General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
Solar Thermal Heating and Cooling
A Bibliography with Abstracts
Quarterly Update, April-June 1979

New Mexico Univ.
Albuquerque

Prepared for
National Aeronautics and Space Administration
Washington, DC

Aug 79
Solar Thermal Heating and Cooling
Quarterly Update April-June 1979
Solar Thermal Heating and Cooling: A Bibliography with Abstracts

Quarterly Update

Author(s):

Miko Arenson

Performing Organization Name and Address:

Technology Application Center

University of New Mexico

Albuquerque, NM 87131

Sponsoring Organization Name and Address:

University of New Mexico

Albuquerque, NM 87131

Abstracts

This bibliographic series cites and abstracts the literature and technical papers on the heating and cooling of buildings with solar thermal energy. The quarterly volumes are divided into ten categories: Space Heating and Cooling Systems, Space Heating and Cooling Models, Building Energy Conservation, Architectural Considerations, Thermal Load Computations, Thermal Load Measurements, Domestic Hot Water, Solar and Atmospheric Radiation, Swimming Pools, and Economics.

Each quarterly volume is compiled from a wide variety of data bases, report literature, technical briefs, journal articles and other traditional and non-traditional sources. The Technology Application Center maintains a library containing many of the articles and publications referenced in the series.

Key Words and Document Analysis

- SOLAR ENERGY
- SOLAR HEATING
- SOLAR COOLING
- BUILDINGS
- WATER HEATERS

Identifiers/Open-Ended Terms

- NTISTAC
- NTISNASA

COSATI Field/Group

D310C3

FLD: 13A, 10A, 97N

Availability Statement

Release Unlimited; Available:

- Technology Application Center
 - University of New Mexico
 - Albuquerque, NM 87131

Security Class

- UNCLASSIFIED

No. of Pages

131

Price

UNCLASSIFIED

Supplementary Notes

Continuing Bibliographic Series; issue of 1979
SOLAR THERMAL HEATING AND COOLING
A BIBLIOGRAPHY WITH ABSTRACTS

QUARTERLY UPDATE
APRIL-JUNE 1979

PREPARED BY THE
ENERGY INFORMATION PROGRAM
of the
TECHNOLOGY APPLICATION CENTER
AUGUST 1979

THE UNIVERSITY OF NEW MEXICO
ALBUQUERQUE, NEW MEXICO

A DIVISION OF THE INSTITUTE FOR APPLIED RESEARCH SERVICES (IARS)
The Technology Application Center (TAC) is one of six NASA-sponsored, nonprofit, regional centers for the transfer of technology to industry, local government, and the private sector in general. Through TAC, access to most of the world's available technical information is conveniently and inexpensively provided to potential users, regardless of their size or technical interest area.

Through its professional staff, TAC offers a wide variety of technical information and technological support services.

You are invited to contact the center directly for details and a discussion of how we can further serve your needs.

Technology Application Center
University of New Mexico
Albuquerque, New Mexico 87131
(505) 277-3622

This material is disseminated under the auspices of the National Aeronautics and Space Administration in the interest of information exchange. Neither the United States government nor the University of New Mexico assumes any liability for its content or the use thereof.
INTRODUCTION

This quarter of Heating and Cooling contains over 650 citations, our largest yet. Obviously, the field of solar energy is rapidly expanding, as are our capabilities to keep up with the literature.

Within each section, abstracts are alphabetized by title if no author is given. Abstracts with authors follow.

We have introduced some changes in the Heating and Cooling category descriptions. "Systems Overviews" (30,000) now includes a separate section entitled "Demonstrations" (A30,000). Most of these abstracts describe installed or proposed solar systems, with a preponderance of articles in reference to state and federal demonstration projects.

"Insolation and Instruments" (37,000) has been expanded to include monitoring systems, such as "Turbine Flowmeters for Monitoring Solar Systems" (37,024). Many of the monitoring citations in this section are from the Conference on Performance Monitoring Techniques for Evaluation of Solar Heating and Cooling Systems, held at the University of California, Davis, California on April 3, 1978. Solar simulators (materials testing facilities which can simulate the sun's radiation) have also been included in this section.

Our section, "Passive Solar Energy" (34,000), is also growing rapidly. Be sure to check "Architectural Considerations" (33,000) when looking for articles on passive solar, since many of the design characteristics of passive systems are directly related to a building's architecture.

Readers and users of the bibliography are encouraged to bring mistakes and omissions to our attention at the Technology Application Center. Comments will be greatly appreciated.

Mike Arenson
Melissa Fassett
Co-Editors
A number of features have been incorporated to help the reader use this document. They consist of:

-- A TABLE OF CONTENTS; listing general categories of subject content and indexes. More specific coverage by subject keyword and author is available through the appropriate index.

-- CITATION NUMBERS assigned to each reference. These numbers, with the prefix omitted, are used to identify references found in the indexes. They are used as TAC identifier numbers when dealing with document order, so please use the entire (prefix included) citation number when corresponding with TAC. An open ended numbering system allows for easy incorporation of subsequent updates in this system, and numbers assigned to new citations will follow directly the last assigned numbers in the previous issue. Citation number of the last reference on each page appears in the upper right-hand corner to facilitate quick location of a specific article.

-- A REFERENCE FORMAT; containing the TAC citation number, title of reference, author, corporate affiliation, reference source, and abstract. The reference source tells, to the best of our knowledge, where the reference came from. If from a periodical, the reference source contains its title, volume, page number and date.

-- An INDEX OF AUTHORS; alphabetized by author's last name, followed by the reference citation number. For multiple authors, each one is indexed.

-- An INDEX OF KEYWORDS affords access to each citation through an assigned set of descriptive terms. All words pertaining to a reference are permuted alphabetically and the corresponding citation numbers appear as many times as there are keywords. These permuted keywords run down the center of an index page, while the remaining keywords are clustered adjacenty. A "#" indicates the end of a set of keywords, while a "/" indicates where a set has been cut off within the line due to overflow.

-- A LIST OF ABBREVIATIONS used in describing frequently occurring titles or corporate sources.
<table>
<thead>
<tr>
<th>SECTION NUMBER</th>
<th>COVERAGE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>Guide to Use of Publication</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>A30,000</td>
<td>Demonstrations</td>
<td>1</td>
</tr>
<tr>
<td>30,000</td>
<td>System Overviews</td>
<td>35</td>
</tr>
<tr>
<td>31,000</td>
<td>Computer Designs, Models, Simulations.</td>
<td>81</td>
</tr>
<tr>
<td>32,000</td>
<td>Thermal Storage</td>
<td>95</td>
</tr>
<tr>
<td>33,000</td>
<td>Architectural Considerations</td>
<td>105</td>
</tr>
<tr>
<td>34,000</td>
<td>Passive Solar Energy</td>
<td>109</td>
</tr>
<tr>
<td>35,000</td>
<td>Thermal Load Computations</td>
<td>117</td>
</tr>
<tr>
<td>36,000</td>
<td>Domestic Water Heating</td>
<td>121</td>
</tr>
<tr>
<td>37,000</td>
<td>Insolation, Instruments, Monitoring Systems</td>
<td>129</td>
</tr>
<tr>
<td>38,000</td>
<td>Swimming Pools</td>
<td>145</td>
</tr>
<tr>
<td>39,000</td>
<td>Greenhouses</td>
<td>149</td>
</tr>
<tr>
<td></td>
<td>Author Index</td>
<td>152</td>
</tr>
<tr>
<td></td>
<td>Keyword Index</td>
<td>171</td>
</tr>
<tr>
<td></td>
<td>List of Abbreviations</td>
<td>207</td>
</tr>
</tbody>
</table>
A30,000 DEMONSTRATIONS

ST79 A30001 Air Conditioning and Heating With Solar Power
Avail: TIC
A solar air conditioning and heating system for a new 3200-ft2 house in Indiana is described. More than 800 ft2 of flat-plate collectors is used to provide about 75 percent of the annual air conditioning and heating requirements. A description of the thermal insulation that was designed for optimum energy conservation is included. The system is funded by a United States ERDA demonstration program. Total cost of the system is $25,000.

ST79 A30002 Attic Becomes Collector
Solar Engng. Mag. V 2 No. 5 p. 35
Avail: TIC, May 1977
A double layer of Filon corrugated fiberglass was attached directly to the rafters in place of the standard roofing material. The fiberglass covers about 400 ft2 at a cost of about $2.50 per ft2. The south facing roof has a 50$^\circ$ angle tilt. The 4-inch thick plywood floor and the opposite wall of the attic interior were painted with a flat black paint to increase their heat absorption. Ductwork through the attic carried the heated air directly into the home or storage area, which contains 953 ft3 of egg-sized rocks. When needed, warmed air from the storage is distributed through the duct system with a 1/4 HP fan. Total cost of the system was about $6000.

GE Co., Space Div., Philadelphia, PA
Avail: NTIS, TID-48544 Oct 1977 p. 70
The design, analysis, construction, and operational verification are summarized for the EEC solar energy project. The computed system performance for a typical heating and cooling season is presented. The system uses 3100 ft2 of flat-plate collectors to space heat, cool, and supply domestic hot water to the 18,000-ft2 EEC building. There are 6000 gallons of thermal energy storage.

ST79 A30004 Bivalent Heating System for New Hotel
Oel- Gasfeuerung V 22 No. 8 p. 406-410 Aug. 1977 In German
A bivalent heating and water heating system was installed in a hotel just built. Solar energy is to be used; in a bivalent phase of operation, heat pumps whose evaporator preheat is led via the collectors into a store are used. Details of the overall concept are presented.

ST79 A30005 Control of a Rankine Chiller and an Absorption Chiller in the National Security and Resources Study Center
Los Alamos Scientific Lab., Los Alamos, NM
Workshop on the Control of Solar Energy Hyannis, MA
The National Security Resources Study Center (NSRSC) at Los Alamos, New Mexico, has 60,000 ft2 of air conditioned space, solar heated and cooled with an 8000-ft2 array of flat-plate collectors. The collectors have a selective surface of black chrome and are single-glazed with water white glass. A paraffinic oil is used as the collector coolant, transferring heat to water through a heat exchanger. In the cooling mode, hot water is stored in a 5000-gallon pressurized tank and chilled water is stored in a 10,000-gallon tank. Two water chillers are installed in the system: a York lithium bromide absorption unit (ESIA2), derated to 85 tons with 18° F water; and a Rankine cycle unit designed and fabricated by Barber-Nichols, rated at 77 tons with 200$^\circ$ F water. The chillers are installed in series with the 10,000-gallon cold storage tank. The mean daily values of measured energies in the NSRSC for 1978 are given. The percent solar cooling measured for the 1977 cooling season is August, 73 percent and September, 92 percent. Observations on the system indicate that very little auxiliary energy is now used due to optimum management of solar energy and cold storage.
The system proposed is a space heating and domestic hot water heating system with water as the transfer media for energy collection and distribution. The energy collection system utilizes a solar array of 20,261 ft² gross area and 17,589 ft² of net area of dual-glazed flat-plate collectors at a cost of $209,000 for the collector panels alone. This is an equivalent of $10.00/ft² of gross panel area. The underground storage tank is 47,000 gallons with a working storage volume of 49,000 gallons. The entire solar system cost, which includes the design cost, materials, and construction of the system, is at $769,000.

ST79 A30007 Design and Operation of a Solar Heating and Cooling System for a Residential Fire Building
NASA, Marshall Space Flight Center, Huntsville, AL
Avail: NTIS, DOE/NASA/TM-78169 p. 35 May 1978

The first year of operation of the Marshall Space Flight Center’s solar house is discussed. Selected design information, together with a brief system description, is included. The house is equipped with an integrated solar heating and cooling system which uses fully automated state-of-the-art equipment. Overall performance for the first year is summarized. In addition, information pertaining to modifications made to improve performance is provided, and problems encountered during the operation are discussed. Evaluation of data from the first year of operation indicates that the MSFC Solar House heating and cooling system is capable of supplying nearly 100 percent of the thermal energy required for heating and approximately 50 percent of the thermal energy required to operate the absorption cycle air conditioner. The lower percentage of the energy provided for the cooling mode as compared to the heating mode is due to the significantly higher temperature needed to operate the air conditioner, requiring the solar collector to operate at low efficiencies, due to the higher inlet temperatures. Operation of the facility in the cooling mode has shown the need for basic subsystem improvements such as decreasing the operating temperature of the air conditioner and/or improving collector performance.

ST79 A30008 Distilling Detroit Sunshine
Prog. Architecture V 58 No. 11 p. 75-76 Dec. 1977

Architects have installed 1000 ft² of solar collectors on a renovated building in downtown Detroit. The solar system supplies hot water for laboratories, heat for a rooftop cooling tower basin and heated water for an absorption refrigeration system. The evacuated tube solar collector’s “Sunpak” was used in the system. The system was monitored with a Honeywell A-1000 unit logging all of the data for analysis reported that the collectors had an efficiency from 26 percent to 39 percent. The same architect’s firm has completed work on the Tarraset Elementary School in Reston, Virginia.

ST79 A30009 Grading Solar Schools
Solar Engng. V 2 No. 9 p. 21-25 Sept. 1977

Experience in school solar heating systems funded by United States’ ERDA demonstration projects is briefly reviewed. Both new and retrofitted systems in schools across the United States are illustrated and described. Performance, reliability, and cost experience are included. Student involvement is briefly discussed.

ST79 A30010 Hillside Headquarters: Four-Level Plan Gives Electric Cooperative’s Office Visibility, Energy Savings, and Outside Views for Employees

Although its architecture is dramatic, the new headquarters of the Basin Electric Cooperative in Bismarck, North Dakota, makes an even greater impact in the area of energy engineering. Its energy requirements are about half that of a conventional building of comparable size. Because the 66,000-ft² building is set into a hill, four floors are exposed on one of its long elevations, but only one floor rises above grade on the opposite elevation. This variation in height has obvious energy saving implications. The one-story elevation faces northwest, allowing the hill to shield the lower three floors from prevailing winds; the southeast facing four-story elevation permits low-angled winter sun to pass through the windows and warm the building. Overhangs block out the higher angled rays of the summer sun.
ST79 A30011 Innovative Heating Systems Operate Successfully

Features of six solar liquid space heating systems are described. One home employs a
microprocessor to choose the most appropriate operating mode for prevailing time and
ambient conditions. Another integrates solar collectors into rafters and sheathing of the
roof and uses a new Rankine-type heat transfer cycle. A new luxury ski/vacation
condominium is heating five units primarily from solar energy stored in a central tank.
In Phoenix, Arizona solar heats a home, hot water, pool, and spa. In Colorado solar
assists a fireplace system. In a home in Vermont, the owner has combined solar with
passive features to achieve a major portion of his space heating.

ST79 A30012 Installation of Solar Furnace Cuts Utility Costs

Retrofitting a solar heating system to a home built in 1840 is described. Aluminium
siding, extra insulation, and storm windows were added first. The unit added was the free-
standing Champion solar furnace with Vertafin collector and 4% yd3 of rock storage.

ST79 A30013 Maine Wastewater Treatment Plant Opt for Solar Heating
Water Sewage Works v 124 No. 1 p. 72 Nov. 1977

The design of the Ellsworth, Maine Waste Water Treatment Plant and its energy
conservation features including weathertight wall and roof panels which insulate while
transmitting solar radiation for light and heat is briefly described.

ST79 A30014 Monthly Performance Report, Alpha Construction Co., Canton, Ohio
Avail:NTIS, SOLAR/1034-78/05 p. 1 May 1978

The Alpha Construction Company site is a single-family residence in Canton, Ohio.
The solar energy system is designed to provide approximately 70 percent of the space
heating and 70 percent of the hot water energy requirements for the home. It has an
array of flat-plate collectors with a gross area of 436 ft2. The array faces south from
the collector array to storage. Solar energy is stored in a bin containing 50,100 pounds
of rock. The solar heated air, passing through a heat exchanger, also preheats incoming
city water which is stored in an 80-gallon preheat storage tank and supplied, on demand,
to a conventional 52-gallon domestic hot water tank. The system, shown schematically, has
four modes of solar operation. The measured demand for space heating during May was 0.69
million BTU, 0.47 million BTU of which were provided by the solar energy system. Loss of
the hot water consumption measurement has affected the hot water performance results.

ST79 A30015 Monthly Performance Report, Greenmoss Builders, Inc., Waitsfield, Vermont
Avail:NTIS, SOLAR/1009-78/05 p. 13 May 1978

The Greenhouse Builders, Inc. solar energy system located at Waitsfield, Vermont
consists of a passive solar space heating subsystem and an active solar hot water subsystem
installed in a single-family residence with approximately 1000 ft2 of living space.
Accuracy of the performance results of the solar hot water subsystem is degraded
substantially due to difficulties in measurement of the water flow through the system. The
use of current measurements indicates a hot water consumption of approximately 698 gallons
for the month. Assuming this much hot water demand, the solar preheat provided 12 percent
of the demand or 0.05 million BTU, resulting in an estimated fossil energy savings of 86
ft3 of gas. During May, the passive solar space heating subsystem provided approximately
46 percent of the energy requirements for space heating.

ST79 A30016 Monthly Performance Report, Parl-Mack Enterprises, Inc., Denver, Colorado
Avail:NTIS, SOLAR/1015-78/03 p. 14 March 1978

Performance results are presented for a system to provide space heating and domestic
hot water preheating. The site is a single-family dwelling in Denver with 470 ft2 of
flat-plate collectors with a water-glycol heat transfer medium. The energy is stored in a
945-gallon tank after passing through a liquid-to-liquid heat exchanger. The system is
shown schematically and its five modes of operation are described. In March solar energy
supplied 6% of the combined heating and hot water demand of 3.81 million BTU.
Performance results are presented for a system to provide space heating and domestic hot water preheating. The site is a single-family dwelling in Denver with 470 ft² of flat-plate collectors with a water-glycol heat transfer medium. The energy is stored in a 945-gallon tank after passing through a liquid-to-liquid heat exchanger. The system is shown schematically and its five modes of operation are described. The measured demand for space heating during April was 0.58 million BTU, 0.51 million BTU (88 percent) of which were provided by the solar energy system. Solar energy supplied 67 percent of the hot water load of 1.71 million BTU.

Performance results are presented for a system to provide space heating and domestic hot water preheating. The site is a single-family dwelling in Denver with 470 ft² of flat-plate collectors with a water-glycol heat transfer medium. The energy is stored in a 945-gallon tank after passing through a liquid-to-liquid heat exchanger. The system is shown schematically and its five modes of operation are described. Solar energy satisfied 64 percent of the combined heating and hot water demand of 2.94 million BTU in May.

The Radian Solar Energy System is designed to heat and cool approximately 800 ft² of office and laboratory area in a two-story modern office building in Austin, Texas. The system utilizes 36 Northrup tracking concentrating collectors which provide an effective aperture area of 350 ft² with a gross collector array area of 1380 ft². The working fluid, water in summer and water/glycol in the winter, is pumped from the collectors to a heat exchanger between the collectors and the storage tank. A 1500-gallon insulated fiberglass storage tank is located above ground on a concrete pad near the building. The solar cooling equipment for the system is an Arkla three-ton packaged absorption air cooler located on the second floor of the building and a cooling tower on the roof. The system, shown schematically, has three modes of solar operation. The Radian Solar System has been inactive for the entire month due to a collector tracking failure.

The Reedy Creek site is a two-story, 5625-ft² concrete block office building located in Lake Buena Vista, Florida. The solar energy system is designed to provide 100 percent of the space heating and domestic hot water demands and 80 percent of the space cooling demand. The collector subsystem is composed of an array of parabolic trough collectors with tracking absorber tubes forming an integral part of the building’s roof, and oriented with its major axis in an east-west direction. The total collector aperture area is 3840 ft². Water is used as the heat collection, transfer, and storage medium. Collected solar energy is stored in a 10,000-gallon hot water tank. Domestic hot water is provided by a heat exchanger immersed in this tank. Space heating is provided by circulation of hot water from the storage tank through heat exchangers located in the central air distribution system. No auxiliary energy is provided for either domestic hot water or space heating. A 25-ton absorption cycle water chiller utilizes hot water from storage to provide chilled water to a 10,000-gallon cold water storage tank. The system, shown schematically, has five modes of operation, which are described. The total measured month cooling demand was 51.4 million BTU; of this the solar system provided 12.7 million BTU. The domestic hot water system operated successfully, providing water at approximately 140°F on demand.
of 110,000 pounds of rocks, and two 120-gallon water preheating tanks. The five modes of solar operation are described. The Scattergood Solar Energy System satisfied 99 percent of the combined heating and hot water demand of 3.9 million BTU in July.

ST79 A30022 New Solar Heating/Cooling System

The solar-mac was demonstrated at the Third Energy Technology Conference, in Washington, D.C., by Gas Development Corp., an Institute of Gas Technology subsidiary, which has conducted research on the concept since 1966. The fully operating system, housed in a trailer with solar collectors on the roof, heats, cools, and control humidity without using compressors, special fluids, or condensing coils. The residential-sized unit has three tons/hr of cooling capacity and 100,000 BTU/hr of heating capacity. Its ability to use low-grade solar heat for air cooling in summer exceeds that of all other known systems; this provides the maximum savings of conventional gas heat by use of solar augmentation. The solar collectors on the roof heat water, which drives the environmental control unit for both heating and cooling. The environmental control unit was constructed for gas development by Air Enterprises, Inc., and the vacuum-jacketed glass tube solar collectors were manufactured by Owens-Illinois, Inc.

ST79 A30023 Performance of Los Alamos Solar Mobile/Modular Home Unit No. 1

Los Alamos Scientific Lab., Los Alamos, NM
Solar Heating and Cooling Systems Operational Results Conf., Colorado Springs, CO
Avail: NTIS, LA-UR-78-2587, CONF-781102-1 p. 7 Nov. 29, 1978

Mobile/Modular Home Unit No. 1 at the Los Alamos Scientific Laboratory is an active air system which incorporates 340 ft² of flat black single-glazed flat-plate air collectors mounted at a 60° tilt on the south wall. The thermal storage is in 1536 pint jars of water spaced apart by 5/8 inch to allow air flow around the jars. Data have been obtained on the unit from October 1976, up to the present. Data acquisition is by a Hewlett-Packard 3050 system controlled with a HP 9825 desk top calculator. Complete energy summaries for the heating seasons have been obtained. The solar energy system has provided about 70 percent of the heating requirements of the house each season. Although the solar energy system provides a major fraction of the space and domestic hot water requirements, the yearly total energy supplied is low. This is primarily because the house load was lower than expected due to passive gains and internal heat generation; low performance is also due to a low storage mass (5.3 BTU/ft²°F) and several possible uncontrolled air leaks.

ST79 A30024 Prototype Retrofit Heats, Cools House and Pool

A swimming pool room was built to accommodate 700 ft² of glazed elastomer rollout tube-plate collectors built on site. The system incorporates a water-to-air heat pump and uses the pool as a heat sink.

ST78 A30025 Pyramidal Optical Collector System Operates in Condominium Project

Solar Engng. V 2 No. 7 p. 30-32 July 1977

Two solar assisted home heating systems incorporating pyramidal optical collectors are described. Back up systems are electrical resistance heat and a heat pump. The skylight-mounted collector system allows a factor of four reduction in area over flat-plate collectors. Performance of the collectors in homes in Delaware and South Carolina is discussed. Cost and economics of the system are analyzed.

ST79 A30026 Review of Three Solar Energy Demonstration Projects in the Midwest

Argonne Nat’l Lab., Argonne, IL
Conf. on Energy Solar Updates Atlanta, GA
Avail: NTIS, CONF-780701-2 p. 22 July 1978

Three projects initiated for economics, ecological, and educational reasons are described. Two projects have air systems and one has a liquid system. The buildings are a school building, a medical office building, and a college residence hall. The system designs, experiences, and problems are reviewed briefly.
The Santa Clara Community Center is a 27,000-ft² one-story building set in a Mediterranean climate. The peak summer cooling load is estimated to be 5.9 x 10⁶ BTU/day and is roughly twice the peak winter heating load. The solar driven hydronic system includes 7085 ft² of double-glazed flat-plate collectors with a selective coating, two 25-ton Arkla absorption chillers, a 50,000-gallon stratified cold storage tank, and a 10,000-gallon hot storage tank. The solar system is designed to satisfy roughly 80 percent of the annual thermal energy requirements. A boiler is used for backup. The system is well instrumented and has been providing operational data, including detailed energy balance information since April 1977. Data for one complete cooling season has been obtained. Detailed results are presented in this report. The data acquisition system used has "event sense" capability; hence, the collected data include the periods of operation in each of the system modes. This capability makes it possible to calculate the auxiliary electrical and gas consumption of the present solar system and to compare it to the estimates for the original nonsolar HVAC design which used vapor compression chillers. Preliminary evaluation indicates that the present system during the cooling season consumes roughly the same amount of fossil fuel energy as the original nonsolar design.

In the 50-bed hotel in Hohenhausen (Lower Saxony), a solar bivalent system has been installed for heating and water heating. The rooms are heated with a floor heating system. Solar energy is utilized with the aid of heat pumps. For the operating costs of this heating system, a 35 percent saving is expected compared to the costs of an oil-fired heating system. The functioning of the plant is illustrated by a layout plan.

The system of a solar heating plant installed in single-family house in Deizisau near Esslingen is described. Heat is emitted by a floor-radiator combination. On the roof, there is a collector area of about 16 m². Days without sunshine are bridged by two heat accumulators, the larger of which (70 m³) is installed underground in the front yard of the house.

An operational summary of how the solar energy system installed at Aratex Services, Inc., an industrial laundry located in Fresno, California, performed during the report period is provided. This analysis is made by evaluation of measured system performance and by comparison of measured climatic data with long term average climatic conditions. Performance of major subsystems is also presented to illustrate their operation. Included are: a brief system description, review of actual system performance during the report period, analysis of performance based on evaluation of meteorological load and operational conditions, and an overall discussion of results. Monthly values of average daily insolation and average ambient temperature measured at the Aratex site are presented. Also presented are the long-term average monthly values for these climatic parameters. The Aratex system collected an average of 67 million BTUs of solar energy per month. The available solar radiation was 75 percent of the long-term average. The use of both a solar energy and heat recovery system at Aratex has combined to reduce the total load of a system without heat recovery by approximately 45 percent. The solar energy system alone contributed 16 percent of the total hot water load at the site. Damage to the Lexan covers on 14 of the total 140 collectors was reported. This damage is believed to have been caused by winds.
A summary of the September 1977 to May 1978 operation of the Radian Corporation Solar Energy System is presented. This system is designed to provide space heating and cooling for approximately 700 ft² of office and laboratory area in an Austin, Texas office building. Presented are results of an evaluation of measured system performance and a comparison of measured micrometeorological data with long-term average conditions. Performance evaluations of each major subsystem are also presented. Included are: a brief system description; review of actual system performance during the report period; analysis of performance based on evaluation of climatic, load, and operational conditions; and an overall discussion of the results of analysis. Also presented are results of a special study of the Radian collector array subsystem. During the periods September and October 1977, and December 1977 through May 1978, the solar energy system at Radian provided 1.61 million BTUs of the 12 million BTU demand for space heating. During this time, the solar energy system provided none of the 46.2 million BTU demand for space cooling. This measured performance of the solar energy system was less than that expected based on the performance evaluation and the meteorological conditions. Primary reasons for this level of performance are problems attributed to the collector array tracking mechanism throughout the report period and excessive energy losses from the storage tank prior to January 1978.

A summary of the February to May 1978 operation of the Terrell D. Moseley solar energy system is presented. This system is designed to provide space heating and domestic hot water preheating for approximately 1780 ft² of office area in a Lynchburg, Virginia office building. Presented are results of an evaluation of measured system performance and a comparison of measured micrometeorological data with long-term average conditions. Performance evaluations of each major subsystem are also presented. Included are: a brief system description; review of actual system performance during the report period; analysis of performance based on evaluation of climatic, load, and operational conditions; and an overall discussion of the results of analysis. Also presented are results of a special study of actual versus expected performance of the Terrell D. Moseley Solar Energy System. During the report period the Terrell D. Moseley Solar Energy System provided 13.6 million BTUs of the 18.1 million BTU demand for space heating. The 74 percent solar utilization was greater than the 70 percent expected. Solar energy for space heating was available 100 percent of the time.
The design and operating characteristics of all commercial and federal residential solar heating and cooling systems and the structures themselves are described. Also included are available pictures of the buildings and simplified solar system diagrams. A list of nonfederal residential installations is provided.

Solar Heating System Installed at Lynchburg, Virginia

Moseley (Terrell E.), Inc., Lynchburg, VA

A detailed design report for a retrofitted solar heating and cooling system for a 1780 ft² office building is presented. The system is composed of a 400 ft² flat-plate collectors, a 2000-gallon storage tank, a gas auxiliary boiler, a duct distribution system utilizing a hot water duct coil and water-to-air heat pump, and a hot water preheater. The control system, data acquisition system, technical data, and maintenance procedure are discussed. Detailed specifications, circuits, and drawings for the components are included.

Solar House of the Eindhoven University of Technology

Technische Hogeschool Eindhoven, Netherlands

The solar heating system, the house design, the research program and measuring system, and the performance of the solar heating system are described briefly. Color photographs of the house and sketches of the components are included. The collectors have plates designed as one-piece radial finned aluminum tubes. There is sensible heat storage heat with a water tank in the system.

Solar Housing: A Reality For Builders

Prof. Build. p. 107-116 June 1976

Twelve homes which demonstrate solar energy as a realistic alternative are discussed briefly. These homes are mainly located in the American southwest, midwest, and northeast where either energy costs or climatic conditions make solar energy competitive. Various systems for the custom home, multiple dwellings, development (tract) home, and prefabricated home markets are illustrated. Solar system costs ranged from $1500-20,000 for a simple hot water and space heating application to a total home system including swimming pool heating and air conditioning. An appendix lists suppliers of solar systems.

The Solar System Field Test Takes Year to Correct Snags

Multihousing News V 12 No. 7 p. 20-22 July 1977

Four new townhouses were solar heated with $40,000 government grant and $16,000 in funds from the urban investment and Development Company. The experimental installation program has taken a year to de-bug and is ready for cost-effective monitoring for the winter of 1977. The system was designed by Ecosol, Ltd. of New York City. The collectors were made by Owens-Illinois, Inc. The system will supply 60 percent of the space heating needs and most of the domestic hot water requirements. The system has a conventional cooling system. Automatic instruments will monitor and record the performance of the system. Some of the problems encountered include leaks in the solar system where it is linked to the piping, replacement of the white roof shingles, and basement leaks due to freezing. Insulation in the ceiling was increased from 6 to 12 inches. Four compressors failed and were replaced. Heat pumps were found to use excessive amounts of energy so the thermostatic controls were lowered. With the onset of warm weather, the large amounts of heat being generated produced steam that was discharged through the vents in the roof. The engineers are working on ways to alleviate this problem. Part of their problems are believed to be due to the fact that there are no standards for solar equipment. United has also learned that regular building tradesmen can be used for solar installation.
ST79 A30039 Solar Plant With Heat Pump and Waste Heat Utilization

Baier, K.
Mitteilungsbl. Dtsch. Ges. Sonnenenergie V 2 No. 6 p. 40-41 Nov. 1977 In German

An energy supply plant for a workshop and residential building is described. The already existing heating system was extended by a solar plant with heat pump while at the same time making use of the process waste heat of the welding facilities. Apart from this, a waste oil combustion plant was included in the overall concept. The costs for the extension amounted to DM 200,000. During the first year of operation more than 20,000 l fuel oil were saved.

