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' FOREWORD

The development of the analysis presented herein was sponsored by the
National Aeronautics and Space Administration, Lewis Research Center under -
Contract NAS3-21603. The NASA Project Manager was Dr. A. P. Kurkov whose

: assistance in providing the input data and test results for the test cases
~and development of the computer analysis is gratefully acknowledged.

Ptincipal United Technologies Research Center (UTRC) participants in the

- contract activity were Dr, A, V. Srinivasan, Dr. S, Sridhar, and

Mr. R, LaBarre. Dr. Srinivasan was the Principal Investigator and Program

1>‘Manager with primary. responsibility for the development and application of the

analysis and was the author of the Final Report. Dr. Sridhar was responsible

- for the development of the analysis of the "shroud ring" influence coeffi-

cients and Mr. LaBarre was. responsible in developing the computer program
based on the analyses.

This report is the final documentation of a blade flutter prediction

model evaluation performed at UTRC by comparing the analytical predxctions ,

with corresponding flutter test data available for a part—span shrOuded fan

d;assembly.
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- SUMMARY

~ - An analytical technique for the prediction of fan blade flutter is
evaluated by utilizing first-stage fan flutter data available from tests
conducted at the National Aeronautics and Space Administration (NASA), Lewis
Research Center on an advanced high performance engine. The formulation ‘
includes both aerodynamic and mechnical coupling among all the blades of the
assembly, Mistuning is accounted for in the analysis so that individual
blade inertias, frequencies, or damping can be considered. Airfoll stability
~ is predicted by calculating a flutter determinant, the eigenvalues of which
bindicate the extent of susceptibility to flutter.

SR When blade—to—blade.differences inmf:equenciesfafe:conSidered in the
“analysis a stable system is predicted for the test points examined in this

~ report. For a tuned system, however, it was found that torsional flutter can

“be predicted at a limited number of interblade phase angles. An examination
of these phase angles indicated that they were "close" to the conditionm of
acoustic resonance. For the range of Mach numbers and reduced frequencies
~considered here, the so—called subcritical flutter cannot be predicted.

o The essential influence of mechanical coupling among the blades is to
change the frequencies of the system with little or no change in,damping.
“Buty aerodynamic coupling together with mechanical coupling could change not
-cnly frequencies but also damping in the system, with a trend toward

instability. :




“INTRODUCTION

An important factor which influences the development program of any .
advanced engine is the susceptibility of rotor blades to flutter imstabilities.
In order to understand more fully the mechanism of fan blade flutter instabil-
ities and the parameters that influence flutter, several tests on an advanced
engine were conducted at NASA Lewls. These tests covered a wide range of S ’
'realistic operating conditions appropriate to a modern high performance jet S
engine. Considerable data were generated for the component under study (i.e., IR
: ‘the part-span-shroud fan assembly) Documentation of the sready-state aero-
. & dynamic conditions prevailing at the several test points, compilation, and
. - ~analysis of flutter data may be found in reference 1. Detailed analysis of
anl  aerodynamic data obtained from high response pressure probes and optical
E, . G "probes are presented in reference 2., :
2 . :

The nature of flutter observed in all these tests was Subsonic stall

flutter and a study of the flutter mode of vibration revealed the presence of

~ several harmonics in a nearly pure torsional mode. Frequency measurements o
made on each blade fully restrained at its shroud revealed blade-to-blade _
,differences. considerations of all these aspects of the problem pointed to L
‘the need to develop an analytical model which can account for blade mistunlng o , o

~ in the analysis, This report summarizes the results of a preliminary effort SR SR
- to model the flutter characteristics of a mistuned Totor. ST 3

“In as much as the observed flutter mode was concluded to be essentially
an above shroud. first torsional mode, the analytical model represents each ; ‘
blade as a torsional oscillator. The oscillators are assumed to be mounted on oKL

. a ring representing the shroud. = The formulation allows for blade-to-blade , P
7‘differences in any or all of the following: frequency, inertia, damping. The , 5
unsteady aerodynamic coefficients used in this study are based on the analysis S nglg
- due to Smith (reference 3). The problem is formulated along the lines out- ‘ : ’
- lined by Whitehead (reference 4) and 1eads to a flutter determinant, the
solution of which yields the eigenvalues at which flutter is likely to occur. -
- The real parts of the eigenvalues represent the ftequencies at which flutter
 ‘may occur: and the corresponding imaginary parts represent the level of '
~_:damping. :

: In this report, the technical approach, a]ong with a discussion of its
' principal features, is outlined first, The application of the analytical
‘model to four test points is discussed next, followed by a discussion and
'summary of the results covering the conclusions drawn from the comparisons: _
" made between the analytical model and test results. The detailed derivations i
.‘“vqare shown separately in the APPENDICES. o SRR
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NOMENCLATURE

Aeroelastic moment

Matrix of aerodynamié'effgcts :
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| ‘Matrix of o i -

