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CHAPTER I
INTRODUCTION

The effects of atmospheric turbulence on many of
the modern sophisticated technological systems have become
an important design parameter ffom both structural and per-
formance aspects. Techniques for simulating atmospheric
turbulence have therefore been developed in an attempt to
provide reliable design criteria. Turbulence simulation is
achieved by the generation of an analog or digital signal
which has equivalent statistical characteristics to the
true atmospheric turbulence. The degree of complexity and
mathematical involvement of the models has increased with
each successive generation, from a simple, one-component
wind speed having a Gaussian distribution and a Dryden
turbulence spectra to multi-component models having non-
Gaussian probability distribution, more complex spectra,
and simulation of other statistical properties, such as
coherence. The simulated turbulence can then be used to
predict the behavior of airplanes, bridges, buildings, etc.,
under the influence of a turbulent atmosphere. The purpose
of this study is to investigate the effects of three turbu-
lence models of various complexity on the performance of a
simulated aircraft landing under an automatic controlled

system. The work compares the aircraft landing under a



simple "Z-transform" simulation technique [l],l a non-
Gaussian simulation technique [2], and a simulation which
incorporates vertical coherence [3].

The basic simulation procedufe is shown in
Figure 1-1. Random signals are computer generated and
passed through shaping filters to provide the output which
is the simulated time history of turbulence. The degree of
complexity of the system is internal to the filter system.
Through the appropriate design of the filter, however, the
urbulence signal output is designed to have certain
statistical properties which are the same as those that

have been measured and verified for atmospheric turbulence.

Random .
Number L——F Sl'_1ap1ng —=  Qutput
Generator Filter

Figure 1-1. Turbulence simulation system.

This report first reviews the statistical
properties of atmospheric turbulence, in particular the
probability distribution, the spectra, and the coherence
in Chapter II. The three different simulation techniques

investigated in the study are then described in Chapter III,

lNumbers in brackets refer to similarly numbered
references in the Bibliography.
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and appropriate statistical analyses are carried out to
verify validity of the models in Chapter IV. Finally, in
Chapter V, the models are incorporated into a computer
model of aircraft flight dynamics; and statistical landing
results for simunlated flights of an aircraft having charac-
teristics of a DC-8 are made for the different turbulence
simulation techniques. The significance of the various
degrees of sophistication introduced into the simulation
technique on the landing performance of the aircraft is

discussed.



CHAPTER IT
ATMOSPHERIC TURBULENCE AND MODELS

This chapter presents the basic expressions
involved in mathematically describing atmospheric turbu-
lence. 1In particular, the statistical properties such as
the probability density distribution of wind speeds, the
turbulence energy spectrum functions,.and the spatial

coherence are discussed.
A. Atmospheric Turbulence Spectra

In developing the atmospheric turbulence statistics,

the wind velocity is written as

Ui = Ui + ui ’ (2-1)

where U, is the instantaneous velocity, ﬁi is the average
velocity, and u represents the fluctuating component. The

th direction of the wind velocity.

subscript i denotes the i
The intensity of the fluctuations in wind speed is
expressed by the root-mean-square value
— 1/2
o. =(uy) . (2-2)
i 1
The mean turbulence kinetic energy, TKE, is pro-

portional to the value of u'2 and includes contributions

from all frequencies of eddies making up the turbulent

4




motion. If the time history of the velocity fluctuations
is processed through a filter which passes only a small
selected band of frequencies, Aw, the mean square value of
the wind fluctuation in that frequency range will be pro-
portional to the turbulence kinetic energy of gusts or
perturbation in the wind having that frequency. The value
of the turbulence kinetic energy density function at the

midpoint of the band is then given by

Eij(w) = u; uj / Aw . (2-3)

The function Eij(w) forms the spectrum tensor
having nine components. The function Eii(w) defined by
Equation (2-3) for i = j is called the one-dimensional

energy spectrum function. It follows that

u; = fo E,; (0) dw . (2-4)

Frequently the energy spectral density is normalized as

¢4 (w) E; (@) / g2, (2-5)

and thus,

[ 6,(w) dw=ul /T =02/T", (2-6)
(0]

where ci is called the variance.



For i # j, the function Eij(w) is related to the
cross-correlations and is called the cross-spectrum.

The energy spectrum tensor can be considerably
simplified if the atmospheric turbulence is homogeneous and
isotropic, for which there is no mean rate of transfer of
momentum across shearing surfaces or, more specifically,
the Reynolds or eddy shearing stresses, —pﬁlﬁg',vanish.

For this case, a three-dimensional energy spectrum function

E(X) is defined as

- 2 _
E(K) = 27K" [E; (K) + E,,(K) + E55(K) 1, (2-7)
where K is the wave number defined as K = w/V, and V is the
reference velocity; therefore, Eij(K) = VEij(w).
Figure 2-1 shows the typical form of the three-

dimensional energy spectrum.

E(K,t)

-5
€2/2K /3

wavenumber

large eddies 'etz " universal equilibrium range
—;—-= const.

Figure 2~1. Typical three-dimensional energy
spectrum function [4].
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Physical argument coupled with dimensional analysis
has provided basic insight into the behavior of E(K). The

mathematical form of E(K) adopted by von Karman [5] is

4
(K/K)

E(K) = c (2-8)

1776 '

2

[1+ (K/K,)

where ¢ = (55/9) (A/p)o?, K, = 1/(1.3390), and A is the

integral length scale defined by the correlation function R

as
[oe]
A= [ R(t)dat . (2-9)
o
This von Karman spectrum function exhibits a K4 and
K"5/3 behavior at low and high frequencies, respectively,

which represents the limiting conditions of the spectrum
for these wave number ranges. Also, the one-dimensional

spectrum function, ¢, becomes

2
2%y 1
9, (K) =07 — 5 576
[1+ (1.339 AlK) ]
, A, 1+ 8/3(1.339 A2K)2
¢2(K) = 02 - 2 11/6 (2—10)
[1+ (1.339 A,K)°]
, Ay 1+ 8/3(1.339 A3K)2
¢3(K) = 03 - 1176 '

[1+ (1.339 A3K)2]



where the subscripts 1, 2, and 3 represent longitudinal,
lateral, and vertical fluctuations, respectively.

Also, Dryden [5] points out that for laboratory-
type flow the shape of the velocity correlation curve can
be approximated by an exponential function. In this case

the one-dimensional Dryden spectra become

0. (K) = o2 21y 1
1 1 —= )
1+ A%k
1
o Ay 143 A§K2
(l~+A%K2)
Ao 1+ 3 A%%2
_ 2 73 3
$,(K) = 02 = .
3 3 y 5 2
(1-+A3K )

Simulation of atmospheric. turbulence usually
employs the Dryden spectrum which exhibits a K"2 fall-off
at high frequencies and is, therefore, easier to handle
mathematically, as described later. However, as Figure 2-2
shows, the von Karman spectrum gives a better description
of the measured data than the Dryden spectrum.

In a recent paper describing the spectral
properties of atmospheric turbulence over a flat homo-
geneous field site, Kaimal [6] shows that with proper

nondimensionalization, spectra in the stable atmospheric



LEdE

Neeteell

£6 (£) /02

+ unstable

O neutral
O stable

von Karman N
N
N —
—--— Dryden N
, i | i { | |

- - - - 2 3

4 10 3 10 2 10 1 lOo lOl 10 10
0.55 K/K
m

Figure 2-2.

Longitudinal velocity spectra compared with
the von Karman and Dryden spectra (wave-
number normalized by the peak scale K, of
the vertical spectra) [8].
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surface layer can be reduced to a universal curve having

the empirical formula

) 0.164 ( n/no )
£ o5 = , (2-12)
o@ 1+0.164 ( n/nO )5/3

where f is the cyclic frequency, n = £z/V is the reduced
frequency, 2z is height, and Ty is a scaling parameter
related to the atmospheric stability condition. Figure 2-3
shows Mg plotted both against the ratio of height to Monin
Obukhov length scale, z/L, and against the gradient
Richardson number, Ri. For neutral conditions, the values

of Ny recommended by Frost, et al. [7] are

n. = 0.0144
0y

ng = 0.0265 (2-13)
2

n. = 0.0962

03

Figure 2-4 shows experimental data for atmospheric

turbulence compared with Equation (2-12).

B. Filter Theory for Simulation Applications

The principal use of power spectral density
functions is to establish the frequency composition of the
data which, in turn, bears an important relationship to the
basic characteristics of a physical system exposed to inter-

action with the turbulence. For example, consider a system



J 11

[ T I | 1 T i 1
1.2 —t ]
1. -+ —
0. — —

n
93 0. -4 fo) —
O' —'{_ o O —
Q

0. - _

o 1 | I | 1 ]

0 1 2 3 0.05 0.1 0.15 0.2
z/L Ryi

Figure 2-3. The scale parameter ng, of vertical component
as a function of z/L, and of Ri [6].
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1.0 7 T T I — I
0.5 7 2/3
0 164 (n/n_) o7 N (0/0)
st 3
S T
0.2 R
X .
0.1 — 1.0 T
0.05}0.5f} -
0.02Lg.2 -
Y
£¢ (£) /0? 1.0 0.1
0.5 }0.05}1
0.2 Fo.02L
Z
0.1F
0.05 |-
0.02 L L 1 1 | i L [ 1|
0.1 1.0 10 100
n/n

Figure 2-4. Measured turbulent data compared with
Equation (2-12) [6].
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exposed to interaction with the turbulence. For example,
consider a system as shown in Figure 1-1, page 2, with a
frequency response function H(w). Assume that a stationary
random signal with a power spectral density function ¢x(w)
is applied as an input to this system. The output from the
system will be a stationary random signal with a power

spectral density function ¢y(m) given by

¢y(w) = IH(w)l2 o (w) . (2-14)

One can obviously design a filter function to
obtain the form of the output spectrum ¢y(w) desired for
any given known input ¢X(w). For example, if the desired
output is the longitudinal or lateral component of the
Dryden spectrum given by Equation (2-11), then Equation

(2-14) becomes

12044 1
14+ (Alw/V)2

2
o, (w) [Hy (o) |

(2-15)
2 2
5 o A2 1+3 (Azw/V)
b (@) [Hy(w)[© = T — -
[1+ (Azw/V) ]

Introducing the input as wide-band white noise for
which the spectrum ¢X(w) is a constant, adjustable to unity,

gives
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2 €1
[Hy () |7 = ———
al+w
(2-16)
2 c, (b2-+w2)
|8, (w) [© = s il
(a2-+w )
where
2
s L 4
14
1 m 1 Al
2
C =3a202 ’ b=a_2 a =_\L
7 .
2 T 3 2 A2
One solution for H(w) is
Ve
Hl(w) - aq + jw
(2-17)
. _ Yy (b + jw)
2((-0)_ ; 2 .
[a2-+jw]

The complex polar notation gives the frequency response
function in terms of a gain factor |H(w)| and a phase

factor 06 (w) as

H(w) = [H(w)|e 38w (2-18)
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Thus,
Yoy
By () ] = -V
[al+w ]
Bl(w) = tan—l (w/al)
and (2-19)
/2
2 2
IH (w)]= C2(b +w°)
2 5 5 2
(a2-+m )
. 1 (2a,b- (a3-0"))w
w) = tan .
2 2a,0” - (a5 -w’)b

These gain factors and phase factors are plotted in
Figure 2-5. Because of the irrational form of the Kaimal
and von Karman spectra, approximate forms of H(w) are used.
Equation (2-20) is a modified Kaimal spectrum with a Dryden
form:

£6 (£) (n/ng) (2-20)

. (3.8)2+ (n/n P

Figure 2-6 shows a comparison of this approximate form with

the original spectrum.
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gain factor |H(w)|

10.0 1 7§ T VTT0d 1 1T 1T T
= HI @
[ H2 & ]
’_ —
1
4
1.0 -
= -
10.0 | 1 1 111811 { 11 i 111k
0.1 1.0

frequency w/a

180
160 ~
140

'7

120
lOOT—

phase factor 6

I 17T T TTT1TTH | | L
Hl(w) O

Hz(w) A —

| IS N T I Y I | 1

Figure 2-5,

1 10

frequency w/a

The gain and phase factor for Hy (w) and
Hy (w) of the Dryden spectrum; A = 700 m
and V = 150 m/s.
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1.0 | | | | | | | |
0.5 —
Kaimal spectrum
0.2 -
£¢ (£) /02
0.1 —
approximate
'0.05 [—- Kaimal spectrum ]
0.02— —
0.1 1.0 10.0 100.0
n/n
Figure 2-6, The Kaimal spectrum, Equation (2-12),
compared with the approximation form,
Equation (2-20).
From Kaimal [6] a definition of A is given as
0.041 (z/no), which gives
- fA -
/Ny = 04T 7 ° (2-21)
Substituting Equation (2-21) into Equation (2-20) and
replacing £ with w/27 gives
c
(W) = - , (2-22)
a® + w
where
_0.156 o7V L 0.312:.7v

Cc = A ’ _‘T’o
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Recalling Equation (2-16), it follows that the frequency
response function H(w) for the approximate Kaimal spectrum
can be solved in the same manner as that used to obtain
Equation (2-17).

The approximate von Karman spectrum, as shown in

[9] is
1.942 02%[1+ (3.496 %f)zj
d(£f) = 7 ’ (2-23)
[1+ (3.496%f)2]
which can also be written as
2 2
d(w) = ¢ (b” +uw g . (2-24)
[a2-+w2]

The filter function H(w) in this case is therefore similar
to the lateral component of Equation (2-17). Figure 2-7
compares the approximate expression with the actual

von Karman longitudinal spectrum given by Equation (2-10).

C. Multi-Filter System for Non-Gaussian Turbulence

and Turbulence with Interlevel Coherence

Additional turbulence characteristics can be taken
into account with more complex filter systems., A filterxr
system which gives a non-Gaussian turbulence output and a
turbulence output with interlevel coherence, respectively,

is described in this section. Both simulations use the
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Figure 2-7. The von Karman spectrum compared with
the approximate form, Equation (2-23);
V = 180 m/s, A = 195 m,
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same Dryden spectrum. The frequency response function for
eaéh filter can no longer be derived from the simple
relation given in Equation (2-14).

The non-Gaussian output fiiter, Figure 2-8, com-
bines three filter functions, Ha’ Hb' and Hc’ for each of
the three wind speed components being simulated. This
nonlinear system allows the probability density function to
be adjusted through the parameter r. Figures 2~9 and 2-10
show the comparison of measured atmospheric turbulence with
a Gaussian distribution curve, and the comparison of the
same turbulence with the probability density function simu-

lated by selecting different values of r, respectively.

Input Filter Ogtput Gain Simulated
noise signal turbulence
Na Ha — a(t)——w r
T Vi+r?
N, By [ b({®) ®— g(t)
N H, [— cl(t) =
c VI+r2

Figure 2-8. The non-Gaussian multi-filter system.

To determine the frequency response functions,
H , Hy, and H, the correlation function is first derived

from the Fourier transform of the spectrum to be simulated:



Figure 2-9.

