequency (of the forcing function)

rs
and . N is the total number of blades.

Ck (bk - w) + Kk( y k' Wk ) a

k

. 9

t

16 x
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Yk °	 Q kf6 fQ +	 kkb (6)

and with	 iat	 yp	 - ^ b f	 where the su ersernt b refers toY = V^	 •	 ` Wk'	 kkk	 p blade
x' Thus t

Yk	 a kQ ft (7)

where	 ..
CI kQ c ski +	 k k

yv

s

Equation (1) may then be rewritten as

0)(a)ifI-JAI+If1	 o (8)

where (?) is the inertia matrix

Qt) is the matrix of dynamic influence coefficients of the support
I' structure and blade

;A} is a column matrix representing the aeroelastic moments.

Aeroelastic Moments

Let> ur represent Yk in the rth mode.	 The total amplitude of the kth blade
is the sum of all complex amplitudes from all contributing modes.°

N'	 ikAr
i.e. k = ^u e.e,	 r C9)

r.,

Where Or is the interblade phase angle corresponding to the r th mode

sr	 `ZNr	 rQ, and	 k Qr = rQk^ .	 Thus,

r
{Y} = (E){uI (lp)

where (E) represents the matrix consisting of interblade phase angles, i.e.;

a i
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ip^	 i2p^	 iNpi
e	 e	 ^.. e

(E) _	 401	 iap,e	 e

iN20,ei^►^t e

/	

g	
th	 thThe aeroelastic moment actin 	 on the k	 blade, due to motion in the r 	 mode

alone can be writteys is

Ak r = 7rp UY Cm, ure Ofe'wt (12)
C

!

where P is the air density

U is the air velocity,
-_n

c is blade chord

CMr is the unsteady aerodynamic moment coefficient corresponding to a
cascade of blades oscillating in the r th mode.y

Let	 represent the elastic axis position expressed as ;a percentage of chord
measured from the leading edge of the airfoil. 	 Then,

CM = ( Cma ).q - (CMO)O _ 77 ( CFQ)O - iX77(C Mp)o + iX772 
(CFq)O (13)

r where Cma represents the moment coefficient with 77 a 0.`

CFQ ,, CFq 'represents the unsteady aerodynamic force coefficients due to
vibrato y twist a and displacement q, respectively.

a

The total contribution to the aeroe ,lastic moment acting on the k th blade, from
all modes can be written as

R	
u

{A} = 7rp u
2

C
2 eiwt (E)(C)(E'')(a) if } (14)

{e

Therefore, the governing equations of motion in terms of the force ;ff
a transmitted to the supporting; structure may be written as

^- w2 (9) (a) + 7-p U2s2(E)(C)(E)-' (a) + i, }f} _ }p} (15)

18
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The kth element of (a) may be shown to be

1+Ct kk "M	 2 ^ote^,2 { ! ^h 8i WO Wk ro Co}
YO	 p (16)

9 W02 )k ^- rI+2iCOC	 iLO
t

. e1	 \	 o	 h
k€ where	 Q and w	 refer to the inertia andfrequency of the reference blade.

The ki th element of (4) is simply 0kj

The governing Eq. (15) can then be rewritten as

E ^.	 7fp eW 2	
.'-w 2 ?0 t? R -	 (E) (C ) (E )(a) + I {f ^ B {0t

(17)X2
r _

x
The elements of & are as shown in	 Eq. (16) and ,(9) - (1 jl,Po, 12/y0 ' `' N/10)

(^)(a)-	 (E)(C)(E)-'(=) +I,{ft --lot
(18)

The element	 of	 are those shown in Eq. (16) multiplied by 10	 and
V C4

Fc = o
representing the ratio of aerodynamic inertia to blade inertia.

For the sake of clarity, the elements of at are shown below.
_

2	 I + a k kS YpWp 2 '^k WR 2 (1 +2^ WO	 R CR501.
t^	 `	 /

a kk°	 W	
1

,RWR2 ( 1+2i  C OW0 W

(19)

2

^kl = 
?0W02 S0 akis; a

)r+ W
r+ etc. represent the ratio of blade inertia and frequency etc. (i.e.,

inertia of blade/inertia of reference blade, frequency of
2

of
be'throughoutreference blade, ̀etc.).	 Multiplying	 by Wo /c^	 Eq. (19) can

' written as
2

(-^)( Et)	 -	 (E) (0(0- 1 ( 8 )+	 (I) {f} = {0^ (20)

F	 I

4	 X
s i
q

R

sr

r

e	
l
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APPENDIX " B: 	 DYNAMIC INFLUENCE COEFFICIENTS FOR "SHROUD RING"

f

The shrouds on the blades are assumed to form a continuous ring.	 The
derivation of the dynamic influence coefficients is based on the following

a,
A	 .

assumptions:

1.	 The ' ring ' is circular, homogeneous, and Isotropic.'

r
4 ' 2.'	 The ring is supported on an elastic foundation.

