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SHORT-HAUL AIRCRAFT HAVE BFEN PROPOSED as one solution to aLrport

congestion a'number of years ago. 7n principle, these aircraft would

.. operate out of numerous existing short runway a_rFie_ds, and would
thereby alleviate the increasing traffic problem at major terminals. Tn
1974, NASA-Lewis awarded a contract to The General Electric Company to

• design, fabricate and test two Ouiet, Clean, Short-_aul, Experimental
Engines (OCSEE)o One propulsion system was designed for an Under-the-

Wing (UTW) externally blown flap application: the other was configured

for Over-the-Wing (0_) upper-surface blowing. Major objectives of the

program were to develop the technology needed to meet the stringent

noise, exhaust emissions, performance, weight and tr'ansient thrust

requirements of future short-haul aircraft. The contractor phase of the

program was completed in 1978 and results reported in (1, 2)*.

Subsequently NASA-Lewis evaluated complete engine systems with

representative powered-lift wing segments (3). Testing included acoustic

evaluation of bulk absorber material (4), UTW reverse thrust and forward-

to-reverse transient tests. Testing at Lewis was completed in 1979.

Noise requirements for short-haul aircraft and the OCSEE program

dictated that a low-pressure ratio, high-bypass ratio fan be used,

especially for under-the-wing installation. Studies have indicated that

for such installations, engines designed with variable-pitch fans for

reverse thrust (5, 6) are superior to those with fixed pitch fans and

conventional reversers. The potential advantage of using variable-pitch

fans is the elimination of the conventional heavy, high-maintenance,

target or cascade thrust-reversal hardware plus the added benefit of

improved thrust response time (G, 6). Q1e of the potential problems in

operation of variable pitch fans is difficulty Ln establishing reverse

thrust at certain reverse blade angles (7, 8). This problem is

aggravated when reversing with forward velocity. However, operational

techniques during forward-to-reverse transients, such as blade angle
overshoot, have been shown to be effective in reducing the time to

establish reverse thrust (7, 8).

During UTW engine steady-state reverse thrust testing at General

Electric, turbine temperature limit was reached before the reverse thrust

goal of 35% of takeoff thrust was achieved (9, lO). Although removing

the aft fan duct acoustic splitter improved the thrust 2%, from 25% to

27% of takeoff thrust, further improvement was desirable. Early model

tests (ll) indicated that the fan nozzles, if flared to about 30° did

provide reasonable pressure recovery when used as inlets. Later testing

(12) showed that pressure recovery of these flared inlets could be

adversely affected by serrations cut into the leading edge of the
inlets. _n the reverse position, the QCSFE fan nozzle is flared to about

-° 30° , but sizeable openings exist between the four flaps and between the

flaps and main nacelle in the hinge p]ane.

*Numbers in parentheses designate references at end of paper.



In an attempt to evaluate the effect of these openings on reverse
performance, a fixed 30° half-angle conical exlet having the same flap

length and trailing edge sharpness was fabricated and tested on the QCSEE

UTW engine. Steady-state reverse testing reported herein incl,ded back-

to-back tests with the fixed 30° ex[et arld the movable flaps (QCSEE).

The engine was tested over" a range of fan speed_ and reverse fan blade

angles. Measurements included thrust, fan and core speeds, fan blade
angle, and pressure and temperature profiles before and behind the fan

rotor and at the compressor face. ""

The NASA test program culminated with an evaluation of the forward-

to-reverse thrust transient characterist_.cs of the OCSEE engine. All
transients included an automatic change in the OCSEE four-flap fan nozzle

from a forward thrust setting (convergent nozzle) to an open, _ 30°

flare position for reverse. Simultaneously, the fan blades were rotated

through "stall" from forward thrust fan blade angles (_F = +5 to -7° )

to reverse thrust blade angles (BF = -97 to -I12°). Transients were
initiated from nominal forward idle, approach and takeoff power to
various levels of reverse thrust. Other variations included final

reverse blade angle, blade angle overshoot and fuel scheduling during the

transients. Typical overall sound pressure levels during the transients
were also obtained.

ll_Js report discusses the results of steady-state reverse tests of

two reverse inlet (exlet) configurations and forward-to-reverse transient
tests of the QCSEE UTW engine conducted at the Lewis Research Center.

UTW ENGTNE CHARACT_R!STTCS

The UTW engine is an advanced technology, experimental turbofan built

around an existing advanced core. The technical advances emphasize such
environmental factors as low noise and exhaust emissions. Perforlr_nce i:_

improved primarily by reducing engine weight to achieve a high engine

thrust-weight ratio.

UTW ENGINE DESIGN CHARACTERISTICS - A summary of the OC,SEE UTW engine

technical goals are presented in Table i for a four-engine commercial

transport aircraft. Because of the importance of low noise to any future

aircraft and particularly short-haul powered-lift aircraft, very

stringent goals were established with the takeoff and approach noise

level set at 95 EPNdB. The under-the-wing engine installation results in

direct impingement of the exhaust jet on the wing flap and the resulting

jet/flap interaction noise is a major contributor to the total noise

signature. As shown in Fig. l, a very low fan pressure ratio (jet
velocity) was required and was selected to keep this noise source about 3

dB below the total system noise for a balanced acoustic design.

The UTW experimental propulsion system shown in Fig. 2 was designed
(13) to provide 81,400 N (18,300 ib) of uninstalled thrust and 77,400 N

(17,400 lb) of installed forward thrust at takeoff on a ?05.6 K (90OF)

day. Reverse thrust goal was set at _% of forward takeoff thrust.



Specific UTW engine feature._ include: a eompo_'_itestructure high Mach

(accelerating) inlet; a gear-driven, variable-pitch fan wLth composite

fan blades: a composite fan frame; an acoustically treated fan duct wLth

an acoustic splitter ri.ng; a variable-geometry fan exhaust nozzle, an

;.idvanced (FlOl) core engine ;irld low pr,;_:-;._nrc, l, urb_ne; ;_n aeou:_tica[ly
treat(_d core oxhau:3t nozz.Jo; top-m_mntcd orl/_Jl|o :Jc_te.q,tol'i_e;_; arl(] ;1
digital eleetroni.c control 3ymtem combined wit.ll ,_ hydromech;u_[_-al t'ueI
control. Critical aerodynamic design parameters arc [i:;I,ed in Table 2.
The UTW engine has a high bypass ratio of lj.8 and a low fan pressure
ratio at takeoff of 1.27.

The UTW engine requires control of four variables; fuel flow, fan

blade angle, fan nozzle area and core compressor stator angle. The

control system incorporates two basic control components, a modified

hydromechanical fuel control and an engine-mounted digital electronic

control designed specifically for the OCSEE engines (14). A primary

requirement of the control system was the capability of achieving a

thrust response of 1.O sec for approach-to-takeoff thrust and 1.5 sec for

approach-to-reverse thrust. During operation, fuel flow controls engine

pressure ratio (compressor discharge pressure/inlet total pressure -

variables closely related to thrust); fan blade angle controls fan speed,

and the fan nozzle area controls inlet Mach number (a key inlet noise

parameter). The fan blade variable pitch actuation system was a

• hydraulically powered ball spline design described in (13).

Acoustic design parameters are listed in Table _ and acoustic

features of the engine are shown in Fig. _.

UTW ENGINE PERFORMANCE CHARACTERISTICS - A summary of previous GE and

NASA test results (1,3) is listed in Table 4. Acoustic tests at NASA (?)

of the UTW engine with representative powered-lift Wing flap sections

indicate peak 152 m (500 ft.) sideline noise of 98.5 and 99.7 EPNdB at

approach and takeoff, respective]y along with a 2._9 sq km (i.0 sq. mile)

95 EPNdB contour area. Although these values are above the 95 EPNdB and

1.29 sq km (0.5 sq mile) contour area goals, they are substantially lower

than any commercial aircraft in service today.

The pollution, forward thrust, specific fuel consumption and thrust-

to-weight goals were all met or exceeded. Although the UTW engine failed

to meet the 610 m (2000 ft) runway reverse thrust goal of 35% of takeoff

thrust, it did produce about 27% reverse thrust, and this might be

sufficient to decelerate an aircraft on a 915 m (3000 ft.) runway. The

approach-to-takeoff forward thrust transient was not attempted due to fan

overspeed indications during lower power transients.

APPARATUS AND PROCEDURE

The UTW variable pitch turbofan engine was tested for reverse
performance at a NASA Lewis outdoor engine test stand. Detailed

instrumentation, data reduction, and test procedures were incorporated to
. r

define steady-state reverse thrust performance and forward-to-reverse
thrust transient characteristics.