Philadelphia, PA
Avail:NTIS, COO-4048-78-1 p. 126 March 1978

A solar space heating demonstration project is reported. It describes an integrated system providing solar energy space heating for a 9982 ft² newly built, one-story building. The building is located at 966 Matlack Street, West Goshen Township, Chester County, Pennsylvania. The office part of the building is heated by solar assisted water-to-air heat pump units. The storeroom part of the building is heated by an airhandling unit, containing a water-to-air coil. Solar energy is expected to provide 62 percent of the heating load, with the balance provided by a back-up electric boiler. The system includes 1900 active ft² of flat-plate solar collectors, and a 6000-gallon above-ground storage tank. Freeze protection is provided by a gravity drain-down scheme combined with nitrogen pressurization in a closed circuit.

ST79 A30041 Thermal Performance of a Building and Two Flat-Plate Collector Systems

Colorado State Univ., Ft. Collins, CO
Avail:Univ. Microfilms Order no. 78-20,869 p. 284

A study of the thermal performance of a 71.3 m² (768 ft²) liquid coolant collector, and a 67.1 m² (722 ft²) air coolant collector was performed from thermal performance data that were measured and recorded for each system. The liquid collector is found to operate at 28.3 percent average efficiency (based on all-day calculated efficiency), and the air collector is found to operate at 32.5 percent efficiency. The actual performance of the two collector systems was compared against predicted performance calculated from the energy equation model which is based on the Bottel-Whillier-Bliss equation, and the results indicate that the actual performance is lower than the prediction by 32 percent for the liquid collector and lower by 27 percent for the air collector.

ST79 A30042 Thermal Performance of the Aratex Services, Inc. Solar Energy System

Int. Business Machines Corp., Huntsville, AL

The International Business Machines Corporation is contributing to the National Solar Data Program of the Department of Energy by monitoring, evaluating, and reporting the performance of designated solar energy systems. The Aratex Services, Inc. solar energy system for preheating process water in an industrial laundry in Fresno, California and its modes of operation are briefly described, and a performance evaluation of the system is presented. The evaluation is based on comparison of predictions of climatic, load, and operational conditions with those measured at the site. The technique for determining the thermal performance is also presented. Associated documentation is described and seasonal as well as typical monthly data are presented. These data are then briefly analyzed to produce an evaluation of the system performance.

ST79 A30043 Thermal Performance of the Perl-Mack Enterprises, Inc. Solar Energy System

Int. Business Machines Corp., Huntsville, AL
Avail:NTIS, SOLAR/191-78/21 p. 13 July 1978

The Perl-Mack Enterprises, Inc. solar energy system in Denver, Colorado, and its modes of operation are described briefly and then a performance evaluation of the system is presented. The evaluation is based on comparison of predictions of climatic, load, and operational conditions with those measured at the site. The technique for determining the thermal performance is presented. These data are then briefly analyzed to produce an evaluation of the system performance.
The drain-down system uses flat-plate collectors with water as the heat transfer fluid. When the system drains, nitrogen gas fills the collectors to prevent corrosion. Heat is stored in two water tanks with electric heat for backup. There is a delayed waste water outlet which heats the basement floor. Window insulation is provided by indoor fitted flexible and foldable window screens of cellular plastic. The house, the heating system, and its components are shown and described. Environmental and performance data are included.

A solar space heating demonstration project is reported. An integrated system is described providing solar energy space heating for a 9982 ft² newly built one-story building located at 966 Matlock Street, West Goshen Township, Chester County, Pennsylvania. The office part of the building is heated by solar assisted water-to-air heat pump units. The storeroom part of the building is heated by an air-handling unit, containing a water-to-air coil. Solar energy is expected to provide 62 percent of the heating load, with the balance provided by a backup electric boiler. The system includes 1900 active ft² of flat-plate solar collectors and a 6000-gallon above-ground storage tank. Freeze protection is provided by a gravity drain-down scheme combined with nitrogen pressurization in a closed circuit.

The solar energy system of a one-family house is described. With a collector surface of 30 m², it is used for space heating and service water heating. The collectors heat a 3000-l tank. Heating plates are used for space heating. When a certain storage temperature has been reached, the whole heating system is switched to solar energy utilization. If the storage temperature is not high enough, the oil heating is automatically switched on again. The collector circuit is filled with a synthetic heat carrier oil.

The solar system installed was a retrofit to the six-story area health and education facility. The retrofit consisted of adding a hydronic space and domestic hot water heating system with underground storage to the system. The collector array consists of 171 General Electric type FP collectors with single Lexan cover at a cost of $49,590 for the 3950 ft². The calculations indicate the system should provide 52.5 percent of the total yearly energy requirement for heating which is approximately 709 MMBTU per year. This breaks down to approximately 39.5 percent of the space heating requirements and 78.6 percent of the domestic water requirements. There is a 6000-gallon steel storage tank.

A solar air heating system with evaporative cooling is described using 440 ft² of vertical flat-plate nonselective air heater with a long horizontal flow path. A 17-ton rock bed is used for storage along with the 1.5-inch adobe walls. Foam insulation protected by stucco exterior is used to improve heat retention.
This final part of the report deals with multivalent heating systems in practice. A building consisting of prefabricated parts was equipped with a heating system of this type; convectors were used for central heating while the swimming pool was equipped with a floor heating. The functions of the system components are described: heat pump, solar collector, collector system, oil-fired heating boiler, automatic control. The capital investments for a multivalent heating system are higher than with an oil-fired heating, but these costs are made up for by considerable savings in the operating costs. Solar energy utilization in solar heating systems yields the following positive results: energy savings, economy, no environmental pollution, comfort, safety.

The building has approximately 7000 ft² of worship center and an additional 4000 ft² of office and miscellaneous area. A solar air collector system is described for space heating and domestic hot water preheating to augment the hot water heating produced in an electric boiler. There are 1404 ft² of flat-plate air collectors and 700 ft² of rock bed storage.

The Park Commission's 18,000 ft² Environmental Education Center's solar heating system is described. It has 3105 ft² of aluminum flat-plate collectors with selective coating and 6000 gallons of hot water storage 3 to 4 feet underground in two insulated steel tanks. The system heats, cools, and heats domestic hot water.

A solar cooling and domestic water heating system for a 70,000 ft² two-story elementary school building for Dade County, Florida is described. The building is highly insulated and partially covered with an earth berm; most fenestration is shaded; and internal heat generation has been lowered. The system uses 18,000 to 20,000 ft² of high-performance black chrome coated flat-plate collectors and three 20,000-gallon steel heat storage tanks buried in the earth berm.

A solar heated house was built by Steve Brown and his wife with assistance from a local architect and Total Environmental Action, an engineering firm. Considerations were given to cost, efficiency, and aesthetics. The storage tank is made of poured concrete and insulated with styrofoam. The capacity of the tank is almost 6000 gallons. They decided on a radiant hot water system for use with their flat-plate collectors, in addition to a conventional oil furnace backup. They decided on a trickle-type collector after reading Thomason's Solar House Plans, and built it themselves. The final cost for the entire solar system was approximately $10,000. The anticipated payback period is about 15 years.
Austria's First Solar Hotel, 96 m² Collector Surface Saves Each Summer Season Some 40,000 kWh Energy

Brunner, R.
In German

A solar plant for the water heating in a hotel is described. A 96 m² collector surface saves about 40,000 kWh/a energy. Assuming an energy price increase of 10 percent per annum, the plant would have an amortization period of about eight years.

Solar Energy Saves Annually 5000 L Heating Fuel Oil; Water and Additional Heating in Simbach/Inn

Brunner, R.
Mitteilungsbl. Dtsch. Ges. Sonnenenergie V 2 No. 5 p. 33 Sept. 1977
In German

A solar energy plant is described; the collector surface has 18 m². The plant meets the major part of the heat consumption for water heating and supplies in the interseason part of the space heating. The solar energy converted into heat is stored in a 600-l tank. All in all, the plant is to save about 5000-l heating fuel oil per annum, i.e., some 45 percent of the overall heating fuel oil consumption. The plant costs approximately DM 20,000.

Philips Experimental House

Philips GmbH Forschungs laboratorium, Aachen, Germany
Conf. on European Solar Houses, London, England
CONF-7604149 p. 1-10 April 1976

This house uses evacuated tube collectors and a 42 m³ annual storage water tank. Summer cooling is with the stored capacity of the earth. The windows are specially coated double-glass with enhanced heat insulation.

Demonstration Project: North Hampton Park Recreation and Health Center

Burgesser, B.; Orlowski, H.
City of Dallas, TX
Solar Heating and Cooling Demo. Program Contractors' Rev., V 2, Papers

The system includes 3650 ft² of flat-plate hydronic collectors, tilted at 25° from the horizontal with 6000 gallons of thermal storage and 2000 gallons of chilled water storage. The system is designed to provide 54 percent of the heating and cooling for the 8000 ft² of the building included in the demonstration. Domestic water heating is also included.

Albuquerque Animal Control Center Addition, City of Albuquerque, New Mexico

Burns, W.L.
Burns/Peters, Architects-Planners, Albuquerque, NM
Solar Heating and Cooling Demo. Program Contractors' Rev., V 2, Papers

A solar heating system is described which is active for the office area and passive for the kennel area. The office area has 650 ft² of parabolic concentrating and tracking collectors and a 1500-gallon steel storage tank. The kennel area has 425 ft² of glass clerestory window with a styrene core operable insulation panel. The storage is 480 ft³ of concrete floor and partitions. The active collectors are operated as an open-loop drain-down system.

Site One

Calthorpe, P.
Rain, Portland, OR V 4 No. 2 p. 10-11 Nov. 1977
A new four-story California state office building was designed in Sacramento. The building's thermal mass was used to assist cooling. A combination of shading, lighting, and insulating techniques were used to reduce the energy demand. Another energy efficient strategy used was better lighting and low level ambient lighting supplemented by natural daylight. A central atrium is used as a vestibule, preheater, and cooler for building ventilation, lighting, dining, and a resting place. Graphs are included of the heat load in the winter months and summer time, as well as the building's capacity for absorbing heat.

ST79 A30060 Operation of a Solar Heating and Cooling System in a Full-Scale Solar Building Test Facility

Carr, B.C.
NASA, Hampton, VA
Solar Heating and Cooling Demo. Program Contractors' Rev., V 2, Papers

The Solar Building Test Facility (SBTF), at Langley Research Center, Hampton, Virginia, became operational in early summer 1976. Its purposes are to: (1) test system components which include high-performance collectors; (2) test performance of complete solar heating and cooling systems; (3) investigate component interactions; and (4) investigate SBTF consists of a 50,000 ft² office building modified to accept solar heated water for operation of an absorption air conditioner and for a baseboard heating system. A 12,600 ft² solar flat-plate collector field with a 30,000-gallon storage tank provides the solar heated water. A description of the system and the collectors selected is given, along with the objectives, test approach, expected system performance, and some operational results. Typically, the solar energy system has provided 60 percent of the hot water energy required by the absorption chiller for cooling and 90 percent of the heating energy. Best operating temperatures for the cooling system run between 185 and 205°F. Presently, seven different types of flat-plate collectors are being tested in the solar field. One hundred and fifty temperature, pressure, and flow points are measured and recorded every five minutes during the operating day and once per hour at night.

ST79 A30061 Solar Heating and Cooling of Mount Rushmore National Memorial Visitor Center

Chiang, C.W.
South Dakota School of Mines and Tech., Rapid City, SD
Solar Heating and Cooling Demo. Program Contractors' Rev., V 2, Papers

This is a solar retrofit of Mount Rushmore National Memorial Visitor Center at Keystone, South Dakota, where over 2 million tourists visit each year. The visitor center has a total space of approximately 6000 ft². The solar system is designed to furnish approximately 45 percent of heating for the total facility, and approximately 53 percent partial cooling of the 2000 ft² observatory room. There are a total of 112 panels of Lennex liquid circulated collectors, each 3' x 6' in dimension, with a gross surface of approximately 2000 ft². Collector panels are mounted in 5% rows on the roof of the visitor center owned by National Park Service of the Department of the Interior. There is a 3000-gallon heat storage tank.

ST79 A30062 Design Philosophy and Solar Configuration of CSI Corporate Headquarters

Christopher, J.C.
Contemporary Systems, Inc., Jaffrey, NH
Solar Heating and Cooling Demonstration Program Contractors' Rev., V 2, Papers

A combined solar heating and night air cooling system is to be integrated into a 7000 ft² structure consisting of a two-level office section with extensive hybrid systems utilization and a production section with a large air-type active array comprising the south wall of the structure. The system has 1200 ft² of collector and two 1100 ft³ heat storage units, each containing 1.08 x 10⁶ pounds or rock with a thermal mass of 21,600 BTU/°F.

ST79 A30063 Commercial/Industrial Applications Spur Solar Development

Comstock, W.S.
Ashrae J. V 19 No. 11 p. 32-34 Nov. 1977
Several large commercial buildings with solar systems are examined. The first building mentioned is the La Quinta Motor Inn located in Dallas, Texas. The system supplies approximately 90 percent of the hot water for the rooms and laundry. The largest solar cooling system is located in Frenchman's Reef, the Holiday Inn, St. Thomas, Virgin Islands. The system was funded by a 75 percent grant from the Energy Research and Development Administration. In Decatur, Alabama, construction has begun on a solar heating system that will be used at a large soybean oil extraction facility. The project is also sponsored in part by ERDA. The solar panels will be used to air dry the soybeans. The largest solar powered irrigation system is located in Gila River Ranch south east of Phoenix, Arizona. The system includes a 50-HP pump capable of delivering up to 10,000 gallons of irrigation water per minute. It operates with 3500 ft² of parabolic tracking collectors.

ST79 A30064 Telex Communications, Inc. Solar Space Heating System, Blue Earth, Minnesota
Costello, F.A.
Intertech/Solar Corp., Warrenton, VA
Solar Heating and Cooling Demo. Program Contractors’ Review, V 2, Papers

A hydronic solar heating system is described using 10,550 net ft² of single-glazed black chrome flat-plate collectors and a 20,000-gallon steel storage tank. A drain-down system is used.

ST79 A30065 Terraset
Davis, J.L.
Ashrae J. V 20 No. 2 p. 47-48 Feb. 1978

A 69,000 ft² school building that is covered by three to four feet of earth is described. The solar heating and cooling system employs nonconcentrating, evacuated tubular-type collectors which can efficiently produce up to 240°F water. The primary chilled water system consists of two absorption chillers, a reciprocating chiller with a double-bundle condenser, and three 10,000-gallon thermal storage tanks. The heating system uses the reciprocating chiller and the solar system heat exchanger.

ST79 A30066 Underground School Gets its Energy From the Sun
James A. Federline, Inc., Gaithersburg, MD

The Terraset School at Reston, Virginia is described. The three energy-saving features of the building are: the earth cover, the heat recovery system, and the solar heating and cooling system. The solar heating and cooling system is described in some detail. This system employs evacuated tube collectors to supply water at up to 240°F to two absorption chillers, piped in series with an electrically driven reciprocating chiller to supply chilled water for cooling the building. The solar heated water is also used directly for heating.

ST79 A30067 Santa Clara Community Recreation Center Solar Heating and Cooling Project
Davis, J.N.
Solar Heating and Cooling Demo. Program Contractors’ Rev., V 2, Papers

The solar system used 7095 ft² of double-glazed selectively coated copper absorber solar collectors. Cooling is provided by two 25-ton Arkla lithium bromide absorption chillers. Storage consists of a 10,000-gallon hot water tank and a 50,000-gallon cold water tank. Computer simulations indicated that the system would provide 84 percent of the center's heating requirements and 65 percent of the cooling needs. A complete fresh air economizer cycle is incorporated into the cooling system design. The building has been occupied since June 1975 and the solar system became fully operational in April 1977. During the intermediate period, the center has been heated and cooled using the backup system.
This facility now under construction will utilize 72 General Electric evacuated-tube liquid collectors, creating 1068 ft² of effective collector area, which will heat in an 1100-gallon thermal energy storage tank. Energy will be drawn from the tank as required to provide space heating by direct transfer to the supply air of the building environment. If cooling is required, the hot water from the storage tank will be used to fire four-staged, three-ton Arkla absorption chillers, which in turn cools the supply air. The auxiliary energy source is a conventional natural gas fired boiler. The solar system, at a cost of approximately $94,000, is expected to provide 75 percent of the annual cooling load, 47 percent of the heating load, as well as 95 percent of the domestic hot water.

The solar heating and cooling hydronic system of this 32,000 ft² building has 10,360 ft² of selectively coated flat-plate collectors augmented by 10,800 ft² of reflectors and three 15,000-gallon steel tanks. Some findings regarding the performance of the system and of selected subsystems and components are discussed.

A solar assisted heat pump system is described using 5000 ft² of double-glazed flat-plate collectors and a 20,000-gallon steel tank for storage. The building is a four-story, 75,000 ft² building. The heat transfer fluid is a 5C percent by weight solution of ethylene glycol.

Two years ago, the United States Air Force Academy developed a solar test house to investigate the application of solar energy systems to a typical domestic dwelling. The progress of the solar facility and the lessons learned in the operation of the systems are discussed.

A solar heating system for the N.A. Cordova adobe ranch house in northern New Mexico has been designed and its performance simulated by an energy system simulation computer program. The system consists of flat-plate collectors mounted on the roof of the house; a gravel thermal storage unit located in the basement; a fan to force air through the collectors, storage unit, and house; ducts; and system controls. The collectors are constructed of corrugated steel or aluminum roofing sheet, two glass or transparent plastic cover sheets, and bottom insulation. Air, which is blown over both sides of the corrugated sheet, gains energy in the collector and deposits it in the storage unit and in the house.
A30077

GE's Boston School Experiment

Engholm, G.
GE Corp., Philadelphia, PA
Solar Heating, Cooling Demo. Program Contractors' Rev., V 2, Papers

A hydronic solar heating system is described using 4600 ft² of flat-plate collectors of aluminum rollbond with Lexan covers. The storage is 2000 gallons of water. The system provides 52 percent of the space heating. Problems with the system and steps taken are listed.

ST79 A30074 Solar System for Radisson Plaza Hotel

Erickson, D.D.
Solar Heating, Cooling Demonstration Program Contractors' Rev., V 2, Papers

This project consists of a tw-prt solar system which will provide a significant percentage of the domestic hot water heating requirements and ventilation air heating for a hotel in downtown St. Paul, Minnesota. The hotel is a major convention center of 250 rooms in a 16-story tower and meeting space and restaurant consisting of a total gross area of 190,000 ft². The solar system consists of two parts, the first part being 5000 ft² of liquid collector, whose primary function is to provide heating for the domestic water system. The other system is approximately 3000 ft² of air collector, which will provide heating primarily for the ventilation air of the guest rooms in the tower. These two systems are interconnected so that either can provide additional heating for the other when its own demands are met. The combination of the two systems will provide approximately 55 percent of the hot water and ventilation air heating demands for the building. The total cost for the system, including design and administrative expenses, is estimated at $400,000. The collected energy will provide a 16.8 year payback based on an annual 10 percent fuel escalation cost.

ST79 A30075 Design of a Low-Energy House In Denmark Heated by a Combination of Solar and Wind Energy

Esbensen, T.V.; Strabo, F.

The paper describes the project for a low-energy house constructed in Skive, Jutland, Denmark. With energy conservation arrangements such as well-insulated structures, mobile insulation of the windows, and heat recovery in the ventilating system, the heat requirement for space heating is calculated to 6000 kWh per year. The energy system consists of a 13-m² flat-plate solar collector integrated into the roof structure, a wind rotor with a coated area of 25 m² and a water storage tank with a capacity of 4 m³. The storage tank is provided with a water brake driven by the wind rotor. This energy system supplies the house with 7200 kWh, which is 67 percent of the total heat requirement for space heating and hot water supply.

ST79 A30076 Dimensioning of the Solar Heating System in the Zero Energy House in Denmark

Esbensen, T.V.; Korsgaard, T.V.

The zero energy house consists of two "living boxes" of 60 m² each, separated by an unheated glass-roofed atrium of 70 m². The south facing upper vertical part of the atrium contains a flat-plate collector of 42 m². An insulated storage tank of 30 m³ is buried in the ground just outside the atrium.

ST79 A30077 Supplemental Solar Heater for Egg Production

Esmay, M.L.; Hall, F.W.; Flegal, C.J.; Sheppard, C.C.; Zindel, H.C.

Solar energy utilization for the supplemental heating of egg production housing in the northern states during the winter months is being investigated by the Agricultural, Engineering and Poultry Science Departments of Michigan State University. The objectives...
of the project are to maintain 70 to 75°F house temperatures, increase feed efficiency, maximize in-house excreta drying, and minimize undesirable odors. A low-cost flat-plate solar collector was constructed to provide supplemental heating for a 5000-bird poultry laying house in Michigan.

ST79 A30078 Solar Heating for LSU Field House

Evans, W.J.
Louisiana State Univ., Baton Rouge, LA
Solar Heating, Cooling Demo. Program Contractors' Rev., V 2, Papers

A solar space and water heating system is described using 5560 ft² of selective flat-plate collectors and a 10,000-gallon steel storage tank. The system is expected to meet 34 percent of the annual load.

ST79 A30079 Radian Corporation's Solar Demonstration System

Feller, D.W.
Radian Corp., Austin, TX
Solar Heating, Cooling Demo. Program Contractors' Rev., V 2, Papers

A hydronic heating and cooling system is described using 350 ft² of concentrating and tracking Fresnel lenses. The fiberglass storage tank selected has a 1500-gallon capacity. The system provides approximately 80 percent of the heating load and 50 percent of the cooling load for the portion of the office building it services in Austin, Texas.

ST79 A30080 Town of Concord, Massachusetts Solar Energy Project, Municipal Light Plant Building

Flynn, P.J.; Hartwell, D.W.
Town of Concord, MA
Solar Heating, Cooling Demo. Program Contractors' Rev., V 2, Papers

A space heating system is described using 1932 ft² of air-type flat-plate collectors and 45 tons of rock in a masonry storage bin. The system is expected to provide 75 percent of the heating load for the 8400 ft² building.

ST79 A30081 City Dwelling Goes Solar

Forster, D.
Alternative Sources Energy No. 25 p. 15-19 April 1977

In Minneapolis, Minnesota a 50-year-old home is being converted to a self-sufficient solar home. The Christophersons hope their system will provide 80 to 90 percent of their heating needs. The system will use a roof-mounted air system, insulated shutters, and extra-thick insulation throughout the house. Their roof is pitched 55° to the south and 35° to the north. An addition to the house has a large storage of well-rounded stones that is 20 x 24 feet and extends five feet under the ground. Within the rock storage are two layers of four-inch diameter sewer tile that serve as heating ducts. Temperatures within the rocks are expected to reach 150°F. Rockfill was added along the south-facing wall to eliminate further heat loss. The house has a wood foundation instead of concrete. The north-facing roof has an R-value of 42; in the walls and elsewhere it will be 22. The main insulation material is cellulose. For the future, a computerized monitor is being devised for the rockpile and the earth outside.

ST79 A30082 Project Description: Solar Heating, Cooling, and Hot Water: Arts Village Complex, Hampshire College, Amherst, Massachusetts

Frissora, J.
Solar Energy Assoc., Andover, MA
Solar Heating, Cooling Demo. Program Contractors' Rev., V 2, Papers
CONF-771229-P2 New Orleans, LA Dec. 5, 1977

A hydronic heating, cooling, and hot water system is described using 5000 ft² of selectively coated evacuated tube collectors and two 5000-gallon hot water storage tanks and one 10,000-gallon cold water storage tank. The energy conservation features, load profiles, systems operation, and control systems are described.
A portable hot water and space heating hydronic solar system is described using 945 ft² of selectively coated copper flat-plate collectors. There is a 5000-gallon steel tank for storage.

Sverdrup and Parcel were commissioned by the Army Corps of Engineers to design a school for the Saudi Arabian government. The solar heating potential was found to be very good in Saudi Arabia due to the extremely clear sky. The design heat load was 36,000 gallons per day of domestic hot water and a winter time space heating load of an equivalent amount. Passive designs helped to make the project economically feasible. Energy efficient features were integrated into the architectural design of the building. A collector design with a selective surface and a single cover glass was found through a computer model to be the most cost effective. Detailed descriptions are given of the space heating and hot water systems. Schematic drawings of the different types of systems are included in the article. The cost effectiveness was estimated on a 20-year life cycle cost basis. Seventy percent of the heating load is supplied by the solar heating system. The 70 percent breaks down into 60 percent hot water needs and 40 percent of the space heating. The system is considered usable for a total of 30 to 35 years.

The 3300 ft² welcome station is to be retrofitted with a solar heating and cooling system. The system has 2720 ft² of concentrating Fresnel lens collector with selective absorber. The storage system has 6000 gallons of hot water and 6000 gallons of chilled water.

A hydronic heating system is described using solar-augmented heat pumps for a 9800 ft² office and warehouse building. There are 1900 ft² of single-glazed selective copper flat-plate collectors with water as the heat transfer fluid. A 6030-gallon steel tank is used for storage. Problems encountered are indicated.
The solar heating system is a hot air system that heats the school's new gymnasium and preheats water for use in the adjoining locker rooms. One hundred and twenty-eight flat-plate collector modules provide 2496 ft² of collector area. An insulated concrete box 8' x 10', located under the collector and containing about 65 tons of washed river gravel, provides heat storage. Above the rock storage box is a 5000-CFM air handling unit. Air is distributed to the gymnasium through overhead ductwork and a series of double deflection registers. The system heats water for the locker rooms by means of a heat exchanger built into the ductwork. Water stored in the two 120-gallon glass-lined insulated tanks serves as preheated water for a fast recovery electrical water heater. Backup and supplementary heat for the gymnasium is furnished by two 250,000-BTU/hr propane heaters mounted in opposite corners of the building. It is estimated that the system will provide 75 percent of the heating needs of the recreation facility. Total cost of the solar heating system, excluding costs associated with the installation of an extensive data acquisition system, was about $93,000.

A classroom area of 37,200 ft² is to be heated by solar air heaters. The system provides for preheating domestic hot water. There are 8034 ft² of flat-plate collectors and 4620 ft³ of rock heat storage. The technical problems encountered are discussed.

The solar plant supplies some of the energy required for floor heating, water heating, and swimming pool heating. The collector has a surface of 18 m²; 3800 l heating fuel oil have been saved in one year's operation. There is a water tank of 450 l. The cost of the plant amounted to about 16,000 DM.

Some of the detailed design and construction problems are reported. The following are described: integration of the collector into the roof structure, storage tanks, pipework and heat exchangers, monitoring arrangements, and summary of performance.

The two-story structure of approximately 10,000 ft² was retrofitted for solar heating and cooling. The hydronic system used 5000 ft² of double-glazed flat-plate collectors with selectively coated copper absorber plates and reflectors for one group of collectors. A 12,000-gallon steel storage tank was used.
ST79 A30094 Solar Energy System Retrofit

Hornak, J.P.; Knight, K.
Veteran's Administration, Washington, D.C.
Heat., Piping Air Cond. V 50 No. 1 p. 87-89 Jan. 1978

An existing research building at the VA's Wilmington, Delaware hospital was chosen for the retrofit. The system consists of 5000 ft² of double-glazed collectors with selectively coated copper absorber plates mounted at 40°; a reflector mounted at an angle of 30°; a 12,000-gallon storage tank; a hot water coil to provide winter heating; an absorption chiller to provide summer cooling; and a comprehensive data recording system. The heating and cooling modes of the system operation are illustrated. A drain-down system was selected to provide freeze protection.

ST79 A30095 Solar Air Conditioning, Heating, Hot Water, and Pool Heating System for the Brandon Life Clinic

Hudson, W.T.; Williams, J.R.
Independent Living, Inc., Atlanta, GA

A solar system has been designed and is in the initial construction phase for solar heating, cooling, and domestic hot water for a sports-medical center and heating for Florida's largest swimming pool. The system is expected to have a payback time of about 10 years. The reasons for this are that in addition to direct heating and pool heating, solar cooling is required year round, with waste condenser heat used for swimming pool heating, so the collectors are used at nearly 100 percent capacity year round. In addition, while the building is currently in use, it was specifically designed for solar retrofit. The solar energy system for the Brandon Life Clinic will utilize a 5660 ft² copper tube-in-strip flat-plate solar collector array for the 20,000 ft² building. The system is being retrofitted to the existing building, which was designed specifically for solar retrofit. This hydronic solar system uses tap water to transfer and store heat from the copper collector array to storage tanks. Steel tanks coated on the interior with Epicon-925 epoxy provide storage for 5000 gallons of hot water for space heating and 9000 gallons of chilled water for space cooling. A 500-gallon buffer tank is also used in the circuit to reduce thermal cycling of the chillers. An Arkla-Servel Solaire-300 lithium bromide absorption chiller, rated at 25 tons for 195°F water at 90 GPM, produces chilled water which is stored in the chilled water tank.

ST79 A30096 New Energy Efficient Office Building Provides Living Laboratory

Jacobs, M.

In Manchester, New Hampshire, a federal building that is energy efficient and solar heated is presently being monitored. Government Services Administration designed the $8.7 million office structure. A sophisticated computer program was devised for analyzing and evaluating nonconventional and innovative building construction designs. The building has a cubic shape with no windows on the north side and maximum exposure on the south side. Windows are smaller than most office buildings and are double-glazed. The building also has well-insulated walls and an open landscape on the interior for maximum light use. Four variations of the heating and cooling system are located in the building along with different lighting systems for each floor. Office furniture has its own built-in lighting equipment. The solar energy system consists of 414 m² of roof-mounted collectors. The system is expected to provide 20 to 30 percent of the total energy for hot water and heating and cooling. In the next three years the system will be evaluated by the National Bureau of Standards. With this information they will be able to discover which features of the building are the most energy efficient. GSA is incorporating many of the energy saving features in other federal office buildings.