Blade chord‘
i Modﬁ1u§j6f é1és£1éity_

Matrixféf'interblade phase angles, see Eq;‘(ll) QE'APPENDix-A- :
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’y Amplitude of vibratory rotation of suppoxk siructurs

a Dynamic influence coefficient

i e ' B; : " Interblade phas‘é angle, :
,Individual’blade frequency departure parameter

‘Logarithmic decrement

o

‘Ratio of aerodynaniic- ingttié 'to, blade inertia
i s : B “‘02';'“’2"
. . . v Frequency parameter — )

T

n " Elastic aXiskposition expressed as a percentage of chord from the
' leading edge . ‘ ’

w  Circular frequency of vibration L O ' S

o - Reduced frequency cw /U

8 vv " Blade stagger relative’to tangential plane

e P _ Air denmsity ' | ;}
L Damping ratio
 ‘Subcripts

AR - ‘Acoustic resonance

a  Twist

F - Force

- Imaginary part

Moment e SR P : f R

»Leadiqg'edgevposition (or reference blade)

| ri'Tfanslation,

Real part

7'Téngential SRR
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~ TECHNICAL APPROACH

Overview

 The approach adopted here considers the differential equations of motion
governing the vibration of a cascade of blades in a uniform flow field. Thus,
the forces acting on each member of the cascade include aerodynamic forces in
addition to méchanical (inertial, restoring, and damping) forces. The aero~-
dynamic forces acting on the system not only influence the vibratory motion of
- the blades but are, in turn, influenced by vibration. These aeroelastic
~ forces are generally dependent on the prevailing steady-state aerodynamic
‘kconditions;,cascade,geometty,,and the mode of vibration. For a ccaplete
desctiption'ofithe aerodynamic force it is also necessary to know the location
of the elastic axis. As each blade is a mepber of an assembly of blades
vibrating in a flow field, the vibration of each member influences every other
member and thus all blades are aerodynamically coupled. 1In addition, the
blades can also be coupled mechanically through the disk on which they are
mounted or through the shrouds at which each blade comes into contact with its
neighbors due to blade untwist at speed.

The above consideratious lead,to‘s formulation which describes the motion
“of a system of blades coupled aerodynamically and mechanically. By virtue of
mistuning in which one or more characteristic (frequency, damping, etc.) of
‘each blade is "slightly" different from those of a reference blade, the system
of equations leads to a flutter determinant, the solution of which yields the
possible frequencies of vibration at which the system is susceptible to

. flutter- :

The constrUction of the‘mathemetical model proceeded on the.basis of
,representing only the above-shroud-torsion vibration mode of an advanced fan.
Thus- the analysis is restricted to modeling the blades as linear torsional

- vscillators supported on a flexible "shroud ring'. The validity of the model

and the associated computer program was established by making comparisons withk

'appropriate published analytical results. ‘Upon validating the model, several

~ flutter test points were chosen from available data and anaiyzed to determine
Cif the analytical results indicated trends observed in tests.




Analytical Model Development

The details of the analysis are presented in APPENDIX A. The complex

: eigenvalues {u} are sought as a solution to the matrix equation

(M*{%'ﬂ) 0 =v{} o

, vhere the matrix M= 09 - I represents mechanical affects and the matrix

J= (3)(5)(0)(E)'1 represents the aeromechanical effects; (a) is a matrix

- whose elements include the dynamic influence coefficients of the support

structure; i represents the dinertia ratio; and X is the reduced frequency. In -
terms of Whitehead's notation the eigenvalues p are calculated from ¥ using
the simple reletionship

Unless otherwise indicated, the results presented in this report show the

“values.of p rather than v, The real part of p represents the departure of the

: | ~ | 2. 2
frequency of vibration from that of the reference blade (i.e.,<p-f£5-(up > ),
s , w,

and the 1maginary part of p represents damping in the system in terms of the

~loss factor. The latter is a commonly used measure of structural damping and
is deflned as the ratio of specific damping energy to the maximum strain

energy per unit volume of the vibrating body.

Some of the prlnc1pa1’assumptions inherent in the enelyeis are worth

= noting. The dynamic influence coefficients of the "shroud ring" which are

derived in APPENDIX B are dependent on th:., frequency of vibration of the

e'>entire system. Thus the ring is characterized at a reference frequency in much

the.same way the disk was characterized in reference 5. Further, the manner

~in which A enters into the analysis is uuch that the calculations are made for
-a flxed A ‘

/The analysis and the associated computer program are developed in such a

 way that the unsteady aerodynamic coefficients needed in the calculations may

be obtained from any available analysis and.used as input. However, the
‘results reported here are all based on the use of the complex coefficients
calculated by the method given by Smith (reference 3). Smith's analysis is
based on the assumption Lhat the blades can be represented by. flat ‘plates at




zero mean incidence, that the flow 1is aubsonic, isentropic, and ¢wo-dimension=

al and that the Kutta-Joukowski condition at the trailing edge is satisfied.