TEST FACILITY - The engine test stand (Fig. 4 and 5) was designed

specifically for test of the OCSEE engfnes. Specific attention was given

to the proxfmity of the ground plane and stand structure to the inlet _in(]

exit planes. These could cause f'Iow turbulence :_nd flow distortion

resulting in high blade stress :+nd/or noisc gerleration. E_igine
centerline was 4.6 m (15 ft) above grade. I%]estand had separable lower+

and upper structure. A compact "A" frame upper structure straddled and --
held the engine (top mounts) and all its accessories. The stand was

designed to enable measurement of forward, reverse and side loads. The

engine upper stand structure was hung from flexure plates and steady-
state thrust was measured by load cells. The outdoor test stand was

located at the NASA Lewis Engine Noise Test Facility immediately adjacent

to Cleveland Hopkins Airport.

ENGINE TEST CONFIGURATION - A schematic of the reverse thrust

configuration along with engine station designations is shown in Fig. 6

and symbols are defined in Appendix A. In the reverse thrust mode, flow
enters the engine at the fan nozzle (exlet), passes through the aft fan

duct and fan bypass outlet guide vanes and then separates into two

streams; one stream passing through the fan rotor and discharging out the

engine inlet, and the other stream turning 180° and entering the

gooseneck to the core compressor. A photograph of the 6-foot diameter
OCSEE fan rotor is shown in Fig. 7. Although the OCSEE design was

capable of fan blade pitch change in either direction (Fig. 8), reverse

through stall was found to provide improved performance (7) and therefore
was used in these tests. In this direction the blades are "opened" about

i00 o (BF = -i00o) from the forward thrust design blade angle (BF
= 0°).

During reverse operation, the QCSEE fan nozzle is in the flared

position (Fig. 9 and i0) and sizeable openings exist between the four

flaps and between the flaps and main nacelle in the hinge plane. Edges

at the openings are relatively sharp. In an attempt to evaluate the
effect of these openings on reverse performance, a fixed 30° half-angle

conic exlet having the same flap length and trailing edge sharpness war
fabricated and tested. A schematic of the fixed 30° exlet is shown in

Fig. ll and a photograph of it "on test" is shown in Fig. 12. Steady-
state reverse testing reported herein included back-to-back tests with

the fixed 30° exlet and the movable flaps (OCSEE). All forward-to-
reverse transients were made with the movable flaps.

Since noise measurements were not of primary importance in these

tests, the acoustic configuration used was the same as that tested

immediately preceding this final test series. The acoustic configuration
included the accelerating high Mach composite inlet with single-degree-

of-freedom (SDOF) wall treatment, treated (bulk absorber) fan duct, and a -+

multi phased stacked SDOF core suppressor. Tne acoustic fan duct

splitter ring was removed. This configuration is described in detail in
(4) and was designated as acoustic configuration 3.



INSTRUMENTATION - Because of the unique and rather complex nature of

the QCSEE UTW engine, an abnormally large number of steady-state and

transient pieces of information were obtained. Details ef the

instrumentation are presented in (q, i0), and only the pertinent
instrumentation is discussed below:

"i

1. Operational Safety Instrumentation - Pressures and/or

temperatures in the lubrication and hydraulic system, cooling air supply,

" oil cooler, fuel system, bearings and seals, reduction gear and in high

temperature regions were monitored.

2. Dynamic Instrumentation - Stress and v_bration levels were

continually monitored on selected fan blades, compressor inlet rakes, the

slip ring strut, nozzle flap links, fan frail, fan OGV _sland, and on
various locations on the fan doors. Vibration information was also

continually gathered on all critical engine bearings, the accessory gear

box, compressor case and the digital control. In an attempt to measure

true engine thrust transient response, the two engine thrust links

attaching the engine to the facility mounts were removed and replaced

with special strain gaged links. Accelerometers located on the links and

stand structure were used to compensate the strain signals for stand

movement during the forward-to-reverse thrust transients with a resulting

"true" thrust response.

3. Dynamic and Control Parameters - During the engine transient

tests, four 8-channel brush-type recorders with selected information were

used for "on-line" test monitoring and diagnostics. The parameters

monitored are listed in Table 5.

4. Performance Instrumentation - Engine performance instrumentation

is shown in Table 6. In addition to the basic engine instrumentation,
fan blade position, fan nozzle position, LP and HP rotor speeds were

provided from engine control system sensors. Fuel flows were provided

from the test cell system. Steady-state thrust readout was provided from

a load cell with 25,000 lb forward thrust and 2_,000 Ib reverse thrust

capability. The radial traverse probes (Sta i0 and 15) used + i0 psi

range transducers. To avoid error due to flow angularity, the probe at

the highlight (Sta i0) was aligned with the flow direction.

5. Acoustic - Noise measurements were not of primary importance

during these tests, however, far-field noise was recorded during some of

the reverse transients with a series of ground microphones spaced every
l0° from the inlet axis to 150 ° on a 4_.7 m (150 ft.) radius.

Details of the noise acquisition and data reduction techniques are
discussed in (3).

DATA REDUCTION - Steady-state reverse thrust performance tests

included the direct measurement of the following parameters: engine
thrust; fan blade angle; fan and core speeds; fan nozzle position (area):

aft fan duct, core inlet, and inlet highlight total pressure radial

profiles; fan and engine static pressures: ambient, aft fan duct, and



core inlet air temperature; core engine total and static pressures and

temperatures; and ambient conditions of wind velocity, temperature,

pressure and relative humidity.

Steady-state reverse thrust data reduction equations are listed in

Appendix B. The following parameters were calculated:
_.

i. Corrected engine reverse thrust

2. Corrected fan and core speeds

3. Actual fan blade angle and fan nozzle area

4. Aft fan duct corrected airflow and Mach number

5. Exlet (aft fan duct) and core inlet total pressure recovery

6. Core compressor corrected airflow and pressure ratio, and
estimated efficiency

7. Core engine corrected performance parameters

8. Fan airflow, static pressure ratios, and quasi total pressure

ratio (at inlet highlight)

9. Exlet, engine, and fan inlet static pressure distributions

Forward-to-reverse thrust transient data reduction consisted of

analyzing the data from four recorders (Table _). Transient data was

time synchronized by the power demand signal, and correlated with the
steady-state data taken before and after each transient. Calculated
values for each successful transient include actual overshoot blade

angle, dwell time, actual blade travel time, blade pitch change rate, fan

nozzle change rate; thrust response time, flow reattachment time, thrust
delay after reattachment, and times to reach final fan speed and final

reverse static pressure ratio.

TEST PROCEDURE - Steady-state reverse tests of both the movable flap

and the fixed 30° exlets were performed in a similar fashion using the

following general procedure:

1. Prior to start-up the desired fan blade angle and fan nozzle

area for reverse idle, and other inputs were programmed into the engine

digital control.

2. The engine was air motored using dry facility air. At about

3000 RPM core speed, the digital control received sufficient alternator

current for regulation and the control signaled the fan blade and fan

nozzle to move to the preset reverse values. At about 4000 RPM core

speed, the ignitors were activated and ignition was achieved.



3. The engine was accelerated to tile reverse idle ct_ndit, ion, about
55% fan speed.

-. 4. After the engine was warmed up for' abolJt r; rain, conditions were

adjusted to the desired settings for reverse data acquisition. Fan blndr_

angle was normally set in the elosed direeti.on (see Fig. 8).

Forward-to-reverse thrust transient testing was the last part of the

test program because of the inherent greater risk to the engine compared
to steady state testing. The sequence of the reverse transients was

structured to increase in severity beginning with forward idle-to-reverse

idle, and progressing to a forward takeoff-to-reverse thrust transient.

Each transient consisted of the following steps:

i. Take forward thrust steady-state data

2. Initiate transient to a reverse set point (blade angle, fan
speed and fan nozzle area)

3. Take reverse thrust steady-state data

4. Decrease speed to reverse idle

5. _nitiate return transient to forward idle.

All forward-to-reverse thrust transients included an automatic change
in fan nozzle area from a forward thrust setting (convergent nozzle) to

an open, approximately 30° half-angle flared position to provide an

inlet for reverse flow (exlet). Simultaneously, the fan blade pitch was
changed on the order of 100 o from a forward thrust to reverse thrust

setting. The transients were performed from nominal forward idle,
approach and takeoff power to various levels of reverse thrust. Other'

variations included final reverse fan blade angle, blade angle overshoot,
and fuel scheduling (fuel interlock setting) during the transient. The

maximum attainable fan nozzle and fan blade pitch change rates were used
in all the transients.

STEADY-STATE REVERSE THRUST PERFORMANCE

Reverse thrust performance was obtained with the engine at steady-

state operating conditions. Covered in this section are reverse starting
characteristics; overall, core engine, and fan performance; exlet and

core inlet total pressure recovery; engine total pressure and temperature

profiles; and the effect of the exlet configuration on steady-state
reverse thrust performance. Operational boundary conditions were

determined with relatively slow changes in either fan blade angle or fan
speed.

