NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT
CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH
INFORMATION AS POSSIBLE

(NASA=TK=82.02) USER'S GULDE FOR THZ FLIGAT NdJ-32420
DESIGN SYSTEM (FDS) (NASA) 120 p
HC AJ6/MF AO1 CSCL 22A

f, iUcdida

s3/10 28800

80-FM-47

SHUTTLE PROGRAM

USER'S GUIDE FOR THE FLIGHT DESIGN SYSTEM (FDS)

By H. Rudy Ramsey, Michael E. Atwood, William G. Frisius,
Althea A. Turner, and John K. Willoughby,
Science Applications, Inc.

Approved: /@

Kenneth A. Yoyfid, Chie
F1ight Planni®§ Branc

Approved: \—-)K
Ronald §. Berry, Chief
Mission Planning and Analysis Diva

Mission Planning and Analysis Division
National Aeronautics and Space Administration
Lynden B. Johnson Space Center

Houston, Texas

August 1980

JSC-16794

Page intentionally left blank

Gl Caah g

FOREWORD

This document is the user guide for the Flight Design System (FDS), an Interactive ald
for trajector ', attitude, and consumables planning of Space Transportation System
missions. <. S has been devoloped by the Mission Planning and Analysis Division, NASA
Lyndon B, ‘shnson Space Center, Houston, Texas, and by [ts contractors. This user
guide was developed for MPAD by personnel of the Man-Computer Systems Division, Sclence
Applications, Inc., Englewood, Colorado, under contract NAS9-15535,

FDS has two major components. "Subsystem X" {s a rapld, Interactive planning system
residing primartiy on an Interdata 8/32 computer, while "Subsystem Y" Is a batch-only,
high-fidel ity simulation system res!ding on a Univac 1108. This present version of the
user gulde contalns an overview of tha entire FDS system, but contains detalled
information only on Subsystem X. When Subsystem Y is better defined, It Is Intended
that this user gulde be augmented with more detalled Information on that portion of FDS.

This document was developed In an unusual manner. SAl analysts first complled a
compiete |Ist of the fdentifiable concepts which must be understood for successful use
of FDS. The predecessor-successor relationships among these concepts were then
identified. The resulting, partially ordered set of concept descriptions might loosely
be called a "semantic network.” On the basis of the content and structure of this
network, the concepts ware then divided into “modules", which were developed Into actual
document sectlions via a technique called "storyboarding". Further Information on the
approach used can be obtalned from the authors. Constructive criticlisms of the document
content and/or format would be appreciated by both SA! and MPAD.

The authors wish to acknowledge the assistance of many MPAD personnel In the definition
of the material contalned In this document. Dave Alexander, the project monitor,
assisted In a variety of ways, and helped particufarly with the design of the exampie
problem. Bob Davis and George Welsskopf critiqued early versions of the user gulde
semant{c network and draft user gulide sectlions, and provided considerabie assistance In
understanding the detalled behavior of the FDS. Bernle Roush provided Information and
demonstration of the document processing capabliliities of FDS. Sandy Price and Jim Cook
helped convert the example problem scenarlio to a speciflc solution plan useable for
example discussions in the design guide. Others, too numerous to mention, heiped
resolve speclflic questions, demonstrated capabllitles, criticized drafts, and provided
other kinds of assistance.

Page intentionally left blank

e T T e R T e TR R T TR R s AT o S PTEEEE T R ATRIRT NETT eSS T T e R AT T e e e

SR R0 p i P s omsm Ry Aty ey

TABLE OF CONTENTS

F“ew“d 0008000000000 03 008008300000 000060000380 0030000000000 0000000000008000000000 l"

Table Of CONTONTS sesessesccssscscssscasscssasossasssssossanscsosenssscncsosacs v

Overview
01 Introduction to the Flight Design System User Gulde ceceevssssssccrscsss
02 OVQrV'eN Of F' Ighf Des'g" 0000000000000 0000000 0RCBRRE0C0OCP000RREINECGEIOOITETICOETS
03 The Fl lghf Des‘gﬂ sys*eﬂ' 2000000000000 000003800605060808300800000000000000000

BN

Example Problem
04 An Exaﬂﬂ'e fo 'Ilusfra*e FDS Usage (I E R AR RN NN ENNENNENENNENNNENNNNREENNNNNNNN] 8
05 Detalls of the Example Problem and SOIutiON seceeecsecssessecsscssscasss 10

Components of FDS
06 Func*lon" Areas of FDS [E N EENNENNNEENEEENNNNNNEENNENEENEENENENEENNE N NNNR NNENN] ‘2
07 The Executive Interacts with the USBr ccceecevcscscsccscessccrcsseacsscses 14
08 Da*a smrage Areas wlfh'n FDs B8 0000880000 000000000000000800000s00nadten 16
09 F'le Types 0000000 0000000020000 0200000000000000 0000000000000 00000¢0000000 18
10 Da*a Managmen* 0600600800020 00000600000 2000000000 000000000080 00a00080sctsese 20
11 ln*erfm Tab'% [X E N E N EEN N ENNE NN ENENNNEEENEEENNNEENNNNNENNNNNNNNENENNENNNENN] 22
12 Detalled Contents of Interface TableS eecescesssescssscssscssstsossscsses 24
‘BXPrOCGSSOrs 00 S 200GV OIS PPV OINONROOEPCELOSNPIIOSIRPRREEIPOCEOIOSECSOISIEOPOIRPNIOBROLEOEPEOSOIOIESEDY 26
'4 sequence Tables G000 0000020000 R0RCRINRNRRBRBRIEREOITIRINNOTIOEOIINNIOOIOIGOIEOTEPOREOTDS 28

-—-,,;l‘ S2alsy

T

Preparing to Use FDS
15 FDS Hard'are SO0 00 0000000020000 00000 0000000000000 000003800000000000000 30
16 FDS mands 0068 0000000000600 00000008080 8000000000000 000 00000000 scnsoorses 32
'7 Us'ﬂg ?he Term'nal G000 00 0000 P00 00000 SRRA0NROCBNRROSRNOLIOIOIBESOIOEONOSRONRGEOROBNRREONCODOMDYS 34
(. '8 s'gnlng on and *he OFF Cmmand OO B IINBOOINRNRDNROIPOINNNSIINRNOIONLTRBNOGEROOEYS 36
‘9 sys*em Messages P00 S SRR PRSP0 CRPRINEDINIBEOEN OGN IOIPRNENINIIPNSIOIBIIOEPOSOIECETDS 38

ERRCTRESI SU

Editing
20 ED'T cwmand' ExlT caﬂmand 00 000000000000 0000 000000000000 00000000000000 40
21 Us'ng *he Ed'f“.’ mDE C(Jﬂmand 2000800000000 0000000000000 0ttt 42
22 Baslc EdItor Responses and DIrectives seeescesncesocscssccsaascacsccscse 44
23 ln*erface Table Edl*'ng 000 000 0000000000020 0000000000000 0RRRsENRIRRIBGOIIRNIISTS 46
24 An Example of Interface Table EdItINg ecececececccacenssaccccnssscssances 48
25 Sequence Table Editing, NUMBER command, NOTE COMMAND eeessccocssssssssee 50
26 An Example of Sequence Table EdItING ecveeessccscscrssrssssrcesssosssnscss 52

Other FDS Commands
27 ABSTRACT Command (Creating, Replacing, and Displaying Abstracts) «ceeeee 54
. 28 LIST Command (Display Contents of Tables and Other Flles) .cceveececsses 56
29 GET, STORE, APPEND, SUBSTITUTE Commands (Permanent Storage and Retrleval
Of F"es 00000000000 0000000 00000 RPRIORPRRRPORNIBOEOLOIRNRNOAIRNOINRRNNOGOGIOIROEORIOGESSOYS 58
30 TOC Command (List Names of Files, Data Bases, €¥Ce) seveccescreecscceess 60
‘ 31 CLEAR, DELETE Commands (Ellminating Files from Storage) eeceseescccesess 62
32 COPY, RENAME Commands (Flle Duplication and Name Changing) seeeessceeses 64
33 CHANGE, [INSERT Commands (Modifying and Merging) seeesessecsccccesceecasse 66
{ 34 CROSS REFERENCE, FIND Commands (Locating fnformation In Tables) seseesss 68
35 ATTRIBUTES, PERFORM Commands (X Processor Propertles and Execution) 70
36 AUTOMATIC, SEMIAUTOMATIC, and BATCH Commands (Execution of Sequence
Tables) 000000 0000000000000 0000000000000 0000000000B80800CRCRCRIRYSOSIESIIBIROIRRIEIS 72
37 ALLOCATE, ASSIGN Commands (Data Element Creation and Initial izatlon) ... 74
38 IF Statement (Condition Tesflng In Sequence TablesS) eeveeccsssscccscceee 76
39 DO LOOP Statement (iteration In Sequence TableS) .sesecsssesscccscccccces 78
40 BREAK, DLOG, FORMAT, MESSAGE, NEWS Commands (Miscel laneous FDS