ST79 A30097 Solar Demonstration Project Animal Quarantine Facility

Jacobson, L.A.
Brookhaven Nat'l Lab., Upton, NY

No abstract available.
A solar hydronic system for space and hot water heating at Chicago's Navy Pier is described. The system uses 8000 ft² of selective-coated flat-plate collectors and 15,000 gallons of storage. The system is expected to furnish 33 percent of the space heating load and 100 percent of the domestic hot water load for the terminal building, a 36,000 ft² three-story masonry structure serving as the gateway to the east complex. The design, installation, and problems are described.

A solar hydronic system for cooling, heating, and hot water system is described which uses 3840 ft² of fixed horizontal parabolic trough mirrored roof with moving absorbers as collectors. The storage system includes a 10,000-gallon hot water steel tank plus a 10,000-gallon chilled water steel tank.

A hydronic heating and cooling system is described using 2340 ft² of double-glazed selectively coated flat-plate collectors plus reflectors. The storage system includes 8000 gallons of hot water storage and 8000 gallons chilled water storage. The solar cooling system includes a 25-ton lithium bromide absorption chiller. The backup system consists of a 100-kW electric hot water boiler and a reciprocating 30-ton water chiller.

A solar heated and cooled single-family demonstration home which is a project of the Construction Research Center of the University of Texas at Arlington is described. A battery of 42 concentrating collectors (10-foot-long, V-shaped metal troughs) is mounted on the roof. The top of each trough is covered by a curved acrylic lens, a computer-designed series of prisms which refract and concentrate the sun's rays on a black chrome covered copper tube at the bottom of each trough through which water flows and is heated. The concentrating collectors are automatically tracked so that they face the sun directly at all times during the day. The collectors can provide water at a temperature of 250°F and at a rate of 25 gallons/min (for all collectors) on a bright warm day. The house includes a heat pump which has a water-to-water system capable of functioning with solar energy assistance. In addition, an air handling system is provided that can be used with the heat pump or the absorption heating system under various optional modes of operation. A three-ton lithium bromide air conditioner is also provided and requires 55,000 BTU heat input at the rated load. Heat pump operation at times other than peak temperature is electrically powered. The home is equipped with three 1200-gallon capacity tanks to provide efficient storage of collected solar energy. Except for the heat pump and the storage tanks plus some modifications in the absorption unit, the system uses standard off-the-shelf components.

A solar hydronic system for space and hot water heating at Chicago's Navy Pier is described. The system uses 8000 ft² of selective-coated flat-plate collectors and 15,000 gallons of storage. The system is expected to furnish 33 percent of the space heating load and 100 percent of the domestic hot water load for the terminal building, a 36,000 ft² three-story masonry structure serving as the gateway to the east complex. The design, installation, and problems are described.

A solar hydronic system for cooling, heating, and hot water system is described which uses 3840 ft² of fixed horizontal parabolic trough mirrored roof with moving absorbers as collectors. The storage system includes a 10,000-gallon hot water steel tank plus a 10,000-gallon chilled water steel tank.

A hydronic heating and cooling system is described using 2340 ft² of double-glazed selectively coated flat-plate collectors plus reflectors. The storage system includes 8000 gallons of hot water storage and 8000 gallons chilled water storage. The solar cooling system includes a 25-ton lithium bromide absorption chiller. The backup system consists of a 100-kW electric hot water boiler and a reciprocating 30-ton water chiller.

A solar heated and cooled single-family demonstration home which is a project of the Construction Research Center of the University of Texas at Arlington is described. A battery of 42 concentrating collectors (10-foot-long, V-shaped metal troughs) is mounted on the roof. The top of each trough is covered by a curved acrylic lens, a computer-designed series of prisms which refract and concentrate the sun's rays on a black chrome covered copper tube at the bottom of each trough through which water flows and is heated. The concentrating collectors are automatically tracked so that they face the sun directly at all times during the day. The collectors can provide water at a temperature of 250°F and at a rate of 25 gallons/min (for all collectors) on a bright warm day. The house includes a heat pump which has a water-to-water system capable of functioning with solar energy assistance. In addition, an air handling system is provided that can be used with the heat pump or the absorption heating system under various optional modes of operation. A three-ton lithium bromide air conditioner is also provided and requires 55,000 BTU heat input at the rated load. Heat pump operation at times other than peak temperature is electrically powered. The home is equipped with three 1200-gallon capacity tanks to provide efficient storage of collected solar energy. Except for the heat pump and the storage tanks plus some modifications in the absorption unit, the system uses standard off-the-shelf components.
A project for prototype house is described which can be heated throughout the winter with no fuel energy supply, main heat source being solar energy.

ST79 A30103 Norris Cotton Federal Building, Manchester, New Hampshire Energy Conservation Demonstration Project, Retrofit Installation of Solar Collectors

Kushlan, M.J.
General Services Admin., Boston, MA
Solar Heating, Cooling Demo. Program Contractors' Rev., V 2, Papers

The system has a retrofit installation of 3320 ft² of flat-plate collectors and three 10,000-gallon storage tanks and provides 16 or 17 percent of the annual heating and cooling load. Technical and institutional problems are reviewed briefly.

ST79 A30104 Presentation For Department of Energy Solar Information Exchange Meeting, New Orleans, December 5-7, 1977, Hyatt Regency Hotel, Subject: Northview School, Howards Grove, Wisconsin

Linde, R.
Linde-Groth Architecture, Sheboygan, WI
Solar Heating, Cooling Demo. Program Contractors' Rev., V 2, Papers

The heating system for the school addition uses zoned, forced warm air. There are 2277 ft² of fixed, nonselective, two-pass air flat-plate collectors. The heat storage is a 1500 ft³ rock bin. Experience with the system is reviewed.

ST79 A30105 Contractor's Review for a New 40,000 Square Foot Hydronically Operated, Solar Heated and Air Conditioned Control Valve RPG, Facility Located in Southern New Jersey

Little, R.K.
MM Controls, Inc., Hainesport, NJ
Solar Heating, Cooling Demo. Program Contractors' Rev., V 2, Papers

The solar system is a liquid-type system and consists of three basic loops: a closed pressurized loop between a heat exchanger in the mechanical room (within the building) and the solar arrays, an atmospheric pressurized loop between the heat exchanger and the storage tanks, and a distribution loop between the storage tanks and the air handling units in the manufacturing and office areas. The solar arrays are of the tilting type which are seasonally and hourly adjustable. They consist of 6000 ft² of double glass glazed flat-plate Sunworks collectors, having a selective coating on the copper heat exchange plate and tube surface. The total cost of these arrays, in place, with their separate drive motors and associated piping is $159,902. The solar system is expected to supply 50 percent of the total annual heating and air conditioning load.

ST79 A30106 Evacuated-Tube Solar Collector: Effect of Control on Efficiency at High Operating Temperatures

Louie, W.C.; Miller, D.C.
ASHRAE J. V 20 No. 5 p. 39-42 May 1978

Data are presented illustrating the operation of an evacuated-tube solar collector mounted on the penthouse of SWAP's headquarters in downtown Detroit, Michigan. Problems in retaining system efficiency at elevated operating temperatures point to the importance of systems control strategy. The system consists of the modules, circulating pump, flow meter, air separator, compression tank, thermal storage tank, piping and control valves. The load side has its own circulating pump, flow meter, and heat exchangers.

ST79 A30107 Lake Valley Firehouse Solar Project

Lucas, J.
Solar Heating, Cooling Demo. Program Contractors' Rev., V 2, Papers

A hydronic solar space and domestic hot water heating system is described using 336 ft² of flat-plate collectors and a 1900-gallon concrete storage tank. The problems involved in using a concrete septic tank for storage are detailed and the lessons learned from this are pointed out.
ST79 A30108 Buried Bookstore Saves Energy, Saves Space, Saves the View

Marcovich, S.J.
Pop. Science V 211 No. 3 p. 95-97 Sept. 1977

The design is described of the semi-underground bookstore at the University of Minnesota. A solar heating and cooling system is expected to supply more than 50 percent of the building's needs. Solar collectors will supply hot water to run an absorption air conditioner for summer cooling. Building construction is briefly discussed.

ST79 A30109 Power From The Sun

McVeigh, J.C.

Recent solar energy experiments in the United Kingdom are reviewed. An experimental domestic water and space heating system was installed in a standard terrace house; a 37 m² solar collector replaced part of the tiled roof of the house. About 70 percent of the hot water demand is met in summer months. One feature of the system is direct connection of aluminum roll bond panels to the main storage tank, with domestic hot water preheated by passing through heat exchangers in this tank. An old coach house was converted into a four-bedroom solar heated house. The whole southwestern roof was replaced with standard corrugated aluminum panels painted with an acrylic matt black paint and single-glazed with 4 mm horticultural glass. Water trickles down the channels from a horizontal perforated pipe just below the roof and is recirculated from the main storage tank. Estimates of 80 percent of the domestic water heating demand are met by the solar energy system. A solar heated house satisfying normal Building Society requirements employs a closed circuit system using a 30 percent glycol/water solution operating through conventional heat exchanger coils at the bottom of a standard 75-gallon combination cylinder for the domestic hot water. A 4000-liter spherical space heating storage tank is buried outside the house. A solar space heating/domestic hot water system was installed in an exhibition hall with a total heated area of 200 m². A double-glazed trickle-type collector contains a 70 m² main section inclined at 34° to horizontal and a 25 m² secondary section inclined at 70° to horizontal for better use of winter sunshine. The main heat storage tank of 100 m³ capacity is divided into two temperature zones, with a fast response tank of 400-gallon capacity. The space heating consists of 10 mm diameter nylon pipe buried in the concrete floor of the building and connected directly to the heat storage tanks.

ST79 A30110 First Solar Heated Workshop in Austria, In Gallneukirchen Up to 8000 Liters Liquid Gas is Saved Annually

Mittasch, E.
Mitteilungabl. Dtsch. Ges. Sonnenenergie V 2 No. 6 p. 39 Nov. 1977 In German

The concept of a solar heated workshop is described. The collector surface has 48 m². The basement under the floor with a storage capacity of 100 m³ serves as a store. Water is heated via a solar boiler with 500 l contents. The plant cost all in all DM 35,000. It has been calculated that it will make a saving 8000 kg liquid gas possible.

ST79 A30111 Solar Plant and Large-Scale Store for Office Buildings, Operational Experience Confirms: 42 M² Collector Area and A 15 M³ Store Save 6800 L Heating Fuel Oil Annually

Mittermeier, F.
Mitteilungabl. Dtsch. Ges. Sonnenenergie V 2 No. 5 p. 27-28 Sept. 1977 In German

A solar energy plant is described which, together with a heat pump, covers about 50 percent of the energy used so far for space heating and hot water supply. Two 7500-liter water tanks serve as the energy store. The plant costs all in all DM 38,000.

ST79 A30112 Army and Air Force Exchange Service Shopping Centers Solar Heating and Cooling Program

Moffat, J.L.; Bridgers, F.; Knebel, D.
The project involves the design and construction of a solar energy system that would meet a large part of the heating and cooling requirements of an Air Force base exchange shopping center. The center consists of a large retail sales area, concession shops, mall, administrative offices, and storage facilities. The solar energy system will be interfaced with a backup heating and air conditioning system capable of meeting design requirements of the facility. The solar system includes 12,500 ft² of double-glazed liquid flat-plate collectors and 9,000 gallons of water heat storage. The total solar cost is $616,613 for the 62,000 ft² shopping center. The system selected is comprised of central equipment including water chillers (absorption and reciprocating), outside cooling tower, pumps, expansion tanks, roof-mounted flat-plate solar collectors, heat exchangers, water softener, domestic hot water boiler and storage tank, interconnecting piping, central station low velocity multizoned, single-zone air handling units with economizer/mixed air controls, return relief fans, distribution ductwork, water storage tanks, and heat recovery units.

ST79 A30113 Solar Assist: Building and Domestic Hot Water Heating, Yale Elementary School, Aurora, Colorado

More, D.H.
More-Combs-Burch, Denver, CO
Solar Heating, Cooling Demo. Program Contractors' Rev., V 2, Papers

The new elementary school building has 2000 gross ft² of flat-plate collectors. The solar hydronic loop with 40 percent glycol solution circulates through a tube and shell heat exchanger in the roof return line from the building space to two 13,900-gallon storage tanks underground adjacent to the mechanical room. Tanks are insulated with four inches of foamsulate and six inches of sand. Top of tank is three feet below the ground on south side of building. Tanks are steel with interior coating. The tank water supply passes through a tube and shell heat exchanger to heat domestic water when not used for building heat. The tank pumps may supply tank water directly to air handling unit coils in the building space. Then the hot water return temperature is greater than the tank temperature, the hot water return supplies heat to the tanks. An electric standby boiler provides heat when storage or building heat recovery by heat pump cannot meet the heating load. Heat pump coefficient of performance heating is 4.5 and for cooling is 2.8, including air cooled condenser.

ST79 A30114 Solar Assist: Heating and Cooling Retrofit, U.S. Postal Service Building, Boulder, Colorado

More, D.H.
More-Combs-Burch, Denver, CO
Solar Heating, Cooling Demo. Program Contractors' Rev., V 2, Papers

The solar system retrofit to the Boulder, Colorado Post Office is a two-fluid loop, hydronic to warm air solar assisted heating system. A solar fired absorption air conditioning system is added to the conventional vapor compression system. The existing gas-fired low-pressure steam heating system is placing new steam auxiliary heating coils with hot water solar coils in the hot deck and then placing new steam auxiliary heating coils in the duct's zone downstream from the air handlers. The existing perimeter fin-tube heating sections are left intact. The domestic hot water heating system has been modified by adding a solar fired preheater, pump, and mixing valve. The system has the following major components: 4140 ft² of liquid-cooled flat-plate collector, 6000 gallons of water for sensible heat storage, a domestic hot water preheater, and a 25-ton absorption water chiller operating in series with the existing vapor compression cycle water chiller.

ST79 A30115 Maine Audubon Society Gilsland Farm

Morgan, E.
Alternatives Sources of Energy; No. 25 p. 27-31 April 1977

A solar and wood heated headquarters in Falmouth, Maine was begun in October 1975. Architect George B. Terrien designed a two-story 5500 ft² frame structure. The building's southern exposure consists of 70' x 36' of collector space. Positioning of the site included a windbreak of 60 ft spruce and maples on the north side. Six inches of insulation was used in the walls, 8 in. beneath the collector and 9 in. in the roof along with triple-glazed windows and insulation beneath the slab. The system was built for a low heat demand and with a simple low-cost design. Air collectors were chosen to avoid the freezing problems arising with water systems. The 2000 ft² of air collectors were built on site with a cost of $4.50 per ft². Air passes through the collector at 1000 F with three single-horsepower fans on the southern side for pulling heat from the collectors to the 105-ton rock storage area. The designer of the system, Professor
Richard Hill estimates that the collectors should provide 60 to 70 percent of the heating needs for the building. The backup system for prolonged periods of cloudiness is provided by a wood furnace. Professor Hill estimates that three cords of wood are used to meet the heating needs for the entire winter. A Clivus Mulstrum is used to conserve water. The system's performance is monitored by the University of Maine under a grant from the National Science Foundation.

ST79 A30116 Solar Assisted Heat Pump System for Office Building

Moseley, T.D.
Terrell E. Moseley, Inc., Lynchburg, VA
Solar Heating, Cooling Demo. Program Contractors' Rev., V 2, Papers

A liquid-type solar assisted heat pump system that was retrofitted into a 1780 ft² office building is described. The space and domestic water heating installation utilized a forced air distribution system, including a hot water duct coil, as well as the heat pump, and a gas boiler for backup. The system was designed to provide 70 percent of the heating requirement by solar. The 400 ft² of collectors are single-glazed aluminum flat-plate with nonselective coating with copper water ways for a space and water heating system. Storage is in a 2000-gallon steel tank. The installed cost was $19,454.

ST79 A30117 School Heated With Solar Energy, 80 m² Collector Surface Area to Save 18,000 Liters Heating Fuel Annually in Pfaffenhofer/Idm

Mueller, F.
Mitteilungsbl. Dtsch. Ges. Sonnenenergie V 3 No. 3 p. 31 May-June 1978
In German

The author describes a solar plant which supplies hot service water to the swimming pool of a school, its hot water floor heating, and its showers. The collector surface is 80 m². The collectors are single-glazed with a selectively coated aluminum roll bonded bottom plate as absorber. There is a heat storage tank for a constant flow temperature of 36°C in all consumers. The solar plant has a power of about 65 kW. Up to 18,000 liters heating fuel oil can be saved per year. With investment costs of 60,000 DM, the amortisation time will be 11 years.

ST79 A30118 Solar Home in the Northland

Mueller, J.

A 56,000 ft² home on the shore of Lake Michigan is described. The home is 95 percent heated by the use of flat-plate solar air heaters. The collector area is approximately 1800 ft² and is used to heat a 51,000-gallon swimming pool. Some performance data for this system is described.

ST79 A30119 Custom Solar House Utilizes Hybrid Collectors

Mueller, L.

The two-story 2080 ft² of hybrid air collectors mounted at 60° on 4” x 4” redwood staging which is elevated from the roof. An 8’ x 8’ x 7½’ plywood box insulated with fiberglass holds 19 tons of typical round washed rock for heat storage. The control systems and backup systems are described.

ST79 A30120 Solar Assisted Heat Pumps For Motel Applications In La Quirra Motor Inn, Salt Lake City, Utah

Orlowski, H.; Davis, W.
Solar Heating and Cooling Demo. Program Contractors' Rev., V 2, Papers

The utilization of solar energy for system space heating in motel/hotel applications presents some unique barriers which required novel and ingenious solutions. These barriers and the solutions which were developed to solve them are reviewed. Mechanical problems associated with these applications were derived directly from the nature of the
application. The system uses 2767 ft\(^2\) of double-glazed flat-plate collectors and a solar assisted water source heat pump. The Salt Lake City project will consist of 122 rooms. It is anticipated that the system provide 25 percent of the space heating and 61 percent of the domestic hot water for a solar cost of $220,000. The heat storage is 10,000 gallons of water in two tanks.

ST79 A30121 Solar Assisted Hybrid Heat Pump

Owen, J.M.

Owen and Hayes Engng. Co., Lynchburg, VA

Solar Heating, Cooling Demo. Program Contractors' Rev., V 2, Papers

The David C. Wilson Neuropsychiatric Hospital in Charlottesville, Virginia is a 50-bed privately operated hospital. The proposed solar system will provide space heating for approximately 40 percent of the building space and domestic hot water for the entire hospital. The hydronic automatic drain down solar system is to be retrofitted into the existing building. The 2000 ft\(^2\) collector array will be installed on the existing flat roof of the building and a 5000-gallon concrete storage tank will be buried below grade adjacent to the building. The building is a one-story brick built-up roof with slab on grade construction. The solar heating system is expected to provide approximately 80 percent of the heating in the portion of the building to be solar heated and is expected to provide 80 percent of the domestic hot water. The area of the building to be solar heated is presently heated by electricity and natural gas. In this system is a dual-source or hybrid heat pump that can utilize both outside air and solar heated water as a source of heat.

ST79 A30122 Solar Energy System Design, Upton Multipurpose Center, Baltimore, Maryland

Parker, A.J.Jr.; Damon, C.W.

Mueller Assoc., Inc., Baltimore, MD

Solar Heating, Cooling Demo. Program Contractors’ Rev., V 2, Papers

A space heating and domestic water heating system is described using 3100 ft\(^2\) of single-glazed nonselective hydronic flat-plate collector and a 20,000-gallon epoxy-coated steel tank. The percent heat supplied for the 18,000 ft\(^2\) building is 64. This is a drain down system.

ST79 A30123 Arizona’s Solar State Park

Parker, J.L.

Alternative Energy Sources No. 25 p. 12-19 April 1977

The 300-acre Dead Horse Ranch State Park in northern Arizona utilizes solar heat to supply domestic hot water and heat to the restrooms. Earth berms around the sides limit winter heat losses. The system was designed by Sunpower Systems Corp. and installed for $4000. It consists of eight 10-ft long parabolic collectors that track the sun with an accuracy of 0 to 10 degrees of the sun. The troughs of the collectors are chemically treated for 85 percent reflectivity. The tracking device is accurate within one-half degree and incorporate antifreeze and high-temperature defocusing. The water is directly circulated with a 500-gallon storage tank and a continuous flow circulation pump. The water is heated to approximately 140°F and requires no pumping since the normal pressure is 60 psi in the 500-gallon tank. Funding was attained through the Arizona Solar Research Development Commission from the Four Corners Regional Commission. One feature of the construction is the cor-ten steel roof consisting of two layers. The first layer rusts and protects the steel underneath. Six to twelve inches of insulation is used in the roof.

ST79 A30124 Troy-Miami County Public Library

Pearson, R.J.

Heapy and Assoc., Dayton, OH

Solar Heating, Cooling Demo. Program Contractors’ Review, V 2, Papers

The 23,200 ft\(^2\) library is in Troy, Ohio, 40° latitude. There are 3264 ft\(^2\) of evacuated glass tube collectors for the hydronic heating system and a 5000-gallon underground steel storage tank. Calculations indicate that the installation will provide 69 percent of the heating load.
ST79 A30125 Grand Junction, Colorado DOE Solar Demonstration Project

Price, T.D.
Bendix Field Engng., Grand Junction, CO
Solar Heating and Cooling Demo. Program Contractors' Rev., V 2, Papers

The system chosen for the Department of Energy, Grand Junction Demonstration Project was added to the new 120-seat, 3000 ft² cafeteria while it was under construction in 1977. The solar system is designed to provide both building domestic hot water and space heating. The 496 ft² collectors are liquid filled using a 75 percent Sunsol 60 (propylene glycol) and 25 percent water, which transfers heat to the 750-gallon storage system through a single isolation flat exchanger. It is estimated that approximately 40 percent of the building heat requirements will be supplied by the 50 ft² collector. System costs are given.

ST79 A30126 Design Curves for a Solar Heated and Cooled Kuwaiti Home

Puri, V.M.; Malik, N.A.S.
Kuwait Inst. for Scientific Res.
Miami Int. Conf. on Alternative Energy Sources Miami Beach, FL
CONF-771203 p. 415-417 Dec. 5, 1977

No abstract available.

ST79 A30127 Solar Heating System Applied at Rademaker Corporation, Louisville, Kentucky

Rademaker, R.W.
Rademaker Corp., Louisville, KY
Solar Heating, Cooling Demo. Program Contractors' Rev., V 2, Papers
CONF-771229-P2 p. 177-181 New Orleans, LA Dec. 5, 1977

A Butler building with a total area of 10,000 ft² was constructed in 1969. The front portion of the building is office space with 1080 ft² of ground cover. The front wall of the office is brick veneer with relatively large glass area. The solar heating system described herein is for space heating and for heating domestic hot water. Two systems are employed, one a liquid heating system employing ethylene glycol through six collectors of 40 ft² each, inclined at 53°, facing south. The second system is an air collector system employing ten panels of 19 ft² each inclined at 33°, facing south. The liquid system uses a 560-gallon water tank for storage. The air system uses 110 ft³ of one-inch diameter washed river gravel for storage. The auxiliary energy employed to heat the building is natural gas.

ST79 A30128 Highlights Building Solar Energy Program

Reid, E.A.Jr.
Columbia Gas System, Columbus, OH
Solar Heating, Cooling Demo. Program Contractors' Rev., V 2, Papers

The Highlights Building is a three-story, 25,000 ft² office building located at 2200 West Fifth Avenue in Columbus, Ohio. The solar energy system currently being installed in the Highlights Building is designed to provide solar energy for space heating, space cooling, and domestic hot water applications. The collector array is the first installation of the Honeywell single-axis tracking concentrating collector. The Honeywell collector is a north/south tracking collector with a 40:1 concentration ratio. The system in the Highlights Building includes 44 collector panels arranged in 11 rows with a total field area of approximately 3000 ft². The primary loop heat transfer fluid is a Dowtherm SRI/water solution. The storage system consists of a 5000-gallon ASME pressure vessel located in an addition to the existing building. The fluid in the secondary loop and storage system is a Mogul 0-301/water solution, and the maximum temperature of the heated storage water is 220° F. The solar system for the Highlights Building was designed to provide 32 percent of the energy required for space heating, 23 percent of the energy for space cooling, and 70 percent of the energy to produce domestic hot water in the building for a total annual solar assist of approximately 30 percent. The system installed cost is estimated at $354,000 or $118/ft² of collector area.
ST79 A30129 Project SAGE (Solar Assisted Gas Energy)

Rice, J.F.
South California Gas Co., Los Angeles, CA
Solar Heating and Cooling Demo Program Contractors’ Rev., V 2, Papers
CONF-771219-P2 p. 50-52 New Orleans, LA Dec. 5, 1977

The basic SAGE system is designed to provide 70 percent of the annual hot water demand for multi-family dwellings. Two systems were built: a retrofit system and a new construction system. The basic system utilizes a heat exchanger between the solar collectors and the storage tank. This gave greater flexibility in the choice and operation of the solar collectors. One system used 1008 ft² of standard flat-plate collectors and the other 936 ft² of single-glazed, selectively coated collector. Storage is in 1200-gallon glass-lined tanks. Specifications and experiences are reviewed for each of the systems.

Ripley, C.C.; Poplin, R.S.; Allen, R.D.
Olympic Engng. Corp., Richland, WA
Solar Heating, Cooling Demo. Program Contractors’ Rev., V 2, Papers

A current project is the design and installation of a solar space heating, space cooling, and domestic water heating system in the 14,400 ft² Project Sunburst office building at Richland, Washington. The system is designed to provide 71 percent of the space heating, 97 percent of the space cooling, and most of the domestic water heating required for year-round operation of the building. An array of 6000 ft² of room-mounted General Electric flat-plate collectors supplies energy through a heat exchanger to an underground insulated 9000-gallon thermal energy storage tank. Hot water to drive the 25-ton Arkla absorption chiller in the summer, and to supply hot water directly to eight water-to-air coils in the forced air ductwork in the winter is pumped from TES on demand by eight zone thermostats. The chiller cools water in a 2000-gallon storage tank to provide cold water to the same water-to-air coils in the summer. An identical non-solar building on the same site offers the advantage of determining the solar energy contribution by comparing the electrical energy consumption of the solar building with that of the control building.

ST79 A30131 Fire Station No. 24, Kansas City, Missouri

Shaughnessy, C.M.
Midgley Shaughnessy Fickel and Scott Brohs, Inc., Kansas City, MO
Solar Heating and Cooling Demo. Program Contractors’ Review, V 2, Papers

Fire Station No. 24 consists of 8800 ft². Of this, 6000 ft² is in the apparatus bay with a winter design temperature of 30°F and 2800 ft² of living quarters with a winter design temperature of 70°F. The solar system is an air system developed by Solaron Corporation located in Denver, Colorado. The system provides for 50 percent of the annual space heating requirements. There are three arrays of collectors totaling 2808 ft². The storage system consists of a concrete box 14' x 7' x 6' tall containing 1428 ft³ or approximately 71½ tons of 3/4" to 1" diameter rocks. The total cost directly attributed to the solar installation is $130,369 or $46.42/ft² of collector.

ST79 A30132 Solar System Retrofit of Row Houses: A Proven Energy Conservation Method

Shore, S.; Lepore, J.A.; Lior, N.
Univ. of Pennsylvania, Philadelphia, PA
Conf. on Tech. for Energy Conservation Washington, D.C.
CONF-7706140 p. 180-183 June 8, 1977 Information Transfer, Inc., Rockville, MD

A demonstration retrofit project is described for a typical row house in Philadelphia for space and hot water heating using a solar system. It was concluded that it was feasible to retrofit using off-the-shelf materials and equipment. However, the cost-benefit ratio is too high on a single-row house basis.
Steven Travis designed a self-sufficient house in northern Maine with a solar pond, insulation panels for the windows, a solar oven, and solar composting toilet. The pond raises the temperature on a sunny January day from 2 to 40 and behaves like an outdoor pond in the summertime. The insulation panels are based on Steve Saar's product, "Skylids." Other sources of energy include a wind generator that turns a 12-volt, 200-watt generator. The solar pond acts as a source of food with fish farming, as well as providing humidity for the house. Design modifications are being redone for increased energy sufficiency. Drawings of the system can be ordered through the author.

Two 4' x 8' flat-plate collectors assembled from salvaged materials sit on the motor home roof. The collectors, which contain parallel copper-pipe radiators, recirculate the water by convection and hold about 1/4 gallons each. Some 1000 ft of copper tubing throughout the motor home's system circulates 150 gallons of water to heat the vehicle's interior. A pair of 30-gallon beer kegs store heated water. The motor home is well-insulated. Its owner tours the country and gives solar demonstrations.

The Ark on Prince Edward Island in Canada is described. It is considered as a bioshelter since it provides its own energy and climate for its residents. It includes its own wind-powered generation facilities and waste treatment plant. Solar ponds provide the food for the inhabitants. The Ark has two domestic hot water systems, including a 700 ft² collector for space heating and a passive warm water aquaculture facility for heating. Energy conservation techniques help to minimize the energy needs. Suggestions are made for the adoption of the biological design models. Over thirty sensors monitor the Ark for performance of energy, climatological, and biological processes. A mini-computer will be installed in the project for simulation and observation.

In 1975 several solar plants for the preparation of heating water and service water and for swimming pool heating were taken into operation for the first time. The awkward long-term storage problem was avoided in such a way, that the planners saw solar heat not as the main, but as a supplementary energy. In periods without sun, it merely serves to preheat the boiler water and the warm water. The article describes a plant of this kind for a one-family house.

The construction of a rather big house is described, the energy supply of which is partly met by solar energy. The collector has an area of 920 m², with which some 600,000 kWh thermal energy for floor and water heating are generated. Architectural measures, such as insulation, use of special windows, and walls 'e' to utilise energy efficiency.
A report is given on a solar dryer. A thermal power of maximum 1 MW is obtained with a collector surface of 1500 m² and a reflector surface of about 2100 m². The collector efficiency is about 64 to 84 percent. Air is used as heat transport medium. About 180,000 liters heating oil is to be saved per year by this plant.

A solar energy system used in the service water supply of a camping site in the Black Forest is described. The collector surface of the system is 63 m². The solar heat which is converted is stored in a storage of 16 m³. A heat recovery system is to be integrated in the supply system. The solar system cost DM 65,000. Precalculations show that the fuel oil consumption of 20,000 liters/year is reduced by 50 percent by the system.

A solar system is described which was installed in the gable of a house where the ridge of the roof runs from north to south. The installation is used for swimming pool heating, water heating, and floor heating. A storage tank with a volume of 8 m³ and a service water tank with a volume of 210 liters are integrated in the system. The collector surface is 40 m². According to the calculations, about 50 percent of the 50,000 kWh/year will be supplied by solar energy. With investment costs of 28,000 DM, the amortisation time will be 12 years.