-_ REVERSE THRUST STARTZNG CHARACTERZSTZCS - Because of the potential
reverse "starting" problems (see Zntroduction), special attention was

given to the initial reverse tests of the QCSEE UTW engine. All steady-



state reverse startups were attempted with a preset reverse fan blade

angle. Visual observations, as well as thrust readings, indicated
reverse thrust was established at the onset of fan rotation for fan blade

angles of -91 °, -96° and -lO1 °. At a fan blade angle of -86o,

the fan appeared to be in a stalled, unstarted condition. The rangc of

fan blade angles where reverse thrust maximizes, as will be discussed

later, is -93 ° to -97° . Consequently, there appears to be a margin --

of about 5° in starting requirements, BF = -90° for starting and

BF = -95 ° for near maximum reverse thrust. Starting characteristics
were similar for both the fixed 30° exlet and the movable flap

configuration.

OVERALL REVERSE THRUST PERFORMANQE - Variation of corrected reverse

thrust with fan speed is shown in Fig. 13 for both the fixed 30° exlet

and movable flap configurations. At fan speeds up to 79% of design,

thrust peaked at a fan blade angle of -93.6 ° for the fixed exlet; at

higher speeds, and BF = -93"6°, turbine temperature limits were
reached. As fan blade angle was held constant, reverse thrust increased

almost linearly with increasing fan speed and began to level off above

80%. Engine core limits were encountered at the higher reverse thrust

levels for both exlet configurations. The 27,088 N (6090 lb) reverse

thrust goal was attained with the fixed 30° exlet while slightly

exceeding the turbine temperature limit. At similar operating conditions

and with the movable flap configuration installed, only about 22,240 N
(5000 lb) reverse thrust was obtained.

Performance comparisons at constant fan speeds for the two exlet

configurations are presented in Fig. 14. At the higher fan speeds,

reverse thrust levels of about 26,700 N (6000 ib) were obtained at fan

blade angles between -93 and -97 ° with the fixed exlet (Fig. 14a).

Only small gains in reverse thrust with increases in fan speed above 81%

are evident as seen by the collapsing speed lines. Maximum reverse

thrust was limited by the boundaries indicated on the figure, namely,

blade stress at low fan blade angles, core EGT limits near maximum

reverse thrust blade angles, and fan speed limits at the higher "off-

loaded" blade angles. At the higher fan speeds, the sensitivity was

about 890 N (200 ib) of reverse thrust per degree of fan blade angle for

both configurations.

At 58% fan speed, a fan blade angle hysteresis check was made with

the fixed 30° exlet (Fig. 14a). The data indicated less than i° of

hysteresis with blade angle at this speed. At blade angles from -83 to

-91 ° significantly lower but measurable reverse thrust along with high.

blade stresses indicated the blades were in a partially stalled mode.

During these tests, consistently higher reverse thrust was obtained _-

with the fixed 30° exlet as compared to the movable flaps at all fan

speeds and fan blade angles. In addition, lower bladestresses, lower

engine vibrations, and more stable reverse flow were observed. The

reverse thrust objective of 27,088 N (6090 ib) could only be achieved

with the fixed 30° exlet configuration while slightly exceeding the

turbine temperature limit.

8



EXLET AND CORE INLET TOTFdJ PRESSURE AND TFMPERATURE CHARACTERISTICS -

During reverse operation, air enters the engine from the rear and exits

through what is normally the engine inlet. The flow entering the core

• engine makes a 180 ° turn and is divided into channels (Sta 21 to 2_,
Fig. 6) by 6 equally spaced support struts. Rake data at the entrance to

the core (Sta 25) were recorded during all steady-state readings.

_ Pressure and temperature profiles were measured during selected operating
conditions at the entrance to the fan in reverse (Sta 15) at about a i0

o'clock position and at the fan discharge (Sta lO) at a 6 o'clock

position. The "V" shaped gaps between the four nozzle flaps (movable

flaps) occur at about the 12, 3, 6 and 9 o'clock positions. Fan and core

air flows were calculated from in-duct measurements and the procedures
described in Appendix B.

As evidenced, exlet total pressure recovery was significantly

improved with the fixed 30° exlet over the movable flaps (Fig. 15). At

an aft fan duct Mach number of 0.34, the exlet total pressure recovery
was .985 and .948 for the aforementioned configurations. Representative

measured pressure and temperature profiles for the fixed and movable flap

configurations at comparable fan speeds and fan blade angles are compared
in Fig. 16. As can be seen, the pressure loss for the fixed exlet occurs

near the outside wall compared to rather uniform losses across the entire

duct for the movable flaps. A slight amount of exhaust gas reingestion
was observed (Fig. 16a) with measured gas temperatures about 8oK

(15°R) above ambient near the inner wall. The traverse data at both

the fan entrance and discharge was significantly more oscillatory in
nature for the movable flaps indicating more flow turbulence. Static

pressure distributions on the exlet surface (see Table 6) indicated flow

separation on the inner surface from the sharp aft leading edge to over

half the length of the exlet for both configurations. Tne increased

pressure losses with the movable flaps are apparently caused by the sharp

edge openings between the four flaps and between the flaps and the outer
nacelle and pylon. Blockage or distortion also occurs due to the four

flap hinges, actuator rods and pylon.

For the low pressure ratio QC_EE fan (~ 1.08 in reverse), the exlet

total pressure recovery is extremely important and, in this case, was the
most significant factor causing the relatively low reverse thrust
performance of the movable flap configuration.

The core inlet total pressure recovery did not reflect the

significant differences observed in average exlet total pressure

recovery. This is apparently a result of large pressure losses

encountered in turning the flow 180 o at the gooseneck entrance to the

core, and the fact that most of the core flow is scavenged from the !ower
recovery flow near the inner wall in the aft fan duct. Core inlet total

pressure recovery was similar for both exlet configurations and decreased
from about 0.94 to 0.80 as aft fan duct Mach number increased from 0.2 to

0.36. Compressor face pressure profiles at various circumferential

locations are compared in Fig. 17. Both configurations had higher

pressure recoveries near the inner wall in the core inlet, and in



general, had similar profile _hapcs. Compressor face t_:mperature

profiles at the same conditions as the pressure profiles are shown in

Fig. 18. The small amount of hot core gas reingestion measured at the
inlet to the fan (Fig. 16) can also be observed at the compressor face.

The variation of the average (area weighted) core inlet flow temperature

rise with reverse thrust level for both configurations is shown in Fig.

19. At comparable reverse thrust levels, the amount of core exhaust gas

reingestion into the compressor inlet appears to be several degrees more

for the fixed exlet compared to the movable flap configuration.

CORE ENGINE PERFORMANCE IN REVERSE - Corrected core speed correlates

well with corrected fan speed for a given fan blade angle, BF, for both

the fixed 30° exlet and the movable flaps (Fig. 20). Core speed

increases rapidly at constant fan speed as fan blade angle is decreased

(increasing reverse thrust). Calculated turbine power has similar

characteristics. At high corrected core speeds, the core flow approaches

a choking condition and remains relatively constant (Fig. 21). The
increased turbine work requirement at higher core speeds results in a

rapid rise in exhaust gas temperature as fuel is added (Fig. 22) with a

notable change in slope at about 80% core speed, the core engine
characteristics were similar for both configurations, although a slightly

hotter engine exhaust gas temperature of 33°K (60°R) was required to

operate at the same corrected core speed with the movable flap

configuration.

Calculated specific fuel consumption minimized at a fan blade angle

of about -101 ° for both configurations and was about l0 to 20% lower

for the fixed exlet configuration.

FAN PERFORMANCE - Both the fixed and movable flap configurations had

about the same calculated corrected flow-fan speed characteristics, Fig.

23. However, actual flows were significantly lower for the movable flap
exlet reflecting the lower measured exlet total pressure recoveries (F_g.

6). Air flow was very sensitive to fan blade angle with flow changes as

high as 20% measured for 5° blade angle changes near the fan design

corrected speed. Fan performance measurements were limited to a total

pressure and temperature radial traverse at the entrance to the fan, Sta

15 (Fig. 6) and at the fan discharge, Sta lO. Tne latter was taken 10.2
cm (4 in) forward of the inlet highlight. Static pressure measurements

were also recorded at various stations in the fan flow passage.

Because the fan outlet traverse probe was located beyond the duct, a

true total pressure ratio across the fan could not be measured.

Consequently, fan rotor tip static pressure ratio which is indicative of

total pressure ratio, is presented as a function of corrected rotor flow

in Fig. 24. The limited data indicate similar performance for both _

configurations. At lower rotor flows (lower fan speeds), the effect of

blade angle is minimal with a tendency for the data to collapse on one

operating line. At the higher flows, and corresponding higher fan

speeds, separate operating lines exist as for a family of different

fixed-pitch fans. Data obtained with a 20-inch diameter model (15) ,f_

I0



the QCSEE fan show reasonable agreement in the general trends. Typical
pressure recovery data obtained with the downstream probe is compared for

both configurations in Fig. 25. The fixed exlet configuration had a

- higher level of total pressure in the exhaust which was concentrated

towards the outer wall and neither configuration had outward reverse flow

in the center portion. Radial traverse data also indicated significantly

4_ more flow instability ahead of and behind the fan with the movable flap
configuration; higher blade stresses and engine vibrations were also

measured with this configuration. Static wall pressure distributions in

the engine inlet (fan discharge) were similar for both exlet
configurations.