CUMIBHGS) @0 00000100 0000000000000 00000000 000RPrP00000RCRCILIOIINGGIINOIGOGEIIEEEOSOIEOGTDS 80

Page intentionally left blank

ol e o s dens battbiihielinnti o Sliihteiit el At 2t Shdii dhd

e T . o B i et e st i A o ot il e cadh s g

Document Production

-y

Appendices
Append1x
Append I x
ABbend Ix
Appendix
Appendix

{ Appendix
! Appendix

Appendix
1 4

N<X—00m>»

: 41 Automated Document Production ceeeecscsescsesssecsenscosstscsansssanascns
NI 42 An Example of Automated Document Production seesececcecsseeceassascsnces

- Mafhaﬂaflca' FUnC‘HODS €0 000 EELIIEROEII0NN0NINNGRISIOCEEIRRIOIOINIBIORTSY
-- Slzes and Dlmeﬂslons © 6060800000600 000000000660000000000ss0sseT

- Glossary B8 499 B 0030800080608 038 0800000006000 060000000600000080000200
hind Tlm Da*a Type G0 S8 0000000000000 00000 0900600000000 00 000000
'ndex LA AN N R RN NN NN NN NN NN N Y NN N N Y NN K]
== Gulde to Common Operations seeesecssacsasscassvoasvastosncoss
- Index 1’0 Cq'nmands SO B IS NG00000000E000CECICISENICIISEOIOIERIEOIOTOTS
== Quick Reference 10 COMMANAS eseeesveesessscestocscassscacanas

vii

82
84

Al

c

D1
"

X1
Z1

USER’'S GUIDE

for the

FLIGHT DESIGN SYSTEM

(FDS)

TS T T o GhnaiEdha - o o TR T TR T T

01 INTRODUCTION TO THE FLIGHT DESIGN SYSTEM USER GUIDE

This User Guide i1s designed as an ald to the community of users of the Flight Design
System (FDS).

' B AS A retfaere ANnuUA

« The first section of this document presents Information
about the Flight Design System in the context of fllight design as carried out by NASA.
It also Introduces the FDS user to the structure of FDS and to constructs within FDS
(such as files of information or the part of FDS which interacts directly with the
user), The second section of this document is a gulde to the commands avallable to FDS
users. In addition, a glossary of Important terms, an index to terms, and a quick
reference to the commands of FDS are included In the Guide.

Each topic Is presented in a two-page "module". Each of these modules is Introduced by
an approprlate sentence which speclfies the basic polnt of the module. Each paragraph
within a module begins with a sentence which Introduces the maln toplc of the paragraph.
Speclal ized types of Information, such as a summary or an example p. »blem, are presented
with a module to aid in quick review (or in finding a module on a reiated toplic).

Within each module, important concepts which are introduced there for the first time in
the User Guide are printed in capital letters.,

Summary Block

Title of Modu!e-_147
J/

1

Basic Point
of Module

/ ANNNAN NN NANVNNANANANN AAN NV VWAV Y

ANAAAANANAN v AAAANAANANAAAANAANAAANAN
ANANANANANN WA APAANANAANAN
. AANAAAAAANAANAANANAN, AAARAANANAAN N,
First sentence AAAAAARAAR
— A AAAANAAN
of paragraph — 1 M T, AN L———g’;amzle
introduces AANNAN VAN, AAANARANAANANN oc
its topic MMAAAAAAN, BV AV VIV
NANAAANAN,
ANAAAANANAA,
ANAAANAANAN, A A A A AAAAAAA]
AN, VAN
NN Y
AN,
A A A A A A Y Y A AAAY AAVANAAANNN,
AAAAANANNAANNNANNANAANAN, AN SANANANAN,
ANAAAAAANAANANNNAANAAAN AAAAAANAAANAAN,

1-1. The layout of the FDS User Guide helps users to access desired information.

Each module of the FDS User Gulde contalins a summary block to ald In quick reference of
material contalned In that module. This block is highlighted |lke this, with a red
background. It Is always located at the top of the right hand page of a module. A user
who does not wish to read a module In detall may use this block as a quick review of the
modu le,

. Definitions of Important terms can be referenced easlly In the
glossary sectlion. An Index of the terms used In the User Gulide provides page numbers on
which the terms are discussed. The page numbers on which major definitions or
explanations appear are underlined. A page of sample commands, showing basic forms, Is
located In the back of this document, along with some alds to finding desired commands.

. Obviously, not all usercs will access this
document In the same way. Users who already know information In a module may wish to
simply read the summary block or to skip that module altogether. New users may wish to
read the modules carefully and In order the first time through. All users should be
able to use this document to become more proficient in thelr use of FDS.

Several other documents are avallable
which are more detalled references tfo

particular aspects of FD3. The "X
Flight Processor User Reference Manual"
Design provides detalled Information about
System the X Processors. Included In this
gi?c;e volume Is a guide to the documentation

function of FDS. The "Y Processor

User Reference Manual" Is a reference

manual to the varlous high flidel ity
simulation processors available on
FDS. For users who decire a deeper
understanding ot FDS, the "FDS-2
Software Design and Description"
(79-FM=11) s recommended. !Most users
will not need the level of detall
presented there, however. Finally,
hardware manuals are avallable for the
various computers, terminals, etc.,
which make up FDS. For most users,
though, this User Guice and the
processor reference manuals should be
an adequate source of Information.

X Processor
User

Reference
Manual

Y Processoi
User

Reference
Manual

An example problem has been selecred
which Is carrlied though the Gulde.

The example Is printed on a green
background for easy Identiflication.
Not ¢ll modules have an example
problem block. By reading through the
example blocks from front to back, the
reader can obtaln a review of the

1-2. Several documents serve as procedures Involved in FDS use.
reference material for FDS use.

02 QVERVIEW OF FLIGHT DESIGN

Flight design Is a complex, Iterative process Involving several organizations within
NASA.

. For each
flight this process produces a schedule of events that will occur between the |[ft-off
and landing of the Space Shuttle. The planned events must satisfy the mission
objectives and be
operational ly feasible.

That is, they must stay
within the per formance
zapabilities of the
spacecraft, its crew, and
the ground support system.
Saveral kinds of analysis
and planning are used to
produce a flight design.
Irajectory analysis
specifles launch criteria,
orbital maneuvers and other
activities that are needed
to guide the spacecraft.
Attitude planning determines
how the spacecraft is to be
pointed so that sensors and
communication equipment can
function prooerly and the
temperatures can be
controlled. Consumables
analysis Is used to assure
that the consumption of
enerqy, propelilants and
environmental control
chemicals is within the
limits of the spacecraft.
Crew actlvity considerations
can cause adjustments to the
plan In order to assure the
effectiveness and wazl| being
of the crew members.

2-1. Space shuttle missions require precise planning.

Virtually all declslons made [n considering one aspect of flight design affect the
others. For example, trajectory events can drive attitude, crew and consumables
planning, or crew activities constraints may necessitate trajectory alterations.

Because of this Interaction, fllight design Is fundamentally a process of fitting
together several different specialty-oriented views of mission activities so that things
happen in a feasible order and that the spacecraft, ground support systems, and crew can
function effectively. The integration of the variocus technical aspects needed to
accompl ish flight design requires the ability to iterate, that is, to produce
preliminary or tentative flight designs and then refine or redo those designs until all
deflclencles are removed.

-

T
e i T R N
- Flight design Is a planning process that uses various technical Inputs to produce flight
; plens and profiies for the Space Transportation System. The process tegins with a
i request from SPIDPO to MPAD for assistance in developing a Payload Integration Plan,
\

From this point, MPAD directs the Iterative process of flight design from Its Initial
stages of the developmant of a Conceptual Flight Profile, through a review process

Involving SPIDPO and CTPD, to the flinal production of the detalled Operational Flight
Protile.

Qrganizational responsihililties and compunicat

accomplish this |terative integration task. The flighi design process begins with a
request from the Shuttle Payload Integration and Cevelopment Program Office (SPIDPQ) to
the Mission Planning and Analysis Division (MPAD) tor assistance in developlng a Payload
Integration Plan (PIP)., The cargo for the flight has already been determined. Thus,
the oblectlives for the fllight are already established. From this starting point, MFAD
develops a Conceptual Flight Profile (CFP). This CFP is & preliminary attempt to
produce a fllight design that satisfles the Integirated constraints from all the tecnnical
concerns. It Is also the basic instrument for Iteration. The varlous organizatlions
within MPAD, the Crew Training and Procedures Division (CTPD), and SPIDPO are the
princlpal participants in the review of the Conceptual Flight Profile. A Cargo

Integration Review meeting and the publication of a final Conceptual Fllight Profile end
this phase of flight design.

