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1.	 FOREWORD

This Solar Energy System Performance Evaluation - Seasonal Report has been

developed for the George C. Marshall Space Flight Center as a part of the

Solar Heating and Cooling Development Program funded by the Department of

Energy. The analysis contained in this document describes the technical

performance of an Operational Test Site (OTS) functioning throughout a

specified period of time which is typically one season. The objective of the

analysis is to report the long term performance of the installed system and

to make technical contributions to the definition of techniques and require-

ments for solar energy system design.

The contents of this document have been divided into the follow9ng topics

of discussion;

•	 System Description

•	 Performance Assessment

•	 Operating Energy

•	 Energy Savings

•	 Maintenance

•	 Summary and Conclusions

Data used for the seasonal analyses of the Operational Test Sitc- described

in this document have been collected, processed and maintained under the OTS

Development Program and have provided the major inputs used to perform the

long term technical assessment.

The Seasonal Report document in conjunction with the Final Report for each

Operational Test Site in the Development Program culminates the technical

activities which began with the site selection and instrumentation system

design in April 1976. The Final Report emphasizes the economic analysis

of solar systems performance and features the payback performance based on

life cycle costs for the same solar system in various geographic regions.

Other documents specifically related to this system are References [1]

through [51.*

*Numbers in brackets designate references found in Section B.
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2.	 SYSTEM DESCRIPTION

The Colt Yosemite Solar Energy System provides space heating for the visitors

center at Yosemite National Park, California, The energy collection and

storage subsystem consists of 980 square feet of liquid, flat plate collectors,

a petroleum-based solar energy transport fluid, and a 2,500-gallon water fillyd

storage tank. The collector array faces south at an angle of 50 degrees to the

horizontal, A heat exchanger in the storage tank serves to transfer the col-

lected solar energy to the water in the tank while isolating the transport fluid

from the water in the tank, The collector fluid is designed to be stable under

all temperature conditions. Solar heated water is pumped to a liquid-to-air

heat exchanger within the space heating subsystem supply duct. If solar energy

is not sufficient to meet the space heating demand, auxiliary hot water is pro-

vided from an oil-fired boiler to a second liquid-to-air heat exchanger within

the space heating subsyzl:em supply duct. The building's air circulation fan

and motor-driven dampers distribute the energy to the building. The system,

shown schematically in Figure 2-1, has four modes of operation. The sensor des-

ignations in Figure 2-1 are in accordance with NBSIR-76-1137 [6]. The measure-

ment symbol prefixes; W, T, EP, I and F represent respectively; flow rate,

temperature, electric power, insolation, and fossil fuel consumption. Figure 2-2

a pictorial of the Colt Yosemite Visitor's Center and Collector Array.

Mode 1 - Collector to Storage; This mode is initiated when the difference in

temperature between the collector outlet and a temperature representative of

the top of storage is 20°F or higher. The thermal transfer fluid is circulated

through the collectors using circulating pump Pl to thermal storage and then

recirculated to the collectors. Circulation continues in this mode until the

difference between the collector outlet and top of storage is less than 30F.

Mode 2 -_Storage to Space Heat i ng (Solar Only)_: This mode is initiated when

there is a demand for space heating and the temperature in storage is greater

than 105°F. Water from storage is circulated through a heat exchanger coil

located in the heating supply duct using pump P2 and then returned to storage.

The heating supply plenum fan transfers energy to the building. This mode

continues until either thermal storage temperature drops below `105°F or the

demand for space heating ceases.

2
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Mode 3 » Storage to Space Heating (Solar and Auxiliary): This mode is

initiated when there is a demand for space heating, the temperature in

storage is lower than 105°F, and the temperature delivered to the heat

exchanger coil is greater than 90°F. Water from storage is circulated

through the heat exchanger coil located in the heating supply duct using

pump P?, and then returned to storage. The heating supply plenum fan

transfers energy to the building. Stage two of the space heating thermo-

stat activates the auxiliary furnace to supplement solar energy to satisfy	 f

the demand for heating. Circulation continues in this mode until thermal

storage temperature drops below 90°F or the demand for space heating

ceases.

Mode 4 - Conventional Heating: When solar energy for space heating is

not available, (i.e., the storage temperature is less than 90 0 F), stage

two of the space heating thermostat activates the auxiliary furnace to

supply the required energy to satisfy the demand for heating. The

heating supply plenum fan transfers energy to the building. Circulation

continues in this mode until the demand for space heating ceases.

4
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2,1 Typical System Operation

Curves depicting typical system operation on a cool bright day (November 19,

1979) are presented in Figures. 2,1-1 (a) through 2.1-1 (e),

Figure 2.1-1 (a) shows the insolation on the collector array and the period

when the array was operating (shaded area). On this particular day col-

lector array initiation occurred at 0851 hours and operation continued

until 1448 hours when it was shut down for the day. The insolation reached

a peak value of 322 Btu/Hr-Ft 2 at 12:03 P.M.	 n

Figure 2.1-1 (b), 2.1-1 (c), and 2.1-1 (d) show typical collector array tem-

peratures during the day. During the early morning hours the collector array

outlet temperature (T151), the collector array inlet temperature (T101) and

the collector absorber plate temperature (T103) continued to decay from the

temperatures achieved during the previous day's collection. As the sun

started to rise at approximately 0747 hours T103 began to rise rapidly and

reached 110°F before the system began normal operation at 0851 hours, It

should be noted that T103 is not the control sensor that governs system opera-

tion. However, the absorber temperature (T103) is in close proximity to the

collector control sensor and as such provides an accurate indication of col„

lector plate temperatures in the vicinity of the control sensor. The actual

system controls are set up such that a differential temperature of 20"F be-

tween the collector and storage is required before collected energy can be

delivered to storage. The indicated differential temperature at array initia-

tion was approximately 28.7°F which is greater than the expected value. However,

no control system switching instabilities occurred.

During the operational period T103 generally tracked the insolation level

except when the collector turn-on transient occurred. As would be expected

absorber plate temperature reduced during the turn-on transient. The col-

lector outlet temperature (T151) rose to a maximum value of 130°F at 1053

while the collector inlet temperature maximum was 115°F which occurred at

the same time.

6
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The highest collector inlet and outlet differential temperature achieved

was 14.2°F; and, correspondingly the highest collector outlet to storage

temperature achieved was 32.1°F both vi" which occurred at 1053.

Collector array turn-off occurred at 1448 when the collector inlet to out-

let temperature reduced below 7°F. The absorber to storage differential

was 4°F. Again these temperature differentials are above the design tem-

perature differential of 3°F; however, no con"rol instabilities occurred.

These operating temperature constraints are mentioned to make the reader

aware that monitoring instrumentation and control sensors do not have

direct correlation, but monitoring instrumentation can provide sufficient

gross data to determine if each operational mode is functioning within a

reasonable range of control temperature sensor limits.

Figure 2.1-1(e) shows the temperature profile of the 2,500-gallon liquid

storage tank. During the early morning hours all space heating demands

were satisfied with supplemental auxiliary energy, All available solar

energy had been utilized to meet the space heating demand the previous day

when storage temperatures dropped below 90°F. Tne solar storage subsystem

is designed to supply all space heating energy r^ O cements down to a

storage temperature of 105°F and assist in meeting she demands down to a

storage temperature of 90°F. Actually, solar supplied all of the demands

down to a temperature of 93°F. The stability of the storage temperature

subsequent to solar energy utilization is indicative of a very well insula-

ted storage tank. After the collector array began operating at 0851, the

storage tank began to warm up and continued to do so until 1000 when solar

energy began meeting the space heating demand. Storage temperatures remained

fairly stable because most of the energy was being utilized to meet the space

heating demand. later in the afternoon as ambient temperature rose, the

storage tank temperature rose to a maximum of 102°F at collector array turn-

off which occurred at 1448. After this time, solar satisfied most of the

space demand until 1600 when storage temperatures dropped .below 90°F. Aux-

iliary energy met the space heating demand the remainder of the day.

12



2,2 System Operating Sequence

Figure 2.2-1 presents bar charts showing typical system operating sequences

for November 19, 1979. This data correlates with the curves presented in

Figures 2.1-1 (a) through (e).

The most interesting observation that can be made from Figure 2.2-1 relates

to the use of space heating auxiliary energy, The auxiliary subsystem was

enabled the previous day when storage temperatures dropped below 105°F.

At the time of solar collection initiation, storage tank temperatures were

below the threshold temperature, 90°F, necessary for solar energy space

heating utilization. Auxiliary energy met the load demands until 10:00.

After this time, all demands were met by solar energy from the solar stor-

age tank until 1600 when storage temperatures dropped below 90°F. This is

typical of this solar energy system. The solar system is capable of meet-

ing the space heating demand only a few hours after collector turn-off on

goodsolar days during the winter months. In spring and fall months when

the space heating demand is reduced, the solar energy system performs in a

more normal fashion providing solar energy on demand throughout the evening

and morning hours of the subsequent day.