Although fan performance measurements were limited, it appears that
the increased flow distortion and flow turbulence associated with the

movable flap configuration, did not significantly affect the fan

operating characteristics. These data strongly suggest that the higher

thrust level of the fixed 30° exlet is caused primarily by improved

exlet total pressure recovery (see earlier discussion) and not by changes
in fan performance.

A complete listing of all steady-state performance data acquired for

both the fixed 30° exlet and the movable flap configurations is

presented in Appendices C and D, respectively.

FORWARD-TO-REVERSE THRUST TRANSIENT PERFORMANCE

A primary requirement of the UTW engine system was the capability of
a transient thrust reversal in less than 1.5 sec from approach-to-reverse

thrust. To accomplish this, the digital control, on command,

synchronized fuel flow changes, fan blade pitch change and the flaring of
the fan nozzle movable flaps. Transients were initiated from nominal

forward idle, approach and takeoff power to various levels of reverse

thrust. Other variations included final reverse blade angle, blade angle
overshoot, and fuel scheduling during the transient. A total of nineteen

transients were made, all with the movable flaps.

DEFINITIONS OF TRANSIENT TERMS - Definitions and pictorial

representation of the terms used in the forward-to-reverse transients are

presented in Table 7 and Fig. 2_, respectively. For these tests, the
primary parameter of interest is the time from the demand for reverse

until 80% of the final reverse thrust is achieved. This thrust response

time is designated "RESP" The digital control system was designed such

that fuel flow was cut back to an idle setting at the beginning of each
transient and held there until the fan blades were well into the

transient. Blade position during the transient (fuel interloc_ setting)
was used as the control switch to increase fuel flow. Since the blades

reversed such that the angle increased in absolute magnitude (e.g., 0°,
-1 °, -2° .... 99° , -lO0 °) during each transient, lower fuel
interlock settings (-50°) caused fuel to be increased sooner than

higher settings (-90o).

ll



Besides the direct measurement of" enF,ine thrust, two other measurc_(l

parameters, fan blade stress and fan statue pressure ratio, were
indicative of establishing reverse thrust and are presented. As observed

in previous tests (7), fan blade stre:_ses increased substantially during

a transient and then suddenly dropped when :'evcrse thrust was

established. Also, fan static pressure ratio became zero _s the blades

stalled, and changed sign as the flow rever.ned through the engine. -"

TRANSIENT PERFORMANCE - Summarized in Table 8 is the transient test

program. Each transient began at a forward thrust set point Fx,

automatically, on command, transitioned to a reverse set point Rx, then

a decrease in speed to reverse idle RI, and finally a transient to

forward idle F1. The nineteen transients are Ldentified as to set

point sequence planned (Fx-Rx-R1-FI) , programmed blade angle
overshoot, and the fuel interlock setting angle. Blade angle overshoot

was designed for a constant ten degrees beyond final set point for a

nominal 0.3 sec time duration. Approximate values of fan blade angle

(BF) , fan nozzle area (AI8), and fan speed (NF) , are tabulated for

the three forward set points, FI, F2 and F3, corresponding to
nominal idle, approach and takeoff power settings, respectively. Similar

values are listed for the nine reverse set points. Measured BF, NF
and A18 steady-state reverse values agreed with the scheduled digital

control values. Final reverse thrust levels also compared well with

previous steady-state thrust data. Transient 13A was performed with an

inadvertent control input for final blade angle of -86° rather than

-96 ° , and the engine did not establish reverse thrust because of fan

blade stall. Tnis transient is included to help define operational
limitations.

After a few transients were performed, it became apparent that fan

overspeed would not be a problem. The pre-test concerns of fan overspeed
soon gave way to concerns of excessive fan speed decay or undershoot and

subsequent long fan spool up times. Attempts to minimize or eliminate
this problem were unsuccessful and are discussed later. As a result of

this fan speed undershoot, some of the tests planned to investigate ways

to minimize thrust response and flow reattachment times by systematic

variations in blade pitch change rate and feedback sensitivity were
eliminated.

Variation of selected measured parameters during an approach-to-
reverse thrust transient without and with fan blade overshoot are

presented in Fig. 27 and 28, respectively. A takeoff-to-reverse transient

is shown in Fig. 29. During all transients, the fan nozzle movable flaps

and the fan blades were moved at their maximum rates. The nozzle flaps

(AI8 trace) began movement without any measurable lag and moved smoothly
and rapidly to the reverse position in 0.7 to 0.8 sec during all the --

transients. Fan blade movement typically began about O.1 sec after
transient initiation and also moved smoothly and rapidly to the reverse

position. However, the blades momentarily overshot the final reverse

blade angle by about 3° but damped out to the programmed angle in

several cycles. Similarly, vo of momentary excess overshoot and cyclic
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damping occurred when overshoot was programmed (Fig. 28). For the

approach and takeoff-to-reverse thrust transients, fan blade pitch change

rates ranged from 107 to 120 deg/sec.

The most unexpected transient characteristic observed was the

excessive fan speed, NF, decay or undershoot (Fig. 27 for example)

-_ which occurred during the initial portion of each transient. Fan speed

dropped approximately 1200 RPM in about 0.7 sec before beginning to

recover. The long fan spool-up times resulted in longer than expected

times to establish full reverse thrust. Consequently, thrust response
time was defined as the time to achieve 80% of final reverse thrust. As

can be seen in a typical transient (Fig. 27), all the significant reverse

elements (e.g., fan flow was reattached to the fan blades and the fan was

not stalled) had been achieved by this time (RESP).

Engine thrust (FG) time histories indicated a brief forward thrust

surge of about 14680 N (3300 ib) for 0.25 sec and 2220 N (500 lb) for 0.i

sec as fan blades initially moved open toward stall during the approach

and takeoff-to-reverse transients, respectively (Fig. 28 and 29).
Subsequently, thrust decayed to zero in about 0.5 sec as the blades

rotated through stall. Reverse thrust was established in about 1.5 sec

and 1.6 sec for the approach-to-reverse thrust transients with and

without overshoot, respectively (Fig. 28 and 27). The shortest thrust

response time RESP of 1.1 sec was measured during the takeoff-to-reverse

thrust transient (Fig. 29).

For the approach-to-reverse thrust transients, fan blade stress

usually peaked after the blade reached the final reverse blade angle
(Fig. 27). For the takeoff-to-reverse transient, fan blade stress peaked

earlier at about a BF of -50° at which time the fan was stalled (Fig.
29). In some transients, e.g., Fig. 27, blade stress decrease was a good

indicator of the establishment of reverse thrust, as was the case with

the Hamilton-Standard Q-Fan demonstrator (7, 8). _n other cases, e.g.,
Fig. 28, blade stress decrease did not correlate well with the

establishment of reverse thrust.

Fan tip static pressure ratio, PS2/PS16, decreased slowly throughout
the transient as the fan blade moved from forward to reverse blade

angles, but lagged, to some degree, measured load cell thrust response

times. Tip static pressure ratio could be used in a variable pitch fan
engine flight configuration to determine initiation of reverse thrust.

Core speed, NC, characteristics were similar for all transients,
decreasing initially, reaching a minimum in about 0.7 sec and then
increasing smoothly to a steady-sLate value.

The overall sound pressure level, OASPL, at 70° from the inlet
(maximum noise location during reverse) at a 46 m (150 ft) radius is

shown in the lower curve of these figures. Peak noise levels occur after

reverse thrust is established and appear to maximize when final fan speed
is reached. Maximum OASPL in reverse is only about 1-2 dB higher than
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the maximum OASPL during forward takeogf thrust. However, the perceived

noise during reverse _s significantly more disturbing because of much

higher noise levels in the 1500 to 6000 Hz high annoyance frequency range.

A typical return transient from reverse idle to forward idle is shm_

in Fig. 30. Blade stresses reached maximum levels at about 0.5 sec into

the return at about a BF : -70 ° . The relatively slow blade travel --
time of about 1.7 sec in the return direction, compared to about 1.0 see

normally, probably contributed to the relatively high stresses measured.

A summary of all measured and calculated transient performance

parameters is tabulated in Appendix E. In Fig. 31 through 36, an attempt

was made to isolate the effects of: l) initial and final fan speed, 2)

final blade angle, 3) blade angle overshoot, and 4) fuel scheduling, on

thrust response characteristics. As discussed earlier, the fact that

large unexpected fan speed decays and subsequent long fan spool up times

were encountered during all transients made it difficult to interpret the
effect of other parameters. The effect of initial fan speed on RESP and

TNF is shown in Fig. 31. As might be expected, thrust response time is

shortened when the transient is initiated at higher fan speeds during

initial forward thrust operation. As previously discussed, the time to

bring fan speed up to 98% of final value, TNF, is greater than RESP and

decreases as the initial fan speed is increased.

