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}? APPLICATION OF ADVANCED TFCHNOLOGIES TO SMALL,
SHORT~HAUL TRANSPORT AIRCRAFT

| R. H. Tullis
g T. G. Coussens

Lockheed-California Company

1. SUMMARY

This report presents the results of a study entitled "The Application of
Advanced Technologies to Small, Short-Haul Transport Aircraft” accomplished by
the Lockheed-California Company for the NASA-Ames Research Center under Contract
NAS 2-10264. The study utilizes two baseline aircraft configurations, 30
passenger and 50 passenger capacity, for application of active controls,
advanced materials and structures, advanced propulsion, assessment of advanced
systems, and alternate aircraft configurations. Selection of baseline aircraft
capacities was based on:

e Previous NASA and Lockheed studies which indicated that these sizes of
aircraft will be required for future commuter and local service markets.

e Aircraft stretch/shrink concepts which can be readily adapted to provide
a family of aircraft which satisfy the market projections.

@ Application of advanced technologies, and their subsequent benefits,
; which would be assessed for both a coumuter type aircraft as well as a
' higher speed configuration better suited for the local service carrier.

i o The selected cruise speed capability of the aircraft included in this
study is higher then that normally associated with the small, short-haul
aircraft. As part of the NASA study ground rules, minimum cruise speed

; . of 250 knots indicated was required, however, higher cruise speeds (and

I cruise altitudes) were selected as being better suited to the design mis-

f sion requirements. Incorporation of the higher cruise speed capability

results in about 5% reduction in DOC at the 1100 km (60(* n.mi.) design

range. Utilization of the higher cruise speed for the 184 km (100 n.mi.)

stage imposes a penalty of 1.8% in DOC which can be eliminated by

. restricting the cruise speed to approximately M 0.5 for the shorter stage

i lengths.

Four major tasks were accomplished during this study:

Task 1 - Definition of baseline aircraft configuration and mission
requirements.

.
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Task 2 - Application of advanced technologies to baseline aircraft designs.

Task 3 - Evaluation of advanced technologies and assessment of aircraft
benefits.

Task 4 ~ Identification of future research and technology requirements.

The baseline aircraft selected for this study were those designs previously
developed for Lockheed-funded short-haul studies, which were then modified to
incorporate the specific requirements of the NASA statement of work. The
baseline designs, depicted in figure 1, utilize current technology and design
practices in aerodynamics, propulsion, structure, and systems and include
consideration for stretch/shrink capability to provide the potential for a
family of aii .raft.

Primary emphasis during this study was placed on evaluation of advanced
technclogy item: which, when incorporated into the baseline aircraft, would:

o Reduce acynisition cost and/or operating cost
o Improve fuel efficiency
¢ Enhance passenger appeal

Results indicate significart cost savings are possible by application of
selective advanced technologies to the small short-haul transports considered
during this study.

The use of advanced composite materials with either the orthogrid or isogrid
structural configuration provides a manufacturing cost savings of 23% for the
airframe structure which results in a 10% reduction in the aircraft total
production cosic. This cost reduction is achieved through utilization of fewer
parts and design simplitication along with lower labor costs by use of a fully
automated manufacturing process for falrication of the orthogrid or isogrid
structure.

Act.ve controls, integrated with an adaptive flap configuration for gust
load alleviation, cannot be quantified with respect to their impact on aircraft
operating costs. Incorporation of the adaptive flap system will provide
passenger comfort levels equivalent to that currently experienced with today's
turbofan aircraft. Active controls concepts, as applied to unconventional
aircraft configurations (i.e., aft engines or tandem wings), result in improve-
ments in aircraft performance and small reductions in operating costs.

Incorporation of advanced propulsion concepts (engine cycles and propellers)
indicates significant reductions in block fuel and DOC. Using the projected
values for advanced engine cycles provided by AiResearch, as part of their STAT
study effort under NASA-Lewis sponsorship, results in reductions in block fuel
of about 22% with a reduction in DOC of 10 - 12% for both the 1100 km (600
n-mi.) design range and the 184 km (100 n.mi.) average stage.
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Investigation of advanced systems concepts, although not quantified during
this study, indicates significant potential advantages particularly for an all-
electric aircraft configuration. Assessment of the benefits available by
incorporating advanced systems into short-haul aircraft is currently being
accomplished by Lockheed under NASA-JSC contract NAS 9-15863. Por the advanced
technology short-haul aircraft, the following systems concepts should be
evaluated and the benefites quantified as a follow on to this study:

e Recirculating ECS (approximately 50% recirculation)

e Electric ECS with either engine driven or electric compressors

e Digital fly-by-wire and possibly fly-by-light (fiber optics) for the far
term.

e Loads management.

Emerging technologies in areas such as microelectronice, advanced small,
high-powered motors for electromechanical actuators, and highly reliable
rare-earth metals generators make the all-electric aircraft feasible with
possible elimination of installation and maintenance problems associated with
conventional hydraulic systems.

During this study effort 2, 3, and 4 abreast seating arrangements were

-~ investigated with the 4 abreast interior selected as the preferred configuration

to provide a common fuselage for both the 30 pax and 50 pax aircraft. The 4
abreast interior enhances the growth capability of the aircraft and will provide
added space available for carry-on baggage which is an important feature for the
short—-haul aircraft.
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2. INTRODUCTION

The short-haul system is an important element of the national transportation
system. Currently, the domestic local service and commuter markets utilize
either larger turbofan aircraft, such as the DC-9 or B737, or larger aging
propeller driven aircraft for which there is no modern replacement manufactured
in the U.S., or smaller general aviation derived propeller driven aircraft.
Since utilization of these aircraft does not provide the desired economic
efficiency on the short-hau. routes, what is needed is a modern, efficient, and
reliable family of short-haul transport aircraft.

Introduction of a new transport into the short-haul market imposes a
demanding set of design goals to provide an aircraft with improved performance,
suparior operating characteristics, and major emphasis on low cost. These major
design goals are summarized as follows:

e Reduced initial cost

o Lower operating cost

® Improved fuel efficiency

e Improved field performance

e Improved environmental characteristics (community noise, emissions)

® Better passenger appeal (pressurized, low cabin noise, ride quality).

As part of the NASA Small Transport Aircraft Technology program, significant
market studies have focused on the short-haul CTOL transport with a capacity of
15 to 60 passengers and a range of 92 to 1840 km (50 to 1000 n.mi.). Previous
analyses accomplished by Lockheed have identified two distinct aircraft for the
short-haul market. For this study effort, two baseline aircraft configurations
were selected, one of 30-passenger capacity and one with 50-passengers, both
with a design range of 1110 km (600 n.mi.).

Previous NASA-sponsored studies have identified several advanced
technologies which will provide significant performance and economic benefits
for mediumand long-range CTOL commerclal aircraft. The focus of this study was
identification and evaluation of those advanced technologies which, when
incorporated into the short-haul aircraft, would enhance the performance,
economic, and operating characteristics.

The study consisted of four tasks:

o Task I - Baseline Aircraft and Mission Definition
Previous Lockheed-sponsored, short~haul aircraft studies were used to
select the baseline configurations. Design mission requirements were
based on previous NASA and Lockheed evaluations of the operational
characteristics of local service and commuter airlines.
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e Task II - Application of Advanced Technology
Identification of those advanced technology items, which when
incorporated into the baseline aircraft, could provide significant
performance and economic benefits while adhering to the previously
established design goals of the study.

e Task III - Evaluation of Advanced Technology
Assessment of the technical, economic, and market benefits attained by
incorporation of the selected advanced technology items into the
short-haul aircraft. This assessment was accomplished by incorporating
advanced technologies singularly and in combination.

e Task IV - Recommendations for Future Research
Identification of those technology items, evaluated during Task II1I,
which should be considered for future research.

Abbreviations and symbols are listed in Section 3, baseline design mission
and aircraft selections are discussed in Sec’ion 4, definition of current
technology baseline aircraft is included in Section 5, and the identification
and application of advanced technologies is discussed in Section 6. Section 7
contains the evaluation of the advanced technology short-haul aircraft when
compared to the current technology baseline. Conclusions of the study and
recommendations for future research comprise Section 8.
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A.P.
APU
ASM
clgl
cm
CTOL
DME
DOC
ECS
EPNdB
FAR

fps - ft/sec

ft
gal.
G. E.

GR-EP - GR-E

hp
IFR
in.
in/in
kg
kg/m2
kg/s
km
kPa
kVA
kW
1>,
1b/£t”
1b/shp/hr
LFL

m

MAC

m/s

n.mi.
OASPL
OEW

PAX

ppm

psf

psi

PaW

rad

SFC

SHP

S.L.

3. ABBREVIATIONS AND SYMBOLS

ABBREVIATIONS

Auto-pilot

Auxiliary power umnit
Available seat mile (n.mi.)
Center of gravity

Centimeter

Conventional takeoff and landing
Distance measuring equipment
Direct operations cost
Environmental control system
Equivalent perceived noise level, decibels
Federal Air Regulations

Feet per second

Feet

Gallon

General Electric

Graphite - Epoxy

Horsepower

Instrument flight rules

Inch

Inch per inch

Kilogram

Kilograms per squa« "e meter
Kilograms per second
Kilometers per hour
Kilopascals

Kilovolt-ampere

Kilowatt

Pound - mass

Pound per square foot

Pound per shaft horsepower per hour
Landing field length m,(ft)
Meter

Mean aerodynamic center
Meters per second

Nautical wiles

Overall sound pressure level
Operational empty weight kg(m)
Passengers

Pounds per minute

Pounds per square foot
Pounds per square inch

Pratt and Whitney

Radian

Specific fuel consumption
Shaft horsepower

Sea level
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Sea level static
Secondary power system

Takeoff field length m (ft)
Takeoff gross weight kg (1b)

Volts, direct current
Volt-Amps

Symbols

Activity factor

Aspect ratio

Number of blades
Wingspan m (ft)

Chord

Drag coefficient

Lift coefficient
Maximum lift coefficient
taper ratlo

Degrees Centigrade
Diameter

Decibels

Energy Efficient Engine
Fuselage reference line
Degrees Farenheit
Incidence of aft wing
Lift to Drag ratio
Mach number

Critical mach number
Meter

Reference Wing area
Total wing area
Thickness ratio

Thrust to Weight ratio

Wing loading Gross weight to wing area
Angle of attack, fuselage reference line

Deflection
Elevator deflection
Flap deflection
Taper ratio
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4. BASELINE MISSION AND AIRCRAFT SELECTION

This section covers the analysis and investigation leading tu selection of
the short-haul baseline mission and aircraft configurations. Included is a
summary of a marketing analysis previously accomplished by Lockheed and a brief

description of the candidate configurations to be utilized as baselines for this
study effort.

4.1 Short-Haul Mission

The short-haul mission, as identified for this study effort, is two fold:

provide an efficient, economical aircraft for the commuter market

provide an efficient, economical short-haul transport for the local
service markets which are too small for efficient operation with the DC-9
or B737 type of aircraft.

Primary emphasis was placed on reducing aircraft operating costs for 184 km

f , (100 n.mi.) stage length. The design cruise speed selections, which are higher

; than the minimum required by the NASA study ground rules, were made to be
consistent with the potential demand for longer stage lengths and efficient
operation at the design range. Section 5.4.1 describes the process used to
select the design cruise speed.

4.2 Market Requirements

Numerous studies of both domestic scheduled airline and commuter operations
have been previously accomplished by various government agencies (NASA, FAA,
DOT, etc.) and private industry. The overall concensus cof these studies lead to
the following conclusions for the post 1985 market:

: e Significant increase in total passenger miles.

; ® Majority of passenger miles and greatest frequency of service is

; accomplished for stage lengths of 920 km (500 n.mi.) or less

i ® Local service market is currently served with aircraft that are too large
; (i.e., DC-9, B737, B727) to be economically efficient in this market

i environment.

. e Deregulation will increase commuter airline demand to provide service for
those communities previously served by the local service or regional
carriers.

e Opinions regarding short-haul aircraft size are diverse with the most
commonly mentioned capacities of 20-30 seats, 36-44 seat, and 40-60 seat.
g 1 A summary of the results of Lockheed funded studies of the short—haul market

is depicted in figure 2. It appears that the short-haul market will be best
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served by two distinct types of aircraft: an updated commuter aircraft which 1is
capable of efficient, economical operation from airfields typical of small
communities with superior enviromnmental characteristics (i.e., commumity noise)
and improved passenger appeal; and a modern replacement for the CV-580, F-27
type of aircrft with improved environmental characteristics and higher speed for
efficient operation at longer stage lengths.

Predictions as to the number of aircraft required for two market segments
are also diverse; however, the results of a recent FAA forecast to the year 2000
predicts a worldwide requirement of up to 3000 aircraft with a capacity of 20-39
passengers and 1500 aircraft with a capacity of 40-60 passengers.

4.3 BASELINE MISSION CHARACTERISTICS
The baseline mission characteristics were derived from the previously

described analyses and those requirements, are incorporated as baseline missions
to be used throughout the study effort:

Commuter Local Service
Design Range 1110 km (600 n.mi.) 1100 km (600 n.mi.)
Typical Range 184 km (100 n.mi.) 184 km (100 n.mi.)
Capacity (No. PAX) 30 50
Cruise Speed Mach 0.60 Mach 0.70
Field Length 1219 m (4000 ft) 1219 m (4000 ft)

4.4 Baseline Aircraft Definition

As previously described, two baseline aircraft configurations were selected
for this study. One aircraft, designed for low density and high utilization on
short stage lengths, 1s needed to fulfill the requirements of the commuter
operator. The second aircraft, designed for higher density and with performance
approaching current airliners, is required to fill an identified market gap and
provide an advanced technology aircraft for the local service carrier. The
baseline designs chosen are representative of current technology levels and
design practices and incorporate all of the requirements specified by the NASA
statement of work.

30 passenger baseline. - This configuration, sized to provide an updated
replacement for current commuter aircraft, is designed for a passenger capacity
of 30 and incorporates a 1219 m (4000 ft) field length capability, at 329
(90 F) and sea level, to provide maximum operational flexibility. Fuselage
diameter is 2.90 m (114 in.) with a 4 abreast interior at 81.28 cm (32 in.) seat
pitch. Growth of the aircraft to approximately 40 passengers can be readily
attained by the incorporation of fuselage plugs. Design range was selected as
1110 km (600 n.mi.), plus reserve fuel, to provide sufficient fly-through
capability for the 184 km (100 n.mi.) average stage lenghts. A cruise speed
capability of Mach 0.60 is provided with a minimum cruise altitude of 8.53 km
(28 000 ft.) for the design range.

11
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50 Eassenger baseline. - This configuration was selected to provide an
aircraft for the local service carrier and, as such, incorporates the desigu “
characteristics and performance similar to current commercial airlines. Cruise i
speed capability of Mach 0.70 at an altitude of 10.97 km (36 000 ft.), was :

incorporated to provide efficient performance characteristics for the 1110 km
Fuselage diameter of 2.90 m (114 in.), with 4

(600 n.m1.) design range.
abreast seating, was utilized so that commonality of fuselage sections with the
For future aircraft growth considerations, a

30 PAX aircraft could be attained.
This

shrink/stretch capability of 40 to 72 passengers is readily attainabie.
aircraft, when combined with the 30 passenger commuter, described above, will
serve to provide a family of alrcraft for the short-haul market.

12
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5. CURRENT TECHNOLOGY BASELINE AIRCRAFT
5.1 Summary

7his section describes the design philosophy, design and performance
requirements, and configurations for the current technology baseline aircraft.
Technical and eccnomic performance summaries for the current technology
aircraft, optimized for minimum operating costs, are also included.

5.2 Design Philosophy

As specified in the NASA statement of work, the current technology baseline
aircraft used for this study were to be either an existing current or
near-current production short-haul design or on- which is designed to
incorporate current state-of-the art technologies in aerodynamics, prcpulsion,
structures, and systems. Two baseline aircraft were selected as representative
of the requirements to meet projected market demand for the post 1985 time
frame. As previously described, a 30 passenger commuter type aircraft and a 50
passenger local service type were chosen to provide the capability of broad
market coverage by stretch/shrink concepts so that passenger capacities of
*30 to 70 could be encompassed with the two aircraft.

The design philosphy selected was to utilize, to the fullest possible
extent, previously developed Lockheed short-haul designs and to modify these
designs to incorporate specific requirements of the NASA work statement.
Previous short-haul aircraft designs, used to initate this study efiort, are
depicted in figures 3 and 4. As a part of this study effort, one primary goal
was the incorporation of design features which would provide reduction in
aircraft first cost and provide commonality of airframe structure for both
aircraft. As a result, a fuselage diameter of 2.90 m (114 inches) with four
abreast seating was selected for both aircraft to enhance future growth
potential and to allow common usage of fuselage parts (i.e., tailcone, cockpit,
and constant sections). Development of the current technology baseline aircraft
designs was minimized in keeping with the major goals of this study with the
major emphasis placed on use of advanced technologies to enhance performance and
economic characteristics of future short-haul transports.

5.3 Aircraft Configurations

The two current-technology baseline aircraft are depicted in figures 5 and
6. Each aircraft is of conventional, state-of-the art design and has been sized
for minimum direct operating cost at 184 km (100 n.mi). stage length.

30 passenger. - The configuration selected for this aircraft is similar to
current production commuter type aircraft with the primary exception being a
higher cruise speed capability of Mach 0.60 to provide efficient, economical
operation at the 1110 km (600 n.mi.) design range., Selection,of the Mach 0.60
cruise speed dictates a wing loading of 390.6 kg/m~ (80 1b/£t°) ag compared to
wing loading on the order of 195.3 to 244.1 kg/m” (40 to 50 1b/ft°) for current,
lower speed commuters. One advantage of the higher wing loading is improvement
in ride quality during operation in turbulence. A NASA GAW-1 type airfoil with
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an average thickness ratio of 16% 1s incorporated. The high aspect ratio (AR
12) centilever wings are mounted above the cabin and require no exterior support
struts. The current technology turboprop engines are underslung and are placed,
at 43% half span (0.4 diameter propeller to fuselage clearance) to minimize
cabin interior noise. Attainment of the NASA required cabin interior noise
levels of 85 dB OASPL results in incorporation of 431 kg (950 1b) of acoustic
treatment.

To meet the balanced field length requirement of 1219 m (4000 £t) at sea i ]
level and 32°C (90°F), full span, full translation single-element Fowler flaps '
and full span slats are incorporated as degicted in figure 7. These high lift *
devices result in a C/_ . of 3.5 at the 42" flap setting used for landing. Two-
plece spoilers are 1ngTu§ed on the wing upper surface to provide roll control.

The fuselage has a minimum of compound curves to reduce manufacturing
complexity and costs. The windshield is composed of flat panes rather than a
curved, wrap-around type, also to reduce costs. The cabin is pressurized to
maintain a nominal 6000 ft. elevation.,

The nose and main landing gear wheels retract into the fuselage; the nose
gear retracts cleanly without protruding fairings, while the main gear requires
small fzirings to enclose the main support struts. Four abreast seating (7 1/2
rows) was chosen so that a fuselage stretch could be accommodated at a later
time. The aircraft can be stretched to a maximum passenger capacity of 40. A
fuselage diameter of 2.90 m (114 in.) was chosen to meet aisle and seat width ;
requirements and to provide 4 abreast seating. Passenger carry-on baggage is E
stowed in overhead lockers, and checked baggage is stowed in a compartment aft
‘ of the cabin which is accessible from an exterior door. A lavatory, beverage
; service bar, and coat storage comprise the aft end of the cabin. Passenger and
: crew entry/exit is through the single main door at the rear left~hand side of
the cabin. The cabin floor is 1.32 m (52 in.) above ground which permits entry
with an airstair door, so no extra ground equipment is necessary for passenger
loading. The exterior cargo door permits access from a pick-up truckbed. Three
emergency passenger exits are provided as per FAR Part 25. Acoustic insulation
is included throughout the cabin from floor to ceiling to attenuate propeller
tip noise. The treatment thickness is graduated from a maximum, in the zone
which extends from immediately in front of the prop disc plane to a few feet
aft, to a minimum at the cabin ends. The hydraulic service center and ECS units .
are located beneath the cabin floor forward of the main landing gear bay. The

layout of interior arrrangement along with an inboard profile is shown in figure
8| ’,,’C'

PR L . el e

T

50 passenger. - This aircraft was configured to provide a cruise speed
capability of Mach 0.70 for a design range of 1110 km (600 n.mi.). The wing
design and high 1ift devices are essentially identical to the 30 passenger
aircraft expcept that wing AR is 10 and the wing is mounted under the cabin
floor. High mounting of the wing was considered but not incorporated since the
root section of the wing would protrude too far above the top of the fuselage
when the minimum required interior height is attained. Figure 9 depicts an
early high wing configuration 50 passenger aircraft and shows the amount of
protrusion of the wing above the fuselage. The engines are over-wing mounted to
minimize gear length for the required ground clearance.
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The fuselage 18 identical to that of the 30 passenger ecxcept that a 4.06 m
(169 in.) plug was added, and the fuselage/wing junction was changed. Future
growth can be obtained by stretching the fuselage for a total capacity of
approximately 70 passengers. Two lavatories are placed in the extreme aft end
of the cabin along with increased coat storage and beverage bar capacities. The
cabin floor height is 2.08 m (82 in.) above ground and requires a
specially-designed airstair for passenger entry/exit. Baggage loading in the
aft compartment requires some means of ground equipment to reach the door.
Three emergency exits are provided as per FAR Part 25. Acoustic treatment of
the fuselage is provided in a similar manner as that for the 30 passenger,
however due to the higher propeller helical tip speed at Mach 0.70, the acoustic
weight penalty is increased to 680 kg (1500 1b). Landing gear for this aircraft
are fully retractable; the nose gear retracts cleanly into the fuselage, and the
main wheels also retract into the fuselage rather than into the eagine nacelles.
The main gear leg pivots are supported on the rear spar of the wing. The ECS
and hydraulic service center are located beneath the floor in front of the front
spar. The layout of interior arrangement and inboard profile are depicted in
figure 10,

5.3.1 Design requirements. - The design requirements incorporated into the
baseline short-haul aircraft were largely dictated by the NASA statement of
work. These requirement are reiterated as follows:

o full design payload to be carried over a range of 1110 km (600 n.mi.)
with reserves for a 184 km (100 n.mi.) alternate and 45 minutes at
maximum endurance power.