INVOLVEMENT OF GROUP OR ORGANIZAT!ON IN FLIGHT DESIGN
CUSTOMER SPIDPQ MPAD CTPD MISSION PLANNING PHASE
X X Determine payload speciflications
X Assign payload to fllght
X X Develop Payload Integration Plan
X Cevelop Conceptual Flight Profile
X X X X Review Conceptual FillIght Profile
X Develop Operational Flight Proflle

2-2. The flight design process involves several organizations within NASA.

Ihe CFP [s the Input to the development of a detalled crew actiyvit
Iralning and Procedures Division. !teration with MPAD occurs during thls process.
Finally, about one year before the flight, the development of an Operational Fiight
Profile (OFP) beglins. This Is used for flight simulations and for support during the
actual fllght. Approximately five months before the flight, the flight design Is
completed or "frozen"™ and the flnal OFP Is publlshed.

035 TIHE FLIGHT DESIGN SYSTEM

The Flight Design System helps In the planning and design of shuttle missions as well as
providing documantation and other support necessary In the deveiopment process.

MPAD uses the computerized FLIGHT DESICN SYSTEI (FDS) In support of the flight design
process. The most basic requirement of the Flight Design System is to provide a
manpower=-saving technique to plan essentlially repetitive flights &* a density of up to
20 flights per year. As the number of planned flights Increases, and similcrities
between flights become evident, operational envelopes will be standardized for speci’ic
payloads and experiments. For each new flight, a review of previous flights will be
performed to determine If any of them were similar enough to the proposed flight that
they may be used as a model. Using the flight reguirements end a model flight (if It
ex!sts) as a starting pcint, a Conceptual Flight Profile Is generated which meets the
flight criteria. It Is entirely possible that severa! flight designers will be working
concurrently on the same flight or will be using the same mode! time!ine to design
different flights.

1f the proposed f!ight design does not
require the development of pew flight High
design techniques, the flight s
categorized based on the procedures
and amount of work Involved In

generating the Initial profile (CFP)
CATEGORY | flights are the highest
level of complexity that will be
supported by FDS. Flights in this
category require a |large amount of new
flight planning with only limited use
of standard event timelines that were
developed for earller flights.
CATEGORY || flights will typically be
a near repeat of a previous flight,
Involving only minor changes to event
timelines and a |Imited amount of
add!tional analysis. The approach to
CATEGORY 1]l flights will consist
essentially of drawing Information
from a data base |ibrary == which
contains previous fllght data --
changing required values, and

re-running the flIight profile on the

FDS. Flights more complex than | 11 111
Category | (Category 0) Involve the CATEGORIES
development of new techniques or forms
of analysis. While FDS Is not
designed to support such flights, the 3-1. "Categories" of flights differ in the
system can stil| serve as a useful degree to which they make use of data
tool In developing new procedures. from previous flights.

REUSE OF DATA FROM PREVIOUS FLIGHTS
A

]

= M At ot

FDS Is a computer system that alds In misnsion planning and fiight design. FDS supports
the #1ight design process by providing Interactive simulations, documentation such as:
PIP Section 4 and S, PIP Annex, CFP, and OFP, end products such as: Supertape, and Crew
Simulator Dats Psck. FDS is designed to save manpower In repetitive Planning, as well
as provide tools necessery to design new or unique fiights,

EDS Is used as a planning ald_ CF Deamenatn
. PP, Section 4 anc 8
First the CFP s produced. The CFP Is PP Anvex
based on a relatively low=fidellty FDS CFP s OFP Cortenty
simulation from |Ift-off to touchdown, Agcont Oats
Atter the CFP i= generated, it will be Orditel Data
examined for co\flicts In verlous Oeorbit/Emry/Landing Date
aspects of the .light., Then It will Norgropusive Consumabies ormation
. be refined In further Iterations via Propulsive Coneumables infor
interactive FDS sessions until all oraraton nd Diasors Data T TAME =
major criteria speciflied In the PIP
sre satisfied., Following publication OFP_Cantents. Ooly
of the CFP, the assoclated data flles Fiight Protile Summary
will bs archived. After the CFP is Ao Do e arerare
reviewed, addlitlonal refinements of
the flight profile may be undertaken. Qther Products
After the final reflnements are made, Supertape
FDS Is used to begin preparing the Crow Simuistor Data Pack
OFP. The OFP represents a
high-fidel ity FOS sim:iation of an 3-2. FDS assists in the generation of
entire shuttie mission from |itt-off several documents and data products.

to touchdown. After the OFP is

planned, produced, and published, a SUPERTAPE and, for the first time, a CREW SIMULATOR
DATA PACK are produced by FDS. These products are used by CTPD to support the
generation of the crew activities timeline. Any confllicts or discrepancies dlscovered
after pubilcation of the OFP will necessitate [terations of all or part ot the CFP=-0OFP
development, planning, and publication cycle.

« MK flight designer may generate all or part of the

FDS-supported document products by obtaining & copy of any standardized, skeletal
document from the special-purpose document processor (Xerox) and merging it with data
generated using FDS. The user may verify the merged text at an FDS terming! before

- final processing. As a last step In the flight profile development process, the
timel ines and parameters used by FDS to generate the dellvered products, along with any
supportive Information, wil! be archived as a history flile. Thls Information may be
used as a model for future planning.

ln summary, MPAD uses the FDS In flight design activity fr
C . FOS provides the

computer simulations that support the fllight design .~ocess. The FDS user performs The
decislon process and FDS pertorms repetitive analys::. math-mode! executlon,
standardized documentation, and fine tuning necessary to complete the flight design
process.

04 AN EXAMPLE TO ILLUSTRATE FOS USAGE

An example problem has been selected o t!lustrate the use of the FDS.

\ «ser Guide are also [llustrated vith a
« This proolem is described in this section, and lIs
useqd throughout the document. Each discussion of the exampie froblem is presented on 2
green background, The reader who understands the example prob'em in general terms
should have the background necessary to comprehend the example discussions which are
distributed throughout the User Guide.

- Rl amen Wt RO 0 - - -1 - - e : 1
of FDS. The objective of the exampie mission is to deploy two payloads. The first
payload is a satellite which must be placed In a geosynchronous orbit -—— that Is, in an
orbit In which the satellite will remain above a particular point on the earth's
equator, The Orbiter Is not capable of taking the payload to that orbit using its own
orbital maneuvering system., Therefore, an upper stage |s attached to the payload and
will be deployed from the orbiter's cargo bay. Thst upper stage wili perform a transfer
maneuver from the Orbiter's parking orbit to the satelllte's flinal guosynchronous orbir.
After the deployment of the upper stage and its payload, the Orbiter will maneuver to a
second orbit and deploy the second payload.

not uniqua. The user is free to choose the processors to de used, the order In which
they will be Involved, the names of tables employed, and the operating modes of FOS. No
unique problem-solving sequence can he associated with a glven problem, Nevertheless, a
representative problem-solving process has been assumed for the example problem in order
to (llustrate FDS capabiliities and features. The reader should not assume that the
solution illustrated regresents the only way the FDS could be used. Experlence with the
system will enshle the user to become Increasingly more efficient in the explolitation of
the FDS capabilities. This Is particularly true as results from previously=-solved
problems are employed as starting points for solving new problems.

upper stage
maneuver {0 destination

orbit tor payload #1

deorbit
A

depioy payload #2

maneuver 10
S
1t for
geﬁoval'goef payload #2

payload #1

I -

4-1, The example problem involyes deployment of two payloads, one of which is raised
to a geosynchronous orbit by an upper stage maneuver.

8

- >

r

A single example problem is used for Illustrative purposes throughout the User
Guide. Discussions of the example problem appear on a green background. The
problem Involves two payloads, one of which is to be placed (n &
geosynchronous orbit.

NS have Ade B . B B anagea
example. For example, 1t is assumed that the launch date and time have been determine
previously, Ordinarily, a launch window analysis would be performed to determine these
parameter values. |1 should also be noted that the order in which planning Is done for
the upper stage and for the Orbiter, after the first payload deployment, Is entirely
arbitrary.

PAYLOAD 1

TARGET ORBIT (GEOSYNCHRONOUS):
altitude = apogee = perigee = 19,323 nm.
inclination = 0 (equatorial)
eccentricity = 0 (circular)

SATELLITE WEIGHT AT DEPLOYMENT = 12,542 1bs.
PAYLOAD 2

TARGET ORBIT:
altitude = 200 nm.
inclination = 28.5 degrees
eccentricity = 0 (circular)

WEIGHT = 6,320 1bs.

LAUNCH: ,
DATE = 23 April 1981
GREENWICH MEAN TIME = 10:36:00
LOCATION = Eastern Test Range
+w00 ALTITUDE = 57 nm.
LIFT-0FF WEIGHT = 4,504,485 1bs.

