NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE.

D. A. Kourtides, A. H. Heimbuch, and J.A. Parker

August 1980
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portrait</td>
<td>1</td>
</tr>
<tr>
<td>Accomplishments</td>
<td>3</td>
</tr>
<tr>
<td>Polymer Research Group</td>
<td>5</td>
</tr>
<tr>
<td>Aircraft Operating and Safety Group</td>
<td>6</td>
</tr>
<tr>
<td>Engineering Testing Group</td>
<td>7</td>
</tr>
<tr>
<td>Projects</td>
<td>8</td>
</tr>
<tr>
<td>Publications</td>
<td>11</td>
</tr>
<tr>
<td>Contracts and Grants</td>
<td>22</td>
</tr>
<tr>
<td>Presentations</td>
<td>27</td>
</tr>
<tr>
<td>Patents</td>
<td>31</td>
</tr>
</tbody>
</table>

PRECEDING PAGE BLANK NOT FILMED
The Chemical Research Projects Office (CRPO) conducts basic and applied research in the fields of polymer chemistry, computational chemistry, polymer physics and physical and organic chemistry. Materials developed and tested in the CRPO contribute to aircraft safety by decreasing the fire hazard and increasing the durability of tires, for example. Related industries may benefit from these products as well.

Since its founding, the CRPO has worked to identify the chemical research and technology required for solutions to problems of national urgency, synchronous with the aeronautic and space effort. At the same time, the strong technological base developed in the CRPO supports the domestic needs of the nation. CRPO scientists maintain and develop skills in the areas of polymer synthesis and characterization, the development and processing of polymeric materials composites, and the basic analytical chemistry and instrumentation needed to support CRPO activities.

Another purpose of the CRPO is to conduct interdisciplinary research on chemical problems, mainly in areas of macromolecular science and fire research. New and improved materials systems and other fire control systems, such as high temperature foams, composites and fire extinguishing systems that are developed primarily for aerospace applications, can often be applied to national domestic problems.

The CRPO also acts as liaison with the engineering community and assures that relevant technology is made available to other NASA centers, agencies and industry. Experiments are run in the CRPO to insure the quality of information transferred. CRPO laboratories are equipped to handle bench-scale to full-scale tests. In order to demonstrate the improvements in performance obtained through the use of materials and fire control measures developed in the CRPO, scientists experiment with modified or retrofitted aircraft systems and subsystems in these facilities.

The scope of CRPO research encompasses transportation safety in human environments, space exploration and advanced aircraft progress, and technological utilization for civil applications.

In the area of transportation safety, CRPO scientists work on fire control and fire extinguishing methods in vehicles and structures. They conduct toxicity studies of fire-retardant materials, develop high performance aircraft tire and brake
materials, and develop high temperature elastomers for fuel tank sealants for advanced supersonic and conventional aircraft.

The CRPO furthers space exploration and advanced aircraft progress by developing advanced aerospace materials. Some of these materials stand up to environmental extremes, such as those used for entry thermal protection. Others are fire-resistant, functional nonmetallic materials for aircraft applications.

Technology utilization for civil applications is another aspect of CRPO research. As an example of this, CRPO scientists simulated the heating environment associated with liquid propane (LPG) fire by employing skills in combustion, heat transfer, and fluid mechanics. They applied this characterization to LPG railroad tank cars via fire test facility.

Additional civil applications include the following: applying information learned about aircraft crash-fire survivability to fire refuges for high rise dwellings; developing microanalytical chemical systems and applying chemical modeling to biochemical problems to build a morphine detector; applying knowledge of aircraft interior materials to rapid transit systems; and utilizing computer technology to map liquid natural gas spills in inland harbor areas.
Accomplishments

Synthesis of new aromatic bismaleimides having high char yields.

Use of dynamic mechanical analysis to relate the degree of cure and mechanical properties of composite resin matrix systems as a function of temperature.

Continued validation of the theory relating the char forming properties with LOI, smoke and toxicity.

Computation of quantum chemical calculations have shown previously unknown vibrational potentials of the stilbazole molecules; also energy levels of 82-atom cluster trans-polyacetylene.

Development of synthesis specifications for pilot plant production of the epoxy of bisphenol fluorene and bisaminophenyl fluorene.

A beginning of the elucidation of polystyrylpyridine pyrolysis mechanisms leading to charring and crosslinking.

The mechanical and electrical properties of a carbon fiber have been controlled to a significant degree by the proper selection of thermal and gaseous environments used in the carbonization process.