Comparison of the Gaussian distribution

with measured gust velocity distribution
[10].

P (x)

Figure 2~10. The probability distribution.

function for different values of r.

21
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o

R(t) = [ ¢(K) exp (iVKt) 4K . (2-25)

-0

Considering the Dryden spectra, Equation (2-11),

the correlation becomes

R, (t) = 0F exp [~ V/A [t]]
(2-26)
R, (t) = 02 [l——‘dz%l-]exp[— vV/A [t] 1 .

The correlation function of the simulated turbu-
lence time history can also be determined from (see

Figure 2~8)
Rgg(T) =E[g(t) g(t+1)1 , (2-27)

where

Y 1
» 1/2-+c(t) N 177 -
[1+1r7] [1+xr°]

(2-28)

g(t) =a(t) b(t)

Since a(t), b(t), and c(t) are independent, random

processes with zero mean, the correlation function can be
written as

2
r

1
5—+ Rcc___—__jr_’ (2-29)

R_(t) =R__(t) (t) ———
gg aa Sbb [1+1r°] [1+1°]

and each function can be related to a spectrum function

through Equation (2-30):
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o]

R ,(t) = f ¢, (K) exp (iVKt) dK , (2-30)

el

where ¢aa(K) can be replaced by the filter function H(iVK),

i.e.,

|Ha(iv1<)l2 = ¢,,(K) . (2-31)

Similar results apply to Rbb and Rcc‘ Reeves, et al. [2]

assume the general form of the response function to be

_ 1
Ho(8) = 155
1
N, + N,s
H(s) = —2—— 2 (2-32)
(l-+D25)
_ N4 + NSS
HC(S) - 2 4
(1-+D3s)
where s is the Laplace transform variable s = jw.

Substituting Equation (2-32) into Equation (2-31)
and transforming as shown by Equation (2-30) yields the

following correlation functions:
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Raa(t) = —BI-exp [ - %%%]

2 2

N N 2
R, () = (553-2—) Cle] T (%)—(%) ]
2

2

N
1 3 lel
+ [=—=—+D, ()1 ltexp [~ ] (2-33)
D2 2 N2 D2
N, 2 2 2
Rcc(t)=(2D){|t|[( )—(—)]
1 Ny ? t]
+[=—+D ( )]} exp [———]
D, 3 D,

These particular expressions for the response functions
have been chosen because they will give the correct Dryden
spectrum. Also, to eliminate the r appearing in Equation
(2-29), the following choices are made for the constants in

Equation (2-32):

1/2
_ A _ 24 _ 21
Ny =40, 5 + Ny=1.0, Ny=7 , N,=o0y(5)
5 1/2
_ 24 24 21 _ A
Ng = 03 (—) r Dy =5 o D=5 D3 =g o

The resulting correlation functions of the model become

Ra(t)R (t) = R__(t) = R__(t)

bb cc gg

2 v
o] exp I-¢ €] 1. (2-34)
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This is the desired form of the longitudinal gust corre-
lation function for a Dryden spectrum. Similarly, the
lateral and vertical components can be simulated correctly
by proper choice of constants. These constants are listed
in Table 2-1,

Atmospheric turbulence near the ground has been

shown to have strong coherence between vertically separated
layers of air. Many researchers [11, 12, 13] have found

that the coherence near the ground (z < 150 m) behaves as

Y, (K, 82) = exp [-a |kAZ| T . (2-35)

Therefore, this statistical property should be included in
a valid turbulence simulation.

Perlmutter, Frost, and Fichtl [3] developed a
multi-filter system to provide turbulence simulation
including coherence function. They defined the two-point
spectral function ¢(K,zl,22) at different height Zi02,

to be

P
6 (K, 2, ,2,) =A2H(K,zl)H*(K,ZZ)HFZ_PDm(K,Zl)D;(K,zz) , (2-36)

where H(K,z) is the frequency response function, and D(K, z)

is a level frequency factor, as shown in Figure 2-11.
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Table 2-1. Transfer Functions for the
Non-Gaussian Model
Ha Hb Hc
1/2
2A
401Gb 1 01679
Longitudinal i ————7;—- T
l+2&ﬂs l+2&7s 1+Qﬁs
2 1/2
A A A
0,(128)% (D) . 0, (1+/35s)
Lateral T ——*-7r—?5 T >
l+2(VJS (1+2§S) (1+(§95)
2 1/2
1/2 A 2l A
Vertical 03(128) (ﬁa s 03(V) (1+V§vs)
12 (242k)> (1+(Ds)
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Figure 2-11. The interlevel coherence model.

The coherence function Y(K,z 2) is defined as

172

¢(K’Zl’22)¢*(K’zl’22)
Y(Krzlrzz) = ¢(K Z Z )0 (X, 2 Z2) .
re1’"1 re2r°2

(2-37)

The level frequency factor is therefore assumed to have the

form
Dm(K,z) = cy exp[]j k 2z dm] ’ (2-38)
where
_ mm
dm - (XAz) :
max

Therefore, Equation (2-36) becomes

P
¢(K’zl'22):=A?H(K'Zl)H*(K'ZanQLPQi exp[jk(zl—zz)dng .
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Substituting this into Equation (2-37) yields

o2 o2
[ § cCexp(§RAZzA )] | ¢ exp (-JKAZzd,) ]
=P m g=-p * %
Y(K,Az) = 5 5 - —, (2-39)
[ ] 210 il
m=-P 2=-P

Notice that c_ and 4_ are equal for D_ and D__; therefore,
m m m -m

Equation (2-39) can be rewritten as

2 P 5 2
[co+2 g Ch cos(KAzdm)]

Y(K,Az) = m=1 . (2-40)

The error between this equation and the true wind

coherence exponential function given by Equation (2-35) is

1
E ., = fo [Y(K,A2) - v (K,02z)14dE , (2-41)
where
£ = KAz
(KAZ%mx

Values of Cn which cause E.. to be a minimum are found by

setting dErr/dcm = 0. The result is:
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2 _ _ _ 1
co—2£o[l exp( 'i—g—(;)]
(2-42)
26 [1-(-1)"exp (-52—) ]
2 o 2&0
Cm= = = 2 r
[1+ (2m7r€o) ]
where
1
E. = .
o) a(KZzSnlax
Values of the cm's for the set Eo = 0,1 are shown
in FPigure 2-12,
C
m
0.4 X
0.3 4
0.2 —+
0.1 + ‘ ‘ l
0.0 | 1 l L‘ | l J | | ] 1
o1 2 3 -~ 7 m

Figure 2-12. Values of the parameter Ch*
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To determine the value of .the parameter A in
Equation (2-36), consider that Equation (2-36) must reduce
to the one -level auto-spectral function when Az = 0.

Equation (2-36) then takes on the new form of

P
_ * 2 2 _
0 (K,zq1,21) = A2H(K,zl)H (K,z,) [co-k2 ) c.1 . (2~-43)
=1
Comparing Equation (2-43) with a single filter system for

which the spectrum is
2
¢(K,zq) = ]H(K,zl)} , (2-44)

then A can be obtained as

1
AT = P :
2 2
ot 2 1 eyl
m=1

(2-45)

Therefore, the two-point interlevel coherence model reduces,

.as necessary, to the one-level auto-spectrum at Az = 0.
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CHAPTER III
DIGITAL SIMULATION TECHNIQUES

This chapter describes the basic methods and
problems associated with digital simulation of random
processes. Topics discussed are the generation of a
random signal and the calculation of the necessary trans-

formation funcgtions used in later work.
A. Generation of a Random Signal

The method used to generate random numbers with a

digital computer is based on the formula

X = axn+b (mod'm) . (3-1)

n+l
This technique is called the mixed congruential
method and provides a simple and fast computation pro-
cedure. It also has the advantage that it can be repeated
for several cycles by using different values of a and b.
Moreover, it can be analyzed theoretically. The period at
which the random numbers repeat cannot be greater than the

module number m; thus, m is usually selected to be the
largest integer possible with the capability of the com-
puter used. The value of m in this study is 2,147,483,647,

31

which is equal to (2 - 1), the largest possible number

allowed on the IBM 360/65 system.

31
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Frequently, it is desired that the sequences
generated be bounded by zero and unity and be uniformly
distributed within this interval. This bounding require-
ment is accomplished easily by normalizing the output data

with respect to the largest possible number m.

x' = xn/m ’ (3-2)

T
n

where X, is generated from Equation (3-1).

Since

therefore,

The constants a and b in Equation (3-1) are selected to

provide speed of computation and good statistical

properties, such as uniform distribution and maximum period.
Results presented by Chambers [14] and Hamming [15]

show that a maximum period can be achieved if a and b

are selected as

a=4-+I+1 I=1,2,3,...

or (3-3)
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The computer program RANDU used for generating
random numbers was combined in subroutine GAUSS, as dis-
cussed in the following text. The value a is selected
equal to 65539 which follows the second rule of Equation
(3-3) by setting I equal to 8192 and provides the best
statistical resﬁlts using the IBM 360 computer.

As mentioned earlier, Gaussian distributed numbers
are required as the input white noise. The probability
density function of the numbers must, therefore, have the

form

P(x) = 1 exp L-LE:EL—] ’ (3-4)

where Oy is the standard deviation and X is the mean value
of the variate.

If xi(i =1,2,...N) are N uniformly distributed
numbers over the interval 0 to 1, the central limit theorem

yields the following formula:

_ 12 1/2 N _
| +< | -
xj-—ox[N] [.in N/2 14+% , (3-5)
i=1
where x;(j =1,2,...M) is a set of random numbers having an

approximate Gaussian distribution with the mean value equal
to x, and the standard deviation equal to O e
The value of N indicates the number of terms used

for each output. Figure 3-1 compares the approximation
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P (x)

0.5 T ] !
Gaussian
'\ —-==—= 12 term method
A ——+— 5 term method
0.4 ]
0.3 1
0.2 ]
0.1 1
1
0 1.0 2.0 3.0 4
x
Figure 3-1. The Gaussian distribution

compared with the approximation,
Equation (3-5) [1l6}].
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given by Equation (3-5) for 5 terms and 12 terms with the
true Gaussian distribution function.

The computer program for generating Gaussian random
numbers also appears in the IBM scientific subroutine
package. The N value of Equation (3-5) is selected equal
to 12 in order to simplify the computations. Equation (3-5)

then reduces to

Y- 6]1+Xx. (3-6)
14
The computer subroutine is called GAUSS and is given in

Appendix A, Section A-1.

B. Calculation of the Required Discrete

Transformations

The filter system shown in Figure 3-2 consists of
an input and an output history function x(t), y(t),

respectively, and a system response function h(t).

x(t) —™ h(t) —  y(t)

Figure 3-2. Simple filter system.

The output y(t) is given by the convolution integral

[=+}

y(t) = f h(t) x(t-1) 4t . (3-7)

OO
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The Fourier transformation of Equation (3-7) is [17]

Y(w) = H(w) X(w) . (3-8)

Since the filter function H(w) can be designed to simulate
most forms of the spectrum desired, as described in
Chapter II, Section B, the calculation of a simulated time
history of turbulence relies mainly on the Fourier trans-
formation of the input function x(t) to X(w). The inverse
transformation of the Y(w) back to y(t) is also of equal
importance to the computational effort, These two pro-
cedures will be discussed in detail in the following, as

they pertain to transformation of digital data.

The Discrete Fourier Transformation

For cyclic frequency f, the infinite range Fourier
transform of a real valued or a complex valued record x(t)

is defined by

[o0]

X(£) = [ x(t) e

v OO

TI2TEE ¢ (3-9)
It is physically impossible to calculate this transfor-
mation since an infinite number of digitized data does not
exist in reality. However, by restricting the limits to a
finite time interval of x(t), say in the range (0,T), then
the finite range Fourier transform will exist as defined by

Bendat and Piersol [17]
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T

X(£,T) = f x(t) e 327ft
0

at . (3~10)
Assume now that x(t) is sampled at N equally spaced
points separated by a distance At apart, where At has been
selected to produce a high cut-off frequency to avoid
aliasing. The cut-off frequency (Nygquist frequency) and
the aliasing problem are discussed in a later section. The

discrete values of X thus become

X, = x(n At) n=1,12,...N-1 , (3-11)

and the discrete version of Equation (3-10) becomes

N-1

X(£,t) = At L X ©¥p [-j2mfnat] . (3-12)
’ - n=

0

A basic frequency fo is defined as

£ = -r_lf . (3-13)

and the discrete frequency value fm is defined in terms of

f as
o

f_ =mf_ = m=0,1,2,...N-1 . (3-14)

|
m o NAt
The discrete frequency fm is substituted into the

discrete Fourier components, Xm' defined as

X(E_ T)
X = ———-—-m (3"15)
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Therefore,

N1 27Tmn
X = 1 X, exp [~ 1. (3-16)
n=0
To simplify the notation, let
W = exp [~5 2™TM0 (3-17)
mn J N *
Then Equation (3-16) becomes in tensor form,
X =W x_ . (3-18)

This is the equation for the discrete, finite-
‘range Fourier transform. No difficulty is involved in
carrying out calculation of the Fourier transform with the
equation using a digital computer. Equation (3-8) can now

be written in discrete form as

Y = Hm X . (3-19)

This equation gives the discrete Fourier components of the
output to be simulated. To invert the output Fourier
components into the desired time domain, the discrete
inverse Fourier transform is applied, which can be derived

similar to Equation (3-18). The result is
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- 1 . x
Yn = ¥ "mn Ym - (3-20)
where
W* = ex [ 2ﬂmn]

These three steps complete the calculation; that
is, the simulated discrete data Yy, are obtained by one
Fourier transform, Equation (3-18), one multiplication,
Equation (3-19), and one inverse Fourier transform,
Equation (3~20). To calculate Equation (3-18) or
Equation (3-20) requires N2 times of complex multiplication
and N(N-1) complex additions to transform N discrete values.

Since the value of Won repeats for certain combi-
nations of m and n, some additions and multiplications can
be eliminated. The Fast Fourier Transform (FFT) is an
algorithm based on this principle which allows computation
of the transformation much more rapidly than the direct
method in Equation (3-18) or Equation (3-20). The FFT per-
forms a series of computations by rearranging the matrix
W to save the calculation of dual node pairs. For N

mn
discrete points, where N is a power of 2, namely,

N = 2%, (3-21)

the FFT method requires only P*N/2 complex multiplications

and P+*N complex additions. Thus, the approximate ratio of
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computing time for the direct method compared to the FFT

method is

Direct Method _ 2N

—

FFT P -

(3-22)

Figure 3-3 illustrates the difference between the

number of multiplications required for each method.

™M
S 1024 [T T I
x
§
o direct algorithm
o
o
-~
,_‘
o
0
H 512 _ .
=
=]
L
o
3 B FFT algorithm ]
'g 128 |- —
o — -
L .
128 512 1024
N

Figure 3-3. Comparison of the number of multiplications
required for a Fourier transform by the direct
algorithm and the FFT algorithm.