Calculation Procedure

The unsteady aerodynamic coefficients were first calculated for a given

- cascade geometry and these were transferred to the appropriate elastic axis

position. The' extent of mistuning in terms of departure of blade frequency
and/or damping and/or blade inertia from those of the corresponding mean
values are used as input. To ineclude mechanical coupling among the blades

V;lfthrough ‘the supporting "ring", the dynamic influence coefficients appropriate
at the reference frequency were calculated and used in computing the matrices

ﬁland {7 Eigenvalues and eigenvectors:were then computed using the method
of approach available in the EISPAK package (see reference 6).

For a single degree of freedom representation, a positive sign on the
fimaginary part of the aerodynamic coefficient implies negative aerodynamic

‘damping and, therefore, for a tuned rotor no further calculations will be

needed to determine which of the test points were likely to indicate flutter.
The condition for incipient flutter is therefore obtained by setting the

limaginary part of the aerodynamic coefticient to zero, i.e.,

) )T ) T ()70 O

A solution of this quadratic in'n provides the positions of the elastic axis

appropriate for flutter to occur for prescribed values of Aand 8. However,

when mistuning is included. _ complete solution of the flutter determinant is
necessary so that only the nature of the complex eigenvalues for the system

can determine the extent of flutter.,, :

Analytical Model Verification

‘A series of results ‘was generated for a twelve-bladed system in order to .

o valldate ‘the accuracy of the computer program and to illustrate the various

~ features of an aeromechanically coupled assembly of v1brat1ng blades.
Figure 1 illustrates the eigenvalues for the undamped and tuned blades
supported on a flexible ring., Only mechanical coupling effects are shown in

-+ figure 1. As the support structure does not distinguish between forward and
‘backward traveling ‘waves; only six (N/2) ‘distinct eigenvalues are calculated.
The ring was characterized at a reference frequency (fo =.1098 cps). As
‘expected, some of the eigenvalues for the mechanically coupled system are
higher than those of the reference frequency and some lower. The extant of
departure depends entirely on the proximity of the ‘ring eigenvalues to. the

frequency at which thc ring is characterized.




‘ On the other hand, if the same system is coupled;through aerodynamics,

 the eigenvalues are unsymmetrically distorted as shown in figure 2 and result
in a locus, the real part of which represents the frequencies of vibration of
the system and the imaginary part represents the damping. The asymmetry -

':(i.e., the frequencies of the forward and backward traveling waves being some-

_what different from each other) is due to the dependence of the aerodynamic

, coupling forces on the direction of the wave (i.e,, the sign of the interblade

FEEN KRR phase angle) v

e

fr oIy

I U : ," The results of mistuning alternate blades is ShOWn in figure 3. Figure 3
L § - -~ -'also illustrates the manner in which the locus of the eigenvalues shifts with .
1 (a) the addition of mechanical damping, and (b) the removal of all aerodynamic
‘ bt coupling. From figure 3 it is clear that the locus of eigenvalues shifted

o - 1 upward (toward more stable condition) indicating a correct trend. Further,
G - with the removal of all aerodynamic coupling, the locus reduces to clusters

e of points. The magnitude of the imaginary part of the eigenvalue (i.e.,

B 0.0044) is &/m so that 8= 0. 0137 which agrees with the logarithmic

o decrement input.,~m

The cascade parameters used to generate the loci of figure 2 are the : P
same as those of reference 4. The unsteady aerodynamic coefficients were
calculated for interblade phase angles B=2m/N from n=1 to N. The departure Lo
of each blade frequency from the mean (y) and the damping distribution (8) * fﬁ.ﬁ
‘were obtained by enlarging figure 18 of reference 4 and picking out the .
numbers from the enlarged figure (se\ TABLE I). These were then used in cal-
culating the effects of mistuning and the results are shown in figure 2.
The eigenvector corresponding to the 1east stable eigenvalue is shown in.
figure 4. The lack of correlation at one: point in figure 2 is attributed to
the fact that 8=0 ( or 2w) is specifically excluded in the computer program
~ used to calculate the unsteady coefficients. The combination M=0,B8=0 is of
‘little interest in: practice aad therefore no further studies were made. The
strength of each harmonic present in a mistuned mode is calculated as a part
- of the computer program as shown in figure 5. As observed by Whitehead in
‘reference 4, the eigenvector has a predominantly two nodal diameter pattern, .
“as can be seen From figure S

e Figure 6 shows the effects of both aerodynamic and mechanical coupling on
’51~the locus of eigenvalues.‘ Due to the addition of mechanical coupling, the ‘ i
~ locus of eigenvalues does mot shift uniformly and the frequencies correspond- SICRIRE T
- ing to an interblade phasesangle may increase, decrease, or experience little 3
. or mo change at all. Comparison of figures 6 and 1 indicates the nature of - R
”fyfrequency shifts shown in figure 6 corresponds closely to those shown in- + e e