13
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3.	 PERFORMANCE ASSESSMENT

The performance of the Colt Yosemite Solar Energy System has been

evaluated for the May 1979 through April 1980 time period from two

perspectives. The first was the overall system view in which the

performance values of system solar fraction and net energy savings

were evaluated against the prevailing and long term average climatic

conditions and system loads. The second view presents a more In-

depth look at the performance of the individual subsystems, Details

relating to the performance of the system are presented first in

Section 3.1 followed by the subsystem assessment in Section 3.2.

For the purposes of this solar energy system performance evaluation,

monthly performance data were regenerated to reflect refinements and

improvements in the system performance equations that were incorporated

as the analysis period progressed. These modifications resulted in

changes in the numerical values of some of the performance factors.

However, the basic trends have not been affected.

Before beginning the discussion of actual solar energy system performance

some highlights and pertinent information relating to site history are

presented in the following paragraphs.

The Colt Yosemite Solar Energy System was initially brought on line in

early September 1978. At that time all known system problems were addressed

and corrected where possible. After the system was started up, a period

of data monitoring was initiated to verify that the solar system and

monitoring instrumentation were functioning properly.

During the monitoring period September 1978 until April 1980, several solar

system operational deficiencies were present that affected overall solar

system performance. Subsequent paragraphs will describe the operational

difficulties and their effects on solar system performance.

15



I

The solar system is located in a valley of the Sierra Nevada mountains.

The location is famous for its sheer walls and mountain peaks. In

addition, large numbers of pine trees exist on the valley floor. These

obstructions cause significant solar insolation shading to occur. The

overall yearly reduction in insolation is approximately 18 percent. This

situation will directly affect system performance and result in a 7 per-

cent reduction in overall system performance (percentage reduction in

insolation times collector operational efficiency).

The collector array was replaced twice during the monitoring period because

of subsystem leakage. The original aluminum roll bond collectors were re-

placed in October 1978 with collectors of the same type. The collector array

was again replaced with copper roll bond collectors beginning in September

1979 with completion occurring in early November 1979 when air was removed

from the fluid transfer piping. The thermal transfer fluid was also changed

to a less viscous fluid which permitted higher fluid flow. Also; several

collector banks were turned off in December 1979 while the system was being

repaired. Finally, three collectors were removed permanently in December

1979 and one in March 1980. These circumstances affect the amount of solar

energy that could be collected durin g these months and hence the solar system

performance. The overall reduction in solar system performance that can be

expected because of these effects for the months October 1979 through April

1979 is approximately nineteen percent in October, five percent in December,

three percent in January through March and 4 percent thereafter.

Neat transfer fluid flow through the auxiliary heat exchanger was found to

be considerably below that expected. This necessitated changing the water

flow meters twice to obtain sufficient accuracy. Even with the reduction in

flow meter range, noise has a considerable effect on auxiliary consumption

indications during periods when fluid flow is low. The low flow causes high

differential temperatures to exist across the auxiliary heat exchanger. The

combination of noise effects, low fluid flow and high differential temperatures

16



create some uncertainty as to how accurate auxiliary consumption measurement

Is being determined. No quantitative figure of performance degradation

can be estimated for these effects.

a

The auxiliary water circulation pump failed in mid-January and was repaired

In mid-February. During this period the auxiliary flow meter indication was

incorrect anti as such did not provide an accurate measurement of auxiliary

consumption. This condition may have caused a considerable effect on solar

system performance for that period and should be duly noted when considerir?g

the performance factor indications for January 1980 and February 1980.

Beginning in late December, the auxiliary flow indication began to become

erratic. Prior to this time the auxiliary flow indication was in the order

of 4 GPM and exhibited the expected half hour cycling characteristic of this

subsystem when a substantial heating load exists. However, after December

the auxiliary flow became more continuous at a lower level flow rate. The

cause of this condition was later found to be the result of failure of the

3-way modulating valve (Figure 2-1) used to regulate flow 
to 

the auxiliary

heat exchanger. This condition still exists. The reduced fluid flow has

created a lower signal to noise ratio and as such has increased the uncer-

tainty of the auxiliary flow measurement.

Because of the solar system deficiencies throughout the monitoring period

September 1978 to April 1980, only the period May 1979 through April 1980

is considered representative of proper solar energy system performance.

However, the performance degradations indicated in previous paragraphs must

be considered when evaluating even this data. This seasonal report is based

on solar system performance during this period.

17
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p
3.1 System Performance

This Seasonal Report provides a system performance evaluation summary of the

operation of the Colt-Yosemite Solar Energy System located in Yosemite

National Park, California. This analysis was conducted by evaluation of

measured system performance against the expected performance with long term

average climatic conditions. The performance of the system is evaluated by

calculating a set of primary performance factors which are leased on those

proposed in the intergovernmental agency report, "Thermal Data Require-

ments and Performance Evaluation Procedures for the National Solar Heating

and Cooling Demonstration Program" [6]. The performance of the mayor

subsystems is also evaluated in subsequent sections of this report.

The measurement data were collected for the period September 1978 through

April 1980. However, the Seasonal Report is based on data collected be-

tween May 1979 and April 1980. This period represents the best indication
of solar system performance. Before and after this evaluation period,

the solar system was either inactive or not configured as designed. System

performance data were provided through an IBM developed Central Data

Processing System (CDPS) [7] consisting of a remote Site Data Acquisition

(SDAS), telephone data transmission lines and couplers., an IBM System 7

computer for data management, and an IBM System 370/145 computer for data

processing. The CDPS supports the collection and analysis of solar data

acquired for instrumented systems located throughout the country. These

data are processed daily and summarized into monthly performance formats

which form a common basis for comparative system evaluation. These monthly

summaries are the basis of the evaluation and data given in this report.

The solar energy system performance summarized in this section can be

viewed as the dependent response of the system to certain primary inputs.

This relationship is illustrated in Figure 3.1-1. The primary inputs are

the incident solar energy, the outdoor ambient temperature and the system

load. The dependent responses of the system are the system solar fraction

and the total energy savings. Both the input and output definitions are

as follows:
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ri

Inputs

•	 Incident solar energy	 The total solar energy incident

on the collector array and available for collection.

0	 Ambient temperature - The temperature of the external

environment which affects both the energy that can be

collected and the energy demand.

0	 System load - The loads that the system is designed to

meet, which are affected by the life style of the user

(space heating/cooling, domestic hot water, etc,, as

applicable).

Outkuts

• System solar fraction - The ratio of solar energy applied

to the system loads to total energy (solar plus auxiliary

energy) required by the loads.

0	 Total energy savings - The quantity of auxiliary energy

(electrical or fossil) displaced by solar energy.

The monthly values of the inputs and outputs for the total operational

period are shown in Table 3.1-1, the System Performance Summary. Compara-

tive long-term average values of daily incident solar energy, ' and outdoor

ambient temperature are given for reference purposes. The long-term data

are taken from Reference 1 of Appendix C. Generally the solar energy

system is designed to supply an amount of energy that results in a

desired value of system solar fraction while operating under climatic

conditions that are defined by the long-term average value of daily

incident solar energy and outdoor ambient temperature. If the actual

20
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climatic conditions are close to the long term average values, there is

little adverse impact on the system's ability to meet design goals,

This is an important factor in evaluating system performance and is

the reason the long term average values are given. The data reported

In the following paragraphs are taken from Table 3.1-1.

At the Gott-Yosemite site for the 12 month report period, the long-term

average daily incident solar energy in the plane of the collector is

estimated to be 1,622 Btu/Ft 2 when local shading is considered. The

average daily measured value was 1,473 Btu/Ft 2 which is about nine per-

cent below the longterm value. On a monthly basis, August of 1979 was

the worst month with an average daily measured value of incident solar

energy 19 percent below the long-term average daily value. May 1979

was the best month with an average daily measured value three percent
above 	 rte	 d	 v va	 r	 etcWbo.e thnU ,ong=term LAavera ge I %Age ..ail, ,.,1ue. Or, a.^ long te	 hem Nav 0 3 !t i s..

obvious that the insolation is somewhat lower than normal but the good

and bad months almost average out so that the long--term average perfor-

mance should not be adversely influenced by small differences between

measured and longterm average incident solar energy.

The outdoor ambient temperature influences the operation of the solar

energy system in two important ways. First the operating point of the

collectors and consequently the collector efficiency or energy gain is

determined by the difference in the outdoor ambient temperature and the

collector inlet temperature. This will be discussed in greater detail

in Section 3.2.1. Secondly the load is influenced by the outdoor am-

bient temperature. The long-term average daily ambient temperature for

the period from May 1979 through April 1980 was 54°B at the Colt-Yosemite

site. This compares favorably with the measured value of 550 f. Thus,

the actual heating load during the reporting period should be close to

the long-term averages.
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The system load has an important affect on the system solar fraction and

the total energy savings. If the load is small and sufficient energy is

available from the collectors, the system solar fraction can be expected

to be large. However, the total energy savings will be less than under

more nominal Load conditions, This is illustrated by comparing the per-

formance of the system during the spring and fall (May, dune, September

and October) and the winter (December, January, and February) months,

The system solar fraction was higher than expected in the summer months
and near that expected in the winter months.