It was shown that the Tg (glass transition temperature), as determined by dynamic mechanical analysis, is a function of the degree-of-cure for a phenolic novolac resin.

It was shown that the epoxy resin of MY 720/DDS photooxidizes much faster than EPON 828/DDS.

Construction and distribution of laboratory scale thermal-impact test device to LARC, LERC, ARC (2), NWC, NSWC, AMMRC, U of M, NADC, and JPL.

Demonstration that physical properties of carbon fibers can be controlled by realistic processing variations.

Development of sub-scale test device for multi-axis loading and evaluation of composite materials.

Development of sub-scale simulator for in-flight fire testing of aircraft components (NASA/Navy, NASA-DOT).
Development of computer model for cost benefit analysis of new composite systems.

Development and verification of pool fire model for risk analysis of carbon fiber release hazard.

Discovery of uncatalyzed thermal cis-trans isomerization and new thermal cyclization processes in unsaturated polymers.

Spectroscopic characterization of microstructural changes produced in die.e polymers during thermal and photosensitized oxidation.

Photo/thermal degradation of polyimide film of the Kapton type.

Development of a new aircraft tire retread formulation with improved heat build-up and heat blow-out properties.

Characterization of plasma-etched polyimide film for solar sail.

Development of an advanced sandwich panel system for use in aircraft interiors (e.g. Boeing 757, 767).

Development of fire blocking layer concept for aircraft seats.

Identification of candidate film systems for aircraft interiors.
Polymer Research Group

The activities of this group support aerospace and nonspace programs, and its objectives are specifically established for the purpose of providing a sound technology base.

Because most aircraft fires occur during accidents when fuel sprays out of the tanks, mixes with air, and ignites, chemists in polymer research are studying antimisting polymer additives for kerosene. Kerosene treated with the polymer additive comes out of the fuel tank in globs and strings, preventing the fuel from mixing readily with air, reducing the fire hazard.

Basic studies on new elastomers in polymer research are leading to safer and more efficient aircraft tires which wear longer, have improved traction and load bearing characteristics, and are resistant to blow-outs.

To discover how polymers work, chemists use computational chemistry for the prediction of new polymers, and for development of theoretical models for the structure and properties of polymer fibers.

Work in polymer physics includes experiments with the solid state conduction properties of polymers. One aim is to determine how and why electricity is conducted in carbon fibers. A practical application of this work could be improved space power systems.

Two areas of polymer physical chemistry under investigation concern prediction of the combined thermal/oxidative effects on high performance elastomers and the underlying chemistry of the polymer aging process. In particular, chemists want to discover those processes which involve interaction of fibers and resins. Hydrolytic and humidity damage to aircraft is also under study.
Aircraft Operating Problems and Safety

This group formulates, processes and develops polymeric materials and composite systems as model and prototype specimens for chemical and engineering tests.

Polymers derived from both NASA aerospace technology and industry are used to develop films, coatings, composites, and laminates for a variety of purposes. Primarily, material systems are being developed which have greater fire resistance and thermal insulative properties as well as a significant decrease in the toxicity of the pyrolysis products.

Research on polymer composites by this group yielded a materials with the characteristics of both fracture toughness and fire resistivity. This high performance polymer composite will be used to make durable and fire resistant materials for aircraft components.

Other group research involves high temperature resistant elastomers for foams and aircraft sealants, and tests on organic metaloid polymers for heat shields.
Engineering Testing Group

Fire safety tests on prototype materials and thermal protection systems in aircraft are designed and performed by the engineering testing group. Group scientists developed a full-scale fire test facility in which prototype structures are studied under well-defined conditions. An important feature of this facility is that impact and fire situations can be simulated there.

In addition, the group conducts fire tests on aircraft secondary structures such as lavatories, cargo bays, and furnishings. Comparisons are made of the results of toxicological tests on new materials and those currently in use.

Other projects include designing fuselage panels which are more fire resistant, using analytical models to predict potential fire environments, and testing dry chemical systems for fire quenching ability.
Projects

Aircraft Interior Materials Flammability

This program is directed towards enhancing post-crash fire survivability in aircraft by the application of advanced fire-resistant cabin materials. Elements of the program include the development of (a) decorative inks, films and adhesives for aircraft interior panels, (b) fire-resistant windows, (c) seat components and seat assemblies, (d) thermoplastic components, (e) modeling and analysis of fire configuration and (f) establishment of data bank for aircraft materials.