The supply of flats in a high-rise building with the aid of solar energy is described. The collectors have a surface of 96 m². Possible savings in electric power will be about 35,000 kWh/year. Another 23,000 kWh/year are saved by heat recovery. Thus, the electric connect load for water heating could be cut from 60 kW to 15 kW. As a safety reserve for water heating, there is a 15 kW instantaneous heater.

The solar heating, cooling, and domestic hot water system is powered by 16,080 ft² of Northrup tracking, concentrating, selective surfaced collectors. The system is a retrofit system added to an existing central plant system which serves six dormitory buildings consisting of 153,712 ft² and a physical education group of 131,216 ft². It is calculated that this system will provide 66 percent of the building heat requirement for space and water heating and 5.2 percent of the total cooling load.
ST79 A30143 Collectors on a Pergola: Solution for an Installation at a Later Date in the Solar House Wettingen

Waltermann, R.
Mitteilungsbl. Dtsch. Ges. Sonnenenergie V 2 No. 6 p. 50-51 Nov. 1977
In German

In order to save fuel oil, a solar collector plant was installed in a one-family house equipped with a conventional oil heater. The plant serves for space heating and for water heating. Technical details are presented of the flat-plate collectors and heat storage. The control equipment of the plant is described as well.

ST79 A30144 Honeywell General Offices Solar System

Waters, D.E.; Block, R.E.
Honeywell, Inc., Minneapolis, MN
Solar Concentrating Collector Conf. Atlanta, GA
CONF-770953 p. 8.21-8.28 Sept. 26, 1977

A description of an advanced solar energy HVAC system presently under construction by Honeywell, Inc. is presented. The solar system will provide 82 percent of the cooling energy, 53 percent of the heating energy, and 100 percent of the domestic hot water energy for a 100,000 ft² office building in Minneapolis, Minnesota. The solar system components are described, including the parabolic trough collectors, the heating and cooling subsystems and the solar system controls. The technical rationale for the selection of the collector, the Rankine cycle turbine, the heat transfer fluids, and the thermal storage system is discussed. Annual and peak load system performance predictions are also presented.

ST79 A30145 Industry Warms Up to the Idea of Solar Heat

Weimer, G.A.
Iron Age V 220 No. 16 p. 32-33 Oct. 17, 1977

General Extrusions, Inc. of Youngstown, Ohio has 100 semi-parabolic collector panels supplying heat for the company's aluminum anodizing department's hot acid dipping process. The collectors are semi-parabolic panels with limited tracking. All parts of the plant's solar panels are aluminum except for the insulation and acrylic glazing. An oil-based heat transfer fluid is used to eliminate corrosion and protect against freezing. General Extrusions is hoping to market its system as soon as it has collected enough performance data to provide evidence of its efficiency.

ST79 A30146 Planning a Bivalent Heating System for Heating a One-Family House

Wieland, J.
Haustech. Rundsch. V 76 No. 4 p. 262-266 1977 In German

A heating plant with central water heating for a detached one-family house is described. The system makes use of solar energy with roof collectors, geothermal heat with a pipe network of an overall length of 800 m, and a heat pump for the production of thermal heat in the low-tariff period. Operating time is minimized by using several stores. The hot water floor heating system is described, and a basis of calculation and circuit diagram is given.

ST79 A30147 Padonia Elementary School Solar Heating and Cooling Project

Wilkening, H.A.
AAI Corp., Baltimore, MD
Solar Heating, Cooling Demo. Program Contractors' Rev., V 2, Papers

A retrofit hydronic solar heating and cooling system is described using 3400 ft² of concentrating collectors with 420 ft² selective coated absorbers and 10,000 gallons of hot storage and 10,000 cold storage. It is designed to provide 75 percent of the heating and cooling load and cost $670,000. Technical and institutional problems are reviewed briefly.
A 9000 ft² wing of the school building is retrofitted with 5040 ft² of flat-plate gravity feed collectors and 5300 ft² of second-surface reflective glass mirrors. The hot water storage system contains 15,000 gallons of hot and 40,000 gallons of chilled water. The system meets 60 percent of the heating load and 90 percent of the cooling load.

When completed early in 1977, this was the world's largest building to have most of its heating, air conditioning, and domestic hot water needs met by solar energy. The building incorporates 11,213 ft² of double-glazed black chrome selectively coated copper tube-in-strip flat-plate solar collectors oriented at an angle of 45° to the south with 23,000 ft² of highly polished aluminum reflectors to provide energy for heating and air conditioning the 59,000 ft² community center. Each of the 63 solar collectors is 8.61 ft high and 20.7 ft wide with the copper tube-in-strip absorber plates insulated on the back side to a K value of 0.05 BTU/ft²/°F/hr. Thermal storage is provided by 15,000 gallon hot water storage tank, 2200 gallon buffer tank, and two 30,000 gallon chilled water storage tanks. The large tanks are buried beneath the earth berm surrounding the sides of the building. The building has been operating in all its modes since early April 1977. The hydronic solar energy system uses demineralized water to transfer and store heat. The solar system was designed to provide a highly reliable system for efficient utilization of the available solar energy for heating, cooling, domestic water heating, and pool heating. The system incorporates copper plumbing and copper collectors, tempered glass glazing, the black chrome selective coating, steel thermal storage tanks, and low-speed industrial grade pumps. The conservative design approach has paid off in good performance and minimal startup problems.

A brief description is given of 21 different commercial, institutional, and industrial building projects across the United States now using solar energy for heating, cooling, or electricity. The costs and payback for each project are discussed. New questions generated by each experience concerning the economics and design trade-offs of solar energy systems are brought out. Some discussion of ERDA/HUD FY78 funding available for demonstration building projects is included. Heat storage systems employed in the projects are water, rocks, and eutectic salts. Design trade-offs in solar collectors are related to the cost of fossil energy in each area. Three of the 21 projects are retrofits. Payback periods range from less than four years to possible never.
Modern agricultural methods have made farmers dependent upon fossil fuels to maintain their productivity. One aspect of the problem, the heating of animal shelters, is discussed. In particular, the solar heating of a broiler grow-out house, where temperatures of up to 95°F must be maintained, is discussed. A detailed analysis of a solar heated broiler grow-out house that has been operating for over a year is presented. The solar system provided 47 percent of the heat required to grow 22,000 chickens. The system utilizes a 3200-gallon integrated rock absorption and storage collector. An economic analysis of the solar system, which cost $6600 shows that it has a payback period of five years. Another circulating hot air collector has been designed and its design, construction, and operation is discussed.

The 25,000 ft², 2½-story building has a solar system with 2561 ft² of single-glazed, selectively coated liquid-cooled flat-plate collectors. Energy storage is in a 6000-gallon stone-lined insulated steel tank. Solar reflectors augment the energy collection by 40 percent in the winter months.

A solar heating and hot water system is described using 1872 ft² of hydronic flat-plate collectors and 6000 gallons of storage. Solar reflectors increase the effective collection area to 2620 ft². The system is expected to provide 79 percent of the heating requirements.
30,000 SYSTEM OVERVIEWS

Owens-Illinois, Inc., Toledo, OH
Avail: NTIS, DOE/NASA/CR-150569 p. 82 March 1978

A collection of quarterly reports prepared by Owens-Illinois in the development of an air-liquid solar collector for solar heating, combined heating and cooling, and/or hot water subsystems are presented.

ST79 30064 All That Energy From the Sun is Not Exactly Free
Butane-Propane News V 8 No. 11 p. 10,16 Nov. 1976

Tentative proposals within the California Public Utilities Commission calling for encouragement or subsidization of solar energy among the state's utility customers would not be in the public interest, according to estimated costs supplied by H.F. Lippitt, Executive Secretary of the California Gas Producers Association. On a 12-month basis, monthly bills for gas vs. for amortization/interest on a solar energy system would be: for water heating, $7 vs. $22; for space heating, $10 vs. $112; and for pool heating, $41 vs. $45.

ST79 30065 Analysis and Design of Air Heating Unglazed Flat-Plate Solar Collectors
Sandia Labs., Albuquerque, NM
Avail: NTIS, SAND-78-0077C, CONF-781202-19 p. 10

A simplified analysis of unglazed flat-plate air heating collectors is developed for use in conjunction with studies of systems involving these collectors. To develop the analysis, an energy balance is formulated for a generalized unglazed collector configuration and then solved via the Laplace transform technique. The analysis was verified by application to a collector configuration for which experimental results are available. Based on the verified analysis, preliminary design and optimization procedures were developed and illustrated by example. A discussion of the relative importance and interplay of the various parameters used to describe collector performance is developed via sensitivity analysis to aid in understanding the behavior of unglazed collectors.

ST79 30066 Analysis of an Improved Solar Powered Cooling System Utilizing Open-Cycle Absorbent Regeneration
Los Alamos Scientific Lab., Los Alamos, NM
Mtg. of Am. Sect. of ISES Denver, CO Aug. 28, 1978
Avail: NTIS, LA-UR-78-1663, CONF-780808-10 p. 6

A solar powered cooling system which promises high system COPs and low collector cost is analyzed. It consists of a desiccant and an absorption cooling system operating in series to both dry and cool the air. A common solution of lithium chloride is used as the absorbant. The lithium chloride solution is regenerated by evaporating the excess water to the atmosphere in an open collector. This collector consists merely of a blackened flat surface. The weak solution of lithium chloride is introduced at the top of the collector and then flows by gravity over the entire collector surface where it is subsequently heated and dried. The daily performance of this combined system is compared by computer simulation to that of either an absorption or desiccant system alone using actual weather data for five typical U.S. cities. The performance improvement of the combined system ranged from 25 percent to 95 percent, the greatest improvement being for humid windy conditions.

Univ. of Virginia, Charlottesville, VA
Avail: NTIS, ORO-9138-78/1 p. 38 Jan. 1978

Preceding page blank
A new system for year-round collection and storage of solar heated water for heating of buildings has been operated over the past year at the University of Virginia. The system is composed of an energy storage subsystem, which stores hot water in an underground pool, and of a solar collector subsystem, which acts not only to collect solar energy throughout the year, but also to limit the evaporative and convective heat losses from the storage system. Results are presented to illustrate the transient heat transfer from the pool which occurs during the energy collection mode of operation. Thermal performance results are presented illustrating the efficiency of the solar collector under summer conditions (without a reflector) and winter conditions (with assistance from a vertical reflector). Results also show the transient behavior of energy storage in the water and in the earth which surrounds the storage pool. An Analog computer model and a digital computer model have been used to analyze the transient energy phenomena which occur within the earth surrounding the pool. Results of the models are confirmed by an exact mathematical solution and by experimental results. Analog and digital models were used to determine the influence of various design modifications for improved collection and storage system performance. The experimental system has been modified to provide for energy extraction through a heat exchanger, to simulate the heater input required for a solar assisted heat pump for a residential heating application.

ST79 30058 Application of Solar Energy to the Supply of Industrial Hot Water, Volume 2, Appendix to the Final Design Report

Jacobs Engng. Co., Pasadena, CA
Am. Linen Supply, El Centro, CA
Avail: NTIS, TID-28745 p. 475 Jan. 31, 1977

The appendices for the conceptual design of a solar system for integration into the process hot water and steam services for the laundry facility, American Linen Supply, located in El Centro, California are presented. Included are: solar collector information, specifications, and design drawings; energy reduction analyses data; tables of insolation data; 36 system design drawings, analysis of heat design of electrical systems, and maintenance and repair; diagrams of instrumentation system; structure drawings and specifications; project organization chart construct schedule; method and results of economic analysis for comparison of solar process heat systems; and information on personnel involved. For Volume 1, see TID-27808.

Dartmouth College, Thayer School of Engng., Hanover, NH
NP-21380 p. 18 Jan. 1978

The findings of a three-year program to evaluate the performance of solar heat installations are summarized. It is noted that the northeast is one of the more favorable regions in the country for solar heating, and government policies and engineering studies are suggested that are needed to further the utilization of solar energy in this region. The establishment of regional experimental stations is strongly supported.

ST79 30070 Brief Comparison of the Inherent Capabilities of Conventional Controllers and Linear Regulator Controllers

Los Alamos Scientific Lab., Los Alamos, NM; Notre Dame Univ., Notre Dame, IN, Dept. of Mech. Engng.
Workshop on the Control of Solar Energy Hyannis, MA

Inherent capabilities of conventional controllers and linear regulator controllers for solar HVAC systems are discussed and compared. It is shown that the basic requirements of solar heating and cooling control systems are met quite well by a linear regulator controller. It is also shown that the linear regulator yields a better control than conventional methods. Even though achieving this control requires a computing device, initial studies indicate that the computing requirements are probably not prohibitive. However, if computing requirements do present a limitation to implementation of the linear regulator controller, concepts and strategies learned from the linear regulator control can lead to more effective conventional control strategies.

ST79 30071 Building Structure for Solar Energy Recovery and Utilization

US Patent no. 4,054,246
A double-walled structure utilizes air as the heat transfer medium between solar heated outer walls and either the interior space or heat storage means beneath the structure. A load-bearing layer of gravel supporting the floor and subterranean gravel pits form the heat storage means. In summer, during the day solar heated air gives up heat to the storage means. At night, heat is radiated to the atmosphere and thus-cooled air is used for daytime cooling by storage in the gravel pits or the gravel layer supporting the building floor. In winter, air is heated in the storage means for interior circulation and, when available during daylight hours, solar heated air may be used directly or temporarily stored for nighttime use. Cold can also be stored during winter months in separate storage means for additional summer cooling capacity.

ST79 30072 Comparison of Solar Absorption and Vapor Compression Residential Cooling Systems, Interim Report

Univ. of Texas, Arlington, TX

Texas Electric Service Company and the University of Texas at Arlington are performing testing for the direct comparison in the same facility of solar powered absorption cooling and solar assisted electric-powered heat pump cooling for a single-family residence. Solar hot water heating and space heating with electric resistance and heat pump heating as backups are also included. The facility on the campus of the University of Texas at Arlington. A complete description of the facility is presented with emphasis on the solar heating and cooling equipment and the associated instrumentation. Calculated heating and cooling loads are presented with design predictions as to the degree of solar participation. A review of startup and operating difficulties which have occurred since the facility has been constructed is also included. The program is beginning the second year of a two-year test plan.

ST79 30073 Compatible Building Design

Sunworld V 4 p. 2-6 May 1977

Architectural and engineering considerations of the building design are explored for minimizing heat loss and deciding on the type of heating system used. Diagrams are included for the standard liquid heating system and standard air heating system. The major advantages/disadvantages of the two systems are the freezing, corrosion, boiling, and leaking problems of the water systems as opposed to the somewhat higher costs of the air systems. The collector arrays are considered the most expensive feature of the solar system. Most are of the flat-plate collector variety with a high-temperature selective black paint and a proper orientation of the latitude plus 10° or 15°. An approximate measure of the heating load met by solar energy is 1/2 to 3/4. Long-term performance of solar hot water heating has been recorded for several cities; for residences of typical construction, 0.8 BTU/hr/°F heat loss/ft² of floor area. The collectors analyzed are commercially available, double-glazed black flat-plate collectors. Storage consists of 1/2 to 3/4 ft³ of rock of 1/4 to 2 gallons of water for each ft² of collector. Most systems employ a preheat tank of at least 80 gallons for four people. Pipes and ducting are sized with fluid pressures and high temperature in mind. Electronic sensors to monitor the system and a two-stage thermostat is required. For homes that are retrofitted, it may be simpler to leave the existing system intact and allow the solar system to act as an independent heat source.

ST79 30074 Cost and Performance of Heat Pump TES and Solar TES Household Energy Systems

In order to understand the various possibilities and roles thermal energy storage (TES) can play in household energy systems, Argonne National Laboratory has studied the engineering performance and economics of such systems. This phase of the study concentrates on the use of TES in conjunction with solar-augmented and heat pump residential energy systems that provide hot water, space heating, and space cooling. The overall effort is directed towards evaluating the interaction of these systems with electric utilities in terms of costs and benefits to both the utility and the consumer. This interaction depends on the system's overall design, performance, and cost characteristics. This evaluation covers the three basic household energy services that lend themselves to thermal energy storage: hot water, space heating, and space cooling. The systems are evaluated individually; however, it is more likely that final design could be integrated to achieve a more effective system. The exception to this is the heat pump, which is generally sized to handle the cooling load, although it also supplies heating capacity. The solar systems are augmented by an electric utility. The systems are designed to minimize their impact on the utilities load management problems by use of a TES subsystem. The study evaluates these systems for a single-family.
dwelling unit, although it is recognized that systems for multiple dwelling units are
often technically and economically more viable. Detailed evaluations of hypothetical
future systems for which there is little basis to perform an economic evaluation are not
included in this report. They will be considered in an assessment of R and D alternatives
in the final study report. A summary evaluation is made, however, of the characteristics
of some advanced TES subsystems, in order to illustrate how much improvement they would
offer over the baseline systems.

ST79 30075 Council Notes

Council Notes V 1 No. 4 p. 1-8 Spring 1976

A description is given of the design, construction, and predicted performance of a
house that uses approximately one-third of the energy needed to heat a house of the same
size which is built to meet 1974 insulation standards. Because of its low-energy
requirements for heating, the house has been called the "Illinois Lo-Cal House." If the
Lo-Cal House is compared to the typical house of 1950, the savings are even more dramatic.
The two features which account for the exceptional reduction are superior insulation and
solar orientation. Of the reduction, about 80 percent or more is due to the heavy
insulation. The remaining reduction is due to the location of most of the windows in the
south wall, where they act as solar collectors.

ST79 30076 Design and Installation Package for Solar Hot Water System

Solar Engng. and Mfg. Co., Deerfield Beach, FL

Included are the system performance specifications, system design drawings, hazard
analysis, and other information necessary to evaluate the design and install the system.

ST79 30077 Design Data Brochure For CSI Series V Solar Heating System

Contemporary Systems, Inc., Jaffrey, NH

The design data brochure for Contemporary Systems, Inc. (CSI) is included, along with
genral information on system configuration, system sizing, and mechanical layout. CSI is
developing two single-family prototype solar heating systems consisting of the following
subsystems: collector, storage, control transport, and government furnished site data
acquisition. The systems are being installed at York, Pennsylvania and Manchester, New
Hampshire.

ST79 30078 Design Data Brochure: Solar Hot Air Heater

Solar Engng. and Equipment Co., Metairie, LA

Information is provided on the design, installation, performance, and application of
Seeco MCD-1 solar hot air heater for residential, commercial, and industrial use. The
system has been installed at the Concho Indian School in El Reno, Oklahoma.

ST79 30079 Design Data Brochure: Solar Hot Water System

Solar Engng. and Mfg. Co., Ft. Lauderdale, FL

This design data is general in nature. The intent is to provide a preliminary, not
too technical approach to a subject that can be technically demanding. The example used
for the design calculation has been for a single-family residence housing a family of four
in a nonspecific geographical area. Drain-down freeze protection is used with the flat-
plate collectors. Drawing and specifications for the solar collectors, valves, pump, and
flow regulators are included.
Design of a Freon Jet Pump for Use in a Solar Cooling System

Zeren, F.; Holmes, R.E.; Jenkins, P.E.
Am. Soc. of Mech. Enqnsrs. A79-19847

The utilization of solar energy to drive a vapor compression cooling system is considered. The compression is accomplished by use of a vapor jet pump. The functioning of a system using Freon 12 in both the solar collector and in the cooling system is explained. Equations are presented for the design of the jet pump. As an example, a freon vapor jet pump is designed for a cooling load of 14,000 BTU/hr (3528 K cal/hr).

Development of Prototype Air/Liquid Solar Collector Subsystem, Sixth Quarterly Report

Owens-Illinois, Inc., Toledo, OH

The progress made in the development of the SEC-601 collector subsystem by Owens-Illinois is covered. A description of thermal and physical performance testing of the model SEC-601 collector and a forecast of activities for completing contract task are presented. The testing of the 144 tube ERDA evacuated tubular air collector in conjunction with an air/liquid heat exchange and liquid storage elements was completed. Test results indicate care is needed to match the heat exchanger and collector characteristics with specific attention to the dynamic response of each of the elements. Formal documentation of the results of the verification and test analysis was submitted for many sections of the test plan.

Energy Conservation Through Adaptive Optimal Control For a Solar Heated and Cooled Building

Los Alamos Scientific Lab., Los Alamos, NM
Workshop on the Control of Solar Energy, Hyannis, MA

A study to investigate the use of adaptive and optimal control techniques to control HVAC systems in large solar heated and cooled buildings is reported. The study has been made by computer simulation and is centered on the National Security and Resources Study Center (NSRSC), a large solar heated and cooled building at the Los Alamos Scientific Laboratory (LASL). Although the study is based on a NSRSC were simulated in the models and an adaptive optimal controller was developed and also simulated. Performance of the two simulations was compared. It was found that the adaptive controller and model demonstrated a savings in auxiliary energy of 28.8 percent for the heating simulation and 20.2 percent for the cooling simulation when compared to the conventional controller simulation models.

EPRI Sponsors Solar Instrumentation

EPRI J. V 3 No. 2 p. 33-35 March 1978

The Electric Power Research Institute (EPRI) is funding research in a methodology for monitoring solar systems and evaluating the data. In a joint project with DOE, EPRI participated in data analysis and evaluation of 11 solar heating and cooling (SHAC) configurations and found the most cost-effective to be a combination of a solar assisted heat pump and water storage. Other studies underway include a hospital solar-water heating system, a solar cooling comparison study, and solar heating and cooling demonstrations. In each case EPRI has funded the portion of the project devoted to developing more accurate and reliable monitoring data. Interim reports will be published in the summer of 1978.

ERDA Commercial Awards Involve 38 Manufacturers

Solar Engng. V 2 No. 6 p. 5-7 June 1977

A detailed listing of USEERDA projects funded on a cost-sharing basis to install solar energy demonstration systems in 80 buildings across the United States is presented. A total funding of $12.6M is provided by ERDA. A detailed compilation of the projects by 28 manufacturers is tabulated. The projects include office buildings, schools, motels, fire stations, police stations, hospitals, and libraries.
Fundamentals of Solar Heating: Correspondence Course
Sheet Metal and Air Conditioning Contractors Nat'l Assoc., Vienna, VA
Avail: NTIS, HCP/N4038-01 (REV.1) p. 190 Aug. 1978

This revision is the August 1978 reprinting of HCP/N4038-01 which has appeared previously.

Hardware Problems Encountered in Solar Heating and Cooling Systems
NASA, Marshall Space Flight Center, Huntsville, AL

Marshall Space Flight Center personnel have worked for several years with the development and demonstration of solar heating and cooling systems in support of the Department of Energy. In this work, they have encountered numerous problems in the design, production, installation, and operation of the solar energy systems. Many of these problems have been seen in more than one system. The hardware intended to provide personnel in the solar energy field with information that will help prevent the installation of solar heating and cooling systems that will not operate satisfactorily or that will not last for the design lifetime.

Heating With Sun
R.A.S. V 31 No. 12 p. 700 1976 In German

No abstract available.

Heat Transfer System Particularly Applicable to Solar Heating Installations
Acme Engng. and Mfg. Corp.
US Patent no. 4,061,131
Avail: Patent Office p. 6 Nov. 24, 1975

A heat transfer system is described which is applicable to solar heating installations. It consists of an evaporator located near the heat source which may be a solar collector panel, and a condenser that is located at an elevation lower than that of the evaporator, and which may function to heat hot water for storage. The source heat is transferred to a volatile fluid within the evaporator that absorbs the heat with an increase in temperature and a change of state from liquid to vapor. The vapor is conveyed to the condenser wherein the fluid liberates its latent heat while changing from vapor to liquid phase. The condensed liquid drains from the condenser to a trap which may be used to regulate the flow of liquid through a check valve and further piping to a transfer tank located above the evaporator. The fluid in the transfer tank is maintained at a lower temperature than that of the evaporator. A dual-level control system is employed within the transfer tank. The system is hermetically closed, containing only the liquid and vapor of the selected volatile fluid.

High-Efficiency Solar Collector to be Integrated in a Heating System

To begin with, a heating system with optimum efficiency for a collector system is described. The system consists of a solar collector connected with a low-temperature storage tank. The low-temperature storage tank is connected with the real water storage tank, which again is connected with the real heating system. In addition, the layout of a solar collector is described.

How to Understand Solar Energy Technology and Economics
Solar Data, Hampton, New Hampshire p. 86 $6.50

Solar energy for space and water heating is discussed. Specifically several types of solar heating systems are investigated, including both built-in and retrofitted air and water systems. Solar power is examined for space heating, for hot water heating, and for a combination of both uses. It is found that solar heating systems are often economically feasible at today's prices for use by electrically heated buildings. Furthermore, it is argued that solar systems should be immediately considered for commercial buildings which demand large amounts of hot water. Nine recommendations for state action and six...
recommendations for federal action are included. The following topics are covered: use of solar energy collectors, differences in solar heating systems, the economics of solar heating systems, solar energy applications, and state strategies for promoting solar development.

ST79 30091 Installation of Solar Furnace Cuts Utility Costs

Retrofitting a solar heating system to a home built in 1840 is described. Aluminum siding, extra insulation, and storm windows were added first. The unit added was the free-standing champion solar furnace with vertafin collector and $\frac{1}{2}$ yd3 of rock storage.

ST79 30092 Installation Package For a Solar Heating and Hot Water System
Colt, Inc., Rancho Mirage, CA

Two commercial solar heating and hot water systems have been developed. The systems have been installed at Yosemite National Park, California, and Pueblo, Colorado. The systems consist of the following subsystems: collector, storage, transport, hot water, auxiliary energy, and controls. General guidelines are provided which may be utilized in development of detailed installation plans and specifications. In addition, instruction on operation, maintenance, and repair of a solar heating and hot water system is provided.

ST79 30093 Introduction to Solar Heating and Cooling Design and Sizing
Honeywell, Inc., Energy Resources Center, Minneapolis, MN
Avail:NTIS, DOE/CS-0011 p. 517 Aug. 1978

This manual is designed to introduce the practical aspects of solar heating/cooling systems to HVAC contractors, architects, engineers, and other interested individuals. It is intended to enable readers to assess potential solar heating/cooling applications in specific geographical areas, and includes tools necessary to do a preliminary design of the system and to analyze its economic benefits. The following are included: the case for solar energy; solar radiation and weather; passive solar design; system characteristics and selection; component performance criteria; determining solar system thermal performance and economic feasibility; requirements, availability, and applications of solar heating systems; and sources of additional information.

ST79 30094 Junkers "Tritherm" Concept
Sonnenenergie-Tech. V 3 No. 10 p. 15-17 1977 In German and English

A plant of a solar heating system is described which can utilize by means of heat pump and latent storage unit the low heat of the winter months. Experience with the new heating system in a demonstration house in Wernau is reported on.

ST79 30095 "Little Red Schoolhouse" is Teaching About Solar Heating/Cooling
Fueloil Heat Syst. V 36 No. 8 p. 35-36 Aug. 1977

The use of a working model solar heating/cooling system installed in an ITT polar energy system personnel training classroom and office complex is briefly described. The fully instrumented system provides continuous guideline data and a first-hand learning environment for design engineers, contractors, and other heating/air conditioning specialists. The 24 year operational experience accumulated at the facility is briefly summarized. Information is included for obtaining a manual of this data.

ST79 30096 Means and Methods of Preventing the Loss of Solar Heat
US Patent no. 4,088,119
Avail:Patent Office p. 4 Dec. 4, 1975
In order to prevent the cooling of the working fluid in a solar heat collecting system, the present apparatus and process responds rapidly to shut off the circulation of the working fluid (either liquid or gaseous) through the solar heat collecting equipment, when the rays of the sun are clouded over or when at nighttime they are nonexistent. Solar heat that has been properly accumulated and stored is effectively prevented from radiating back out of the solar heat collecting system into the outer atmosphere.

ST79 30097 National Solar Heating and Cooling Demonstration Program: Project Experience Handbook

DOE, Chicago, IL; DOE, San Francisco, CA; NASA, Marshall Space Flight Center, Huntsville, AL; ASHRAE, Inc., New York, NY
Avail:NTIS, DOE/NS-0045/D p. 113 Sept. 1978

This preliminary draft is a revision of TID-28722 which was previously abstracted for EDS. It will be revised and reissued on an appropriate basis and may be expanded to include additional guidelines arising from the experiences of the solar demonstration program and solar industry, particularly in the architectural areas.

ST79 30098 Plant Engineers Solar Energy Handbook

Univ. of California, Lawrence Livermore Lab., Livermore, CA
Avail:NTIS, LLL/N-086(REV. 1) p. 306 Jan. 21, 1978

This handbook is to provide plant engineers with factual information on solar energy technology and on the various methods for assessing the future potential of this alternative energy source. The following areas are covered: solar components and systems (collectors, storage, service hot water systems, space heating with liquid and air systems, space cooling, heat pumps and controls); computer programs for system optimization; local solar and weather data; a description of buildings and plants in the San Francisco Bay area applying solar technology; current federal and California solar legislation; standards, codes, and performance testing information; a listing of manufacturers, distributors, and professionals who are available in northern California; and information access. Finally, solar design checklists are provided for those engineers who wish to design their own systems.

ST79 30099 Preliminary Design Package for Prototype Solar Heating System

Contemporary Systems, Inc., Jeffrey, NH

This report is a collation of documents that were submitted by Contemporary Systems, Inc. for the preliminary design review on the development of a prototype solar heating system for single-family dwellings. Included are the proposed instrumentation plan, deviation requirement, system changes and rationale, preliminary design drawings, and other information pertaining to the progress and design of the system. This space heating system consists of the following subsystems: collector, storage, transport, control, and government furnished site data acquisition. The two prototype systems will be installed at York, Pennsylvania and Manchester, New Hampshire.

ST79 30100 Preliminary Design Package For Prototype Solar Heating System

Honeywell, Inc., Energy Resources Center, Minneapolis, MN
Avail:NTIS, DOE/NASA/CR-150858 p. 113 Dec. 1978

A summary is given of the preliminary analysis and design activity on solar heating systems. The analysis was made without site specific data other than weather; therefore, the results indicate performance expected under these special conditions. Major items in this report include system candidates, design approaches, trade studies, and other special data required to evaluate the preliminary analysis and design. The program calls for installation and operational test. Two heating and six heating and cooling units will be delivered for single-family residences (SFR), multi-family residences (MFR), and commercial applications.

ST79 30101 Preliminary Design Package for Solar Heating and Hot Water System

Colt, Inc. of Southern California, Rancho Mirage, CA
Two prototype solar heating and hot water systems for use in single-family dwellings or commercial buildings were designed. Subsystems included are: collector, storage, transport, hot water, auxiliary energy, and government furnished site data acquisition. The systems are designed for Yosemite, California, and Pueblo, Colorado. The necessary information to evaluate the preliminary design for these solar heating and hot water systems is presented. Included are a proposed instrumentation plan, a training program, hazard analysis, preliminary design drawings, and other information about the design of the system.