4

t	 s
3.	 Only out-of-plane small (linear) vibrations are considered.

G.	 Effect of rotary inertia' is included.

s`
S.	 Effect of shear deformation is neglected.

The shroud ring model and the forces and moments acting on an element, of
the ring are shown in figure 22.	 Referring to figure 22, and assuming that
the elemental angle d8 is small, the force and moment equilibrium equations'

s can be written as

av` - kw - f + m 
a.Z	

(la)

- de
at

6MT+ M	 0	 (1b)
8--ae

aMe	 2	 2a	 8w	 (lc)_ mr
R 	 ^aBM T +RV -F -

a8	
-

Here, w(8, t) is the deflection, V is the shear force, M T is the
torsional moment, Mg is the bending moment, m is the mass per radian, k is
the stiffness per radian of the support, R is the radius of the ring, r is the
radius of gyrationof the cross section 'of the ring, f is the external force
per radian, and F is the external moment per radian.	 The governing equation

of motion is obtained by differentiating Eq. `(le);with respect to 8, using
Eqs.	 (1a) and (1b), and noting that

El a2w

w ,
Ms=

R2 ae z Y
r

a
21	 f



}
.a

The equation of motion is

El	 6 W + d2w	 + Rkw + Rm a2w _ mr2	 d4w	 = Rf +
 O F

d821 	 =at 	 d8'`d8 4 -	 a^
(2),

The appropriate boundary conditions are:
n	 n

1.	 w(o,t) =w(2n,t); 
d n (p,t) C	 (27r, t) (3a)
ae	 aeF

2. For a single external force, fkd8, acting alone at 8=8 k,
r	

^'	 L

 (8k , t) = 0d8
(3b)

a,

t:.

3. For a single external moment, F08, acting 'alone at 8=8 k,

w(8k,t) - 0 (3c)

Free Vibrations

The problem of free vibrations is obtained by ;setting f =-.O  and F= 0 in

P3
Eq.	 (2).	 The solution which satisfies the boundary condition, Eq. >(3a), can

be written as

where

On = an cos nd
(5)

; a

2	 2	 2	 LEIn2(n 2- 1) + kR
3

1 ,	 n=0, I2,...,mR(R + n r ) (6)
x

and 8 =8 is arbitrary.	 The coefficients, an , in Eq. (5) are chosen such that

xl

2I On M [On]d8 - (^ M = 	R2-r2 dZ

A
0  	 d8 a

1` a

AWE , vww.wnm.
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i

t I
1

so that,

_T
Op = (2rmR)	 , for n=0,

(7a)

( R2# n2 r2 ), , for n>l. (7b)
,

R. _

Forced Vibrations

j4 In view of the boundary conditions, Ens. (3b) and (3c), the solution of

n the forced vibration problem is written as

W = Wf ♦ WF (8)
a
a

a

a where wf is the solution for the case of no external moments (i.e., F =_ 0) and
wF is the solution for the case of no external forces (i.e., f'= 0).

For the case of FeO, ,the solution can be written as

z Wf = E On") (8) NO) t (9)

°	 h where,

t
^ntk) = on cos n ( 8 - GO . (10)`

It is noted that the 'assumed solution satisfies the boundary condition,
Eq.	 (3b).

By substituting ;Eq.	 (9) into Eq. (2), multiplying by	 m ), and integrating
from 6=0 to 8= 2v, one obtains

2^r	 ;

' n+Xn277n= R J	 f ^n(k) d9 (11)

` 0
The external excitation is assumed to be harmonic, so that,

e^"^f = f (12)
t

4

A-
where wis the excitation frequency, and f is, in general, complex.