° fie%d length shall not exceed 1219 m (4,000 £t) for a hot day 32.2°%
(90°F) at sea level.

e aircraft shall meet FAR 36 stage 3 minus 8 EPNdB community noise level
requirements at all measurement locations.

e an airframe design life of at least 30 000 hours and 60 000 cycles.

e a cruise speed capability of at least 463 km/hr (250 kt) indicated
airspeed at 1829 through 3048 m (6000 through 10 000 ft) altitudes -
standard day conditions.

e a terminal area speed capability of at least 333.4 km/hr (180 knots)

indicated airspeed with gear and flaps extended in order to stay with
large jet aircraft.

e a stall speed less than 172.2 km/hr (93 kt) in landing configuration at
maximm landing weight in order to qualify for operations in Instrument
Approach Category B aircraft requirements.

e passenger weight @ 90.7 kg (200 1b) passenger including baggagec.

e 2 man crew + provision for one cockpit observer jump seat.
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e 1 flight attendant @ 57.0 kg (130 1b) per 50 passengers
o 183 cm (6 ft) minimum interior aisle height.

e ninimum 81.3 em (32 in.) seat pitch, 45.7 cm (18 in.) seat width between
armrests and 45.7 cm (18 in.) aisle width.

e garment stowage area @ 2.0 cm (0.8 in.) width/passenger.

e under or overhead stowage for carry-on baggage of dimensions 51 cm by 51
cn by 28 cm (20 in. by 20 in. by 11 in.) per passenger.

e provison for easy loading of preloaded baggage @ 0.14 m3 (5 fta)
passenger.

e beverage service provision.
e space provision for one lavatory per 50 passengers.,

¢ maximum cabin interior noise level less than 85 dB OASPL and speech
interference level (SIL) of less than 65 dB.

e cabin pressurization of at least 34.5 kPa (5 psi).

The baseline aircraft configurations selected meet or exceed the above
requirements.

5.3.2 Performance requirements - The minimum performance requirements for
each of the baseline aircraft were specified by the NASA statement of work.
Each aircraft was configured to meet the following criteria which met or
exceeded the NASA specification:

Design Range
Cruise Speed
Initial Cruise Altitude

Mission Fuel

Balanced Field Length

30 PASSENGER

1110 km (600 n.mi.)

M 0.60

7620 m (25 000 ft.)
1100 km (600 n.mi.)
+ Reserves

1220 m (4000 ft)

(S.L., 90°F)

50 PASSENGER

1100 km (600 n.mi.)
M 0.70

9144 m (30 000 ft.)
1110 km (600 n.mi.)
+ Reserves

1220 m (4000 ft)

(S.L., 90°F)
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30 PASSENGER 50 PASSENGER

Terminal Area Speed 333.4 km/hr > (180 kt) 333.4 km/hr > (180 kt)
Stall Speed 172.2 km/hr < (93 kt) 172.2 ka/hr > (93 kt)
Optimization Criteria Min. DOC @ 185 km

(100 n.mi.) stage Length

Fuel Prices $0.75, $1.00, and $1.50 per gallon

As specified by NASA, a minimum cruise speed capability of 250 knots
indicated airspeed at 182.9 through 304 km (6000 through 10 000 ft) is required.
For the baseline configurations developed for this study, higher cruise speed
capability was selected to provide improved operating economics at the specified
design range. Utilization of the higher cruise speed at short stage lengths of
93 and 185 km (50 and 100 n.mi.) does impose a slight penalty in DOC. During
this study, assessment of cruise speed selection was accomplished, as described
in Section 5.4.1, and the results indicate that a high cruise speed capability
for the longer stage lengths (370 to 1110 km) (200 to 600 n.mi.) provides lower
DOC. Conversely, when operating at the shorter stage lengths (up to 370 km (200
n.mi.), cruise speed should be reduced to approximately Mach 0.50.

5.4 Baseline Mission Characteristics

The mission requirements for the short-haul aircraft were specified as 1110
km (600 n.mi.) design range with full payload and reserve fuel for 184 km (100
n.mi.) alternate plus 45 minutes at maximum endurance power. Additionally, the
short-haul aircraft must be sized for minimum DOC characteristics at a stage
length of 184 km (100 n.mi.) with full payload plus the above stated reserves.
For both stage lengths, flight profiles were established which provided a
significant cruise segment. The flight profiles used throughout this study are
depicted in figures 11 and 12 .

5.4.1 Cruise speed selection. - Cruise speed capability was selected at
initiation of the study to be M 0.60 at 7620 m (25 000 £t) for the 30 passenger
aircraft and M 0.70 at 9144 m (30 000 £ft) for the 50 passenger aircraft.
Previous studies conducted by Lockheed indicate that higher speed than that
currently used for today's commuter aircraft will provide a payoff in DOC for
the design range specified. The cruise speed selection for the 50 passenger
local service aircraft, particularly when considering growth potential to 70 or
80 passengers, should be comparable to current capability (i.e., DC-9, B-737) to
enhance marketability, provided a significant penalty in DOC is not incurred by
the higher cruise speed.
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During this study effort, each of the baseline aircraft was analyzed at
different cruise speeds to assess the effect on DOC. The results of this
assessment for the 30-passenger aircraft is shown in figure 13.

For the 30-passenger aircraft, the baseline configuration was flown at Mach
0.60, 0.50, and 0.456 at both the 1110 km (600 n.mi.) and 184 km (100 n.mi.)
stage lengths with the result that lower DOC was obtained at Mach 0.60 for 1110
km (600 n.mi.) and a small penalty incurred at 184 km (100 n.mi.). The
50-passenger aircraft was similarly analyzed and also showed a DOC adventage for
Mach 0.70 over Mach 0.60 at the design range of 1110 km (600 n.mi.).

In summary, the most efficient aircraft design appears to be incorporation
of high speed cruise capability for the 600 n.mi. design range with operation at
‘ reduced cruise speeds for the shorter stage lengths. Lower values for DOC at
e the higher cruise speeds for 600 n.mi. are the result of decrease in crew costs
F due to 4 significant decrease in block time at the higher speed. The dara
o obtained for the 30 and 50 passenger aircraft is included in tables 1 and 2.

e ST 1Y

5.5 Aerodynamics

Lo 5.5.1 High speed drag. - The-high speed drag polars for both the
fo 30-passenger and 50-passenger baseline aircraft ere depicted in figure l4. The

S aircraft drag characteristics are based on current Lockheed technology wing
b design. The wing for each aircraft has linear ratio of t/c of 16.8% at the root
to 13.5% at the tip- with a mean aerodynamic t/c of 16%. The L/D's and GL's
for each of the baseline aircraft at their respective cruise speeds are:

; Cruise Speed L/D CcL
: 30 pax M 0.60 15.5 0.45
50 PAX M 0.70 16.75 0.48

For the 30-passenger aircraft, individual aircraft drag breakdown shows that

the landing gear-pod drag is a significant component, which adds approximately
! 6% to the cruise drag of the aircraft. Early in the study, during definition of
; the baseline configurations, several landing gear configurations were
, investigated for the high wing, 30~passenger aircraft. A summary of those
‘ concepts investigated is depicted in figure 15. The baseline configuration
(Concept 2 ) was selected bized on simplicity of design and lower cost even
though it was recognized that a drag penalty would be incurred. Subsequent
- advanced technology configurations for the 30-passenger aircraft, as described

in Section 6, eliminate the necessity for a gear-pod.

b N A

5.5.2 High-1lift system. - Because of the high wing loadings on the 30 and 50
passenger aircraft, a moderately effective high-lift system was required to keep
landing and take-off distances to a minimum. Thus, fullespag .30C single-
slotted Fowler flaps with 0.30C translation and 0.73 rad (42") maximum
deflection were incorporated, with roll control relegated solely to spoilers.
The flaps extend from the fuselage side to the inboard side of the engine
nacelle, then from the outboard side of the nacslle to the wing tip.

y
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TABLE 1. - 30 PAX SHORT~HAUL AIRCRAFT

Baseline Configuration Reduced Cruise Speed Redesigned
Cruige Spesd Mo0.6 MO0.6 M 0.6 MO5 | MO468 | MO0458 | MO466 | MO.456
Range n.mi. 600 100 600 100 600 100 600 100
w/s 80 80 80 80 80 80 70 70
™ 0.379 0373 0.379 0.3789 0.378 0.379 0.340 0.340
AR 12 12 12 12 12 12 12 12
TOGW b 28 608 am 28330 26 962 28 236 26 950 28189 | 26941
OEW Ib 13499 19499 19 490 18499 19 499 19 498 19965 | 19965
Biock Fuel Ib 2146 671 1902 661 1892 626 1820 689
Block Time 200 0.58 2.30 0.61 247 0.62 247 0.62
DOC ($1.00) 4.977 9.946 6.265 9.764 6513 10.173 5412 9.881
TABLE 2. - 50 PAX SHORT~-HAUL AIRCRAFT
Baseline Configuration Reduced Cruise Speed
Cruise Speed MO0.7 Mo.7 MO0.6
Range n.mi. 600 100 600
w/s 80 80 80
™ 0.3434 0.344 0.344
AR 10 10 10
TOGW Ib 40427 38611 40 046
OEW 1b 26 156 26 156 26 156
Block Fuel Ib 2816 833 2545
Block time k .n 047 1.94
Doc ($1.00) 3.759 7.500 3.879




DOC — ¢ /ASM ($1.00/GAL)
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Figure 13. - 30 PAX short-haul aircraft.
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50 PAX
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Wing geometry
0.20 AR =10 4
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Figure l4. - Baseline short-haul drag polars.
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Flap extension is accomplished by fixed tracks and flap-mounted rollers, and
actuation is via torque tube-driven screw jack. Also included are full-span
leading edge slats with the same spanwise coverage as the flaps. Maximum
deflection of the slats is 0.52 rad (30 ), and slat-mounted tracks and fixed
rollers perform the extension. Hydraulic linear actuators are employed on the
slats. Figure 7 depicts a typical cross-section of the high-1lift system, which
is common to both aircraft. Because of the long translation of the rear flap a
fixed track and jackscrew were implemented. This design eliminated any holes in
the rear spar web as well as the necessary long tunnels into the wing box which
would house a hydraulic linear actuator. The screwjack is included in the same
forging which supports the tracks, and an exterior fairing houses the whole
assembly. The same design could not be used on the leading-edge slats because
of the exterior fairing required at wing leading edge; however, the short
translation of the slat requires only a small tunnel depth into the wing box.

Figure 16 shows the low speed polars for both baselines. A desirable
feature of the flap design is that the flap translation rsaches 0.23C, (near
maximum limit) before its deflection exceeds 0.17 rad (107). The benefit of
this is increased C, values (due to increased in wing area) equivalent to those
of much higher flap deflections but without the associated higher C, values.
The resultant take-off roll is shorter due to reduced drag at take-off flap
settings.

5.6 Structural Design

The baseline short-haul aircraft configurations employ current technology
structural arrangement and materials typical of those utilized for Lockheed's
L-1011 commercial transport. The fuselage is a conventional semi-monocque
structure of aluminum alloy with a circular cross section of 2.90 m (114 in.) in
diameter in the constant sections. Figure 17, which is a structural layout of a
typical constant section of the L-1011 fuselage, is representative of the
baseline short-haul fuselage structural arrangement. Wing and empennage utilize
skin-stringer construction with aluminum alloy material and are typified by the
L-1011 wing box structure, as shown in figure 18. The structural design
concepts incorporated into the baseline configurations, while considered to be
conventional technology, are also labor intensive due to the high number of
component parts and fasteners, and are therefore well-suited to advanced
structual arrangements and materials.

5.7 Flight Controls and Avionics

Conventional control systems were employed on both the 30-and 50-passenger
baseline aircraft. As depicted in figure 19, hydraulic boost systems were
minimized; however, it was considered necessary to prevent the roll control
spoilers from floating at cruise and for control force attenuation. A boost
system was also utilized for rudder control on the 50 passenger aircraft for
engine-out conditions at low speeds.

All systems incorporate dual control cables as well as dual actuators where
actuators are implemented. The roll spoilers are split, two spoilers per side,
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Figure 16. - Baseline short-haul low speed drag polars.
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with one actuator each. Flaps and slats have a single hydraulic motor each,
with spanwise torque tubes, which drive the actuator jackscrews.

The short-haul avionics, as shown in table 3, have complete IFR capability
with dual navigation, communication and DME radios. Weather radar is included
for weather front penetrations, and a radio altimeter is used for positive
decision height determination at IFR minimum conditioms. A flight director
coupled to an autopilot significantly reduces pilot workload during instrument
approaches. This is paticularly important on short-haul aircraft which will
make several approaches during a single day.

5.8 Systems

Secondary power, by definition, refers to power extracted from the
propulsior system for the purpose of supplying the service—system in the
aircraft; hydraulic, fuel, electric, and environmental control systems.
Typically, and in the past, engine bleed air has been the primary power source
for the ECS, and the engine/wing deicing, while hydraulics have been used for
landing gear/door operations, nose wheel steering, and for powering the primary
and secondary flight control surfaces. The electric system, for the main part,
has been used to furnish heating, lighting, instrumentation, avionics, motor
loads, and other miscellaneous electrical function.

For the advanced technology short-haul transports, fuel efficiency and fuel
conservation are the key considerations in the design of the secondary power
systems. The other important design criteria relative to short trip/quick turn
around operation of the aircraft are the logistic support, maintenance and
reliability aspects. In earlier studies of short-haul transports, fan-jets were
considered and the core flow on these engines permitted a consideration of
engine bleed air for the typical ECS/engine start functions. In later studies,
fuel efficiency concerns resulted in selection of turboprops. This has had two
significant impacts; 1) the engine core flows inhibited the use of bleed air
for secondary power 2) the propellors require icing protection. 4s a
consequence of those two factors, alternative means of cabin pressurization and
air conditioning were required and the generator capacity has to increase to
meet the projected increase in electrical loads. Engine driven compressors are
candidates for the ECS and both involve mechanical extraction which is much more
fuel efficient than bleed power extraction.

5.8.1 Environmental control system. - The ECS is designed to provide a comfort
level similar to current aircraft such as B737 and DC-9. Pressurization
requirements are reflected by a 6000 ft cabin altitude and a total cabin
airflow, for the 50-passenger aircraft, of approximately 70 ppm up to 15 000 ft
decreasing to approximately 55 ppm at 25 000 ft. Cabin heating is furnished by
heat of compression and supplementary dual electric heaters.

5.8.2 Electric system. - The system capacity of the electric system is
determined by the type of ECS, the baseline system for the 50-passenger

aircraft utilizes two 150/200 amp. 28 Vdc starter generators to 3 phase, 200 V,
400 Hz, 75 kVA generators and furnish 28 Vdc power and engine start capability.
A 500/750 VA inverter is used to furnish emergency ac power. The generators are
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TABLE 3. ~ SHORT-HAUL TYPICAL AVIONICS COMPONENTS

VHF #1, Collins VHF-20A, 20 watts
VHF #2, Collins VHF-20A, 20 watts

ADF, 190-1750 kHz, Collins ADF-60
ADF Antenna

DME #1, Collins DME 40

DME #2, Collins DME 40
Transponder, Collins TDR-90

Radar, Collins WXR-300

Radar Indicator

Radar Antenna, 12 in.

Audio Control Center, Collins 3468-3
Speakers, 6 at 3 pounds

Cockpit Voice Recorder, Collins AVR-101
Locator, Garrett RESCU/88

Remote Readout, Collins 339R (3)
Radio Control Adapter, Collins 839P-1 (6)
Mode Select Panel
Radio Altimeter, Collins ALT50
Indicator
Antenna (2)
Compass, King KCS 306
Autopilot, Collins AP106A
Flight Director, FD 1112 v/c

VOR-Localizer-Glideslope-Marker, Collins VIR 30

Navigation and Communication Control, Collins NCS-31

e
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direct engine driven and require no interposing type power conversion systems.
Electrothermal wing deicing is estimated at 22.5 kW continuous and 5.5 kW
cyclic. Prop/spinner deicing is estimated at 12 to 15 kW and windshield heating
reflects an additional 6 kW.

5.8.3 Auxiliary power unit. - The utilization of an APU in the short-haul
transport is a customer option that is appropriate to the 50-passenger aircraft.
Its primary advantage would be in providing ECS power in the aircraft without
running one of the engines during passenger loading and unloading. The other
advantage would be in supplying power on the ground when electrical power was
not available. Provisions for installation of an APU have been incorporated
into each of the baseline aircraft.

5.9 PROPULSION

Propulsion for both the 30 passenger and 50 passenger baseline aircraft
consists of current technology turboprops installed in Lockheed configured
nacelles. This study was conducted simultaneously with advenced technology
propulsion system studies awarded by NASA-Lewis to Allison, Garrett, and General
Electric. To define an appropriate scalable baseline engine and to insure a
degree of cousistency with the engine manufacturer technology studies, Allison,
Garrett, and GE were asked to recommend a baseline engine for each of the
Lockheed study aircraft and to provide scalable performance for the recommended
engines.

The engine manufacturers responded with the engines described in table 4.
In general, the list represents the latest turboprop engine each manufacturer
has to offer.

Estimates at the initiation of this study of nominal engine power ratings
for the 30 and 50 passenger baseline aircraft were 1429 kW (2000 hp) and 2984 kW
(4000 hp), respectively. Since none of the recommended engines are of these
sizes, scaling corrections are required to matc. engine power capability with
aircraft thrust requirements. Allison and Garrett provided estimates for
scaling corrections of their recommended powerplants.

The 1793 kW (2403 hp) and 3582 kW (4802 hp) baseline scaled erngine
performance, weight, geometry, and cost data transmitted herein were established
in consultation with NASA personnel, based on a synthesis of the engine
manufacturer recommended engine data and scaling corrections. The following
discussions describe the basis for establishing the baseline gas generator
definitions, installed engine performance, and selection rationale for the
baseline propeller performance, weight and cost estimates.

Gas generator performance. - Figure 20 depicts the sea level static
uninstalled engine brake specific fuel consumption (SFC) for existing production
turboprop engines as a function of thermodynamic rated horsepower. The
performance level of each of the engine manufacturer's recommended gas
generators are included. On the basis of this data, a baseline engine
performance trend was established (i.e., dashed line on the figure). The SFC
level upon which the installed performance for the baseline 30 pax 2403
horsepower and 50 pax 4802 horsepower aircraft/engine combinations are noted.
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TABLE 4. - ENGINE MANUFACTURER RECOMMENDED BASELINE ENGINES

advanced technology gas generators in the same size range is shown for reference
The similarity of trends, i.e., increasing
SFC with reduced engine size (SHP), for both current and advanced techmnelogies,

as the dash-dot line in figure 20.

(shp)

Engine M'fg Engine kW Rating Basis Comments .

Allison PD370-37 6304 (8450) Proposed turboprop version of Qealing corrections providsd
T701-AD-700 HLH engine to scale enging to 1492 kW
developed through PPFAT (2000 hp) rangs.
{Cancetled 1976) — Now in
stationa::; powerplant use.

Garrett TPE331-11 746 (1000) Production engine — Latest in Scaling corrections provided
T26 tamily. to scale engine to 2238 kW

{3000 hp).

GE €T17-2 119 {1500) Proposed turboprop version of
T7G0 turboshaft engine
(preliminary data).

CT64-820-4 2340 | (3137) Production engine (1960

vintage),

P&W Canads None - - - Only provided acquisition

and maintenance cost
gstimates,

The engine performance trend projected by the engine manufacturers for

is primarily due to Reynolds number effects, increased relative blade clearance

heights, and reduced desig. pressure ratios and turbine inlet temperatures at
the smaller engine sgizes.

Gas_generator weight. - Figure 21 presents the gas generator (including

gearbox) horsepower to weight ratios for the engine manufacturer's baseline

engines and for other production engines.

The selected trend of horsepower to

weight. ratiy with rated power as well as the values chosen for the 30-and
50-passenger aircraft gas generators are noted.