The effect of final reverse fan speed is shown in Fig. 32 for

transients beginning at low forward fan speeds (NFK : 57%). Even
though the fan blade pitch change rate was somewhat more rapid during

transients to higher reverse fan speeds, the thrust response time was

significantly longer due to longer fan spool up times. Final reverse fan

speed level had a negligible effect on TNF, BT and RESP if the transient

was initiated at high fan speeds, NFK = 88% (Transient 12 vs ii). To
minimize thrust response time, transients should be initiated from

relatively high fan speeds in forward thrust and fan speed should be

maintained during the transient.

The effect of final reverse fan blade angle on thrust response for

transients beginning from approach power is shown in Fig. 33. Data from
transient 13A where the blades were in stall is shown for reference. At

the same final fan speed, rever_e thrust increases as blade angle
decreases. Final blade angle had a negligible effect on thrust response

time RESP. Longer fan spool up times, TNF, are associated with the

higher thrust, more loaded blades (BF : -i00°). The time until flow
reattaches to the fan blades as determined by the decrease in blade

stress (BT + RAT) also increases significantly as the fan blade angle is

decreased (increasing reverse thrust).

A fixed lO° blade angle overshoot of 0.3 sec duration was designed

into the control system as a possible solution to anticipated reverse

flow starting problems. As discussed earlier, no reverse starting

problems were encountered. As shown in Fig. 34, the fixed blade angle

overshoot was measured at 13° and had a negligible effect on thrust
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response time. However, the magnitude and duration of high alternating
blade stress during the transients was significantly shortened when blade
angle overshoot was used (Fig. 3_).

The time at which fuel flow was increased after the initial cutback

during each transient was controlled by the digital control fuel

__ interlock setting (see Definitions of Transient Terms section). The

effects of this parameter are shown in Fig. 36. Variations between -50

and -90° interlock settings did not enhance the unexpected fan speed

decay (undershoot) problem as seen at the top of the figure. Neither

were thrust response and blade travel times significantly affected.

However, time to reach final fan speed, TNF, did appear to minimize at an

angle of -60 ° . Fan speed was near its minimum when the fan blades had

rotated to about -50o during the reversals (see Fig. 27, 28 and 29).

Increasing fuel flow sooner, (interlock settings less than -50 ° ) might
have been beneficial but were not tested because of concerns about

possible control system dynamic problems.

Initial design studies of the digital control system indicated

possible problems of fan speed overshoot as the fan blades unloaded while

changing pitch to the reverse position. To minimize fan overspeed, fuel
cutback to flight idle at the onset of all forward-to-reverse transients

was incorporated into the digital control logic. No fan overspeed

problem was observed in these tests. Apparently the initial fuel cutback

was either too abrupt or too severe as unexpected large fan speed decays
occurred during the initial portion of the transients and resulted in

subsequent long fan spool up times. Within the range tested,
rescheduling the time to introduce fuel flow earlier after the initial

fuel cutback was unsuccessful in reducing the amount of fan speed decay
or length of time to reach final fan speed. No attempt was made to
modify the control system logic for these tests. To reduce the time to

reach final fan speed in future tests the digital control logic could be

modified by controlling fan speed during the transient, delaying slightly
the initial fuel cutback, cutting back fuel at a slower rate, or cutting

back to a higher fuel flow level above flight idle.

SUMMARY

Steady-state reverse and forward-to-reverse thrust transient

performance were obtained with the QCSEE UTW geared variable pitch

turbofan engine at the NASA Lewis Research Center. The UTW engine fell

short of its reverse thrust goal during its initial testing at the

Contractor's facility. It was retested in reverse in its original

configuration and with a modified exlet which significantly improved
performance. The engine met the steady-state reverse thrust and

_ transient thrust reversa! goals. The digital electronic control,
variable pitch actuation system, variable pitch composite fan blades and

variable fan nozzle operated satisfactorily throughout the tests.

STEADY-STATE REVERSE RESULTS - Reverse thrust performance was

obtained with two fan nozzle (exlet) configurations: (a) the QCSEE
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4-segment variable area fan nozzle with openings in the flap hinge area

and between the flaps when in the reverse position (movable flaps); and

(b) a boilerplate continuous, non-gap, 30° half-angle conical exlet

(fixed 30° exlet). The steady-state results are summarized below:

i. The reverse thrust goa! of 35% of forward static takeoff thrust

was attained with the fixed 30° exlet. Reverse thrust with the movable -"

flaps was about 20% less. In order to retain the variable area

capability in a flight design and utilize the improved performance

concept of the fixed 30° exlet, a new improved movable flap design is

required.

2. Lower engine vibrations, lower l'anblade stress and more stable

flow occurred with the fixed 30° exlet as compared to the movable flaps.

3. No reverse starting problems existed for either configuration.

4. The reverse thrust goal was obtained in a fan blade angle range

of about 4° . The operating envelope was bounded by fan blade stress,
core exhaust gas temperature, and fan speed limits.

5. Fan performance characteristics did not appear affected by exlet

geometry; improved reverse thrust with the fixed 30° exlet appeared to

be a direct result of improved exlet total pressure recovery.

6. The core engine characteristics were similar for both

configurations, although a slightly hotter engine exhaust gas temperature

of about 33°K (60°R), was required to operate at the same corrected

core speed with the movable flap configuration. Core engine limits were

encountered at the high thrust levels with both configurations.

7. Specific fuel consumption was about lO to 20% lower for the

fixed 30° exlet and optimized at a fan blade angle of about -lO1 o for

both configurations.

TRANSIENT RESULTS - Forward-to-reverse thrust transient performance

was obtained with the movable flaps only. Automatic thrust reversals

were coordinated by the digital control, which on command, synchronized

fuel flow changes, fan blade pitch change and the flaring of the fan

nozzle movable flaps. Results from the 19 forward-to-reverse thrust
transients are summarized below:

i. The transient thrust reversal goal of 1.5 sec from approach-to-
reverse thrust was achieved. The takeoff-to-reverse thrust transient was

performed in 1.1 sec.

2. Unexpected large fan speed decays and subsequent long fan spool

up times were encountered during all transients, apparently due to the
early fuel cutback to flight idle as the transient was initiated. To

alleviate this problem, the digital control logic could be modified by

controlling fan speed during the transient, delaying the initial fuel
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cutback, cutting back f'ue] ;it :J :;lower. r.ate, or cutting back f'uel 1,o :l
higher, level above flight idle.

3. Fan blade pitch change typically began about O.L see aI'ter

transient initiation, moved smoothly, and momentarily overshot the final

reverse blade angle by about 3° , but damped out to the programmed angle

in several cycles. Fan blade travel times were on the order of 1.0 sec

with measured average pitch change rates from i07 to 120°/sec.

4. Programmed fan blade angle overshoot (10° for 0.3 sec) did not

affect thrust response times significantly, but did reduce the magnitude

and duration of high blade stress.

5. Fan exhaust nozzle (movable flaps) opened rapidly and smoothly

to the reverse setting in about 0.7 to 0.8 sec.

6. A very brief forward thrust surge of 14680 N (3300 ib) and 2220

N (500 ib) occurred as the fan blades initially moved open toward stall

during the approach and takeoff-to-reverse transients, respectively.

7. No problems were encountered in establishing reverse thrust,

although it took longer times at the higher thrust, more loaded blade

angles.

8. Maximum overall sound pressure level was about 1-2 db higher in

reverse than at takeoff. However, no anomolies were encountered during
the transients.
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TABLEl.- QCSEEUTW TECHNICALGOALS(FOUR-ENGINE,

400,320-N(90,000-I{,)THRUSTAIRCRAFT)

Goals

Noise-- 152 m (500 ft) sideline -

Approach,EPNdB 95
Takeoff, EPNdB 95
Reverse,PNdB lO0
95 EPNdB ContourArea, sq km (sq mile) 1.29 (0.5)

Pollution EPA 1979 EmissionLevels

InstalledThrust

Forward,N (Ib) 77395 (17400)
Reverse (% of takeoffthrust) 35

Specific Fuel Consumption,g/sec-kN (Ib/hr-lb) 9.6 (0.34)

InstalledThrust/weight 4.3

ThrustResponse

Approach to Takeoff, sec l.O
Approach to Reverse,sec 1.5

TABLE 2 - AERODYNAMIC DESIGN PARAMETERS

Total airflow, kg/s (ib/s) ...... ..... 405.5 (894))

Fan tip diameter, cm (in.) ............ 180.3 (71)

Fan tip speed, m/s (ft/s) .... • ...... 289.6 (950)
Bypass ratio ..................... 11.8

Fan pressure ratio ................... 1.27

Overall pressure ratio ................. 13.7

Jet velocity (core), m/s (ft/s) .......... 244,7 (803)

Jet velocity (bypass), m/s (ft/s) ......... 204.2 (670)
Gear ratio ...................... 2.5



, ,

TJ_l_ 3 - ICO_r.C DESI_ P_I_S

141.2 n/sec (80 Imots) aircraft speed; 61 n (200 i_) altitude; takenff conditions.]