The Z-Transformation

Another useful discrete transformation technique is

the Z-transformation which is defined as

X(z) = ) x(mat)z ", (3-23)
m=0
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where X(z) is called the Z-transform function of X(t).
Actually, the Z-transformation is the Laplace transform of
digitized data. It can be derived from the Laplace trans-
formation defined as

o]

X(s) = f x(t) e
@]

st at . (3-24)

Consider the data x(t) digitized as

o]

x'(t) = } x(m At)S(t-m At) , (3-25)
m=0

where

§(a) 1 for a =0

= 0 for a # 0 .

Taking the Laplace transform of x'(t) gives

X'"(s) = [ x'(t) e
o

st qe . (3-26)

Substituting Equation (3-25) into Equation (3-26) results
in

X'(s) = J x(m At) e S(m AT} (3-27)

m=0

The Z-transform X(z) is equal to X'(s) if z is set equal

oS At

to and Equation (3-27) becomes

4
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X(z) =X'"(s) = [ x_e , (3-28)

where

The transformation is now defined as a function 3,

X(z) = 2 [x(t) ] . (3-29)

Therefore, the transformation of x(t + At) becomes

Z Ixm+l]

_ = (m+1)
=z (mzoxm+l 2 )
(3-30)

=z ( Jx_ 2z %-x)
m=0 ©

z (2 [xm] - xo)

in the same manner it can be shown that the Z-transfor-
mation of [Xh+l - gm] is equal to

2 [x

m+l-—xm] = (z-1) 2 [xm] - Z X_ . (3-31)

o
This equation can be used to determine X+l from X
by the appropriate inverse transformation. The application

of Equation (3-31) to simulate turbulence is as follows.
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The basis of the Z2~-transform technique is to
establish the difference equation for the output Yp+1-
Therefore, if the Z-transform of the filter function h(t)
in the system shown in Figure 3-2, page 35, can be found,
then the output Yn41 C2n be calculated directly from the Yn
and X values,

An example determination of the filter function
h(t) for simulation of the Dryden spectrum is given in the
following.

The Fourier transform is (see Chapter II, Equation
(2-17))

Yoy

Bl = 35+ a;

which also can be expressed in Laplace form by setting
s = jw (see [181])

ey

H(S) = S_’-*‘——a— . (3"32)
1

Now, consider a unit step function x(t) as the input to the

system where

x(t)

!
-
ct
A\
o

(3-33)

The Laplace transform x(t) can be obtained from Equation

(3-24) as

X(s) = L[[x(t)]l=1/s . (3-34)
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For a linear system, the Laplace transform of the output is

related to the input by

Y(s) = H(s) + X(s) . (3-35)

Therefore, the output Y(s) of passing a unit step input

through a Dryden spectrum filter would be

/oo

_ 1 .1
Y(s) = 5;;; s - (3-36)
Partial fractions give
/C
e NP R | _
Y(s) = a; (g- S¥a; ) . (3-37)

Taking the inverse Laplace transformation provides the

output y(t)

)

~a. t
gy =t v 1= =L @a-e ). (3-38)

'—I

The Z-transform of the input x(t) and of the output
y(t) can be obtained by substituting Equations (3-33) and

(3-38) into Equation (3-23); hence,

X(z)

(3-39)

¥(z) = 5 (z01 - o 2 At
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Since

H(2) = Y(2) /X(2) , (3-40)

the Z-transform of the Dryden spectrum filter function

becomes
— ~a. At
H(z) = =L (le 1 (3-41)
a; -alAt ‘
z—e

For a general input X(z) the output of the filter system

can be written as

/E:—- -a. At
Y(z) = —L (1= ) X(z) (3-42)
a; -a.At *
zZ-e
Cross multiplication results in
(z-A)Y(z2) = BX(z) , (3-43)
where
A =-e 1 ’ B = 1 (1l-e 1 ) .
2

Now, applying Equation (3-31) and setting y(0) = 0, the

left-hand part of Equation (3-43) becomes

21 L¥per =2y

L1= (A2 ly ]

(3-44)

(z-A)Y(Z) .
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Hence, Equation (3-43) becomes

Z[ym+l—Aym]=BZ[xm]. (3-45)

Taking the inverse Z-transformation, Equation (3-45)

becomes

Ym+l - AYm = me
and (3-46)

ym+l==Aym + me .

This equation for calculating the discrete output
y(t) is simple and very convenient for digitized data.
Also, because the coefficients A and B are predetermined,
this approach does not require calculation of the filter
function, H, over all values of frequency in each compu-
tational step, as required in the FFT technigue. For these
reasons, the Z-transformation method is even more efficient
than the FFT method. Only 2N real multiplications and N
real additions are required to simulate N discrete
components of a given time history. If N equals 1024, for
example, the FFT method requires ten times more multipli-

cations than does the Z-transform technique.
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C. General Consideration in Digitization and

Discrete Transformation Calculation

There are several required operations for the
processing of random data. They are heavilf dependent upon
the physical phenomenon represented by the data and the
desired engineering goals. In this section, the basic con-
siderations associated with digital simulation are

discussed.

Cut-0Off Frequency

Sampling a time history for digital data analysis
is usually performed at equally spaced intervals of time.
Care must be taken in determining an appropriate sampling
interval At. If sampling points are taken too close
together, they will yield correlated and highly redundant
data, thus unnecessarily increasing the labor and cost of
calculations. On the other hand, sampling at points which
are too far apart will lead to confusion between the low-
and high~frequency components in the original time history;
this is so-called aliasing. Generally, at least two
samples per cycle are required to define a frequency
component in the data. Hence, the highest frequency which
can be defined by sampling at the rate of 1/At samples per

second is 1/2At cps. This is called the Nygquist frequency.

fc = 1/2At . (3-47)
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Frequencies in the original data above 1/2At cps
will be folded back into the range from 0 to 1/2At cps,
and be confused with data in the frequency range below this
value,

One way to avoid the aliasing problem is to choose
At sufficiently small, that is, fc large, that it is
physically unrealistic for data to exist above fc‘ In
general, it is a good rule (see [17]) to select fc to be
one and one-half to two times greater than the maximum
anticipated frequency. For example, for atmospheric turbu-
lence simulation, the energy spectrum (as shown in Figure
2-7, page 19) indicates most of the kinetic energy is in
the range below 1 cps. Therefore, a meaningful At is about

0.1 to 0.5 sec.

The Quantization Error

Since the magnitude of each data sample must be
expressed by some fixed number of digits, only a fixed set
of levels is available for approximating the infinite
number of levels in the continuous data. For typical
analog to digital conversion, the quantization error will
have a uniform probability distribution with a standard
deviation of approximately 0.29 Ax (see [17], where AX
is the quantization increment. This is demonstrated as

follows:
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Let P(x) be the guantization error probability

density function defined by

P (x)

1 ~0,5<x < 0.5

= 0 otherwise .

The variance of the error

o2 =_f:(x-§)2 P(x) dx .
Since x = 0,
the standard deviation is
O, = Y1/12 =~ 0,29 scale unit . (3-48)

In practice, the quantization error is usually
unimportant relative to other sources of error in the data
processing, For example, for simulated turbulence, the
quantization increment Ax is usually chosen as 0.0l m/sec.
Therefore, the standard deviation of the quantization
error is approximately equal to 0.0029 m/sec, and is small
enough to be neglected. However, care must be exercised -to
assure that the range of quantization is small enough to

assure the accuracy desired.
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The Bias Error

All of the power spectral density algorithms con-
sidered herein use the discrete Fourier transform. The
finite length of time, T = N+At, influences the spectral
function. The estimated spectrum ¢e is calculated by the
finite length time history xT(t), which is the product of a

"boxcar" function bT(t) and the original time history x(t).

Xplt) = b,(t) «» x(t) , (3-49)
‘where
b(t) =0 t < T/2
=1 -T/2 < t £ T/2

0 t > T/2 .

The Fourier transform of bT(t) gives

[oe)

J. by (£)

-Q0

o-J2mEt

BT(f) dat

(3-50)

Sin(ﬂfT))

= T TET

this is called a window function.
Thus, the true spectrum ¢t will be different than
the spectrum ¢e estimated by the finite Fourier transfor-

mation. The two functions are related by the convolution

integral
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co

jn¢t(fl) B (f—fl) daf,

bg (£)

(3-51)
o sin (w (f—fl) T)
[ op(£7) T T{EE; )T daf; .

—

The difference between ¢e and ¢t is defined as the
bias error. The strongest objection to the boxcar window
is "leakage through the side lobes," as shown in Figure 3-4.
The side lobes are those portions of the window between 1/T

and 2/T, between T/2 and 3/T, and so forth.

B_(f)

I\)fr—]

VAN VAN

Figure 3-4. The spectral window for boxcar
weighting function.

1
Hiw -
|
a
I
r—al'-‘.J

Hlw

This deficiency in the boxcar window can be over-
come largely by using a tapered window which tapers the

ends of the time history. For example, the Hanning window
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is defined as

hn (t) 0 for £t < - T/2

=ll+cos (32E)] - 1/2 <t < 1/2  (3-52)

=0 t >T/2 .

Then the Fourier transform of hT(t) gives the Hanning

window function HT(f) where

1 1 1
Hp(£) = 7 By (£-£ )+5 By (£) +7 Bp (£+£,), (3-53)

where

fO =1/T .

The Hanning window function is shown in Figure 3-5,

the side lobes of which are greatly reduced.
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Figure 3-5.
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CHAPTER IV
RESULTS AND DISCUSSION OF SIMULATION

Chapter IV discusses simulation of turbulence
employing the various filter techniques described in
Chapter III. Included in the discussion are simulated
turbulence time histories, probability density functions,
power spectrum functions, and coherence functions. Some of
the simulated results are compared with turbulence
properties measured in the atmosphere. The atmospheric
data were measured at NASA Marshall -Space Flight Center,

Atmospheric Boundary Layer Facility [19].
A. Random Number Generation

A l2-term equation (see Equation (3-6)) is used for
generation of the Gaussian random numbers. These numbers

used as input for the simulations described later are shown

in Figure 4-1.

Figure 4-1. Gaussian distributed random signals with zero
mean and unity standard deviation (2048 data).
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By using the computer subroutine GAUSS, as

described in Chapter III, Section A, and shown in Appendix
A, Section A-1, ten sets of data, each set having 2048
digitized points, are generated. The first starting value,
IX in subroutine GAUSS, is arbitrarily chosen as 65549.
The starting value for the successive sets is taken as the
last output value, IX, from the previous set. The input
mean value x and the standard deviation o are selected as
zero and unity, respectively. The properties of each of

the ten sets of output are shown in Table 4-1.

Table 4-1. The Variance, ¢, and Mean Value of Random
Signal Generated by Eguation (3-6)

Set No. = Starting Value __Variance o Mean

1 65 549 0.975 0.99 -0.02
2 1 873 182 733 0.962 0.98 -0.01
3 525 074 445 0.961 0.98 -0.02
4 250 707 981 0.976 0.99 -0.01
5 1 050 083 341 0.983 0.99 -0.03
6 775 716 877 1.062 1.03 0.04
7 1 575 092 237 0.960 0.98 0.02
8 1 300 725 773 0.978 0.99 0.00
9 2 100 101 133 0.981 0.99 0.00
10 1 825 734 669 1.041 1.02 0.03

Aaverage 0.988 0.994 0.00
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Table 4-1 shows that the generated standard devi-
ations and mean values are very close to the designed
values.

To examine the probability density function of the
data set, the computer program PDF is used (see Appendix A,
Section A-2). This computer program is based on the
following equations.

The probability density function P(x) can be

defined as (see [17])

P(x) Ax = Prob [ (x_-5%)<x(t) < (x,+55)1, (-1

where the function Prob [A] represents the probability that

Statement A is true. More precisely,

Ax Ax
Prob [(x, - =) < x(t) < (x_+-—=)1
P(x) = lim 1 2 - o 2 . (4-2)

Ax~>0 Ax

For digitized data, X, 0= 1,2,...,N, the
probability that X falls within the range [xoztx/2] can be
calculated as

Ax

prob [ (x -5%) < x <(x +51 =52, (4-3)

where N, is the number of digitized values which lie in
o

the range [xo:tAx/Z] .
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The probability density function defined in

Equation (4-2) can thus be written as

N
b 4

P(xo) = lim
Ax~>0

(¢}
¥ Ax ° (4-4)

Rather than using the limiting process for digital

simulation, a small, finite value of Ax is used which gives

N
X
(o)

N Ax °

ﬁ(xo) = (4-5)

Figure 4-2 shows the calculated ﬁ(xo) for Data
Set 1, using Ax = 0.3, compared with the theoretical
Gaussian distribution defined in Equation (3-4). Figure
4-3 shows the same ﬁ(xo) computed by using a Ax value of
Ax = 0.2. Comparison of the two figures shows that the
variation in Ax has little influence on the agreement of
the ﬁ(xo) function with the theoretical distribution to be
simulated. Figure 4-4 shows the influence of using
Ax = 0.2 and of increasing the sample size, N. Using the
total 20480 datum points, the estimate of ﬁ(xo) agrees con-
siderably better with the actual Gaussian distribution.

As mentioned previously, a Gaussian distributed
white noise input is required for the proposed simulations.
The power spectrum for white noise is constant for all
frequencies. The power spectrum for the generated random
signal input was computed to confirm that it was, indeed,

constant.
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Figure 4-2.

The estimated probability density function
of the 2048 random numbers, shown in
Figure 4-1, compared with the theoretical
Gaussian distribution (Ax = 0.3).

= A



59

Figure 4-3, Probability density function of the data set
used in Figure 4-2, computed with Ax = 0.2,

Figure 4.4, Probability density function computed with
total 20480 data points (Ax = 0.2).
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A raw estimate of the power spectrum is defined as

(see [17]),
2
o(£) = 2 |x(g,0) [, (4-6)

where T = N+At, and X(£f,T) is the Fourier transform of x(t)

for discrete frequency values shown in Equation (3-15),

X (fm,T)
Xm=T m=0,l,2,-..,N_l . (4"7)

Hence, the discrete power spectrum becomes

on = 258 |x [° . (4-8)

To transform the time history X to the frequency
domain Xm’ the fast Fourier transform computer subroutine
FFT (see Appendix A, Section A-3) 1is used. The estimated
discrete power spectrum is then calculated from Equation
(4-8) . The computer subroutine for this purpose is called
SPEC (see Appendix A, Section A-4). The estimated spectrum
of Data Set 1 as generated by this subroutine is shown in
Figure 4-5(a).

Since the estimated spectrum is for bandwidth-
limited input data, estimates at a frequency spacing of 1/T
will be essentially uncorrelated. Hence, smoothing or
averaging techniques are required to obtain a representa-

tive spectrum function. One smoothing technique consists
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(a) Estimated raw spectrum

1/(20At)

(b) Ten-point frequency smoothed spectrum

¢" L

{c) Segment-averaged spectrum for ten data sets

Figure 4-5.

The estimated raw and smoothed spectra of
Data Set 1 (Figure 4-1, page 54)
(At = 0.1 sec).
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of averaging n neighboring frequency components of the raw

spectrum estimates (see [17]),

Sl

Om = 5 l0n t bpyg e H 0 11 (4-9)
Figure 4-5(b) shows the frequency smoothed value ¢$ of the
¢ given in Figure 4-5(a).