Gas generator geometry. — A cross—section drawing of the representative

baseline turboprop engine is shown in figure 22 to identify pertinent engine
dimensions and to characterize a typical short haul engine configuration.

Figures 23 through 25 present the baseline trend established for engine length,

overall envelope width, and overall envelope height, respectively, based upon

the recommended and existing production engines.
mounted accessories are located in the horizontal plane.
passenger aircraft propulsion system geometries are also noted on these figures.
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Max envelope
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Figure 22. - Typical short-haul engine cross section.
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Gas generator economics. - Allison, Garrett, GE, and P&W of Canada were asked
to define engine (including gearbox) acquisition and maintenance cost estimates
(1979 dollars) as a function of engine rated horsepower for engines
representative of todays technology and design practices. Figure 26 presents
manufacturer's estimated acquisition cost in terms of dollars per horsepower.
Ground rules include the assumptions that the gearbox price is included and that
the engine is mature. The recommended baseline trend is shown as the dashed
line and 30 and 50 passenger baseline values are noted. Similarly, the
manufacturer's estimates and selected baselines for the 30 and 50 passenger
aircraft are shown in figure 27 for burdened maintenance cost.

5.9.1 Propeller system characteristics. - Unfortunately, there are no Mach
0.6 or higher commuter turboprop aircraft in airline service. Today's commuter
aircraft engine props are similar to those described in Hamilton Standard's
“Brown Book,” reference 1. They are characterized by low activity factor, high
camber, and low number of blades to give good low speed performance at low
weight. Application of these propeller systems is limited to Mach 0.3 to 0.4
since compressibility losses are significant at higher speeds.

After discussions with Hamilton Standard, it was agreed that the Electra/P-3

54H60-77 propeller system, reference 2, appears to be the best baseline
available for this study, as it employs low camber to suit the high speed
application. The Electra propeller was, therefore, selected to establish
baseline performance, weight, and cost estimates.

The principal features of the baseline propeller system are tabulated below.

e 4 blades, 163 activity factor, 0.286 integrated lift coefficient

e solid aluminum blades

e constant speed (220 m/s (721 fps) tip speed)

& double acting pitch control

e negative torque control, overspeed pitch lock, and beta controls

e reversing capability

e deicing

Propeller performance: Propeller net efficiency levels for the 54H60-77
propeller system have been provided by Hamilton Standard and have been used to
generate the installed performance transmitted herein. Typical cruise
efficiency levels at Mach 0.6 and 0.7 are shown in figure 28 for reference.

Propeller weight: For the purpose of scaling the Electra propeller system
weight to other engine powers and prop diameter, a weight-estimating equation
has been derived based on the weight correlation presented in the Hamilton
Standard "Red Book", reference 3, for conventional shaft mounted propellers with
solid aluminum blades. The Hamilton Standard correlation, equation (1),
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incorporates propeller geometry and operational parameters which’ experience has
shovn to have the predominant effect on weight. The exponents have been
established to best fit weight trends of past and current prop construction.
The generalized weight equation is for the complete propeller system and
includes blades, spinner, hub, controls, deicing, and oil.

10 4 100 1000 —;E

For this study, the baseline propeller is assumed to have 4 blades, an
activity factor (AF) of 163, a tip speed of 721 fps, and a maximum cruise speed
of 0.7. Including these constants into equation (1) reduces the weight
correlation to the following expression.

Prop Wt. = 425 (_2)2 (§§2)0.12 (2)
10 D 2 See Table 5

The constant, 425, was determined,such th,t at the 54H60-77 prop diameter, D
(ft) and maximum power loading, shp/d” (hp/ft®), equation (1) predicts the
specification weight for the Electra/P-3 system. Baseline propeller weights,
(Eqn. 2) are shown in figure 28 as a function of propeller diameter and maximum
power loading.

Propeller acquisition and maintenance cost: The results of Hamilton
Standard's advanced general aviation propeller studies, reference 4, have been
used to establish a propeller acquisition cost model. It was shown in the
Hamil ton Standard study that for a specific propeller category (in this case,
csastant speed, full feather, deicing, reversing, 4 blades, double-acting pitch
control, etc.), acquisition cost is directly proportional to propeller system
weight. Based on the current 54H60-77 prop cost (including control), a baseline
propeller ccst of $37.38/kg ($82.38/1b) (1973 §) is assumed. Combining this
figure with he weight correlation (equation 2) results in the following
equation for acquisition cost as a function of prop diameter and maximum power
loading.

Acquisition Cost = $350.11 (p2)f sup ¥-12 (3)

2 See Table 5
D

A}

The resulting baseline acquisition cost is shown in figure 28 as a function
of prop diameter and maximum power loading.

A study of turboprop system reliability and maintenance costs was completed
in May 1977 by Allison and Hamilton Standard for NASA-lewis, reference 5. One
facet of the study was to determine reliability and maintenance costs of past
and current turboprop systems. Using data from 1966 through 1969 for Electra
L-188 operation averaging 0.8 hours per flight, the fully burdened propeller
(Hamil ton Standard 54H60) maintenance cost was $4.15 per flight hour in 1979
dollars. For this short-haul study, a constant propeller maintenance cost of
$4.15 is assumed.
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5.9.2 Baseline engine data for ASSET. - The variations in engine and
propeller performance, weight, geometry, and ecoromic trends with size
established in the preceding two sections have been quantified in equation form
and are tabulated in table 5. These data define the principal characteristics
of existing technology turboprop propulsion systems in the 746 to 5970 kW (1000
to 8000 shp) range.

Baseline engine performance has been generated and included for a 1492 kW
(2000 hp) (30 PAX) and 2984 kW (4000 hp) (50 PAX) scalable engines.
Characteristic gas generator rated SFC levels (sea level static, standard day,
max. power) for the two engines are shown in figure 20. For flight operating
conditions, the baseline gas generator performance in terms of horsepower,
residual jet thrust, and fuel flow (SFC) versus Mach number, altitude, and power
setting (i.e., lapse rates) have been modeled based on a synthesis of the
performance data provided by the ergine manufacturers for their recommended
current technology STAT baseline engines.

Similarly, the trends established for gas generator weight, geometry, and
cost and the propeller performance, weight and cost have been used to complete
the definition of the 1492 kW (2000 hp) (30 PAX) and 2984 kW (4000 hp) (50 PAX)
scalable short haul aircraft turboprop engines.

For the 30-passenger, Mach 0.6 aircraft, three sets of installed engine
performance were provided for a 1492 kW (2000 hp) gas generator size and
different propeller diameters as shown below. SFC, weight, geometry, and cost
characteristics were selected consistent with the baseline trends previously
shown. Similarly, three engine decks were also included for the 50 passenger
aircraft. Baseline engine identification gas generator size, and prop diameters
are shown below.

Engine Rated Power Prop
Deck ID Application For Scalable Baseline Engine Dia-ft
kW Shp m ft

421 30 PAX 1492 (2000) 3.04 (10.0)
422 30 PAX 1492 (2000) 2.74 (9.0)
423 30 PAX 1492 (2000) 2.44 (8.0)
424 50 PAX 1492 (4000) 4.27 (14.0)
425 50 PAX 2984 (4000) 3.81 (12.5)
426 50 Pax 2984 (4000) 3.35 (11.0)
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TABLE 5. - SHORT-HAUL BASELINE ENGINE MODEL

o Synthesis of existing engine/gearbox/propeller characteristics
Representative of today's technology and design practices

Engine BSFC (Ib/hr/hp) — incl. gb loss

Propslier efficiency

Weights {ib):
Engine and Gear Box

Propeller

Geometry (in.):

Length — Prap mount flange to
rear engine flange

Max Envelope Height

Max Envelope Width
Acquisition cost (1979 §):

Engine and Gearbox

Propelier (4 blade, Electra type)
Maintenance cost (1979 $/fit hr):

Engine and Gearbox

1.200 (shp) 01

Hamilton Standard 54H60-77 Propelier
{TS = 721 fps)

12.24 (shp)0-64
426 (4/10)2 (shp/g?)0-12

17.67 (shp)0-21

3.75 (shp)u'26
18.21 (shp)0-04

1192 (shp)0-7
360,11 (d)2 (shp/d?)0-12

0.243 (shp)u's6 Includes

Labor &
Propeller (4 blade, Electra type) 4,15 Materials
o Definitions:
d —  prop diameter (ft)
shp — engine thermodynamic max. rated horsepower, sea level static standard day
BSFC ~  engine brake specific fuel consumption at thermodynamic max. rated horsepower,

sea level static, standard day. Assumes exhaust nozzle area sized for turboprop
application (NPR1.12 — 1.15)
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The installed performance levils were obtained by correcting uninstalled
baseline engine performance for losses attributable to the aircraft
instaliaticn. These losses include engine air inlet duct pressure loss (inlet
recovery); compressor bleed and power extraction for ECS, hydraulics, and
avionics; and propeller gearbox loss. Typical values for each of : e2se loss
items are presented in table 6 for the 30-and 50-passenger aircraft. Nacelle
friction drag and pressure drags, as well as interference drag, are included in
the aircraft drag polar.

As is shown in table 6, no net inlet total pressure loss is assumed on the

basis that the inlet duct loss is equal and opposite to the total pressure rise
across the propeller.

TABLE 6. - ENGINE INSTALLATION LOSSES

30 PAX Aircraft 50 PAX Aircraft
falet Recovery (PT2/PT0) 1.000 1.000
Customer Bleed (ppm) 0 0
Customer Power Extraction (kW/eng) (hp/eng) 37.3 (50) 56.0 (75)
Gearbox Power Efficiency 0.98 0.98
{incl. .i: .15 generator performance)

Notes: A Exhaust nozzle thrust and airflow coefficients included in uninstalled engine performances.

A Nacelle drag included in agrodynamics drag polar.

Cabin pressurization and environmental control are provided by engine-driven
compressors, rather than bleed air, to avoid the potentially large losses
associated with bleeding the relatively small gas generators (gas generator
airflows are approximately 6.8 kg/s (15 pps) at 1492 kW (2000 hp) and 13.6 kg/s
(30pps) at 2984 kw (4000hp)). An estimated 100 and 150 horsepower per aircraft
has been allowed for the 30-passenger and 50-passenger aircraft, respectively,
for cabin pressurization, environmental control, hydraulic power, and avionics.

5.10 Noise
The requirements imposed on the short—-haul aircraft were as follows:

e Interior cabin noise levels of 85 dB OASPL and speech interference level
(SIL) of 65 dB or less

e Community noise level of FAR36-XYZ-8dB ut the flyover, sideline, and
approach locations.
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5.10.1 Community - vise. =

30 passenger ailrcraft: Table 7 shows the estimated community noise levels at
the three standard certification points, (a) flyover: beneath the flight path
at 6500 m (21325 £t) from the beginning of the takeoff roll,) (b) sideline: the
peak noise level at a lateral distance of 450 m (1476 ft) and (c) 1andi ’
approach: below the aircraft when at an altitude of 120 m (394 £t) and at a
distance of 2000 m (6561 ft) from the landing touchdown puint while on a 3
degree glide slope. It is seen that the 30-passenger aircraft satisfies the
requirements of FAR 36 Stage 3 minus 8 EPNdB. This estimate is based upon the
propeller characteristics previously defined, and the climb profile character-
istics as calculated by the Lockheed ASSET computer program.

50 passenger aircraft. - The 50-passenger baseline aircraft was sized with a
3.66 m (12 ft) diameter, conventional, unswept, 4-bladed propeller, operating at
a tip speed of 219.5 m/s (720 ft/sec). For this configuration, the sideline
noise level is 91 EPNdB. On a traded basis with the flyover noise, -5dB can be
attained. To achieve the desired level of - 8dB would require a large diameter
propeller of 4.27 m (14 ft) and a reduction in tip speed to 198 m/s (650
ft/sec). This propeller design results in approximately a 10% increase in
aircraft gross weight and lengthening of the landing gear by approximately 12
inches. Since one of the items of advanced technology deals with incorporation
of improved propeliers (propfan), which will enhance the community noise
situation, it was decided not to increase the baseline aircraft size to attain
the additional - 3dB on sideline noise.

Summary of community noise aspect: - It appears that the 30 passenger

aircraft can meet the FAR 36 Stage 3 minus 8 EPNdB noise levels v ch the
baseline aircraft.

TABLE 7. - COMMUNITY NOISE LEVELS FOR THE 30 PASSENGER AIRCRAFT

Predicted FAR 36 Stage 3
Levels Requirement Predicted
EPNdB EPNdB Margin
Flyover 80 89 9
Sideline 87 94 -7
Traded F/0Y SL - - -8
Landing Approach 87 g8 -1

The 50-passenger aircraft with the 3.66 m (12 £t) propeller diameter and
operating at a 219.5 m/s (720 ft/sec) tip speed would make Stage 3 noise levels
minus 3 EPNdB at sideline, or Stage 3 minus 5 EPNdAB on a traded basis with the
flyover noise. If the propeller diameter is increased to 4.27 m (14 ft) and
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operated at a tip speed of 198 m/s (650 ft/sec) then the aircraft is estimated
to be capable of achieving Stage 3 minus 8 EPNdB on a traded bast{s between 1
sideline and flyover noise, provided the gross weight increase is not more than :
10 percent relative to a baseline value of 8336 kg (40 424 1b).

5.10.2 Interior cabin noise. -~ Preliminary estimates for the acoustical
treatment mass penalties for the two aircraft were cbtained by using estimates
of the required sidewall surface density versus noise reduction obtained from
studies of other aircraft, and then multiplying the surface density by the ratio
of treatment area of the original aircraft compared to the present aircraft.

The treatment area i{s proportional to the product cf fuselage diameter times
propeller diameter. This process led to penalty estimates of 408 kg (950 1b)
for the 30-passenger aircraft and 680 kg (1500 1b) for the 50-passenger aircraft
to achieve an interior noise overall sound presesure level of 85 dB.

5.11 Baseline Afircraft Performance

The baseline short-haul aircraft were sized in accordance with the following
performance constraints:

30 pax 50 PAX
e Payload 2721.6 kg (6000 1b) 4536 kg (10 000 1b)
e Desigr Range 1110 km (600 n.mi.) 1110 km (600 n.mi.)
e Field Length 1219 m (4000 ft) 1219 m (4000 ft)

(Sea level, 32.2°C (90°F)

® Cruise Mach 0.60 0.70
e Approach Speed 224 km (121 kt) 224 km/hr (121 kt)
® Fuel Reserves 185 km (100 n.mi.) + 45 minutes endurance

Drawings of the 30-passenger and 50-passenger aircraft are previously
included as in figures 5 and 6. The 30-passenger aircraft is sized by the
take-off field length (engine out) condition while the 50-passenger aircraft is
sized by landing field length at maximum gross takeoff weight. Summaries of the
design and performance characteristics of the baseline aircraft are included as
table 8.

501101 Sizins

The Lockheed developed Advanced System Synthesis Evaluation Technique
(ASSET) program was used to size each of the baseline configurations to conform
to the above stated mission constraints. Optimization criteria for each of the
baseline aircraft was minimum DOC at the 184 km (100 n.mi.) stage length with
full payload and fuel reserves for a 184 km (100 n.mi.) alternate plus 45
minutes endurance.
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TABLE 8. - SHORT-HAUL AIRCRAFT DESIGN AND PERFORMANCE CHARACTERISTICS

30 PAX 60 PAX

Mission

Design Range 1110 km (600 n.mi.) 1100 km (600 n.mi.)

Typical Range 184 km (100 n.mi.) . 184 km (100 n.mi.)

Cruise Speed M 0.60 M0.70

init. Cruise Altitude 28 000 ft 36 400 ft

Field Length 4000 ft 4000 ft

Approach Speed 116 kts 110 kts
Design

Configuration Twin Turboprop Twin Turboprop

Ww/s 80 80

TW 0.37% 0.344

AR 12 10

ToGw 28 606 b 40427 1b

Wing Span 65.5 tt AR R

Body Length 58.7 ft 4.7 1t

Body Diameter 114in, 114 in,
Performance

Engine Power 2403 hp 4802 hp

Block Fuel — 600 n.mi. 2148 1b 2816 Ib

Block Fuel — 100 n.mi, 6711b 933 1b

*DOC - 600 n.mi, 4.977 3.759
*DOC - 100 n.mi. 9.946 1.508

*At $1.00/gailon fuel cost.
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“ 30 passenger baseline: Optimization of the 30 passenger baseline was
accomplished using the following design matrix to vary wing AR, wing loading,
thrust /weight ratio, and propeller diameter to find the best design aircraft
(minimum DOC criteria) which meets the previously imposed mission constraints:

AR  Wing Loading, W/S Thrust/Weight, T/W Prop. Dia SLS Prop §HP/02

| T (£t) hp/ft

i 10 60 70 80 90 0.38 0.34 0.30 0.26 8 31

: 12 60 70 80 90 0.38 0.34 0.30 0.26 8 31

i 14 60 70 80 90 0.36 0.32 0.28 0.24 8 31

b 10 60 70 80 90 0.42 0.40 0.36 0.32 9 25

: 12 60 70 80 90 0.42 0.38 0.3% 0.30 9 25

| 14 60 70 80 90 0.42 0.38 0.34 0.30 9 25

3 10 60 70 80 90 0.48 0.44 0.40 0.36 10 20

1 12 60 70 80 90 0.48 0.44 0,40 0.36 10 20

. 14 60 70 80 90 0.46 0.42 0.38 0.34 10 20

I_.vm the results of this parametric analyses, point designs (designs with
minimum DOC values) for each wing AR and propeller diameter were selected.
Figures 29 and 30 depict selection of wing loading and thrust/weight ratio for
AR 12 and 14 and are typical of the carpet plots used to select the 30 passenger
baseline point designs summarized in table 8. Point design results were
evaluated as shown in figure 31 and the baseline aircraft design characteristics
(AR, W/S, T/W, and Propeliler diameter) selected based on minimum DOC at the 100
n.ni. stage length for $.379/11 ($1.00 per gallon) fuel cost.

50 passenger baseline: Sizing of the 50 passenger baseline was accomplished
using the identical process as that employed for the 30 passenger aircraft.
Variations in W/S, T/W, AR, and propeller diameter were evaluated with the point
design selected for minimum DOC at the 184 km (100 n.mi.) stage length and
.379/11 ($1.00 per gallon) fuel cost. Figure 32 is typical of the carpet plots
generated for the 50 passenger baseline aircraft and shows the selection of W/S
and T/W for the baseline.

5.11.2 Baseline aircraft sensitivities. - Sensitivity factors were
calculated for each baseline aircraft, after sizing, in accordance with the
matrix shown in table 9. The results are presented in tables 10 and 1l1.
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Short-haul A/C, M = 0,60 PD = 10.0 ft,
C/4 sweep = 3.6, AR = 12.0, T/C = 16.0 CT/CR = 0.30
CL1373-3-1, PAX, R = 600 n.mi., 1.00/gal
6.50
; 0.460 60.
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Figure 29. - Direct operating cost.
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Figure 31. - 30 PAX short-haul aircraft.
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ghort-haul A/C M = 0.70

C/4 sweep = 5,38 AR = 0.10 T/C = 16.0 CT/CR = G.30
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Fi_ure 32. - Takeoff gross weight.
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TABLE 9. - SHORT-HAUL SENSITIVITY FACTORS

SFC Airframe Engine Engine Engine Engine Airframe
+5% Eng. Wt, wt. Length dia Maint, Cost Maint.
+15% +500 Ib 43000 ib +10% +10% +25% +50K$ +25%
TOGW X X X X X
0EW X X X X X
Block X X X X X
Fuel
ooc X X X X X X X
Aircraft X X X X X X X
Price 1

5.11.3 Baseline aircraft mission fuel. - The major performance

characteristics for each baseline aircraft, in terms of block time, mission
fuel, and distance for both the design range and 185 km (100 n.mi.) stage

66

length, are listed below:

Time
(Minutes)

Fuel
kg (1b)

Distance
km (n.mi.)

30 Passenger (1110 km) (600 n.mi.)

Climb Cruise Descent
47.1 45.8 11.1
481 (1060) 395 (870) 467 (103)
533 (288) 504 (272) 107 (58)

Cruise Altitude = 28 000 ft

Time
(Minutes)

Fuel
kg (1b)

Distance
km (n.mi.)