- j _
Number of fan blades 18

Fan dis=eter, cm (in.) 180.4 (71)

Fan pressure ratio 1.27

-. Fan rpm 3089 (3244 at IOOZ)

Fan tip speed, n/sec (ft/sec) 289.6 (950)

Number of OGV's 33 (32 + pylon)

Fan weight flow (corrected), kg/eec (Ibm/sec) 405.5 (894)

Inlet Hach number (throat) 0.79

Rotor OGV space8 1.5 rotor tip aerodynamic chords

Fan exhaust area. m2 (in2) 1.615 (2504)

Core exhaust area, m2 (in2) _ :_+ 0.348 (540)

Gross thrust (8LS uninstalled), kN (ibf) 81.39 (18 300)

Blade passin 8 frequm_cy, Hz 927

Core exhaust flow, kg/sec (ibm/sec) 31.3 (69.1)

Fan exhaust velocity, m/sec (ft/sec) 197.8 (649)

Core exhaust velocity, m/sec (ft/sec) 238.9 (784)

Bypass ratio 12.1

Inlet treatment length/fan diameter 0.74

Van/blade ratio 1.83

TABLE 4 - QCSEE UTW PERFORMANCE

(PREVIOUSLY REPORTED)

Noise - 152 m (500 ft) sideline

Approach - 98.5 EPNdB
Takeoff - 99.7 EPNdB

Reverse - 106.4 PNdB @ 271 of takeoff thrust

95 EPNdBContourArea- 2.59sq km (i.0sq mile)

Pollution

Met EPA 1979 EmissionLevels

Installedthrust

Forward- 77, 395N (17,400ib)
Reverse- 27% of takeoffthrust

SpecificFuel Consumption

9.6 g/sec-kN (0.34 ib/hr-lb)- s_a level static

- InstalledThrust-to-Weight
4.15

Thrust Response
Approach-to-takeoff- not attempted



TABLE5 - SANBORNREQUIREMENTSFOR

TRANSIENTTESTING

Ch. No. Parameter

SANBORNA

*I Power Demand(PD) or Mode
2 A18 TMC
3 Nozzle Area, AI8
4 Core Speed N2
5 Fan Speed NIF
6 Thrust, FG (load cell)
7 Calc T41, T41C
8 Pressure Ratio, PS3/pto

SANBORNB

*I Power Demandor Mode
2 WFTMC(fuel flow - torque motor current)
3 WF (fuel flow)
4 FMP (fuel manifold press)
5 XMII (throat Mach No.)
6 PLA (power lever angle)
7 VSV (variable stator vane)
8 Selectable Channel

SANBORNC

*I Power Demandor Mode
2 Bf TMC
3 Fan Pitch Angle, Bf
4 Bf open pressure
5 Bf close pressure
6 Blade Strain
7 Blade Strain
8 Blade Strain

SANBORND

1 Thrust FG (load cell)
2 Link 1 Strain
3 Link 2 Strain
4 Link Accelerometer
5 Load Cell Accelerometer
6 Link AVG Compensated ..
7 Load Cell Compensated
8 True Thrust Transient

*Power Demand(PD) for Forward Transients and (Mode) for
Reverse Transients



TABLE6 - ENGINEPERFORMANCEINSTRUMENTATION

0 lO II 2 13 15 16 18 0

jT

Inlet Highliqht(Sta lO)

Pt and Tt radial traverse @ 180°

QCSEE Inlet (Highllghtto compressor face)

2 axial rows of 16 wall statics @ IBO° and 2700
I circumferentialrow of B wall staticsat throat (Sta 11)

Fan Frame (~ Sta 13)

19 statics on outer wall

Bypass Duct Fan Inlet (Sta 15)

Pt and Tt radial traverse @ 2830

Fan Duct Measurinq Station (Sta 16)

4 outer wall and 4 inner wall statics

Fan Duct Entrance

2 staticson outer wall

300 Exlet

I axial row of 9 wall statics

Movable Flaps

4 axial rows of 7 wall statics each of _ap #3

Core Entrance Island (~ Sta 21)

5 island wall statics
5 core 06V vane statics
2 hub wall statics
2 3-element Pt rakes @ 1700 and 3500

Core Entrance Splitter Lip (- Sta 21)

4 wall statics

Core Entrance Gooseneck(Sta 21 to 25)

6 inner wall statics

CompressorFace (Sta 25)

4 outer and 4 innerwall statlcs
6 5-element Pt rakes @ 16, 82, 105, 145, 225, 282°

- - 6 5-elementTt rakes @ 16, B2, 105, 145, 225. 282o

core CompressorDischarqe(Sta 3)

. 1 T3 probe
I PS3 probe

LP Turbine Frame Discharqe(Sta 55)

l 5-elementTt rake



TABLE 7 - FORWARD-TO-REVERSE THRUST TRANSIENT TERMS

BT Blade travel time, s; time from request to reverse engine thrust

until fan blade initially reaches within 10 of overshoot blade
angle

DELAY Thrust delay after reattachment, s; time from flow reattachment

to fan blade (blade stresses drop below reference value) until
80% of final reverse thrust is achieved.

DOV Number of degrees of overshoot beyond the final reverse blade

angle, deg.

DWELL Time that fan blade is held at the overshoot blade angle, s.

NFOS Max fan speed above reverse set point, RPM

NFUS Min fan speed blow forward set point, RPM

OBA Overshoot blade angle, deg.

OBA - _Fi
PCR Pitch change rate; average blade travel rate, , deg/s

BT

PD Power demand, %

RAT Flow reattachment time, s; time when fan Blade intially reaches

within 1° of overshoot blade angle until fan comes out of stall

(blade stresses drop below reference value)

RESP Thrust response time, s; time from request to reverse engine
thrust until 80% of final reverse thrust is achieved (RESP = BT

+ RAT + DELAY)

TAI8 Time from request to reverse engine thrust until AI8 opens to

98% reverse setting

TNF Time from request to reverse engine thrust 98% of final fan

speed is achieved, s.

TSP Time from request to reverse engine thrust until 98% of final

reverse static pressure ratio PS2/PSI6 is obtained, s.



TABLE8 - SUMMARYOF FORWARD-TO-REVERSETRANSIENTS

Fuel
Blade Interlock

Number Transient Overshoot Setting ForwardSet Points

l FI-RI-Fl No -900 B Al8 ~ Fan Speed
2 FI-RI-FI No -900 (Panel) (Panel) rpm (%)
3 Fl-R2-Rl-Fl No -900

4 FI-R3-RI-FI No -900 Fl + 2.4 2480 1800 (56)
5 FI-R4-RI-FI No -900 F2 0 2900 2850 (88)
6 F2-R4-RI-FI No -900 F3 - lO.O° 2350 3073 (95)
7 F2-R4-Rl-Fl No -700
8 F2-R4-Rl-Fl No -600
9 F2-R4-RI-FI Yes I15/I05 -700 ReverseSet Points
l0 F2-R5-Rl-Fl No -700
II F2-R6-RI-FI No -700 B Al8 ~ Fan Speed
12 F2-R7-RI-FI No -70° (Panel) (Panel) rpm (%)
13 F3-R4-Rl-Fl No -700
14 F2-R8-RI-FI Yes llO/lO0 -700 Rl -I05 3900 1806 (56)
15 F2-R8-RI-FI No -700 R2 -I05 3900 2083 (64)
16 F2-R4-RI-FI No -500 R3 -I05 3900 2637 (81)
17 F2-R4-RI-FI Yes I15/I05 -500 R4 -I05 3900 2894 (89)
*18 F2-R4-RI-FI Yes I15/I05 -500 R5 -If5 3900 2890 (89)
**13A F2-R9-RI-FI Yes I00/90 -700 R6 -llO 3900 1800 (56)

R7 -llO 3900 2886 (89)
R8 -lO0 3900 2624 (81)
R9 - 90 3900 2624 (81)

*Bladesstoppedat -57o. Lost hydraulicpressure.
First fully automatictransient.

**Bladesstalled.



APPENDIX A

Symbols

AI8 bypassnozzle lip area

Ate/AD exlet trailingedge to fan duct area ratio

DF inlet diameterat fan face

DHL inlet highlightdiameter

Dt inlet throat diameter

EGT exhaustgas temperature,°R; (LPT DischargeSta. 55)

FGK ave. correctedengine reverse thrust,ib

FG8 est. core thrust,ib

HUM grains of water per ib of dry air

L inlet length from highlightto diffuserexit (fan face)

MD aft fan duct Mach number

NC core speed, rpm

NCK correctedcore speed (Nc/_25) , %

NF fan speed, rpm

correctedfan speed (NF/_0) , %NFK

OL operatingline

PS local static pressure

Ps2/PsI3 fan tip static-pressureratio (reverse)

PT3/PT25 HP core compressortotal pressureratio

PT local total pressure

PT0 ambient pressure

PT2/PTo fan outlet total pressure (at fan face)

PT2/PTI5 fan pressure ratio (reverse)

PTI5/PT0 exlet total-pressurerecovery

PT25/PT0 core compressorinlet total-pressurerecovery (including
exlet)

RF fan radius at leadingedge

SFCK corrected specific fuel consumption (ib/hr)/ib -

SLS sea-level static

SS steady state



TO takeoff _

TO ambient temperature, °R _ +

T25 core compressor inlet total temp., °R

T41K corrected HPT rotor inlet total temperature, °R (T3, PS3,

-- WF digitalcontrol) ..,.