Also presented in Table 3.1-1 are the measured and expected values of system

solar fraction where system solar fraction is the ratio of solar energy applied

to s ystem loads to the total energy (solar plus auxiliary) applied to the
loads. The expected values have been derived from a modified f-Chart analysis

which uses measured weather and subsystem loads as inputs (f-Chart is the

designation of a procedure that was developed by the Solar Energy Laboratory)

University of Wisconsin, Madison, for modeling and designing solar energy

systems (11]). The model used in the analysis is based on manufacturers' data

and other known system parameters. The basis for the model is a set of empir-

ical correlations developed for liquid and air solar energy systems that are

presented in graphical and equation form and referred to as the f-Charts, where

'f' is a designator for the system solar fraction. The output of the f-Chart

procedure is the expected system solar fraction. The measured value of system

solar fraction was computed from measurements, obtained through the instrumenta-

tion system, of the energy transfers that took place within the solar energy

system. These represent the actual performance of the system installed at the

site.

The measured valuz:4 of system solar fraction can generally be compared with the

expected value so long as the assumptions which are implicit in the f-Chart

procedure reasonably apply to the system being analyzed. As shown in Table

3.1-1, the measured system solar fraction of 23 percent was near the expected

value of 22 percent generated by the modified f-Chart program. The overall

performance estimate derived by the contractor [Colt, Inc.] predicted a

solar fraction of 56 percent [1]. The building heat loss (3488 Btu%hr°F)

expected for the visitor center combined with the maximum possible solar sys-

tem performance cannot approach the contractors expected performance. However,
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if the solar system had operated as designed with no performance

degradations, the performance would have achieved a solar fraction

near 28 percent. This performance would have been acceptable. Con-

sidering the substantial solar losses as contributing to the space

heating demands, the solar system performance could be further en-

hbn ced to around 36 percent.

The total energy savings is the most important performance parameter
for the solar energy system because the fundamental purpose of the

system is to replace expensive conventional energy sources with less ex-

pensive solar energy. In practical consideration, the system must
save: enough energy to cover both the cost of its own operation and to
repay the initial investment for the system. In terms of the techni-

cal analysis presented in this report the net total energy savings

should be a significant positive figure, The total computed energy
savings for the Colt-Yosemite solar energy system was 80.89 million

Stu, or 578 gallons of fuel oil, whic; was a significant amount of en-

ergy. This is further illustrated by the 23 percent solar fraction of

the measured heating demands achieved by the system. However, this

savings is based only on measured inputs of solar energy to the load
subsystems, At the Colt-Yosemite site there were a significant amount

of uncontrolled (and hence unmeasured) inputs of isolar energ y into the

building. These uncontrolled inputs of solar energy came primarily from

transport losses and tended to reduce the overall heating load, which io

turn tended to increase real savings. This situation is addressed in

more detail in the appropriate sections that follow.

i
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3.2 Subsystem Performance

The Colt-Yosemite Solar Energy Installation may be divided into three

subsystems:

1. Collector array

2. Storage

3. Space heating

Each subsystem has been evaluated by the techniques defined in Section 3

and is numer;cally analyzed each month for the monthly performance assess-

ment. This section presents the resulis of integrating the monthly data

available on the three subsystems for the period May 1979 through April

1980.

V
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3.2.1	 Collector Array Subsystem

Two different types of collectors were utilized in the Colt-Yosemite Solar

Energy System. The first Colt-Yosemite collector array consisted of forty-

two Colt A-151 series flat-plate liquid collectors all connected in parallel.

These collectors were aluminum roll Mond type with a single glazing and a

selective absorber plate coating which also incorporates a "waffle" flow

path design, The viscosity of the petroleum-based thermal energy transport

fluid (Shell 33) and variable collector inlet temperatures resulted in a

total collector array flow which varied from 13 GPM in winter to 38 GPM

in summer. The first collector array was in place between September 1978

and June 1979.

The second collector array also consists of forty-two Colt; A-151 series

flat-plate collectors all connected in parallel. However, these collectors

are copper roll bond type with a black paint absorber plate coating which

also incorporates an integral tube flow path design. The viscosity of the

petroleum-based thermal energy transport fluid (DIALA-AX oil) and variable

collector inlet temperatures result in a total collector array flow which

varies front 46 GPM in winter to 50 GPM in spring and fall months.

The collector array arrangement for both types is shown pictorially in

Figure 3.2.1-1 (a). Details of the collector array liquid flow paths

are shown in Figure 3.2.1-1 (b). The collector subsystem analysis and

data are given in the following paragraphs.

Collector array performance is described by the collector array effi-

ciency This is the ratio of collected solar energy to incident solar

energy, a value always less than unity because of collector losses.

The incident solar energy may be viewed from two perspectives. The

first assumes that all available solar energy incident on the col-

lectors must be used in determining collector array efficiency. The

efficiency is then expressed by the equation:
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RETURN

Collector Array Arangement
	 200W	 SOUTH

COLLECTOR ARRAY
	

SITE LOCATION

TILT	 — 500
	

LATITUDE — 36.77N

AZIMUTH — 20°West of Sauth
	

LONGITUDE — 119,72W

Figure 3.2.1-1(b) Collector Details
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nc	 Qs/Qi	 (1)

where	 nc	 Collector array efficiency

Qs	 Collected solar energy

Q i	 Incident solar energy

The efficiency determined in this manner `includes the operation of the

control system. For example, solar energy can be available at the col-

lector, but the collector absorber plate temperature may be below the

minimum control temperature set point for collector loop operation, thus

the energy is not collected. The monthly efficiency by this method is

listed in the column entitled "Collector Array Efficiency" in Table

3.2.1-1.

The second viewpoint assumes that only the solar energy incident on the

collector when the collector loop is operational be used in determining

the collector array efficiency. The value of the operational incident

solar energy used is multiplied by the ration of the gross collector area

to the gross collector array area to compensate for the difference between

the two areas caused by installation spacing. The efficiency is then ex-

pressed by the equation:

nco

where	
nco

Qs

Qoi

A 

Qs/(Qoi x Ap/Aa)
	

(2)

Operational collector array efficiency

Collected solar energy

Operational incident solar energy

Gross collector area (the product of

the number of collectors and the

envelope area of one collector)
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A a	-	 Gross collector array area (total area
including all mounting and connecting
hardware and spacing of units)

The monthly efficiency computed by this method is listed in the column

entitled "Operational Collector Array Efficiency" in Table 3.2.1-1.

In the ASHRAE Standard 93-77 [8] a collector efficiency is defined in

the same terminology as the operational collector array efficiency.

However, the ASHRAE efficiency is determined from instantaneous evalua-
tion under tightly controlled, steady state test conditions, while the

operational collector array efficiency is determined from actual dynamic

conditions of daily solar energy system operation in the field.

The ASHRAE Standard 93-77 definitions and methods often are adopted by

collector manufacturers and independent testing laboratories in evalua-

ting collectors. The collector evaluation performed for this report

using the field data indicates that there was a significant difference

between the laboratory single panel collector data and the collector

data determined from long-term field measurements. This may or may not

always be the case, and there are two primary reasons for differences

when they exist:

•	 Test conditions are not the same as conditions

in the field, nor do they represent the wide

dynamic range of field operation (i.e., inlet and

outlet temperature, flow rates and flow distribu-

tion of the heat transfer fluid, insolation levels,

aspect angle, wind conditions, etc.).

•	 Collector tests are not generally conducted with

units that have undergone the effects of aging

(i.e. changes in the characteristics of the glazing

30



cnl

_

Lij

_-	 LLJ

co

LLJ

vv
,

rn

^

o

_

^0
u

31



material, collection of dust, soot, pollen or other

foreign material on the glazing, deterioration of the

absorber plate surface treatment, etc.)

Consequently field data collected over an extended period will generally

provide an improved source of collector performance characteristics for

use in long—term system performance definition.

The long-term data base for Colt-Yosemite includes the months from

September 1978 through April 1980. Although the solar energy system was

in operation for most of the period, the solar system operated as design-

ed only between February 1979 and April 1980. Data system problems and

a change of collectors prevent analyzing collector performance over an

entire heating season. Thus, the intervals between February 1979 and

May 1979 and February 1980 and May 1980 were chosen as the collector

evaluation periods. All collector operating conditions were stable

during these periods and no data problems existed.

The operational collector array efficiency data given in Table 3.2.1-1

are monthly averages based on instantaneous efficiency computations over

the seasonal report performance period using all available data. For de-

tailed collector analysis it was desirable to use a limited subset of the

available data that characterized collector operation under "steady state"

conditions. This subset was defined by applying the following restrictions:

(1) The measurement period was restricted to collector opera-

tion when the sun angle was within 30 degrees of the col-

lector normal.