High Performance Tires

Work is being done in this program to improve aircraft safety and efficiency through the use of advanced materials in aircraft tires. This involves the development and evaluation of new tread and/or carcass formulations which will yield commercial and military transport aircraft tires having improved wear resistance, traction, blowout resistance and load-bearing characteristics compared to state-of-the-art tires based on natural rubber (NR) and cis polybutadiene (CB). Amorphous vinyl polybutadiene (VB) was found in laboratory, track and flight tests to be a promising replacement for CB in tread stocks for Boeing 727 main landing gear tires. Since the VB rubber used to date (prepared by Ziegler-Natta polymerization) proved to be inconsistent in properties, new tread stocks are being compounded with NR and another VB (prepared by anionic polymerization) which is inherently capable of better uniformity and better properties than the Ziegler-Natta VB. Aircraft tires retreaded with the optimum NR/anionic VB formulation(s) are being evaluated in track and flight tests. Studies are being initiated on failure modes in aircraft tires and on risk assessment.

Fuel Tank Sealants

Fuel tank sealants are being developed which offer improved service life under conditions encountered in advanced supersonic aircraft when compared to state-of-the-art materials. The specific objective is to obtain pilot plant quantities of char-
acetylene and polyacetylene. In addition, computational chemistry is being applied to large atomic cluster arrays as models for polymeric macromolecules.

Military Vulnerability Suppression

This project is studying state-of-the-art adhesives for composite materials. This work is funded by Joint Technical Coordinating Group for Aircraft Survivability. It is also studying smoldering combustion and coatings for composite materials. Other research
includes: (a) modeling the dispersion of fibers released from an airborne device; (b) developing and testing lightweight thermal insulation/barrier for Navy ship structure; (c) modeling aircraft carrier deck fuel fires and experimentally verifying and upgrading the model to include wind conditions; and (d) evaluating the effects on the mechanical properties of composite materials due to thermal radiation exposure.
Publications

Contracts and Grants

31. "An Investigation of Toxic Hazards from Burning Materials in Controlled Fires," San Jose State University, NCC2-00004.
33. "Characterization and Degradation Studies on Aromaticpolyimides," San Jose State University, NCC2-0028.
34. "Heat Release Studies for Aircraft Materials," San Jose State University, NCC2-0056.
35. "New Elastomers for Improved Aircraft Tires," San Jose State University, NCC2-0057.
38. "Synthesis Characterization and Formulation of Perfluorocarbon Ether Elastomers," San Jose State University, NCC2-0081.
41. "Graphite-Epoxy Composite Protective Coatings," San Jose State University, NSG-2371.
42. "Influence of Fluid Rheology and Air Resistance on Behavior of Liquid Jets and Drops," University of California at Berkeley, NCA2-OR050001.
43. "Optimal Additives to Produce Anti-misting Fuels," University of California at Berkeley, NCA-0R050905.
44. "Study of Conductivity in Modified Graphite," University of California at Davis, NAS2-10258.
45. "Improvement in Mechanical Properties of Low Conductivity Carbon Fibers," University of California at Davis, NCC2-00020.
47. "High Deformation-Rate Extensional Rheology of Polymeric Anti-misting Additives," University of California at San Diego, NCA2-OR658001.
51. "Manufacture of OPFC-IMS Polymer in the 5kg Range and Study," University of Utah, NAS2-10064.

61. "Fire Safe Materials for Use in Aircraft Interior Panels," San Jose State University, NSG-2209.

63. "Inorganic Crystal Clathrates: Development and Modelling of a New Concept in Fire Control Involving Inorganic Micro-encapsulation and Thermally Controlled Release of Extinguishing Agents."

72. "Preparation of Thermally Stable Dry Chemicals," San Jose State University, NSG-2223.

73. "Characterization and Formulation of Fluorocarbon Ether Elastomers," San Jose State University, NSG-2186.

77. "Fabrication and Test of Experimental Automotive Friction Materials," Bendix Research Laboratories.

78. "Chemistry of Fire Extinguishing Materials Suitable for Aircraft Engine Nacelle Fire Control," San Jose State University, NCA2-OR675-618.

81. "Inhibition of Hydrogen Cyanide (HCN) Evolution by Copper from Linear Polyurthane," NSG-2059.

82. "Chemistry of Fire Extinguishment Materials Suitable for Aircraft Engine Fire Control," San Jose State University, NCA2-OR675-618.

85. "Fire Suppression and Control Systems for Aircraft Survivability," San Jose State University, NCA2-OR675-505.

86. "Fire Suppression and Control Systems for Aircraft Survivability," San Jose State University, NCA2-OR675-601.
Presentations

Patents