ST79 30102 Preliminary Design Package For Solar Heating and Hot Water System
Fern Engng. Co., Buzzard's Bay, MA

A collection of documents submitted by the Fern Engineering Company for the preliminary design review on the development of two prototype solar heating and hot water systems is presented. The information includes system certification, system functional description, system configuration, system specification, system performance, and other documents pertaining to the progress and the design of the system. This system, which is intended for use in the normal single-family residence, consists of the following subsystems: collector, storage, control, transport, and government furnished site data acquisition. One of the two prototype units will be installed in Lansing, Michigan, and the other in Tunkhannock, Pennsylvania.

ST79 30103 Prototype Solar Heating and Combined Heating and Cooling Systems, Quarterly Report

The General Electric Company is developing eight prototype solar heating and combined heating and cooling systems. This effort includes development, manufacture, test, installation, maintenance, problem resolution, and performance evaluation.

ST79 30104 Prototype Solar Heating and Cooling Systems
Airesearch Mfg. Co., Torrance, CA

Eight prototype systems were developed. The systems are 3, 25, and 75-ton size units. The manufacture, test, installation, maintenance, problem resolution, and performance evaluation of the systems is described. Size activities for the various systems are included.

ST79 30105 Prototype Solar Heating and Cooling Systems, Including Potable Hot Water, Quarterly Report
Solaron Corp., Denver, CO

The progress made in the development, delivery, and support of two prototype solar heating and cooling systems including potable hot water is reported. The system consists of the following subsystems: collector, auxiliary heating, potable hot water, storage, control, transport, and government furnished site data acquisition. Included is a comparison of the proposed Solaron heat pump and Solaron desiccant heating and cooling systems, installation drawings, data on the Akron House at Akron, Ohio, and other program activities from July 1, 1977 through November 9, 1977.

ST79 30106 Prototype Solar Heating and Hot Water Systems
Colt, Inc., Rancho Mirage, CA
Avail: NTIS, DOE/NASA/CR-150785 April 1978 p. 17

This document is a collection of two quarterly status reports from Colt, Inc., covering the period from October 1, 1977 through June 30, 1978. Colt is developing two prototype solar heating and hot water systems consisting of the following subsystems: collector, storage, control, transport, hot water, and auxiliary energy. The two systems are being installed at Yosemite, California, and Pueblo, Colorado.
This report contains one quarterly status report from Solafen, Ltd., reflecting work progress from October 7, 1976 through January 28, 1977. Solafen is developing two prototype solar heating and water systems consisting of the following subsystems: collector, storage, control, and transport.

The Battelle Institute's Columbus Laboratories, in a study for the United States National Science Foundation, are developing a combined heat pump/solar heating system for homes. The concept involves a solar heated working fluid to drive a low friction heat pump instead of being circulated to radiators for direct heating; the heat pump could provide heating or cooling, if run in reverse.

This document is a collection of six monthly reports and one quarterly report from solar engineering and equipment company (SEECO), covering the progress of work from September 30, 1976 through September 30, 1977. SEECO is developing two prototype solar heating systems consisting of the following subsystems: collector, control, and storage.

Solar architecture and the basic types of solar systems, passive and active, are described. Solar assisted heat pumps are explained in terms of the decrease in collector area and the increased efficiency of the solar system. The two types of storage, rock and contained liquid, are examined. Phase change materials are also briefly described.

A combined chamber and conduit device to be mounted on a roof at an elevation higher than an assembly of one or more solar radiation receptors comprises a container having a depending wall portion to extend through an opening in the roof or like support structure, which container forms part of a liquid flow circuit extending from the receptors and to a heat exchange zone beneath the roof for transferring heat from the solar heated liquid, serves for filling the receptors and the flow circuit with liquid which it holds under low hydrostatic pressure while letting the liquid expand and contract with temperature changes. It has lengths of tubing extending through the wall portion and the container side wall for return flow of liquid to the receptors and for displacements of gaseous fluid between a cover space over the receptors and fluid dessicating and expansion chambers beneath the roof.

A prototype solar heating and hot water system described using air as the collector fluid and a pebble bed for heat storage. The system was designed for installation into a single-family dwelling. Described are the system, subsystem, and installation requirements. System operation and performance are discussed, and a procedure for sizing the system to a specific site is presented.
A closed hydronic solar system for space and hot water heating is described. Design, performance, and hardware specifications are presented sufficient for architectural engineers and contractors to procure, install, operate, and maintain a similar solar application.

The results obtained during testing of a self-contained, preassembled air-type solar system, designed for installation remote from the dwelling to provide space and hot water, are presented. Data analysis is included which documents the system performance and verifies the suitability of Sims Prototype System 4 for field installation.

The Sims prototype system is a complete residential solar space heating and hot water system. When installed in a highly insulated energy saver home, the solar system can supply a large percentage of the total energy demand for space heating and domestic hot water. Low maintenance, durable, and efficient air heating collectors are used. The collectors have a selective absorber and a tempered glass cover nearly 4-inch thick with an aluminum frame. The solar energy can be delivered directly to the living area when there is a demand; otherwise, it is stored in the form of hot water. Hot water storage is accomplished through the use of an air-to-water exchanger. The hot water storage is used simultaneously to preheat the domestic hot water, as well as to store energy for space heating. The system has a one-year warranty on all parts and service, and a five-year warranty on the collector, except for glass breakage. The service life of the collector is estimated as 30 years.

A solar actuated boiler is described which receives the incident rays of the sun, magnifying them and concentrating them at precise multiple points. This concentration results in an aqueous solution, under pressure, being heated to temperatures resulting in hydrokinetic motion. The heat from this solution will then be convected through a system of piping, deposited and stored in the system's heat storage vault. This stored heat is then converted through a companion system of piping for the purpose of heating, domestic hot water, air conditioning, and electrical energy.

The integration of air heating evacuated tube collectors with pebble bed thermal storage and other air system components to provide the most cost-effective state-of-the-art solar space and domestic hot water heating systems is discussed. The combination of these exceptional high-temperature performance collectors with currently available lithium bromide absorption cooling units is described. The operation of the pebble bed thermal storage subsystem at different temperature levels at different seasons is mentioned.
The system described derives energy from a solar collector, which is supplemented by natural gas, electricity, or propane during periods of low solar input. The paper shows how the NEC unit operates in the cooling mode. Room air is directed through a drying wheel, which contains a desiccant. The air is then cooled in the heat exchange wheel. After humidification, the air is returned to the room. The drying wheel is continually regenerated by the outside air stream. This stream is first cooled by humidification and then removes the heat accumulated in the heat exchange wheel.

A step-by-step approach is taken to the installation of a solar system. Diagrams are included for the distance between collectors to avoid shading, the proper tilt, and spacing. Procedures were taken from the Solar Energy Products, Inc. Manual for installation instructions.

Survey results show there are 186 companies currently manufacturing or importing medium-temperature and special solar collectors. Production during the first half of 1977 was 54 percent greater than during the second half of 1976 and 168 percent greater than one year ago. Results also show that there are 15 companies manufacturing low-temperature or pool heating collectors. Production of these collectors has increased by about 40 percent since the second half of 1976, and is 105 percent greater than one year ago. An estimate of the number of installations made in the residential sector as a result of production during this six-month period is included. Companies reporting manufacture and sale of at least 100 ft² of collector are included in the appendix.

This book discusses the physical and technical fundamentals for the utilization of solar energy. The first two chapters are dedicated to the physical fundamentals of solar radiation. After this, the layout and functioning of solar collectors are described. Systems of equations to be used for the design of solar collectors are derived and discussed, they lead to a comparison between the possible systems. Test methods for solar collectors are discussed, as well as material and construction problems. Finally, the overall system "solar collector" and its applications are discussed. An appendix contains information on producers of solar collectors and on scientific organizations working in the field of solar energy utilization.

Information used in the evaluation of design of solar control's solar heating and cooling system controller and the Solarstat is presented. System performance specifications, design data brochures, and detailed design drawings are presented.

A brief review of some factors preventing commercialization of solar refrigeration equipment is presented. Methods of solar cooling based on the greenhouse effect, the absorption principle, and on the chimney effect are mentioned.
A system is described for collecting solar energy in the form of heat in liquid at low temperature, raising the temperature by vapor compressor, and by heat transfer means storing the heat energy at a temperature which is higher than the temperature originally obtained from the solar heat collector.

Research activities being conducted by solar energy developments are reviewed. The activities include the design and construction of houses utilizing the principles of passive solar collection, houses with high (100 m³) heat storage capacity in the form of water-filled concrete tanks situated underneath the building, houses with solar space heating systems which use air as the heat transfer medium and rock stores for heat storage, houses with solar water heating systems, and houses with heat of fusion storage systems. A solar laboratory with three roof pitches and rotational capability has also been constructed to monitor variables affecting solar energy collection. A solar air conditioning system has been constructed for a large residential/office complex. The air conditioning system includes concentrating collector troughs which are situated on the roof and track the sun to heat water to 180°C. Heat is taken from a thermal store to heat an ammonia solution in an absorption refrigerator. A solar energy factory scheme for meeting process hot water requirements and assisting space heating demands has also been developed. With air-to-air heat exchange ventilation and water to water heat reclamation systems, a predicted saving of 75 percent of the fuel costs was achieved without altering the insulation value of the envelope. Other research activities include the development of portable solar water heaters and water boilers for campers, thermal electric modules for the production of electricity (using silicon solar cells) and low-grade heat in the form of hot water (70°C), and solar balloons and doses which utilize a double-skin construction for trapping hot air.

A system constitutes a see-through portion of an enclosure, such as a wall or window portion of a building, collects heat from solar radiation and transfer it to a utilization location. There is a light-transmissive exterior and a light-transmissive interior wall member. One heat absorbing member is mounted in the space between the exterior and interior wall members. Fluid means, preferably air, occupies the remaining space between the inner and outer wall members. The fluid means receives heat energy from the heat absorbing member. Means are provided for recirculating the fluid between the utilization location and the space between the inner and outer wall members.

The following areas are covered: good building design, passive uses of solar energy, complex solar HVAC systems, and solar water heating. The major methods of using solar energy for heating and cooling buildings and water heating are compared, evaluated, and critiqued. Rules for evaluating products and materials are included.

No abstract available.
Progress is summarized briefly on the following topics: analysis of the California solar resource; measurement of circumsolar radiation; controller development and evaluation of control strategies for solar heating and cooling of buildings; LBL building 90 solar demonstration project; development of solar-driven ammonia-water absorption air conditioners and heat pumps; radiative and passive cooling; regional solar energy retrofit of low and moderate-cost homes; solar information support for DOE (LLL) support activities for DOE solar heating and cooling research and development program; ocean thermal energy conversion; environmental program; appropriate energy technology; functional linking between H2 consumption, N2 fixation, and photosynthesis in blue-green bacteria; photovoltaic effects of bacteriorhodopsin and studies on its mechanism of action; and environmental assessment of solar energy conversion.

System derived from space technology is illustrated using solar energy for residential cooling and heating in Marshall Space Flight Center, Alabama.

A solar furnace heating system is disclosed which is characterized by novel rotary vane-type heat collector elements arranged in a heat collecting chamber beneath the generally vertical transparent wall of a housing. The fluid to be heated crosses the heat collecting chamber in heat transfer relationship with the rotary heat collector elements and then to a heat storage chamber contained in the bottom portion of the housing. After the temperature of the fluid in the heat storage chamber reaches a given value, heated fluid from the heat storage chamber may be conveyed upon demand to the enclosure to be heated. The heat collector elements are mounted for free rotation in the housing by the fluid that is conveyed through the heat collecting chamber. Means are provided for rotatably driving the heat collector elements in the synchronism.

A heating system is described that includes a solar collector assembly that is fluidly connected by inlet and return conduits to separate chambers in a heat transfer tank located in the building. A heat pump furnace unit having an evaporation-condenser coil located in the heat transfer tank so that as the liquid flows in the tank from one chamber to the other, it flows in heat transfer relationship to the coil. The heat pump furnace unit located outside of the tank supplies heat to the building heating system of vertically elongated ground heat exchangers extended into the earth and interconnected by conduits so that there is provided a liquid flow path from one of the tank chambers through the ground heat exchangers, and then back to the other chamber. Pumps are provided in the above conduits for pumping the liquid between the tank and the solar collector assembly, and the tank and the ground heat exchangers.

A portable solar-heated shelter is described comprising at least one fixed roof layer and a second roof layer which can be selectively deployed to vary the thermal characteristics of the shelter. The shelter preferably comprises a rigid frame on which first and second end walls are preferably pivotally mounted. The end walls are preferably foldable between a vertically upright operative position and a generally horizontal, lowered storage position and when deployed support the roof layers to define the enclosure. The second roof layer is adapted to be unwound from a storage spool and drawn into a take-up spool, passing over the first roof layer by a cranking action. The second roof layer preferably comprises a first sunshade portion and a series connected heat-insulative portion of opaque material which may be selectively deployed to control the thermal characteristics of the enclosure.
The solar heating system for heating water consists of a solar collector connected to a primary heat carrier circuit with a heat carrier accumulator, and of a water storage tank with a heat exchanger which is connected up with the heat carrier accumulator of the primary heat carrier circuit via a secondary heat carrier circuit. Pumps controlled by temperature dependent thermostats are responsible for the forced circulation of the heating medium.

This course is designed to train home designers and builders in the fundamentals of solar hydronic and air systems for space heating and cooling and domestic hot water heating for residential buildings. The following topics are covered: course orientation; general descriptions of solar heating and cooling systems; solar radiation information for design purposes; system design guidelines; heating and cooling load analyses; simplified design methods; economic considerations; energy conservation trade-offs; detailed calculations; collectors; storage systems; laboratory; computer-aided F-chart calculations; system controls; selection of subsystem components; solar cooling systems; automated design techniques; service hot water systems; design case study; structural, mechanical, and scheduling considerations; future prospects for solar heating and cooling systems; and buyer's guide.

Solar energy can make its most effective contribution to Australian primary energy in the form of heat for industrial applications. About 50 percent of all end use energy is required as heat and it is estimated that 40 percent of this amounting to 1 EJ/year by 2000 could be supplied by solar heat generating systems. This would be 12 percent of estimated primary energy requirements by that time, and could help reduce the country's increasing dependence on imported oil. Energy self-sufficiency for Australia is possible, based on coal, solar energy, and natural gas as primary energy sources. The reason for the present orientation towards residential solar water heaters is that there are many places where electric power for water heating costs between 2 and 4 cents per kWh which makes a solar water heater an attractive proposition. There is also a growing interest in the solar heating of swimming pools, mostly for private homes but also in larger installations for public and institutional pools. Industrial applications, on the other hand, are inhibited by the current low energy prices in Australia, which in some cases are around 0.13 cents/mj (0.47 cents/kWh). Industry, however, uses 40 percent of Australian primary energy and represents by far the greatest potential for solar heat generating systems. Demonstration plants are being planned to obtain data on capital and running costs, and at the same time build up professional design and constructional skills in this area. The first demonstration solar industrial process heating system was commissioned in December 1976 and supplied a portion of the heat requirements of a soft drink plant in conjunction with the existing oil-fired boiler. Integrated solar/oil-fired systems of this sort ensure continuous operation of the plant and over a year can result in significant oil savings.
A control circuit for a solar heating system has a solar collector, a heating load, and a heat transfer control unit. It includes a collector valve for controlling the flow of heating fluid to and from the solar collector; a load valve for controlling the flow of heating fluid to and from the heating load; a heating pump for moving the heating fluid; a heat exchanger; and a storage pump for circulating a storage fluid from a storage tank through the heat exchanger and a control system.

The availability and use of solar energy for building heating and hot water systems are explored. The practicability of both liquid and air solar collection systems is noted. Most of the examples given in this pamphlet relate to liquid systems. Climatic factors such as temperature, cloud cover, humidity, and wind affect ways in which solar systems are useful. Basic elements of a solar heating and hot water system are detailed and illustrated. The system provides two basic functions: capturing the sun's radiant energy, converting it into heat energy, and storing heat in an insulated energy storage tank; and delivering stored energy as needed to meet hot water or heating needs. Most solar systems are designed to supply between 50 and 80 percent of the yearly heating and hot water energy requirements of buildings. Data on energy available, collected, and required for a 1500-ft² house in various climatic zones are provided. Cost data are also presented. The role of the federal government in solar heating and hot water system development is discussed.

Several Electric Power Research Institute (EPRI) sponsored experiments are underway to determine whether utilities will need more or less generating capacity to supplement solar heating and cooling systems. Studies of solar-electric rates indicate that electric utilities must charge different rates for solar heating customers or they will suffer revenue deficiencies. The EPRI program will collect data from ten geographically separated houses having different system configurations and will develop a computer model to predict the effect on utilities. Definitions for load management, heat pumps, energy conservation, and energy storage were agreed upon in the interests of better communication. The EPRI study is well-timed because of the long lead time for new power plants and the possibility of government incentives to encourage solar heating and cooling.

A solar heated home design that uses solar energy for 75 percent of its heating needs is described. The design, a USDA rural housing research unit development, incorporates a built-in solar air heating collector in the attic and a rock bed heat storage area in the crawl space. A system of air ducts and blowers is used to transfer solar-heated air from the attic into a conventional forced air heating system. Complete working drawings showing construction details are available upon request.
Computer simulations can aid in the design of solar energy systems for commercial buildings, indicating energy savings, and show the return on investment and payback period for these systems. Computer simulations proved that cold climates were most economical for solar systems with moderate collector area, large storage, and a heat pump. Alteration of the collector orientation increased electric consumption by only 5 percent. Evacuated tube collectors with large storage systems were found most efficient for absorption cooling. Three buildings were investigated for possible application of solar-assisted heat pumps, with the following results: (1) solar-assisted heat pumps can be retrofitted economically to buildings; (2) computer simulation insures maximum payback; (3) payback is greatest in the northern climates with supplemental heat pumps. The possibility of using solar hot water systems for restaurants was also investigated. The study took place in three cities. Federal government aid is described in terms of the various types of incentives currently available. Several of the incentives are included in the national energy plan.

The guidelines include detailed diagrams, a selected glossary, a bibliography of book, books, and manuals which might prove useful, and a checklist which should be used during and after the installation. The guidelines explain generally how to install a liquid solar hot water heater, but not a specific system. The following are covered: collector location, collector installation, plumbing, solar storage tanks, electrical, and insulation.

Information presented provides status and progress on the development of solar heating and cooling systems. The major emphasis is placed on program organization, system size definition, site identification, system approaches, heat pump and equipment design, collector procurement, and other preliminary design activities as part of the contract requirements.

The basic principle of operation for such systems is the conversion of solar radiation to heat by means of an absorbing surface incorporated in a flat-plate collector assembly. The most common collector is a metal black-coated plate with a glass or plastic covering which transmits the sun's rays but does not permit the reflected radiant waves to pass through. A heat transfer fluid, water, a water antifreeze mixture, or air is passed through channels in contact with the heat absorber surface. The fluid is circulated to a heat storage unit or to the heating and cooling service system. A solar heating system which includes a 5000-ft² collector array, a 15,000-gallon water storage tank, and a hot water heating system has been installed in one wing of a public school and has resulted in a savings of 1200 gallons of fuel oil from March 1 to May 15, 1974. Solar energy conversion is most practical in the southwest, deep south, and midwest regions of the country, with the ratio of clear sunny days being of greater importance than temperature variation. Although solar collectors currently cost an estimated $6/ft², the cost should be reduced to about $4 by 1980 and to about $2 by 1985. A solar system may increase the cost of a newly built home by $2000 or more; however, the solar system when perfected, may last 20 years or more, thus offsetting the initial cost. It is estimated that solar heating and cooling can become competitive by 1985-1990.
This report is a collation of documents and drawings that describe a prototype solar heating and hot water system using air as the collector fluid and a pebble bed for heat storage. The system was designed for installation into a single-family dwelling. The description, performance specification, subsystem drawings, verification plan/procedure, and hazard analysis of the system was packaged for evaluation of the system with information sufficient to assemble a similar system.

This report is a collection of documents and drawings that describe a solar hot water system. The necessary information to evaluate the design and with information sufficient to assemble a similar system is presented. The International Business Machines Corporation developed Prototype System 2, solar hot water for use in a single-family dwelling. The system has been installed in building number 20, which is a single-family residence on the grounds of the Veterans' Administration Hospital at Togus, Maine. It consists of the following subsystems: collector, storage, energy transport, and control. It is a design with widespread application potential with only slight adjustments necessary in system size.

One of the problems of buying a solar hot water heating system is sizing. Manufacturers of solar water heating equipment are improving their efficiency. Taco, Inc., for example, produced a single unit including all valves, controls, and circulators. The Taco unit includes a heat exchanger that operates efficiently even in periods of marginal sunlight. Taco's solar system module is completely prewired and prepiped. Supply and two sensors are the only additional components needed. The standard unit adequately handles a residential load. The modulated system requires only the calculation of piping. Storage tanks are purchased separately. Taco supplies installation and operating instructions with their units.

The objective is to develop a commercial demonstration project for an air solar heating and hot water system. Problems and solutions for rock bed storage are reviewed briefly.

The various types, applications, and configurations of concentrating and nonconcentrating solar collectors are described. Nonconcentrating flat-plate collectors must incorporate an absorber surface, a heat transfer interface/fluid passage, glazing, insulation, and a protective casing. Flat-plate collectors may be constructed of copper, aluminum, galvanized steel, or plastic coated with black paint or a selective surface; heat absorption configurations include the trickle-type, tube, and sheet type, the integral fluid passage type, or the sandwich type absorber plate. The heat absorption medium may be either air or fluid such as water or anti-freeze solutions. Evacuated tube-type collectors are able to perform at higher operating temperatures than flat-plate collectors because they are able to collect diffuse and reflected light, as well as direct. Concentrating collectors employ refraction lenses or reflecting surfaces which concentrate the radiation on an absorbing focal point; various configurations of concentrating collectors have been developed.
A practical method for designing solar space and water heating systems, called the F-Chart Method, is described with the results calculated for Long Island, New York. The solar heating systems to be considered consist of a solar collector which uses either liquid or air, an energy storage which can be either a water tank or a pebble bed, and an auxiliary energy source which supplies heat when solar energy is not available. Solar heated water from storage can be used either for space heating or for preheating the domestic hot water. The results of the F-Chart analysis can simply be expressed as follows: for the thermal performance, annual load fraction supplied by solar energy versus collector; and for the economic performance, life cycle cost versus collector area.

A review of the various applications and systems of thermal solar energy is presented. For the heating of buildings, solar energy systems require collection elements, storage elements, a heat distribution system, and an auxiliary heat source as a backup. Heating systems may utilize air as the heat transfer medium or may be hydronic systems utilizing water or antifreeze solutions; instrumentation systems for controlling heating systems are described. Absorption cooling systems such as lithium bromide or ammonia absorption cycles utilize the heat from solar collectors to cool buildings. Thermal solar energy may also be applied to the heating of domestic hot water; a typical solar hot water system is reproduced. Solar energy has been used to power pumps for the irrigation of crops and several test sites utilizing solar irrigation are described. Systems generating electricity from solar energy include power towers, heliostats, and thermal storage liquids in solids; these systems are currently under investigation by several companies.

A do-it-yourself project involving the construction of a solar collector is described. The low cost of the collector was achieved by using inexpensive plastic film, using the south wall of the workshop for the back of the collector, not building any heat storage into the design and by using available materials. The only upkeep of the system involves the power supply for the blower and replacing the plastic film every two years.

The authors claim to have used an astonishing 46 percent less energy than other comparable homes in their area when building their own energy efficient home. Filled with proven inflation fighting energy saving tips and techniques, the book shows how to conserve energy and save money. Emphasizing conservation and practicality, this book guides the process of planning and building your own home or converting your present home in a step-by-step manner. A well-designed home should be structurally sound, functional, aesthetic, livable, and most importantly, affordable. It is felt this book will help achieve all these qualities and more. It shows how to plan a home that meets the family’s needs; employs an energy efficient design, including solar energy; and incorporates security, health, and safety features. The book shows prospective home owners how to cope with inflation and overcome energy problems.

The basic principle of measurement of the heat transported to the heat exchanger is explained. Also, the efficiency of a collector is discussed.
ST79 30157 Solar Energy for Homes: An Annotated Bibliography

Aitken, D.W.
Sunworld No. 3 p. 23-28 Feb. 1977

This bibliography includes 43 references on various aspects of solar energy for home use. An abstract is included with each reference.

ST79 30158 Experiments in Solar Space Heating and Cooling for Moderately Insolated Regions

Aranovitch, E.; Le Det, M.; Roumengous, C.
Pergamon Press, Inc., p. 1378-1386 Elmsford, NY
A79-17464 V 3 Jan. 16-21, 1978 New Delhi, India

A solar laboratory has been constructed specifically for intercomparisons between different solar heating and cooling systems under European insolation conditions. Various techniques for increasing solar system performance are described, including high-efficiency collectors with selective surfaces, honeycomb structures, and V-corrugations, along with low operating temperatures, seasonal storage, or combined heating and cooling systems in order to assure year-round utilization of the system. A model based on monthly averages is used to extrapolate results to other climatic conditions or to perform parametric optimizations.

ST79 30159 Heat Pump

Baier, W.
Bild Wiss. V 15 No. 1 p. 66-76 Jan. 1978 In German

After a brief explanation of why there is only a small chance in the Federal Republic of Germany for space heating only by solar energy using solar cells or collectors, the importance of using heat pumps is pointed out by means of some examples. Among others, the Junkers "Rathhaus" is described, where solar collectors, heat pump, and supplementary heating system are being operated jointly, controlled by a computer. Apart from improvements of the collector efficiency gained by using heat pumps, air, soil, and ground water can be used as supplementary heat sources, so that thermal requirements of a house can be covered completely at 83 percent of all days during the heating period.

ST79 30160 Annual Collection and Storage of Solar Energy for the Heating of Buildings

Sun: Mankind's Future Source of Energy; Proc. of Int. Solar Energy Congress
Pergamon Press, Inc., Elmsford, NY, ERDA-sup'd research p. 1060-1066
A79-17415 Jan. 16-21, 1978 New Delhi, India V 2

Results are presented of the first year's operation of a new system for year-round collection and storage of solar heated water for heating of buildings at the University of Virginia. The system is composed of an energy storage subsystem which stores hot water in an underground pool, and of a solar collector subsystem which acts not only to collect solar energy throughout the year but also to limit the evaporative and convective heat losses from the storage system. System temperatures and rates of energy gain and loss are presented for the system operated in an energy collection mode. Thermal performance results are presented illustrating the efficiency of the solar collector under summer conditions (without a reflector) and winter conditions (with assistance from a vertical reflector). Analog and digital models were used to determine the influence of various design modifications for improved collection and storage system performance.

ST79 30161 Ingenuity and Experiment are Needed to Advance Solar Cooling

Beckman, W.A.
Univ. of Wisconsin, Madison, WI
Sunworld No. 6 p. 2-6 Nov. 1977

The author examines various solar cooling systems and points out some of the operational problems that must be solved if solar cooling is to be used extensively. Absorption cooling systems, liquid desiccant systems, solid desiccant systems, and Rankine cycle powered cooling are discussed.
ST79 30162 Low-Cost Electronic Solar Energy Control
Blade, R.A.; Small, C.T.
Univ. of Colorado, Colorado Springs, CO

A simple, inexpensive differential thermostat circuit, for use with a solar heating system, is described.

ST79 30163 Collector Types and Their Different Constructional Characteristics
Bossel, U.
Deutsche Forschung und Versuchsanstalt fuer Luft und Raumfahrt E.V., Goettingen, Germany, F.R.
Sanit.-Heizungstech. No. 10 p. 628-631 1976 In German

Three components form the core of every solar heating plant: the collector which is the component collecting the heat, the store as a heat buffer and the heating system which is the heat emitting element. As an example, underfloor heating acts as the heating system system. The problem of storage is not solved, while collector development has just begun. In the interim phase, which will last for some years yet, one will be able to combine them, without storage, with low-temperature heaters to form functional plants.

ST79 30164 Inexpensive Solar Energy Utilization in Human Settlements
Bowen, A.
Int. Symp.-Workshop on Solar Energy Cairo, Egypt June 16-22, 1978
Symp. Lectures Univ. of Miami Coral Gables, FL A79-16470 p. 499-561

Several solar energy applications for use in or near houses are surveyed, and some simple air and liquid solar collectors and storage systems are described. Equipment required for applications such as cooking, drying, dehydration, distillation, and desalination is discussed, and the use of solar energy to aid or accelerate bioconversion is examined. Other topics include the solar sterilization of medical instruments, a passive icemaker, and passive heating or cooling.

ST79 30165 Design Optimization for Solar Array of Multiple Collector Types
Bradley, J.O.; Posner, D.; Bingham, C.E.
Annual Conf. on Energy, 4th Rolla, MO Proc., Univ. of Missouri, Rolla p. 25-37 A79-14677 Oct. 11-13, 1977

Methodology is presented for optimizing solar arrays used for heating fluids from ambient to elevated temperatures. The optimal array consists of the appropriate combination of available collector types which delivers the most energy per dollar invested in the array. An example of optimization is presented and verified using computer simulation of numerous combinations of collector types.

ST79 30166 Solar Energy Utilization for Water Heating and Space Heating
Birnbreier, H.
Brown, Boveri, und Cie A.G., Heidelberg, Germany, F.R., Zentrales Forschungslabor Fi-Bau V 11 No. 3 p. 23-25 1976 In German

There are great differences in solar radiation at different latitudes in the course of a year, but in summer, even temperate regions may dispose of nearly the same amount of energy as the equator regions—only, of course, for a shorter period of time. Therefore, solar energy may be of advantage also in Germany for cooling and water heating during the warm season.

ST79 30167 Thermic Diode Solar Panels for Space Heating
Buckley, S.
MIT, Cambridge, MA
Solar Energy V 20 No. 6 p. 495-503 1978

55
Panel operation is discussed and thermic panels are compared to other solar heating systems: air heating, water heating, active and passive. Residential and commercial applications are also discussed. The performance of thermic panels are compared to conventional solar systems. Computer simulation of thermic panels in a residential space heating application resulted in predictions of the percentage of solar heat provided by the panels. The predictions are compared to similar analyses of conventional solar systems. It is shown that thermic panels are compared to similar analyses of conventional solar systems. It is shown that thermic panels improve the economics of flat-plate collectors by their modularity and simplicity.

ST79 30168 Solar Hot Water Demonstration Project

Burnett, E.S.
Aratex Services, Inc., Encino, CA
Solar Heating, Cooling Demo. Program Contractors' Rev., V 2, Papers

A hot water preheating system for a laundry is described which includes a wastewater heat recovery subsystem and a 6500 ft² flat-plate solar collector with a 12,500-gallon fiberglass storage tank. The system is designed to preheat approximately 60,000 gallons a day of city water at a temperature from 70 and 80°F to between 125 and 135°F.