(2) Only measurements associated with positive energy gain

from the collectors were used, i.e., outlet temperatures

must have exceeded inlet temperatures.
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(3) The sets of measured parameters were restricted to

those where the rate of change of all parameters of

interest during two regular data system intervals*

was limited to a maximum of 5 percent,

Instantaneous efficiencies (n i ) computed from the "steady state"

operation measurements of incident solar energy and collected solar

energy by Equation (2)** were correlated with an operating point

determined by the equation:

	

x J	
^	

Ti - Ta	

(3) I

where	 xj	 Collector operating point at the jth

instant

	

T i	Collector inlet temperature

	

T	 =
a	

Outdoor ambient temperature

	

I	 -	 Rate of incident solar radiation

The data points (n j , xj ) were then plotted on a graph of efficiency

versus operating point and a first order curve described by the slope-

intercept formula was fitted to the data through linear regression

techniques. The form of this fitted efficiency curve is:

*The aata system interval was 5-1/3 minutes in duration. Values of
all measured parameters were continuously sampled at this rate
throughout the performance period.

**The ratio A p/Aa is assumed to be unity for this analysis.
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nj	 .. b - mxj	(4)

where	 na Collector efficiency corresponding to the

ith instant

b Intercept on the efficiency axis

H m slope

Xi Collector operating point at jth

instant

The relationship between the empirically determined efficiency curve

and the analytically developed curve will	 be established in subsequent

paragraphs.

The analytically developed collector efficiency curve is based on

the Hottell-W,hillier-Bliss equation

Ti- T
n FR(T«)	 - F RU b	 (	 —^---^-- a-	 (5)

where	 n Collector efficiency

FR
Collector heat removal factor

T	 - Transmissivity of collector glazing

«	 _ Absorptance of collector plate

U
L

Overall	 collector energy loss coefficient

T i	 = Collector inlet fluid temperature

Ta	 - Outdoor ambient temperature

I	 = Rate of incident solar radiation
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The correspondence between equations (4) and (5) can be readily seen.

Therefore by determining the slope-intercept efficiency equation from

measurement data, the collector performance parameters corresponding to

the laboratory single panel data can be derived according to the follow-

ing set of relationships:

b	 -	 FR('Ca)

and	 (6)k

m	 -	
FR UL

where the terms are as previously defined

The discussion of the collector array efficiency curves 'in subsequent

paragraphs is based upon the relationships expressed in Equation (6).

However, the single panel curve is not representative of the collector

array performance expected of this system. The collector/storage loop

contains a heat exchanger in the storage tank. The heat exchanger riod-

ifies the collector performance [4, 51. A heat exchanger modifier (pen-

alty factor) F R '/FR (fraction of F RUb ) was determined by MSFC from lab-

oratory test results and/or from contractor information. F R '/FR is a

function of the heat exchanger effectiveness, collector/storage loop capac-

itance rates and collector array area. Proper sizing of these parameters

should result in a F R '/FR value greater than 0.90 9 or a maximum 10 percent

energy penalty over the no heat exchanger systems. The F R '/FR penalty fac-

tor for Colt Yosemite was determined to be 0.874. The FR(Ta) and FRUE

terms are modified appropriately to account for this circumstance.

In deriving the collector array efficiency curves by the linear regression

technique, measurement data over the entire performance period yields

higher confidence in the results than similar analysis over shorter periods.

Over the longer periods the collector array is forced to operate over a

wider dynamic range. This eliminates the tendency shown by some types of

solar energy systems* to cluster efficiency values over a narrow range of

* Single tank hot water systems show a marked tendency toward clustering
because the collector inlet temperature remains relatively constant and
the range of values of ambient te:-Iperature and incident solar energy
during collector operation are also relatively restricted on a short-
term basis.

r 

I
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operating points. The clustering effect tends to make the linear

regression technique approach constructing a line through a single

data point. The use of data from the entire performance period re-

sults in a collector array efficiency curve that is more accurate in

long-term solar system performance prediction. The long-term curve for

the aluminum collectors, the curve derived from the laboratory single

panel data, and the modified laboratory panel curve are shown in Figure

3.2.1-2 (u). The long--term first order curve shown in Figure 3.2.1 -2 (a)

has a slightly greater negative slope than the curve derived from single

panel laboratory test data. This is attributable to higher losses re-

sulting from array effects. The laboratory predicted instantaneous effi-
ciency is not in close agreement with the curve derived from actual field

operation. This indicates that the laboratory derived curve might not be

useful for design purposes in an array configuration of this type. However,

the modified laboratory performance curve, which accounts for the heat

exchanger in the collector loop, is in good agreement with the actual

measured performance of the collector array. Therefore, the modified

collector performance curve would be useful for design purposes when

a heat exchanger is employed.

For information purposes the data associated with Figure 3.2.1-2 (a) is as

follows:

Single panel laboratory data

FR (Ta) = 0.757	 FRUL = -1.177

Modified performance estimate

FR (Ta) = 0.662	 FRUL = -1.029

Long-term field data

FR (Ta) = 0.720	 FRUL = -1.224
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The long-term curve for tile copper collectors, the curve derived from

the laboratory single panel data, and the modified laboratory single

panel curve are shown in Figure 3.2.1-2 (b). Again, the laboratory

predicted instantaneous efficiency is not in close agreement with the

curve derived from actual field operation. As can be seen, the instant-

aneous performance of both collector types are similar with the overall

performance of the copper collector array being slightly superior to
the aluminum collector array.

For informational purposes the data associated with figure 3.2.1 .2 (b)

is as follows:

Single Panel Laboratory Data:

F (Ta) = 0.765	 FoU = -1.269
R 	L

Modified Performance Estimate

FR (Ta) = 0.662	 F 
R 
U L = 1.109

Long Term Field Data

FR (Ta) = 0.782	 FRUL = 1,412

Table 3.2,1 .2 presents data comparing the monthly measured values of

solar energy collected with the predicted performance determined from

the long-term regression curve and the laboratory single panel effi-

ciency curve for both the aluminum and copper collector arrays. The

predictions were derived by the following procedure;
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 ope rating points were computed1.	 The instan taneous ^ ► 	 ^ E	 p
using Equation (3).

2.	 The instantaneous efficiency was computed using

Equation ( 4) with the operating point computed in

Step 1 above for:

a. The long-term linear regression curve

for collector array efficiency

b. The laboratory single panel collector

efficiency curve

3.	 The efficiencies computed in Steps 2a and 2b

above were multiplied by the measured solar

energy available when the collectors were

operational to give two predicted values of

solar energy collected.

The error data in Table 3.2.1-2 were computed from the differences

between the measured and predicted values of solar energy collected

according to the equation:

Error	 -	 (A-P)/P
	

(7)

where	 A	 Measured solar energy collected

P	 -	 Predicted solar energy collected

The computed error is then an indication of how well the particular

prediction curve fitted the reality of dynamic operating conditions

in the field.

40



C)

LL-

LLJ

LU
V)
O

Z:
C)

N

Ld

co

Lij

LIJ

LU
L/I
C)

-i
C)
u

LO

(u
>) a

0) ko In (Y) C) LO m Ilm w C)
M 01) C) r-" rl-. r- W LO P-.

S. r 9 9 C) C) C) C) C)
CY) r7 7 0 0

C) C) C:) C) C) C:/ C) C) C) C)

sr

cu

00 C\j LO t-, LO n LO
(1)	 KU C\j r— r- LO -ct -cl, CD r- C*,J C)

m C) C) C) C) CD C^ CD C)

i7 CSt C1 C^ Q C; O C7 CJ c; C; C^
o

>1

(L) 4;.t 00 -::k C:) 0) N -t w m C)
W a 9= r^ 00 LO LO (Y) (Y) C) m ko C)
4--) LU 0 . . .

t-0 (Y) rl r N C7 M of

0 0

CF) m cn 0) 0) C) C) C) C) IM
J_- F-1 rl_ P- 00 00 w 00 fli

LL
(d ow 10 > w

LL
It CL 0 >

LL

r

41



The values of "Collected Solar Energy" given in Table 3.2.1-2 are not

necessarily identical with the values of "Collected Solar Energy"

given in Table 3.2.1-1. Any variations are due to the differences in

data processing between the software programs used to generate the

monthly performance assessment data and the component level collector

analysis program. These data are shown in Table 3.2.1-2 only because

they form the references from which the error data given in the table

are computed.

The data from Table 3.2.1-2 illustrates that for the Colt-Yosemite site

the average error computed from the difference between the measured

solar energy collected and the predicted solar energy collected based

on the field derived long-term collector array efficiency curve was

-0.5 (4.5 percent for the aluminum collector array) percent for the

copper collector array. For, the curve derived from the laboratory single

panel data, the error was -7 percent for both collector array types.

Thus the long-term collector array efficiency curves give better results

than the laboratory single panel curves. The long-term collector array

efficiency curves are in closer agreement with the modified laboratory

curves.

A histogram of collector array operating points illustrates the distri-

bution of instantaneous values as determined by Equation (3) for the

entire month. The histogram was constructed by computing the instan-

taneous operating point value from site instrumentation measurements

at the regular data system intervals throughout the month, and counting

the number of values within contiguous intervals of width 0.01 from zero

to unity. The operating point histogram shows the dynamic range of col-

lector operation during the month from which the midpoint can be ascer-

tained. The average collector array efficiency for the month can then be

derived by projecting the midpoint value to the appropriate efficiency

curve and reading the corresponding value of efficiency.
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4other characteristic of the operating point histogram is the shifting

of the distribution along the operating point axis. This can be explain-

ed in terms of the characteristics of the system and the climatic factors

of the site, i.e., incident solar energy and ambient temperature. Figure

3,2.1-3 shows two histograms that illustrate a typical winter month

(March) and a typical summer month (June) operation of the aluminum col-

lector array. The approximate average operating point for March is at

0.27 and for June at 0.47. This movement of the operating point is typ-

ical of the system. However, the operating point during winter months

is essentially the same as the March operating point.