A second technique of smoothing is averaging the
results from n separate time slices, segment averaging,
where each slice is of length T such that the original
length is equal to n+T. The averaged spectrum is given by

(see [17])

1

bp = Flon g+ 0y g * cen + 0 1, (4-10)

m,n
where the second subscript indicates the slice number.

Figure 4-5(c) shows the segment-averaged values of
¢$, as well as the average of the ¢m values calculated
separately for each of the ten sets of data listed in
Table 4-1. The computer subroutine for smoothing is

called SMOOTH and is listed in Appendix A, Section A-5.
B. Simulated Turbulence

As discussed in Chapter II, various spectrum models
can be simulated by different filter functions. A general
form of H(f), which represents the Dryden filter and is a

good approximation of the Kaimal and von Karman spectrum
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filter, is given by

c + jdf

H(£) ,
[a+3f]

(4-11)

where the constants a, ¢, and d are different for each
model, as listed in Table 4-2.

Equation (4-11) can be written as

H(f) = 29 +23df
[ (a" -£% )+ 23af ]
=D [c(a®-f2)+ 2aaf% + § [(a%-£%)d-2ac]£], (4-12)
where
D= -— 712 37 -
(a“ - Y+ 4a“f

The real and imaginary parts of H(f) function are then

given by the two functions

HR(f) = D Ic (a° ~£2)+2adf? ]

)|

(4-13)

HI(f) = D[ (a’-f%)d-2ac]f .

A computer subroutine FILTER (see Appendix A, Section A-6)
is available for the calculation of the real and imaginary
parts of the filter function. This subroutine also calcu-

lates the output Y(f) from
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Table 4-2. Coefficients a, ¢, and 4 for
Different Spectrum Model

Longitudinal component 1 v o v 3/2 GV 1/2

of Dryden spectrum EE(KJ Eﬁfﬂ) E{KD
(Equation (2-11))

Lateral component 3/2 1/2

of Dryden spectrum L(!) 30 (l/'_) / E(Z) /
(Equation (2-11)) 2m A 2%2A mA
Approximate v .y 3/2 v 1/2
Kaimal spectrim O.lSSQ@ 0.043z2 O(K) 0.279 Oﬁ@
{Equation (2-20))

Approximate v v 3/2 v 1/2
von Karman spectrum 0.286 (K) 0.114 O(X) 0.398 G(K)

(Equation (2-23))
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YR(£) HR(£f)XR(f) - HI(£f)XI(f)

(4-14)

YI(f) HR(£f)XI(f) + HI(f)XR(f)

where XR(f) and XI(f) are the real and imaginary parts of
the Fourier transform of the input x(t).

The frequency function Y(f) is trénsferred to the
time domain, y(t), with the inverse FFT method.

The difference equation based on the
Z-transformation technique can be derived for the filter of
the spectrum given by Equation (4-11), as illustrated for
the simple case in Chapter II, Section B. Thus, the

discrete output y is related to Ynr Yp-17 ¥n’ and X 1

n+l
by:

= . - . (4-15)
Ypt1 =C1°¥y t oy g+ Ayexy H dyeX, gy

where

cy = 2 exp [ -2ar At ]

c, = - exp [ -4am At ]
o] c1 a~c/b c
dl = d I__§”+7? ((———) At"——f) ]
ba ba
o] €1 a-c/b
d, =d{——(=5-1) ( Y Atlc,/2 .
2 ba2 2 — a 1l

The constants a, c, and d are those listed in Table 4-2,

and the constant b = (Zﬁ%/z.
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A computer program employing the Z-transformation
technique called DZT is given in Appendix A, Section A-7.
The FFT/FILTER method and the DZT method are now used to
simulate turbulence time histories having the different
spectra described above.

Figures 4-6 and 4-7 show the simulated time
histories for the four spectra as defined by the constants
listed in Table 4-2, using both the FFT and DZT methods,
respectively. All data shown in Figures 4-6 and 4-7 are
normalized with o to facilitate comparison. Smaller values

of o therefore give larger peaks, as shown in Figure 4-7.

DZT

Although the expected values of X and ¢ are zero
-and unity, respectively, the simulated mean value X and
standard deviation o are affected differently by the FFT
and DZT methods. Tables 4-3 and 4-4 show values of X and ©
determined statistically from the simulated turbulence time
histories using Table 4-1, page 55, as the input. Table
4-3 shows that the value of X is approximately two times
the input value for the FFT simulation, but almost exactly
the input for the DZT method. The overall average value,
however, is still in the acceptable range.

Table 4-4 indicates that the input variance is con-

siderably altered by both techniques. This effect is
strongly dependent on the time increment At.

To generate the correct variance, one must consider

the difference between a continuous system before and after

ol

@
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(d) Approximated von Karman spectrum model

Figure 4-6. The normalized time histories of simulated

turbulence by the FFT method using Data Set 1
as input (At = 0.5, N = 2048).
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(a) Longitudinal component of Dryden spectrum model
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(c) Approximated Kaimal spectrum model

(d) Approximated von Karman spectrum model

Figure 4-7. The normalized time histories of simulated

turbulence by the DZT method using Data Set 1
as input (At = 0.5, N = 2048).



Table 4-3. The Mean Value of the Simulated Turbulence

Input DZT FFT
-0.02 -0.02 ~0.06
-0.01 -0.01 -0.02
-0.02 -0.02 -0.05
-0.01 -0.01 -0.02
-0.03 -0.04 -0.09
0.04 0.04 0.09
0.02 0.02 0.06
0.00 0.00 0.00
0.00 0.00 0.01
0.03 0.03 0.07
Average 0.00 -0.01 -0.01

Table 4-4. The Standard Deviation o of the
Simulated Turbulence

At 0.1 0.2 0.5 1.0 2.0
Input 0.99 0.99 0.99 0.99 0.99
DZT 0.18 0.25 0.40 0.56 0.79

FFT 0.44 0.63 0.99 1.36 1.86
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it is passed through a sampling and holding device. The
sample and hold function X(t) is related to the continuous

function x(t) by

(=]

%(t) = ) x(nAt) [s (t-nAt) -=s (t - (n+tl)At) 1, (4-16)
n=0

where s(t) is the step function defined

s(t) =1  £2>0

Taking the Fourier transform of Equation (4-16)

. o e—jnAtw._e-j(n+l)Atw
X(w) = ] x [ — ]
n=0 ]
0 s _ —Jbtw
= ) x_e jndtw (1 - e 1 (4-17)
n=o D Jjw
-jAtw
_ 1 -e73

where Xm is the discrete Fourier component of x(t) (see

Equation (3-16)). Equation (4-17) therefore becomes
X(w) = X(w) + s(w) , (4-18)
where
s(p) = ;L_[l - exp (- jAtw)] ]

At Jw
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Let the continuous function input have a constant
spectrum ¢x(f) and a variance of oi. Then the spectrum of

the sample and hold output is

o

§.(8) = ¢ (8) + [s(0)f . (4-19)

Since the constant spectrum ¢x(f) can be replaced by

5 1/2At
Oy =,% ¢x(f) df

b (£) = 24t oi ,

it follows that

2

ey o sin(nfAt)
¢X(f) = 2At Oy [ —

TEAt 1. (4-20)

Using this sample and hold data as the input of the
turbulence simulation system, the simulated output variance

is

n2 _ o 2 _
o, = C)¢x(f) |H(£) |"af , (4-21)

and since the continuous system output ¢Y is defined by

¢, = IH(f)IZ, Equation (4-21) becomes
2 2 sin(mfAt) 2
~ . 4-22
oy [ 205 At [——FfKT_-_] ¢ _(£) df ( )
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Assuming [ sin(nfAt) / mfAt ] to be approximately unity for

the lower frequency (see Table 4-5) where the atmospheric

turbulence has the most significant energy density,

Equation (4-22) reduces to

= 20t [ ¢_(f)df = 2At o2 .
oy y

qulk:qr)o

If ci is equal to unity, then

G 2At o,

~or if Gi is selected equal to

1
X 20t 7

then

Table 4~-5. <Values of [ sin(nfAt) / wfAt ] for
Low Frequency £ (At = 0.1)

(4-23)

(4-24)

(4-25)

£ 0.001 0.01 0.1 0.5 1.0 2,0

3.0

sin (TEAt)

. . . 0.995 0.983 0.935
[ TEAL ] 0.999 0.999 0.999

0.858

A
)
2

e
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Hence, by adjusting the input variance Gi through

the relationship 1/2At, the discrete system will have the
desired output variance o;.
Considering now the difference equation of the

Zz-transformation, the output variable in terms of the input

variables is
n

Since each value of X5 (oxr yi) is independent, the variance
can be given by
2 ¥ 2

2 .
= 02 lim ) of . (4-28)
y X nro i=0 T

3
To find the ai, one can write the initial terms of
the difference equation for the first few inputs and then
deduce the functional relationship between oy and %i41)
The sum of the sguares of these terms can then be split
into geometric series and derivatives of geometric series,
which are all summable. For example, the result for

Equation (3-46) is (see Appendix B)

2 2
20 —aAt
r2 _ 2 y (1-e ) -
oy = %% 52 __-Zadt 1, (4-29)

where
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For small At, Equation (4-29) reduces to

~2
a
Y - At 2 -
5 = GY . (4-30)
o
X
With oi = 1 the result is
~2 At 2
o = = g . 4-3T
v T %y ( I)

Alternately, if the input is selected as

o. = (4-32)

s

X At
-then the output variance 8; of the difference equation will
be equal to the desired output variance 05.

Figure 4-8 compares Equations (4-24) and (4-31)
with the calculated standard deviations given in Table 4-4,
page 69. In both cases good agreement with the theory in
the small At range is observed. This is expected, since
Equations (4-24) and (4-31) also assume small At. Hence,
the variance can be simulated properly by applying
Equations (4-25) and (4-32), respectively, to the input of
the system. The computer program for generating the input
array X; with the adjusted variance is called INPUT, and is
listed in Appendix A, Section A-8.

To compare the simulated turbulence with measured
atmospheric turbulence, the value of the reference velocity

vV, the turbulence integral length scale A4, and the
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turbulence intensity o must be specified. The reference
velocity is usually selected as the mean wind speed at the
given height of the simulation. The A and o values are
functions of height, z, atmospheric stability conditions,
y(z/L) , and surface roughness, 2. The parameter L is the
Monin Obukhov stability length. Equations for predicting

the turbulence intensity values are given in [7] as:

6, = 0.52 U/ [¢n (§£.+ 1) + v(z/L) ]
(0]
3 -0.8
6, = 05 10.583 + 1.39x107~ z] (4-33)
_3 0.4
0, = 04 [0.177 + 2.74x%x10 z ]

The turbulence length scale for the Dryden spectrum is

given in [16] as:

44.21(3.28 2)Y/? 2z < 533m
Ay = A, =
533 z > 533m
(4-34)
z z < 533m
A, =
533 z > 533m .

Figure 4-9 shows the comparison of the longitudinal
velocity componené time histories of simulated and measured

atmospheric turbulence. The mean wind speed, U, and
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(d) Simulated turbulence of approximate von Karman model

Figure 4-9. The normalized time histories
(At = 0.5, N = 2048).
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turbulence intensity, o, of the measured data are 7.52 m/s
and 1.78 m/s, respectively. Based on this value and a
height of 24 m for neutral stable conditions, the calcu-
lated value of o1 from Equation (4-33) is 1.26 m/s, which
is the standard deviation used to simulate turbulence.
Hence, the time histories shown in Figure 4-9 are
normalized to facilitate comparison. From visual obser-
vation of the time histories, it appears that the measured
data contain more high-frequency components than the simu-
lated results. This is expected because the Dryden form of
the spectrum results in a filter which generates less
power at higher frequencies (see Figure 2-2, page 9).

The probability density functions (PDF) of the
measured and simulated turbulence are given in Figure 4-10.
All of the simulated turbulence is very nearly Gaussian
distributed; however, the measured atmospheric turbulence
has non~Gaussian characteristics, as discussed in Chapter
IT, Section C. Hence, the multi-filter system shown in
Figure 2-8, page 20, and in Table 2-1, page 26, has been
programmed (Appendix A, Section A-9) to provide better
simulation of the non-Gaussian characteristics of atmos-
pheric turbulence.

The calculated PDF's of this model for different
values of r, the adjusting coefficient, are shown in
Figure 4-11. A proper selected value of r is observed to

provide a corxrect PDF for the simulated turbulence.
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(a) Measured atmospheric (b) Simulated Dryden spectrum

turbulence

turbulence

(c) Simulated turbulence (d) Simulated turbulence of

of approximate
Kaimal model

Figure 4-10.

approximate
von Karman model

The estimated PDF of the data of the
different spectra techniques
(Ax = 0.2).
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(c) r = 2.0 (d) r = 5.0

Figure 4-11, The calculated PDF using the non-Gaussian
model (Ax = 0.2).
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Figures 4-12 and 4-13 show the time histories and PDF's of
the simulated non-Gaussian turbulence and of the measured
atmospheric turbulence, respectively.

The PDF of the non-Gaussian model gives a peak shape
similar to the measured data. This model also increases
the number of-sharp peaks relative to the Gaussian model;
however, the number of overall high-frequency components is
still much less than that for the measured atmospheric
turbulence. 'This is to be expected because the non-Gaussian
model still utilizes the Dryden spectrum filter.

In order to examine how well the simulation repro-
duces the input spectra functions, the discrete estimates
were calculated from Equation (4-8). The segment-averaging
technique, Equation (4-10), is applied to smooth the
spectra.

The spectra estimates of turbulence are shown in
Figures 4-14 and 4-15 for the FFT and DZIT methods,
respectively. Each plot is smoothed using 20 sets of data.
The theoretical curves, based on Table 4-2, page 64, are
also plotted for each case. Comparing these two figures
shows that the FFT method provides a better spectrum simu-
lation than the DZT method.

The spectrum of measured atmospheric turbulence was
also computed and is compared with the von Karman spectrum
(Equation 2-10)) and the Dryden spectrum (Equation (2-11))
in Figure 4-16. In this particular case, the measured

spectrum agrees best with the von Karman spectrum.
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(b) Simulated non-Gaussian Dryden spectrum model

Figure 4-12. The normalized time histories (r = 1.5).

(b) Simulated non-Gaussian
Dryden spectrum model
(r = 1.5)

(a) Measured atmospheric
turbulence (z =24 m)

The estimated PDF of the non-Gaussian

Figure 4-13.
turbulence.
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Comparison of two theoretical curves with the
calculated spectrum of measured atmospheric
turbulence (z =24 m, At = 0.5, N = 2048).
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It is well known that the von Karman spectrum more
accurately describes atmospheric turbulence than does the
Dryden spectrum (see Figure 2-2, page 9).  For stable
atmospheric turbulent flow conditions the Kaimal spectrum
is required.

