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SIMULATION AND VISUALIZATION OF FACE SEAL MOTION STABILITY

BY MEANS OF COMPUTER GENERATED MOVIES
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National Aeronautics and Space Administration

Lewis Research Center
Cleveland, Ohio 44135

A computer aided design method for mechanical face seals is described.

Based on computer simulation, the actual motion of the flexibly mounted ele-

ment of the seal can be visualized. This is achieved by solving the equa-

Ln	 tions of motion of this element, calculating the displacements in its vari-
Ln

W	 ous degrees of freedom vs. time, and displaying the transient behavior in

the form of a motion picture. Incorporating such method in the design phase

allows one to detect instabilities and to correct undesirable behavior of

the seal. A theoretical background is presented. Details of the motion

display technique are described, and the usefulness of the method is demon-

strated by an example of a noncontacting conical face seal.

NOMENCLATURE

Co	equilibrium center-line clearance

D	 simulated center-line clearance

F	 dimensionless axial force

I	 dimensionless moment of inertia

K*	 support stiffness

M	 dimensionless moment

m	 dimensionless mass

m*	 ring mass

R	 simulated seal radius

r 
	 ring radius of gyration



r 	
seal mean radius

ro 	 seal outer radius

t	 dimensionless time

Z*	 axial displacement

Z	 dimensionless displacement, Z*/Co

a*	 tilt angle

Q	 normalized tilt, a
*ro/Co

s*	 coning angle

9	 normalized coning, o*ro/Co

Y *	 nutation

Y	 normalized nutation, Y*ro/C0

Y'	 simulated nutation

precession

w	 shaft angular velocity

INTRODUCTION

A mechanical face seal consists of two discs one of which is attached

to the shaft and rotates with it while the other one is stationary. Usually

one of the two discs is flexibly supported to allow self alignment and

tracking of the mating disc. In figure 1 a face seal with fixed rotor and

flexibly mounted stator is shown. The stator can move axially and tilt

about two orthogonal diameters while its circumferential rotation is pre-

vented by anti-rotation locks, it can also move radially in two perpendicu-

lar uirections. Thus, the flexibly mounted stator has 5 degrees of free-

dom. The motion of the flexibly mounter element is controlled by the forces

acting upon it as well as its mass inertia, and stiffness and damping prop-

erties of the dynamic system. This motion can be quite complex and diffi-

cult to visualize from simple, two dimensional plots of time variations in

the various degrees of freedom.
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A well designed seal is one in which the motion of the flexibly mounted

element is stable. Stable motion means steady tracking of the fixed element

by the flexibly mounted one. The optimum design is one that results in per-

feet tracking where the two discs remain parallel with a constant separation

at all times. As was mentioned above many factors affect the dynamic be-

haviour of the seal and hence the motion of the flexibly mounted element.

The :sal can be either stable or unstable depending on the compatibility of

its operating conditions and design parameters. Indeed, various sources of

seal instabilities were observed and reported in the literature, for exam-

ple, references [1-6].

Many seal failures could be avoided if the designer had an easy and

fast means by which his design could be checked. It is the objective of

this paper to describe a method, based on computer simulation, by which the

motion of the flexibly mounted element of the seal can be visualized. A

noncontacting conical face seal was selected for the purpose of demonstrat-

ing the method. Nevertheness, this method is suitable for any other con-

figuration as long as the fluid film pressure distribution and the dynamic

properties of the seal system are known. basically the computer simulation

is based on a solution of the equations of motion of the flexibly mounted

element. Accelerations, velocities and displacements in the various degrees

of freedom are calculated and the resultant transient behaviour of the seal

is displayed in the form of a motion picture. Ubse rvation of the seal

motion allows one to detect instabilities or any other undesirable be-

haviour. It further allows the oesigner to correct such undesirable situa-

tions by changing his design parameters and observing the resulting effect

on the seal's dynamic behavior.
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THEORETICAL BACKGROUND

The seal model is shown in figure 2. The seal seat is the fixed rotor

rotating at a speed w about the z axis of an inertial reference system

xyz. The seal ring is the flexibly mounted stator. It can move axially

along the z axis and tilt about the x and y axes of the inertial

reference system xyz. These motions are the three major degrees of freedom

of the seal ring. Usually the ring has two more degrees of freedom consist-

ing of radial displacements along the x and y axes. However, these are

much more restricted than the previous three major displacements and will

not be treated here. Thus, the ring displacements are Z* along the z

axis, and a* and ay about the x and y axes, respectively. The re-

sultant orientation of the seal ring in the inertial reference xyz can be

described by a rotating coordinate system 123. In this system axis 3 is

perpendicular to the plane of the stator, axis 1 remains in the xy plane,

and axis 2 passes through the point of maximum clearance. Thus, the

coordinate system 123 has a nutation y* and a precession w as shown in

figure 2. It should be noted that while the ring itself is prevented from

any circumferential rotation by the seal's anti-rotation locks, the system

123 is free to rotate with respect to the ring while the plane 12 remains

always in the plane of the ring.