T55K correctedexhaustgas temperature,OR

WIIK correctedfan rotor flow, ib/s

WI5K correctedaft fan duct flow, ib/s; ,(totalfan plus core
inlet flow) " .'_

W25K correctedcore compressorinlet flow, ib/s

x axial distancefrom inlet highlight

8F fan blade angle, angle from design forward blade angle, deg

ratio of total pressure to standard sea-level pressure

8 ratio of total temperature to standard sea-level temperature



APPENDIXB

Steady-State Reverse Thrust Calculations

I. Corrected thrust, FGK

FGK: FG --
6o

2. Weight flow

\PTJ

For Aft Fan Duct Flow, WI5

CD : 0.98

AI6 : 3262.8 in 2

PT : PTI5' psia

TT = TO OR

Ps = PSI6, psia

For Core Flow, W25

CD : 0.70

A25 : 328.68 in 2

PT : PT25, psia

TT : T25, OR

PS25 : psia

For Rotor Flow, WII = WI5 - W25

3. Corrected weight flow

WxxK = Wxx x_x (I+.34 HUM
,_xx \ 7_)

4. Aft fan duct Mach number, MD



5. Core compressor_p_essureratio, PT3/PT25

PT3 = 1.0193 PS3 - 2.05

PT25 PT25

. 6. Correctedfan speed, NFK

NFK = NF (l - .26 Hum._x I007661

3244.l x

7. Correctedcore speed, NCK

NCK= NC II- .26 Hum_xI007___0!

NCDES x_



.PP D,xcsTuDYSTAT .EVE.SE A.G'CO.,CALEX'.

< > _ I LDEUT __

T41  T-T')";T25P w25 ,0 w15 w11
Rdq. deq. % rpm % lbs %des, %des ..... % des, -- -- lbs/s lbs/s ....

1011 -108.3 61.2 19R2 76,2 -2284 66.3 75.3 5.50 ,934 51,1 ,1_8 .994 367.6 336.4 ,043 ,981

101_ -10_,_ 82.7 2681 82.4 -3687 75.4 81.2 8.22 .897 72.9 .258 .992 470.3 427,5 1.075 .96_

1014 -I06,2 95.3 3088 84.9 -4065 82.1 86.6 9.70 .877 81.I .274 .990 1497.5 450.8 1.085 .955

1018 -I01.2 59.3 1921 78.9 1-30_8 68,1 75,5 6,41 ,912 60.0 ,228 ,992 419.0 383,2 1,056 ,978p

1020 -101.2 82.2 2654 85.9 -5213 84,1 B8.6 II0.28 .843 86.8 .313 .989 560.0 512.4 1.125 .962

1021 :I01.2 88.3 2863 87.4 -5400 88.6 93.1 ll.lO .833 90.5 .320 .988 571.2 521.6 1.139 .9_

1030 -101.2 56.8 1845 78.4 -2796 67.8 75.1 6.17 .914 1.058 .981

1031 -101.2 64.1 2079 80.B -3440 71.4 78.1 7.25 .895 1.074 .974

1032 -101.2 82.2 2667 86.0 -5150 84.8 89.4 0.28 .841 85.9 1.125 .961

1033 -101.2 88.1 2856 87.4 -5375 89.1 93.4 II,I0 ,832 91,4 1.142 .956

1034 -101.3 95.1 3085 88.5 -5420 91.7 95.6 11.71 .830 92,9 1.147 .952

1035 - 99.0 95.1 3084 89.6 -5650 95.2 99.1 12.12 .822 95.8 1.159 .952

1036 - 95.9 56.6 1837 81.2 -3341 71.3 77,8 7,43 ,882 _8,2 .264 .991 480.9 441.6 1.070 .976

1037 - 95.9 64.4 2090 84.1 -4520 79.8 83.5 9.05 .847 1.094 .969

1038 - 95.8 81.9 2657 91.0 -5897 99.O 103.1 12.56 .790 98.5 1,168 ,949

1039 - 95.8 88.2 2861 94.2 -6000 104.5 109.3 13.22 .783 99.2 1.187 .949

1040 - 94.7 81.7 2651 92.2 -6075 100.5 104.3 12.72 .784 98.8 ,169 ,947

1041 - 93.6 81.7 2628 93.6 -5973 103,5 I07,1 13.08 .774 98,9 .171 _948

1042 - 98,5 81,7 _$5_ 87.8 -5573 88_0 93.1 _817 02.2 lal q_?

1043 - 96.4 81.8 2654 89.8 -5999 94.4 98.4 12.17 .797 96.2 .164 .952

1044 - 91.3 57.2 1851 83.1 -3548 74.6 80.4 8.47 .857 77,1 ,282 ,989 5!2.6 467.3 .071 .976

1045 - 91.2 64.5 2090 85.8 -4472 81.6 85.9 .827 .092 ,973

1046 - 93.6 57.4 1858 82.8 -3788 74.0 79.1 .862 _076 .974

1047 - 93.6 64.3 2084 85.5 -4497 81._ 85.3 .830 .Inn q7n
1048 - 93.6 79.1 2566 94.1 -6194 103.4 107.4 13.11 .772 99.I .165 ,956

1049 -I06.4 57.3 1860 I 75.1 -2031 64.5 74.6 .943 .040 .98_

l_SN -106.4 64.4 2087 77_6 -2635 66_6 75.2 .929 1,047 .979

1051 -106.4 81.8 2658 82,1 -3703 74,5 80,5 ,896 1.075 .967

1052 -106,4 87,9 2848 8},5 -}_0 78.3 83.2 .889 1.081 .963

1053 -106.4 95.4 3095 8511 -3932 81_6 86,2 ,877 1.O86 .958

1054 -106,5 88,0 2854 83,0 -3720 77,0 82,7 7,59 ,894 1.076 .965

1055 -106.5 79,2 2569 80,9 -3444 72,7 80,1 6,67 ,908 1.063 .970

1056 - 93.6 t 56.4 1829 82.3 -3696 73.4 79.5 7.94 .870 72.5 _273 .989 4_.6 453.4 1.071 .974

1057 - 94.2 56_4 182B 82_0 -3429 72_8 79.2 6 74 .874 1.072 _976

1058 - 94,2 64,4 2088 _4,9 -4663 80.2 I 85.0 7.96 .835 1,096 .967

1058 94,2 82.8 2688 94.2 -6160 104.1 1107.6 13_14 _770 99.8 1.179 Q57

i

i

C-8OID (10-24-51!



APPENDIXD- STEADY-STATEREVERSEPERFORMANCEMOVABLEFLAPS

"_--_-ENGINE _ _ {ORE > "_FAE!KLDEUT T-->'FA_ _IOR-->

8F NFK NFK NCK FGK T41K T55K PT_PT25 PT_PTO W25K MD PTI_PTO WI5K W11K PS_PsI3 PS_PTO
Rdq. deq. % rpm % Ibs % des % des .... % des .... Ibsls Ibs/s ....

916 -106.1 52.2 1692 73,2 -1684 66,5 74.8 4.64 .947 1,039 .983

917 -I06,2 55,1 1783 74,0 -1714 66,8 74.4 4.65 1,041 .981

918 -106,2 54.9 1782 73.7 -1657 65.6 69.9 4.87 .939 47.2 .195 .985 361.0 332.9 1.042 .982

919 -I06,2 54.8 1779 74.0 -1650 64.2 74.2 4.88 .940 48.2 .200 .987 370.0 341.5 1.038 .980

920 -I06,4 62,1 2014 76.4 -2062 66.4 75,2 5.67 ,928 55.4 .213 .982 393.3 360.0 1.048 .975

921 -I06.5 78.9 2560 81,1 -3150 76.9 81,2 7.66 .891 70.0 .265 .972 473.4 431.7 1.078 .963

922 -I06,4 94.2 3055 84,3 -3572 82,2 88,0 9,69 ,860 80,6 .275 .963 499.6 453.6 1.103 .954

923 -I06,4 82,2 2667 81.4 -3150 77.7 82.2 8,04 ,880 68,0 ,262 .971 476.6 437.0 1,080 .962

924 -106.5 54.5 1762 73.5 -1522 64.6 74.9 4.48 1,036 ,981

925 -101.3 55,2 1790 77,4 -2029 68,2 74,2 5,47 ,909 1.055 .976

926 °lOI,3 62,5 2027 79,9 -2672 73.1 77.8 7.14 .886 63.7 .247 .970 460.5 423.0 1.072 .969