LANDING:
LOCATION = Eastern Test Range
CONSTRAINTS = DAYLIGHT (30 minutes before sunset, after sunrise)

INITIAL PARKING ORBIT
altitude = apogee = perigee = 150 nm.
inclination = 28.5 degrees

FIRST SEPARATION MANEUVER
velocity delta-V = 50 fps.
engine(s) = Foreward RCS

SECOND SEPARATION MANEUVER
velocity delta-V = 2.5 fps.
engine(s) = Aft RCS

4-2, The example problem uses simple, fairly common orbits and maneuvers.

05 DETALLS OF THE EXAMPLE PROBLEM AND SOLUTION

To help the reader understand the [liustrative material presented elsewhere, detalls
about the example prob!em and the assumed solution process are presented here.

« The flight
designer would probably use data and procedures that he or she had stored ror the
purpose of future reference., In the Illustrations which follow In this book, the
assumption is sometimes made that computer files exist which wiil be retrieved for the
purpose of review and modification, At other tIimes, it Is assumed that the designer
will "start from scratch", Although these two problem-soiving modes are assumed
arbitrarily In order to best illustrate FDS capabilities, it [s also true that real
worlid fllight design will be a mixture of redesign of previous solutions together with
original design efforts.

. After launch window analysis and the selection of a launch date, the
condltions at orbital Iinjection are determined. The event that Is used as the beginning
of the orbltal phase of the flight is calied Maln Engine Cut-0ff (MECO). From MECO, the
orbital maneuvers are lald out. This process proceeds unti! the approximate deorbit
conditlons can be determined. An analysls of landing opportunities leads to the
selection of the orbit on which the deorbit burn will be made.

After the basic tr

. Crew reguirements are factored Into both the trajectory and attitude
proflle design. The compietion of the attltude profile design allows an analysls of the
propulsive consumables to be done. The non-propulsive consumables profiles can also be
determined. Any violations of constraints or recommendations for more efficlient use of
the spacecraft or crew can cause the events of the flight design tIimeline to be altered.

1n_the Conceptual Flight Profile (CFP). After approval cycles are complefed +he
detalled Operational Flight Proflie (OFP) is generated In approximately the same
sequence. The Flight Design System is used throughout the process of producing the CFP
and the OFP,

10

oy T N D

L

One approach to the solution of the example problem begins with trajectory design.
Trajectory design involves a serles of somewhat sequential planning steps, which
correspond to the planned trajectory events, Once a satlsfactory trajectory design has
been establlshed, attitude and consumabies planning can be Initiated.

TRAJECTORY ANALYSIS AND DESIGN
ORBITER THROUGH FIRST PAYLOAD DEPLOYMENT
Ascent Trajectory

Staging

1st burn of Orbltal Maneuvering System (OMS) to achieve parking
orbital altltude

2nd burn of OMS to clrcularize parking orbit
Deploy 1st payload

Perform separation maneuver with Reaction Control System (RCS) to
move orbiter away from 1st payload

FIRST PAYLOAD AND !TS UPPER STAGE
Perform maneuver to change orbital plane and ralse orbital altitude

Perform maneuver to make remalnder of orbital plane change and to
circularize in geosynchror.us orbit

ORBITER AFTER FIRST PAYLOAD DEPLOYMENT

Perform OMS maneuver to achieve orbitai altitude needed for second
pay load

Perform OMS maneuver tc put shuttle in circular orblt for deployment
of second payload

Deploy second payload and perform separation maneuver
Deorbit
Groundtrack check (orbiter branch of trajectory)
ATTITUDE ANALYSIS & DESIGN
PROPULSIVE CONSUMABLES ANALYSIS & DESIGN
NON=-PROPULSIVE CONSUMABLES ANALYSIS & DESIGN
PUBL ICATION OF CONCEPTUAL FLIGHT PLAN
DETAILED SIMULATION AND ANALYSIS
PUBLICATION OF OPERATIONAL FLIGHT PLAN

5-1. There are a number of planning operations involved in the solution of the
example problem,

11

06 EUNCTIONAL AREAS QOF FDS

FDS consists of four main components: (1) X Processors, (2) Y Processors, (3) document
processing system and (4) an Executive program.

Ihere are two

. The application processors

may be executed Individually or in sequence to perform part, or all, of a flight design
task. The most baslc requirement for X Processors is that the flidelity be sufficient
for producing the Conceptual Flight Profile (CFP) and establishing the feasibi!lity of
the Operational Flight Profile (OFP). Y Processors generate simulations and actually

produce the data products required for OFPs.

X PROCESSORS consist of a library of
Independent application processors that

are used as byilding blocks In flight
desjign. These processors may be executed
In interactive or batch mode and in
whatever sequence Is rnecessary to satisfy
the computational requirements of a
particular flight design task. That Is,
the user essentially structures a
special-purpose program by the proper
sclection and sequencing of processors.
The X Processors are designed to perform
computationail routines in an Interactive
mode. The fidelity of these processors

The purpose of Y PROCESSORS s to
generate high fidelity simulations of

£

. Typically,
the Input parameters for Y Processors
will consist of flight profile data
generated on X Processors and transferred
by the FDS user to Y Processors, through
the FDS Executive. Y Processors reside
on another computer, but are considered
part of FDS. The Y Processors
are sometimes collectively called
"Subsystem Y".

is consistent with CFP development, but

may be Insufficlently detailed for OFP
development. The X Processors are

Y PROCESSORS

sometimes collectively called "Subsystem X".

ASCENT SIMULATIONS

ON-ORBIT SIMULATIONS

X PROCESSORS

DEORBIT-TO-LANDING SIMULATIONS
ATTITUDE & POINTING
RETURN TO LAUNCH SITE SIMULATIONS
CONSUMABLES & MASS PROPERTIES
PROXIMITY OPERATIONS SIMULATIONS
MANEUVER - TARGETING
PROPULSIVE CONSUMABLES-USAGE SIMULATIONS
PROPAGATION
SUPERTAPE GENERATION
SHUTTLE UPPER STAGE
CREW SIMULATOR DATA PACKAGE GENERATION
TRAJECTORY/AUXILIARY DATA SUPPORT
SPECIAL DISPLAYS

UTILITY

CONTROL, DISPLAY, & SIMULATION 6-2. Listing of types of Y Processors.

6-1. Listing of types of X Processors.

12

"
Ae'
s
7
4
i

T RS N

Ty

’«U .

FDS has four components: X Processors, Y Processors, a documentation system, and
an Executive program. X Processors are executed In Interactive or batch mode and
are used primarily for conceptual f{light design., Y Processors are executed in
batch mode only, reside on another computer, and are used for very detalled
simulation and design, The documentation system is used to create formal
documentation, such as CFP and OFP documents. The Executive Interfaces the user to
the above functional areas. |t provides capabitities for data storage and
retrieval, editing, and processor execution,

(16 - - =)) () B ., - c

The FDS user generates data that will be used in CFPs and OFPs. A special purpose
processor Is provided that allows the user to merge this Information with the supporting
text of the CFP and OFP documents.

processes and responds 1o all user EXECUTIVE
commands. The FD5 Executive Is PRIMARY USER
designed to support interactive as L] YT MAK-
well as batch processing with X g Aacuent.

Processors, to inltiate remote jobs ERATIE
with Y Processors, and to allow PROCESSING.

access to document preparation

Y

facilities, The Executive provlides [X eRcessors, Y PROCCSSORS OCUMENTATION FUNCTION
The user W'fh funcﬂonal FIDELITY CONST.- HiGH FIDELITY SUPPORTS DOCUMENTATION
capabllities In three areas: data B | |G |,
storage and retrieval, editing, and I sATch on in- LT In REMoTE ANNEX, CFP, AHD UFP.
processor execution, These I ONLY.

functions enable the user to get

ready to use the application 6-3. The executive processes and responds to

processors and provide the user user commands and interfaces to other
with access to master data bases functional areas.

and the abillity to retain data from

one FDS session to the next. The

Input and output assoclated with the processors that perform flight design tasks and the
order In which these processors are executed Is usually prescribed by FDS tabtes, The
execution control! functlon is used to control the execution of processors.

To solve the CFP portion of the example problem using FDS, the user must first
prepare tables necessary to execute the particular X Processors required In
the flight design. To do this, the user Interacts with the Executive.

The X Processors are then executed, again using the Executive, through which
all user Interaction occurs,

USER [

A

EXECUTIVE 1= X PROCESSORS

A
Y

When all necessary planning Iterations have occurred, the document processor
Is executed to produce the CFP document.