ST79 30169 Heat Pumps Could Inject Life Into Solar Energy

Butler, P.

Prospects for the use of solar energy in Great Britain are discussed. The only economically feasible solar system is considered to be a solar assisted heat pump. One of the factors included in an economic assessment of the solar system include the degree to which the house is insulated. Government incentives were suggested to increase solar consumerism. Detailed calculations showed that solar collectors on small British houses were currently uneconomical. The most promising market for solar collectors is outside the domestic market. The lack of standardization of solar collectors also is a hindrance to public acceptance of solar. Heat pumps with a coefficient of performance of 3:1 and giving a heat output of 3 KW for every KW of electricity are considered economically feasible. Heat pumps with a coefficient of performance of 3:1 and giving a heat output of 3 KW for every KW of electricity are considered economically feasible. Heat pumps with a coefficient of performance of 3:1 and giving a heat output of 3 KW for every KW of electricity are considered economically feasible.

ST79 30170 Some Experimental Investigations on Solar Space Heating in Korea

Cha, J.H.
Sun: Mankind's Future Source of Energy; Proc. of Int. Solar Energy Congress

Experiments performed to examine the technical feasibility of liquid-type and air-type solar space heating systems in Korea are described. The liquid system resulted in a heating load capacity of up to 85 percent when the area between the solar collector unit and the heating space was the same. The air system was found to be very competitive with the liquid one in terms of performance and also favorable in terms of cost.

ST79 30171 Solar Wall Performance

Cash, J.

The basic solar wall consists of an opaque inner leaf and a transparent outer leaf. According to one-dimensional heat transfer theory the thermal behavior of the wall can be described using a wall thermal transmittance, a solar gain factor, and an environmental temperature. Tests on small units at Bolton Street, Dublin during the period April 3-13, 1978 support the theory. As well as test results, this paper includes radiation measurements made during the period.
ST79 30172 Proposals for the Production and Seasonal Storage of Hot Water to Heat a City
Cavalleri, G.; Poligmo, G.
Univ. Di Milano, Milano, Italy
Solar Energy 19 No. 6 p. 677-683 1977

It is proposed to use an artificial lake, thermally insulated in the upper part only, to be filled during the spring, summer, and autumn with hot water at 98°C as a big storage of heat. Both the lake and the solar collectors should be placed in the mountains to exploit the low cost of the land and the higher solar radiation. To extract the maximum heat from the water, the aqueduct first feeds usual heaters, then in cascade, radiating panels, and finally, warm air conditioners equipped with a heat pump so that the discharged water is at 5°C. The design of the relevant moving tubular boiler is presented.

ST79 30173 Solar Heating
Chant, R.E.
Univ. of Manitoba, Winnipeg, Canada
Applications of Solar Energy: Solar Energy Seminar, Saskatoon, Saskatchewan, Canada
CONF-760318 p. 48-64 March 26, 1976

The advantages, equipment, and potential of the utilization of solar energy for space heating in Canada are discussed. The design and performance of typical solar heating systems are illustrated, and some heat storage materials are compared.

ST79 30174 Evaluation of Matrix Solar Collector For Heating Air
Clary, B.L.; Morgan, R.G.
Oklahoma State Univ., Stillwater, OK
Solar Crop Drying Conf. Proc. Raleigh, NC
CONF-770686 p. 44-66 June 30, 1977

The results and validation of a simplified theoretical technique for predicting the performance of matrix absorbers for use in drying peanut pods are presented. Validation of the results were obtained from experimental tests conducted on laboratory models while drying farmers' stock peanut pods and by comparing the simplified analysis with results of rigorous analyses available in the literature. Several assumptions were made to reduce mathematical relationships governing flow and heat transfer characteristics of the matrix solar collector. It was assumed that axial and horizontal conduction through the nonmetallic porous bed could be neglected. The bed was assumed to be a gray nonscattering body and to have a constant absorption coefficient. The bed was considered to have a one-dimensional steady-state temperature distribution within an isotropic porous media. Only direct radiation effects were considered. However, diffuse radiation also contributes to solar radiation and can become significant in an overcast sky.

ST79 30175 Lennox Reaches Back to Move Forward
Consdorf, A.P.
Appliance Mfg. p. 48-54 Nov. 1977

In September of 1975, Lennox joined forces with Honeywell in the production and experimentation of solar collectors. While Lennox gains access to the technology from Honeywell's research and development of solar energy from the 1940's, it contributes knowledge in the auxiliary heating system needed to accompany the collectors. Lennox began production nine months after the merger. They hope to streamline production by plating and etching the absorbers. Lennox plans to sell both residential and commercial systems. A job-related training program is being offered for the dealers. The system has collectors capable of reaching temperatures of 185°F to 215°F. The systems are capable of space heating hot water and cooling. Tests conducted at the NASA-Lewis center showed the Lennox/Honeywell collector design to be the most efficient.

ST79 30176 Enhancement of Intrinsic Solar Heating
Converse, A.O.; Kachadorian, J.
Sun: Mankind's Future Source of Energy; Proc. of Int. Solar Energy Congress
Pergamon Press, Elmsford, NY
A79-17494 p. 1677-1680 V 3 Jan. 16-21, 1978

The Green Mountain Homes "Solar Slab" building's thermal performance is summarized for the period October 1976 to May 1977. Descriptions of the building and monitoring and data processing procedures are also presented. The measured heat loss for this 117.5 mi²
The building was 1.52 W/m²·C of living space including insulation, or 0.95 for purchased energy only. Thirty-seven percent of the heating energy came from the sun. The monthly average of the maximum daily temperature ranged from 22.1-23.3 °C. The total cost of oil and electricity for heating was $249.

ST79 30177 Pumps in Solar Energy Systems

Cook, J.E.

The question of where pumps should be included in the solar system is discussed. Only the thermosiphon solar system does not use pumps. Other types of solar systems employ centrifugal water circulation pumps. Pumps operate in the solar systems when the differential controller indicates that water or fluid in the outlet of the collector is hotter than the water or fluid in the storage tank. Most controllers turn off the pumps when the temperature differential decreases to 2 to 3°F. The pump in the solar system may operate only a few minutes or as many as 12 hours per day. Pumps in the solar system should not be mounted at the highest point because of the likelihood of air entering. Ideally, the pump should be located upstream from the solar collectors. The pump should also be placed in a dry environment, protected from wind, rain, and moisture. In selecting pumps for a fresh water open system, only stainless steel and brass should be used. Greater pump efficiency and adaptability is achieved with variable speed pumps. The water circulation pump should be installed at least 3 feet below the top of the water in the storage tank to maintain the proper pressure. For residential uses, pumps should be selected that do not consume an amount of electricity equal to more than one percent of the energy (BTUs) gained by the solar system.

ST79 30178 Economics of Solar Heating and Cooling Systems

Corcoran, W.L.
ERDA, Washington, D.C.
ASHRAE J. V 20 No. 4 p. 47-50 April 1978

Solar energy conversion technologies have been demonstrated but current use of the solar resource is hampered by a variety of economic and other barriers. The purpose of this paper is to outline the character of some of these barriers and indicate the progress made in reducing them.

ST79 30179 High-Efficiency Solar Collectors for Flat Roofs, Part 1

Dalhoff, W.; Dohse, G.; Knippertz, H.J.; Timmerberg, C.
Ikz Fachz. Sanit.-Heiz.-Klima V 32 No. 20 p. 120-124 Oct. 1977 In German

Of the overall energy consumption in the Federal Republic of Germany, about 40 percent is used for space heating and about 36 percent for hot water preparation and process heat. Here, solar radiation energy can contribute its share and thus, help to relieve petroleum as the main primary energy carrier. A survey of available solar radiation energy is followed by a description of the functional characteristics and solar collector design. In this context, the installation of solar collectors on flat roofs is very important as there are a lot of flat-roofed buildings. In solar techniques, flat roofs offer a number of advantages: east-west orientation, as is required for steep roofs, is not necessary; architectural advantages, no awkward reflection; easy assembly; etc. Model measurements on solar simulation equipment are reported. The measurements supplied basic data for the optimum design of collector-reflector systems.

ST79 30180 High-Efficiency Solar Collectors for Flat Roofs, Part 2

Dalhoff, W.; Dohse, G.; Knippertz, H.J.; Timmerberg, C.
Ikz Fachz. Sanit.-Heiz.-Klima V 32 No. 21 p. 31-33,36

Of the overall energy consumption in the Federal Republic of Germany, about 40 percent is used for space heating and about 36 percent for hot water preparation and process heat. Here, solar radiation energy can contribute its share and thus, help to relieve petroleum as the main primary energy carrier. A survey of available solar radiation energy is followed by a description of the functional characteristics and solar collector design. In this context, the installation of solar collectors on flat roofs is very important as there are a lot of flat-roofed buildings. In solar techniques, flat roofs offer a number of advantages: east-west orientation, as is required for steep roofs, is not necessary; architectural advantages; no awkward reflection; easy assembly; etc. Model measurements on solar simulation equipment are reported. The measurements supplied basic data for the optimum design of collector-reflector systems.
Of the overall energy consumption in the Federal Republic of Germany, about 40 percent is used for space heating and about 36 percent for hot water preparation and process heat. Here, solar radiation energy can contribute its share and thus, help to reduce petroleum as the main primary energy carrier. A survey of available solar radiation energy is followed by a description of the functional characteristics and solar collector design. In this context, the installation of solar collectors on flat roofs is very important as there are a lot of flat-roofed buildings. In solar techniques, flat roofs offer a number of advantages: east-west orientation, as is required for steep roofs, is not necessary; architectural advantages; no awkward reflection; easy assembly, etc. Model measurements on solar simulation equipment are reported. The measurements supplied basic data for the optimum design of collector-reflector systems.

Domestic solar applications are examined for the home. This includes a reservoir, solar oven, parabolic collector, solar umbrella, and a flat-plate collector. The reservoir was constructed and found to have a heat loss of 3.11 as compared to an insulated one. Verification of the thermosiphon principle indicated that the water particle made one complete cycle each 14 minutes. A solar oven was constructed with a reflector and bimetallic thermometer to check the temperature. On a typical day, the oven produces air temperatures of 1750° F in an hour and heated water to 113°F in an hour. The solar umbrella attained temperatures of 25°C to 56°C. The flat-plate collector had the best capacities for heating water in an hour. It was 18 percent more efficient than the parabolic collector. A list of references for general solar energy information is included.

Active solar heating systems to supplement good structural design and passive techniques are discussed. Topics include descriptions of some solar heating systems, simulation methods for designing these systems, design of standard configuration systems by use of "short-cut" design methods, and economic criteria and methods for evaluating solar energy systems. Weather data and collector performance parameters are considered, and the use of F-charts is explained.

Simple solar air heaters suitable for do-it-yourself construction are reviewed. Innovative solar absorber materials are discussed and some reference papers are mentioned.

No abstract available.
Effect of Solar Buildings on Peak Load
Feldman, S.L.; Wirtshafter, R.; Wesaler, E.
Russel Sage Foundation, New York, NY
Electr. World V 189 No. 6 p. 150-152 March 15, 1978

The sensitivity of utility load curves to solar design, according to these authors, is fairly high. Because of the variations in ambient weather conditions, no general statement can be made regarding the impact of solar heating and cooling on electric utility load curves. Weather, the utilities' generation mix and load curves, and solar building designs determine solar impact on demand levels.

Effect of Off-South Orientation on the Performance of Flat-Plate Solar Collectors
Felske, J.D.
MIT, Cambridge, MA
Solar Energy V 20 No. 1 p. 29-36 1978

This study investigates the collector performance and optimum tilt as functions of the off-south angle, collection temperature, number of glass covers, and the relative amounts of direct and diffuse radiation. It was found that the yearly energy collection for a given collector tilt is insensitive to the off-south angle and that, in some cases, it actually improves with increasing azimuthal angle. It was also found that for a given azimuthal angle, an optimum collector tilt exists which is between 3 and 10° less than the latitude. Calculations were based on New York City weather.

Solar Contracting Requisites for Roofing
Field, R.
ERDA Office of Internal Review, Washington, D.C.
RIBA J V 54 No. 5 p. 10-14 May 1977

In order to sell solar systems, it is necessary to be able to calculate storage area, design criteria, and the payback period. Prior to the installation of the solar system, insulation, and other energy conservation measures should be taken. The collector should face southwest or south and be unshaded. A well-insulated tank is necessary for a water system. The advantages of air and liquid systems for various uses are described. Installation is described with an emphasis on good flashing and sealing practices for the various pipework connections. Maintenance of the collectors varies according to the area. When the roofer decides to reroof a house with solar collectors, he should take the following precautions: (1) remove the collectors during the job to reduce breakages, and (2) tape any open pipes to keep debris from entering the solar systems. Resterilization of the water system is required as well as roofing and sealing around the pipes.

Controls for Heat Reclaim With Thermal Storage Coupled With Solar Heating
Fislon, F.E.,Jr.
Am. Soc. of Heating, Refrig., and Air Cond. Engrs. Annual Mtq, Albuquerque, NM

The paper describes a field-erectable heat pump system of chilled water type with an automatic temperature control system which uses three-way bypass or diverting valves, heat sensors, limit controls, and thermostats. By the installation of a solar system, converter, circulating pump, and a closed-loop system, it is possible to add additional tank temperatures to the system. Diagrams illustrating different system configurations are presented.

Solar Energy in the United Kingdom
Flack, D.

It is argued that with current technology solar heating of homes in the United Kingdom has no future unless there can be developed a cheap, reasonably efficient collector system costing between 1/5 and 1/10 of current systems, plus a cheap storage system with minimum storage capacity of about one week. Economic arguments are presented demonstrating that cheap collector systems are necessary to compete, with fossil fuels, and without the storage systems, solar systems will be absolute nonstarters in the days of nuclear/electrical energy. Alternative applications are considered for solar energy such as swimming pool heating and refrigeration.
Will a Solar Home Save You Money?

Frutkin, R.
Science Digest, Chicago, IL V 82 No. 5 p. 70-71 Nov. 1977

The author believes that a solar system will not save money and the three main reasons are insulation, initial costs, and annual savings. The author points out that by spending two to three percent of the construction costs for insulation, the homeowner can save up to 50 percent of the home heating bills. A solar system costing from $7000 to $10,000 will only save an additional 20 percent of the energy bill. A solar system for domestic hot water is considered expensive, even by ordinary standards. The rate structure of the fuel companies allows for large fuel consumption at fairly cheap rates. The author feels that until energy is no longer priced as a commodity, solar energy systems will not be economically feasible.

Solar Heating of Buildings

Ghaswala, S.K.

No abstract available.

Metal Hydride Solar Heat Pump and Power System/HYCSOS

Gorman, R.; Moritz, P.S.

The report presents the design, performance, and cost of a solar powered metal hydride heat pump and power system for use on a residence. The system design, which is limited by heat transfer, is optimized via an iterative computer program. The design process starts with optimizing the thermal transport properties of the hydride bed heat exchanger, then traces temperatures and pressures through the operating cycles. The coefficient of performance (COP) of the overall system is then determined from the thermal losses due to cycling the hydride beds and due to the auxiliary power consumed by freon pumps and air moving fans. The system, using high-temperature solar collector input at 210 to 280°F, provides heating with a COP of approximately 1.0 and cooling with a COP of approximately 0.6, and electrical power during spring and fall, all for a cost comparable to a solar absorption cooler.

Solar Collector Storage Panel

Graham, L.; Stice, J.

The solar collector storage panel is described. This rotating passive heating system combines thermal storage and insulation in a panel which resembles a large flat shutter or Venetian blind. Materials that melt at temperatures slightly above room temperature are used for thermal energy storage. The panels are placed directly behind a window and within a room to be heated, and the procedures for controlling heat loss and room temperature by rotating, opening, and closing the panels are described. Test results for prototype panels and preliminary results of computer simulation are considered.

You Can Build NASA's Low-Cost Solar Heating System

Gross, G.

Information is presented concerning the general specifications, materials, and cost for a solar space heating system designed by NASA for use in homes as a supplement to existing heating systems.

Optimum Insulation With Internal and Solar Heat Gains

Hagen, D.L.
Sun: Mankind's Future Source of Energy; Proc. of Int. Solar Energy Congress
Pergamon Press, Inc., Elmsford, NY; Res. supp'd by Univ. of Minnesota
A generalized degree day method is developed which includes internal and solar heat gains by means of a variable balance temperature. This requires only the expected solar energy and the means and standard deviations of the temperatures through the year. Equations for the optimal insulation are formulated which fully incorporate solar collectors by the F-chart method. Simpler equations which retain the gross effects are also developed. Economic optimums are similar to conventional calculations, but two to three times greater than typical installations. Auxiliary energy use, however, may be half or less than that expected from conventional calculations. Energetic optimums are more than double current economic optimums. Equations for optimal collector area are appended.

ST79 30198 Solar Thermal Systems in the Milking Parlor
Hayden, M.B.; Thompson, P.D.
Genet and Manage Lab., Beltsville, MD
ASAE Winter Mtg., Chicago, IL Dec. 13, 1977
ASAE Tech. Paper no. 77-3539 p. 1-20

A full-scale solar heating system is now in operation at the USDA's milking parlor in Beltsville, Maryland. Proper application of current technology using easily available components and materials has been shown to significantly reduce energy demands upon conventional energy sources in the milking parlor, which is characterized by large and uniform energy expenditures. Roof-mounted solar collector panels convert sunlight to thermal energy. Stored as temperature increase of water in an outside tank, this energy is utilized to preheat well water supplied to supplemental electric water heating, and to aid in space heating in the milking pit area via floor or baseboard plate heaters and/or fan coil units. Additional energy is received from water warmed by the refrigeration condensers for the bulk milk tank cooling system. An extensive core of data has been accumulated on both system performance and on material durability.

ST79 30199 A Solar Energy System With a Dual-Source Heat Pump and Long-Term Storage
Hewitt, E.; Raman, K.
Avail:AIAA, A79-17312 Jan. 16-21, 1978 New Delhi, India p. 463-470b

The performance and economics of a solar energy system with a dual-source heat pump and long-term storage are discussed. Results are presented for the collector and storage sizing, and the variation of the life cycle costs as a function of the various system parameters. The special role of the collector performance and the price of electricity in determining the optimum range of collector and storage sizing are pointed out. The advantages of the type of solar-assisted system considered here are summarized.

ST79 30200 Heattube, A Universal Electrical Solar Heat Equipment For Building, Community, and Agricultural Purposes
Hoorn-Frens, D.
Avail:AIAA, A79-17473 p. 146-1469 Jan. 16-21, 1978 New Delhi, India

The design and principle of operation of a solar heat tube system for space heating are described. The tube is plastic, contains an electrical resistance element, and has a black semiconductor coating; the tube is a black body which absorbs solar radiant energy leading to an increase in the temperature of the water circulating through the tube.

ST79 30201 NMSU: Casa Del Sol of the Future
Horak, H.L.
New Mexico State Univ., Las Cruces, NM
23rd IFS Annual Tech. Mtg. and Expo.: Environ. Tech. '77 Los Angeles, CA
CONF-770415 p. 151-156 April 24, 1977

A solar heated and cooled experimental residence has been built on the campus of New Mexico State University. The house is of energy conserving design, of southwestern architectural style, and has an integrated solar system. A computer model has been developed for the thermal performance of the house and solar system. It is composed of two basic parts, a house load and a mechanical system heat balance section. The load section determines the heat conduction through the walls and roof using a one-dimensional transient finite difference technique. The interior heat, infiltration, and filter loads
are calculated from empirical relations. The load imposed by incident sunlight on any of the outside surfaces of the house is determined by a separate subprogram. The mechanical system model solves heat balance equations for each component of the solar system simultaneously. This is accomplished for each time increment and uses a Runge-Kutta integration technique. A comparison has been made of the operational predictions of the analytical model with the actual design that was developed and built. The existing system was designed based on typical engineering. The model study indicates that the existing system was sized well at very nearly the optimum for this climatic region.

ST79 30202 Performance Comparison Between Flat-Plate and Moderately Concentrating Solar Energy Collectors

Howell, J.R.; Bannerot, R.B.; Elliott, D.G.; Reber, J.
Univ. of Houston, Houston, TX

The object of this work has been to evaluate the potential of trapezoidal grooves as thermal energy collectors. In particular, can they outperform a "comparable" flat-plate collector. It is apparent that an advantage can be established for the grooved collector if both the following criteria are met: (1) a large fraction of the insolation entering the groove's aperture must strike the thermal energy collectors at the base of the groove; and (2) a significant reduction in thermal energy loss from the receiver must be realized. The work discussed represents the first step in analyzing the groove's success in meeting the second criterion.

ST79 30203 Solar Heat Pump Systems: An Analysis

Hurley, J.P.

A brief review of the heat pump system is given. The use of a solar-assisted heat pump and the use of a heat pump assisted solar heating system are discussed. Both systems employ the use of a swimming pool.

ST79 30204 Solar Economics Comes Home

Hyman, M.Jr.
Tech. Review V 80 No. 4 p. 29-35 Feb. 1978

The sun can supply most of the heat needed by a home through the long New England winter, but costs are high. The author includes a diagram of the solar heating system that was used.

ST79 30205 Conditions For Solar Heating Systems in Sweden

Isfaelt, E.
KTH, Stockholm, Sweden
Tek. Medd. V 3 No. 1 p. 102-111 1975 In Swedish

The solar energy at ground level in Sweden is estimated to 1000 kWh/m², year. For heating of buildings by solar energy, solar collectors with direct heating of water has been found most suitable. Tables are given showing the solar energy absorbed by a plane solar collector in different points of the compass and against a horizontal plane in Stockholm. The requirement of heat for an ordinary house has been compared to the available solar energy. For the whole year it was found that the energy is sufficient but for middle and north Sweden, stored heat has to be used approximately from October to March.

ST79 30206 Result of Cooling Operation of Yazaki Experimental Solar House "One"

Ishihashi, T.
Yazaki Buhin Co., Umeda, Japan
Solar Energy V 21 No. 1 p. 11-16 1978

The author stresses that one of the important factors for designing solar houses is to examine the most economic combination which is called optimum design between solar collector area and storage volume for the required energy demand. The result of experimentation described gives the fundamental data for completing the computer simulation program that is effectively usable for designing a solar house.
ST79 30207 Refrigerated Solar Heating

Jones, R.; Ottaviano, V.B.

The use of solar collectors is discussed in conjunction with a water-cooled heat pump. The cost of the installed system is around $1600. Fewer square feet of collector space are needed since the ambient temperature is utilized. Lower collector temperatures remove the need for glazing resulting in reduced reradiation losses. Systems were installed in Dallas and Denver. In Denver, the solar system had a booster coil added, bringing the total cost of the system up to $2200. This system was usable for commercial purposes where the water is heated to a temperature of 120°F or less. Expected performance charts are included for the Dallas and Denver locations. The total solar contributions for the two locales are also indicated in a chart.

ST79 30208 Space Heating With Solar All-Air Systems; CSU Solar House II

Karaki, S.; Loef, G.O.G.; Armstrong, P.R.

Solar House II at Colorado State University is provided with a system comprising a 68.4 m² double-glazed, nonselective solar air heater; a 16.5-metric-ton pebble-bed heat storage bin; a solar hot water heat transfer coil; auxiliary natural gas heaters for space heating and hot water; an air distribution system; an evaporative cooler; an automatic control system; and fully instrumented data recording equipment. During the partial 1975-1976 heating season, the system provided 35,500 MJ of heat from the solar system, which was 71 percent of the total load for the period recorded. During the heating season from November 1, 1976 through May 16, 1977, the system provided 50,600 MJ of heat, which was 73 percent of the total load.

ST79 30209 A Thermic Controller for a Thermic Diode Solar Panel

Khandani, S.M.H.; Buckley, S.B.

The purpose of the study was to design a thermic controller using stored heat to warm the interior of the buildings. The controller operates to maintain the interior temperature of the building at an arbitrary set point. The controller design was theoretically investigated and modeled; a computer simulation verified the theoretical model. An experimental model was built which simulated the actual building heating situation. The experimental model verified the assumption of the theoretical analysis. The accuracy of the controller allowed the simulated building's temperature to be held within ± 3°F of the desired set point.

ST79 30210 Goosebrook: Solar is Ready When You Are

Kassler, H.; Daprato, R.

The public's attitudes toward solar energy and conservation can be witnessed in the popularity and success of the solar heating development operations in Goosebrook, New Hampshire, and Helmet, California. In Goosebrook, a house that was designed to combine solar power, energy conservation, and use of as few nonrenewable resources as possible, received federal funding and was sold in just four days. In Helmet, homes designed to utilize solar space and water heating were readily accepted by an interested public and eager home buyers. The design, financing, and construction of the Goosebrook house and the engineering, installation, and financing problems of Helmet are detailed.

ST79 30211 Tinkering With Sunshine

Kidder, T.

Some of the outstanding people in the field of solar energy and general energy conservation are discussed. Examples of people upgrading the current solar technology are given. A survey of people manufacturing and inventing new equipment for solar systems, photovoltaic, technology, and costs are also mentioned. Wind energy and wind equipment, as well as the people interested in this field are also discussed.
Toshiba Solar House No. 1 is a two-story prefabricated residence, which was completed in October 1975 in Kawasaki, with a solar air heating system including a 48 m² air heating collector roof, a 17-ton rock bed thermal storage, and a forced air distribution system, in addition to a solar water heating system for hot water supply. In order to ascertain the feasibility of using the present solar heating systems, practical living tests were performed during the heating season of 1975-1976, with a successful high heating performance.

The possible use of solar energy for industrial water preparation and room heating with resulting fuel savings of up to 50 percent has already been successfully tested in a series of new systems. The inclusion of solar auxiliary devices in existing heating systems is a different matter. How present heating systems can be equipped with solar auxiliary devices and how economical such devices are is investigated.

Examples are discussed in the article as to how one can connect a solar system to an existing heating system which serves as house and warm water heating. The supply of swimming pools is also discussed. Finally, the question of additionally using a heat pump is discussed.

The solar energy equipment industry is plagued by a lack of central information sources and industrial development standards. Such data as building lifetimes and local sun availability are needed, since solar systems must be tailored to specific locations. ERDA has been funding demonstration projects with a budget of $13.6 million, but the cost factor remains a significant obstacle to solar equipment development. Three reasons solar systems are costly are the large amounts of insulation required, large quantities of the correct solar panels needed, and great amounts of insulation required. Despite the problems, new technologies are being developed and California is setting up a solar energy hardware information distribution program.
Considerations in the design of solar tracking systems are discussed. Pointing accuracy, sensor angle, frequency response, mechanical backlash, mechanical inertia, and motor selection are treated. A sensor device employing two phototransistors in a bridge circuit is described. Calculation methods for determining design parameters are explained. A design example is worked out.

The effect of individual collectors shadowing one another on the performance of a solar collector matrix was studied. Hourly and seasonal variations of the solar input are considered. In the analysis, the shadows of the ITH collector by its three nearest collectors to the east, southeast, and south in the period before solar noon is reviewed. The coordinate system for the ITH collector refers to a system that is fixed to the earth's surface. A modified axial temperature differential analysis was used to obtain the energy extraction rate. The collector fluid temperature rise for a typical flat-plate collector (9' x 12''). The collector field is assumed to be located in Albuquerque, New Mexico. It was generally found that the output decreases with increasing tilt angle. Shadowing for a 9' x 12' spacing is greatest at 45° tilt. The maximum output occurs at noon June 21 using that particular data. Moderate degradation occurs at the collector tilt of 35° and almost none at all for 25°, except at noon. Results show that shadowing plays an important role in the spacing and sizing of collector fields.

Guidelines for location and use of thermal sensors in solar heating and hot water systems are discussed. Differential, upper temperature limit, and freeze protection sensing are explained. A detailed discussion of sensor location in solar water heaters and solar collectors is presented. Modes of operation of temperature controls are described for solar systems.

A report is given on the application of solar energy to building heating and warm water heating. The erected house is designed to greatly reduce the energy consumption, so that the solar system and heat pump are a sufficient supply. The investment costs were 4000 DM more than that of a common oil-firing system.

A large, inexpensive, lightweight grooved Foamglas solar collector assembly has been designed and installed at WVU. Six different collector construction techniques are applied. The six types are connected in parallel to allow independent thermal performance testing. An automated data logger collects performance data from all six types of collectors simultaneously and at preselected intervals. All collectors discharge the hot air to a single header, air is then ducted through a blower, several electric heater elements, and then through three A-coils. Water is pumped through these air conditioning evaporator A-coils to obtain domestic hot water heating. A test objective is to determine the most cost-effective area ratio between the solar collectors and the A-coils, and the total hybrid system thermal performance.
ST79 30222 Prediction of Average Collector Efficiency From Climatic Data

Lunde, P.J.
Center for the Environ. and Man, Inc., Hartford, CT
Solar Energy V 19 No. 6 p. 685-689 1977

Mathematical techniques are used to show how specially developed average climatic information can be used to predict in a single step the average solar collector efficiency at a particular location over a day or longer if the basic collector parameters available from a collector performance curve.

ST79 30223 Seasonal Solar Collector Performance With Maximum Storage

Lunde, P.J.
Center for the Environ. and Man, Inc., Hartford, CT
ASHRAE J. V 19 No. 11 p. 55-59 Nov. 1977

An integrated form of the basic solar collector heat balance equations is derived which permits use of average temperature and insolation data to determine seasonal performance when the average solar temperature is known. Typical collector performance is presented graphically for the case of finite storage and constant storage temperature for a variety of collector operating conditions. Use of the integrated collector equation makes possible a calculation of monthly and annual solar collector performance.

MacArthur, J.W.: Palm, W.J.; Lessmann, R.C.
Honeywell, Inc., Energy Resource Center, Minneapolis, MN

A solar assisted heat pump system with a conventional backup unit was simulated for a 93 m² house in Rhode Island using quasi-dynamic computer models. The performance of the system as a function of collector area and thermal storage volume was evaluated to determine the fraction of the space heating and domestic hot water load that was supplied by the solar assisted system. This information was used to compute the payback time, based on cumulative costs, for each variation of the system's parameters when compared to a conventional system. The optimal combination of system components which had a payback time less than the mortgage life was determined.