30 Passenger (100 n.mi.)

Climb Cruise
5.4 7.5
81.2 (179) 87 (192)
46 (25) 87 (47)

Cruise Altitude = 15 000 ft

Descent

5.9

30 (67)

52 (28)

Block Total

120

973 (2146)

1110 (600)

Block Total

34.8

296 (652)

185 (100)
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TABLE 10. - 30 PAX SHORT-HAUL AIRCRAFT-SENSITIVITY FACTORS

v

Condition Factor TOGW OEW Fue! 600 Fuel 100 00C 600 DOC 100
Engine +500# +881 +823 +49 +15 +.093 +.202
Waight 0 0 0 0 0 0 0

-500# -817 817 50 -16 -.084 -.203

Mfg. +3000# +4959 +4609 +274 +84 +.740 +1.615
Empty Wt. 0 0 0 0 0 0 0

-3000# 4961 -4640 -266 -85 - 136 -1.687

+15% +680 +199 +302 +.250 +.120

+5% +223 +65 +101 +.080 +.040
SFC 0 0 0 0 0 0 0

-5% -215 -63 -101 -080 -.039

-15% -650 -190 -302 -.250 -119

Engine +10% +52 +25 +3 +2 +.018 +.018
Length 0 0 0 0 0 0 0

-10% 50 -25 -3 -2 -016 -018

Engine +10% +58 +30 +9 +3 +.020 +.022
Diameter 0 0 0 0 i} 0 0

0% 58 -29 -5 3 -018 -019

Engine +25% - - - - +.306 +.797
Maint, i} 0 0

-25% - - - - -.306 -797

Engine +50K$ - - - - +115 +.285
Cost 0 0 0

-50K$ - - - - -116 -.285

Airframe +25% - - - -~ +119 +.435
Maint. 0 0 1}

-25% - - - - -125 -454

Baseline 28 606 19 499 2146 67 4.977 9.946

Values
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TABLE 11. - SENSITIVITY FACTORS - 50 PAX SHORT-HAUL AIRCRAFT

TOGW OEW Block Fusl (Ib) DOC (c/SM-$1.00/gal)
{ib) {ib) 600 n.mi, 100 n.mi. 600 n.mi 100 n.mi.
SFC
-16% -987 -284 -441 -16 0.242 -0.099
5% 321 -96 -148 B -0.082 -0.033
+5% +323 +95 +150 +5 +0.081 +0.099
+15% +963 +284 +452 +16 +0.247 +0.099
Engine Weight
-500 Ib -960 -889 43 17 -0.067 0.132
+500 Ib +950 +884 +43 +17 +0.055 +0.130
Airframe Weight
-3000 tb -5037 -4666 -224 -92 -0.399 -0.921
+3000 Ib +4981 +4628 +225 +89 +0.384 +0.885
Engine Maintenance
-25% -0.213 -0.571
+25% +0.213 +0.571
Airframe Maintenance
-25% -0.087 -0.328
+25% +0.083 +0.314
Engine Cost
-50K$ -0.061 -0.163
+50K$ +0.062 +0.151
Engine Length
-10% 90 46 21 4 0.014 -0.019
+10% +85 +15 +21 +4 +0.013 +0.019
Engine Diameter
-10% -90 -58 -25 R ] -0.016 -0.022
+10% +30 +57 +25 +5 +0.015 +0.022
Baseline 40427 26 156 2816 933 3.759 . 1.606
Values
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50 Passenger (185 km) (100 n.mi-)

Climb Cruise Descent Block Total
Time 4.7 6.1 4.2 26.2
(Minutes)
Fuel 130 (287) 131 (288) 40 (88) 425 (938)
kg (1b)
Distance 44 (24) 81 (44) 59 (32) 185 (100)
ka (n.mi.)

Cruise Altitude = 15 000 f¢

50 Passenger (600 n.mi.)

Climb Cruise Descent Block Total
Time 37.5 40.9 13.3 102.6
(Minutes)
Fuel 621 (1370) 433 (954) 62 (136) 1277 (2816)
kg (1b)
Distance 457 (247) 505 (273) 144 (78) 1110 (600)
km (n.mi.)

Cruise Altitude = 36 000 ft

5.11.4 Alternate stage length. - As specified in the NASA statement of work,
each of the sized baseline alrcraft configurations, were analyzed to compute
their DOC's at stage lengths of 92.6, 185, 288, 370, 741 and 11 110 km (50, 100,
150, 200, 400, and 600 n.mi.) for fuel prices of ($0.75, $1.00, and $1.50 per
gallon. Results of these calculations are presented in figures 33 and 34.

5.11.5 Alternate field performance. - One of the design/mission constraints
for each of the short-haul aircraft was a requirement to operate from field
lengths of not greater than 1220 m (4000 ft) at sea level and 32% (90 F)
conditions. Subsequent to sizing of the baselines, each aircraft was examined
for different field lengths as follows:

. Basgline design operated from 914 m (3000 £¢) field at sea level and 32°%
(907 F).

e Baseline design operated from 2134 m (7000 ft) field at 1829 m (6 000 £t)
elevation and 90°F.

® Aircraft redesigned to incorporate a requirement for 914 m (3000 ft)
field at sea level and 32.2°C (90 F).
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Figure 33. - Direct operafring cost vs. stage length
30 PAX short-haul baseline.
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Figure 34 - Direct operating cost vs. stage length 50 PAX short-haul
baseline. ;
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The results of this examination are pre.ented in table 12.

5.12 Economic Analysis

The economic analysis accomplished for the short-haul baseline aircraft
along with results, comparative data, and the methods utilized is included in
Appendix A. For each of the baseline aircraft, DOC was calculated for both the
design range of 1100 km (600 n.mi.) at fuel prices of $0.75, $1.00, and $1.50
per gailon. DOC results for each aircraft, optimized for minimum DOC at 185 km

(100 n.mi.) stage length, are as follows:

30 PAX 20 PAX
1100 km 184 km 1110 km 184 knm
DOC ($0.75)  4.535 9.004  3.607 7.408
DOC ($1.00)  4.977 9.812  3.956 8.165
DOC ($1.50)  5.867 11.434  4.656 9.505

TABLE 12, -~ FIELD PERFORMANCE-CHARACTERISTICS

Configuration TOFL TOFL LFL
Requirement AR | W/S T/W TOGW |(AN Eng)(ft) |(Eng. Oud(ft)| (ft) Comments
30-PAX-4000 ft Fld, 12 | 80.0 {0.379 {28 606 3346 3996 3938 | Airplane sized to mest
Length @ S.L. & +90°F 4000 ft fId. length
30 PAX-31/00 ft Fid. 12 | 80.0 {0.379 |24 606 2591 3020 3003 | Off Loaded (-4000# TOGW)
Length @ S.L. & +90°F For 3000 ft fid. length
30 PAX-7000 ft Fid. 12 | 80.0 |0.379 |28 206 606! 5879 3938 | Off Loaded (-400# TOGW)
Length @ 6000 ft & +80°F For 7000 ft fid. length
30 PAX-3000 ft Fid. 12 | 65.0 |0.400 |30 352 2629 3014 2955 | Airplane sized to meet
Length @ S.L. & +90°F - 3000 ft fid, length
50 PAX-4000 ft Fid. 10 | 80.0 |0.344 | 40325 3404 3995 3997 | Airplane sized to meet
Length @ S.L. & +90°F 11000 ft fid. length
50 PAX-3000 ft Fid. 10 | 80.0 {0.344 | 34 325 2658 2998 3022 | Off Loaded (-6000# TOGW)
Length @ §.L. & +90°F for 3000 ft fig. length
50 PAX-7000 ft Fid. 10 | 80.0 |0.344 | 40325 5394 8131 4306 | Meets 7000 ft fid. length
Length @ 6000 ft & +90°F with no off load
-t 50 PAX-3000 ft Fid, 10 | 65.0 {0.375 | 42746 2602 2999 2978 | Airplane sized to meet
~{ Length @ S.L, & +90°F 3000 ft fid. length

NOTE: Landing Weight = TOGW
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6. APPLICATION OF ADVANCED TECHNOLOGY

This section describes appropriate advanced technologies, which when applied
to the baseline short-haul aircraft configurations, both singularly and in
combination, result in significant technical and economic performance benefits.
Evaluations were accomplished in the following areas:

o Advanced structures and materials

e Advancud aerodynamics

e Advanced propulsion

e Active controls and alternate aircraft configurations

Figure 35 depicts the recurring cost breakdown of the conventional baseline
short-haul 30-passenger aircraft (which is also typical for the 50 passenger).
The largest portion of production cost is manufacture and assembly of the basic
airframe, thus a major objective of this study was an evaluation of low cost
primary structural concepts and advanced materials which could provide
significant cost reductions. )

The remaining advanced technology items are aimed at reducing the aircraft
operating costs by increasing the fuel efficiency. Incorporation of active
controls is used to enhance ride quality (better passenger appeal) by utilizing
active flaps to damp the gust loading during operation in turbulence and to
provide more efficient aircraft configurations.

Advanced systems are given cursory coverage in this study and have not been
quantitatively assessed, although they promise significant potential benefits. A
qualitative assessment is included in Section 8, along with recommendations for
future research and technology.

6.1 Advanced Structures and Materials

As previously described in Section 5.5, the conventional aircraft primary
structure is a skin/stringcr configuration using current aluminum alloys. This
type of structural arrangemant is widely used on current air transports such as
the Lockheed L-1011l. For the advanced technology, low cost primary structure of
the short-haul aircraft, the following structural/material arrangements were
evaluated:

Fuselage Wing/Empennage
e Multilongeron design with e Multispar (minimum ribs ) with

aluminum and composites aluminum and composites

® Orthogrid and isogrid ® Orthogrid composites

composites
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/
/
LABOR / MATERIAL
(28.5%) / (12.5%)
2#2?1\:5"6{2')6' VA R&D PER A/C
' (14.2%)
ENGINE
AND
PROPELLER
(16.6%)
PROD TOOL. (1.6%)
PROD DEV (1.2%)
AVIONICS (3.8%)

Figure 35. - Production cost breakdown.
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These arrangements are formulated to reduce labor costs by reducing the
number of parts to be manufactured and assembled, incorporate automated
manufacturing processes, and provide weight 'savings. New design features and
methods of fabrication have been the subject of continuous studies at Lockheed,
and in past years in-house and funded studies have made significant advances in
the analyses and fabrication methods, testing, and product durability. These
studies have developed high confidence that significant weight and cost savings

can be attained by use of advanced composite materials with the above design
concepts.

6.1.1 Low cost structural concepts. - Low cost structural concepts are those
designs which have fewer parts to reduce costs of manufacture and assembly.
This has been demonstrated on the L-101l1 inboard composite aileronm structure,
depicted in figure 36, which shows a markedly reduced number of ribs in that
design. -The following design concepts were adopted for the low cost structure
for the advanced technology short-haul aircraft:

Wing and empennage: Since these are heavily loaded structures, surface panel
stability under compression loads is of primary importance. There are two
approaches to the design of these structures: 1) multispar design as shown in
figures 37 and 38 and an orthogrid composite design as shown in figure 39.

The multispar design concept is compatible with a high aspect ratio wing or
empennage and could employ either aluminum (conventional and advanced alloys) or
composite material. Basic objective of this design is elimination of stringers
ard numerous clips between ribs and stringers. In addition, approximately 60%
of the ribs can be eliminated except at the highly loaded locations such as the
root area, engine support, and edge structure supports. The fixed leading edge
and trailing edge panels are honeycomb construction which has proved to be a
cost effective, light weight approach. Since the depth >f both leading edge
slats and trailing edge flaps and ailerons is less than three inches, the full
depth honeycomb construction, with insertions of spar and stub ribs, will
transmit the highly concentrated loads and retain the necessary stiffness for
structural design. This arrangement is considered for reduction in
manufacturing costs as well as potential reduced weight. A similar design
concept is applied to both the horizontal and vertical stabilizers.

The composite orthogrid design which has been studied by Lockheed for
several years is one of the most promising design concepts for panels. Figure
40 and figure 41 show the major dimensions of a test panel designed to verify
the orthogrid capabilities. The pu.nel is typical of a transport wing upper
panel, and is designed for compression loads up to 20,000 1b/in. The test
results are shown in figure 42. An aluminum panel of equivalent strenmgth with
an ultimate stress of 54,350 psi would weigh 5.3 psf, the reduced-parts design
of the orthogird panel weighs 3.3 psf. Therefore this design achieves a
significant weight saving as well as being cost effective.

A development of this work at Lockheed has resulted in a technique for
automated manufacturing of the stiffeners. 1In this technique, alternate layers
of resin and graphite are used to produce more efficient joints at the
intersection of the stiffeners. Lockheed, working with selected prepreggers,
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LE. SHROUD NOMEX CORE
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Figure 36. - L-1011 Composite aileron structure.
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Figure 41. - Orthogrid test panel.
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Figure 42. - Orthogrid test panel test results.
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has made available prepregged syntactic resin tape which may be handled in the
same manner as a prepregged graphite tape and can be obtained in specific widths
to suit particular stiffener geometries. Combinations of Graphite and Syntactic
prepregged tape may be obtained in combined form so that both layers may be laid
together. The fundamental concept is based on the demonstrated economies of
machine layup techniques, and this concept further reduces the layup time as an
entire layer of each bar may be laid down with each pass of the machine. An
automatic machine to use this type of tape is under development at the
Lockheed-California Company and has produced experimental panels. The
manufacturing process consists of machine winding the tape on to a flexible
rubber mandrel, placing the skin in a female mold, inserting the mandrel
containing the wound grid; and curing the entire assembly. The flexible rubber
mold is easily removed from the grid after curing. The designer has
considerable flexibility in choosing the grid size and pattern to meet specific
requirements of load distribution and fail-safe characteristics. As the
stiffened skin is stable, much of the substructure normally required is
minimized, saving both the cost of the parts and the cost of the assembly. The
wing box construction can be easily assembled. The longitudinal stiffeners are
used to resist wing bending and local aerodynamic pressure and the transverse
(90° perpendicular to the wing span) stiffeners can be used as wing rib caps.
Between the upper and lower rib caps, cruciform members are used to form a truss
rib. The spar webs are made of one piece channel section with the vertical
stiffeners integrally molded on the spar web. This design concept has been
successfully used for the L-1011 vertical fin, as shown in figure 43.

Fuselage: The fuselage is not a highly loaded structure; cabin
pressurization is the significant loading condition for sizing of the structure.
Conventional skin/stringer design has been successfully used, but this design
has been recognized by aircraft manufacturers as a labor intensive, high cost
arrangement due to the large number of parts. Two methods can be used for
reducing fuselage cost; 1) reduction of parts, and 2) wutilization of automated
manufacturing processes. Previous Lockheed studies show that the following
design concepts are best suited to low cost fuselage structure:

e Aluminum or composite fuselage using longerons and frames with wide
spacing (see figure 44 and figure 45)

e Composite orthogrid design (figure 46)
e Composite isogrid design (see figure 47)

The first concept is a simpl.fied design that uses fewer longitudinal
longerons and frames. This desis~ eliminates numerous clips, since there are
less stringers and frames. To provide required fuselage skin thickness and
prevent skin buckling at lower load conditions, the sandwich panel construction
is the lightest and cheapest method to meet that requirement. Furthermore, this
sandwich panel inherently has fail-safe features to withstand cabin pressure in
the event of face sheet cracking. The core material is replaced by aluminum
around the cut-out areas such as doors, windows and windshields to form a solid
skin to prevent local high stress concentration, (see figure 45).
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The composite orthogrid design employs a structural arrangement similar to
that of the simplified aluminum fuselage, except that longeron and frame
construction utilize automated lay-up with composite materiale. Similar to the
alumninum fuselage design, the skin is constructed as a sandwich with composite
material as face sheets and syntactic core.

The search for efficient, light-weight, and economical structural concepts
for aircraft structures is a continuing objective of the aircraft industry. The
most promising concept shown in figure 48 and figure 49 is found to be the
fuselage skin stiffened by a repetitive equilateral triangular pattern of the
stiffening members, namely isogrid. Isogrid acts like an isotropic plate and
not only offers good resistance to general instability failure but can be
designed to withstand compression and shear without internal supports.

An advanced composite hybrid isogrid concept is being developed by Lockheed
that is intended to be structurally efficient while overcoming the major
difficulty of high manufacturing costs. The latest manufacturing innovation is
based on the use of automated machine layup techniques for the orthogrid design
concept. 1In order to manufacture composite isogrid by this process, a design
concept must be made that defines the triangular stiffener pattern, with special
attention paid to the stiffener intersection. To simplify the manufacturing
method at this intersection, a technique of so-called offset joint concept as
shown in figure 50 is used.

Airstair door: Normally, the short-haul airplane is designed to operate at
those airports that lack ground equipment to accommodate a passenger loading
system. Therefore, an airstair door is considered more suitable to this type of
aircraft. This is a plug-type door design and has simple hinges at the root of
the door to provide for the door to rotate up and down, see figure 51. The
construction of this door is mainly of built—up sandwich honeycomb panels, which
is considered a low cost design.

6.1.2 Advanced materials. — The utilization of advanced structural
materials, of light weight and high strength, can be used to provide significant
advantages in aircraft structural weight. Two materials, advanced aluminum
alloys and advanced composites, are currently in development for use in aircraft
primary structure and are applicable to the short—-haul configurations used in
this study.

Advanced aluminum alloys: Improvement in the weight and structural
properties of aluminum can be applied directly to any of the current
conventional aircraft with a benefit of structural weight savings, providing the
material price is not excessive. Certain of the advanced aluminum alloys offer
large gains in particular properties of prime importance to the short-haul type
of aircraft. Figure 52 shows comparative tensile, stress ccrrosion, and
toughness properties of current aluminum alloys and advanced alloys. The high
strength combined with high corrosion resistance and toughness of aluminum-
lithium-magnesium alloys are of prime importance in view of the many cycles of
takeoff and landing inherent in short-haul operation. Figure 53 compares the
strength to density and specific modulus to density for several materials.

Again the aluminum-lithium-magnesium alloys are noteworthy because of their high
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stiffness combined with high strength. For this study, an in-depth evaluation
of the advanced aluminum alloys was not accomplished. Previous and ongoing
studies at Lockheed indicate that structural weight savings on the order of 10%
are possible with advanced aluminum alloys. It is projected that wide spread
utilization of these new alloys, provided the development process is pushed,
could be in the 1985 time frame. The low cost, aluminum, multilongeron fuselage
and multispar wing designs previously decribed are suitable for incorporation of
the advanced aluminum alloys.

Advanced composite materials: It is anticipated that future aircraft primary
structure will utilize advanced composite materials to take advantage of
structural weight savings and reduced fabrication cost. Automated manufacturing
techniques such as pultrusion, automated layup, and filament winding are
currently being implemented to reduce aircraft manufacturing cost. Composite
materials are generally recognized as primary candidates for the next generation
of aircraft, but there are difficulties which must be overcome so that the
potential savings can be realized:

e high material and manufacturing costs

o lack of service experience

¢ effects of environmental conditions

e foreign object damage and lightning strike.

Foreign object impact tests made on the specimens are summarized in figure
54 which shows that the thin sandwich is considerably more robust than the
honeycomb core sandwiches. The techiques for designing and handling the
graphite syntactic resin composites in these thin sandwiches have been further
developed in the last few years and are now being applied in the advanced
composite aileron (ACA) for the L-1011 aircraft. A series of tests made with
one-inch diameter hail stones are summarized in figure 55. The thin sandwiches
of graphite syntactic resin are quite superior in impact resistance.

For more heavily loaded structure, the stability under structural load
becomes of primary importance. The impact on both the weight and thickness
required for shear panels can be seen in figure 56. 1In this figure the weight
parameter is plotted against the shear stability parametcr.

Lightning strike: Aircraft mold line surfaces made from advanced composite
materials require lightning strike protection coating. The most commen of

these is to provide a metallic layer as the outer-most surface of the composite.

However, some other protection systems as shown in table 13, in general will
satisfy the design requirements.

6.1.3 Producibility and cost considerations. - Producibility of the advanced
structural concepts was examined with respect to its influence on design
concepts and also for the purpose of assessing manufacturing cost impact.
Optimum producibility and low cost is attained by minimizing the manhours
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Figure 56. - Shear stability efficiency comparison of several materials.
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TABLE 13, - BASIC LIGHINING STRIKE PROTECTION SYSTEMS

Protection Weight Installation
System (Ih/hz) Method Advantages Disadvantages
Alumicum Flame | 0.070- CocuredA 1. Independent of surface Coating weight and quality
Spray (6 mils) 0.080 + shape and size is operator-dependent
Adhesive Repairable Aluminum flame spray quality
Low maintenance cannot be determined prior
to part cure
Partial environmental - .
seal of composite Limited long term service
surface fatigue experience record
Aluminum Foil 0.07¢ CocuretA 1. Environmental seal of Foil stock width limitations
(5 '“"SA composite surface Difficult to install on com-
0.070 + Adhesiva 2. Uniform surface pound contours
Adhesive Bonded Conductivity Poor repairability charac-
3. Surface material com- teristics
pletely replaceable Poor part handleability
characteristics
Heaviest system
Aluminum Wire 0.091 Cocured A 1. Minimum shape Mesh stock width
Mesh {120x 120 constraint limitatiuns
(Preferred) Wire Mesh 2. Lightest-weight system Inadequate environmental
Impregnated 3. Repairabl seal for composite
with Resin) : epairable
4. Low maintenance
3. Lowest cost system
(mesh cocured with
laminate)

votes: /N
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required to produce the structure. Reducing the number of parts and fasteners
has proven to be a successful measure for achieving producibility goals.

For the simplified aluminum concept, producibility is improved through
part/fastener reduction. The number of frames is reduced, and the stringers are
replaced with fewer longerons. The mechnical fastening time is reduced through
adhesive bonding; however, to achieve the improved producibility in the sub
structure, the skins have been stiffened by increasing their thicknesses with
the addition of syntactic form cores in sandwich.