Because of the irrational nature of the von Karman
and Kaimal spectrum functions, no real physical filter
function can be obtained for simulation purposes. However,
an exact solution of the filter function for these two
spectra can be obtained. For the von Karman spectrum, the

filter function is given as:

€1
H, (w) =
1 (a + j(1))5/6
(4-35)
b(jw + c2)
H,(w) = '
2 (a + le))11/6
where
. Ozv1/3
= (0.74682) b = (0.72236 [ 1
> R T
Olv1/3 Y
c; = (0.62558) [—XI7§—] r Cy = (0’4573)K .

For the Kaimal spectrum the filter section is:

H(f) = < , (4-36)
a + 5(8)°7°
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where

v 5/6 v 1/3
a = (0.17241) [K] , c = (0.34482) [K]

Therefore, by using Equations (4-35) and (4-36) in con-
junction with the FFT method as described in Equations
(4-13) and (4-14), the exact von Karman or Kaimal turbu-
lence spectra can be simulated. The computer program for
simulation of these two spectrum functions is included in
the subroutine FILTER (Appendix A, Section A-6).

In Figure 4-17 the time histories utilizing these
more exact spectrum functions are compared with measured
atmospheric turbulence. It can be seen from this figure
that simulation of the high-frequency components is
improved greatly over the Dryden and approximate filter
simulations shown in Figure 4-9, page 77. The spectrum
functions computed by Equation (4-8) for these two cases
are shown in Figure 4-18, and the results agree very well
with the theoretical curves.

Two disadvantages for these mathematical models
are: first, due to the irrational form of the filter
function, the DZT method cannot be used to establish the
simple difference equation; and second, the correlation
functions for both the von Karman and Kaimal spectra are
much more complicated than the exponential function for the
Dryden spectrum (see Equation (2-26)). For example, the

correlation function for the von Karman spectrum is in the
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(c) Simulated Kaimal spectral turbulence

Figure 4-17. The time histories of non-linear system
(At = 0.5, N = 2048).
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Figure 18. Comparison of theoretical with simulated
spectrum (At = 0.5, N = 2048, segment-
average of ten sets).
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form of modified Bessel function of the one-third order [5].
Thus, the von Karman and Kaimal spectra cannot be utilized
for the multi-filter system to simulate the non-Gaussian

character of atmospheric turbulence.
C. Simulation with Interlevel Coherence

In this section, simulated horizontal components of
wind speed which include vertical coherence are discussed.
Measured wind data recorded at the eight-tower Atmospheric
Boundary Layer Facility, Atmospheric Sciences Division,
NASA Marshall Space Flight Center, are also computed and
presented for comparison.

The output transform, discussed in Chapter II and
in reference [3], is given by

M

Y(R,z) = A H(K,2) ) D_(K,2)X_(K) , (4-37)
m=-M

where the Dm(K,z) was defined by Equation (2-38) as:

Dm(K,z) = Cc_ exXp [szmﬂ,/sO] '8y = (K Az%ﬁx .

Substituting Dm(K,z) into Equation (4-37) gives

M j8
Y(K,z) = H(K,z) [ ] (e
m=0

m X (K)

m -
+ e x_ (&) )B_1, (4-38)
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where
c_ A
B, = -2 B =c_A f 0
0 -2 7 m m or m #
9m=mKZTT/€O.
Equation (4-38) can be reduced to
Y(K,z) = H(K,z) X'(K,z) , (4-39)

where the

X' (K, z)

il
0~
(]

=
>
=}
=
+.
0}

Thus, the transform of the output Y(X,z) can be calculated
in the same manner as described in Equations (4~13) and
(4~14) . The computer program for calculation of these
equations is listed in Appendix A, Section A-10

Simulated results are obtained by using 11 levels
of random signal inputs (M equal to 5 in Equation (4-37))
and the Dryden spectrum filter function for H(K,z).
Figures 4-19 and 4-20 compare the time histories and auto-
spectra of simulated coherent turbulence with the measured
values for the 24 m and 12 m levels. Both figures show
simularly shaped curves of equal magnitude.

As also mentioned in Chapter II, the atmospheric
turbulence near the ground shows a coherence which behaves

as
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(b) Measured atmospheric turbulence at z equal to
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Figure 4-20. The spectrum estimated of level
coherence turbulence (N = 2048).
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Yo (n) exp[~an] , (4-40)

where

Az £

This expression for yo(n) was originally proposed by
Davenport [13] as a simple scaling law to describe the
coherence of the vertical interlevel winds. He found a to
be equal to 15.4 (note some reports use 7.7 for the square
root coherence function). Stegen and Thorpe [12] show this
is approximately correct. Work by Pielke and Panofsky [21]
and Brook [11], however, provides values for the coeffi-
‘cient, a, which are dependent on stable conditions, as

shown in Table 4-6,

Table 4-6. The Estimates of the Coefficient, a, of
Different Stable Condition [11]

Neutral
Component n Range Stable Stable Unstable
Longitudinal all - n 16.8 17.0 16.8
n < 0.12 13.4 13.2 16.8
Lateral all - n 12.5 12.8 10.4

n < 0.12 14.4 13.4 11.6
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The coherence function is usually calculated from

spectra as follows (note: here the x and y simply indicate

two different time histories):

) |¢xy(n)|2 (
Y n) = , 4-41)
xy ¢x(n) ¢Y(n)
where the cross~spectrum is defined as:
_ 2At *
¢xy(n) = % [X(n) Y"(n) 1 . (4-42)

By using this equation and Equation (4-8) for the auto-
spectra, the coherence function for a multi-input system

as shown in Equation (4-37) can be calculated as:

M 2

2
+ 2 mzocm cos (mnm/n___ ) ]

Y(n) = — — , (4-43)
[cg +2 ) ci]
m=0

where

Az £
_ max -~ max
"max v ¢

The value of fmax is taken as the cut-off frequency
(Nyquist frequency) for the discrete transformation. In
order to reproduce accurately the coherence function Yo
given in Equation (4-40), the value of Azmax must be
selected appropriately. Figure 4-21 shows the exponential

curve with a = 17 compared with Equation (4-43) for
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different values of Azmax’ This figure indicates that

small values of Azm » approximately equal to 2 or 3,

ax
represent reasonable values to describe the exponential
curve. Note that Equation (4-43) produces a second peak

after one period at

N/ Moy = 2.0 5 (4-44)
therefore, in programming the coherence model, the
undesired cyclic peaks occurring at high frequencies must

be truncated, A critical frequence Ne is defined by

n,=n . (4-45)

This critical frequency defines the upper limit of the

coherence function in Equation (4~43); hence,

y(n) = y(ny) for all n > n . (4-46)

Figure 4-22 compares the calculated coherence
functions of simulated and measured turbulence with the
exponential curve given by Equation (4-40). This figure
shows that the model behaves very much like the atmospheric
turbulence and, at the same time, indicates that the calcu-
lated coherence functions are described appropriately by

the exponential curve.



Xeu
‘(g = zy ‘LT = ®©)

(0p~-y) uotzenbm yaztm paaedwod sousTnAING oTasydsoue
peansesul pue Po3eRTMWTS JO SS1RWIFSD 90USIDYOD TROTISTIRIS  “TT-¥ 2anb1a

souaTnqany otisydsouie psansesn (d) eousTnNaIng pIleTnuTs (®)

100



101

The coherence of the simulated time histories was
computed using statistical techniques. Considerable care
must be taken in evaluating the coherence function because
the statistical estimate has a rather complex sampling
distribution. The coherence estimate must be smoothed by
either ensemble or frequency averaging in order to suppress
the random error to acceptable levels. Otherwise, even for
the case of totally incoherent data, the estimated
coherence will be unity for the entire frequency range. It
should be noted, in particular, that the smoothing must be
carried out separately for the real and imaginary terms of
the cross-spectrum shown in Equation (4-42). Therefore,

¢Xy(n) can be represented by

by (M =05 (M) + 3oL () (4-47)

where the ¢§y and ¢;Y are the real and imaginary parts of
¢xy’ called the co-spectrum and the gquad-spectrum,
respectively. To smooth the cross-spectrum, the averaging
technique must be applied to each term individually.

Therefore,

$xy(n) =$}'{y(n) +j$;Y(n) , (4~-48)

where the bar indicates the averaged value. Then the

coherence ny(n) can be calculated by
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_ 1. (n)
Yy M = = XY . (4-49)
T () T, (n)

It is re-emphasized that the average must be taken
before the absolute function of the cross-spectrum is
computed. This is because the value of the spectrum
function is small relative to the high variation created by
the discrete transformation. Therefore, the magnitude of
the standard deviation of the variate is much greater than
the magnitude of the mean, Thus, smoothing the absolute
value of the spectrum is, in effect, just averaging the
variance. The variance is always positive; therefore, the
avarage is very large. By averaging ¢§y and ¢;Y
separately, the positive and negative values reduce the
magnitude of the average. The computer program for calcu-
lation of the coherence function and the smoothing

techniques is listed in Appendix A, Section A-1l1.




CHAPTER V

APPLICATION AND CONCLUSION

The purpose of this chapter is to describe how the
different turbulence simulation techniques influence
computer-simulated landings of aircraft having the charac-
teristics of a DC-8. A three-degree-of-freedom dynamic
model of an aircraft during approach is utilized with
different models of simulated turbulence imposed as atmos-
pheric gusts. The development of the model of the airplane
dynamics and a description of the computer program are dis-
cussed in detail by Frost and Reddy [22] and Frost and
Crosby [23].

The three-degree-of-freedom airplane computer model
uses Runge-Kutta integration to solve the system of time-
dependent, second-order ordinary differential equations
(see Appendix C). The flight simulation program incorpo-
rates an automatic control system in which the basic
control inputs are thrust and pitch angle and the control
variables are speed and flight path height. The model
selector automatically selects the proper control modes in
sequence according to the predetermined flight path. The
four modes are hold, capture, track, and flare, as shown in

Figure 5-1.
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altitude
hold mode

///’

capture mode

tracking mode

flare mode

Figure 5-1. Automatic landing control modes.

A. Method of Inputting Wind

For input to the dynamic equations, the actual wind

speed U at location (x,z) and time (t) is calculated by
Ui(x,z,t) = ﬁi(z) + ui(x,z,t) , (5-1)

where the mean wind speed, U, upon which the turbulence is
superimposed, is described by a logarithmic function of

altitude z. Thus,

U, (2) =—n[—21 , T,=0, (5-2)

where
u, is the friction velocity
K 1is the von Karman constant

z is the surface roughness length .
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To utilize the simulated turbulence described in
the preceding chapters for analysis of landing aircraft,

ui(x,z,t) is replaced by the discrete signals. Inputting

the discrete data

Wil adSoir o

special attention:

1. Simulation calculates N values for a given
height z.

2. The airplane is descending, so z is changing
with each time step.

3. A set of signals from a given transformation is
generated for a period of 12.8 seconds, which
is selected by using N equal to 128 (27) and
At equal to 0.1 second.

It is assumed that the turbulence characteristics
encountered by the airplane during that time period are
uniform. However, as a second control, the program con-
tinuously checks altitude. If during the 12.8-second time
period the aircraft has a sudden altitude change (in this
case, 20 percent of the height 2z), the program auto-
matically generates a new set of turbulence signals at the
new height,

A second consideration is that the simulated turbu-
lence is the discrete time history of wind fluctuations at
a fixed point, and Taylor's hypothesis must be applied to
establish a space and time relationship for calculating the

effects due to location change, as shown in Figure 5-~2. A
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time scale, tL_defined in Equation (5~3), is therefore used

to count the turbulence signals

t=t+%—=nAt, (5-3)

where

tL is the time scale for counting turbulence signals

t is the real time measured from the airplane entering

the wind field
d is the distance moved by the airplane in time t
V is the airplane relative velocity .
Hence, the nth one of N-generated data is chosen as the
turbulence fluctuation u, at the time t. The 1lift and drag

(see Appendix C) on the airplane are therefore computed

from the wind Ui’ defined as

Ui(t) = ﬁi + ui(n At) . (5-4)

The wind also enters into the equation (as shown in

Appendix C) by

Z .

Hence, each term becomes two parts. For example, the

BUi/Bx becomes

i1, 3 (5-6)
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Because the Taylor hypothesis is used, the gradient

Bui/ax of Equation (5-6) is represented by

Bui

=% = [ui ( (n+1) At ) ~ ui(n At) 1/ (VAL) . (5-7)

The computer program which provides the wind field
data and the gradients for the aerodynamic equations is
listed in Appendix A, Section A-12. Since the vertical
motion of the airplane is relatively small compared with
the horizontal motion, the gradient terms in the Z -

direction can therefore be neglected.
B. Simulated Landings

The simulated landing begins at an altitude of 300
meters and a distance of 7 km from the runway in the
altitude hold mode. Although this height is somewhat low
for an actual landing case, it has been used to save
computer calculation time. The glide slope angle is
2,7 deg and the initial trimmed airspeed is 70 m/s.

The major aircraft landing error is the touch-down
position shifting, which is mainly affected by mean wind
shear and turbulence, The mean wind shear is dependent
upon the parameters u, and z2,r @s described in Equation
(5-2). For a no-turbulence case, the simulated results of
landing positions are plotted against different values of

u, and z, in Figures 5-3 and 5-4, respectively. A head
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Figure 5-3. The landing position for different values of
u, with no turbulence.
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Figure 5-4. The landing position for different

values of zo.
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wind decreasing vertically toward the ground causes the
plane to land short of the runway, whereas a tail wind
decreasing vertically toward the ground causes the plane to
overshoot the landing point. The scatter in results as
seen in Figures 5-3 and 5-4 is probably due to the over-
response of the automatic control system.

In the landing simulation in which turbulence is
the main cause of landing position error, different turbu-
lence models have been applied., The statistical result for
each model is based on a sample of 20 simulated landings.
For the simple turbulence model with a Dryden spectrum, the
statistical results of landing position are shown in
Table 5-1,

The turbulence intensity, o, strongly influences
scatter in the landing position about the mean; i.e.,
landing position error. In the discrete transformation the
output standard deviation, 8, can easily be adjusted by
using Equation (4-23) or Equation (4-30) to give a constant
ratio of the original calculated turbulence intensity. It
is not realistic of changing turbulence intensity without
changing the value of u,. The assumption has been made for
only showing the influence of different values of o.

The error in the average landing position with
respect to the no-turbulence condition, defined as the
average error, and the standard deviation for a plane

landing in Gaussian and non-Gaussian turbulence with a
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Table 5~1. Twenty Landings for Simple Turbulence Model
using a Dryden Spectrum with u, = 0.5 and

z, = 0.1 (FFT Method)
Distance from Average
Run No. ~_Landing Position Touchdown Point

1 6919.07 30.71
2 6883.52 -66.26
3 6950.17 0.39
4 7000.64 50.86
5 7001.87 52.09
6 6969.55 19.77
7 6988.47 38.69
8 6992.39 42.61
9 6907.23 -42,55
10 6948.49 ~1.29
11 6956.65 6.87
12 7070.36 120.58
13 6970.75 20.97
14 6945.24 -4 .54
15 6900.77 -49.01
16 6922,49 -27.29
17 6910.08 -39.70
18 6891.43 -58.35
19 6893.,70 -56.08
20 6972.73 22.95
Average 6949.78 S.D. 46.37

Note: The results for non-Gaussian, Dryden
spectrum, and for the Gaussian, von Karman spectrum
turbulence landing simulation are listed in Appendix D.
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Dryden spectrum, and in Gaussian turbulence with a von
Karman spectrum, are shown in Figures 5-5 and 5-6. Both
figures show the direct relation of turbulence intensity to
deviation in landing position.