- figure 1. Thus, the eigenvalues corresponding to ‘nodal dimaeter patterns -3
and ¥4 in figure 6 are affected most and in a manner similar to that shown in

”i;figure 1. The‘mechanical coupling corresponding to figure 6 was obtained for a ’fj




+ stiff and "oversized shroud ring". A more realistic case corresponding to a

~more flexible coupling among the blades will be considered later in connection
jwith the analysis of a 38 bladed rotor. -

Reference to figure 7 confirms the nature of the eigenvectors typical of

" a mistuned system, The waviness present in the phase angle confirms the non-

- constant nature of the interblade phase angle; an important feature of a mis-

- tuned system.  Further, an eigenvector corresponding to an eigenvalue for a
-mistuned syetem contains in it contributions from several modes of the tuned
system. : :

Mechanical Coupling Among Bledes

Sinco the vibration modeling is restricted te conslderations of above-
"shroud torsional mode only. ‘the shroud 1is assumed to serve as a support for
the blades. Thus the deformation of the shroud couples all the blades. The
shroud is modeled as a coutinuous ring whose dynamic influence efficients were

o calculated at a frequency of 1098 Hz; this frequency being the average of the

38 blade frequencies.; The latter were obtained from reference 1. The
~influence coefficients exhibited the expected characteristics which included -
 (a) identical numbers on the principal diagonal, (b) complete symmetry, and -

- (e) identical numbers on each subdiagonal. For a 38 bladed rotor, calculations :
 were made using the actual dimensions of the "shroud ring' supported by

” ”springs in a plane perpendicular to that of the ring. The stiffness of the ,
- springs (139 931 N/m/radian) was obtained from an available NASTRAN - tun for
the zeroth harmonic of the fan assembly. : :

,_il!v&nnm
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APPLICATION OF ANALYTICAL MODEL

'LThe'test:points at which flutter was observed in the advanced fan‘are

marked on the fan map shown in figure 8. The analysis procedure and the

associlated computer program were applied to calculate the susceptibility to

flutter for four test points (i.e., Nos. 118, 123, 125, and 127). The
"stoady-state aerodynamic conditions for these test points are fully documented

in reference 1. The first step was to calculate the unsteady aerodynamic
coefficients for each of these points for a representative section of the

blade and examine their behavior. The tip section was chosen as the
representative section in this study.

Figute 9 shows the loc1 of the aerodynamic coefficients. An examination

bfffofvthe coefficients for points 118 and 125 shows the extent of sensitivity of.

the unsteady aerodynamic coefficients to the parameters X and M. Although the

s difference in X and M between these test points is only 0.01 and 0.002,.

respectively, test point 125 indicates flutter (Cy >0) whereas test point 118
does. not.” While computing these coefficients it was noted that their magni-
tude varied ~somewhat with the number of collocation points used on the airfoil.

: ‘:[An 1nit1al study of this was made for test point 125 using four collocation

points (instead of five used in all other calculations) and the results are

k,cshown in figure 10. It is noted that even for four collocation points, the
‘ results are within experimental accuracy

At the Mach numbers (M-O 8) and reduced frequencies (k ~1.8), it was

noted that the aerodynamic coefficients formed a nearly continuous curve
- except for a few (three in the cases of test p01nts 118 and 125, for example) .
: i‘;coefficients which appeared separate and distinct from ‘the rest. The inter-~
. blade phase angles corresponding to these- particular coefficients were checked

to see if they are "close" to either Bssatisfying the acoustic resonance -

‘nhcondition. The latter is discussed in some detail in reference 7 and the
‘1nterblade phase angles can be calculated from the "cut-of f" condition to be

@m.? %(%) (Msmet «/'—M 6059)1. S f F“’f

:"The regions of flutter in the (1pﬁb domain are obtained by solv1ng Eq (4) and

are shown in figure 11 for certain cascade conditions which include those of

. test point 125.; Values of- B calculated from Eq. (4) are also shown in figure
‘epjill. It is clear that under the assumptions discussed earlier, the nature of
c»flutter 1mp11ed for the test conditions of: p01nts 118 and 125 is acoustic

. resonance.  As can ‘be seen from figure 11, this phenomenon occurs over an
. extremely narrow region of interblade. phase angles corresponding to backward

.- = traveling waves. The phy31ca1 slgnificance of this phenomenon in the case of J;Tfﬁfkrﬁ
i real machine: is not clear.-r;‘ -

10
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Individual blade frequencies were available for the fan assembly under
study and these had been measured (reference 1) with each blade fully
restrained at the shroud. The nature of variation of these frequencies is
shown in figure 12. Using these frequencies, the mistuned system was

' analyzed first with aerodynamic coupling only and the results are shown in

figure 13. While these results show the system to have positive aerodynamic
damping,it is essential to bear in mind that (1) the aerodynamic coefficlents
are very sensitive to changes in )\ and M, as can be seen from a comparison

kfof the coefficients for test points 118 and 125 (see figure 9), and (2) a
~ mistuned mode consists of many interblade phase angles. Thus it is likely
- that with slight changes in the magnitudes of important parameters, some of

the interblade phase angles coincide with those calculated earlier in the

racoustic resonance condition.