] USER |«

Y
\ 4

EXECUTIVE [

DOCUMENT XEROY
PROCESSOR SYSTEM

13

07 IHE EXECUTIVE INTERACTS WITH THE USER

The Executive Interacts with the user and processes the commands that are used to do
flight design tasks.,

Ihe EXECUTIVE s the component of the FDS that interacts with the user and allows access
to the other components. The Executive provides users with a single interface to these
various components, Through the Executive, the user can access the X Processors, the

Y Processors, and the documentation system, and cause data to be transferred among these
components. The Executlive performs four functions for the user -- data management,
processor execution, command processing, and access to the documentation function.

A

LB

EXECUTIVE | COMMAND PROCESSOR (%)]

[DATA MANAGEMENT |
, FUNCTION
|
| [DATA STORE/RETRIEVE

FUNCTION

| _TABLE EDITOR _ DOCUMENTATION FUNCTION EXECUTION FUNCTION ($)]
| | INTERFACE TABLE (\) DOCUMENT PROCESSOR SUBSYSTEM X EXECUTION

SEQUENCE TABLE (#) XEROX. HORD CONTROLLER

LINKAGE TABLE (<)

J-DATA. TABLE. (=) PROCESSING SYSTEM SUBSYSTEM Y RUN

! INTERFACE SUBMITTAL

7-1. There are four basic functions performed by the FDS Executive.

f\ oncerned w 1\ 48 Nng dele A

. In performing a flight design task with the FDS, users wlll access
files that contaln standard flight profiles, standard processing sequences, fllight -
requirements, etc. Flles will be created to store the flIght profile, and other
assoclated data, for the current flight design task. These activities are handled by

the data management function.

14

P ey "IN

N T eEAAD i

The FDS Executive consists of severai components. All user commands are processed by
the Command Processor, which determines vhich of the components to invoke. The Data
Management functlon provides the capebility to access, create, delete, store, and modify
fites. The Executlon Function controls the execution of X and Y Processors. For
producing documentation products, the Documentation Function is used.

Ihe EXECUTION FU
« This function has two
DATA MANAGEMENT CAPABILITIES principal parts -- the X Processor execution
control ler and the Y Processor run submittal
¢ 2:;‘:;’1'2;“;'::,‘_122;]‘2‘;?::"}g; controller. The X Processor execution controller can
permanent retention of user data operate in one of four modes -- one processor at a
from session to session time (manual), automatic, semiautomatic, or batch.

The Y Processor run submlittal controller causes runs
using Y Processors to be processed in the

® Entering and storing X Processor remote~ job-entry (RJE) mode.
input and output data

® Access to master data bases

e Managing (naming, storing, delet-
ing, etc.) X Processor output data

- Ihe COMMAND
® Entering and storing Y Processar PROCESSQ

R provides access fo other
input and output data functional components of the Executive. All user
commands are processed by the Command Processor,

¢ Managing Y Processor output data which then determlines which component to fnvoke. The

EXECUTION FUNCTION CAPABILITIES Command Processor prom:*s the user with the § symbol,
o Control the execution of X after which the user {iputs a command., There Is a
Processors ' ! unique prompt symbol assocliated with each component
of the FDS, and the prompt symbo! changes to Indicate
¢ Jubmit Jobs which execute ¥ which component of the FDS is active.

DOCUMENTATION FUNCTION CAPABILITIES

e Combine flinht design data with

supporting text Ihe DOCUMENTATION -
lnput, editing, and output of text documents. ese
e Prepare (FPs, OFPs, and parts of
the PIP documents documents Include OFPs, CFPs, and the Flight Design

Annex to the Payload Integration Plan (PIP),

Skeletal forms of these documents are stored on the
7-2. Each component of the FDS Xerox word processing system. The FDS Executive
Executive performs certain tasks. provides a means to merge flight design data with

these skeletal forms to produce firnal documents.

In solving the OFP portion of the example problem with FDS, the user will make ‘

use of the Y Processors. The Y Processor job Is prepared by setting up an
Input flle,

USER

v

EXECUTIVE Y PROCE SSOR |
(Data Management) INPUT

A 2

The job Is then transmitted, via the Y Processor run submittal controller, to
a separate computer on which the Y Processors reside. The job may or may not
actually be run for several hours, When the job has run, the output is
returned to FDS and placed In a file. When the user next signs on to FDS, the
output Is avallable for reading and editing.

y

Y PROCESSOR EXECUTIVE Y PROCE SSOR Y PROCESSOR
INPUT (Execution) OUTPUT

\ 4

}

08 DATA STORAGE ARFAS WITHIN FDS

There are four major data storage areas over which the user has varying degrees of
control.

Ihﬂ_ACJ- . . AAA one oQ he pvera Area ed b B A

AWA consists of random access memory and disk storage, and Is automatically allocated to
the user at sign-on. Many files may be stored In the AWA. The AWA stores input data
for use by the executing procescors, and Is used for constructing and manipulating data
and tables. In addition, all retrievable output data from X Processors are stored
there. The AWA is empty when allocated. The user must transfer any deslired information
from MDBs and PDBs int> the AWA, The AWA belongs to the user, and cannot be accessed
directly by other users. It Is a temporary work space that exists only during a user's
session, and Is purged at sign-off unless the user takes action to store the Information
In a Personal Data Base.

Personal
Data Base

<>

Active Work Area (AWA)

1
PDB ‘\\\\]

from
Y Processors

MOB ,//)" ‘k\\\‘ YoD

_/ .
Master Y Processor
Data Base Output Data

8-1. FDS has four major data storage areas.

16

FDS has four major data storage areas:

AWA, PBD, MDB and YOD. As a temporary work

space allocated at sign-on, the AWA stores data for the processors and is used for

constructing and manipulating data and tabies.

PDBs are used for permanent storage of

all or part of the user's AWA, MDBs contaln master flight Information that is made
avallable to ail users. Output data from a Y Processor run are stored in the YOD.

T Nng C 3
. Through the use

of the FDS Exe. utive,

session for permanent storage of data and tables

the user names the PDB and transfers data between the AWA and the PDB. Single files or
entire data bases may be transferred In elther direction between the PDB and the AWA.

As a general rule, each PDB should contain files that are used together. The PDB may be
accessed by a single user or a group of users working together. Each user can have
multiple PDBs. The user Is responsible for data management for the PDBs that the user
has created. PDB files are not purged at user sign-off and are deleted only on direct

action from the user.

Another major data storage area used
by FDS Is the MASTER DATA BASE (MDB).
MDBs contaln data that all users can
access. For example, tracking station
locations and global constants are
malntained on MDBs. FDS users can
transfer data from an MDB to thelr
AWA. Users can then modify the AWA
copy of this information to fit their
own requirements and store It In a
PDB. However, users cannot create,
modify or write to an MDB. The MDB Is
a read-only source of data and is
created and maintained by FDS support
personnel. All MDB names begin with
"II", No other data areas can have
names beginning with these two
characters.

Lastly, the Y-OUTPUT DATA (YOD) area
1s where the output from Y Processor
Jobs [s stored. YOD files are created

by user-initiated Y Processor runs.
Each flle name is derived from the job
name of the Y Processor run that
created It. Files can be transferred
from a YOD to the AWA and modified,
stored In a PDB, or used In another X
or Y Processor run, The user Is
responsible for managing data In YODs
as well as deleting a YOD after It is
no longer needed. All or portions of
the YOD may be used to create files
within the AWA for access by the

X Processors.

17

In preparing to develop the flight
design for the example problem, the
user might begin by obtaining
Information about a prior fllight which
has similar propertles. Such data
would ordinarily be obtalined by
accessing the PDB associated with the
prior flight. The user might also
obtaln global constants and similar
data from one or more MDBs.

AWA —| PDB

This Information Is all obtalned by
moving It Into the AWA, where the user
can edlt It, delete portions of It,
etc. When the user Is finlshed with
this Initlal terminal sesslion, the
resulting data should be saved by
storing It In a new PDB. This PDB can
then be accessed In future sesslons
deal Ing with this particular fllight.

09 EILE TYPES

In addition to the four storage areas, FDS has six expllicit f1le types, which differ In
form and purpose.

A DATA ELEMENT (DE) Is a collection of related lnput or output data for a given

X Processor. Grouping such information together and storing 1t under a user-defined
name provides a convenient mechanism for managing |arge amounts of processor Input and
output data. A DE may be stored in an MOB, In a user's PDB or In the AWA. When It is
In the AWA, |t can be accessed by processors. Processor-to-processor communication can
be achieved by using an output DE from one processor as an Input DE for another
processor. The user can also create DEs from the Information that is returned from

Y Processors in the YOD storage area.