ST79 30225 Home Heating Conservation Alternatives and the Solar Collector Industry

Magnas, H.; Stoll, R.; Walton, H.
Mon. Energy Review p. 2-0 March 1976

This article discusses analyses of 20-year costs for retrofitting single-family residences with increased amounts of insulation and solar energy systems. The results of this study indicate that the heating load of the "average" single-family dwelling with 24 inches of ceiling insulation can be reduced up to approximately 35 percent by adding enough ceiling insulation to equal 10 to 12 inches and installing storm windows and doors. This is for a home in an area with solar radiation characteristics similar to those of Washington, D.C. Twenty-year life cycle cost analyses show that water and space heating via solar collector systems compete favorably with conventional electrical heating systems, but not with conventional gas or oil heating systems, except in regions of the country where there are extremely high fossil fuel prices. If solar collectors were mass produced, the competitive advantage might increase because of cost reductions. The level of manufacturing activity in the solar collector industry, based on FEA surveys, is also discussed in this report. There are indications of a 400 percent increase in the production of medium-temperature flat-plate solar collectors during 1975. Continued rapid expansion will have to occur before solar collectors will have an appreciable impact on the country's total consumption of fossil fuels.

ST79 30226 Cooling Applications of Thermic Diode Panels

Mangano, J.J.; Buckley, S.B.

A theoretical study of the feasibility of using thermic diode panels to cool large buildings shows promising results. Semi-empirical correlations and heat transfer equations are combined to produce a mathematical model which is implemented into a computer program. Weathers data, geometry, and physical parameters are used as inputs to the model in order to simulate the system's performance. The data generated by the
computer is correlated in terms on nondimensional parameters which simplify the design task. Good performance was obtained for shopping centers in the American southwest, where cooling is needed during much of the year.

ST79 30227 Solar Energy For Residential Housing

Martin, J.H.
Inst. of Gas Tech., Chicago, IL
Energy From the Sun Symp. IGT Chicago, IL

An attempt is made to evaluate the feasibility of using energy conservation and solar energy harvesting to produce thermal comfort in residential housing. Attention is given to questions of economic feasibility, the quality of life feasibility, aspects of institutional feasibility, and a sample solution. The evaluation shows that carefully conceived energy conservation and harvesting of solar energy for residential buildings is very attractive economically, aesthetically, and institutionally. It is found that energy conservation will provide a cost recovery of at least 28 percent/year now and probably greater than 65 percent/year five years from now. Energy conservation and solar harvest together will provide a cost recovery of at least 12 percent a year now and probably greater than 25 percent five years from now. The considered measures can reduce energy purchases for housing by 85 percent.

ST79 30228 Performance Evaluation of the New Mexico State University Solar House

Matzkanin, R.L.; Mancini, T.R.
ASME Winter Annual Mtg. San Francisco, CA

The design features, operating principles, and performance of the liquid-type solar heating and cooling system in the New Mexico State University Solar House are described. The performance is evaluated for part of the 1977-1978 heating season. The system components include exchangers and pumps and controls; the control system includes manual overrides in all modes of operation. Operation of the heating system is initiated by the demand signal from a conventional thermostat set by the occupants of the house. Data on solar radiation and ambient temperature are presented. The heating loads, collector array performance, and the energy delivered to storage are plotted. Also discussed are the operational costs of pumps and fans, along with system operation at low storage temperatures.

ST79 30229 Energy Efficiency Will Feature Transplanted Town: TVA Moves Flood-Prone Southwest Virginia Community to a New Site

McDonald, D.C.
Tennessee Valley Authority, Knoxville, TN
Public Power V 36 No. 4 p. 58,60 1978

The Tennessee Valley Authority (TVA) has relocated residents of flood-plagued Clinchport, Virginia in the newly created town of Thomas Village. TVA purchased all flood-damaged buildings in Clinchport and provided $2 million for the relocation project. With no help from other federal agencies, TVA was assisted by the Lenowisco Planning District Commission in finding suitable land five miles from Clinchport. Thomas Village was carefully planned as a demonstration of energy conservation, with all houses meeting high-efficiency standards that take advantage of solar heat and windbreaks.

ST79 30230 A Solar Energy System For Space Heating and Space Cooling

McNamara, T.J.
Annual 4th Conf. on Energy Rolla, MO Oct. 11-13, 1977
Avail: Univ. of Missouri-Rolla, A79-14686 p. 187-196

The paper discusses a retrofit space heating and cooling solar energy system planned for the Museum of Science and Industry in Chicago, Illinois. The installation, designed to provide 50 percent of the museum's energy requirements, is regulated by two separate free-standing control panels. The heating of air is effected by hot water heating coils; cooling is effected by circulating chilled water from the absorption unit to cooling coils. The structural support can withstand 100 mph wind speeds and 11 lbs ft² snow load. The collector array has 442 collector units arranged in 13 rows. The installation is designed for a 45° plane with the horizontal which yields the most efficient energy collection throughout the year.
Developed as a method of reducing summer solar heat gains, the thermal louver has been used to reduce annual energy use in large, glass-curtainwall office buildings. Solar heat gain in these buildings is typically 40 percent of the total air conditioning load. The goal of the louver's original design concept was removal of up to 85 percent of the solar gains, thus significantly reducing summer air conditioning costs. Also inherent in its design is the ability to take winter solar gains and distribute this heat to cooler parts of the building, so that it is able to reduce summer gains and supplement winter heating. The louvers mount inside the building, adjacent to perimeter glass areas. The blades are made from extruded aluminum and have a hollow center core through which water is circulated. The blades are connected to concealed manifolds that in turn are connected to the water transfer system. Also described is a chemical dehumidification system which is unique in that it makes use of solar energy at temperatures much lower than that required for absorption refrigeration. It therefore can use solar augmentation for a higher percentage of the cooling season.

This article is an evaluation of solar heating and cooling for large buildings. Important factors in the analysis are construction materials, massing, orientation, fenestration, functional use, and the occupancy cycle. Large buildings designed with energy conservation features become more attractive for solar heating and cooling systems. Storage and weight requirements must be checked to ensure a maximum thermal capacity within a minimum volume for the HVAC requirements during peak periods. The value of the fuel being used in the building should relate to the work demanded from the energy. For higher temperature requirements, concentrating collectors can be utilized. Studies show solar powered heat pumps are technically more desirable than direct heat exchangers for heating applications. The Rankine cycle is explained and suggested as a means of utilizing the wasted heat from the condenser, therefore increasing the efficiency of the cycle. It is also operated as a selective power system for use and storage of excess electricity. Further energy savings are attained from the proposed SPRRACS system. The SPRRACS was designed to make the solar powered Rankine cycle more economically feasible for large building systems. The single-duct reheat system is illustrated and explained for solar cooling and heating. The ceiling induction unit is explained also for heating and cooling; however, there is no control for humidity. The use of pleum heat availability during the winter is questioned. Rankine heat flow paths are diagrammed. Rankine drive trains function for power transmission from the chiller compressor or the storage of excess electricity.

The origin and evolution of the Solar Heating and Cooling Commercial Demonstration Program by the Department of Energy and the Marshall Space Flight Center activities supporting this program from its conception are defined and discussed. Problems are summarized in the design and financial areas. It is concluded that the program has significantly assisted the creation of a viable solar testing and cooling industry. The cost effective procedures evolving from the program are expected to make a major contribution to reducing the effective life cycle cost of solar installation.
Boosting the Performance of Solar HVAC Systems by Improving Component Interactions

Newton, A.B.
Inst. of Gas Tech., Chicago, IL
IGT Symp. on Energy From the Sun, Chicago, IL

The paper focuses on those components which are used a little differently in the optimized solar system than they are in the usual conventional system. Major items considered are the storage system, the cooling equipment, the cooling tower, and the air handlers. More specifically, building load pattern, component performance profiles, storage reactions, piping and ducting, air handler response, sink temperature ambient range, collector performance map, control strategy, local insolation and cloud patterns, and system response are stressed. The discussion points to the importance of recognizing the performance characteristics of all components of solar heating and air conditioning systems, and of providing control strategy to optimize the interactions between components. Necessary steps for improved operation and reduced initial cost of solar heating and cooling systems are mentioned.

Solar Energy and Economic Considerations

Miller, J.F.
ASERAE J. V 19 No. 11 p. 40-42 Nov. 1977

This article explains the uses of comparative economic analysis for conservation of natural resources in the design of a typical HVAC system. Computer programs are used to show the payback period of solar systems. The results of computer analysis of 35 solar energy projects are summarized. The customer's choices in the solar system are reviewed. Domestic hot water was the main solar supplement in the different projects. Some of the factors that affected the payback period were geography, the building use, the solar controls, and overall of collector areas. Adjustment of building parameters may assist in reducing cost expenditures. Certain "rules of thumb" that were used in the past are no longer valid. Former specifications used for sizing have proved invalid. The best method for evaluation is the computer simulation method. The author also suggests that people stop thinking of collectors in terms of dollars per ft². The author feels that the most efficient selection depends upon the solar application and the system that delivers the most BTUs per dollar.

Solar: It's In the Near Future

Miskell, J.T.
Energy, Stamford, CT V 3 No. 2 p. 7-9 Spring 1978

This status report on solar energy suggests that the market for solar technology is expanding and will proceed in the private sector regardless of whether there are federal incentives. Solar water and space heating are economically feasible in many geographic locations, and some colder areas are discovering its advantages over expensive imported fuels. With major corporations joining the small manufacturers, prospects for adequate financing and product distribution have improved. Basic designs are combining active and passive energy recovery in the greenroom concept. Architecture schools and building materials manufacturers are developing new designs and products to broaden the solar technology market. Among the new equipment is a concentrating collector that rotates with the sun and shuts down at night.

Trends Emerge, But Solar Design Still Open

Mungovan, J.A.

Different companies that supply materials for solar collectors are competing in the solar market. Many solar manufacturers feel that single-family installations will only be a small part of the future market for solar and that heat recovery systems have a much greater market potential than solar. However, since solar collectors for space heating and hot water are presently available, the materials industry is concentrating its efforts there. A review of the products displayed at the SETA Annual Meeting reveals a variety of materials currently being used in solar collectors. Characteristics of three materials (aluminum, copper, stainless steel) are reviewed.
Experimental Study on House Cooling and Heating With Solar Energy Using Flat-Plate Collector

Nakahara, N.; Miyakawa, Y.; Yamamoto, M.
Ohbayashi-Gumi, Ltd., Tokyo, Japan
Solar Energy V 19 No. 6 p. 657-662 1977

The project described aims at developing the technology to utilize solar energy for heating, cooling, and hot water supply on the basis of various technologies for energy conservation in buildings. For the first step of this project, a solar heating and cooling system with flat-plate collectors and absorption refrigeration machine was installed. An outline of the system and operating results are presented.

An Analytical and Experimental Study of Pumped Solar Water Heaters

Nisbo, B.; Pearce, J.; Clark, W.
Sun: Mankind's Future Source of Energy; Proc. of Int. Solar Energy Congress, V 2
Pergamon Press, Inc. Elmsford, NY Res. supp'd by Florida Solar Energy Center and US Navy

This paper describes and presents the results of an analytical and experimental study of forced circulation solar water heaters. A transient computer model which allows for fluctuating insolation and ambient temperature, as well as draw off of hot water at random times, has been developed. The system model has been successfully used to predict the performance of an installed forced circulation solar water heater under "in use" condition conditions. New experimental data for such a system are presented. They include environmental operating conditions, such as insulation and ambient temperature, as well as hot water load draw off. Results are shown for predicted and experimental collector inlet and outlet temperatures. The percent load carried by solar energy each day of a week of operation is also given.

Some Steps To Solving Solar System Problems

Orlowski, H.
Travis-Brown and Assoc., Dallas, TX

Some installation problems experienced under the HUD program include leakage, air blocks, and operating deficiencies. Some problems and solutions are discussed under the broad categories of system design, collectors, collector mounting, storage, and piping, pumps, and valves.

Principles of Solar Cooling and Heating

Parker, A.J.Jr.; Cassel, D.L.; Veziroglu, T.N.
Int. Symp.-Workshop on Solar Energy Cairo, Egypt

An overview of solar cooling and heating systems for buildings is presented from a practical engineering point of view. It is recommended that building cooling and heating requirements be satisfied at the lowest level of technology and that passive solar energy systems and energy conservation be appoied before active energy systems. The three major types of active systems--water heating, space heating, and space cooling--are discussed. The simple payback economic analysis is shown to be an adequate method for initial system selection considerations. Several thermal analysis methods are discussed, with the F-chart program recommended as a good choice for hot water and space heating systems.

Patel, J.S.; Raghunath, B.K.; Tewary, V.K.; Panda, G.D.
Sun: Mankind's Future Source of Energy; Proc. of Int. Solar Energy Congress, V 2
Pergamon Press, Inc. Elmsford, NY

This paper is a report on the various heat collection and heat storage systems evolved at BITS. The paper reports the performance of flat-plate collectors heating a low boiling organic liquid as an adjunct to BITS Solar Pump. Also given in the paper is an economic alternative to a conventional solar water heater. Further, methods for space heating and cooling are discussed. Possibility of combining a collector and concentrator to achieve higher temperatures and to be able to raise steam is also investigated.
The ClearView Solar Collector System and Associated One and Two-Stage Evaporative Cooling: Interim Results

Peck, J.F.; Thompson, T.L.; Kessler, H.J.; Hodges, C.N.

The ClearView Solar Collector is being developed in response to a need for a transparent, site-built, wall-mounted, hot-air type solar collector. It uses dark Venetian blinds or heat absorbing glass to absorb insolation, thus allowing windows to be placed wherever desired along the south wall. Both passive (natural energy flow) and active (fan driven) forms have been devised. Heat is either stored in the mass of the home or in a rock bed. Summer cooling is accomplished either by ordinary evaporative cooling or by the more powerful two-stage evaporative cooling. Auxiliary heating can be accomplished by simple low-cost devices that heat the entire home. Some forms may be retrofitted onto many existing homes. A 100°F temperature fluctuation in a double brick home (no wall insulation) using a retrofitted hybrid ClearView Solar Collector was recorded. Data on two-stage evaporative cooling taken during the summer of 1978 shows that typical daily output temperatures are between 65 and 72°F during both very hot and very humid weather conditions.

Controls for Residential Solar Heating

Peltzman, E.S.
ASHRAE Trans. V 84 Pt. 2 p. 367-371 A79-16418

Solar heating systems require controllers which can provide one or more of the following functions: differential thermostat (on-off or proportional), freeze control (motor or valve), high set (motor or valve), auxiliary heat, and adjustable maximum storage temperature. The present paper describes several control types for use in residential solar heating and domestic hot water systems. These include: (1) solar assisted hot water system; (2) solar assisted hot water system for freezing areas; (3) pool and spa heating; (4) hot water and space heating. Some economic considerations are presented.

Low-Temperature "Ambient-Plus" Solar Collectors

Pemberton, E.V.; Remick, C.D.
Wilfred Laurier Univ., Waterloo, Ontario
ASHRAE J. V 20 No. 1 p. 57-59 Jan. 1978

The authors attempt to show that ambient-plus collectors can be very efficient, with low cost and least complexity of manufacture, and that these collectors should be considered as real contenders in the solar heating arena.

Heat Pumps With Low Temperature Collectors

Puntus, J.
Sonnenenergie-Tech. V 3 No. 2 p. 22-23 March-April 1978 In German

No abstract available.

Heat Production and Distribution in Buildings With Solar Energy and Heat Pumps

Raetz, K.; Bofinger, H.
Tech. Bau V 8 No. 3 p. 267-269 1977 In German

Types of solar collectors efficiency independent of construction and insolation are described. The efficiencies of compressors and Stirling-type heat pumps are given. Constructive measures with the target of dispensing with fossil or electric auxiliary heatings in solar heated systems are discussed. Broad applications of the heat pump principle with outside air as a heat source and with Stirling-type heat pumps, are described.
Jet Impingement Solar Air Heater

Rank, D.R.; Mueller, L.J.; Pejsa, J.H.

The development of a flat-plate solar air heater based on a jet impingement concept as the absorber plate-to-air stream heat transfer mechanism is discussed. A prototype model has been evaluated to determine the effect of varying jet array parameters. These results are compared to a baseline parallel plate collector. An increased absorber plate-to-air stream heat transfer coefficient is observed to increase performance. The jet impingement concept increases the collector y-intercept efficiency relative to the baseline parallel plate collector by about 13 percent and by 32 percent at a typical space heating. Recommendations are made for an optimum jet configuration, collector flow feed, and regarding construction materials.

Heating Gives Off Dosed Heat: When Low-Temperature Heating Systems are Installed, Conventional Radiators Can Be Used

Reichmann, H.H.
VDI (Ver. Dtsch. Ing.) Nachr. V 32 No. 2 p. 4 Jan. 1978 In German

The article is concerned with thoughts on the efficient use of heating energy for buildings. The use of solar energy and of heat pumps is also discussed in this context. More economical energy consumption can be reached by using low-temperature heating systems. Designs of systems of this kind are discussed, while taking into consideration the use of conventional radiators. Decisive for the success of a heating system is that it gives off cozy heat. The influence of wall temperature and the distribution of the temperature in the room on cosiness is discussed.

Control of Solar Energy Systems, Heat Storage, and Heat Utilization

Rettich, G.

The paper reviews various aspects of the application of automatic control to solar heating systems. Consideration is given to the choice of reference values for determining the best type of control, to the choice of control (modulated or on-off), and to the determination of safety factors for solar collector cycles. Particular attention is given to control of the heat storage and heat utilization regimes of the solar system.

Efficiency of Low-Temperature Solar Collectors

Rhodes, R.O.
FAFCO, Inc., Menlo Park, CA Solar Engng. V 2 No. 6 p. 31 June 1977

A slope-intercept method for determining the efficiency of solar collectors over a range of temperatures is described. Low and high-temperature collectors are compared over the range from 100°F to 600°F. Low-temperature collectors are more efficient than high-temperature ones below 30°F, according to this analysis.

Liquid Desiccant Solar Air Conditioner and Energy Storage System

Robison, H.I.

A liquid desiccant air conditioning system has been designed and is being constructed for testing. The absorbate chosen is water; the absorbent is triethylene glycol. Shallow-well water removes sensible heat. Direct solar radiation reactivates the dilute sorbent solution as it flows down corrugated trickle collectors. Insolation is used for mass transfer and very little energy is lost to the ambient air stream as sensible heat. Parasitic losses are small as no blower is necessary in the regenerator and heat exchangers recover sensible heat absorbed by the glycol. A small, concentrated solution flywheel-storage system makes continuous operation possible.
No abstract available.

The economics of solar energy conversion are discussed. It is estimated that solar space heating could become competitive with fuel oil or electric heat pump systems in 12 U.S. cities if the cost of installed solar heating can be reduced by 25 percent, if oil and natural gas prices increase, and if housing costs stabilize. Solar water heating systems are already a good buy in expensive energy areas. Initial costs for solar units designed to provide 40 to 70 percent of hot water requirements range from $1000 to $1500. For solar electricity to come into use, low-cost batteries must be developed which can produce more energy and store it longer than batteries available today. A solar cell system currently produces electricity for roughly $1 to $3/kWh, whereas a kWh from an electric utility costs an average of two to six cents. According to one estimate, the present cost of solar cell equipment in a house in Albany, New York which consumes 12,000 kWh/yr would be $180,000 for the cells and $27,000 for batteries and additional equipment.

A report is given on the historical development of energy saving buildings, as well as solar houses which were already built at the end of the 30's in America, Europe, and Japan. The principles of the systems are dealt with; they consist of solar collector, circuit, storger, and distribution circuit. The systems are subdivided and defined according to energy conversion, storage material, and heat transport medium. A total of eight systems and variants and their function are described, simultaneously giving data on the objects built. Finally, planning aspects for functionally correct buildings form, and for purposeful integration of collector surfaces, are presented.

This paper contains the complete design of a solar heating system for winter use for the administrative block of a large factory building. The building is to be heated only during the day when solar radiant energy is available; also, no provision for heating during long cloudy periods was made. Heating is accomplished with hot air coming from the collectors, then circulating through the rooms after the proper temperature attenuation. From the cost analysis, it was concluded that the solar heating system is technically feasible, although somewhat expensive in initial cost.
To be competent to judge the technical and economic aspects of the usage of solar energy, an understanding of the physical interactions which determine the conversion of solar energy into heat is necessary. The present paper tries to portray this in short form. It is confined to a treatment of the conversion of energy in the so-called collector, i.e., the article does not deal with technical problems of storage and control. Furthermore, the paper goes with standard values into the solar radiation available.

The article summarizes papers read by the author on different occasions. The problems of solar energy utilization for winter heating, air drying of grain and hay is dealt with, as well as solar energy utilization for water heating. Ways to build a solar collector yourself are pointed out, and firms are mentioned from whom the necessary materials can be obtained. The article closes on a short survey of the best solar collectors and of the possibility of wind energy utilization.

Growth of solar applications can be accelerated by adequate evaluation of accumulating data since certain problems can be ameliorated by comprehensive data base management and analysis. Progress resulting from more thorough engineering analysis is illustrated and methods of extracting definitive information from larger data bases are suggested.

This study undertakes the task of determining the optimal mix of solar and heat pump forms of heating. By installing a solar heating system, a homeowner is considered to be an energy producer and thus, to apply the least costly methods used by firms in the competitive market for any given level of fuel conservation. The study will examine the simulated performances of air and liquid-circulating systems in conjunction with heat pumps, in parallel as well as combined fashion. Optimization is achieved by equating the present value of the cost of solar and heat pump heating systems at margin.

Solar winter heating and cooling are considered the most promising prospects of solar energy utilization in the near future. The paper presents the feasibility of solar cooling and heating using the solar absorption system. Two mixtures in wide use for absorption cooling systems are \(\text{NH}_3\)-\(\text{H}_2\text{O} \) and \(\text{H}_2\text{O}-\text{LiBr} \). The difference between the two compounds is that the lithium bromide is nonvolatile. The absorption system is capable of providing space cooling and is usually operated on waste heat or low-grade heat. There are two modes of operation for space heating with the absorption system. The first system operates with solar heat supplied to the evaporator and additional nonsolar heat supplied to the generator. The other system functions similar to a mechanical evaporation heat pump system. Flat-plate collectors or concentrating collectors can provide the energy necessary for the system. A thermodynamic analysis was performed for different ranges of the operation factors chosen to suit typical Israeli climate conditions. The system analysis shows that using the absorption system for space heating may effect up to 70 percent savings in energy requirements.
ST79 30264 Experimental Investigation on Solar House Heating in Northern India
Singh, P.; Naseri, M.A.J.
Sun: Mankind’s Future Source of Energy; Proc. of Int. Solar Energy Congress, V 3
Pergamon Press, Inc. Elmsford, NY
No abstract available.

ST79 30265 Solar Controls and Control Modifications; New Century Town Homes, Vernon Hills, Illinois
Smeltzer, L.R.
ASHRAE Trans. V 84 Pt. 2 p. 373-379 A79-16419
No abstract available.

ST79 30266 Flat Solar Collector, An Approach to its Evaluation
Sonnino, T.
Soreq Nucl. Res. Center, Yavne, Israel

The flat solar collector is the most widely used device for the utilization of solar energy, but its energetic and economic values are still debated. A preliminary energy and economic analysis is presented. The energy analysis indicates that the energy needed to produce one solar collector is equivalent to the electricity consumed by an electric water heater in roughly three months. The economic analysis indicates that the payback time for a solar collector varies from 5.5 to 7.7 years, according to the discount rate. The economic analysis for a national point of view indicates that the use of solar collectors for domestic purposes only could reduce electricity consumption in Israel by 10 percent. Considering the amount of energy that is used to heat water to temperatures below 100°C in medical and other public institutions, as well as in the other economic sectors, it may be concluded that the simple flat solar collector may save Israel millions of dollars and help alleviate the energy crisis.

ST79 30267 The El Camino Real Solar Cooling Demonstration Project
Sowell, E.F.; Othmer, P.W.; Smith, K.E.
ASHRAE Trans. V 84 Pt. 2 p. 435-449 A79-16425 Res. supp’d by U.S. DOE

The El Camino Real Solar Cooling Demonstration Project involves the conversion of the existing air conditioning system of an elementary school building (ch: El Camino Real Elementary School in Orange County, California) to provide a large fraction of input energy from solar thermal collectors. The existing hot water loop, driving absorption chillers and heating coils, is connected to the solar loop through a heat exchanger without storage. The loop consists of approximately 465 m² of tubular glass collectors, a heat rejector, and the load-side heat exchanger. This paper describes the final design and its evolution, discusses analytical studies, and presents performance simulation results.

ST79 30268 Circumferential Variations of Bore Heat Flux and Outside Surface Temperature for a Solar Collector Tube
Sparrow, E.M.; Krowech, R.J.
Univ. of Minnesota, Minneapolis, MN

An analysis is made of the heat transfer processes in a solar collector tube subjected to large circumferential heat flux variations on its outer surface. The analysis is carried out for a collector plate configuration in which the tube is situated in embossments in the otherwise flat surface of the plate. The solar energy absorbed by the collector plate is conducted to the tube, giving rise to large heat flux spikes at discrete circumferential locations on the outer surface of a tube. The two-region heat conduction problem encompassing the embossed portion of the collector plate and the tube is solved by a novel procedure which provides closed form solutions of high numerical accuracy. The influence of system dimensions, thermal properties, and tube bore conection is examined by means of five dimensionless parameters of which the Biot number was found to be the most important. The results showed that for realistic...
dimensions and thermal properties of the plate and tube, circumferential variations in bore heat flux provided that the tube flow is laminar. For turbulent flow conditions, the variations in bore heat flux are substantially greater than for laminar flow.

ST79 30269 Coast Guard Saves Energy

Stabile, B.L.

An energy conservation program implemented by the United States Coast Guard is described. Personnel education, retrofitting of a central boiler plant and steam distribution system, housing insulation, and the use of solar energy are discussed.

ST79 30270 Solar Heating for a Novel Dwelling Independent of Servicing Networks

Thomas, R.B.; Littler, J.G.P.

The paper deals with the Autarkic House (constructed within the Autarkic Housing Project), which is disconnected from all servicing networks and which uses solar energy actively and passively for space and domestic hot water heating. Simulations show that a collector area of 8 m² on each of the east, west, and south roofs (slope of 30°) and of 10 m² on the south wall (slope of 75°), combined with storage volumes of 20 m³ for space heating, 25 m³ for domestic hot water, and 0.5 m³ for domestic hot water preheating is adequate even for such poor years as 1962-1963. These volumes do not include the volume of insulation which is, however, approximately the same as the size of the store itself.

ST79 30271 Solar Assisted Heat Pump System for Heating and Cooling Residences

Tieimat, B.W.; Howe, E.D.
Univ. of California Berkeley, CA Solar Energy V 1 No. 1 p. 45-54 1978

It is proposed that heating and cooling of the all-electric residence unit be accomplished by using a solar assisted heat pump system. The proposed system makes use of a conventional air conditioning unit which would be modified by fitting controls to reverse the flow of refrigerant for the heating mode and by changing the outdoor heat exchanger from refrigerant-to-air to refrigerant-to-water. Calculations were made for an existing residence unit for which the total energy input is known and to which the proposed solar assisted heat pump system is applied. An estimated cost of equipment and of its operation is compared with the cost of owning and operating fuel and electrically heated systems. The effect of a two-phase expander to replace the expansion valve in the refrigerant circuit has been theoretically investigated. It shows a significant energy saving.

ST79 30272 Energy Balance of an Interseasonal Collector-Storage Association for a Housing Development in the North of France

Torrenti, R.; Alexandroff, G.
C.E.A./CEN, Saclay, France Complexes-Rev. Int. Heliotech. p. 30-33 1975 In French

The parameters were studied determining the feasibility and the profit-earning capacity of a building heating solar project using water insulators and an interseasonal storage tank. The case of a group of 10 houses located in the north of France has been chosen and computations have been made including the following subroutines: determination of the amount of the energy needed for building heating and sanitary water heating (or preheating) that can be expected from the water insulators the whole year long (notions of "energetically equivalent group of days," "reference same years," ...); lost by the storage tank; and that can be drawn from the tank. The results of this study have led to lay stress on several "optimal" values of the couple (collecting surface-storage volume) depending on the amount of the contribution which is desired from the sun (even 100 percent) and to emphasize the many advantages of an interseasonal storage of solar energy.
ST79 30273 Solar Energy For Commercial Purposes
Turek, K.
Suuedutsche Metallverke GmbH. Walldorf, Germany, F.R.
Systems Exhibitio. Energy Within the Context of the Hanover Fair. Hannover, F.R. Germany
Avail: NTIS, AIB-COH-78-156-045 CONF-780446-16 p. 18 April 19, 1978 In German
The report presents an outline of the physical fundamentals of solar energy utilization in mid-Europe. It points out differences as compared to other regions of the world. Hints for promising already realized technologies are given. The technology is explained, in addition, with the aid of examples; in particular, for water heating and swimming pool heating. The use of heat pumps is also discussed.

ST79 30274 Comparison Between Simulation and Experiment of Solar Heating
Udagawa, M.; Kimura, K.I.
Pergamon Press, Inc. Elmsford, NY
Avail: AIPA, A79-17461 p. 1364-1368 Jan. 16-21, 1976 New Delhi, India
A comparison between the measured and simulated results with one of the four solar heating systems set up at the experimental multi-family housing unit of Japan Housing Corporation is described. The floor panel heating system is combined with a water storage tank and an array of collectors mounted on the balcony and on the roof. Hour-by-hour simulation is made on an unsteady state basis using the weather data obtained at the experiment site. The result of the comparison turned out satisfactorily for the solar heating system, though the total space heating load of the experiment was formed considerably higher than by simulation.

ST79 30275 Single Equivalent Decrement Factor and a Single Equivalent Lag for the Effects of Multiple Harmonics in Sol-Air Temperature Cycles
Ullah, M.B.; Longworth, A.L.
Robert Gordon's Inst. of Tech., Aberdeen, Scotland
Bldg. Serv. Engng. V 45 No. 8 p. 139-146 Nov. 1977
A method has been developed for the homogeneous building element (wall or roof) to take into account effectively the influences of the multiple harmonics present in the ambient heat source of Sol-Air temperature so that the maximum heat transfer rate will be as accurate as that given by the analytical solution involving a number of harmonics as is required for the proper representation of the Sol-Air temperature cycle.

ST79 30276 Metal Roof as Solar Absorber; Promising Concept for Low-Temperature Heat/Price Per Square Meter From DM 56
Urbanek, A.
Mitteilungsbl. Dtsch. Ges. Sonnenenergie V 2 No. 6 p. 43-45 Nov. 1977 In German
A new concept for providing energy for supplying a house is described. Instead of the usual flat collectors, the whole roof is made of a metal sheet. The solar energy absorbed by the roof is conducted by a heat transfer medium and is either taken directly to underground heating or is taken to a ground store. The total system is coupled to a heat pump. The plant covers the complete heat demand of the house, which is 65,000 kWh/annum. The total annual power costs for the house with 410 m² of living space are DM 1,300.