For the eigenvalue correeponding'to the lowest aerodynamic damping'in ,

‘ figure 13, the mode shape was calculated and 1s shown in figure 14. The
, features of this mode are similar to those of the twelve-bladed system shown

in figure 7 and include nonconstant interblade phase angle around the rotor.,

The mixture of "tuned modes" in the eigenvector calculated at the least
‘positive eigenvalue is clear from figure 15, These calculations show pre-
dominant backward traveling waves of nodal diameter patterns 5 and 6 in con-

trast to a mixture of several forward and backward harmonics Kurkov (-eference
8) obtained via analysis of optical diSplacement data recorded during flutter

‘ (see figure 16)

Figure 17 shows the effect of including aerodynamic and mechanical

- coupling on the eigenvalues of the system. In obtaining these results the

"shroud ring" was modeled by using the actual dimensions of the shroud. Two

e features of these results are worth noting: (1) the lowest aerodynamic damping
level dropped from 0. 0196 (see figure 13) to 0.0056 upon including mechanical

coupling; and (2) the frequency at which damping is the lowest changed from

:i:1175 Hz (7 percent higher than the average blade frequency) to 994 Hz (9 5

percent lower than the average blade frequency)

The mode shape corresponding to the lowest value of aerodynamic damping

Lradin figure 17 is shown in figure 18. The strength of several harmonics present
l,r;‘in the mode. is shown in figure 19. Clearly, a five nodal diameter backward
"_;traveling wave is the preoominant component.

: It may be noted that the position of the elastic axis (n= 0 44) was

L, chosen on the basis of optical displacement data obtained during flutter.
e Reference 8 discusses the details of the method used. In order to determine

the sensitivity of the aerodynamic coefficients to small changes inm, it was

17fdecided to calculate the coefficients for M = 0.795, A= 1.79, and7n = 0.40
o and compare these with the locus obtained for conditions prescribed for test
_;vgpoint 125 (see figure 20) ‘ : . '

u
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- DISCUSSION OF RESULTS

- Among all. the factors that enter into the calculation of aerodynamic
damping, the most significant is the aerodynamic theory from which the unsteady

v ;forces acting on the blade are calculated. The theory chosen for use in this
»v‘study is based on assumptions of a flat plate cascade and no loading effects

are included.

It would be appropriate to repeatytheselcalculations’with alternate
aerodynamic coefficients. For a given cascade geometry the calculations were

“found to be very sensitive to changes in Mach number and reduced frequency

but less so to inertia ratio. The reduced frequency and Mach number vary
from root to tip but considerations of a single representative section such
as the tip section does not take into account these variations. Needless to

- say, a realistic solution should consider modeling the entire blade from root
" to tip. However, with mistuning included, the problem size can be large

unless aerodynamic modal representations are used, in much the same way
structural dynamic modal representations are made by use of generalized mass/

k lnertia -and stiffness.

: The importance of the phenomenon of acoustic resonance arises from the
implication that at the intcrblade phase angles satisfying Eq. (4), the waves

~carry energy in a purely tangential direction. The prediction of this type of

flutter for the fan considered here is similar to that made in reference 7.

‘The range of interblade phase angles at which acoustic resonance flutter can
‘,occur is very ‘narrow and may not correspond to any of the discrete phase angles
- ealeulated for a finite number of blades in a cascade. However, as the :
o unsteady pressures acting on blades include a variety of harmonics which are

. not necessarily ‘integral multiples of the first harmonic, only a detailed :

: analysis -of pressure data can answer the question of the relevance of acoustic

- resonance phenomenon to fan blade flutter. S

Mechanical coupling ‘among the blades could ‘change both the real and :

‘imaginary parts of the eigenvalues, The extent of such change ‘appears to
"~depend upon the level of stiffness of the support as can be seen from a

comparison of figures 6, 13, and 17. The dimensions of the ring used in
obtaining the results shown in figure 17 lead to a much more flexible ring

 than the one used in obtainlng the results. shown in figure 6. The model used :

in this report characterizes the ' 'shroud- ring ‘at any one frequency and this

" was chosen to be the average of'all_blade.frequencies.,H A drop in frequency

of nearly 10 percent from the average suggests a support somewhat more

.Jf sflexible than is present in the real structure as the observed flutter
,,ﬂffrequency was in the vicinity of 1078 Hz, a mere 2 percent below the average,
' While the size of the ring cross section could be adjusted to obtain a '




smaller drop in frequency, it was thought that other assumptions in the
analysis should be studied more thoroughly before any revision of the shroud
model is considered.