Also shown in Figure 3.2.1-3 on the March operating point histogram is the

monthly collector array efficiency of 0.40 for March (Table 3,2,1-1) and

the March field derived collector array efficiency curve. The intersection

of the average operating point for March and the March performance curve

implied a monthly efficiency of 0.40, The exact agreement between the field

derived collector array efficiency and the actual March monthly collector

performance indicates that the field derived performance data could be used

for design purposes,

Additional information concerning collector array analysis in general may

be found in Reference [10]. The material in the reference describes the

detailed collector array analysis procedures and presents the results of

analyses performed on numerous collector array installations across the

United States.
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3.2.2	 Storage Subsystem

Storage subsystem performance is described by comparison of energy to

storage, energy from storage and change in stored energy. The ratio'of

the sum of energy from storage and change in stored energy to energy to

storage is defined as storage efficiency, n s . This relationship is ex-

pressed in the equation

n s	 (A + Qso)/Qsi
	

(8)

where:

oQ	 =	 Change in stored energy. This is the difference in

the estimated stored energy during the specified

reporting period, as indicated by the relative

temperature of the storage medium (either positive

or negative value)

Qso	
Energy from storage. This is the amount of energy

extracted by the load subsystem front the primary

storage medium

Qsi	
Energy to storage. This is the amount of energy

(both solar and auxiliary) delivered to the primary

storage medium
.

Evaluation of the system storage performance under actual system opera-

tion and weather conditions can be performed using the parameters defined

above. The utility of these measured data in evaluation of the overall

storage design can be illustrated in the following discussion.
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Table 3,2,21 summarizes the storage subsystem performance during the report

period,

During the ten month period (July and August not included), a total

of 83,51 million Btu was delivered to the storage tanks and a total

of 63.84 million Btu was removed for support of system loads. The net

change in stored energy during this same time period was -0.55 million

Btu, which leads to a storage efficiency of 0.77 and a total energy

loss from storage of 19.12 million Btu.

The computed storage efficiency of 0.77 is relatively high as compared to

most solar energy systems. However, the average storage temperature during

the period that efficiency was computed was only 100°F, so the high value of

efficiency is not unrealistic. This is true because the potential for heat

transfer becomes smaller as the differential temperature between the internal

fluid and the external environment becomes smaller. However, this is not

meant to detract in any way from the fact that the storage subsystem performed

well during the reporting period. The system is well insulated and the effec-

tive heat transfer coefficient averaged only 72.55 Btu/Hr-°F during the

period.
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I

An effective storage heat transfer coefficient for the storage sub-

system can be defined as follows,

C	 -	 (QS.i"QSO-AQ)/[(I"	 Btts • T ^ x Q uaF--	 (9)

where

C	 -	 Effective storage heat transfer coefficient

Qsi °	
Energy to storage

Q
SO 

M	 Energy from storage

AQ	 Change in stored energy

Ts -	 Storage average temperature

Ta	 Average ambient tempeature in the

vicinity of storage

t	 -	 dumber of hours in the month

The effective storage heat transfer coefficient is comparable to the heat

loss rate defined in ASHRAE Standard 94-77 C91. It has been calculated for

each month in this report period and included, along with an assumed build-

ing average temperature, in Table 3.2.2-1.

Examination of the values for the effective storage heat transfer coefficient

shows that the variation is quite significant. The liquid storage tank heat

loss is highest during the coldest winter months and lowest during the spring

and fall. Overall, the heat loss coefficient is quite low which is indicative

of a properly performing liquid storage system.

4.8



The major source of liquid storage subsystem loss is the thermal energy

transport system. For example, the thermal energy transport losses in

February 1980 were 1.74 million Btu and the steady state thermal losses
out of the liquid storage tank were 0,46 million Btu for a total indicated
loss of 2.22 million Btu.

0
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3,2,3	 Space Heating Subsystem

The performance of the space heating subsystem is described by comparing

the amount of solar energy supplied to the subsystem with the energy

required to satisfy the total space heating load. The energy required

to satisfy the total load consists of both solar energy and auxiliary

thermal energy. The ratio of solar energy supplied to the load to the

total load is defined as the heating solar fraction. The calculated

heating solar fraction is the indicator of performance of the subsystem

because it defines the percentage of the total space heating load sup-

ported by solar energy.

The performance of the Colt-Yosemite space heating subsystem is presented

in Table 3,2,4-1. For the 12 month period from May 1979 through April

1980, the solar energy system supplied a total of 63.84 million Btu to

th° space heating load. The total 'heating load for this period was 277.23

million Btu, and the average monthly solar fraction was twenty-three per-

cent. The contractor estimated that the solar system would provide

enough solar energy to satisfy 56 percent of the heating demand. The

actual results indicate that this cannot be achieved. If the solar sys-

tem had operated optimally, a 28 percent solar fraction could be achieved

and if losses which contribute to satisfying the space heating load are

considered the greatest solar fraction would be on the order of 36 percent.

It must be emphasized that all values presented in this section relating

to the performance of the space heating subsystem are based on measured

parameters. In other words the space heating load, solar contribution

and auxiliary thermal energy used are all determined based on the mea-

sured output of the space heating subsystem. These measured values do

not include any of the various solar energy losses that are present in

the system. However, solar energy losses are generally added to the in-

terior of the building and, as such, represent an uncontrolled (unmeasured)

contribution to the space heating load. At the Colt-Yosemite site these

solar energy losses occur during energy transport between the various

50



w
u

c^
u..

r~ ^
i w
M m

N
IiiM 1--
N

uj
J ^

H N

CD

H
d
w
x

c .
^

a
`1r

Sr J	 •1- 0)

t/i r u S. M 0 Q 0 0 'sr w N N r » r N
w r»» r r-

Ceti Ni f^» Wes.

w w crr m 0 0 C) Cl ct C] 00 U) M to w

X N Lo w M Kn M 0 LO LO rn
,-- w u) Kr Kr r~ u-i LC) N

a
W co

o s>', ru
•r (d	 (U

>1 r--• r E r-- W-r M O ro. C) w O r-- CO
q) ►-- S. cr C) p G7 C7 N Lo co r m m N St r

a1 X .i= r-- Cn Cn w C7 w N (1; m h.
`c^.•t- m m N N er m ^-

S~
C M C%J C M

V) co m r-^ ua 0) 00 to r. w h M i.[)
w

5-
00

Cil w N O C1 w
t

c^

4-) .4n w r^ Imo. r. Ct Zr d v4r LO U)
cL
S-

w 41

a a. Cn
E-: E :~

ro 1;4- 00 rn -cr ci i.n •4zt* m c:r Ln M o C)

m

+r

(tY
N

O +Cr N lL C7 m h co I r`•. m M O
(CS •r ':' U) w w C5 co m d P, rr N r0r . O Q
r o; M r Ln of cT w M r. O r: M
r r d m M M et rr 1-1 N

N

01 CTl M (3) a) 0) 0) 0) O (D O (D
.a r. r. n i^ r. ^ ^ W Co 00 00 (d

rRS
S

a >) C r— t71 o- +J > U C X1 Sr S.. d-) a)
o ft :3 :3 ai u 0 a (o cu ns 0- o >

r7 ra -C N Q = o rD LL GL ♦ - <

51



I
l

subsystems and, to a lesser extent, from the storage tank. These sub-

systems are located interior to the heated space, Thus, direct uncon-

trolled energy contribution can occur. The magnitude of the energy

losses for the seasonal report period were 34,24 million Btu (collected

energy measured - energy delivered to space heating). The solar energy

contribution would then be 94.08 million Btu 	 the solar fraction of

the space heating load 34 percent.

Figure 3.2.3 . 1 illustrates the measured building heat loss coefficient (UA),

determined by ratioing the actual measured monthly space heating load to

modified monthly degree-days multiplied by 24 [Modified degree days

actual degree days - (70 .. building temperature) times the number of days

in the month] The UA is highest in the fall months and reduces to a

minimum value of 2512 Btu/Hr°F in January 1980. The indicated UA for

this heating season averaged 3157 Btu/Hr-°F. The largest monthly dis"

crepancy between the UA computed from this season and the past season

was in September. Variation of the infiltration rates could very well

account for this discrepancy.

A comparison of the measured building heat transfer coefficient, UA, and

the predictions of the UA are shown in Figure 3.2.3-1. The system design

load, which was utilized to size the solar energy system, was estimated

to be 157,000 Btu/Hr. The estimated building UA can be obtained by using

the local design temperature of 20°F. The UA estimated in this manner was

3488 Btu/HrO F [ 157,000 Btu Hr	 which is very close to the UA determined

5-20)"F
from actual heating loads.