- Arge > = 2 : - 3 Memo
Stored as a DISK-RESIDENT DATA ELEMENT (DRDE)}. DRDEs are constructed by the execution
of processors, which determine thelr format and contents., Although DRDEs have the same
tfunction as DEs, they difter In thelr form, in the manner In which the data they contuin
Is accessed, and In the fact that users cannot explicitly create a DRDE. A DRDE may be
stored In a PDB or MDB, but only the name and characteristics of the DROE are stored in
the core-resident portion of the AWA., Since a DE is structured as an array, the
contents can be accessed by subscripting. Because a DRDE has a different structure, its
contents must be accessed differentiy,

Personal

Data Base
Active Work Area (AWA)

Q to
Y Processors
Sequence Intesface
PDB \ Tables Tables

Linkage Tables

g

from
Y Processors
Y-Data
Tables
Disk Resident \
MDB / Data Elements Data Elements Y00
I (DRDE'S)
Master Y Processor
Data Base Output Data

9-1. Six types of files can reside in the AWA, PDBs, or MDBs.

18

In addition to the four data storage areas already discussed, FOS has six flle
types. The various file types differ with respect to the user's capabllities to
initialize, change, and control thelr contents. The six f!le types are DE, DRDE,
IT, ST, LT, and YOT. Any of these file types may reside In the AWA, PDB, or MOB
storage areas,

An INTERFACE TABLE (IT) s assoclated with each X Processor and provides a mapping of
user-specified [nput and output

. X Processors can read data from |ITs, and can read and write to and from DEs
and DRDEs. For each value read or written by the X Processor, the IT contains either
the corresponding value or the name of a DE or DRDE (or, for document production, the
neme of a !inkage tabte). At the time an X Processor Is created, the speclfications for
Its interface table are defined. Each interface table, therefore, Is bullt to the
unique specifications of one X Processor. A "default" interface table for each
X Processor has been constructed
by FDS support personnet. The

user may mod!fy this table to Type Purpose
create new tables for specific
tasks, . P8 Long-tern storage of user data
§‘§§ MpB Long-term storage of master data
A | “IKEGE IEE| E “ I!] sed 2 A= Y00 User-accessible storage of Y Processor output data
lnput to the documentation system 0E Collection of processor input or output data
mmmmﬂ—lwm ORDE Large collection of processor input and output data
+ However, it ' . . .
is assoclated with a document g i Execution control of X Processors
rather than with an X Processor. o LT Execution control of documentation system
I+ serves to provide a O 3 User-defined and controlled command execution
correspondence between the user's Yor Control of fnput to ¥ Processors
data values and the corresponding '
reserved spaces In a skeletal 9-2. Each storage area and file type has a specific
document, use.
PDB
e A _SEQUENCE TABLE (ST) [s a collection of
ST Now EDS commands stored for later execution.
s AWA oied These commands can invoke FDS Executive
functions and cause X Processors to be
ST — executed. The purpose of a sequence table
Ms ST Is to provide the user with the capabil ity
’ ———=| ITs, for defining and executing often-used
etc. etc. sequences of commands. A typlcal use of a
sequence table Is to Invoke, In turn, each
of the X Processors which correspond to the
w events (e.g., orbital events) on the
timel Ine.
MDB
A Y-DATA TABLE (YDT) Is a collection of
In working on the example problem, Information that detines the control and
information generated about a prior data inputs required to execute
f1ight may be used. From a PDB, for Y Processors. Y-Data Tables provide a
example, the user could retrieve the means to create and control the Input data
sequence table and assoclated for Y Processors, They can also refer to
Interface tables used on the prior DEs used to store output data from
flight, If the example probiem X Processors, which can then be used as
involves use of an X Processor that Input data to Y Processors. The Y-INPUT
was not used on the prior flight, the DATA flle, which Is the actual flle that Is
Interface table associated with this used by Y Processors Is built from the YOT

processor could be retrieved from an ty the FDS Executlve,

*

TN

10 DATA MANAGEMENT

Data manac=ment Is concerned with creating, storing, accessing, modifying, and deleting

flles and data bases.

-ST sequence table

-IT interface table

-LT 1linkage table

-YT Y-data table

-DE data element

-0F disk-resident data element
-PD personal data dase

-MD master data base

-YJ Y-output data

-XJ X Processor job

10-1. A1) file and data base names
are unique when they are qualified '+
a classification code.

Atlle Is a collecticn of ralated

of tllas. A group of related information,
or data, such as an Interface table for a
particular processor, is stored as & flie.
Multiple flles, which are also related In
some fashion, can be stored as a data base.
When qualified by a classification code,
all of a user's files and data bases have
unique names that are used to access them.
Data base names can also be qualified by
the access code of the user who creates
them. Users can control access to any data
bases created under thelr access codec.

Some flles, such as fhose in a MDB, are "read-only"
modified or written to.

sesslons, a!l data bases and flles fhaf *he user has saved reside on disk,
FDS sesslon, however, some of these files can be In the AWA,

that is, 1hey can be read buf not

Flles that are stored in PDBs, however, can be modified.

Between FDS
During the
Large files cannot be

stored In the random-access memory portion of the AWA and must be kept in the

disk-resfdent portion of the AWA, as DRIEs,

The user must be aware of which files are

DRDEs, since some FDS functions can only be applled to random-access memory=-resident

flles and not disk files,

Users are responsible for managing any

cause to be crested. When users create
files, they are responsibie for saving
those fites In an appropriate data base,
mak ing any mod!flcations to those files,
and deleting those files when they are no
longer needed. Once created and saved, a
flle will remain on the FCS until| the user
explicltly deletes it, Since flie storage
space Is |Imited, fallure to delete old
files may prevent the user from having
sufficlent room to save new flies.

10 1hﬁ user: li lﬁ Ihﬁ IIiﬂC'ﬁ
responsibility to manage these data.

speclfles where the output data are to go.

S— ﬁ%b ——
OLD) . NEW
PDB & R PUB
62(} N S
q e——
MDB . ? YOD
K %
‘_/ e
10-2. Data can be transferred from one data

base or data storage area to another.

The FOS X and Y Processors ald in the flight
design process by calculating data for the user.

When using these features, the user

The user must decide which of this

information can be deleted and which must be saved and where to save it.

e e e g %+ T S S T—T T S T DT

— N . 1

g s o

The FDS user has certain responsibliities for dete management. Data management is
concernad with creating, storing, accessing, modifying, and deleting files and duta
bases, Because file types and date storage areas differ in their function, some date
menagement actions apply only to certain files or data storage areeas.

All f'les and dafa bases can be classlfled as to type and the classlflcaflon code is
sometimes used, in addition to the name, to Indicate which file or data base Is belng
referred to. For example, sequence tables are classifled with -ST (e.g., TAB1=3T) and
Interface “:%is with =IT (e.g., TABI=IT), Al! ftlles and data bases that the user
creates must* "ave unique names, when they are qualified by type. No two files or data
bases of the same type can have the same name.

Difterent flle types exist because they are stored and used differently. For example,
Interface Tabies and Sequence Tables are used for qifferent functions, Data Elements
and Disk-Resident Data Elements are used for similar purposes, but are stored
differently and, as a consequence, must be used siightly differently, The user can tell
what type a file Is by looking at the classification code,

User data can be stored in one ot four data storage areas on the FDS. These areas,
which were described eariler, are the Actlve kork Area (AWA), Personal Data Base (PDB),
Master Data Base (MDB), and Y-Output Data (YOD) area. Any file type, such as a sequence
table, Interface table, etc., can be stored In the AWA, POB, or MDB. A YOD can only
contalin the data returned from Y Processors. The user can read the information in a
YOD, but cannot write to a YOD. Interface tables, data elements, etc., that are to be
used by the X Processors cannot be stored on Y0Ds,

One type of executive command allows the yser to transfer ftiles among data storage
areas. These commands al low the user to save AWA data in one of the other storage aroas
or to retrieve data from one of these areas Into the AWA. The commands that are used
differ slightly as a function of the flle involved,

ALLOCATE: create DE in AWA
APPEND: append portions of AWA

. In solving the example probl interf
to existing PDB ving ple problem, interface

tables, sequence tables, DEs, and DRDEs
CLEAR: purge AWA will be created, All of these files could
COPY: copy and rename table, DE, then be stored in one data base. For
DRDE, PDB, or YOD example, we could create a PDB for the
DELETE: gg;e;ﬁ $Sg]e* OE. DRDE, example problem and call it EXPL-PD,

GET: retrieve portions of MDB
or P0B into AWA
INSERT: combine portions of

ITs, Sis, etc, p—w EXPL-PD

Wher working on a leter flight, It would
tables then be posslibie to retrieve these files
RENAME: rename table, DE, DRDE, trom EXPL-PD, modify them for the current
or PDB . problem, and store them In a new dara base.
STORE: ﬁg&yngrt10"5 of AKWA to We could also delete the entire data base

or selected files, it we were certain they

SUBSTITUTE: replace cnntents of would not be used agaln.

existing PDB

YMOVE: copy portions of YOD to EXPL-PD | IT¢, STs, etc.p=»| PROB-PD
a DE in AWA

10-2. These commands are used to
perforu data manaaement functions,

21

ST TR

.