An axial force F* and tilting moments M* and M* are acting upon

the stator causing its motion in the three major degrees of freedom. The

system of force and moments is contributed by the pressure in the fluid film

between stator and rotor, by the balance pressure on the back of the stator,

and by various elements of the flexible support, for example, mechanical

springs and secondary seal. Reference L6] describes in detail the system of

forces and moments for the model of a coned seal with perfectly aligned
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rotor. The motion of this coned model will be shown in the following

discussion but, as was mentioned in the introduction, any other seal model

can be treated along the same line of approach.

The general dimensionless equations of motion of the flexibly mounted

stator are

Fz = mZ (1)

Mx = Iax (2)

My - Iay (3)

Knowing the force	 Fz and moments	 Mx	and My for a given position

of the stator relative to the rotor, enables one to calculate the accelera-

tions	 Z, ax , and	 ay from equations (1) to (3). A time integration

routine can then be used to find the velocities Z, ax , ay , and the new

displacements	 Z, ax , and	 ay .	 From the new relative position between

stator and rotor a new system of force	 F z and moments	 Mx	and	 My

is found and the whole process repeats itself.

The pressure contributed by the fluid film between stator and rotor is

found by solving the Reynolds equation taking into account hydrostatic,

hydrodynamic, and squeeze film effects [6]. Cavitation in the fluid film is

also considered by summing up the hydrodynamic, squeeze, and hydrostatic

pressures at each point in the sealing area and checking the total against a

selected value of a cavitation pressure. If the total pressure at a point

is less than the cavitation value it is replaced by the selected cavitation

pressure prior to integration.

Since the actual clearance in mechanical face seals is very small (of

the order of few micrometers) the angles aX, ay and Y* are also very

small and, hence, can be treated as vector.,. From figure 3 we have

aX = Y* Cos	 (4)
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ay = Y* sin	 (5)

Hence, the dimensionless nutation Y and the precession angle ^ can be

found from equations (4) and (5) in the form

(
42 	211/2

 +x ay	 (6)

^, = tan-1 -X	17)ax

These two time dependent angles along with the axial displacement Z allow a

three dimensional representation of the stator motion. Using computerized

graphics this motion can be either watched on-line, or filmed frame by frame

at each time step to provide a computer generated movie.

SEAL MOTION DISPLAY

The rotating seal seat and the flexibly mounted seal ring are re-

presented in the movies by two circles, one abuve the other. The lower cir-

cle represents the rotating seat and the upper circle represents the ring.

The inertial coordinate system xyz with its origin at the center of the

lower circle, as shown in figure 4, is used as a reference to describe the

relative motion between the seal seat and the seal ring. The rotation of

the seat is represented by a moving symbol which is drawn on the lower cir-

cle. This symbol represents the position of a fixed point on the seat as

the seat rotates at a constant shaft speed.

Both circles are drawn with an arbitrary radius k representing the

outer radius of the seal. The origins of the two circles, designated by two

different symbols, are located on the z axis. The design clearance is

represented by an arbitrary distance 0 between the fixed origin of the

lower circle and another fixed symbol on the z axis.
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The equations for the bottom circle in the xyz coordinate system are

the equations of a circle, namely,

x=R cos 4

yaR sin ^

z=U

where 0'<' 0 < 2* and is measured from the x axis. The equations for the

upper circle, representing the seal ring, are more complex and are obtained

by transformations through the precession angle ^ and the nutation angle

Y*. The procedure is as follows:

Consider first a rotation of the xyz system of figure 2 by an angle

about the z axis. The new system designated xyi has its x and i

axes coincide with axes 1 and z, respectively, of figure 2. Any point in

the xyi coordinate system can be transformed into the xyz system by

x = x cos ^ — y sin ^	 (8)

y = x sin	 + y cos	 (9)

Z = z	 (1U)

The coordinate system zyi is now rotated by an angle Y* about the z

axis. The new system is designated x*y*z* and its axes coincide with the

coordinate system 123 of figure 2. The transformation from the coordinate

system x*y*z* into the system zyi is

x = x*	 (11)

y = y* cos Y* — z* sin Y* 	 (12)

z my* sin Y * + z* cosy*	 ( 13)
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Because the physical angle y* and the design clearance Co are

very small, D and R are chosen so that differences in the axial separa-

tion and in the angle of nutation appear in the movie to be relatively

large. Thus, making it easier to visualize the seal motion. Care must be

taken to choose R and U so that yU/R is not greater than one. Typical

values used were R = 2, D = 1.