The compos...e concepts have been analyzed to ascertain producibility
improvements. The use of preplied prepreg graphite-epoxy broadgoods and tapes
have been examined. The higher material costs can be nullified by the advantages
sustained through co-curing large assemblies which combine the skin with the
substructure thus minimizing assembly labor costs. Further reduction in labor
costs may be achieved through advanced winding of graphite-epoxy prepreg tapes in
an orthogrid or isogrid pattern. This concept is applicable to both fuselage
and wing structure.

Assessment of the manufacturing cost impact was based on the following:

e Baseline. - The baseline fuselage structure is conventional aluminum
skin, stringer, and frame construction. Stringer and frame spacing are
approximately 4.5 inches and 20 inches respectively. Fail-safe straps
run circumferentially between frames. The wing box is conventional skin
and stringer with built-up ribs and a front and rear spar. The balance
of the airframe structure is considered primarily conventional aluminum,
with steel, titanium and other materials employed where necessary such as
in the landing gear, heat zones, and radomes. Conventional fasteners and

joining methods are used throughout the airframe. Fasteners are wet-
installed.

e Simplified aluminum structure. - This fuselage concept is of aluminum
sandwich construction. Inner and outer aluminum skins are bended to a
syntactic core. Aluminum splice plates are bonded between skins for
longitudinal joining. Aluminum fail safe straps are bonded between
skins. The skins are assumed to be quarter panels. Aluminum stretch-
formed longerons are secondary bonded to the skins. Aluminum frames are
secondary bonded to the skins on 32 inch centers. Frames are attached to
the longerons with clips by squeeze riveting. Conventional fasteners are
wet installed. The rest of the airframe structure is the same as the
baseline. The use of bonding reduces the number of detail parts and

fasteners. This structural concept reduces the number of frames and fail-

safe straps required.

e Simplified composite structure. - This concept is an advanced ccmposite
sandwich structure. It is a cocured structure of skins, frames and
longcerons. The inner and outer face sheets of the skins are Gr-Ep with a
syntactic core. Fail-safe straps and longitudinal splice plates are
Gr-Ep. The skins are assumed to be quarter panels. The longerons are
Gr-Ep and B staged, roll formed and cut to length. The frames are Gr-Ep

105

PR e



on 32 inch centers. This concept reduced the number of parts and
facteners over the baseline, and the number of frames and fail-safe
straps are reduced. No clips are required for frame to longerons.
Although fewer fasteners are required, they will be primarily titanium
di-loks. Hole preparation and fastener installation are much more
sensitive. The wing is a Gr/E multispar concep:. Manufacturing cost
estimates were accomplished using the data which has been generated
during the NASA-Langley-—sponsored L-1011 composite fin program currently
underway at Lockheed.

e Orthogrid and isogrid composites. — Manufacturing cost impacts were
accomplished using the data currently being generated on Lockheedefunded
research programs for development of the orthogird and isogrid composite
structures. In summary, fabrication of these structures is accomplished
by use of an automated tape-laying machine to wind the skin and stringers
onto a reusable mandrel (tool) which is then inserted into a female mo'ld
with the entire assembly then cocured in an autoclave. One advantage of
this process is the ability to control tightly the structure contours and
surface. These manufacturing techniques have been successfully used to
produce test specimens, and continuing development funded by Lockheed 1is
proceeding to develop the techniques and equipment necessary for
fabrication of structural components similar in size to those required
for the short-haul aircraft.

6.1.4 Benefits. — Evaluation of the benefits to be gained by incorporation of
advanced structural concepts and materials into the baseline short-haul
30-passenger aircraft was accomplished using the ASSET synthesis program. Each
concept, previously described was analyzed separately from ASSET for impact on
structural weight, manufactucing cost, and maintenance/reliability aspects.
Analysis data were input to the ASSET weight and cost subroutines, and the
aircraft was resized to perform the baseline mission. Data, obtained from the
ASSET resizing and compared to like values for the baseline design, are
presented in table 14. Results indicate that the composite isogrid fuselage and
composite orthogrid wing design provide the greatest improvements in aircraft
technical and economic performance. Use of this structural concept provides a
potential benefit of about 23% reduction in aircraft structural cost. This
relates to approximately 117% reduction in aircraft total production cost and a
4% reduction in DOC at $1.00 per gallon fuel cost at the design range. In
addition a savings in block fuel for the desigr mission of 2.57% is attained.
These results indicate significant benefits are potentially available by
incorporation of the advanced structural concepts, particularly with the
orthogrid or isogrid concepts which, if subjected to the necessary development
programs, could be available in the 1985 to 1990 time frame.

Although evaluated in depth only for the 30 passenger aircraft, it is
expected that equivalent benefits may be attained for the 50-passenger baseline.
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TABLE 14. - 30 PAX SHORT~HAUL-ADVANCED STRUCTUKRE AND COMPOSITES

Isogrid
Simplified Simplified Orthogrid Fuselage
Aluminum Composite Compasite Orthogrid
Baselina Structure Structure Structure Wing Structure
Gross wt (Ib) 28 606 28 666 27 285 27456 27399
Empty wt (Ib) 18512 18 568 17 287 17 445 17392
Structure wt {Ib) 7831 7568 6776 6912 6 866
Fuselage 3645 3583 3156 3268 32g
Wing 2304 231 1815 1829 1825
Tail 458 460 353 357 355
Land Gear 1110 112 1069 1074 1072
Nacelle 413 413 383 384 389
Struct. Cost $794 850 $759 480 $709 010 $609 260 $609 880
Fuselage $417 740 $393 380 $385 430 $288 730 $289 960
Wing $198 190 $186 920 $162 840 $163970 $163 590
Tail $42 580 $42710 $35 320 $35 650 $35 540
Land Gear $65 660 $66 740 $63 960 $64 180 $64 100
Nacelle $70670 $70 740 $61 450 $56 740 $56 690
Total Devel, Cost* $162.2M $161.86M $150.97M $150.14M $149.79M
Total Procurement $3.705M $3.734Mm $3.559M $3.434M $3.432M
Cost
Flyaway Cost $4.14M $4.09M $3.89M $3.77m $3.77Im
Block Fuel (Ib) 2146 2146 2084 2087 2093
@ 600 n.mi.
DOC (c/ASM) 4.977 4.962 4.810 4.7713 4.769

@ $1.00/gal Fuel
& 600 n.mi.

*Development effort associated with establishing the technology readiness of advanced composites and automated
manufacturing processes are covered by in-house and contract funded R&D programs. Costs included here are
limited to those items peculiar to the specific design (mfg tooling, mandrels, and fixtures) — special toaling such

as automated tape laying machine and inspection equipment are assumed to be capital expenditures.
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6.2 Active Controls

Utilization of active control concepts, currently being developed for large
commercial aircraft such as the L-1011, can be used to advantage for the small,
short-haul aircraft. The short field performance required for the short-haul
aircraft results in wing loadings and aspect ratios which are unsuitable for
smooth rides in turbulence. Active flap systems can be utilized to provide gust
load alleviation during operation (other than approach) in gusty conditions. In
addition, the characteristics of the short-haul mission when combined with the
possibilities opened by the use of active controls lead to some unconventional
aircraft configurations that show certain advantages for this mission.

6.2.1 Ride quality improvement. - Extensive studies to :valuate passenger
ride quality in transport aircraft have been previously accomplished. One of
these studies (reference 6) shows that the pErcentage of satisfied passengers
exceeds Y07% for a wing loading over 54 1b/ft“. For thE short-haul aircraft,
selected for the study, with wing loadings of 80 1b/ft“, the inherent ride
quality will be superior to that currently experienced with commuter aircraft.

For the advanced technology short-haul aircraft, to enter service in the
post 1985 time frame, active controls concepts which are currently entering
service on Lockheed's L-1011 commercial aircraft can be used to further enhance
ride quality so that it is similar to that experienced on today's turbofan
transports. As depicted in figure 57, an adaptive flap, for gust load allevia-
tion, has buen incorporated as part of the high lift devices for the advanced
technology aircraft. The adaptive flap, which is a 20% chord plain flap nested
in a 30% chord Fowler flap, can be used for gust alleviation during climb and
cruise. Analysis of this flap system indicates that a C. MAX of 3.1, in the
landing condition with 42° flap deflection can be attained in lieu of a C, MAX
of 3.5 for the baseline configuration. Utilization of the adaptive flap system
on the 30 passenger aircraft results in a small penalty, when compared to the
baselige, to_meet the field length requirements of 1219 m (4000 ft) at sea level
and 32°C (90°F) conditions:

Adaptive Flap Baseline Flap

Take off gross weight 28 983 28 606

kg (1b)

Block fuel, kg (1lb) 2247 2146

* DOC - 1100 km (600 n.mi.) 5.068 4.977

* DOC - 184 km (100 n.mi.) 9.960 9.946

W/s 74.0 80.0

T/W 0.370 0.379

* - $1.00 per gallon fuel cost
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Analysis of the potential improvements in longitudinal ride qualities for
the advanced technology short-haul aircraft is in process. The analytical
results will be incorporated into the final submittal of this study report.

This analysis will involve two steps. The first step will be the
development of a longitudinal time history program with which to analyze the
effects of gust-alleviation devises on aircraft motion. The second step will be
to develop the control logic network that determines control surface reaction to
the aircraft disturbances.

The time history analysis program will be a three degree of freedom (pitch,
vertical, longitudinal) representation of the aircraft's motion. The program
will accept aerodynamic, propulsion and inertial data in any degree of
complexity required for the analysis. Vertical and horizontal gust inputs of
variable intensity and spectral characteristics will be applied to the aircraft
through the aerodynamic terms. The Dryden form of gust intensity and frequency
characteristics, which is representative of atmospheric conditions in clear air
turbulence, will be used for the evaluation.

Three control surfaces available for ride qualities modification are wing
spoilers, horizontal stabilizer and compound trailing—~edge flaps. Spoilers and
flaps will be used primarily to reduce the wing lift increment due to high
frequency gust inputs which occur above the aircraft's short period frequency.
The horizontal stabilizer will be used to attenuate the aircraft pitch response
to Jower frequency gusts and to compensate for pitching moments due to flaps or
spoilers.

Control system loglc development will involve selection of the aircraft
state measurements (vertical load factor, pitch rate, etc.) and the signal
shaping required in the control logic network. The number and kinds of inputs
to the controller will be evaluated with respect to system complexity and input
reliability and noise. Filtering and phasing of the input signals, as well as
optimization of system gains, will be main thrust of the evaluation.

Outputs from the analy.is program will be in the form of rms values of
perturbations in the state variables due to gusts. Optimization of the systems
and determination of relative merits of individual ccntrol surfaces for
gust-alleviation will involve minimization of these disturbances.

6.2.2 Aircraft configurations. — The characteristics of the short—-haul mission,
when combined with the possiblities opened by the use of active controls, lead
to some unconventional configurations that show certain advantages for this

mission. As previously iudicated, the 30-passenger airplane carries almost 1000
pounds of empty weight in additional cabin noise suppression material, while for
the 50-passenger airplane the penalty is 1500 pounds. As the propellers are the

primary source of noise, moving the propellers aft of the passenger cabin is an

immediate solution to the weight problem - providing it can be done efficiently.
This observation leads to the investigation of aft engine lifting tail airplanes

described in this section.
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The development of an advanced configuration follows the usual procedure of
a step-by-step departure from a known baseline airplane. This enables each
element of the final design to be separately evaluated and its impact on DOC and
fuel consumption separated from the other changes made. A basic premise is to
remove stability as a constraint in selecting the configuration features. Each
feature is incorporated for its possible improvement in DOC or fuel consumption
with the asumption that active controls will provide a solution to whatever
stability problems are involved. Once a desirable configuration has been
identified, the very real problems of mechanization of the necessary stability
provisions and of the reliability demanded of this system are then evaluated.

The various steps followed in implementing the general appreoach are:
® Remove the acoustic treatment

@ Relocate the propulsion system to the aft end of the airplane
e Incorporate a lifting tail
e Optimize the wing/&ail design

Each of these steps is discussed and the resulting configuration described.
A bricf description of some alternate configurations that were not found
suitable is also included.

6.2.2.1 Elimination of acoustic treatment: The benefits of the weight
saving represented by removing the acoustic treatment are available with no
configuration changes and no need to incorporate advanced technology, and this
therefore represents an attractive approach for those operators who are not
faced with the direct competition of improved propeller airplanes or turbofan
equipment. Applying the sensitivity factors for the 30-passenger baseline
airplane, the saving; in DOC and fuel at the 184 km (100 n.mi.) stage are each
4.4%; the savings at 1110 km (600 n.mi.) are 4% in DOC and 4.2% in fuel.

6.2.2.2 Aft-engine configuration: This configuration is developed to
evaluate the net effect of removing the propeller noise from the cabin by
locating the propellers aft of the pressure bulk-head, thereby eliminating the
need for the acoustic treatment. This airplane uses conventional technology
and stability margins. The airplane is balanced by simply moving the wing aft
to preserve the same c.g.~-MAC relationships as in the baseline, and preserving
the same wing characteristics of span, aspect ratio and wing loading. The
resulting arrangement is shown in figure 58.

The straightforward arrangement of tractor propellers mounted at the tips of
the horizontal stablizer results in a comnact configuration with adequate
propeller clearance in tail-down wing-down situations, a thrust line close to
the c.g., and a sturdy, direct load path to the fuselage. The aspect ratio of
the horizontal tail has been reduced from that of the baseline and the cross
section of the tail cone increased somewhat to accommodate the loads from the
propulsion system. Pusher installations are not attractive, primarily because
of the problems imposed by the tail wake with deflected control surfaces. The
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TABLE 15. - 30-PASSENGER SHORT-HAUL AFT ENGINE EVALUATION

Baseline Aft Engine A~%
w/s 80 80
W 0.379 0.379
AR 12 12
Takeoff gross wt. 28 606 27 997 -2.2%
Empty wt. (operating) 19499 18812 -3.6%
Wing area (f12) 358 350
Wing span {ft) 65.5 64.8
SHP/engine 2403 2352
Block Fuel - 600 n.mi. 2146 2218 +3.4%
Biock Fuel - 100 n.mi. 671 669 -0.03%
DOC ($1.00/gal) - 600 n.mi. 4.977 4,984 +1.1% |
DOC ($1.00/gal) - 100 n.mi. 9.946 9.849 -1.0% ]
TOFL (all engines) 3346 3351 j
TOFL (engine out) 3942 4000 i
LFL 3938 3937
Aircraft Flyaway Cost $4.14M $4.07M -24% . :
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TABLE 16. - 30~-PASSENGER SHORT-HAUL AFT ENGINE, LIFTING TAIL

Aft Engine,

Baseline Lifting Tail A%
w/s 80 85 -
™ 0.379 0.398 -
A/R 12 12 -
Takeoff gross wt 28 606 27 342 4.4%
Empty wt (operating) 19 499 18327 -6.0%
Wing area (ft2) 358 322 -
Wing span (ft) 65.5 62.1 -
SHP/engine 2403 2412 -
Block Fuel - 600 n.mi. 2146 2062 -3.9%
Block Fuel - 100 n.mi. 67 664 1.04%
DOC ($1.00/gal) - 600 n.mi 4977 4.869 -2.2%
DO0C {$1.00/gal) - 100 n.mi. 9.946 9.788 ~-1.6%
TGFL (all engine) 3346 3342 -
TOFL 3942 4000 -
LFL 3938 3969 -
Aircraft Flyaway Cost $4.14M $4.04M -24%
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pusher arrangement also results in a high thrust line and an ungainly structure
to obtain the necessary ground clearance.

As the c.g. has moved aft and the tail arm has decreased, the vertical tail
area required to maintain the same volume coefficient as the baseline, has been
increased. A single large vertical tail has its MAC far above the airplane
c.g., and to avoid the assocjiated rolling moment a twin tail arrangement is
used.

A major change to the configuration is the use of a low wing instead of a
high wing. This is done to avoid placing the propellers in the wing wake in
cruise and to provide a gap between the wing and horizontal stabilizer to reduce
the induced drag increment. The effect at high angles of attack where the
disturbed wing wake might impinge on the propellers will have to be carefully
investigated. The low wing provides a clean landing gear installation which
avolds the use of the pods, and as the gear and wing have moved to the aft end
of the cylindrical part of the fuselage, an adequate scrape angle is obtained
with a short landing gear. Chaages to the interior arrangement to relocate the
doors to the forward end of the fuselage are also required, as the aft wing
location and the propellers make the aft located doors impractical.

The integrated effects of these changes on significant weight, drag, fuel,
and cost factors are summarized in table 15. The gross takeoff weight of the
aft engine configuraticn is 609 1b or 2.2% lighter th:n the baseline. This
weight decrease is due to removal of the 950 1lb. of ac.ustic trextment weight
combined with a slight increase in wing wejight (elimination of load relief
provided by wing mounted engines) and a slight increase in tail weight (mounting
of engines on tail and resulting increase in tail down load and torsion). The
lift to drag ratio at the cruise conditions has decreased as well, as a result
of the increased trim drag.

06.2.2.3 Aft engine with lifting tail and active controls: A logical
progression from the aft engine configuration is one with a lifting tail.
Incorporation of the lifting tail concept provides the potential for reducing
the trim drag by reducing the 1ift requirement from the wing on a conventional
configuration. With an up-load on the tail the wing C. requirement is reduced,
which reduces the aircraft induced drag. The configuration for this aircraft is
depicted in figure 59 and is identical to the aft-engine configuration, except
the wing is moved forward to ensure that the horizontal tail load is always in
the up direction. Stability and control requirements are attained by using an
active control system for both the wing and tail to provide the necessary
control power for stall recovery, aircraft trim and power effects. The active
control system is assumed to incorporate sufficient reliability such that the
stability margins are always attained.

Sizing of the aft engine, lifting tail configuration was accomplished and
the results are indicated in table 16,

6.2.2.4 Aft engine +lus tandem wing plus active controls: The aft engine
arrangements, described previously, suffer from a short tail arm resulting from
the aft movement of the center of gravity. The tandem arrangement seeks to
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recover this penalty by using the full length of the fuselage to separate the
two lifting surfaces. Each surface is then proportioned to carry its share of
the load and a minimum of load redistribution is required to councer to c.g.
shifts. The configuration using this approach is shown in figure 60. The aft
wing has become the larger of the two, and as the wings have been proportioned
for balance rather than stability, the requirement of a complete active control
system is implied. A low wing position has been chosen for the forward surface
to minimize the induced drag in cruise. However, a high wing would be
attractive for the greater flexibility in ground access and in cabin
arrangement. A final choice will depend on a detailed study of the effect of
the forward wing wake on the aft wing and on the propulsion system.

The wings have been sized and the induced drag evaluated by the Lockheed
VORLAX procedure which accounts for the relative positions of the wing in plan
and elevation and for the sizes of the fuselages and the wings. To provide the
same loading capability as the baseline airplane, a c.g. travel of 20 inches
total is provided by the following prozedure:

e The same wing plan form used for the baseline airplane is preserved for

each of the wings of the tandem, that iz each wing has an aspect ratic of
12 and a taper ratio of 0.3,

e The wing areas are chosen to give each wing the same wing loading with a
c.g. in the mid position.

e The effect of the downwash of the forward wing on the aft wing in the
crulse position is evaluated by the VORLAX technique as follows. With
the c.g. in the mid position, and the flaps in the wup cruise position,
the incidence of the forward wing is set to develop the proper lift
coefficient with the fuselage reference line level and the incidence of
the aft wing is determined to maintain the trim. The results of these
calculations are shown in figure 61. The upper part of the figure shows
the lift coefficient on each wing referred to its own area. The cruise
points are marked by the vertical lines. The lower part of the figure
shows the incidence required of the aft wing to maintain trim at
various C. .. As the wings are to be fixed in position on the fuselage, a
mean angie of incidence for each is selected, and trim is acheived in
practice by adjusting the flaps on the two wings. Notice that the lift
coefficient for the total airplane, which is referred to the total wing
arva, is appreciably greater than the 1lift coefficient of each wing
working separately. The difference represents the sizeable contribution
of the relatively large fuselage. The induced drag of the resulting
configuration is shown on figure 62.

e The VORLAX technique is then applied to the landing condition with a
forward c.g. With the c.g. in the maximum forward position, the flap on
the forward wing is set at 30 degrees, and the deflection required of the
flap on the aft wing for trim is determined. The results are shown in
figure 63, which gives the lift coefficient on each wing, the airplane
lift coefficient, and the position of the aft flap as a function of angle
of attack on the fuselage reference line. As in cruise, tue fuselage
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Figure 61. - Tandem wing C

L and 1lift sharing trimmed.
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provides an appreciable increment in lift. The induced drag in this
landing configuration is shown oun figure 64.

e Landing with an aft c.g. is treated in a similar manner, the aft flap is
fixed at its high 1ift positon of 30 degrees and the flap on the forward
wing adjusted for trim as indicated in figure 65.