Another important factor relative to landing per-
formance is the touchdown sink rate. From Figures 5-7 and
5-8 one can conclude that the turbulence intensity has
little influence on the average touchdown sink rate for the
automatic control system used in this analysis. However,
the variability of sink rate, i.e., standard deviation,
does increase with increasing turbulence intensity. This
occurs because the touchdown sink rate is very sensitive to
the turbulence fluctuation after the flare mode is started.
Near the ground U becomes small, and if an increased head
wind due to turbulence is experienced followed by a large
reduction, or even a tail wind near the runway, a sudden
loss of 1lift occurs and causes a very hard landing. Also,
as noted in Figure 5-8, when ¢ is over 3 to 4 m/sec, the
standard deviation of sink rate approaches 30 percent of
the mean sink rate. Thus, the chance of a hard landing
becomes high.

The influence of different turbulence models for
this landing simulation can also be seen in Figures 5-5
through 5-8. The average values of position error and sink
rate are affected little by using different turbulence

models, whereas the standard deviation in touchdown
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Figure 5-5. The average landing error for different
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Figure 5-7. The average sink rate for different turbulence
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position is influenced significantly by the different
turbulence models,

For the same spectrum function, a non-Gaussian
turbulence model produces the higher degree of touchdown
variability. It should also be noted that ,when different

spectrum functions are used, the von Karman model induces

Dryden model. These flight simulation results indicate
that for a DC—S—type airplane, the turbulence energy con-
tained by the higher frequency fluctuation affects the
landing position little. The sharp peaks of the non-
Gaussian model represent the most dangerous events which
can cause the airplane to lose control during the approach.
Hence, it is important to simulate properly the non-
Gaussian nature of the atmosphere.

The DZT method for turbulence generation and the
interlevel coherence turbulence model were also used to
carry out flight simulation. As expected, the statistical
results are essentially the same for the DZT method as they
are for the FFT method. Also, the interlevel coherence
model was found to give approximately the same results as
the one-point spectrum model. The reason for this is that
the airplane, when flying along the 2.7-deg glide slope,
travels relatively longer distances in the horizontal
direction than in the vertical direction. The coherence

between vertical levels has little effect on the two-point
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separation over relatively large horizontal distances.
Therefore, the coherence turbulence model shows no éignifi-
cant difference from the one-point spectrum model for this

landing simulation.
C. Conclusion

This study has been concerned with the problems of
modeling continuous atmospheric turbulence by discrete
transformation and with application to flight analysis.
Different spectrum models have been used to generate turbu-
lence. The results show that the von Karman spectrum more
accurately describes atmospheric turbulence than does the
.Dryden spectrum. Both the interlevel coherence of vertical
layers and the non-Gaussian nature of atmospheric turbu-
lence, which are important in airplane analysis, can be
simulated properly by different models. Two discrete
transformation techniques, FFT and DZT, work fairly well.
Although the FFT method provides better spectrum simulation,
the DZT method is faster for computation.

On the other hand, the disadvantage of the von
Karman spectrum model is that the non-Gaussian nature of
atmospheric turbulence cannot be simulated simultaneously.
For both the von Karman and the Kaimal spectra, only the

FFT method can be used for the complex irrational filter

function.
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Overall, this study has provided a general dis~
cussion of statistical theories of atmospheric turbulence,
the detailed description of both random signal analysis
and digital simulation technique, and the application to

the simulated turbulence to atmospheric flight analysis.
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APPENDIX A
COMPUTER PROGRAM
A~l, Subroutine GAUSS (IX, SIG, XB, XDP)

Subroutine GAUSS uses Equation (3-1), congruential
method, to generate random numbers. The value of a in
Equation (3-3) is selected equal to 65539. Also, the
Central Limit theorem with 12 terms is applied to generate

Gaussian distributed random numbers, Equation (3-6).

Nomenclature

4 Seed number (input and output)
8IG Desired standard deviation (input)
XB Desired mean value (input)

XDP Normalized Gaussian random number (output)

Listing

SUBROUTINE GAUSS(IX,SIG,XB,XDP)

REAL*8 XP

A=0.0

bU 30 1=1,12-

1Y=IX%65539 —

IF(1Y) 10,20,20 |
10 IY=1Y+2147483647+1 —
20 Xxp=1ly !

XP=XP%0,465b013D-9 ;

IX=Iy —-
30 A=A+XxP

XOP=(A=6,0)*SIG+XB

ReTURN

eND
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A-2., Subroutine PDF (N, DX, ND, X, P)

Subroutine PDF computes the probability density
function of a discrete data set {xi}, i=1,2,...,N by

using Equation (4-5),

Nomenclature

N Dimension number for array X (input)

DX Increment Ax (input)

ND Dimension number for array P (input)

X Discrete data set {xi} (input)

P Calculated PDF of data set {xi} (output)
Listing

SUBROUTINE PDF(H,DX,ND,X,P)
DIMERSIuN X(N),P(ND),NP(2048)
ASZ=DX*((HD=1)/2+41.9)
DO 30 I=1,ND
NP(l)=v,
XS=XS5+4DX
AE=XS5+DX
bu 20 J=l,n
IF(X(J).GL.AS.AND.X(J)LT.XE) NP(I)=NP(1)+1
20 CONTINUE
30 CONTILvde
LU 40 1=1,ND
PCI)=l¥%iPL)/ (LUAXN)
40 CONTINUE
RETURN
EnD

A-3. Subroutine FFT (N, NP, NC, XR, XI)

Subroutine FFT is based on the Fast Fourier Trans-
form algorithm and computes the Fourier transformation (or

Inverse) of discrete data,
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Nomenclature
N Dimension number (must be a power of 2) (input)
NP Power to which 2 is raised, i.e., N = ZNP (input)
NC Control number (input)

1 for Fourier transform

2 for Inverse Fourier transform
XR Real part of the data set (input and output)
XI Imaginary part of the data sef (input and output)

Listiqg

SUnkuUrlae Fel(u,uP,NC,AK,X1)
DIMENSLON XK (n), XI(H)
LE(nC.EQ.1) GU TO 120
vu 110 Lt=1,4

110 X1(L)==xal(})

120 wNsg=i/ 2
NUL=HP=-1
K=0
DU 150 L=1,ur

130 VO 140 1=1,u42
P=IpliTR(n/2**aUl,LP)
AKGSe ,283185%P/F LUAT (1)
C=CuUS(Aruy)
O=S L (ARG)
Kl=h+]
KRldg=Kl+is2
TREXK(RINZ)¥C+XI(RIN2)*S
Tlaai(kloz)4C=A({RLn2)*S
AR{RIN2)=AR (K1) ~1R
XL(KINZ2)=Xi(R1)=-T1
AR(KL1) =X (K1) +TK
AL(RI)=X1I(R1)+11

140 K=K+1
KZA+ivZ
IF(K. LT ) GO TO 130
n=0
NUl=nU1-1

150 NZ=N2/2
pvu 160 K=1,N
I=sIpiIR(K~1,F)+1
IF(l.LL.K) GU Tu 160
TR=AK(R)
Il=al(n)
AR(K)=AR(I)
X1(n)=Xx1(1)



160

170
180

200

XR(1)=TR

X1(l)=TI1

CUONTINUE

1F(NC,EQ,1) GU Tu 180
vy 170 L=1,N
XR(1)=aR{1}/N
ALGL)=XL(L) /N
CONTINUE

KeTUxi

[ AU

FUNCT108 IBITR(J,NU)
Ji=dJ

IvlTk=0

bJ 200 1=1,NU

Ja=dirs2
IBLIR=IBLIR*¥2+(J1~-2%Jd2)
Ji=dy

RETURN

wivy

A-4. Subroutine SPEC (N, NP, DT, XR, XI, SP)

Subroutine SPEC uses the FFT method to calculate

estimated spectrum of the input X time history, see

Eguation (4-6).,

Nomenclature

N

Dimension number (input)

NP Power of 2 (input)

DT Time increment At (input)

XR Real part of data array (input)

X1 Imaginary part of data array (input)
SP Spectrum estimated array (output)
Listing

SUsBruVTile SPEC(N,NP,DT,XH,XI,bP)
DIRENSLUL Ak (), 2100) 3P 0D
ri=(z.%00)/s 1
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CALL FFT(w,iNF,1,ar,X1)

DU 10 I=1,H

SP(L)=HIH(XR(I)*An(I)4Xx1(I)*XI(1))
10 CunTlivuk

KETURN

Eub

A-5, Subroutine SMOOTH (N, NS, NM, SP)

Subroutine SMOOTH is the computer program to smooth
the raw estimate data after discrete transformation. Two
basic methods, the Frequency Averaging and Segment
Averaging methods are included. (See Equations (4-9) and

(4-10).)

Nomenclature

N Dimension number (input)
NS Number of samples for average (input)
NM Control number (input)
1 for the Frequency averaging method
2 for the Segment averaging method
SP Raw estimate data (input)

Smoothed data (output)

Listing

SUBKOUTINE SMOOUTH(N,NS,NM, SP)
DIMEaSLUN SP(N,KS)
1F (MM=2) 100,200,300
100 nD=n=nd
DO 150 1=1,ND
SuUm=0,



DO 140 J=1,N5
K=1l+J-1
SUM=5UM+SP (K, 1)
140 CunlIikvE
S5P(1,1)=SUM/NS
150 CUNTIWUE
Gu YO 300
200 DL 250 I=1,N
SumM=0.
LU 240 J=1,H5
SUM=3UM+sP(1,J)
240 CUNLILINUE
5P (1,1)=5UM/HS
250 CU’T1inUb
300 HETURN
EHD

A-6. Subroutine FILTER (N, NM, DT, %, V, XR, XI)

Subroutine FILTER calculates the filter function
for the different models described in Chapter IV and
computes Equations (4-13) and (4-14) for the frequency
components of the output signal. There are three sub-
routines called by FILTER which are SAL (see A-6(a)),

COEFl (see A-6(b)), and COEF2 (see A-6(c)).

Nomenclature
N Dimension number (input)
NM Control number for selecting different spectrum

model (input)

1 for Dryden spectrum longitudinal component
2 for Dryden spectrum vertical component

3 for approximate Kaimal spectrum

4 for approximate von Karman spectrum

5 for Kaimal spectrum

6 for von Karman spectrum longitudinal component
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7 for von Karman spectrum vertical component

DT Time increment At (input)

Z Height (input)

\Y% Reference velocity (input)

XR Real part of the data set (input and output)

XI Imaginary part of the data set (input and output)
Listing

SURBKUUTLwE FILTek (N, M, DT,2,V, XK, X1)
piMenslhd Ax(N),XE(N),SIG(3) ,AL(3)
Cumaun/3TV/02,A24,AC2,A02
ChhniuiniZoie/vyw,Pl,p62,C2,A3
CALL oAL(u,nl,31u,V)
Teiz=1,/7(w301)
inF=i/2+41
IF(vn,Ge.5) Gu TO 200
CALbL COcri(wuM,A,C,D,aL,S1G,V)
v 100 1=1,unk
F=(l-1)+1n
F2=F*F
Ak =in2=F2
PDUS1 /(AR XARF+A24%F2)

HEK=LD# (CHAXE +ALI2Z4F2)
H1=DU*(D+Ailk=AC2) ¥t
CALL MUTI(dK,HL,aR(1),X1(1))

100 COwtlnUt
GJ Tu 3vud

200 CUwIllNuE
CALL COorF2(NM,A,0,C,AL,S15,V)
IF(iM=-6) 270,210,210

210 DU 250 I=1,nHd¥
F=Tu#(I-1)

F2=k*¢

RK=A3+F 2
LU=((02+F24C2)%%0,5)/(RR*¥%(0,.5%PW))
IHizATAW(F/E)+PTX*(ATAN(E/ZA))
HR=DD*(CUS(TH))

HI=LD¥(S1H(TH))

CALL MUTI(HA,AI,XR(1),XICYX))

250 Cuntlhue
GO T 300

270 DU 280 I=1,Nn¥F
F(IN*x(1l=1))%%xpPu
DU=C/ (A3+F*F)

HR=DD*A

Hlzs=DD*F

CALL MUTIC(HEKE,HI,XR(I),XI(1))
280 CUN11iUE



300

400

and
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Wll=n+2

DU 400 1=2,uwnF
JENTT=-{ .
XR(J)=XR(IL)
X1(J)=-X1(I)
CUTINUGZ

KeTurn

EHD

SUbKOUTINE MUT1I(HR,H1,YR,Y1)
YYR=HR*YR=H]I*Y]
YL=HR¥3Y [+l %R
YR=YYR

KE1URN

wivl)

A-6(a). Subroutine SAL (2, AL, SIG, V)

Subroutine SAL computes the turbulence intensity o

the length scale A by using Eguations (4-33) and

(4-34).

Nomenclature

Z

AL

SIG

\Y

Height (input)
Length scale Ai’ 1 =1,2,3 (output)
Turbulence intensity Os4 1 =1,2,3 (output)

Reference velocity (input)

Listing

100

200

SUbBRUUTIak SAL(Z,AL,SIG,V)

DIMRiiSIUN AL(3),5£G(3)

20=0,1

S1G(3)=0.52%V/(ALUG(Z2/20+1))
SIG(2)=516(3)/7((0,583+0.,00139%£)%%(0.8))
SIGCL)=SEG(3)/((0,17T40.00274%4)%%(04))
IF(4.GT.933) GO Tu 100
AL(1)=44,21%(SUKT(3,.28%2))

Au(2)=AL(1)

AL(3)=%

Gd TOo 200

AL(L)=533.

AL(2)=b33.

AL(3)=533,

KRelUuRN

aND
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A-6(b).

Subroutine COEFl1 (NM, A, C, D, AL, SIG, V)

Subroutine COEFl computes the coefficients a, c,

and d listed in Table 4-2, page 64, for Dryden's form

spectrum filter function.

Nomenclature

NM Control number (input)
1 for Dryden spectrum longitudinal component
2 for Dryden spectrum vertical component
3 for approximate Kaimal spectrum
4 for approximate von Karman spectrum

A Coefficient a (output)

C Coefficient c (output)

D Coefficient d (output)

AL Length scale Ai (input)

SIG Turbulence intensity oy (input)

\Y Reference velocity (input)

Listing

SUskuUTlne CUCk1(i®,A,C,D,AL,S1G,V)
pildbkaSiun $16G(3),AL(3)
CurMun/s8t1/nz,Red,AC2,AD2
VUA=V/AL(1)

Pi=3,1415J0

Pile=el*2.