11 INTERFACE TABLES

Each X Processor has an Interface Table that controis execution of the processor and
defines Input and output parameters.

yalues associated with one X Processor. Each IT Is constructed to match the
speciflcations of the processor that will use it., At the time an X Processor Is
created, the specification tor Its IT Is defined and FDS support personnel construct the
"default" IT. ITs deflne a list of input and output parameters for each X Processor,
and provide a mapping of the user-specified input and output dats to the variables in
the X Processor, Since some of the input variables may determine the ‘unction of the

X Processor, ITs are al<o used t0 contro|l the execution of the X Processors.

X Processors can read data from ITs, and can read and write to and from DE: and DRDEs.
For each value read or written by the X Processor, the IT contains either the
corresponding value or the name of the DE or DRDE (or, for document production, the name
of a |lInkage table).

As a processor requires a particuiar input from an {7, or the name of an output DE or
DRDE, the IT js ccnsulted. At the time the IT is consulted, the particular element must
be present. If It Is not, the IT editor is invoked and the user must supply the missing
Information. |f the missing Intormation |s marked as required by the applicatlion
processor, the edltor will be invoke¢ before the processor can be executed. |f the
information is gptional, the editor will oniy be Invoked when the information is needed;
thet is, during execution of the X Processor, (IT editor functions will be discussed In
detail In a subsequent section.) It is important to remember that X Processors can read
from ITs, but they do not write to I1Ts. [Input data that are required by a processor can
elther be read from a DE or DRDE that Is named In the IT or be read directly from the
IT. Output from processors, however, can only go tc DEs or DRDEs whose names appoar in
the IT; they cannot go directly to the IT.

X Processor requires data for ARRY! and queries 1T. IT returns data to
X Processor.

X Processor IT

ARRY! | [ARRYI = 9,78

-

X Processor has output and queries IT (1) for location of storage area for
output data. IT tells X Processor to write to (2) Data Element INTOUT.

X Processor T INTOUT-DE

0UT! 4,5,6 (

r—
~—

GUTI @ INTOUT 4,5,6

(2)

A

11-1. An X Processor can read values directly from an 1T, but can write only to a
DE or DRDE named in the IT.

22

S TR e T T R TR TR TR T T R

Interface Tables are required for all X Processors. ITs define Input and output
parameters for X Processors. The format for ITs Is pre-defined and can be found in
default or existing ITs, Default ITs can be obtained automatically from the system.
X Processors can read from ITs, and can read from, or write to, data elements named In
the ITs. Linkage Tables are similar to ITs, but are used in the document processing
function.

. This format is
defined by the processor Involved. The pre-determined format for 1T< can be found in
default ITs (which are "templates" constructed by FDS support personnei), or In existing
ITs. Each processor has certaln required parameters, but may also have optional
parameters. The default |ITs generally contain default values for those variables which
the user Is unlikely to change; otherwlse, varlanles In the default IT are Incomplete
and/or missing. The user can create a specific IT by editing the default IT (or other
exlsting ITs), adding the missing and/or incomplete entries, and saving the new IT,
Interface tables generated by the user are automatically stored In the user's AWA;
however, the user may also store ITs in PDBs, or automatically recelve default Interface
tables from the system. Durling processor execution, the IT must be in the AWA. I+
should be noted that users are responsible for managing any ITs they create. This
includes naming, modifying, deleting, etc.

Xa Nne - - - - . = Qi) .~ D) <
. Generally speaking, ITs wil! point to an LT (as
if I+ were a DE or DRDE) to satisfy data requirements .or a particular document sagment
which is being processed by the document processor. LTs are created In the same manner
as an IT, have the same basic structure/format, and changes are made to LTs In the same
manner as ITs. The difference Is that an LT defines the list of input parameters for a
particular document/segment (rather than for a particular X Processor) and is used to
control the execution of the document processor. LTs are discussed further In
connection with the document processing function.

In the example problem, one of the trajectory Interface Table
maneuvers 1s the "OMS-2" maneuver used to P "
circularize the initial 150-nm. orbit of the maneuver 1s “CIRC
shuttle. The baslc computations assoclated with input state in RESULT
planning this maneuver will be done by the .
General-Purpose Maneuver Processor (GPMP). GPMP store output in RESULT
is an X Processor which computes a single vehicle
impuisive maneuver which Is Initlated at a
specifled maneuver polint In the vehlicle orblit and
Ig targeted to a speclified final orblt condition, X Processor
The Interface Table associated with a particular Caneral Purpose
execution of this processor contalns information M
which describes the particular maneuver. In the aneuver
case of OMS=2, the selected maneuver Is Processor
Identiflied as "CIRC", for clrcularization., The
Interface Table also names the data elements
which are to contaln the state vectors which

describe the state of the orbiter before and Data Element
after the maneuver. In the case of OMS~2, this
Information will be retrleved from, and stored RESULT

In, a data element called "RESULT". The
Interface Table contalns a varlety of additlional
Information dealIng with other selected optlons,
physical units to be used, display(s) to be
produced, etc.

- &

12 DETAILED CONTENTS OF INTERFACE TABLES

Each entry of an Interface Table consists of an entry number, a parameter keyword, and
information which deflnes the value(s) of that parameter.

A < 3 ah Q 3 - AT A . The
entry number Is a numerlic fleld (range 1-170) that unliquely Identifles the tabie entry.
Entry numbers are used, for example, to Identify entries to be changed. Interface Table
entry numbers are preassigned and cannot be changed by the user. The data field In an
IT contalns parameter names and assoclated value fields. The value field may consist of
one or more data values. Alternatively, It can be a reference to a DE or DRDE where
data values may be found for input, or where output values are to be stored. |IT
varlables are of three types == Input, output, and input/output. IT output and
Input/output variables must contain the names of DEs or DRDEs (in the AWA) where data
values are to be found and/or stored. Data values can be stored in an IT only for Input
variables.

1,GE000N = | 1GEOCON (1! Identifies MOB alement)

2,PHYCON = TIPHYCON

3,SESCON = ISESCON

4,0SPCON = ISESCON (1 indicates a configuration controlled

DE built by a processor)

5,BDATE = IBDATE

6,PROCON = 10, 1.0E~4, 6.0E-4, 75. (array of Iiteral numbers)

7,INVEC = RESULT(1,3) (RESULT is a data element allocated by user)
8, THRUST = 1,200000E+04 .

9,iSP s 3.131999E+02

10,ENGID = "OMS "

t1,MANID = "CIRC" (CIRC Is the circularization maneuver)
12,DELVOPT = "LYLH"

15,ALTOPT = mALT "
22,00 = 2.0
23 ,AREA = 2690,
24, DENSMODL = i!DENSMD

25,S0LAFLUX = 1ISOLRMD
26,GEOPQTEN = (& means missing data to be supplled by user)
27,SYPROP = "AEG "
28,01 SPLAY = "TRM " (= symbol describes input data)
29,GPMPTET @ RESULT(1,3) (8 symbo! describes output data)

30, SUMTAB @ !CIRTAB

12-1. The Interface Table for an OMS-2 trajectory maneuver illustrates many
of the possible features of ITs.

« An "Incomplete" entry is one In which the
parameter name Is present, but one or more data flelds have not been filled In. The &
symbol signals FDS of this conditlon. A glven entry may have multiple Incomplete
flelds. The &LABEL symbol Is |lke the & symbol alone, but a label of up to seven
characters can be added to ald In Identifyling what 1s left Incomplete. For example, If
the Incomplete item Is the name of a data element contalning a state vector, &STATEV
could be used to indicate that this required Ttem is a state vector. |If a parameter Is
not present at all, It Is "missing". Since all requlred parameters are always present
(even if Incomplete), only optional parameters can be missling,

S. Data type refers to the way
that the value Is represented. For example, integer data types cannot Involve decimal
points, while real data types can. Each data type (e.g., 6 and 6.0) has a different
representation In the computer. Processors require certaln data types to be used for
each of thelr Input and output values.

24

x
S

s '&‘A’Q‘{"”%‘M”

SR

P optional sign, and an optional scale speciflication.

ITs consist of entry numbers and associated data fields. Entry numbers ldentlfy each
table entry. Data flelds contain parameter names and value fields. Value flelds denote
one or more data values, or locatlons of Input data, or locations In which output values
are ‘o be stored. & or &LABEL may be used in value flelds to indicate missing or
Inconplete data to be fliled in later, Parameter attributes are defined for each

X Processor. Attributes displays consist of parameter name, class, type, use, and
dimensions,

RATA_TYPES

I &« (INTEGER == 1, =7, #17
-~ consists of diglts and an optional sign (+ or =),

R = SINGLE PRECISION REAL - 6.12, =17.23E01, 12.1€4C2, 17.3E-02, 4E2
-~ conglists of digits, an optional decimal point, an

0 = DCUBLE PRECISION NUMBERS -- 6.12, =17.2300!, 12.10+02, 17.30-02, 402
-- |ike single precision, but uses D instead of E.