Using the airplane 1ift coefficients obtained in the above procedure, the
wings are sized to meet the required stall speed of 93 knots at a C o of 3.5
and the induced drag used in the ASSET program is matched te the in&uggd drag

calculated by VORLAX.
As the baseline airplane has the same fuselage as the tandem, one would
To insure that a

expect the baseline to also have appreciable fuselage lift.
valid comparison is obtained, the VORLAX technique is applied to the baseline
These calculations show

and the results are shown in figures 66 through 71.
relatively small differences between the wing C;, and the airplame C, in both
kne has appreciably less induced

cruise and landing; and, as expected, the basel
drag in cruise. The induced drag increment of the tandem over the baseline used
in the ASSET program is derived from these comparative calculations.

As the engines-out take—off is the critical performance requirement for the
30 passenger airplane a matrix of wing loadings and thrust-to-weight values was
Induced drag and weight

run on ASSET to select the minimum DOC combination.
being major factors, the combination of a graphite wing of aspect ratio 14 was

found to be slightly better than the aluminum wing with an aspect ratio of 12.
As shown, those combinations of low

The results are summarized in figure 72.
T/W and high W/S ‘hich have lower DOC's than the baseline do not meet the 4000
Only the airplane with the same wing i
i

foot engine-out take off requirement.
loading as the baseline meets the takeoff requirement and approaches the
baseline DOC; the concept appears better suited to types which are not
span-critical, e.g. executive or corporate aircraft.

6.3 Advanced Propulsion

e e

i

Concurrent with this study effort, advanced technology propulsion system

studies are being accomplished under direction of the NASA-lewis Research Center
These efforts are being accomplished by

iy o PRSI

as a part of the overall STAT program.
Detroit Diesel Allison, Garrett—~AiResearch, General Electric, and Hamilton

Standard and are concerned with the application of advanced technologies to

engine cycles for the post 1985 time frame as well as technology advances for
propellers in this same time frame. At initiation of this study by Lockheed,
information regarding baseline aircraft configurations, performance
characteristics, and sensitivity factors were transmitted to each of the above

Unfortunately, the progress of the engine studies has not been

participants.
sufficient to be useful for this study, and so an assessment of advanced
propulsion can be made only in terms of potential improvements projected by the

engine companies and Hamilton Standard for the pest 1985 time frame.

N BT g .
i s

R S

6.3.1 Engine cycles. — During the course of the NASA Lewis STAT propulsion
technology improvement studies it is expected that component efficiencies, new
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or improved materials, and higher overall pressure ratios and turbine inlet
temperatures will be evaluated to assess the impact on engine SFC, size, weight.
acquisition cost, and maintenance cost. General Electric has discussed several
different cycles of investigation during its STAT propulsion studies. Permuta-
tions of the following characteristics are being investigated. Overall pressure
ratios from 11.5 to 30; turbine inlet temperatures from 2250 to 2500 F; various
configurations such as conventional turboshaft, boosted turboshaft, 3-rotor
turboshaft and turbofan; single- and two-stage high pressure turbines.

Although the details of the engine cycle studies being conducted by Allison,
Airesearch, and General Electric are not yet completed, it is expected that
cycle variations similar tq those being included in the NASA-lewis-sponsored
Energy Efficient Engine (E”) program will apply. The E~ engine cycles
incorporate improvements in component efficiencies, use of new or improved
materials for lighter weight/higher strength and increasad temperature
capability, increased pressures, and improved performance retention. These
technology improvements are expected to he demonstrated by 1985, and assessment
of the benefits shows that approximately 12 to 15% reduction in SFC is available

In addition to the expected performance improvements, engine maintenance and
reliability are expected to improve. Recent studies conducted by Allison
addressed the maintenance problems which have been inherent with earlier
turboprop engines and also investigated design considerations to utilized for
future turboprops, so that maintenance cost would be at least comparable to
current turbofan engines. It is expected that these concepts will be included
in preliminary design evaluations of advanced technology STAT propulsion.

Airesearch has supplied preliminary information concerning its expected
technology improvements for both a 1985 derivative engine and a 1990 advanced
engine, as shown in table 17. It is recognized that these projections will
probably change during the course of the STAT propulsion study; however, the
assessment of the aircraft b nefits available with advanced engine cycles are
accomplished by resizing the 30 passenger and 50 passenger aircraft to include
these improvement factors.

6.3.2 Propeller - As previously described in Section 5.9.1, the propeller
selection for the 30 passenger, M 0.60, and 50 passenger, M 0.70 aircraft was
the Electra/P-3 propeller system. The propeller systems used on current
commuter type of aircraft are quite different in that they are characterized by
low activity factor, high camber, and low number of blades for good low speed
performance and low weight; however, these systems are limited to M 0.3 to M 0.4
due to significant compressibility losses at higher speed and are therefore not
applicable to the short haul aircraft under study.

Hamilton Standard is currently in the process of defining those advanced
technologies which would be applicable for an improved propeller for the post-
1985 time frame. Current analysis being conducted by Hamilton Standard for the
NASA STAT program is concerned with propeller improvements for the lower speed
(250 knot) aircraft with the result that these configurations will probably be

132

itk L i e e T A S e L sadiiiad e

D T L T Ty R R




G it 4 Ll i ik
A

TABLE 17. - STAT TECHNOLOGY IMPROVEMENT FACTORS

% Of
Baseline Value
1986 1990
Derivative Advanced
Technology Improvement Factors ! Engine Engine
SHP Shaft Horsepower - -
SFC Specific Fuel Cansumption at Normal Cruise,
10 000 ft, 260 kts, ISA 92 80
$/HP  Acquisition cost/hp \ 100 83
MC/FH Maintenance cost/flight hour 90 50
LB/HP  Weight/shaft horsepower 95 85
GGD Gas generator diameter, in. 92 92
GBD*  Gearbox diameter, in. 100 85
L Engine length, in. 90 90

very similar to Hamilton Standard current Model 14RF propeller. Since the
short-haul aircraft sclected by Lockheed for this study encompass higher cruise
speed capabilities, Hamilton Standard was queried as to applicable advanced
propeller configurations for the M 0.60 and M 0.70 aircraft.

30-passenger, M 0.60 aircraft: Advanced propeller configuration is assumed
to be a 6-bladed design, similar to the 6-bladed propfan design previously
supplied as part of the RECAT studies.

50-passenger, M 0.70 aircraft: Ten-bladed propfan design with swept blades,
similar to the 10-bladed propfan previously supplied during the RECAT studies.

Quantitative results were not supplied for these propeller designs for the
short~haul aircraft, however it is expected that performance levels and noise
characteristics (near field and far field) will be similar to those values
predicted for the propfan designs and will therefore enhance both the 30
passenger and 50 passenger short-haul aircraft included in this study.
Subsequent to definition of improved propeller characteristics by Hamilton
Standard for the NASA-LERC STAT prcgram, quantitative benefits for each of the
aircraft can be established.

6.3.3 Advanced propulsion benefits. - Assessment of the aircraft benefits by
incorporation of advanced propulsion was accomplished by use of the following
assumptions (note: this assessment may change subsequent to completion of the
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advanced propulsion studies being conducted by Allison, AiResearch, General
Electric and Hamilton Standard):

e Engine Cycle. - Reduce SFC, cuct (aquisition and maintenance) . weight and
envelope dimensions as shown previously in table 17.

e Propeller. - No quantification of benefits is included, since 4
optimization studies of propeller power loading versus efficiency versus
weight were not accomplished.

[t is expected that incorporation of the propfan (either 6-bladed or
lu-bladed) will result in 2 to 3% improvement in efficiency at M 0.6 and a 7 to
9% improvement at M 0.7, as indicated in figure 73, combined with higher power
loading (smaller propeller diameter), and less installed weight. 1In addition, a
new propeller will include the fiberglass spar-shell contruction, in lieu of
aluminum as currently used, with an additional weight and cost saving expected.

Assessment of the potential benefits with advanced engine cycles are
depicted in table 18 and indicate that significent advantages in DOC can be
dttained by the projected reductions in SFC, engine aquisition cost, and engine
maintenance cost.

6.4 High Lift Systems

As cruise speeds have increased, transport wing loadings have also been
driven up, and the baseline aircraft of this study follow this trend in response
to the M O.b0 and 0.70 requirements. The effect on wing area, and thus on
friction drag, is illustrated in figure 74 for the 28,600 pound 30-passenger
airplane. As the design point is near the "knee" it is evident that the
realization of worthwhile gains by developing improved high lift devices is
difficult; however, the combination of advanced aercdynamics and structural
techniques offers some promising answers. These are explained in this section,
and the limitations improved by the mechanical and configuration design problems
implicd are defined. As the configuration problems are largely the induced
drag-wing weight trades introduced by shrinking span or growing aspect ratio,
the effects of using increased area, which alleviate this problem are briefly
veviewed.

6.4.1 Conventional high lift devices. - Typical high 1lift devices, and their
respective Chqu attainable, and the wing characteristics resulting from their
usc are summarized in figure 75 for the 30 passsenger airplane. To maintain
take-off performance, the span is held constant and the reduced aspect ratio is
used to reduce wing weight. A minimum aspect ratio of 7.5 is used, as the
induced drag influcnce on fuel at 600 n.mi. becomes a factor at the lower wing
loadings. The effcects of wetted area, induced drag, and wing weight are traded
off by use of the sensitivities of Section 5, and the results summarized in
figure 76. While some improvement in DOC is indicated for systems slightly less
complex than that selected for the baseline, the fuel penalties at the design
cruise spceds are more significant. A similar study for the 50 passenger
airplane is shown in figure 77.
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TARLE 18. - ADVANCED PROPULSION BENEFITS - 30 PASSENGER

Baseline Advanced Propulsion A~%

W/S 80 80

™™ 0.379 0.379

AR 12 12

Taheoff gross wt 28 606 27 248 - 4.8%
Operating empty wt 19499 18 820 - 3.5%
Wing area (ft2) 358 341 - 4.7%
Wing span (ft) 65.5 63.9 - 2.4%
SHP/engine 2403 2289 - 4.7%
Block fuel - 600 n.mi. 2146 1679 -21.8%
Block fuel - 100 n.mi. 671 649 - 3.3%
DOC ($1.00/gal) - 600 n.mi. 4.977 4.473 -10.1%
DOC ($1.00/gal) - 100 n.mi. 9.946 9.592 - 4.6%
TOFL (all engine) 3346 3352

TOFL {eng. out) 3942 4000

LFL 3938 3937

Cruise L/D - 600 n.mi. 16.47 16.03

Cruise L/D - 100 n.mi. 10.54 10.53

Aircraft Flyaway Cost $4.14M $3.94 - 4.8%

136
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Slot Flap Slot Flap Flap & Slat
Baseline
CL 2.0 2.6 3.1 3.5
max
High
Lift CHORD %: SLAT - - - -
Basice FLAP 30 30 30
Data
SPAN %: SLAT - - - 87
FLAP 70 70 82 82
UNIT WT. PSF 3.0 4.5 5.55 5.55
WING AREA £t° 626 182 4Ok 358
)
AREA ft“: SLAT - - - L7
FLAP 131 101 99 88
SPAN 1t 68.5 65.5 65.5 65.5
30 u hl
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WING WI'. 1b 1934 1847 2010 2304
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Figure 75. - Conventional high 1ift wings.
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Figure 77. - Conventional high lift effects.
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6.4.2 Advanced high 1ift devices. - The combination of advanced aerodynamics
and materlal offers potential improvements in the CLmax available and in the
reduction of weight and complexity of the high lift 3&¥1ices. Several variants
are examined in this section to evaluate the tradeoffs of aerodynamic refinement
and mechanical complexity at wing loadings over 80 1b/ft“ for the design
mission. While details are proprietary, all of the concepts feature simple
links rather than tracks and rollers, have very smooth upper surfaces, and have
a form of variable camber to achieve the combination of cruise and low speed
performance. Just as the conventional devices can use lower aspect ratios to
save weight yet maintain low induced drag, the advanced systems are driven to
higher aspect ratios, and the use of composite primary structure as well as for
some members of the variable camber systems is considered. The characteristics
of each concept and the results of the ASSET evaluation are presented below.

CONCEPT 1: This concept employs an extreme change in camber to achieve a
C X of 5.0 while preserving the baseline contour for cruise. This is the
h%gﬁest CLmax considered, and also the heaviest.

CONCEPT 2: This concept uses the same basic principle as concept 1, but uses
a thicker section to simplify the high lift mechanization and to reduce the
weight penalty inherent in the higher aspect ratios. The thickness ratio of 217%
chosen for this comparison (compared to 16% for the baseline) imposes a cruise
drag penalty, and the Chmax is reduced to 4.5.

CONCEPT 3: This concept uses an entirely diffent mechanizaton than concepts

1 and 2 and is considerably simpler and lighter, however a Cimax °f 4.0 is
anticipated.

The concepts described above show the potential for significant benefits to
the small, short-haul aircraft with short-field performance requirements.

Further analyses to assess the benefits available by incorpora“ion of these
high-1lift devices into the baseline aircraft is proceeding and !/« cesults will
be included in the final submittal of this study report.

6.5 Advanced Systems

The forcing functions in this type of aircraft are the economic and
ecological factors. These two basic considerations dictate the selection of
high-energy-efficient engines and the selection of a secondary power system
(SPS) which has minimum impact on the airplanes fuel consumption, engine thrust
loss and other engine installation (drag) losses. It is also implicit in the
economic consideration, that such an SPS must have high reliability, low-

maintainability costs and, most of all, the viability to meet the diverse power
demands of the short-haul transport.

From preliminary studies it is evident that one of the major gains to be
made in the energy area is to remove the "customer” bleed-air demands on the
engine and return it to its basic role as a propulsor. Our proposed method of
achieving this is to use an electric-generator as the sole source of
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(mechanical) power extraction on each engine. Implied in this also is the fact
that a large generator would be necessary to power the all-electric airplane.
Typically, the cabin pressurization requirement alone can be in the range of 50
to 75 hp. Added to this, we have the typical loads of deicing, galley,
lighting, landing gear, miscellaneous actuator/motor loads etc.

The advanced aircraft power-generation system might therefore require
generators in the 75 to 120 kVA power range. However, these generators would
then be adequately well sized to perform the basic engine starting function,
albeit that this would require an onboard APU (and static power converter) to
provide self-sufficiency to the airplane. Unlike the large commercial
transports, which could depend upon external electric-power for starting, the
short-haul would be best served by internal electric power (an APU).

The following features should be included in an advanced short-haul
transport:
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Elimination of bleed air (except for engine deicing.)

Elimination of engine-driven hydraulic pumps and pressurized hydraulic
lines in the wings and pylons. Also, the elimination of leakage/
contamination problems.

The elimination of pneumatics for boot or hot wing deicing systems.
Simplification of accessory power provisions on the engines.

Reduction of engine frontal-area drag and the reduction of clutter in the
power-plant, caused by mounting of the accessories.

An advanced SPS design that will be sourced only by a multiredundant
electric power system. (Note, four-channel redundancy could be easily
furnished, even in a twin-engine airplane).

Electro-impulse deicing (on which Lockheed has proprietary information
and experience) it a novel method of reducing the high power-demands of
deicing systems.

Electro-mechanical stored-energy systems for short-time loads, such as
landing gear, spoilers, flaps, doors, etc.

A fly-by wire control system, for an airplane with active controls and
supercritical wings.

Advanced electric control system with:

- Automatic load management

- A prioritized load~shedding system.

-~ Current-limiting to eliminate many circuit-breakers, and reduce
smoke/fire hazards.

~ Solid-state equational-logic, for sophisticated circuit control.
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- An advanced hardwire contrcl system (AHCS) (using miniature-gage/mass-—
terminated system) to provide a viability normally associated with a
complex multiplex microprocesser system.

~ Wire programming to allow the customer to accommodate mission changes
and equipment updates, without costly wiring changes.

- quick-attach/detach modular panel designs.

¢ An SPS system that requires the minimum of ground support eguipment.
® A system that will be reliable, lightweight and efficient.

e A system in which the extensive design hours/test hours and maintenance

hours of separate electric, hydraulic and pneumatic systems will be
significantly minimized.

The short-haul transport is a good candidate for many advanced electrical
technology improvements, but, unlike the wide-bodied jets, it cannot afford the
design/development costs and complexity of a computer/multiplex system for
automatic load management and control. The Lockheed AHCS is unique, and it
offers the same degree of viability and wire weight reduction as the
sophisticated mux/processer system.

Landing gear systems, historically in the province of hydraulics, could be
well handled by electro-mechanical stored-energy systems, in which the elctric
motor could be down-sized from 15 or 25 hp to 2 or 3 hp. This, and other
technology, are available with relatively low technical risk.

As part of the NASA-Johnson Space Center Contract, NAS9-15863, entitled
"Application of Advanced Electrical/Electronic Technologies to Commercial
Aircraft”, several advuanced systems technologies are being investigated for the
baseline short-haul aircraft developed for this study. Those technologies being
investigated are depicted in table 19. To date, significant savings, as
indicated by the weight savings in figure 78, are projected for a large
commercial transport(L-10l1 type) and it is expectd that similar savings can be
projected (for selected advanced technologies) for the short-haul aircraft.
Since a detailed investigation of the benefits available with incorpoation of
advanced systems was not accomplished as part of this study, it is suggested
that the potential benefits being quantified under co~tract NAS9-15863 can be
used as the basis for future analytical and development raquirements. These
benefits, in terms of weight, cost (acquisition and operating), reliability, and
aircraft operational characteristics, for the short-haul aircraft will be
logical candidates for inclusion in future NASA STAT efforts.

6.6 Acoustics

6.6.1 Communi:y noise. - As previously described in Section 5.10, the
required commumnity noise levels for the baseline 30-passenger and 50-passenger
aircraft are attained with the exception that the sideline noise for the
50-passenger aircraft is 3dB higher than required with the propeller diameter
and tip speed selected. Adherence to the sideline noise level requirement for
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TABLE 19. - TECHNOLOGY APPLICABILITY

Large Transport
ATA Short Short
500 PAX Haul 50 Haul 30
(:) Conventional Technology X X X
(@ Digital FBW X T8O NA
@) mux+Q@ X X X
@ RLG Integrated Sensors +@ X NA NA-
@ Integrated Displays, FMS, ACS, ADC +@ X X X
@ All Electric Aircraft +@ X X X
() Al Etecrric Aircraft + Load " X X X
Management +

Fiber Optics X X X

the 50-passenger aircraft can be attained by: 1) increasing the propeller
diameter and reducing propeller tip speed (at the expense of increased aircraft
weight) or 2) 1incorporating an improved propeller (propfan). The Lockheed
approach was to not resize the 50-passenger aircraft and rely on incorporation
of the propfan into the advanced technology aircraft to meet the community noise
requirements as well as to provide a performance and cost benefit.

Incorporation of a 10-bladed propfan of 10.7 ft. diameter operating at 650
ft/sec tip speed into the 50-passenger, M 0.70 aircraft results in adherence to
the FAR 36-XYZ-8dB requirement, as indicated in figure 79.

6.6.2 Cabin noise. - Original estimates of the acoustic treatment mass
penalty required for the 30-passenger and 50-passenger aircraft were established
as 950 1b and 1500 1b respectively. These penalties were obtained by estimates
of the required sidewall surface density versus noise reduction obtained from
studies of other aircraft, and then multiplying the surface density by the ratio
of treatment area of the original aircraft compared to the present aircraft.

The treatment area is proportional to the product of fuselage diameter times
propeller diameter.

Subsequent to sizing of the baseline aircraft configurations, a detailed
study of cabin acoustic environment was accomplished using the actual fuselage
structure and propeller characteristics, primarily for the purpose of assessing
the acoustic treatment weight benefits inherent in the orthogrid or isogrid
composite structure. These studies indicated that the acoustic weight treatment
for the 3C-passenger aircraft was sufficient to attain the required 85dB OASPL
cabin noise level; however, the required treatment weight of the 50-passenger
aircraft was inadequate.
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Figure 79. - Sideline noise vs tip speed for 10 bladed
propfan (constant thrust).
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The 50-passenger aircraft, was analyzed using two types of baseline sidewall
structure (a) aliminum and (b) iscgrid composite fuselage construction. The
results are summarized in figure 80. The exterior noise level is shown as a
variable since several estimates are available, de, nding upon the operating
conditions assumed. The original Lockheed estimates were based upon an exterior
OASPL of 133 dB. This level is similar to that estimated for the Lockheed P-3
at altitudes between 10 000 and 20 000 ft at a Mach number of 0.5. This 1is
however, applicable only for helical tip Mach numbers of 0.90 or less.

According to a recent private communication from Hamilton Standard, a level as

high as 143 dB may be applicable at a cruise Mach number of 0.7 and a helical
tip Mach number of 0.97.

6.6.3 Discussicn of weight penalties:

6.6.3.1 Aluminum structure: - Using Lockheed's nominal estimate of 133 dB
for the external OASPL, 1605 kg (3538 1b) of treatment ,nass is required. The
treatment includes an interior trim panel of 73.0 kg/m“ (14.96 psf) with 5.1 cm
(2 in.) fiberglass blanket weighing 0.49 kg/m“ (0.10 psf). The spacing between

the double walls is 10.2 Em (4 in.). The penalty surface density in the peak
noise region is 81.5 kg/m“ (16.7 psf).