23
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Further 9 assuming that w Is not equal to kn, the solution to Eq.	 (11) is
written as

1Wt
'qn	 Ane (13)

By using Eqs.	 (9),,,(ll),, 	 (12), and (13). one obtains

Wt [R	 on (k) C	 4, 
n 
W	 d 0 en

(14)
0

where,

Cnz (X 2_	 2)-1n (15)

Following aprocedure similar to the one described above, the solution
H

for the case of f =_o can be obtained as

F

A
W C	 6F

*n	 n	 *n	 dO iWt
e

(16)

0	
ye—

where,

(k)
*n	 -O n sin n(G-8k) (17)

A
and F which is, in general, complex is defined by

e iWt (18)

It is,noted that Eq. (17) satisfies. the boundary condition, Eq.	 (30.

The solution of the forced vibration problem, Eq. (8), can be written as

A	 iWtw (0, 0	 w (8) e (19)

:where,
Ar	 2V

A	 (k) C	 r aF- * (k) deW	 R	 (k) Cn	 W	 d8 +	 *n	 nj	 —	 nn (20)n	 n	 0	 A	
0

Differentiation of Eq. (19) leads to an expression for the slope, defined by

aw	 I	 aw (21)
—s	 R

IK
24
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where.

A (e,f) ^A(8)e IWt	 (22)

and

A
A (k)	 2r	 A-	 d	 W	 2r► 	 8F	 (23)
A ° ^ _ Cn J 	

n
(k)dB+	 8 Cn ^Wn(k)	 de

Diseretization

To obtain the dynamic influence coefficients for use in the matrix
formulation of the mistuning problem, the solutions for the deflection andi
slope of the shroud ring have to be discretized.

Let, N be the number of blades, k, m, or ! j the blade number, n the mode
R

number, B =0 be fixed at blade number kml, andAB- (27r/N).	 The discret zed

`	 x version of Eq. ( 20) can be written as

a k)A	 = R N	 W	
N	 lk)f' AS + "	 (k)C	 ^	 I	 dF	 A ® 	 (24)

WM 	 ^^ ^'mn nn^^ ^)n )	 ^^ ^'mn	 nn I *in ^den	 ^.	 -

where,

Cnn = Cn

Omn = On cos n (Bm -Bk) ,	 (?.5a)

`.
3

*mkn = — on sin n (Bnr-Bk),	 (25b)

5 yy^
3

Y

for n=0,'1,	 2..	 and m, k=1, 2,	 3...
.	 I

t

Letting,	 IaF	 AA

d8	 2 AB	
(Fj +i'Fj -i)

' A	 A

qm = A19 ' 0m = FmAB

A

: in_Eq. (24), and after some algebra, the matrix version of Eq. ( 24) can be

written as

25'

z ,

g



E

C

{w1 = L0,
	

Iq I, + [a l ta i (26)
t

^

where w, q, and Q are N-vectors ! and Ci.0	 are NxN matrices, whose elements
are given by

Clink = R	 ^mn(k) Cnn On (27a)
n:0

f

Clmk	 4^	 *mn Onn ,l *i')E'k0=^ (27b)

m refers to the row, k refers to the column, and

0 	 1	 0	 0	 -1

-1	 0	 1	 0
# (28)

0	 -1	 0	 1

-1	 0	 1	 0

0	 -1	 0	 1

1	 0	 0	 -1	 0
Following a procedure similar to the one described above, the matrix

version of Eq. ( 23) can be written as,

101 _	

L
al] {qj + [a4l101J 

(9)

where,

3	 N	 {k)
C`mk - on *Mn O nn On (30a)

K

N	 N

a mr.	 ' 4 mR o n	 mn Onn	 *ink E jk (30b) ?^

K

i, Equations (26) and (29) can be combined to give the dynamic influence
coefficient matrix as,

,f
1x11 	l

ra2]
J w

1x3	 [ jl]

f
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TABLE I

DEPARTURES OF INDIVIDUAL BLADE FREQUENCIES ( )0') AND
_. DISTRIBUTION OF DAMPING ($) USED IN MODEL VERIFICATION

Reference	 4, figure 18

k Yk	 Sk ^sr
k

1 0	 0.0025
2 -0.0055	 0.0040`
3 -0.0015	 0.0020
4 -0.0008	 0.0026'
5 0	 0.0025
6 0.0013	 0.0022
7 0.-0010	 0.0029

{ 8 0.0002	 0.0052'

9 0.0002	 0.0052
10 0	 0.0056

11 0.0019	 0.0055
{ 12 0.0034	 0.0055`'
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(SEE FIG, 3 FOR THE LOCUS OF EIGENVALUES)
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