The design load estimation was accurate because actual building construc-

tion utilized poured concrete walls and typical auditorium roof construc-

tion which provides little insulation properties. Thus, the agreement

between the actual and predicted UA's was expected. The difference between

the building computed UA and measured UA is due to the contribution of sign-

ficant solar energy system losses and to variations in infiltration

rates.

52



a
ae
IL
4

Q

ca
W
U.

N
z
Q! z0

2
Qz

U QW Wo x

aO
z

U
0

41
G
G1

•T-
U
•r

V-
Cl
O
L.

M
0
J

b
a
x
rn
c
'vr
co

r
M

N

aL

^r
U-

W
H

W

}

0U
Wt-
y

W
CL

Cz
z^

0

(JoWnis) en

F1	w.

53



4,	 OPERATING ENERGY

Operating energy for the Colt-Yosemite Solar Energy System is defined as

the energy required to transport solar energy to the point of use. Total

operating energy for this system consists of energy collection and storage

subsystem operating energy and space heating subsystem operating energy.

Operating energy is electrical energy that is used to support the sub-

systems without affecting their thermal state. Measured monthly values

for subsystem operating energy are presented in Table 4-1.

Total system operating energy for the Colt-Yosemite solar energy system is

that electrical energy required uo operate the pumps in the energy trans-

port subsystem and the space circulating fan when solar energy is being

utilized. These are shown as EP10O, EP400, and EP600 respectively, in

Figure 2-1. Although additional electric a l energy is required to operate

the valves in the energy transport subsystem and the control system for

the installation, it is not included in this report. These devices are

not monitored for power consumption and the power they consume is incon-

sequential when compared to the pump motor and fan motor powers.

During the 12 month reporting period, a total of 13.38 million Btu (3920

kWh) of operating energy was consumed. However, this includes the energy

required to operate the blower in the auxiliary furnace, and that energy

Would be required whether or not the solar energy system was being utilized

i,l r space heating. Therefore, the energy consumed by the auxiliary furnace

blower, is not considered to be solar peculiar operating energy, even though

It is included as part of the space heating subsystem operating energy.
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A total of 8.71 million Btu (2552 kWh) of operating energy was required to

support the pumps that are unique to the solar energy system during the

reporting period. Of this total, 5.66 million Btu were allocated to the

Energy Collection and Storage Subsystem (ECSS) and 3.05 million Btu were

allocated to the solar portion of the Space Heating Subsystem. A total of

4.67 million Btu was allocated to the space heating circulating fan when

the solar energy was being consumed. However, these additional energies

are included in the total system operating energy. Since a measured

63.84 million Btu of solar energy was delivered to system loads during

the reporting period, a total of 0.14 million Btu (40 kWh) of operating

energy was required for each one million Btu of solar energy delivered

to the system loads. The total space heating circulating fan energy for

the seasonal period was 4.67 million Btu (1369 kWh).
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5.	 ENERGY SAVINGS
	

i

Solar energy system savings are realized whenever energy provided by the

solar energy system is used to meet system demands which would otherwise

be met by auxiliary energy sources. The operating energy required to

provide solar energy to the load subsystems is subtracted from the solar

onergy contribution, and the resulting energy savings are adjusted to re-

flect the coefficient of performance (COP) of the auxiliary source being

supplanted by solar energy..

The Colt-Yosemite auxiliary energy system has a fuel oil boiler located

in the main heating plant associated with the Yosemite National Park.

rneryy from this boiler is transmitted to a heat exchanger located in

the auditorium supply ducting. The circulating fan then distributes

this energy to the building. For computational purposes the fuel oil

furnace is'considered to be 60 percent efficient. Energy savings for

the 12 month reporting period are presented in Table 5-1. Fossil fuel

savings for the reporting period totaled 109.92 million Btu, or 785

gallons of fuel oil (based on a heating value of 140,000 Btu per gallon).

The total savings in fossil equivalent at the source of energy generation

was 80.89 million Btu, or 578 gallons of fuel oil. The reduction in

fossil savings is due to the cost of operating the solar system. If the

losses of 30.24 million Btu are considered as meeting the space heating

demand, the overall fossil fuel savings rises to 111.13 million Btu, or

794 gallons of fuel oil.
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6.	 MAINTENANCE

A considerable amount of maintenance was required at the Colt-Yosemite

site since activation.

The solar energy collectors were replaced during October due to extensive

leakage and the flow meters were returned for recalibration.

Power station dropouts (voltage below 85 VAC) occurred intermittently

during October and November 1979. These dropouts ceased to exist after

these months.

in December and January, collector loop pump cavitation resulted in little,

if any, solar energy usage during those months. The situation was repaired

in late January.

The solar energy space heating flow sensor was reinstalled on December 12,

1978.

The auxiliary flow meter W401 was reinstalled on February 8, 1979. However,

after a brief observation period it was determined that the flow meter range

was again insufficient and it was returned for recalibration on 3/22/79. The

sensor was again installed on May 9, 1979 and a wiring error corrected later

in the month.

Pollen deposited on the collectors during the spring was so extensive that

insolation was reduced 15 percent. Attempts to clean the collectors were

to no avail. The collectors were leaking so badly that a decision was made

to replace the entire array in the later part of the summer of 1979.

The insolation pyranometer was raised 8 ft. vertically in an attempt to

prevent local pine trees from shading the instrument. The shading effect

I

	 was reduced but not entirely eliminated.
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Between September and early November, the new c6 lector array was in-

stalled and the collector transport fluid chao ged to Diala -Ax oil.

The ar'r'ay was operational November 5, 1979.

An evaluation of the auxiliary heat exchanger operation on site was per-

formed and instrumentation associated with this subsystem verified as

being correct. The system is being operated at below normal flow which

also creates large temperature differentials. This type of operation

is detrimental to operation of this subsystem and alo provides difficulty

in accurately measuring auxiliary consumption.

Several banks of collectors were removed (11 collectors) for three weeks

in December to facilitate repairs to the system. This caused a performance

reduction during the month.

In late December, the auxiliary flow changed characteristics from a normal

cyclical nature to a low level continuous output. The cause for the change

was due to sticking of the 3-way valve associated with the subsystem. This

condition made it difficult to measure auxiliary consumption accurately

because of the low signal to noise ratio that existed in the output of the

water flow meter W401.

An auxiliary pump failure prevented normal operation of the solar system

during January 1980.

Three collectors were permanently removed on December 22, 1919 and another

on March 9, 1979 due to excessive leakage.

An overpressure condition in the solar system transport piping has caused

extensive damage to the solar system. Extensive repairs are being

made to the system.
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7,	 SUMMARY AND CONCLUSIONS

Yosemite National Park is located in the lofty :sierra Nevada mountains.

The most popular area in the park is the 7-square mile Yosemite Valley,

famous for its sheer walls, waterfalls, towering domes and mountain

peaks high above the valley floor. The Yosemite visitors center i

located in this valley. Several large pine trees are located near the

visitor's center which provide natural beauty but also shade the building.

The combination of pine trees and cliffs cause significant solar system

performance penalties which prevented the system from performing up to

expectations. The system was expected to provide 56 percent of the space

heating demand of the auditorium associated with the visitor's center.

During the 12 month reporting period, the measured daily average incident

insolation in the plane of the collector array was 1,473 Btu/Ft 2 . This

was nine percent below the long-term daily average of 1,622 Stu/Ft 2 after

considering known shading effects. The measured insolation appears to

be an accurate representation of the long-term average for the valley.

Both the long-term averages for ambient temperature and insolation are

derived from an average of data taken from Davis and in Inyokern, California.

During the period from May, 1979, through April, 1980, the measured average

outdoor ambient temperature was 55°F. This was one degree above the long

term average of 54°F for the same period. As a result, 4,381 heating degree-

days were accumulated, as compared to the long-term average of 4,507 heating

degree-days.

The solar energy system satisfied 23 percent of the total measured load

during the 12 month reporting period. This was significantly below

the design value of 56 percent estimated by Colt, Inc. C1]. The reduc-

tion in overall system solar fraction was due primarily to the large

building heat loss associated with the visitor's center and to the

measured performance of the space heating subsystem. The space
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heating solar fraction for the reporting period was 23 percent. However,

the computations do not account for uncontrolled losses of solar energy

into the building that result primarily from transport piping losses. As
discussed in Section 3.2.3 1 these losses are substantial and provide a con-

siderable contribution to the measured space heating load. However, even'
if all the losses were considered to have contributed to the space heating

load the solar fraction achievable would be 34 percent.

A total of 514.77 million Btu of incident solar energy was measured in the
plane of the collector array during the reporting period. The system col-

lected 94.08 million Btu of the available energy, which represents a col-

lector array efficiency of 23 percent. purrng periods when the collector

array was active, a total of 257.00 million Btu was measured in the plane of

the collector array. Therefore, the operational collector efficiency was

37 percent, Taking into account the heat exchanger penalty factor, the

collector array performance was close to that expected.

During the reporting period, a total of 63.84 million Btu of solar energy

was delivered to the storage tanks. All of this (63.84 million Btu) went

to the space heating subsystem. The effective storage tank loss coeffi-

cient was 72.55 Btu/Hr-°F, which is low and indicates a well insulated

storage subsystem. The average temperature of storage was 100°F for the

period.