927 -101.3 80.6 2615 85.2 -4308 R3.R 90.9 10.20 .831 87.5 .311 .952 557.4 50_.8 1.128 -953

928 -I01.3 85.5 2774 86,7 -4636 87,5 93,7 ll.Ol .814 89.1 1.147 .949

929 -I01.3 93.4 3029 88.6 -4711 93.6 98,9 II,95 ,802 92,6 .335 .950 592.9 543.0 1,165 .943

930 -I01_3 85.4 2769 85.9 -4547 86.3 92.2 I0.72 .817 85.8 1.140 .952

931 -lOI,3 54,6 11772 76,9 -2215 66,7 74,8 5,25 ,898 1,055 .977

932 - 96.1 54.7 1773 79.9 -2617 69.3 76.5 7.14 .878 61.7 .260 .971 473.2 438.0 1.065 .971

933 - 96,1 62.2 2016 82,6 -3268 78,1 81.8 8.60 .848 74.2 .284 .959 512.8 471.0 1.085 .961

934 - 96.1 79.8 J2587 90.0 -4939 97.7 99,0 12,14 ,779 96.3 1.155 .942

935 -Ill.3 60,2 1951 72.9 -1400 63.9 73.7 4.34 1.029 .981

936 4111.2 79.0 2562 78.2 -2068 68.5 76.5 5,97 1.048 .971

937 -I06.5 79.1 J2565 80,9 -2741 75,7 80.0 6.77 1.070 .962

9_8 -I01,3 79,2 2570 84.4 -3970 83.5 88.0 7.97 1.113 .955

939 -I04.0 78_9 2559 82.7 -3615 80.2 82.8 7.35 1,095 .960

940 -106.6 79,0 2564 81,0 -2962 76.3 80.7 6.85 1.076 .964

q41 -111,4 79.1 2565 78.2 -1920 69.1 77.3 5.86 1.045 .970

94Z -I15.1 79.2 2568 76.2 -1250 68.3 75.9 5,30 1,025 .974

94_ -111.2 79.0 2562 78,0 -1898 70.6 76.7 6,81 1.042 .971

944 - 91,4 54,9 1780 81,2 -2097 71,2 77,2 6,52 1,061 .971

945 - 91,4 62.3 2020 83,5 -2762 79,8 81.7 7,46 1,078 .967



APPENDIXE- TRANSIENTPERFORMANCE

"_----ENG NE--_--_'-- _ HRUS --'- _ DY S
4

8FUS PS8 *

8
PD AI8 TAI8 8CK NFK TNF NFOS TSP FGK RESP DELAY _F DOV OBA DWELL BT PCR

NO In2 s % RPM s RPM -- s Ibs S S De9 De_ De9 s s Des/s

1 45.2 2480 ,7 75,4 57.0 1.7 1020 .937 1.90 457! 1 R * 1 + 5.2 1,0 '102.6 _7 1.30 82.9 1 00 .60 10 0
45.0 3906 77.6 56.6 1.035 -2173 J,O1 8

8 45.2 8480 .7 75.8 57.0 1.6 1020 9"_R1 90'4644 I R . ] . 5.0 1.0 102.4 112 1.20 89.5 1.90 .70 10.6

45,0 3906 78,1 56.7 1.037 .2359 _01.4

3 45.2 8478 .7 75.6 56.8 2.8 1120 .940 1.80 4650 2.0 + ,25 + 5.1 2.0 103.3 .15 1.20 91.2 1.75 .60 IO,O

64.1 3906 81.3 65.4 1.049 .3074 101.4

4 45.2 2479 .7 75.4 56.8 4.1 llOO ,941 3,5 4517 3.0 1.55 + 5,1 3.0 104,7 ,15 ,95 16,6 1,45 ,60 8,0
78.7 3904 85.9 82.2 1.069 .4444 ]01.7

5 45.8 2479 .7 75.4 56.6 5.0 1100 .9401 3.8 I 4548 3.5 2.1 6.3 3.0 104.6 .15 ,90 1123.2 1,40 .50 11.0

81.I 3904 38.4 90.6 .075 -4626 101.6

6 79,8 2904 .7 32,7 88,5 3.9 1600 .865 2.9 10077 1.4 -2.0 2.6 3.0 I04.41 .2 .90 120 3.4 2.5 7.5
81,2 3902 38.4 88.9 .072 -4474 101.4

7 79.8 _904 .7 32.8 88.2 3.2 1600 I .858 2.5 10668 1.2 -I.6 2.3 3.0 I04.4 .2 .80Iig.7! 2,7 ! ,8 9.0
51.2 3903 38.4 89.8 1.074 -4506 IO1.4

8 19.8 _904 .7 38.0 88.8 8.1 1600 i .855 2.3 10683 1.2 -1.5 2.6 3.0 104.7I .15 .90 119.1 2.7 1.8 9.0

31.3 )999 18.1 89.7 !.97_ -4595 lO1,7

9 78.8 2903 .8 32,8 88.1 2,8 3660, .85818,2 10660 1,6 ,8 2.5 13.0 -114.9 16 110 112114 8.1 II 1 7.0
51.3 3902 37.2 89.7 .065 -4266 IO1.9

O 19.7 -_904 .8 32.9 88.1 1,9 1600 10750 1.5 .l 2.4 4,0 -115. .15 1,0 119.' 1.6 .6 8,0
31,3 3906 )o.g 89.7 8000 -2850 111.7

19.8 _904 .7 r2.9 88.1 2.3 1650 10700 1.1 .OS 2.5 3.0 .109.' .05 1.0 112.', I1.15 .15 8.0
14.8 1905 r4.S 55.4 -1530 106.7

12 r9.7 !904 .7 13.0 88.2 2.3 1640 m855 .6 10768 1 .2 .7 2.6 8.0 "109.1 .05 1.05 106.! 1.90 .85 8.0
11.3 _903 }3.7 89.8 2960 1.043 "3400 106.7

18 )7,6 )350 .7 19.4 95.5 2.1 1950 .736 1.8 17136 I.I .I 7.213.0 -I04 .05 .92 I06.1 1.0 .08 il.O

11.2 1903 87.8 89.5 1.074 -4607 101.5

14 )0,4 !903 ).7 82.9 88,9 3,5 1650 .861 2.1 10630 1.5 .4 3.1 13,0 -109._ 0.35 .DO 117.! 1.10 ,1 5,6
r2.7 1902 89.9 81.8 1.074 -4940 .96.8

15 _0,4 )904 .75 83,0 88,5 3.5 1650 .860 1,7 10632 1.6 .05 8,1 ! 8.0 - 99._ .1 0.85 108.." 1.65 .70 0.0

'2.7 _902 90.6 81.2 1.075 -4945 ,96.8

16 902 .7 82.6 88.9 3.2 1680 .861 1.8 10083 1.3 .1.2 • 3.1 3.0 -104._ ,I l,O 108,! 2,5 1,5 7,0
:902 87.0 90.4 1.078 -4331 01.8

17, 2902 .8 82,7 88.7 8.2 1700 1868 118 I0875 1,5 .85 8.4 13.0 -114 .47 1.1 111._ 1.16 .06 7.0
3903 86.4 90.3 1,069 -4202 IOl,B

18 2904 .93 82.8 88.9 4.1 1750 .864 1.8 10421 _ 3.1 o . 8"_I (_ .67 91.( _tull 1(In

3900 607 -51,4
2900 77.2 42.6 .993 607 -53.4

ISA 2908 .8 82.7 88.0 3.5 1650 .861 1.9 10765 ;_a11 + 3.0 13.0 -10D .4 .98 s_all ® I1.0
3900 82.3 80.9 2750 1.040 O -87.0

)URIIG TRAISIENT FAN LADESSTOPPE AT 53.40_80 RE_AINE[IN S1ILL DL TO OSS 0 HYDR,ULIC RESSUIE
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Figure1. - Effectof jet flap noiseon fan pressureratio
selection.
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Figure2. - UTWEnginecrosssection.
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Figure 3. - AcousticdesignfeaturesofQCSEEUTWengine.
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Figure4. - Engineteststand- frontview.
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21 FANHUBDISCHARGE(INLETTOGOOSENECK)
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Figure6. - Stationdesignations- reversethrust configuration.
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Figure5.-Engineteststand-aftview.



Figure7. - UTWfanrotor.
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(a)Forward-modeoperation.
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(b)Reverse through flat pitch operation.
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(c)Reversethrough stall operation.

Figure8. - UTWfan rotor blade.
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Figure9. - Schematic-movableflaps.

Figure10. - 3/4Aft viewof movableflap configuration
"on-test."
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Figure11.-Schematic-fixed30oexlet.
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Figure12.-Fixed300exleton-test.
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Figure 13. - Reverse thrust-fan speed characteristics.
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Figure14.- Reversethrust-fanbladeanglecharacteristics.
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Figure17.- Pressurerecoveryprofilesat coreinlet.
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