The above estimate is much higher than the original rough estimate, but it
may be more realistic. This value represents 8% of TOGW which 1s very severe,

but the requirement of 85 dB for OASPL is very stringent requirement for
propeller aircraft.

It is noted that double wall effect is not beneficial for the low blade
passage frequency (59 Hz) application, unlike previous studies which employed
8-bladed propfins having blade passage frequencies between 162 and 283 Hz. In
the present application the double wall resonant frequency 1is above the blade
passage frequency; therefore, the double wall effect is adverse, at the present
10.2 ca (4 in.) wall depth because commercial aircraft require an easily
maintainable, washable nonporous interior trim panel.

Detailed studies show that reducing the blade passage frequency at the
present 10.2 cm (4 in.) wall space is beneficial. This is because the blade
passage frequency is operating below the doubia wall resonant frequency.
Likewise, advanced stiffness—controlled outer wall design may prove to be
beneficial, as is indicated by the isogrid/composite results discussed below.

With regard to advanced propellers, it is noted that a 10-bladed propfan
with a diameter of 3.29m (10.7 ft) would require wmuch lower treatment penalties,
since the double wall effect for heavily treated sidewalls wnuld again be
advantageous. A typical blade passage frequency is 192 Hz for 10 blades at 3.29
m (10.7 ft) diameter and a tip speed of 201 m/sec (660 ft/sec). Also, the

10-bladed propfan is estimated to satisfy the required community noise levels
(FAR 36-XYZ minus 8 EPNdB).

6.6.3.2 Composite Isogrid Structure: The acoustical treatment mass
penalties for the composite/isogrid structure are considerably less than for the
aluminum design for this low blade passage frequency application. The present
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Figure 80. - Acoustical treatment penalties for 50 passenger aircraft.
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isogrid structure has small, light weight triangular panels whose natural
frequencies are high enough not to be affected by the first 10 propeller
harmonics. In this study the isogrid was analyzed ns an equivalent isotropic
consiruction. The baseline surface density of the isogrid structure ls 0.143
kg/m“ (0.70 psf) and the trim panel mass is varied for several outer wall mass
values to achieve an optimum double wall design. 1In this case as with the
aluminum, the baseline (minimum) outer wall mass was the optimum value and the
treatment mass increments were applied to the interior trim panel. The
estimated penalty mass for the nominal exterior noise OASPL of 133 dB is 576 kg
(1270 1b). The noise control improvement derived from the isogrid/composite is
a dramatic mass penalty reduction of 1029 kg (2268 1b) or 5.11 percent of TOGW.
The above results along with the usual strength design benefits and the
estimated manufacturing cost reductions make the composite isogrid or orthogrid
concepts extremely attractive and should be given high priority among the many
possible new technology alternatives being considered for STAT.

It is noted that the above results are by no means optimum designs. The
recent study for NASA Langley shows that deliberate additional stiffening is
especially efficient with composite orthogrid construction. A similar result
could be expected for the STAT program; however, an extensive parametric study
would be required, which would be tailored to the fnselage and propeller

characteristics envisioned for the STAT program.
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7. EVALUATION

In this section, evaluation of the potential benefits gained by
incorporation of advanced technologies into the baseline aircraft is discussed.
Also included is the advanced technology configuration for both the 30- and

50-passenger short-haul aircraft along with a comparison with the baseline
designs.

7.1 Advanced Technology Features

The following advanced technology features were selected for incorporation
into the short-haul aircraft:

e Isogrid fuselage structure combined with orthogrid structure for the wing
and empennage.

® Advanced propulsion including improved engine cycles and a propfan-type
propeller.

e Active controls for use with a gust alleviation flap and to provide the
required stability for an aft-mounted engine configuration with a lifting
tail.

® A curved windshield using light weight polycarbonate plastic for reduced
weight, drag, and manufacturing cost.

7.2 Advanced Technology Aircraft

General arrangement drawings of the 30-passenger and 50-passenger advanced
technology aircraft are included as figures 81 and 82. The fuselage diameter
used for the baseline aircraft is unchanged.

For the 30-passenger, short-haul, the high wing design of the baseline has
been changed to include a low wing with tail-mounted engines at the aft end of
the aircraft. Interior arrangement has been changed to provide cargo space
forward and a forward passenger entry door so that passenger loading/unloading
can be accomplished as far as possible from the propeller plane. Main landing
gear is retracted into the fuselage, eliminating the gearpods used for the
baseline (less drag), with the distance from ground to floor iidentical to the
baseline.

The 50-passenger aircraft is similar to the baseline design except that aft
tail-mounted engines have been included and the cargo compartment and passenger
doors have becn relocated forward.

7.2.1 Aircraft geometry. — Of the advanced technology aircraft evaluated during
this study, the most promising in terms of mission fuel savings and DOC
reductij~n, is the aft engine configuration with a lifting tail. The engines
were r.. Vo from the wing and placed at the tips of the horizontal stabilizers,
which “er. in turn enlarged and strengthened to handle the added weight. The
thickness ratio of the stabilizers was increased somewhat to provide the
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necessary extra strength. The baseline four-bladed propellers were replaced by
6-bladed propfan type propellers on the 30-passenger, and 10-bladed propfans on
the 50-passenger version. Advanced technology turboshaft engines were also
included. Twin vertical stabilizers were added, mounted on each engine nacelle,
instead of the single control fin on the baseline. On the 30-passsenger version
the wing was moved from the top of the cabin to beneath the floor and several
feet aft. On the 50-passenger, the wing was simply moved aft several feet. On
both versions the wing area is decreased, and the main landing gear is mounted
on the rear spar of the wing and retracted inward into the fuselage.

The interior arrangement was also changed as a result of moving the propul-
sion aft. The cargo compartment and main passenger entry door were moved to the
front, immediately aft of the flight deck to allow safe passage of passengers
and cargo without engine shutdown. The cabin floor height of the 30-passenger
was unchanged, while the 50-passenger floor height was reduced, since prop-
ground clearance was no longer a factor. The flat-pans windshields were
replaced by curved, wrap-around types constructed of polycarbonate plastics.

Construction of the airframe was also changed frow aluminum bulkheads,
stringers, and stressed skin to graphite composite isogrid construction on the
fuselage and orthogrid composite construction on the wings and empennage.
Material costs were increased to reflect utilization of composites.

Several advantages of this configuration are significantly noteworthy at the
outset. First, since the prop discs are located behind the cabin, and thus the
tip noise no longer impinges upon the cabin walls, the acoustic treatment weight
penalty is removed. Also, the propfans offer reduced noise and increased
propulsive efficiency at the high subsonic cruise speeds. The vertical
stabilizers are located directly aft of the props, which 1in turn provide more
airflow over them and thus greater control effectiveness during single engine
operations. Also the engines are mounted closer to the aircraft centerline
which reduces asymmetrical power yawing moments with one engine out.

An important concept of this configuration is the lifi: ‘g tail feature. The
forward c.g. limit of the aircraft is 55% MAC, which is much further aft than
the aft limit of the baseline. Because the c.g. is behind the wing aerodynamic
center, the horizontal tail provides a percentage of 1ift, rather than a down-
force to offset the pitching moment of the wing which is normally encountered on
a conventional configuration; however, this configuration is statically unsta-
ble, and so active controls are included to counteract associated undesirable
control tendencies. The end result 1is that for equivalent field performance,
the lifting tail configuration requires a smaller wing than the baseline con-
figuration, and offers comparable cruise performance with less power required.

The graphite composite construction offers significent savings in DOC and
aircraft cost and provides an airframe of equal strength but less weight than
aluminum contruction. The surface finish is smoother and will hold its contour
better than standard aluminum construction. Oilcanning normally associated with
aluminum structure is eliminated, and the rivetless surface of the composites
offers potential improvements in skin friction and parasitic drag. Improvement
in aircraft drag, for composites; was not included in the performance analysis.
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Because of the surface smoothness and consistency (without rivets) of
graphite composite construction, a reduction in wing drag is possible through
extended "natural” laminar flow. With a specially designed airfoil that can
maintain a favorable boundary layer pressure gradient, laminar flow can extend
over a much longer length of chord before it trips to higher-drag turbulent
flow, and thus a reduction in wing drag is realized. The laminar flow is termed
“natural” because no direct boundary layer control (i.e., suction, blowing,
slats, slots, etc.) 1s employed; the wing is clean. The drawback is that the
wing in the area of anticipated laminar flow must be virtually free of surface
imper fection and roughness, or even skin ripples. The graphite composite wing
meets the requirements.

The wings incorporate full-span adaptive flaps with gust load alleviation
capabilities. The adaptive flaps are nested in the aft portion of the main
flap, and are actuated by hingeline—axis electric rotary actlators. They are
controlled by the pilot and can be deflected to provide the optimum camber
airfoil for certain flight regimes such as first and second segment climb,
cruise, and descents. These flaps also perform gust load alleviation as a means
of direct 1lift control by deflecting up or down to offset updrafts and
downdrafts. The active control system coupled with accelerometers automatically
deflects the flaps. The primary intent of this system is to provide a more
comfortable ride for the passengers. This is a particularly welcome feature on
a low wingloading aircraft which flies at low altitudes and is subject to higher
incidence of turbulence.

7.3. Advanced Technology Benefits

7.3.1 Advanced structures and materials. - The benefits in aircraft

performance and economics by incorporation of an isogrid composite fuselage and
orthogrid composite wing and empennage, as compared to the base 30-passenger and
50-passenger short-haul aircraft, are presented in table 20. These results show
that significent benefits in terms of aircraft empty weight reduction, savings
in DOC, and total aircraft cost savings can be expected with the composite
structure selected. As a part of this assessment, simplified structural
concepts using conventional aluminum and advanced composites, as described in
Section 6.2, were evaluated. Those results are shown in table 21 and indicate
that the greatest benefits are available with the isogrid composite fuselage and
orthogrid composite wing and empennage.

An additional potential benefit with the composite orthogrid wing and
empennage, although not quantified in this study, is the capability to control
closely airfoil contour and surface finish due to the manufacturing process
involved. This control will tend to enhance wing aerodynamic characteristics
toward that of natural laminar flow. As described in Section 6.7, the use of
the isogrid fuselage concept provides a potential added benefit in that the
amount of acoustic weight treatment required for a cabin interior noise level of
85 OASPL is significantly reduced.

7.3.2 Active controls. - The concept of incorporating active controls into the
short—haul aircraft has not been quantified in terms of benefits to be gained.
Active control systems are required to enable incorporation of an adaptive flap
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TABLE 20. -~ ADVANCED STRUCTURES AND MATERIALS BENEFITS

(DOC AT $1.00/GAL FUEL)

30 Passenger 50 Passenger

Baseline Adv. Composites A~% Baseline Adv. Composites A~%

E Takeoff Gross Weight 28 606 27 399 4.2 4042] 38 255 -5.4
: Operating Empty Wt 19499 18 377 5.8 26 185 24 155 -1.6
Block Fuel — 600 nm 2146 2092 -2.5 2816 2720 -3.4

Block Fuel — 100 nm 6N 649 -3.3 933 903 -3.2

00C - 600 nm 4977 4,767 4.2 3.759 3.544 5.7

00C - 100 nm 9.946 9.509 4.4 7.605 7.380 1.7

Flyaway Cost $4.14M $3.77IM 8.9 $5.50M $4.89M -10.9

TABLE 21. - ADVANCED STRUCTURES AND MATERIALS SAVINGS
30 PASSENGER AIRCRAFT é
(DOC AT $1.00/GAL FUEL)

Baseline Config 1 Config 2 Config 3 Config 4 :
Takeoff Gross Weight Base +0.2% -4.6% -4.0% 4.2% :
Manufacturers Empty Weight Base +0.3% 6.6% 5.8% 6.0% !
Structural Weight Base +0.6% -13.5% 11.7% -12.3% ]
Fuselage Weight Base +1.1% -11.0% -7.84; -8.9% ]
Wing Weight Base +0.3% -21.2% -20.6% -20.8% :
Tail Weight Base 0 -23.0% -22.1% -22.5%
Structural Cost Base 4.4% -10.8% -23.4% -23.3%
Flyaway Cost Base -1.2% -6.0% -8.9% -8.9%
Block Fuel — 600 nm Base +0.1% 2.7% -2.4% -2 1‘
DOC - 600 nm Base 0.3% 3.4% 4.1% 4.2% ;
— 3
Configurations: Baseline ~ Frame/Stringer Fuse and Muiti-Rib Wing — Aiuminum 1
1 — Longeron Fuse and Multi-Spar Wing — Aluminum q
2 — Longeron Fuse and Multi-Spar Wing — Composites
3 — Orthogrid Fuse and Orthogrid Wing — Composites ;

4 — Isogrid Fuse and Orthogrid Wing — Composites
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system, to enhance the ride quality of the aircraft at low altitudes in
turbulence, and to provide the necessary stability and control characteristics
of the aft engine and tandem wing configurations previously described. During
the ASSET evaluations accomplished for the aircraft configurations with active
controls, appropriate weights and cost data were included for the active control
systems and are reflected in aircraft technical and economic performance
characteristics.

7.3.3 Advanced propulsion. - Incorporation of advanced propulsion concepts,
based on data supplied by AiResearch, as described in 6.3, provide the largest
single benefit, in terms of fuel savings and DOC reductions, of any of the
advanced technology items. As indicated in table 22, block fuel savings of
approximately 22% and DOC reductions of approximately 10%Z for the 600 n.mi.
design mission are available with incorporation of an advanced technology, 1990
time frame engine. These projected savings are not suprising, since the
current generation of turboprop engines has not been optimized for fuel or cost
efficiency and reflects a technology base which is significantly behind that of
the current turbofans. It can be expected that,incorporation of the same
technology base that is currently used in the E~ turbofan engines will provide
the turboprop performance improvement factors established by AiResearch.

TABLE 22. - ADVANCED PROPULSION BENEFITS

(DOC AT $1.00/GAL FUEL)

30 Passenger 50 Passenger

Baseline Adv Propulsion A~% Baseline Adv Propulsion A~%
Takeoff Gross Weight 28 606 27 248 4.8 40427 38473 4.8
Operating Empty Weight 19 499 18 820 3.5 26 156 25 155 -3.8
Block Fuel — 600 nm 2146 1679 -21.8 2816 2194 -22.1
Block Fuel — 100 nm 671 518 -22.9 933 719 -22.9
DOC - 600 nm 4977 4.473 101 3.759 3.254 -13.4
DOC — 100 nm 8.946 8.940 -10.1 7.505 6.402 -14.7
Flyaway Cost $4.14M $3.94M 4.8 $5.50M $56.20M 5.5

7.3.4 Alternate configurations. - Several alternate configurations for the
30-passenger aircraft were evaluated. These configurations included mounting of
the engines at the aft end of the aircraft, incorporation of a lifting tail, and
a tandem wing configuration. As shown in Section 6.3.2.4, the tandem wing
configuration does not indicate a significant benefit in terms of fuel consumed
or DOC over the baseline configuration. Evaluation of the results obtained with
the aft engine configuratiors, both conventional and lifting tail, indicate an
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advantage over the baseline in terms of block fuel and DOC. One of the primary
considerations for the aft engine configuration is to eliminate or minimize the
amount of acoustic weight treatment required for cabin interior noise levels.
This configuration was deemed advantageous not only for the DOC benefit but from
the standpoint of the ability to eliminate the uncertainty of acoustic weight

treatment required. The advantages and disadvantages of a lifting tail concept,
with aft engines, over the baseline are:

e Relocation uf engines to aft end

Remove acoustic weight treatment requirements and uncertainties.

Provide Aerodynamically "clean"” wing with possibility of natural
laminar flow advantages.

e Aerodynamics

- Reduced trim drag

- Wing operates at lower CL’ less induced drag.

® Weights

Lighter wing, because of reduced 1ift requirement.

Acoustic treatment weight eliminated.

Horizontal tail is strengthened to carry engines and other loads - net
weight increase for tail.

Active controls required - added weight.

e Controls

Control power for stall recovery, trim, and power effects increase
over baseline.

The results discussed above indicate selection of the aft engine, lifting
tail configuration for the 30-passenger short-haul aircraft will be
advantageous. Although not quantified for the 50-passenger aircraft, it is
expected that similar results would be obtained.

Table 23 provides a summary performance characteristics obtained for each of
the configurations evaluated.

-

7.3.5 Combined benefits of advanced technology. ~ Each baseline aircraft was
resized, using the ASSET program, to incorporate various combinations of
advanced technologies to evaluate the benefits in terms of DOC at both the
design range and the 184 km (100 n.mi.) stage length. The results for the
30-passenger aircraft are shown in table 24 and indicate that the following
advanced technologies and aircraft configuration provide the greatest benefits
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TABLE 24, -~ ADVANCED TECHNOLOGY AIRCRAFT BENEFITS

30 PASSENGER AIRCRAFT

E,' (DOC AT $1.00/GAL FUEL)

Baseline Adv. Techn, Benefits
Takeoff Gross Weight 28 606 24 931 -12.8%
Operating Empty Weight 19 499 16 292 -16.5%
Wing Ares, ft 358 312 12.8%
Engine Power, shp 2403 2094 -13%
Block Fuel — 600 n.mi, 2146 1672 -26.7%
Block Fuel — 100 n.mi. 67 496 -26.1%
DOC - 600 n.mi. 4.977 4.197 -18.7%
D0C - 100 n.mi. 9,946 8.350 -16%
Flyaway Cost $4.14M $3.50M -15%

in terms of DOC at the 184 km (100 n.mi.) stage length, which is the criteria
established at initiation of this study:

0o Advanced technologies

- Isogrid composite fuselage and orthogrid composite wing and empannage.
- Advanced engine cycles and improved propeller (6~bladed for the
30-passenger and 10-bladed for the 50-passenger).

— Active controls for gust alleviation and relaxed static stability.

o Configuration

Aft Engines

Lifting tail with aft c.g. for the aircraft

¢
1
3
3
|

Adaptive flap system

- Low wing design for both aircraft
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8. CONCLUSIONS AND RECOMMENDATION FOR TECHNOLOGY DEVELOPMENT
AND FUTURE STUDY EMPHASIS

The results of this study indicate that there is the potential for
significant benefits, in short-haul aircraft performance and economics,
available by development and future incorporation of selected advanced
technologies. The use of advanced composites and improved structural
arrangement for aircraft primary structure, advanced engine cycles and improved
propellers, and active controls systems provides significant benefits when
compared to a baseline, current technology, short-haul aircraft. These
technologies, when combined with an aft mounted engine, lifting tail
configuration yield the following benefits:

30 PASSENGER AIRCRAFT

600 n.mi. 100 n.mi.
® Block fuel reduction 25% 267%
e DOC Savings 15% 16%

($1.00/Gal fuel)
o 15% reduction in aircraft acquisition cost.

50 PASSENGER AIRCRAFT

600 n.mi. 100 n.mi.
® Block fuel reduction 24.6% 247%
e DOC Savings 187% 18%

($1.00/Gal fuel)

e 167 reduction in aircraft acquisition cost.

Of particular interest is the potential reduction in aircraft acquisition
cost, primarily by use of advanced structural arrangement and composite
materials. For this study, it was assumed that the development effort
associated with establishing the technology readiness of advanced composites and
the automated manufacturing processes would be accomplished by in-house and
contract funded research and development programs. The development costs
included in the short-haul aircraft are therefore limited to those items peculiar
to the specific design (i.e., manuiucturing tooling, mandrels, and fixtures).
Specialized tooling such as the automated tape laying machine and inspection
equipment were asnumed to be capital expenditures and are not included in the
short-haul development costs.
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The use of an aft-mounted engine configuration provides the potential of
minimizing the engine/wing integration concerns and utilizing "natural" laminar
flow airfoils for the wing. Also, the concerns about the amount of fuselage
weight treatment required to zttain an acceptable cabin interior noise level are
minimized by placement of the engines aft of the passenger cabin. Aft-mounted
engines do, however, require additional consideration for aircraft control and

stability and the effects of propeller slipstream.
Future Research and Technology

There are several areas of advanced technologies which require further
effort to provide the techinology readiness for incorporation into the next
generation of small, short-haul transports.

e Structures

Perform design-analysis, fabrication, test, and evaluation of isogrid
composite fuselage and orthogrid composite wing and empennage designs.
Conduct a series of element tests to evaluate the basic design features:
(1) coupon tests to establish the tension, compression and shear
properties of the geodesic bar element without the skin, (2) element
tests to evaluate the tension, compression, shear and fatigue properties
of the skin and stiffener.

Conduct subcomponent tests of representative panels to verify the basic
strength and durability of the designs: (1) isogrid fuselage side shell

and (2) orthogrid wing surface panel.

° Progulsion

- Develop improved turboprop engine cycles in the 2000 to 5000 shp
rgnge. Technologies currently being developed for the NASA sponsored
E” turbofan engine cycles should be considered if applicable.

- Incorporate maintenance improvements into advanced turboprop engines
such as modularization of components and low cost on-board engine

diagnostic systems.

- 1Investigate use of integrated engine and flight control systems for
improved fuel management.