A total of 13.38 million Btu, or 3920 kWh, of electrical operating energy

was required to support the solar energy system during the 12 month re-

porting period. This includes the electrical energy required to operate

the circulating fan in the auxiliary furnace. This fan would be required

for operation of the space heating subsystem regardless of the presence of

the solar energy system. The circulating fan energy is 4.67 million Btu.
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Fossil energy savings for the 12 month reporting period were 109.92 million

Btu. The solar electrical operating energy was 8.71 million Btu, or 2552

kWh. If a 30 percent efficiency is assumed for power generation and dis-

tribution, then the net electrical energy translate into a cost of 29.02

million Btu in generating station fuel requirements. Thus, the overall

equivalent fossil savings at the source of energy generation was 80,89

million Btu or 578 gallons of fuel oil assuming a conversion factor of

140,000 Btu/gallon. It should also be noted that the fossil energy sav-

ings are based only on the measured amount of solar energy delivered to

the space heating subsystem. As discussed in Section 3.2.4, the fossil

energy savings will increase considerably if the uncontrolled solar en-

ergy input to the building is considered,

In general, the performance of the Colt-Yosemite Solar Energy System per-

formed below normal during the reporting time period. The substantial

maintenance necessary to maintain the system with resultant down time com-

bined with below normal insolation is the cause of the performance reduc-

tion. However, it must be again stressed that the measured heating sub-

system performance does not include the uncontrolled addition of solar

energy to the building. If the uncontrolled losses could have been re-

duced to an inconsequential level, then both the measured system perform-

ance and the accuracy of the system analysis would have improved considerably.

I
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APPENDIX A

DEFINITION OF PERFORMANCE FACTORS AND SOLAR TERMS

COLLECTOR ARRAY PERFORMANCE

The collector array performance is characterized by the amount of solar energy

collected with respect to the energy available to be collected.

•	 INCIDENT SOLAR ENERGY (SEA) is the total insolation available on the

gross collector array area. This is the area of the collector

array energy-receiving aperturp , including the framework which is

an integral part of the collector structure.

OPERATIONAL INCIDENT ENERGY (SEOP) is the amount incident solar

energy on the collector array durin g the time that the col-

lector loop is active (attempting to collect energy).

•	 COLLECTED SOLAR ENERGY (SECA) is the thermal energy removed from

the collector array by the energy transport medium.

•	 COLLECTOR ARRAY EFFICIENCY (GAREF) is the ratio of the energy col-

lected to the total solar energy incident on the collector array.

It should be emphasized that this efficiency factor is for the

collector array, and available energy includes the incident energy

on the array when the collector loop is inactive. This efficiency

must not be confused with the more common collector efficiency

figures which are determined from instantaneous test data obtained

daring steady state operation of a single collector unit. These

efficiency figures are often provided by collector manufacturers

or presented in technical journals to characterize the functional

capability of a particular collector design. In general, the

collector panel maximum efficiency factor will be significantly

higher, than the collector arr;:y efficiency reported here.
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STORAGE PERFORMANCE

The storage performance is characterized by the relationships among the energy

delivered to storage, removed from storage, and the subsequent change in the

amount of stored energy.

•	 ENERGY TO STORAGE (STEI) is the amount of energy, both solar and

auxiliary, delivered to the primary storage medium.

e	 ENERGY FROM STORAGE, (STEO) is the amount of energy extracted by

the load subsystems from the primary storage medium.

•	 CHANGE IN STORED ENERGY (STECH) is the difference it the estimated

stored energy during the specified reporting period, as indicated

by the relative temperature of the storage medium (either positive

or negative value).

•	 STORAGE AVERAGE TEMPERATURE (TST) is the mass-weighted average

temperature of the primary storage medium.

i	 STORAGE EFFICIENCY (STEFF) is the ratio of the sum of the

energy removed from storage and the change in stored energy

to the energy delivered to storage.
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ENERGY COLLECTION AND STORAGE SUBSYSTEM

The Energy Collection and Storage Subsystem (ECSS) is composed of the

collector array, the primary storage medium, the transport loops between

these, and other components in the system design which are necessary to

mechanize the collector and storage equipment.

•	 INCIDENT SOLAR ENERGY (SEA) is the total insolation available

on the gross collector array area. This is the area of the

collector array energy-receiving aperture, including the frame-

work which is an integral part of the collector structure.

•	 AMBIENT TEMPERATURE (TA) is the average temperature of the outdoor

environment at the site.

•	 ENERGY TO LOADS (SEL) is the total thermal energy transported

from the ECSS to all load subsystems.

•	 AUXILIARY THERMAL ENERGY TO ECSS (CSAUX) is the total auxiliary

energy supplied to the ECSS, including auxiliary energy added to the

storage tank, heating devices on the collectors for freeze-

protection, etc.

•	 ECSS OPERATING ENERGY (CSOPE) is the critical operating energy

required to support the ECSS heat transfer loops.
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SPACE HEATING SUBSYSTEM

The space heating subsystem is characterized by performance factors account-

ing for the complete energy flow to and from the subsystem. The average

building temperature and the average ambient temperature are tabulated to

indicate the relative performance of the subsystem in satisfying the space

heating load and in controlling the temperature of the conditioned space.

•	 •	 SPACE HEATING LOAD (HL) is tie sensible energy added to the air

in the buff ding.

•	 SOLAR FRACTION OF LOAD (HSFR) is the fraction of the sensible

energy added to the air in the building derived from tie solar

energy system.

•	 SOLAR ENERGY USED (HSE) is the amount of solar energy supplied to

the space heating subsystem.

•	 OPERATING ENERGY (HOPE) is the amount of electrical energy

required to support the subsystem, (e.g., fans, pumps, etc.) and

which is not intended to .affect directly the thermal state of

the subsystem.

•	 AUXILIARY THERMAL US ED (HAT) is the amount of energy supplied to

the major components of the subsystem in the form of thermal energy

in a heat transfer fluid or its equivalent. This term also in-

cludes the converted electrical and fossil fuel energy supplied to

the subsystem.

•	 AUXILIARY FOSSIL FUEL, (HAF) is the amount of fossil energy supplied

directly to the subsystem.

•	 FOSSIL ENERGY SAVINGS (HSVF) is the estimated difference between

the fossil energy requirements of an alternative conventional

system (carrying the full load) and the actual fossil energy re-

quired by the subsystem.
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by

• ELECTRICAL ENERGY SAVINGS (HSVE) is the cost of the operating

energy (HOPE) required to support the solar energy portion of

the space heating subsystem.

•	 BUILDING TEMPERATURE (TS) is the average heated space dry bulb

temperature.

•	 AMBIENT TEMPERATURE (TA) is the average ambient dry bulb tem-

perature at the site.
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ENVIRONMENTAL SUMMARY

The environmental summary is a collection of the weather data which is

generally instrumented at each site in the program. It is tabulated in

this data report for two purposes--as a measure of the conditions prevalent

during the operation of the system at the site, and as an historical

record of weather data for the vicinity of the site.

•	 TOTAL INSOLATION (SE) is accumulated total incident solar

energy upon the gross collector array measured at the site.

•	 AMBIENT TEMPERATURE (TA) is the average temperature of the

environment at the site.

•	 WIND DIRECTION (WDIR) is the average direction of the prevail-

'ing wind.

•	 WIND SPEED (WIND) is the average wind speed measured at the site.

•	 DAYTIME AMBIENT TEMPERATURE (TDA) is the temperature during the

period from three hours before solar noon to three hours after

solar noon.

i
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APPENDIX B

SOLAR ENERGY SYSTEM PERFORMANCE EQUATIONS FOR

COLT-YOSEMITE

I.	 INTRODUCTION

Solar energy system performance is evaluated by performing energy balance

calculations on the system and its major subsystems. These calculations

are based on physical measurement data taken from each subsystem every

320 seconds. This data is then numerically combined to determine the

hourly, daily, and monthly performance of the system. This appendix

describes the general computational methods and the specific energy

balance equations used for this evaluation.

Data samples from the system measurements are numerically integrated

to provide discrete approximations of the continuous functions which

characterize the system's dynamic behavior. This numerical integration

is performed by summation of the product of the measured rate of the

appropriate performance parameters and the sampling interval over the

total time period of interest.

There are several general forms of numerical integration equations which

are applied to each site. Examples of these general forms are as follows:

The total solar energy available to the collector array is given by

SOLAR ENERGY AVAILABLE = (1/60) E [I001 x AREA] x AT

where I001 is the solar radiation measurement provided by the pyranometer

in Btu.,/ft 2-hr, AREA is the area of the collector array in square feet,

AT i:;, 'he sampling interval in minutes, and the factor (1/60) is included

to correct the solar radiation "rate" to the proper units of time.
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Similarly, the energy flow within a system is given typically by

COLLECTED SOLAR ENERGY - E [M1OO x AH] x AT

where M1OO is the mass flow rate of the heat transfer fluid, in lb m/min, and
AH is the enthalpy change, in Btu/lb m , of the fluid as it passes through

the heat exchanging component.