Urbanek, A.
Mitteilungsbl. Dtsch. Ges. Sonnenenergie V 2 No. 6 p. 13-23 Nov. 1977 In German
The article presents a survey of solar energy utilization activities in Austria. Up to the end of 1976, there were about 100 solar plants for water, swimming pool, and space heating in operation in Austria. By the end of 1977 it might be some 500. Details of promoted research programs and research institutes are implemented by a number of plans already in operation. Meteorological data for Austria are presented.
ST79 30278 Solar Energy Utilization in Buildings

Urbanek, A.
Baumeister V 74 No. 7 p. 654-656 July 1977 In German

The article gives a survey of solar energy utilization in West Germany. On the basis of the West German energy balance, the utilization of solar energy for water heating, swimming pool heating, and the heating of buildings is described, including system combinations. Finally, problems of architecture and law are mentioned.

ST79 30279 Possibilities of Using Solar Energy For Domestic Space Heating and Hot Water Supply in Holland

Van Koppen, C.W.J.
Klimaatbeheersing V 3 No. 5 p. 194-203 May 1974 In Dutch

This paper illustrates simple domestic solar heating installation which proves that solar heating is a real possibility for Holland.

ST79 30280 Status of Solar Technology Development in the Federal Republic of Germany

Wallner, I.
Arbeitsgern Solarenerq E.V. Asa, Germany

Governmental expenditures for solar energy have risen from 1.5 million DM in 1974 to 6 million DM in 1975 and 12 million DM in 1976. The financial ceiling foreseen in the program is 14 million DM per year. As of August 1976, a total of 24 solar energy projects were being subsidized by the federal government: three system studies; 15 projects on solar thermal conversion, solar houses and demonstration projects, complete systems, components; three projects on solar mechanical conversion for electricity and water pumping, two on photovoltaic conversion and one on photochemical conversion. Furthermore, a solar data collecting network will be established, consisting of a number of small stations set up in meteorologically typical regions.

ST79 30281 Integration of Evacuated Tubular Solar Collectors With Lithium Bromide Absorption Cooling Systems

Sun: Mankind's Future Source of Energy; Proc. of Int. Solar Energy Congress, V 3
Pergamon Press, Inc. Elmsford, NY
Avail:AIAA, A79-17483 p. 1581-1585 Jan. 16-21, 1978 New Delhi, India

By surrounding the absorber heat exchanger component of a solar collector with a glass-enclosed evacuated space and by providing the absorber with a selective surface, solar collectors can operate at efficiencies exceeding 50 percent under conditions of \(\frac{T_{HV} - T_{H}}{T_{H}} = 75 \text{ C m}^2/\text{kW} \) (\(T = \) collector fluid outlet temperature minus ambient temperature, \(H = \) incident solar radiation on a tilted surface). The high performance of these evacuated tubular collectors thus provides the required high-temperature inputs (70 to 88 C) of lithium bromide absorption cooling units, while maintaining high collector efficiency. This paper deals with the performance and analysis of two types of evacuated tubular solar collectors integrated with the two distinct solar heating and cooling systems installed on CSU Solar Houses I and III.

ST79 30282 Poor Man's Experimental Solar Collector

Weldon, U.
Alternative Energy Sources No. 28 p. 18-21 Oct. 1977

A do-it-yourself solar collector experiment is described. A bread box type solar collector is constructed of cardboard, wood, aluminum foil, styrofoam, and 4 mil plastic sheet. Experiments in heating a 5-gallon bucket of water are discussed. Construction detail drawings and a bill of materials are presented.

ST79 30283 Cost Optimization of Solar Heating of Buildings in Northern Regions

Willcutt, G.J.E.Jr.; Hunn, B.D.; McSweeney, T.S.
Los Alamos Scientific Lab., Los Alamos, NM
A detailed computer model has been developed to simulate the performance, on an hourly basis, and to optimize the cost of solar heated buildings in northern regions characterized by cold and/or cloudy climates. The present model includes improvements in the original model Canadian cities (Vancouver, B.C.; Edmonton, Alta.; Winnipeg, Man.; Ottawa, Ontario; and Fredericton, N.B.) for the years 1970 and 1971. For each simulated year the system cost is optimized as a function of collector size for representative values of the other system parameters (storage size, number of glazings, etc.). Annual combined solar/conventional system costs are determined with collector cost and conventional fuel cost as parameters. Comparison is made between the effects of the amount of insolation received, cloud cover, and severity of the heating demand on system performance and cost.

ST79 30284 Practical Solar Energy Systems For Farm Buildings
Wood, J.M.; Birchfield, J.L.
Georgia Inst. of Tech., Atlanta, GA
CONF-7706140 p. 269-272 June 8, 1977

Collector designs discussed emphasize low-cost, on-site construction and low maintenance. The collectors are for animal shelters, agricultural drying, and greenhouses. A solar heated broiler house is shown with a passive solar heating system using a double-glazed plastic collector with a six-inch layer of black painted rocks over black polyethylene on a south-facing hillside. Two types of solar agriculture drying are discussed.

ST79 30285 Solar Houses in Japan
Yanagimachi, M.
No abstract available.

ST79 30286 Self-Supporting Active Solar Energy System
Zakhariya, R.
ASHRAE J. V 19 No. 11 p. 60-63 Nov. 1977

The solar energy system described in this article is composed of four parts: (1) heat collection, (2) power generation, (3) distribution, (4) forced circulation, and (5) storage. The various parts of the collector are explained with specific dimensions of the collector stated. Some of the advantages of the system include its simplicity and flexibility. It has the nonfreezing characteristic of the solar heat collector subsystem. It eliminates the need for a heat exchanger unit and has a rigidity and a longer life span than other collectors made totally from metal. The system is categorized in the high-temperature region and has patents pending.

ST79 30287 Solar Technician Program S'cows Hot
Ziegler, P.M.
Worklife V 2 No. 10 p. 21-24 Oct. 1977

Fifteen Comprehensive Employment and Training (CETA) trainees were taught about solar heating systems at the School of Environmental Studies and Planning at Sonoma State College. Half of the trainees were women, two were from minority groups and one was disabled. Both the technical aspects of the solar energy and the business aspects were covered in the course. Specific job offers came from collector builders, installers, salespersons, drafters, office managers, consultants, and researchers. By the end of June 1977, the CETA trainees all were employed. The project will continue to train 15 individuals in the field of solar energy.
A generalized dynamic computer program (SYRSOL) has been developed for the mathematical simulation of the thermal behavior of multi-zone solar heated buildings. The system modeled employs a series of water-to-air heat pumps connected in a closed-loop flat-plate liquid cooled solar collector, a water storage tank, and a cooling tower. Weather data are represented by sinusoids, which provide a convenient and economical alternative to weather tapes. Results indicate that the use of sinusoidal functions for temperature and monthly average values for cloud cover is quite realistic and accurate. Temperature functions for 13 cities are presented. A preliminary analysis has been done of the feasibility of using solar energized desiccant dehumidification systems to reduce summer cooling loads. Service hot water production using a water-to-water heat pump from the storage tank is shown to be highly effective and idle solar collectors can be used directly to make service hot water in the summer. A new mathematical heat pump heating model, in which the COP increases linearly with the source water temperature, has been developed and incorporated into SYRSOL. The computer simulation capability has been extended from a heating season to an entire year. The results of some experiments, that have improved the COP of a heat pump, are also reported.

Papers are presented on such topics as identification and estimation theory, control and problems in energy systems, adaptive processes in biomedical systems, game theory, stochastic control, man-machine systems, geometric methods in control theory, applications to aircraft systems, and estimation to aircraft systems, and optimal control. Consideration is also given to the following: detection problems in naval systems, advanced automation, guidance and control of maneuvering reentry vehicles, pattern recognition, robotics, estimation and modeling in socioeconomic systems, stability and regulation, and theory and applications of fuzzy sets.

An analysis is presented of seasonal solar systems that contain water as the sensible heat storage medium. A concise model is developed under the assumption of a fully mixed, uniform temperature, storage tank that permits efficient simulation of long-term (multi-day) system performance over the course of the year. The approach explicitly neglects the effects of short-term (sub-daily) fluctuations in insolation and load, effects that will be extremely small for seasonal solar systems. This approach is useful for examining the major design tradeoffs of concern here. The application considered is winter space heating. The thermal performance of seasonal solar systems that are designed to supply 100 percent of load without any backup is solved for, under "reference year" monthly normal ground temperature and insolation conditions. Unit break-even costs of seasonal storage are estimated by comparing the capital and fuel costs of conventional heating technologies against those of a seasonal solar system. A rough comparison between the alternatives for more severe winters was made by examining statistical variations in winter season conditions over the past several decades.
The Pasole Computer Program was developed to do simulations of passive solar heated buildings. Modeling is done using a general thermal network method that allows for heat sources and thermal storage. Sun position equations are used with a global-to-direct solar radiation correlation to develop solar heat sources from measured insolation data. Models of a particular class of south-mass-wall passive buildings have been developed and are described.

Alabama Univ., Dept. of Mech. Engrg., Huntsville, AL
Avail: NTIS, C00-4479-1 p. 29 1978

The effects of thermal stratification in a water storage tank on the performance of a hot water solar application are quantitatively studied by using the TRNSYS computer simulation code with a fully mixed and a fully stratified storage tank model. To minimize the cost of the experiment, the existing solar heating system is being used for the experimental study. Plans and diagrams of the facilities are shown and modifications are discussed.

ST79 31016 Stochastic Simulation Experiments on Solar Air Conditioning Systems
Anand, D.K.; Bazques, E.O.; Allen, R.W.
Sun: Mankind's Future Source of Energy; Proc. of Int. Solar Energy Congress, V 3
Pergamon Press, Inc. Elmsford, NY

Real weather data and stochastic weather models are used to simulate the performance of solar powered air-cooled and water-cooled air conditioning systems. The simulations include various parametric models for the absorption flow rates. System coefficient of performance, total insolation, and useful energy delivered using the joint probability density approach are found to be in good agreement with real data on daily, monthly, and seasonal bases. The present scheme reduces the data necessary for simulations in a local region, resulting in considerable savings in system simulation, both in terms of complexity and time. Any local region can be characterized by five or six constants and from 9 to 19 data sets.

ST79 31017 Stochastic Predictions of Solar Cooling System Performance
Anand, D.K.; Deif, I.M.; Allen, R.W.

A two-part stochastic (probabilistic) method for generating synthetic weather profiles is described that takes a large base of weather data and while retaining essentially the weather's history, compresses the information to a most convenient form for use in computer simulation. The first part is a purely statistical procedure in which a data base of weather is sorted out, and averages and standard deviations are calculated. The second part involves the development of an analytical model by using a least squares error technique for the data base of weather. The method provides reconstruction of the data in the form of a single day's weather information. It is applied to five U.S. cities with diversity in climate and geography. Comparison of stochastic and real weather results show that the stochastic weather method compares well with the real weather approach, but at much reduced cost and data handling.

ST79 31018 Radiation Cavity Solar Collector For High-Temperature Applications
Antoniuk, Z.I.; Palmer, H.B.
Pennsylvania State Univ., University Park, PA
Concentrating Solar Collector Conf. Atlanta, GA
CONF-770953 p. 2.79-2.84 Sept. 26, 1977

A 1.5 m long experimental model of a previously proposed high-temperature solar concentrator-collector in which argon is employed as a working fluid was studied. The effect of using a selective absorber in place of the graphite absorber reported on earlier was investigated. No measureable gain in efficiency was observed. A computer model of this system which takes into account most of the influential variables has been formulated. It yields temperature profiles that normally agree with the experimental data at all axial positions within ca. 10°C. This good agreement permits the formulation of a second computer model of the full-scale device with confidence. The effect of various parameters has been investigated in an optimization study of the full-scale collector.
A parametric investigation on flat-plate solar collectors
Arafa, A.; Fisch, N.; Hahne, E.
Sun: Mankind's Future Source of Energy; Proc. of Int. Solar Energy Congress
Pergamon Press, Inc., Elmsford, NY
Avail: Bundesministerium fuer Forschung und Tech., p. 917-923 Jan. 16-21, 1978
New Delhi, India

In the present work, the thermal behavior of a solar collector is investigated for steady and unsteady state working conditions. A model is developed describing the collector by means of a set of partial coupled differential equations for fin, pipe, fluid, cover plates, and insulation. The temperature distribution as a function of position and time is achieved by solving this set of equations numerically. Different parameters which influence the collector performance are thoroughly examined. The results show that a collector design is strongly dependent on the material used and the weather conditions if an optimal thermal efficiency is to be obtained. A single node is not adequate to such simulations. The comparison of experimental results to predicted values for different collector types based on the present analyses shows a maximum average deviation of five percent for collector efficiency and 2°C for fluid temperature.

Energy performance of solar walls: A computer analysis
Arumi, F.; Hourmouneh, H.
Univ. of Texas, Austin, TX

This paper illustrates how the computer model for the dynamic energy response of buildings (DEROB) can be used successfully to model the performance of passive solar systems when integrated into a specific structure, and it also suggests possible variations of the Trombe-Michel wall for its adaptation in climates like the one in central Texas. DEROB is a fully dynamic research program that has been in operation since 1973 and it includes full thermal coupling among the constituent rooms of a building as well as a spectroscopic analysis of glass. This capability permits the direct use of the program for the analysis of solar walls by treating the space between the glass and the absorbing surface as a chamber thermally coupled to the occupied space via the heat storage "chamber" in the wall and operable air ducts. Various wall configurations are analyzed and classified according to their net annual performance.

Large-aperture radiant solar energy concentrators
Baum, I.V.
Sun: Mankind's Future Source of Energy; Proc. of Int. Solar Energy Congress, V 2
Pergamon Press, Inc., Elmsford, NY
Avail: AIAA, A79-17452 p. 1303-1307 Jan. 16-21, 1978 New Delhi, India

The relation between the maximum concentration factor and the number and form of facets of a paraboloid mirror used for solar energy concentration is analyzed. The three-step approach begins by describing, in terms of differential geometry, the ray deflections associated with a facet system approximating an ideal paraboloid reflector. Then the formation of the receiver irradiation field is represented by a statistical model, and integration over the surface of a large number of facets is replaced by integration over the paraboloid surface; possible ray deflections are averaged in the procedure. Two effects can then be characterized. One involves the effect of the number of facets on the concentration factor, and the other is the effect of reflector aperture on approximation accuracy at a given number of facets.

On the method of stochastic time series for the characterization of the stability of solar insolation
Senard, C.; Body, Y.; Wirgin, A.
Sun: Mankind's Future Source of Energy; Proc. of Int. Solar Energy Congress, V 1
Pergamon Press, Inc., Elmsford, NY
Avail: AIAA, A79-17299 p. 338-345 Jan. 16-21, 1978 New Delhi, India

A stochastic function time analysis is used to establish the characteristics of a given climate for the purpose of implementing an appropriate thermal collection storage system. The stochastic input is represented as the time stochastic series which is the total solar intensity on a horizontal unity surface integrated over 24 hours. Eleven years of data (1964-1974) are considered for Trappes, France (49°S and 3300 m altitude). Time stability analysis and time sequence probability estimation are discussed.
Numerical Study on Solar Energy Utilization for Water Heating on the Basis of a Test Reference Year for Berlin

Brunk, M.F.
Technische Univ. Berlin, Germany, F.R., Hermann-Rietschel-Institut Fuer Heizungs- und Klimatechnik
Hlh. 2. Heiz., Lueftung, Klim., Haustechn. V 29 No. 4 p. 147-152 April 1978
In German

A mathematical model for a solar service water storage unit with forced circulation is investigated where per hour values of the climatic data of a test reference year for Berlin are used. For the consumer side, measured per hour values were used as load function. The investigation is based on a double-glazed nonselective flat-plate collector.

Solar Heating and Ventilating by Natural Means

Bilgen, E.
Int. Symp.-Workshop on Solar Energy Cairo, Egypt

A computer thermal simulation study performed for the Montreal region shows that natural air conditioning of buildings in Canada can be accomplished through the use of integrated solar collector storage units. South-facing vertical surfaces appear to be most suitable for this purpose, though other east and west facing vertical surfaces can be used in combination with the former. Solar energy utilization for the heating and ventilation of buildings by this method is found to be economically feasible and competitive with other energy sources.

Design Optimization for Solar Array of Multiple Collector Types

Bradley, J.O.; Posner, D.; Bingham, C.E.
4th Annual Conf. on Energy Rolla, MO
Avail: Univ. of Missouri-Rolla A79-14677 p. 25-37 Oct. 11-13, 1977

Methodology is presented for optimizing solar arrays used for heating fluids from ambient to elevated temperatures. The optimal array consists of the appropriate combination of available collector types which delivers the most energy per dollar invested in the array. An example of optimization is presented and verified using computer simulation of numerous combinations of collector types.

The Relationship Between Diffuse and Total Solar Radiation in Computer Simulation of Solar Energy Systems

Butera, F.; Fannor, G.; Ruisi, G.
Sun: Mankind's Future Source of Energy; Proc. of Int. Solar Energy Congress New Delhi, India Pergamon Press, Inc. Elmsford, NY

No abstract available.

Economic Use of Energy in Housing Construction, Model Simulations, Planning Aids

Christensen, S.
Stuttgart Univ., Germany
Fortschr.-Ber. VDI Z., Reihe 4 No. 38 p. 1-138 Jan. 1978 In German

A wide variety of measures, ranging from improvements in heat insulation to the installation of solar collectors, are investigated by means of which energy can be saved in multistory housing construction. In order to implement these improvements in practice, the economic advantage of each measure must be recognizable. This, however, must be considered over the entire lifetime of the housing. With the aid of investment calculus, the revenues resulting from saved heating energy and the expenses for increased heat insulation are compared, the capital return and the amortization of the additionally invested capital are determined, and a study is made of the financing of the additional investment for new construction and for the modernization of old buildings. In certain particular cases, it is shown that possibilities ranging from improvements in planning to more effective use of equipment exist for decreasing the energy requirements of multistory residential buildings.
As a part of a joint effort between New Mexico State University and the National Research Center of Egypt to build a 5-kW solar electric generating plant, a numerical model of the system has been developed at NMSU. The model is capable of simulating the tracking solar collector, the solar boiler, the prime mover (whether it be a Rankine cycle, Brayton cycle, etc.), and the electrical generator. Various methods of energy storage, such as heat storage in a liquid, gravitational potential, etc., can be treated. The model is time dependent and the solar radiation and atmospheric conditions are generated within the simulation program as a function of time. An example of the use of the model is presented and consists of a simulation of a 1-kW electric generator driven by an open cycle gas turbine. Solar energy is supplied to the turbine by a tracking cylindrical parabolic concentrator.

Simple Procedure for Predicting Long-Term Average Performance of Nontracking Solar Collectors

In the present paper, the Liu and Jordan (1963) procedure for calculating long-term average energy collection of plate collectors is simplified and generalized for tracking and nontracking collectors. The only meteorological input needed is the long-term average daily total insolation on a horizontal surface, together with average ambient temperature. In order to obtain the useful energy collected, this meteorological input is multiplied by several factors which are given in analytical or graphical form. For illustration, the method is applied to a flat plate, a compound parabolic concentrator, and a tracking line focus parabolic reflector.

Simulation and Design of Evacuated Tubular Solar Residential Air Conditioning Systems and Comparison With Actual Performance

The paper describes a study of the Colorado State University Solar House I (SHI) which used concentrated, flat-plate evaporated tubular collector performance, and the air conditioning load of the SHI. Several different operating system configurations were simulated including operation with and without cool storage, and with and without solar service hot water production. Results of the design and simulation study indicate that the design of a solar heating and cooling absorption cooling system should be simple and straightforward and not include cool storage.

General Model for Predicting the Performance Characteristics of Planar Concentrating Systems

The specular reflector enhancement of flat-plate solar collectors is analyzed in this study. A mathematical model is developed and two key geometrical parameters are introduced in the analysis of the spatially averaged energy flux over the collector surface. The model allows these parameters to be determined as a function of the collector size and tilt, the reflector size and tilt, and the position of the sun. The key parameters, when time averaged over a period of interest, yield a relative measure of the direct beam component and the specularly reflected component of the total energy flux during the given period. The relative values of these two flux components are used in optimizing the reflector-collector system. Data gathered by computer simulation is presented as an example of determining an optimum system with respect to one of the system variables.
In this paper a simulation model for a basic solar heating system which is suitable for control and optimization studies is developed. A model for flat-plate solar collectors using fluids for the heat transfer which allows the analysis of operation in great detail is presented. The simulation model for the solar collectors has also the characteristic that its inputs and outputs are quantities which are easily measurable in the real world. The effect of temperature stratification in the heat storage device model is considered by simulating two storage chambers of variable volume. The heat storage model requires relatively small time increments, a requirement which is not as stringent as that for the solar collectors. The tank's model primary variables are the easily measurable quantities of temperature and flow rates with the addition of volume as an internal variable. Weather, load, and control modeling is also presented.

No abstract available.

Three radiative transfer problems are solved for describing the thermal performance of parallel plate honeycomb arrays used to construct solar transparent insulated walls. First, solar transmittance is treated with scattering and polarization. Second, effective emittance (or passage transmittance) is derived for partially transparent wall materials. Third, the influence on the effective emittance of the reradiated energy contributed by the absorbed solar radiation is determined. Results are calculated for thin-walled glass and Mylar honeycombs. With the results, the engineer or architect can evaluate the merit of applying honeycombs to solar collectors, greenhouses, residences, and commercial buildings.

A theoretical model for the evaluation of the transient performance of a thermosyphon-type solar energy collection and heat storage (CS) panel is derived and analyzed. Use is made of an analytical method developed by Ostrach for analyzing fully developed natural convection in a vertical, symmetrically heated channel that is extended for use with numerically implicit boundary conditions involving glazing convection and radiation and explicitly determined wall heat conduction. A numerical simulation is used to establish CS panel operating characteristics and design criteria for performance optimization assuming the storage wall is insulated. Results indicate that low solar thermal efficiencies and hourly panel operating factors for the insulated wall are obtainable only during mild, sunny weather. The strong effects of ambient air temperature indicate the importance of cover design of this system.

A generalized digital computer model of a residential liquid heat pump is described. The modeling strategy is to design or size the four major components in the vapor compression cycle to yield any desired design condition performance. Once the system has been defined, the program is able to compute a
"performance map" of heat added and heat rejected at all possible combinations of inlet flow-stream conditions. The model is applied to the thermal performance simulation of several different solar heat pump heating and cooling systems using the modular simulation program TRNSYS. Performance of "in-line" heat pump boosted solar systems which use solar energy storage as the heat source are compared to "parallel" systems where the heat pump acts only as an auxiliary and ambient air provides the source.

ST79 31037 Modelling of a Solar-Operated Absorption Air Conditioner System With Refrigerant Storage
Grassie, S.L.; Sheridan, N.R.
Univ. of Queens, Brisbane, Australia
Solar Energy V 19 No. 6 p. 591-700 1977

A detailed dynamic model of a solar air conditioning system is reported. The model, including the solar collector and cooling tower, is described in terms of design parameters. Ambient wet and dry bulb temperatures and solar radiation are the required inputs. System temperatures, energy flows, and coefficient of performance can be predicted. Careful attention is given to the evaporator model and the control of refrigerant flow. Typical performance results are discussed. Several recommendations for future investigations are made.

ST79 31038 Use of Planar Reflectors For Increasing the Energy Yield of Flat-Plate Collectors
Grassie, S.L.; Sheridan, N.R.
Dept. of Mech. Engrg., Univ. of Queens, Brisbane, Australia
Solar Energy V 19 No. 6 p. 663-668 1977

A mathematical model to simulate the performance of flat-plate collector-reflector systems is presented. First the collector energy balance is modified to account for the reflected energy. Then, the exchange area for a diffuse reflector is obtained by integrating over both reflector and collector surfaces. For the specular reflector, the collector area exposed to reflected radiation is calculated from geometrical relations. Shading effects are also found from the system geometry. The model is used to predict the annual performance of a water heating system with several values of the reflector angle.

ST79 31039 Analysis and Design of Solar Buildings Using the Cal-ERDA Computer Programs
Graven, R.M.; Hunn, B.D.; Roschke, M.A.; Rosenfeld, A.H.; Cumali, Z.O.; Lokmane, M.
Sun: Mankind's Future Source of Energy; Proc. of Int. Solar Energy Congress, V 3
Pergamon Press, Inc. Elmsford, NY
Avail: DOE A79-17463 ... p. 1374-1377 Jan. 16-21, 1978
No abstract available.

ST79 31040 Augmented Solar Energy Collection Using Various Planar Reflective Surfaces: Theoretical Calculations and Experimental Results
Grimmer, D.P.; Zinn, K.G.; Herr, R.C.; Wood, B.E.
Los Alamos Scientific Lab., Los Alamos, NM

The use of different types of flat reflective surfaces to increase the collection of solar energy by flat collectors was investigated. Specular, diffuse, and combination specular/diffuse reflective surfaces are discussed. An attempt was made to describe the reflective properties of surfaces in more generalized terms than simple direct or simple diffuse. Most real surfaces possess a combination of specular-like and diffuse-like reflective surfaces as a combination of specular and diffuse-like reflectivities. The reflective properties of a given surface can be measured in the laboratory as a function of incident and reflected angles, and these measured reflective properties can be used in the computer model to predict the increase in collector performance with such a reflector. Predictions of system performance were made for various collector/reflective configurations and compared with the performance of an optimally oriented collector without a reflector.

ST79 31041 Computer Modeling of Flat-Plate Solar Heat Collectors
Wartman, T.L.; Pearce, J.B.; Clark, W.E.
Georgia Inst. of Tech., Atlanta, GA
Miami Int. Conf. on Alternative Energy Sources Miami Beach, FL
No abstract available.
The development of solar collectors has become of great interest. The efficiency and cost have been reported. At the same time, with the widespread use of computers, new methods to improve design characteristics have been used. In this paper, a computer model of a flat-plate collector with or without anticonvective-antiradiative system (honeycomb) is presented. The model can simulate a flat-plate collector with one or more covers and with or without selective surfaces. The test simulated is that proposed by the National Bureau of Standards (U.S.A.), where collector efficiency is plotted as a function of \((T_p - T_a)/I\) (°C m²/W), where \(T_p\) and \(T_a\) are the absorber plate and ambient temperatures, respectively and \(I\) is the incident radiation. It is also possible to simulate a working day for the collector; however, in this case, some experimental data is needed as input data for the model.

A computer simulation of the performance of solar-assisted water heating systems has shown that daily total draw-off volumes and solar intensities are of greater importance than distributions of draw-off and sunshine. A method of predicting long-term performance using total draw-off volume and mean solar data is developed from the long-term energy balance. The method can be used for rapid assessment of economic viability of systems using flat-plate solar heat collectors.

Thermal modeling of passive solar heating systems using bond graphs is considered. Bond graph representations are given for two common heat transfer and storage processes for such systems: distributed heat capacitance and conduction in an arbitrarily shaped solid and radiative heat transfer in an enclosure of diffuse gray surfaces. Average surface temperature is shown to be the principal variable in the formulation of thermal bond graphs. The implementation of the theory in an interactive minicomputer simulation language is discussed, including automation of: the generation of forcing inputs, normal mode calculation and truncation, and the derivation and solution of a system of differential equations.

The thermic diode solar heating system is modeled and its behavior is understood and can be reasonably predicted. Various nonideal effects, such as a nonlinear collector temperature profile and collector surface shading, can be included in the model as deemed necessary. Although verification of the analysis was achieved by comparison with a small-scale laboratory, extension to full-size panels under actual weather conditions is rather straightforward. Basic system operation is the same regardless of size, and therefore, one need only add a suitable model of the weather data. Uses of the model extended to the full-size panels are readily apparent. Obvious is the need to predict the yearly performance of the thermic diode system at various locations to use as a comparison to other traditional and solar heating schemes. In addition, the model can be used as an aid to optimize the performance of the thermic diode.

98
ST79 31046 Performance Prediction and System Sizing
Jastrzebski, C.Z.
2nd Energy Symp. on Solar Energy in Pittsburgh: Demonstration Programs and Plans
CONF-7706117 p. 122-134 June 1, 1977 Pittsburgh, PA

The design, optimization, and economic analysis of a solar system for domestic hot water as space heating for residence in western Pennsylvania are presented.

ST79 31047 Refined Model of Solar Space Cooling System
Jenks, R.L.; Kremheller, A.; Rogers, W.A.; Jones, R.W.
Univ. of Petroleum and Minerals, Dhahran, Saudi Arabia
Miami Int. Conf. on Alternative Energy Sources Miami Beach, FL
CONF-771203 p. 423-424 Dec. 5, 1977

No abstract available.

ST79 31048 A Microprocessor-Based Solar Controller
Johnscza, G.A.
Conf. on Decision and Control; Symp. on Adaptive Processes, 16th; Special Symp. on Fuzzy Set Theory and Applications New Orleans, LA Proc., V 1 Dec. 7-9, 1977

This paper presents the development, analysis, and simulated experimentation with a discrete control algorithm for optimal control of a solar energy system for heating buildings. The contents include the mathematical formulation of the system, and objective function, the solution technique, the microprocessor control system and its components, and the results of tests conducted using a control-driven dynamic simulation computer model to perform comparisons with conventional controls.

Khumtsaliya, R.K.; Turkestenishvili, O.A.

No abstract available.

ST79 31050 Optimum Design Parameters of Horizontal Coaxial Cylinders for a Solar Energy Collector
Kunitomo, T.; Aizawa, K.
Sun: Mankind's Future Source of Energy; Proc. of Int. Solar Energy Congress, V 2
Pergamon Press, Inc. Elmsford, NY

In this paper, the optimum combinations of the design parameters of a solar collector system for thermal use of horizontal coaxial cylinders with a cylindrical parabolic mirror are discussed from the standpoint of energy, collector efficiency, and outlet temperature of a fluid. Heat balance calculations are carried out using the exact relations of simultaneous radiative, convective, and conductive heat transfer in the system.

ST79 31051 Design and Optimization of a Flat-Plate Collector for Cooling Application
Ladsaongikar, O.V.; Parikh, P.P.
Sun: Mankind's Future Source of Energy; Proc. of Int. Solar Energy Congress, V 2
Pergamon Press, Inc. Elmsford, NY
Avail:AIAA, A79-17419 p. 1092-1101 Jan. 16-21, 1978 New Delhi, India

The paper deals with optimization of design and operational parameters of a flat-plate collector for an output design temperature of 140°C for a continuous ammonia absorption system. The various parameters optimized are angle of inclination, number of glass plates, and the geometry of flow passages in the collector. The methods used for optimization are illustrated with specific examples. A nomogram is constructed for easy optimum design and evaluation of the performance of the collector for a given place and application. Collector efficiency factors are derived based on average collector temperature, contrary to the inlet temperature which has so far been used as the reference.