The analytical model developed here considers only one degree of freedom -
, : for the blade motion and thus 1ignores any coupling that may be present among
+. . the vibratory modes. Recently Bendicksen and Friedman (reference 9) reported
that the influence of coupling on blade flutter calculations is significant,
For assemblies which have closely spaced modes, 1t appears that the inclusion
of coupling among the modes of a blade is an appropriate next step in the
development of a fluttet prediction system.




SUMMARY OF RESULTS

For the cascade conditions appropriate to the test points studied in
this report, the aerodynamic theory that was used cannot predict subecritical
S R flutter. Under the assumptions of a tuned assembly, the imaginary part of the ~ .
fl - aerodynamic coefficients does indicate flutter for a limited number of inter-

Lo blade phase angles, but these interblade phase angles are "close" to those at
which the so-called ‘acoustic resonance is predicted. Upon using the individual
blade frequencies and solving the mistuned system with aerodynamic coupling
only, the results show a stable system. _Eigenvectors calculated for the ‘

: - mistuned system showed the presence of several harmonics in each mistuned

Ei'; . mode. Inclusion of both mechanical and aerodynamic coupling, in the solution :

: ot of the eigen problem, influences not only the frequencies but also damping 1in

the system with a trend towatd instability. :
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APPENDIX A: FORMULATION OF ANALYTICAL MODEL

' Governing EQuations of notion

The vibration of kth blade is given by

Im"u* ckzu“‘u’u 0 o

where

. Let

‘ “oszckék-kazy ” ST i‘f - | (3)
cyyklwhere Ik = Mass moment of inertia of kth b1ade blade/unit length |
: Ky = kth blade stiffness "
xick. Mechanical damping associated with kth blade
i~_§k~='amplitudekof,vibratory,motion of kth blade
' wk:=amplitude of vibratory‘motion of suoport structure.at kthrblade
' ZA# s aeroelastic forces acting on kth blade | o . |

; The vibratory motion around the support structure (shroud "ring or disk) at
" .any: blade location may be written as : : :

; "1WBere askf represents the vibratory motion of the support structure at k due :
~’Vj'f,to a unit stimulus at E. : Sl A e

Clearly, Qgp© Gkgﬂv)_, where/unis the frequency (of the forcing function)gfyh

vftand N is the total number or bladee.\ :r'
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W= eyt *%kb X & (6

o FHETS R and with y= Oe'w' s YREWk= QEkfk where the superscript b refers to blade
» ’ ) ThUS, S T A i : L -

e Zagh 7
where o

a® afg + el

v Equat:lon (1) may then be rewritten as R |
2(9 (a)m {AMf} o T B (8)

vhere (1) 1s the inertiamétrix ‘

‘ e (@) 1s the matrix of dynamic influence coefficients of the support .
e structure and blade = - ; &

‘ {A} is a ‘col'umn" matrix re’pfes,e!it’in'g the aeroelastic moments.

Aetoelastic Moments

' Let “r’ represent yk in the rth mode. The total amp’l.itude of the kth blade
is the sum of all complex amplitudes from all contribut:mg modes.

N kB : o ‘
ie, Yk?Zu;e‘ ' L (9)

rs=;

th

i Where ﬁr is the interblade phase angle corresponding to the rth mode

(eesy B = ,Z.T.'l_-,=r3, and kﬁ, = rBy)- Thus,

s s

where (E) represents the matrix consisting gi'f_-_‘i\nfcggb’laqé pahse angles, i.e.,

17




iB, 2B, iNg,

S | e € ses
(E) = 126, 98,
| e e 2o (11)
A " '3' /-

The aeroelastic moment acting on the kth blade. due to motion in the rth mode
“alone can be written A8 '

 where p is the air density
| U is the air ueioeitf
¢ 1s blade chord

My s the unsteady aerodynamic moment coefficient corresponding to a
cascade of blades oscillating in the rth mode. :

Let7) represent the elastic exis position expressed as a percentage of chord
measured from the leading edge of the airfoil. ‘Then,

CM~(Cma)-~(CMa) n(cFa)o !*ﬂ(Cmq)oukn (Crqly 12

~ where Cng representsfthesmoment“coefficient withvn‘=~0;’

cFa ,CF represents the unsteady aerodynamic force coefficients due to
vibra{ogw twist @ and displacement q, tespectively.~

' The total contribution to the aeroelastic moment acting on the kth blade, from
alJ modes can be written as

w 1rpu ce""»"(:'E)(V”C)(VE\"')'(o){f}‘ -~ aw

fTherefore. the governing equations of motion in terms of the force ff}

"'ftransmitted to the supporting structure may be written as -

l[fw.,w_):ga)+-vrpu u-:xch)" (a>+1]{f} i b M

8 a:m.»«mf«itt . i

AR T P Qe :




_ written as

: 'The k"h element of (a) mey be ehown to be

VA Jo &
Sl Jo_uo o {1121 5558 °e co}_ | (16)

! j - k
Jow ~" (H-Ziw—g 3 )

k o%o yo Wo Wy rL Lo

“where 9;, and w,. refer to the :I.nertia and frequency of the reference blede.
The kf"‘ element of (a) is aimply “k]

The governing Eq. (15) ‘can then be rpwritten as

[.:wayom(m (e)(c)(e"xa)n_‘m b
c s :
},} ~The elements ofaare as shown in Eq. (16) and (9) - (9 /70 92/90 9N/’o'5,
[-one- w-z(s)(c)'t-:)"‘(a)n]{f} go} e (18)
_The elemem:s of G are those shown in Eq. =

g representing the ratio of aerodynamic inertia to blade inertia.