For a liquid system AH is generally given by

AH = 1'p AT

where Up is the average specific heat, in Btu/(lbm °F), of the heat

transfer fluid and AT, in °F, is the temperature differential across

the heat exchanging component.

For an air system AM is generally given by

AH = 
Ha (T out ) - Ha(Tin)

where Ha (T) is the enthalpy, in Btu/lbm , of the transport air

evaluated at the inlet and outlet temperatures of the heat ex-

changing component.

H
a
 (T)can have various forms, depending on whether or not the humidity ratio

of the transport air remains constant as it passes through the heat ex-

changing component.
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For electrical power, a general example is

ECSS OPERATING ENERGY = (3413/60) E [EP1001 X AT

where EP100 is the measured power required by electrical equipment in

kilowatts and the two factors (1/60) and 3413 correct the data to Btu/min.

These equations are comparable to those specified in "Thermal Data

Requirements and Performance Evaluation Procedures for the National

Solar Heating and Cooling Demonstration Program." This document, given

in the list of references, was prepared by an inter-agency committee of

the government, and presents guidelines for thermal performance evaluation.

Performance factors are computed for each hour of the day. Each numerical

integration process, therefore, is performed over a period of one hour.

Since long-term performance data is desired, it is necessary to build

these hourly performance factors to daily values. This is accomplished,

for energy parameters, by summing the 24 hourly values. For temperatures,

the hourly values are averaged. Certain special factors, such as ef-

ficiencies, require appropriate handling to properly weight each hourly

sample for the daily value computation. Similar procedures are required

to convert daily values to monthly values.

II. PERFORMANCE EQUATIONS

The performance equations for Colt-Yosemite used for the data evaluation

of this report are contained in the following pages and have been included

for technical reference and information.
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EQUATIONS USED IN MONTHLY PERFORMANCE ASSESSMENT

NOTE: MEASUREMENT NUMBERS REFERENCE SYSTEM SCHEMATIC FIGURE 2-1

AVERAGE AMBIENT TEMPERATURE (°F)

TA	 (1/60) x E T001 X AT

AVERAGE BUILDING TEMPERATURE (°F)

TB = (1/60)x E T600 x AT

DAYTIME AVERAGE AMBIENT TEMPERATURE (°F)

TDA = (1/360) x E T001 X AT

FOR + 3 HOURS FROM SOLAR NOON

INCIDENT SOLAR ENERGY PER SQUARE FOOT (BTU/FT2)

SE. = (1/60) x E 1001 x AT

OPERATIONAL INCIDENT SOLAR ENERGY (BTU)

SEOP = (1/60) x E [I001 x CLAREA] X AT

WHEN THE COLLECTOR LOOP IS ACTIVE

SOLAR ENERGY COLLECTED BY THE ARRAY (BTU)

SECA = E EM100 x CP46 (0.5 x (T101 + T151)) x (T151 - T101)] x AT

WHERE CP46 ( ) IS SPECIFIC HEAT OF COLLECTOR TO STORAGE

ENERGY TRANSFER FLUID (SHELL 33 OR DIALA-AX 33).

ENTHALPY FUNCTION FOR WATER (BTU/LBM)

T2

HWD(T 2 , T 1 ) _	 f Cp(T)dT

T1

THIS FUNCTION COMPUTES THE ENTHALPY CHANGE OF WATER AS IT

PASSES THROUGH A HEAT EXCHANGING DEVICE.

wf
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SOLAR ENERGY TO STORAGE (BTU)

STEI = E EM100 x CP46 (0,5 x (T100 + T150)) x (T150 - T1OO)] x AT

SOLAR ENERGY FROM STORAGE TO SPACE HEATING (BTU)

STEO = E [M400 x HWD (T451 0 T401)] x AT

AVERAGE TEMPERATURE OF STORAGE (°F)

TSTM = (T200 + T201 + T202)/3

TSTL = TSTM

TST = TSTM x (1/60)

ENERGY DELIVERED FROM ECSS TO LOAD SUBSYSTEMS (BTU)

CSEO = STEO

ECSS OPERATING ENERGY (BTU)

CSOPE = 56.8833 x E EP100 x AT

SPACE HEATING SUBSYSTEM SOLAR OPERATING ENERGY (BTU)

HOPE1 = 56.8833 x E EP400 x AT

SOLAR ENERGY TO SPACE HEATING SUBSYSTEM (BTU)

HSE = .STEO

AUXILIARY FOSSIL ENERGY TO SPACE HEATING SUBSYSTEM (BTU)

HAT = E EM401 x HWD (T452, T402)] x AT

SPACE HEATING CIRCULATING FAN ENERGY (BTU)

HOPEA = 56.8833 x E EP600 x AT

SPACE HEATING SUBSYSTEM OPERATING ENERGY (BTU)

HOPE = HOPEA + HOPE1
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INCIDENT SOLAR ENERGY ON COLLECTOR ARRAY (BTU)

SEA - CLAREA x SE

COLLECTED SOLAR ENERGY (BTU/FT2)

SEC = SECA/CLAREA

COLLECTOR ARRAY EFFICIENCY

CAREF = SECA/SEA

CHANGE IN STORED ENERGY (BTU)

STECHI	 STOCAP x TSTL x CP (TSTL) x RHO (TSTL)

STECH = STECHI - STECH1P

WHERE THE SUBSCRIPT P REFERS TO A PRIOR REFERENCE VALUE

STORAGE EFFICIENCY

STEFF = (STECH + STEO)/STET

SOLAR ENERGY TO LOAD SUBSYSTEMS (BTU)

SEL = HSE

ECSS SOLAR CONVERSION EFFICIENCY

CSCEF = CSEO/SEA

AUXILIARY FOSSIL FUEL (BTU)

HAF = MAT/0.6

SPACE HEATING LOAD (BTU)

HL = HAT + HSE

SPACE HEATING SUBSYSTEM SOLAR FRACTION (PERCENT)

HSFR = 100 x HSE/HL

SPACE HEATING SUBSYSTEM ELECTRICAL ENERGY SAVINGS (BTU)

HSVE = -HOPEI

SPACE HEATING SUBSYSTEM FOSSIL ENERGY SAVINGS (BTU)

HSVF = HSE/0.6

1
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SYSTEM LOAD (BTU)

SYSL w HL + HWL

SOLAR FRACTION OF SYSTEM LOAD (PERCENT)

SFR - (HL x HSFR + HWL x HWSFR)/SYSL

SYSTEM OPERATING ENERGY (BTU)

SYSOPE a CSOPE + HOPE

AUXILIARY THERMAL ENERGY TO LOADS (BTU)

AXT = HAT

AUXILIARY FOSSIL ENERGY TO LOADS

AXF = HAF

TOTAL ELECTRICAL ENERGY SAVINGS (BTU)

TSVE G HSVE - CSOPE

TOTAL FOSSIL ENERGY SAVINGS (BTU)

TSVF = HSVF

TOTAL ENERGY CONSUMED (BTU)

TECSM = SYSOPE + SECA + AXF

SYSTEM PERFORMANCE FACTOR

SYSPF = SYSL/(AXF + SYSOPE x 3.33)

NEGSECA

IF EP600 >0 AND (T1O1 - T151) >0

THEN NEGSECA =	 CM10O * CP46 (0.5 x (T101 + Ti51) x

(T1O1 - T151)] x AT

STL2

IF EP400 > 0 & MOO - T451) > 0

THEN STL2 = E CM400 x (T200 - T451)] x AT
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SPACE HEATING TRANSPORT LOSSES ESTIMATION

AHL w E [76.34 x ((T+401 + T451)/2 - TB) x (0.11 + 5.E-4 x TST);j x AT

SOLAR TANK STATIC HEAT LOSS ESTIMATION

STL a E [26.85 x ((T200 + T201 + T202)/3 - TB)l x AT
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APPENDIX C

LONG-TERM AVERAGE WEATHER CONDITIONS

The environmental estimates given in this appendix provide a point of

reference for evaluation of weather conditions as reported in the Monthly

Performance Reports and Solar Energy System Performance Evaluations issued

by the Solar Heating, Cooling and Hot Water Development Program. As such,

the information presented can be useful in prediction of long-term system

performance.

Environmental estimates for this site include the following monthly averages:

extraterrestrial insolation, insolation on a horizontal plane at the site,

insolation in the tilt plane of the collection surface, ambient temperature,

heating degree-days, and cooling degree-days. Estimation procedures and data

sources are detailed in the following paragraphs.

The preferred source of long-term temperature and insolation data is "Input

Data for Solar Systems" (IDSS) [1] since this has been recognized as the

solar standard. The IDSS data are used whenever possible in these environ-

mental estimates for both insolation and temperature related sources; however,

a secondary source used for insolation data is the Climatic Atlas of the

United States [21, and for temperature related data, the secondary source

is "Local Climatological Data" [3].

Since the available long-term insolation data are only given for a horizontal

surface, solar collection subsystem orientation information is used in P-)

algorithm [4] to calculate the insolation expected in the tilt plane of^,^:.

collector. This calculation is made using a ground reflectance of 0.2.
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