- Develop improved, more highly loaded, lightweight, quiet, and
efficient propellers for the advanced engine cycles.

e Aerodynamics

- Construct powered nacelle wind tunnel model of advanced technology 30
to 50 passenger configurations for analysis of stability and control
characteristics with aft-mounted engines. This model would also be
used to determine cabin noise level due to supersonic prop—tip speeds.
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Refine and develop a gust alleviation flap system which would offer
the performance of a full translation Fowler yet still be effective as
a gust load alleviating device. Analytic methods could be used to
size the gust flap chord according to control power required. Then an
aircraft could be modified to demonstration the viability and effec-
tiveness of the devices for improvement of passenger ride comfort.

Determine the feasibility, practicality and necessary design criteria
of relaxed static stability, aft c.g., for aircraft of this size.

Once again an aircraft could be used to determine performance
increases and possible airframe modifications such as reduced wing and
tail areas. A stability augmentation system would be required to
induce artificial stability, but c.g. could be easily moved aft by
weight shifting.

° sttems

Investigate incorporation of all-electric secondary power systems and
environmental control system designs for the short-haul transport
application.

Study incorporation of advanced avionics systems for improved
all-weather capability.

Investigate improved anti-ice or deicing systems.

e Noise

Develop parametric data for acoustic treamtment mass versus cabin
noise reduction for short-haul transport applications.

Perform laboratory demonstration of noise reduction desigus on
conventional fuselage structure.

Perform acoustic tests on an advanced composite isogrid cylindrical
section representative cf an advanced technology fuselage.
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APPENDIX

ECONOMIC ANALYSIS-SHORT-HAUL AIRCRAFT

CONTRACT NAS2-1026k4

Feb.uary 1, 1980

LOCKHEED~CALIFORNIA COMPANY
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COST ANALYSIS - SHORT HAUL AIRCRAFT

The cost analysis for the short haul aircreft is an attempt at arriving
at & realistic DOC for aircraft designed specifically for the short haul mer-
ket. The approach is to examine available CAB data on aircraft currently
being operated in the short haul market and relate that experience to the

new-design 30 and 50 passenger aircraft.

The first step in the analysis is to establish guidelines and cost
ground rules. Table 1 provides the genersl guidelines thet are used and
Table 2 provides specific guidelines and factors. The factors in Table 2
have been established by NASA from data received from each contractor
(Cessna, General Dynamics, and Lockheed) and a survey of data from the

commuter and local service operators., These cost factors are provided to

T O

maintain consistency between the three contractors and provide costs that
reflect current experience. The additional analysis required to complete
the DOC estimate is that dealing with depreciation and maintenance. The

cost drivers in depieciation are depreciation period end aircraft price.

The NASA survey indiceted that 12 years is typical for commuter and
local airline aircraft. There is reacon to believe that this time might
be extended to values approaching the current wide body time period of
16 years. The reason is that for this study the aircraft is designed
specifically for this market and would be designed for a longer life than
the aircraft currently in use. In many cases the aircraft currently in use
for the short haul me~ket are used aircraft obtained from the long haul

operators or are business type aircraft which are not designed for the

rigors of short haul operations. Tre cost tradeoffs and final baseline
aircraft selection is based on the 12 year depreciatioh period but the 3

impact of a lonser period due to the design criteria is also examined. i
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TABLE 1. COST ANALYSIS

1. DOC IS USED FOR OPTIMIZATION CRITERIA.

2. IOC AND ROI ARE NOT CONSIDERED FOR THIS STUDY.

3. DOC CALCULATED BY ATA METHOD (MODIFIED).

L. DOC FACTORS PROVIDED BY NASA - AS DETERMINED FROM

ANALYSIS OF COMMUTER OPERATIONS.

5. ENGINE MAINTENANCE COST DETERMINED FROM DATA SUPPLIED

BY ENGINE MANUFACTURERES.

6. DEVELOPMENT AND PRODUCTION COST FOR THE BASELINE AIR-

CRAFT BASED ON EXISTING TECHNOLOGY.

7. DEVELOPMENT COST IS AMORTIZED INTO PRICE OF AIRCRAFT.

8. THE PRODUCTION COST IS BASED ON A PRODUCTION QUANTITY

OF 250 AIRCRAFT AND A PRODUCTION RATE OF 5 AIRCRAFT
PER MONTH.

TABLE 2. COST GROUND RULES (NASA)

1979 DOLLARS
CREW COST 2.5 x SEATS

30 PAX = 75 $/BLK HR
50 PAX = 125 $/BLK HR

MAINTENANCE LABOR AND BURDEN

MAINTENANCE LABOR $10/HR.
MAINTENANCE BURDEN 80% OF LABOR

BINCK TIME = FLIGHT TIME + 10 MINUTES
INSURANCE RATE 1.5% OF AIRCRAFT PRICE
SPARES % = .2 X SEATS +2.0

30 PAX = 8%
50 PAX - 12%

DEPRECIATION + [(AIRCRAFT PRICE + SPARES)*(1-.15)] /12

ANNUAT, UTILIZATION 2800 HOURS -

ENGINE MAINTENANCE C0OS: = .2L3(SHP)
PROP MAINTENANCE = 4.15 $(3LK HR)

0.66
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The price of the aircraft must also be realistic to provide an accurate esti-
mate of the depreciation cost. The primary elements of cost for the aircraft
are shown in Figure 1. The airframe labor and material cost ineluding the
associated sustaining, Q/A, etc. comprises approximately 79% of the total
cost. OSince the R&D is generally recouped in the price of the airplane it
is also included. The most efficient way to reduce the pro-rate share of
R&D is to sell large quantities of the aircraft. The quentity assumed for

the study is 250, but from all indication this may be low.

The curves in Figure 2 illustrate the relationship between quantity and
cost with the difference noted between quantity 250 and 500. Engines and

avionics are off-the-shelf buys and are constant cost at all quantities.

The question isj; how accurate is the price estimate? The price for
current jet and turboprop aircraft is used as a guideline for checking the
accuracy of the price estimate for the 30 and 50 passenger short haul air-
craft. Figure 3 shows the plot points for various airecraft in terms of
empty weight and aircraft price. In general there is a consistant trend of
price for pressurized aircraft, A lower trend line can be estimated for
unpressurized aircraft with low cruise speeds. Note that the price for the
30 and 50 passenger aircraft are slightly above the trend line for pressurized
turboprop and turbojet aircraft. The guideline as stated in Table 1 is
that the short haul aircraft incorporates the best of the existing technology
and would have features that are more advanced than some of the aircraft shown
in Figure 3; and would have a commensurate cost. In Figure 4 the comparison
is in terms of $/LB of weight empty. In terms of $/LB of weight empty the
trend exhibits the sizing relationship; the larger the aircraft the lower the
$/LB. The relationship of the short haul aircraft to the tre=d line is the
same as in Figure 3 for pressurized aircraft. The EMB-110 is currently

unpressurized but will be offered as a pressurized aircraft in the future.

Another attempt at correlating the cost estimate for the short haul with
current aircraft was to examine the cost in terms of $/seat (see Figure 5
and Table 3). This comparison is not as conclusive as the others. If the
long range high speed business jets are excluded (No.'s 17, 11, 1k, 5 & 16)

there appears to be a consistancy in the cost per seat at approximately
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SUSTAINING,Q/A,
ETC (16.6%)

/

Figure ..

/
LABOR / MATERIAL
(28.5%) / (17.5%)
/
\ /
R&D PER A/C
(14.2%)

30 PASS. SHORT HAUL

/

/

/
AIRFRAME }46%)

ENGINES

(16.6%) \

\

PROD TOOL. (1.6%)
PROD DEV (1.2%)
AVIONICS (3.8%)

Production Cost Breakdown
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1979 DOLLARS
100
. 747-2000 |
L1011-600 1747-1008
A-30084 <747.5P
A-300B2 b DC:10-10
767-200 =" '|'1 o3
~7o.7-3zpa)c
DC.9-80 - — 757-100
~— 727200
10 CHALLENGER Fr=—DC-9-60
2 N LTI 737-200
5] AN
S O— T
= L—-50PAX
s 30 PAX DHC-7
@ LJ56 ] ~F-27
- s LTTO /
E Sll(YVIAN\ N Z
w LJ25D -
3 ‘Lizd——L £-~s03-3o
z JETSTREAM |—> (l:-99
c METRO Il 7
< 1.0 — ARAVA
EMB
7
1 10 100 1000
EMPTY WEIGHT LBS — 1000
Figure 3. Aircraft Price vs Empty Weight - 1979 Dollars
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TABLE 3. AIRCRAFT PRICE V3.

NUMBER OF SEATS

.....

ENGINE NUMBER FLYAWAY PRICE EMPTY
TYPE AIRCRAFT OF SEATS PRICE PER SEAT WEIGHT
1 T.P. BEECH C-99 15 1.015 67,667 5TT7
T.P. BEECH 1300 13 1.015 78,000
2 T.P BEECH 1900 19 1.45 76,315 8400
3 T.P. BEECH KING AIR 8-15 1.15 14k ,000/ 437
76,670
L RiCIP, CESSNA 402 9 .22 2L, 4hY 390k
CESSNA TITAN 11 .30 27,272
5 T,F CESSNA CITATION 3 10-15 3.3 330,000/ 9325
220,000
6 T.P DHC-6 19 .95 50,000 6878
7 T.P DHC-T 50 L, =5 90,000/ 26200
5.5 110,000
g8 m.p SHORTS SD3-30 30 1.8 60,000 1Lk600
9 T.P METRO 2 19 1.25 65,790 7450
10 T.P. JETSTREAM 31 18 1.30 72,222 7606
11 T.F. CHALLENGER 11-1h 6.5 590,000/ 15085
CL-600 L6k, 000
12 T.P. F-27-6C0 LL-56 4.25 96,590/ 25990
75,900
13 0.F LEARJET 55 10 3.23 323,000 10216
174
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TABLE 3. AIRCRAFT PRICE VS. NUMBER OF SEATS (CONTINUED)
ENGINE NUMBER FLYAWAY PRICE EMPTY
TYPE AIRCRAFT CF SEATS PRICE PER SEAT WEIGHT
o —“1
1L T.F, MU DIAMOND 1 7 1.98 282,857 S LI
15 T.P. GULFSTREAM 1 32 3.5 109,375 23600
16 T.F. WESTWIND 1124 10 2,40 240,000 12786
17 T.F. FALCON 50 10-12 8~ 800,000/ 198L0
9.0 900,000
T,P CAC-100 Lo-Llk 2.60 65,000/
18 . p, EMB-110 16 1.10 68,750 7324
19 T.F Th7-200C L2 48.6 109,950 | 386800
20 T.F. DC-10-10 250-380 32.6 130,000/ | 2k127h
85,790
21 T.F. A-300Bk4 345 28,62 82,956 194000
22 T.F. 727-200 134-189 13.5 100,000/ | 100000
71,400
23 T.F. DC-9-50 114 10.6 92,980 64900
oL DC-9-80 137 15.0 109,490 79757
25 T.F, 737-200 115-130 9.7 84,350/ 61000
74,600
26 T.V 30 PAY SHORT HAUL 30 L,14 138,000 18512
27 T.P. 50 PAX 50 5.k 108,000 25034
175
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$100,000/seat; with a spread between 70,000 and 120,000 $/seat. The
spread in cost shown for each data point is due to the number of seats that
may be placed in each aircraft. The type of aircraft that corresponds to
each data point is designated by the information in Table 3.

Another approash to verifying the production cost is illuctrated
in Table 4. In “his approach the airframe and systems productiou cost is
determined by two alternative cost models and compared to the results
obtained from the ASSET program. One of the models used is a recent
development by the Air Force(l). This model is to be used in evaluating
advanced systems and provide total life cycle cost. The model was developed
by urumman Aircraft for the Air Force Dynamic Lab. and is to the same

approximate level of detail as the group weights statement.

The Air Force model is higher in structure cost than the NASA model or
SSET but lower than both the other models in systems cost., It is not

unlikely that the Air Force model would j redict systems costs that would
not be consistent with ASSET or the NASA model since the date base is so much
different. The data base for the Air Force model is primarily historical
datu for fighter aircraft whereas the data base for the NASA model(e) and
ACcCrl is transport aircraft. The inputs to the ASSET model are derived for
the type of aircraft being evaluated and in this case are based on Lockheed
trunsport aircraft experience. The estimate from the Air Force model is
within 25% of the other estimates and at least provides a reinforcement
along with the NASA model that the estimate from the ASSET model is reasonable.

l.e next task was to investigate the maintenance cost. As in the pro-
duction cost the approach is to compare the estimates with &ctuals or renorted

direct operating costs (DOC). The first step in this task was to obtain

<1)Modular Life Cycle Cost Model For Advanced Aircraft Systems .- Phase II

AFFDL-TR-T75-L0, VOL. I

(2)

Parametric Study of Transport Alrcraft Systems - Cost and Weight,
UASA, April 1977, NASA CR151970
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PRODUCTION COST COMPARISON - AIRFRAME

30 PAX COMMUTER

CUM. AVE COST NASA METHOD AIRFORCE
250 AIRFRAMEC (CR151970) METHOD ASSET
WING 253.2 336.9 326.8 -
TAIL T4.6 215.5 59.4
BODY 431.1 412.4 361.3
LANDING GEAR 79.8 70.0 66.7
NACELLES 136.8 98.5 1C6.6
975.5 1133.3 920.8
ENGINE INSTL - 11.7 2.3
ENGINE CONTROLS k.0 - 2.1
STARTING SYSTEM - - 1.6
FUEL SYSTEM 10.6 2.6 9.6
FLT CONTROLS 97.6 231.0 80.5
INSTRUMENTS 171.6 - 51.5
HYD & PNEUMATIC 8.8 179.0 25.3
ELECTRICAL 180.8 35.0 151.6
AVIONICS INSTL - - 62.6
FURN. & EQUIP 271.0 13.0 228.8
AIR COND. 190.8 22.3 186.1
ANTI-ICING 43,4 - 36.2
SYS. INTEG. #528.5 38.0 62.7
ECO'S SUSTAIN. ETC. - 318.3 660.0
TOTAL 2471.6 1984.2 ;EEIT;-

#INCLUDES ECO'S SUSTAIN. ETC.

-3

177

T Sy . S
L, ,MM

Sl

U [

.

CaE T

L.’.{_L.,.;; S AT e Tt T R L e Tl G




T e

L;

reported data from commuter type operations that would be consistent with
the ground rules established for the new~design 30 and 50 passenger aircraft.
The data obtained for this purpose is shown in Table 5. These data are CAB
data prepared by AVMARK for Air Transport World, July 1979, end indicates
systems parameters, airline operators and type of aireraft. Reported data
was not available on the DHC=T7 and the block speed and block time were
caluclated from source data., The other parameters are the same as those

for the new short haul aircraft. Fortunately the reported data for the air-
lines and aircraft are in close agreement with the parameters chosen for the
study aircraft. This is due to the coordination of factors acconplished
earlier by NASA, In addition to the reported data shown in Table 5, DOC
data on the SD3-30 was obtained from Golden West Airlines. These data
provided a real world compariscn with the 30 and 50 passenger new-design
aircraft DOC estimate.

The reported and calculated maintenance costs for the short haul aircraft
are shown in Table 6., The maintenance cost is broken down into; airframe,
engine, and other. Maintenance burden is also shown separately. The calcu-
lated maintenance for the 30 and 50 passenger alrcraft is based on the ATA
method. The calculated maintenance cost is determined by applying modifiers
to the ATA formulas to convert it to short haul operations. The determine-
tion of the mcdifiers is the item of concern at this point.

The engine companies provided s maintenance cost relationship which was
used as the basis for modifying the engine maintenance cost relastionship in
the ATA method. The L-10l1l experience was used to modify the airframe
maintenance formulas. The maintenance cost relationship provided by the
engine companies was a constant cost in terms of $/black hour regardless
of range. This caused iifficulty in determining at which point, in terms of
range, the cost would be applicable. The problem is illustrated in Figure 6.
The maintenarce cost by the ATA metliod is reduced with increase in range.
This is due to the lesser number of cycles flown per year and consequently
the fewer number of takeoff and landings end engine thermo cyecles. The
engine maintenance cost shown as a ccnstant (Figure 6) may be correct at

one point but is incorrect at all other. If the correet point is at 50 N.mi
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range then at all ranges greate: than 50 N.mi the aircraft is being penalized
by the differences shown. The engine meintenance costs shown in Table 6 for
for the 30 and 50 passenger airplenes are based on the constant engine
maintenance cost and airframe meintenance as determined from L-101l experience.
Noting the differences in maintenance cost for similar size aircraft the
calculated costs ere considerably higher than the reported maintenance cost.

; The next step is to compare the calculated cost with the reported cost for .
all aircraft for total DOC. The comparison between the calculated DOC and

I reported DOC is shown in Tables 7 and 8. The comparison for aircraft

similar in size to the 30 pessenger new design eircraft is contained in

Table T and the comparison for aircraft similar to the 50 passenger sirplane

in Table 8. The fuel and oil costs shown in Tebles T and 8 are all normalized

i to 50 cents per gallon. There are such varied reasons for differences in

crew cost that changes cannot be made with specific Justification and there-

fore no adjustment is made. Insurance is a matter of policy with the parti-

cular eirline and the 1.5% factor as obtained by NASA from their survey of

commuter and local airline is used.

S T

Depreciation is a funetion - the aircraft price and the amecrtization
period. The Jjustification for the price for the new design aircraft is
indicated in the previous Figures and Tebles and appears to be reasonsable.
The higher depreciation cost for the new-design aircraft iz to be expected
as the higher perfor.ance incorporated into these aircraft must come at e
higher price. The effect of a longer depreciation period is shown later,
The maintenance cost is considerably higher for the new-design aircraft in
both sizes. Since the new design eircraft are using turboprop engines
that will have msintenance features that will be as good or better than
the turboprop engines used by the aircraft shown on Table T and 8 it is

reasonable to assume that the maintenance cost for the engine and airframe

r for the new design aircraft would be consistent with the reported cost for
2 these aircraft. E
] i
i
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The airframe and maintenance costs were split out of the total maintenance

cost and analyzed separately. Table 6 shows the reported maintenance cost |
by airframe, engine and "other". The "other" category was prorated into :
engine and airframe maintenance cost by their ratio. The adjusted reported
eirframe maintenance cost in terms of $/blk hr. is shown in Table 9.

‘fable 9 also shows the airframe maintenance in terms of $/blk hr/1000 1lbs
of gross weight.

The reported eirframe cost in terms of $/blk hr/1000 1lbs g.w. shows a
good correlation. The average for these aircraft is 1.43. The calculated
airframe cost for the 30 and 50 passenger nevw design el!rcraft is 2,41 and
2.30; considerably more than actual experience. The result of this analysis
is to reduce the airframe maintenance modifier from .65 (L-1011 experience)
to .40 (short haul experience). The same procedure is followed for engine
maintenance. The engine maintenance cost as calculated by the ATA formula
(modified by the data from the engine companies) is compared to the reported
cost (Table 10). This comparison indicates that the engine cost modifier
as derived from the engine company deta mey be reduced from 1,13 to 1.0, or
that the unmodified ATA provides the best estimate. This agrees with experi-
ence on the L-1011. The accumulation of maintenance deta over the years
indicates that on high bypass engines the engine maintenence is predicted
by the ATA formula at 100% of the formula values for the beginning of

operations and drops to 90% of the values for mature systems (6 years).

The maintenance modifiers are incorporated into the ASSET cost model
and the baseline aircraft (30 and 50 PAX) are reevaluated. The DOC compari-
son is shown in Tables 11 and 12. The first column in Tables 1l and 12
shows the DOC with the new meintenance cost factors applied. The second
column shows the impact of increasing the depreciation period from 12 years
to 16 years in addition to the new maintenence factors. The depreciation
cost is a major ccntributor to the DOC and for the new design aircraft is
considerably more than the current short haul eircraft. The higher cost for
the new design sircraft is due to price that has to/be paid for added
productivity. The block speed of the new design aircraft is considerably

185
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more than a like size current aircraft shown in Teble 5. When the productivity
is combined with the cost the results (cents/seat mi) for the new design air-
craft are competitive with the current aircraft., It must be pointed out at
this time that the new design aircraft incorporates only that technology that
is available at this time. Advanced technology features will be also evalu-
ated at a later time to determine their impect on cost and productivity.

Another approach to determing the maintenance cost was to perform a
statistical aualysis on the reported date for the current eircraft and
apply the results to the new-design aircraft. The results of the statisticel
analysis are shown in Table 13. The estimates from the multiple regression
analysis from either formula for the new design aircraft are lower than the
¢i:‘mates chosen from the comparative analysis showm in Tables 1l and 12.
There are too few date points (5) for the statistical data to be more accurate
than +‘he comparative analysis. The standerd error is high and the estimates
from the comparative analysis could easily fall within the bandwidth of the
correlation. Therefore the estimates from the comparative analysis is

chosen as more reasonable.
The indications at this point are that:

e Tvr new-design airecraft meet the performance requirement set
forth for the short haul aircraft.

o The higher performance requirements exact e higher price than
~.rent jet or turboprop eireraft of similar size (excluding
the Challenger and Falcon aircraft).

e The higher productivity for the new-design aircraft (seat

miles/year) offsets the higher price and the new-design
aircraft are competitive with current aircraft.
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