For the sake of clarity, the elements of @ are shown below.

' *,’Puk’fowozh;‘"a (""2' 53 -.,,—R CnCo)

(19)

fr, wr,k etc. vepresent the ratio of blade inertia and frequency etc. (i. e.,
“inertia of - blade/inertia of reference blade, frequency of blade/frequency of
reference blade, etc.), Multiplying throughout by w(, 2/, Eq. (19) can he

| [ ﬁ)(a) T(E)(c)(c)"(a)+ Q,(?I.)‘]{fHo} S L)
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3 : 4
01ear1y, the elemem:s of & are the same as those shown in Eq. (19) except for ’1

the quantity w 2/w 2 which is divided out. Let w, 2/w2 = (14V) and Let Y =

: (@ ()) - 1 represent mechanical coupling effects, and (A =;L/A25(E) (C)(E"L) ;
- represent aeromechanical coupling effect. Then Eq. (20) can be shown to
i reduce to L |
(044t e

: ’ Equati’o,n (21) represents the :eduitéd.eigenvalue fatmulati’on. :
, - Clearly, the solution v provides the frequencies (real part) and damping

s et (imaginary) at these frequencies, If p 1s defined in accordance with
: ‘ Wh:ltehead's notation. as : :

p= ‘o.thenp'mﬂf'\)

w2
o




APPENDIX'B:

DYNAMIC INFLUENCE COEFFICIENTS FOR "SHROUD RING"

" The shrouds on the blades are aasumed‘to form a continuous ring. The

”j'Eqs. (1a) and (1b), and noting that

derivation of the dynamic influence coefficients is based on the follewing
, aaaumptions., ,

ayl. The ring is circulat; homogeneoue. and isotrepic.
2, The ring is supported on an elastic foundation,

3. Dn1y out-o£-p1ene small (linear)’vibratione are conaidered.n

4, Effect of rotary inertia is included.

5, Effect of ehear deformation is neglected.

The shroud ring model and the forces and moments aeting on an eiement of
the ring are shown in figure 22, Referring to figure 22, and assuming that

 the elemental angle d@ is small, the force and moment equilibrium equations
can be written as

oV e a QW
og “wotrmeE
| :ahﬁv AL ;
g e
Mg e t'nr'2 22 ( )
- My + v F oo

, Here, w(8, t) is the deflection, Vis the shear force, My is the
: torsional moment, MB is the bending moment, misg the mass per radian, k is
- the stiffness per. radian of the support, R is the radius of the ring, r is the
‘radius of gyration of the cross section of the ring, £ is the external«force
g per radian, and. F is- the ‘external moment per radian.

i
32

(1a) “
(1b)

(1c) _.

The governing equation

of motion is obtained by differentiating Eq. (1c) with respect to 9, using :

E1 %W

o Lo
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The equation of motion is

it

A o Fu  mr2 2w F (@ |
(ae“ W)*R"““m?’f I i L

SR e : The appropt:late boundary conditions are:
I | 1- w(o 1) = wiamt); — e“ = (o) = (zm) S
2. For a single external force. fde. acting alone atG Ok, S

MW o o i ~"t(3b)‘

3. For a single external moment,_'l?kda. acting alome at 6=0 K’
wleo o o PR

Free Vibrations ’
The problem of free vibrations 15 obtained by setting f=0 and F=0 in

~ Eq. (2). The solution which sat:lsfies the boundary condition, Eq. (3a), can B
- be written as o : ,

w (ja_.t) ¢¢.(9)'e‘t"f‘/'r o ' )

- where

$pcggcosn8 (5

" mR(R%+ nZrd) [ee’tn®-1) + kn ] y =02y (6)

' 2nd@=0 is arbitrary. The coefficients, a,, in Eq. (5) are chosen such that




so that, L
|
- | R e N e o (7a)
RN | S 0g=(27mR) » for n=0, -
; | S | L
RIS , | 7 SR T
B Cope [BRRPe0®D] » for n21. ()

Forced Vibtetions

AR SR S A S S S M Sobl

 In view of the boundary conditions, Eqs. (3b) and (3c). the solution of
' the forced vibration problem is written ae

whete we is the solution for the case of no external moments (i.e., F=0) and
~ wp is the solution for the case of no external forces (i.e., £=0).