Ir (wii.blWa.4) GO Tu 400

I (nm=2)

100 A=VOA/PL12

10v,200,309

C=31G (L) /(PLL*PI) % (VUAFX] D)
pES3IG(1)/PLE(VOA*%0,5)

200

Gu 1o 500

VUOASV/AL(2)

A=SVOA/PL2
CSolG(2)/(PL*PL)X((VOA/2.)%%]1,5)
D=01G(2)/P14((VOAK%3,/2.)%%0,5)
62 Tu 500



-

300

400

500

A=0,.155%VUh
C=0.0432*31G(1)*(VUA**1.5)
LE=51G(1)%0,279%(VUAX*0.5)
GU TU 500

A=0,286%VOA }
C=0,114*3IG(1)*(VDA**1.5)
D=0, 398%S1IG(1)*¥(VUA*¥0,.5)
CONTINUE

AZ2=h*A

A24=4,%A2

AC2=2,%A%C

ALI2=2,%A%D

RETURH

[SE YN
Ly

A-6(c). Subroutine COEF2 (NM, A, B, C, AL, SIG, V)

Subroutine COEF2 computes the coefficients a, b,

and c¢ shown in Equations (4-35) and (4-36) for the von

Karman and Kaimal spectra.

Nomenclature

NM

AL

SIG

Control number (input)

5 for Kaimal spectrum

6 for von Karman spectrum longitudinal component
7 for von Karman spectrum vertical component
Coefficient a (output)

Coefficient b (output)

Coefficient c (output)

Length scale A; (input)

Turbulence intensity oy (input)

Reference velocity (input)
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Listing

SULKUUTINE CubFz{(~M,A,B,C,AL,51G,V)
DIMEHSIU »1G(3),AL(3)
CumMON/ST2/Vw,PT,02,C2,A3
VUA=V/AL(L)
PI=3,141590
rl2=pPi*x2,
LE Cu#t=0) 1oy, 200,300

100 A=VUA/(PLZ¥1.339)
p=0.
C=olG(1)%0.6255%((VUOA/PI2)%*%0,333333)
Pu=b,/6,.
Gu TO 400

200 AA=0,164*%((1.,/0.041)%%(5,/73.))
AS=SOKT (AA)
Bb=SQET(0.164/0,041)
AS(VUA*+(5,/0.))/AS
bz0,
C=SIG(1)/A3%(VOA**%0,33333)%BB
Pw=5,/6.
GU Tu 400

300 VuA=V/AL(2)
Pw=11./6,
A=VUA/(P12%1,339)
BTSOWRT(2.*¥51G(2)#%2/VOA* (A*¥(PW¥*2)))
C=B/(0.6123%A)

400 PT=-PwW
A3=A%A
B2=B*B
C2=C*C
ReETURIN
LN

A-7. Subroutine DZT (N, NM, DT, Z, V, X, Y)

Subroutine DZT computes Equation (4-15) for
different models, and this is the Z~transformation tech-

nigque for the filter system.
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Nomenclature
N Dimension number (input)
NM Control number for setting different spectrum model
1 for Dryden spectrum longitudinal component
2 for Dryden spectrum vertical component
3 for approximate Kaimal spectrum
4 for approximate von Karman spectrum
DT Time increment (input)
Z Height (input)
\Y% Reference velocity (input)
X Input array
Y Output array
Listing
SUBROUT1INE DzT(N,iM,DT,Z,V,X,¥Y)
DIMENSION X(NJ,Y(N),S1G(3),AL(3)
PI=3,141593
CALL SAL(Z,AL,S1G,V)
CALL CUsFY(wM,A,C,0,AL,S1G,V)
Cl=2,*b X2 (=2, ¥P1*A%DT)
C2==(LXP(=4.%P1%A*DT))
B=>QKT(2.*P1)
Clz=Ci/2.
CoA=C/ (B*A%A)
ACA=(A=C/b)/A
DISDH(CBA+CL2¥ (ACA*DT=CBA))
D2=D*C1e*(CbAX(C12-1.)=ACA*DT)
¥(1)=0,
Y(2)=0,
bu 30 I=3,N
YOI)=CLA(I=1)+C23Y(1=2)+0D1*%X(1=1)+02%a(1~2)
30 Cunflivg
RETURN

END
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A-8. Subroutine INPUT (N, NM, DT, IX, XR, XI)

Subroutine INPUT generates the random number array
{xi}, i=1,2,...,N, which standard deviation ¢ is adjusted

for FFT and DZT, as shown in Equations (4-25) and (4-32).

Nomenclature

N Dimension number (input)

NM Control number for selecting different method
(input)

1l for FFT method

2 for DZT method

DT Time increment At (input)

IX Seed number for calling GAUSS (input and output)
XR Real part of the array {xi} (output)

XI Imaginary part of the array {xi} (output)
Listing

SUBRUUTIHE INPUT(N,NM,DT,IX,XR,XI)
DINENSIUN AR(N) ,AI(N)
IF(NP=2) 100,200,300

100 SIGU=SQRT(0,5/DT)
G0 TU 300

200 SL6Z3UKT(3.141596/DT)

300 DU 400 1=1,N
CALL GAU3S(IX,S1G,0.,X0P)
A (1) =XLP
al(l)=v,

400 CudiINUE
KELJRH
Eny
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A-9. Subroutine NONGAU (N, NC, DT, Z, V, R, XR, XI)

Subroutine NONGAU generates the non-Gaussian turbu-
lence based on the model of Reeves, et al. [2], and
calculates the filter functions listed in Table 2-1, page
26. There are three subroutines called by NONGAU, which

are INPUT (see A8), COEF3 (see A-9(a)), and FFT (see A-3).

Nomenclature
N Dimension number (input)
NC Control number for specifying the velocity

conmponent (input)
1 for longitudinal component
2 for lateral component

3 for vertical component

DT Time increment (input)

V4 Height (input)

\Y Reference velocity

R PDF adjusting coefficient r (inppt)

XT Real part of simulated turbulence (output)

XTI Imaginary part of simulated turbulence (output)
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Listing

SUBKUUTINE NONGAU(H,NC,DT,Z,V,XR,X1,R)
DIMERSION XR(N),XI(N),AhA(B),51GS(3),QR(2048)
CuMMUH/SI/AL,S51G,1IP,A2,A24,AD2,AC2
NI2=(AbUuG () %h) )/ (ALDG(2,))
=t/ 2
Tei=) ./ (N*0T)
NHE=HH+1
CALL SALC(Z,ALA,S81GS,V)
AL=ALA(NC)
DIG=S5LGS(NC)
UR=1,/7(SURT(1.+R*¥k))
KURSR¥UK
Nik=1

100 CALL COEr3(zZ,v,A,C,D,NC,HR)
CALL 1INPUT(N,1,LT,I1X,XK,X1)
CALL FFT(N,N12,1,XR,XI)
b0 150 1=],NHF
F=(I-1)*1N
F2=F4%F
AMF=ZAZ2-F2
VUS1,/(AAF*AME+A24%F2)
HR=DD* (C*AMFYAD2#%F2)
HI=ZDD¥ (D*AMF-AC2) *F
XAR=SXR(I) ¥nR=-X1(1)*HI1
XI(1)=XR(I)*HI+A1(I)*HR

150 XR{I)=ZAXK
NTT=nN+2
U 190 I=2,Nh
J=ENTT-1
AR(J)=XR(1)

190 XI(J)==X1(1)
CALL FFT(N,NT2,2,XR,X1)
1F(nk=2) 200,300,400

200 DU 250 I=i,n

250 GUR(1)=XR(1)
NR=NR+1 .
Gu Tu 100

300 b0 350 1=1,N

350 UR(1)=UR(I)*xrR(]1)
NK=3
GU Tu 100

400 Du 450 1=1,N

450 XR(1)=XR({L)*UK+QR(I)*ROR
ReTUKRN
kv

A-9(a). Subroutine COEF3 (2, V, A, C, D)

Subroutine COEF3 computes the coefficients for the

filter functions listed in Table 2-1, page 26.



Nomenclature

Height (input)

AN}

Reference velocity (input)
coefficient a (output)

coefficient ¢ (output)

g a » <

Coefficient d (output)

Listing

SUpROUT Lk CUEF3(Z,V,A,C,D,NC, k)
CUMEDL/ 3T /AL, 516G, 0P, A2, A24,RV2,AC?
VUA=V/ab
w=5URT(128)
VUAR2=0,9%VUk
1V (we=2) 109,200,200
100 AF(wR=-2) 110,140,170
110 A=vuaz
C=4¢ . ¥SIG/VUOR¥AXA
b=1.
uwuU Tu 400
140 A=VUA2
C=A*xp
D=3,
GO TU 400
170 A=VUL
C=SIG*¥(SAGRT(2./VUA)) *A*A
D=1'
GO Tu 400
200 lF(uK=2) 210,24C,270
210 A=VOA2
C=0lGra/ (VUARXR2)XA%A
L):l.
GU T 4oLV
240 A=VUA?2
C=v,
D=A
GU Ty 400
270 A=VUA
Ca=b1G*A/(SUKT(VOA))
D=Cxl,732/Vua
400 AZ2=A%A
A2434.%A2
AC2=2,4h%C
ADZ2= 2, xA*D
ReETURK
LN
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A-10. Subroutine COHER (N, %, DZ, DT, Y1, Y2)

Subroutine COHER simulates two leveisAof turbulence
Yl and Y2 with the coherence relation described in. Equation
(4-43) . There are five subroutines called by COHER:
BETA (see A-10(a)), NTRA (see A-10(b)), VHAT (see A-10(c),

FILTER (see A~6), and FFT (see A-3).

Nomenclature

N Dimension number (input)

yA Height of the level one (input)

DZ Vertical separation for two levels (input)

DT Time increment (input)

Yl gimulated coherent turbulence at level 1 (output)
Y2 Simulated coherent turbulence at level 2 (oﬁtput)
Listing

SUDKUUTLINE CUHEK(W,2,D%4,DT,Y1,Y4)

DIMbSLO8 YI(L),Y2(t)

DIMENSTIUN EHH(II,Sl?),RNIlll,512),XR(SIZ),XI(blZ),B(ll)

Cummun/T2/PL,%41,DX,LPC,A

CummON/T3/71P21 ,wHF , T2

UReF=5.0

IX=65549

Wi2s(ALUG(L ., %) )/ (ALUG(2.))

wn=n/2

nwHF=NH+1

nPz1z11

PI=3,141593

A=17,/7(2.%P1)

L1=4

Dert=3,

Iub=1

LPU=N2M*P1/ (UREF*DT)

DASUREF*DT/(PL1*2,)

CAuL SETA(NPZ2L,B)

CALL NTRA(N,DT,IX,RHR,RNI,XR,X1)
100 CALL VHAT(N,DT,RiK,RNI,XR,x1,0)




Equation (4-38) using Equations (2-45) and (2-42).

Nomenclature

N Dimension number (input)

B Coefficient array B (output)
Listing

200

300

310

CAuL FILTER(N,K#,UT,%, UREF, XK, X1)
CALL FET(U,NT2,2,XR,KY)
IF(1L.EQ.2) GU TU 300
LU 200 K=1,NK
Y1(K)=XK(K)

CuntInUE

L=4=D2

1L=lL+1

Gu Ty 100

by 31U Kk=1,N
12(R)=XR(K)

Cuntlunll

RETUKN

END

A-10(a). Subroutine BETA (N, B)

Subroutine BETA computes the coefficients Bm of

SUbRUUTIe BETA(HPZ21,b)
DiMbiiolun blub2l)
CuMmun/T2/P1,21,0%,LP0,A
WPl (NP21-1)72+1
b=pa*pLPU/Z2,.

o(wiPl)=0,5

SUm=1,

LALUSEAP(=D)

Prs=pl/D
ANUMZ(l.+cAb0)/7(1 ,~EXED)
L 300 1=1,nP1,2

KENpPl~l
BIK)SANUN/(let(Pr2%1)3%%2)
IF(K.EW.l) Gu TO 100
BlR=1)= lo/(L+(PE2%(I+1))%%2)
SUMZSUNT2 .+ (B(K)+B(K=1))
B(R=1)=SURT(B(h=1))

GU 10 200

100 oumM=SUM+2.*B(K)
200 ol(a)=oGKL(b(K]))
300 CUNTiINUE

141



142

vu 400 I=1,NP1

400 B(I)=p(l)/SURT(SUN)
KLTURM
END

A-10(b). Subroutine NTRA (N, DT, IX, RNR, RNI, XR, IX)

Subroutine NTRA generates 11 sets of random signals

for the coherence model,

Nomenclature

M Dim nsion number (input)

DT Time increment (input)

IX Seed number for calling GAUSS (input and output)
RNR Real part of the random signal (output)

RNI Imaginary part of the random signals (output)

XR, XI Working space

Listing

SUBRUGUTIwZ NTRA(H,DT,IX,RNR,RNl,XR,Xl)
DIMEJISIUN KNR(11,512),kDL(11,512),XK(512),X1(512)
CUmMmibi/T3/NP21 , NHE ,nT2
Du 300 J=1,np21
CALL 1NPUT(#,1,DT,L1x,XR,X1)
CALL FET(iv,N12,1,%XR,X1)
DL 200 I=1,nHF
RNK(J,L)=AR(1)
anl(d,1)=x1(1)
200 CunTluUE
300 CunTiwue
RETUR
END
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A-10(c). Subroutine VHAT (N, DT, RNR, RNI, XR, XI, B)

Subroutine VHAT is a part of the coherence model,

and computes the X' (k,z) in Egquation (4-39).

Nomenclature

N Dimension number (input)

DT Time increment (input)

RNR, Real and imaginary part of random signal (input)
RNIT

XR, XI Real and imaginary part of calculated X' (output)

B Coefficient array B in Equation (4-38) (input)
Listing

SURRUUTINE VaAT(id,LT,RNR, KNl , Xk, X1,n)
DImenSIUN RNR(LL,512),ke2(11,512),XKk(512),X1(512),15(11)
CuriUns/T2/P1,201,0X,5PU,A
CUMMRUN/Y I/ P21, nBF , 8T2
N12=1upP21+1
PiLl2z=rlxz.
CRIT=DX*uw*pP1/10,
AblA=pI*e/ (EPOFDX®N)
DU 200 K=1,iNHF
For=1l,¥(K=-1)
IF(FKRn,GE CKRIT) FKK=CRIT
XK(K)=0,
X1l(K)=0,
b0 100 L=1,rP1
AuG=ArTA*(wPl=])
AUGNZ (=AUG) *F KK
AUGP= (AUL) #FKK
CSN=CUS(AUGI)
Cor=CiS (AuGh)
SRN=3SLw(AuGl)
SNP=S1n(AUGLEP)
A (K)=XAR(K)Y (KRNI 2=0,K)¥Convt R (L, K)*COP=RNL(N12*bL,k) %
ASNN=RKn]l (L, K)*Sup)*b(D)
KLCK)=X1CR)+ (kI (i112-L,K)¥CON+RNLI(L,K)*COP+hMR(NI2-L,K)*
¥ONNYRKuR(bL,K)XSHNPY*B (L)
100 CunwlIhug
200 CunTInuE
ReLURN
b
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A-11. Subroutine COHERS (N, NS, DT, Y1, Y2, CO)

Subroutine COHERS computes the coherence function

of the two time histories Y1 and Y2 by using Equation

(4-41) .