The x, y, and z coordinates defining the upper and lower circles of

figure 4 have to be transformed to a C, n coordinate system so that the

circles can be projected onto a two dimensional frame as shown in figure 5.

The computer program uses the three spherical coordinate parameters Rp,

ep , and 0p of figure 5 to define the three dimensional perspective of

the two circles. The circles are then viewed from a point in space defined

by these three parameters where k 	 is the distance from the origin of

the xyz coordinate system to the viewer's eye. In the present movies

R  was chosen to be 15, or 7.5 times the radius of the circle. The

angles e  and 0 p were chosen to be both 450.

The displacements L is axl , and ayl corresponding to times

t i , where t i - t 1 _ 1 + at, i = 1, 2, ... n, were obtained from a solu-

tion of equations (1) to (3). The values of times and corresponding dis-

placements were stored on a tape which was later used for the plotting pro-

gram. Various values of the time step of were examined, and it was found

that fifty time steps per one shaft revolution clearly reveal the seal

motion. A varying number of points was tried to define the circumference of

each circle. It was found that 4U circumferential points connected Uy

straight lines are enough to obtain smooth circles.

t
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The movie plotting program was run on an 'SM 360 computer, and it took

10 minutes of computer time to generate 1000 frames of film which correspond

to 20 shaft revolutions. Each frame appeared on the display screen for U.09

seconds.

Three examples consisting of portions of three computer generated

movies are shown in figures 6 to 8. The frame sequence shown 4n these exam-

ples is 5 frames per one shaft revolution. The number of shaft revolutions

counted from the instance of an initial disturbance given to the upper cir-

cle is shown on the lower left corner of each frame. The three examples

correspond to the three basic modes of operation that were found in refer-

ence [6] namely, unstable, critically stable and stable modes. In all

three cases shown in figures 6 to 8 the seal radius ratio is r i /ro = U.9

and the coning is B*ro /Co = 10. All three cases have the same pressure

parameter (rm/r sp ) 2 (po - p i )ro2 /K*Co = 9U.25, but toey differ in

their speed parameter values. The speed parameter values (r g /r sp ) 2 111*W2/0,

are 32, 21.95, and 8 for the cases shown in figures 6 to 8, respectively.

Figure 9, which is taken from reference L6j shows stability maps for seals

of radius ratio r i /ro = 0.9. From this figure it is clear that the

seal of figure 6 is unstable, the seal of figure 7 is critically stable, and

the seal of figure 8 is stable. Indeed, in figure 6 a small initial dis-

turbance is developed into a catastrophic failure, and rubbing contact oc-

curs after about 2U shaft revolutions. The development of stator motion is

shown in figure 6 for the 1st, 17th, 18th, and 19th revolutions. At the

beginning the nutation angle increases very slowly Uut towards the 18th re-

volution this increase becomes quite significant and is followed by a sub-

stantial increase in the center-line clearance.
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In the example of the critically stable seal shown in figure 7, the

initial disturbance results in some angular and axial vibrations which are

damped very rapidly. After about two shaft revolutions the stator assumes a

constant nutation angle and from there on it wobbles at a constant frequEncy

of half the shaft speed. Although the two seal faces do not contact, and

hence no rubbing-caused failure occurs, the seal may still fail due to an

excessive leakage caused by the large relative tilt between its mating

faces, and the increase in the center-line clearance which are visible in

figure 7.

Figure a shows an example of a stable seal. Here a fairly large ini-

tial disturbance causes axial and angular vibrations which are damped out

very rapidly. After about two shaft revolutions the seal faces became

parallel and the designed center-line clearance is maintained.

CUNCLUUINU KEMARKS

The simulation and visualization of noncuntacting face seal motion

stability by means of computer generated movies is described. The technique

is based on solving the equations of motion of the tlexibly mounted seal

ring ano displaying the relative position of the seal ring and seal seat at

subsequent time steps. Using computer graphics a perspective view of the

seal is obtained on a display screen thus enabling observation of the seal

motion.

This simulation and visualization technique allows the designer to de-

tect instabilities or any other undesirable behaviour of the seal. Thus,

the designer can correct undesirable situations by changing the design

parameters and observing their effect on the seal dynamics. It is believed

that using such techniques c6n save time and money spent on testing, and can

result in more reliable seal designs.
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Figure 2 - Seal mod?I and coordinates systems.

Figure 1. - Schematic of a radial face seal.
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Figure 3. - Orientation of rotating
cooridinate system 123 in inertial
reference xyz.

Figure 4. - Coordinate system xyz for the upper and

lower circles.
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Figure 6. - Simulated seal motion at indicated no. of revolutions, unstable case.
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