For the case of FEO, the solution can -be written as -

=§¢n""(a)nn<‘t)_. S o )

o“" oncosn(a Gk) bas Qo)
It is noted that the assumed solution satisfies the boundary condition,
Eq. (3b)

v By substituting Fq. (9) into Eq.,(2), multiplying by ¢ and integrating
from 9-0 to G— 2w; one obtains :

'r; “f’\n2 i Rffqb “"de ay
’~‘1'The external excitation 1s assumed to be harmonic, S0 that, 4

et gy

_ vhere wis the excitation frequency, and f is, in general, complex.

23




;
3
3
5
g

o whefe, :

: Further, assuming that w 1is not “equal to An, the solution to Eq. (11) is
written as

Nn =Aneiwt SEE T | ; o (13)

By using Egs. (9);l(11)§~(12),'end~(13), one,obtains

. e (k) (k) o (14)
'[’3%4&: c,.j;% fde] o

Y

Following a procedure similar to the one described above, the solution

'for the case of £20 can be obtained as

em, | ‘ o
, a i (16)
£ [g wék)cn j; wn( 5__ :I e!wl ,

: m _ o ; R
'l' = oﬂ sin n(e -6) , R - an
and F which is,- in general, complex is defined by
F: Fe""' . S as
Ic is”‘no‘ted'that Eq. (17) satisf’ies. the bOundarly condition, Eq. (3’c).
The solution of the forced vibration problem, Eq. (8), can be written as

‘wWﬂ-Mﬂfwx?i‘ ;~1j_g° 19

| B PO . 21r
 WeR y_ ¢(k)cnjo-¢n(kv)f 48 +Z w“"c,.j;

D "'l>, L

rf‘Differentiation of Eq (19) leads to an expression for the slope, defined by

ey f‘-t'L:»a'

wn'ﬂ 40 . o)
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“and

Lettlng, ‘ (GF) '

where,

Sty LY | (m on |
_é::%%——cnf‘#(k)(dg....ﬁ.z cnfw(h)__._ ,(‘23)

D:I.scretizs:ion

‘ To obtain ‘the dynemic 1nfluence coefficients for use in the matrix

: . formulation of the mistuning problem, t:he solutions for the deflection and

slope of the shroud ring have to be discretized.

~ Let, N be the number of blades, k, m, or j the blade number. n t:he mode
number. 9=0 be fixed at blade number k=1, anda8= (2m/N). The discretized
,vers:lon of Eq. (20) can be written as '

: B, A b
LA F (24)
bnend ¢“"cnnz i of Ae+z e 3 wi’.:’(;;i-), a0 0
 where, ek |
cnﬁ Cny
(u) - 2 ~(25a)
on cos n(e,.. Bk). X . | |
\t(mn ==—ansinn(fm-6, | ~(25p)

_fffor n=0 it 2... and m, k—l, 2, 3

G

38 V] (F~ | l;'f')‘"v , e

Qm" fmAe Q = FmAe

T ;..-;m.’ Eq. (2&), and after some algebra, the matrix version of Eq. (24) can be
,"3':written as R : . . ~
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b - =R et e e S I o R R o R
B o o LT * = ]

[a']m []M e e

where a. q, and Q are N-vectors, and al,a2 are NxN matrices, whose elements

"are given by

N P . ,
COmksR g $matiCman ey

SRR M A - LRI A A S o

2 . N & "m N e i
. ) Can 3 wiME A
Mk: ar ngo‘} ,nn;_'}',n jk ! @)
S refers to the row, k refers to the column, and e
o SOE I GRS e S S RS B
o o,'_' 1 e A S
: s | (28)
[E}=]) 0 -1 0 1

-1 0 1 o0

B L1 oo 0o -1 0 '
G Folldwing a procedure similar to the one described above, the matrix '
e ,version of Eq. (23) can be written as,

whers;

L va »'-':j‘:,""'—4 an ( cm.Z W . . o (30b)

Equations (26) and (29) can be combined to give the dynamic influence :
‘ oefficient matrix as,:'.j : T ; :




e
E
|
| TABLE I
E S ~ DEPARTURES OF INDIVIDUAL BLADE FREQUENCIES (y) AND
S '  DISTRIBUTION OF DAMPING (8) USED IN MODEL VERIFICATION
E - , ; _ ; Reference 4, figure 18
] Ty
8 o
| 1 0o 0.0025.
: 2 -0.0055 0.0040
# 3 -0.0015 = 0.0020
1 4 -0.0008 0.0026
E 5 00,0025
= 6 0.0013 0.0022
| 7 0.0010  0.0029
8 0.0002 0.0052
9 0.0002 0.0052
10 0 - 0.0056
E 11 0.0019 0.0055 ;
| 12 0.003%  0.0055 ;
i
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Figure 2 Effect of Mistuning on Eigenvalues
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(SEE FIG, 3 FOR THE LOCUR OF EIGENVALUES)
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 Figure 22 “Shroud Ring” Model
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