Nomenclature

N Dimension number (input)

NS Sample size (input)

DT Time increment (input)

Yl Time history at level 1 (input)

Y2 Time history at level 2 (input)

Co Estimated coherence of Yl and Y2 (output)
Listing

90

100

110

200

SUBRUUTI e CUHEKS(wW,NS,DT,¥1,74,C0)
bleensiUi YL (ws,0),12085,10),CLUNH)
pibensIuld Xx(2045),X102048),Cuh(1024),C0L11024),5P(1024)
DIMenS10H CurR(1024),CUL1(1024)
WTZ=(ALDW(1,%¥N)/ALDG(2.))

Nd=n/2

KI=uT/kH

DU 90 K=1,iH

COKR(K)=0,

Cuit(nl)=0.

CunTliibe

VU 300 L=1,NS

Pu 100 K=1,H

AK(Rr)=Y1(K,0L)

xi1(r)=0,

CunTINUE

CALL SPEC(N,NT2,DT,XK,X1,SP)

V0 110 K=1,NH

CUK(KI=XR(K)

CUL(R)=X1LK)

Y1(K,L)=SP(K)

CUNdT LNUE,

DU 200 K=1,N

Ak{a)=y2(n,L)

X1(KX)=0.

CUNTINUE

CALL SPEC(H,NT2,DT,AK,X1,SP)

Vu 210 K=1,nH
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CuRIKI=CUKK(K)+CUR(K) *XR(K)~COL(R)*XI(K)
CULL(K)=CULII(K)+COR(KI*XI(R)+CULI(R)*XR(K)
12(K,L)=SP(N)
210 CuiTliUE
" 300 CUONTIWUE
vu 400 K=1,HH
Sukli=o,.
Sum2=0,
03 350 L=1,NS
SUAL=SUMI+4Y1(K,L)
SUMZ2=SUM2+Y2(K,L)
350 CunTIiiUE
Y1(K,1)=oUMI/NS
Y2(K,1)=5uUim2rsus
CURR(K)=CURK{(R) /NS
CUOLI(R)=CULL({N)/NS
400 Cunti]InuE
LU 500 K=1,nH
Cu(n):hT*nr*(CURH(K)**2+C011Lh)**2)/(¥1(R.l)*!2(h,1))
500 Cuillanure
KETURN
b

A-12. Subroutine WIND (XP, ZP, T, V, KCK)

Subroutine WIND computes the turbulent wind velocity

Ul and U2 (see Equations (5-1) and (5-2)).

Nomenclature

XP,ZP Aircraft position (input)

T Time (input)

v Aircraft speed (input)

KRCK Starting number KCK = 1 (input)
COMMON /WINDS / |

WX ,W2 wWind velocities Ul’ U2 (output)
WXT,WZT Time gradient terms BUl/Bt, 8U2/8t (output)
WXX,WXZ Spatial gradient terms BUl/Bx, BUl/az (output)

WZX,WZZ Spatial gradient terms 8U2/3x, 8U2/Bz (output)
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Listing

31

210
215

101

103

104

105

109

SUBRUIITLNE WIND (XP,ZP,T,V,KCK)
COMANL/ AL NES/NX s WX T, WAT ,WAR WXL, WLK ML, 20 ,UBTAR
COMHmMUN/STSH/FAT , wDRI

FURMAT (2R, #42PyJel X = ',El3.0," Z = 'L,E13.6,% 1S DUTSIDE ')
ARP=0,4

1F(Xp.LT.0, , OR.2P.LT.0.) GO TO 210
UUk=WDRI+USTAR /78Ky -
WX==-UOK s (ALG((LP+24:237209))

EYAVIN

WMAASL

wXd==it JE/(LP+LUL)

WixX=y,

wZ72=0,

WXt=9,

WZT=0,

CALL VELO(XP,ZP,T,V,KCK)

GU T0 215

WR1ITE(6,31) XP,2r

RETUxRL

END '

SUBEUUTIWE VELOU(XP,2ZP,L,¥,ECK)
Cumtau/TTL/DX,uT , ivietn, 8T 2

COMmUN/TIT2/GG(2,128)

COMRON/TT4/1X,RE, AETH
COMMON/TTS/XPR,ZPR, TEND, ZOWR
CORMUI/ZHINLS /WX, %2, vIXT ,WET a0 XX, 0 X4, wl X, v 24,210,038 CAK
Ulad=DT Fnim

WXK=AB3(uX)
IF(ABS(¥X) . LT.0.0000001) WX#E=0.Gu0d1
IF(XCK=-1) 101,101,103
APR=XP

ZPR=2P

CALL RUMDUKCZP)
ZOWR=ZP/WAR

Thoo=D AN

GO iu 105

Li=ZP/4XR

1 (ZP.LT.20.) GU TV 105
RRR=ZDW/ZUuR
DDD=ARS(1-RRR)
le(DDD.LT.0.2) GO TO 1905
CALL RuUrDUKN(ZP)

ZOWR=Z0OW

XPR=XP

ZPR=2ZP

TEND=T+0ONN
TRP=T+ABS((XP=XPR)/V)
IF(IPP-Teub) 109,104,104
ER=(IRP+DAN-TERD) /DT
NI=ER+1

NTR=NT+1

IF(NTP.GT.128) GU Tu 104
UP=UG(1,iT)

VP=GG(2,4T)

AX=wX+uP

wZzZviZ+vP
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bLD=vnT

WXXEWXA+(GGUL,NTP)=-GGCL,HNT)YI/ZDLD

WAXEZWZA L (GG(2,NTPY-GGL 2,NT)Y)Y/DLD
120 COMTINVE :

RETURN

tND

SUBRUUTLIKE RUMDUN(ZY)
CUAMOL/ZLTL/ZDX,DT , MN,0T12
COGMMIZTT../GHd, V70
Cunteii/1TLA/Z LK, RE, te il -
CuMAuR/ZET/XGR(128),XGL(128)
CUMALUM/ZSTOR/EAT , WDk}
COMAGH/WLNDS /WA, ie , wXT LT , 0w XK, 0 XZ , 84K, 802 ,20u,U03Tik:
SluX=3uwxT(3.1415%6/701)
oy 110 1=t,2
DJ 105 J=1,NMii
CALL GAUSS(LEX,SICGX,0.,Rn)
AGR(C) =K

10 COuTl.uUem
DU 108 J=1,NNN
XGI(J)=0.

108 CONTHUE
CALL FET(MNN,NT2,1)
CALL FILTER(ZP,1)
CALL EFFT(NRN,NT2.2)
ARlTE(o,1) (XGR(KR),K=1,NMNM,S)

1 FURRAT(1X,20F5,2)

DU 109 J=1,NNN
GG(I,J)=AGR(J)XFAT

109 COnTLiIUE

110 CONTInUE
RETURN
END

SUBROUTILE FILTER(ZP,IOP)
COMMUN/TTL/DX, DT, N1 ,NT2
COMMON/FT/XGR(128),XGI(128)
COMMON/WINDS/WX , WZ ,WAXT,WZT ,WXX,WXZ ,HZX,H22,20,USTAR
PI=3,141590
AL=2P/(0.1774+0.832/304,79%2P)**1,2
UMEAN=ABS (WX)
IF(UMEAN.LT.0.0001) UMEAN=0,0001
SIG3=0.92FUMEAN/ ((ALUG(ZP/2U+1)))
S516=81G3/7((0.177+4+0.,00274*ZP)*%(0.4))
IF(lUP.EUV.2) SIG=51G3/((0,58340.00139%ZP)**(0,.8))
AUV=AL/UMEAN
HHZNINZ 2
NHF=NH+1
THE=1./7ClNN¥DT)

100 CaOnNTLINUE
IF(lOP.EQ.2) GO TN 115
ALl=1,7C1.339%aiVX2 _2¢P1)
Cl=4, #AUVvESIG*S1G4(AL%**+] _onbnoD)
PuU=5.712.
CIS=SERTI(C})
FAC=-5,/6.
nl2=hital
LD 110 K=1,KHF
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110

115

120
300

330

S225%5
=CIS/( (AL 482)++FP0)
ANG=FACK (ATAN(S/ZALY)

Hk=D+ (CUS(A'G))
HE=D*(SLu(AKG))
XARSXOKR(K) 4 HR=XGL (K)$HIL
AGL(K)IZAGL(K) #h+AGKIK) #H]
AGR(K)Y=XAR

CONTLNUR
Gy IO 309
CONTIWUE

A1 ./(1.339%A0V%2 _%pP1)
C=A*(SWRT(3./8.))
C2=Cx*C

B232, #SIG*SIG*AUVH#(A*%(11./3.))/7(C2)
BSSQRT(52)
A2zA%p
Pa={1./12.

Pwe=11./6,
DO 120 K=1,NHF
S=(K=1)*Tn

S2=5%3
D=p# (SQRT(CZ+52))/7((A2+4832)+%1°)
ANG=ATAN(S/C)=-PU2%(ATAN(S/A))
HR=D*(CUS(ANG))
HI=D*(SIN(AKG))

XAA=XGR(R) #HR~AGI (K)*HI
XGI(R)=XOIK)FEH+XUR(K) +H]
XGR(K)=XAA
CONTINUE

N3=NFiN+2

00 330 J=2,hH

=N3-J

XGR(K)=XGR(J)
XGI(K)==XGI(J)

CONTLinUE

ReTU:y

ehb




APPENDIX B
VARIANCE OF DZT

An approach to derive exact eqﬁations for the out-
put variance by using the DZT method is to calculate the
variance directly by expressing the difference equation
involving input and output variables in terms of the input

variables only. Recall Equation (3—46):

Ype1 = Ay, + Bx (B-1)
where
A = exp(~-aAt) , B = /g (1 -exp(-aldt) )
v 2Vo2
a =+ ¢ C = .
Rewrite Equation (B-1) so that
Yn+1 T AYn + an
Yn = AY¥pp * an—l
: _ (B~-2)
Yo = Ayl + Bxl
Y4 =0 .
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Substitute ¥q into Yor ¥y into Y3r--., etc., which results

in
_ .h-1 n-2
Ype1 = A Bx, + A Bx, + ... + Bx
?
= o, X. ,
i=1 11
where
a. = p at~t
i

Since X5 and y; are independent, the variance can be calcu-

lated by
n
52 = 62 1im ) ai
b4 X oo i=1
(B~-4)
2 n i-1
=02 S (1-e8F) 1im § (e730E,
X a n+e i=1
Note that
T i
yoot = L,
i=0 1-b
Therefore, Equation (B-4) becomes
~2 2 2
o 20 -aAt
Y- _y (1l-e U (B-5)

Q

2 Ta 1._e—2aAt
X




Consider the case for aAt very small,

2
2
(1-emabt ) (1-1+ane-{2000 o )
1 - e~2alt 1-1+2adt-...
. aAt
= 255,
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(B-6)

(B-7)



APPENDIX C
EQUATIONS OF MOTION FOR LANDING SIMULATIQN

The three-degree-of-freedom model for aircraft
motion presented in this appendix follows the general form
developed by Neuman and Foster [l1], except the non-linear
terms are retained. It accounts for both Qertical and
horizontal mean wind components having both time and
spatial variations.

Figure C-1 illustrates the forces acting on the

aircraft. These include:

ﬁ; = thrust of the engines
L = 1lift
D = drag
> .
U = wind vector
ﬁa = gravitational force .

Figure C-1 shows the orientation of the forces with
respect to the velocity relative to the earth V, the
velocity relative to the air mass Va’ and the fuselage

reference line FRT of the aircraft.
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Figure C~1. The forces acting on the aircraft.

The basic variables are Vv, v, gq, o', x, and z,

where

vy = angle between V and x-axis (flight path angle)

time derivative of 6 (pitch rate)

ol
i

o' = angle between Va and the FRL (angle of attack)

From a direct force balance along each direction
and basic kinematic relations, the equations of motion can

be derived as
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\.]'z— ' 3 - : .
Dl(ch:oscS+cL sin G)Vg D2 sin Y+D2 sin Y+D6FT cos(5T+0L)
D,V in (§p+a)
s __la _ . cos Y S { Opra
Y 7 (cL cos 6 ¢p sin 6)--D2 7 +'D6ET'_———TT____
q==EHET + D%Vﬁ Cym
L R cos y' _ sin (8§ +a') 1, . . .
o q chLVa+D2 Va DGFTV——V—(Ul s:.ny'+U2 cos y')
a a
X =V cos y
z=-Vsin vy ,
where Dl’ D2, .o D7 are the nondimensional coefficients
and Crr Cpr and cy are the aerodynamic coefficients defined
by
D4 .
Cr, = q + c a' + c, 6E + vr-[CL q+cp, a'l+ c
o a GE a q a GE
2
= ' '
CD cD + q) o +-q)2 o +cb
(o} a a GE
D4 .
= +c, o'+ S + =1 g+c,, a'l+
B T CMGE BV ch M- CMGE

The wind is seen to enter the equations in the form
of a gradient or wind shear 61 and 62' The expanded form

of these equations is:
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P BUl . BUl dx N BUl az
1 ot ox dt oz dt
& - 3U2 . 8U2 dx . 3U2 dz
2 ot ox dt 9z 4t °

Thus, both spatial variations and temporal variations in
atmospheric motion influence the equations in the wind

coordinate system.



APPENDIX D

LANDING RESULTS

This appendix presents landing results for non-
Gaussian, Dryden spectrum turbulence, and Gaussian, von

Karman spectrum turbulence (Table D-1).
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Table D-1. Landing Results

Non-Gaussian, Dryden Gaussian, von Karman

Spectrum Turbulence Spectrum Turbulence

Landing Standard Landing Standard

No. Position Deviation Position Deviation
1 7033.13 62.41 6926.15 -35.97
2 6924.73 -46.0 6984.11 21.99
3 6983.23 12.51 6991.46 29,34
4 6933.35 -37.37 7009.88 47.76
5 6968.89 -1.83 6986.71 24.59
6 6998.80 28.08 6992.73 30.61
7 6977.84 7.12 7022.72 60.60
8 6917.63 -53.09 7016.62 54.50
9 7007.27 36.55 6909.70 -52.42
10 6920.63 -50.09 6923.54 -38.58
11 6976.52 5.8 6962.78 0.66
12 6939.20 -31.50 7008.04 45,92
I3 7057.49 86.77 6951.11 -11.01
14 6974 5,03 6948.43 6.31
15 6969.15 -1.57 6914.48 -47.64
16 7009.27 38.55 6925.56 -36.56
17 6994.06 23.24 6927.14 -34.98
18 6944.93 -25.79 6896.60 -65.52
19 6946.49 ~24.23 6960.51 -1.61
20 6936.05 -34:67 6964.12 2.00
Average 6970.72 37.51 6962.12 32,43

I

Note: u, = 0.5, zZ, = 0.1.
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