Cn = CHARACTER DATA == "AB", *"XX17BC"
~« alphanumeric data enciosed In quote (") marks. Character data
itams consist of alther 4, 8, 16, 32, or 64 characters (e.3., Cl6).
You may use faewer characters than those al lowed, but not more.

M = MIXED TYPE «= =7, “AB", 16.2003
~- 3 fixed combination of the above types.

€ = FREE DATA -= 6, -14.2E03, “EXPL"
-- a random, or unconstrained, combination of the above types.

T = TiME DATA == 10:9:15:32.1
-= 3 time expression (see Appenrdix 0).

12-2. An Interface Table may use one or more different data types.

Each X Processor has predefined Input/output attributes. The attributes are determined
at the time the X Processor Is added to the FDS llbrary and can only be altered by FDS

support personnel. Attributes of a particular X Processor serve as a foundation from
which Interface Tables are constructed. Use of the ATTRIBUTES command will display a
given X Processor's attributes., The attributes display provides, for each parameter,
its entry number, name, Its data class (DE or DRDE), data type, dimensions (size or

subscripts), and codes Indicating its required or optional nature and its use as input,
output, or both.

ATTRIBUTES DISPLAY FGR PROCESSOR GPMP VERSION €
SNTRY KEYWORD SIZE ROW COL CLASS TYPE 170 ®/O
1 GEOCON 60 15 DE] 1 R
2 PHYCON 60 15 De D ! R
3 GSL 4 1 DE t 1 R
4 LBMKG 3 1 DE D 1 R
5 FTM 4 1 DE 0 1 R
6 SESCON 288 144 OF £ ! R
7 B8DATE 164 82 0E F 1 R
8 PROCON 14 7 of F 1 R
9 INUEC 56 28 0 F I R
10 THRUST 2 1 DE R I R
11 15P 2 1 Of 3 1 R
12 ENGID 2 1 D€ c4 I R

12-3. Use of the ATTRIBUTES command will display the attributes
of a specific X Processor.

An Interface Table used by GPMP to circularize the Initial 150 nm. shuttle
orbit Is presented In Figure 12-1, All of the parameter names necessary to
calculate the example problem's OMS=2 clrcularization maneuver are present.
With one exception, the Individual data flelds are complete. Oniy entry number
26 contains a data fleld that stil! must be completed by the user. The IT
contalns examples of Input vaiues (e.g., entry number 6), Input DEs (entry
number 3) and output DEs (entry number 30), as weil as a varliety of features

discussed In the figure. It would be useful to consider, together, all three of
the figures In this module.

25

P

13 X _PROCESSORS

X Processors are used for flight design computations which do not require detalled
simulation, and are fully described In the X Processor User Reference Manual.

1€ _Ma 1O [19 [1€
. These Independent application processors are used as bullding
blocks In flight design. X Processors are designed to perform the computational and
documentation support requirements of flight design tasks which lead to CFP developmznt.
The fldelity of these processors is consistent with CFP development, but may be
Insufficliently detalled for OFP development. X Processors may be executed In a
multi-user Interactive environment or, if the user speciflies, X Processors may be
executed In a background (batch) mode. In either case, the processors may be executed

individually or In sequence.

. GPMP computes a single vehicle impulsive maneuver that Is
initiated at a speciflied maneuver point in the vehicle orbit and is targeted to a
specifled final orbit condition. GPMP includes 13 commonly used impulsive maneuvers.
However, a particular Shuttle missfon may require an Impulsive maneuver not present In
GPMP singular options. In this case, a combination of GPMP maneuvers may enable the
user to achieve the desired results. For a detailed description and explanation of GPMP
capabilities and uses, as well as the capabilities and uses of the other X Processors,
the X Processor User Reference Manual should be consulted. That maruul contalns
information on the purpose, assumptions, computational methods, and input/output
requirements of each X Processor.

GPMP PROCESSOR INTERFACE TABLE
Proept] 1] 4] Veluss stored [}
parancter |] [] !] In éfault []
GEOCON 1 OE 1 I RI] 1 116t CoN 1 Geophysicar constants array, master data base
! ! ! ! ! ! element
N : :
PHYCON 1 DE ¢ 1 RI 1 HIPHYCON t Physical and mathematical constants, master data
! ! ! ! ! ! base element
|] ' ' ! 1
SESCON : DE : : RI 'l : 1SESCON : Session constants array
DSPCON | OE | ‘o ! 1sESCON ! Display constants array
! 1] 1) 1
BOATE : []3 : : Ri l' 76 : 180ATE : Basctime Jata array
PROCON | OE | T H ! GPMP 1imits and tolerances
|]] t | 1
veC L3 HEL T . B O 3 ! } Position/velocity tnput state vector
1 ' | |)
THRUST : DE : R : Rl : 1 : Yehicle thrust magnitude
15p foe] & Jr1 } 1 ! Vehicle specific impulse, seconds
| ') 1 | |
ENGID : Ot : c4 = Rl |' 1 ! : Propulsion system {dentification code
: : ; : : (1) *sre" = Solid Rocket Boosters
: ! : : ! (2) “SSME" = Shuttle System Main Engines
: : : 'l i (3) "oMs™ = Orbital Maneuvering System
: = : : ! : (4) "RCSA™ = Reaction Contro! Systiem - AFT
! ! 1 1 ! : is; "RCSF" = Reactfon Control System - FWD
1 1 | ! ! ! (6) "Sus* = shuttle Upper Stage
1] 1 Mized dels Corwat specifisations: Weme(Niype...Wlypel
[JERE- TS . wh '
0| 1r:bree (4] 1. Required Inpwt RE/RO]
T | mave fivlntg €8 01- Optionsd Input R1/00 Pl
Lt ihemeal €16 RO - Regquired Qutput OI/MO e l
s ! 10 -Dwd) (34 0 - Optioned Output 01/00 H
M

13-1. For each X Processor, the X Processor User Reference Manual provides
detailed input/output requirements.

26

R

X Processors perform computations and provlide documentation support for basic flight
' i design and CFP development. They can be executed Individually or sequentially, In an
L 1A interactive or batch mode. The X Processor User Reference Manual contalns detalled

¢ descriptions of all X Processors.

The following Is a list of X Processors and associated [Ts used In solving the
example problem,

BASTM, T1 -- Establish tIme reference to be used by all
\ subsequent X Processors.

PHYOM, HOWBIG ~-- Establish physical dimensions to be used by
- all subsequent X Processors.
ASCENT, UP -= Perform launch computation. Establish state vector
at Main Englne Cutoff (MECO),
GPMP, ETSEP == Perform computation associated with external
tank separation maneuver.
GPMP, OMS!1 == Simulate first OMS burn to achieve parking orbit
altitude (150 nm.).
GPMP, OMS2 == Simulate second OMS burn to circularize parking orbit.
GPMP, SEP1 ~- Deploy (separate from) first payload.
GPMP, PKM == Simulate upper stage perigee kick maneuver to place first
payload at geosynchronous altitude.
' GPMP, AKM -~-. Apogee kick maneuver to circularize geosynchroncus orbit,

GPMP, TRANS -~ Transition to 200 nm. shuttle orbit.

GPMP, CIRCt == Circularize 200 nm, orbit.

GPMP, SEP2 -- Depioy second payload.

ACOAST, ORB -- Project state vector forward as If "coasting".
Forward projection Is to allow detalled ephemeris
computation.

INVAR, EPHM ~= Compute smooth (detalled) ephemeris.

STCN, GTDN == Determine ground station contact intervals for
communication.

SRSS, SUN -~ Compute day/night cycle information (Sunrise, Sunset).

LANDOPT, LAND =-- Compute landIng opportunities within crossrange
capabil ity of orbiter,

DEORBIT, DEORB == For the s:lected landing opportunity, perform
detalled deorbit and landing computation.

GTRACK, GTK -- Compute ground track for entlire mission.
FPD, FLTP == Produce Flight Pian Display(s) for entire mission.

27

At i R

14 SEQUENCE TABLES

A Sequence Table contains a sequence of FDS commands ("statements") which have been
stored for later execution.

Subsequent executlion. STs allow fhe user to define and store offen-used sequences of
commands. All or part of a Sequence Table may be executed as an entity In either
automatic, semi-automatic, or batch modes of execution. Although STs normally contain
commands that are executed sequentlially, these commands can also be executed
repetitively or conditionally.

« STs created by the user are
automatically stored In the AWA; however, the user may also store STs in PDBs, or
retrieve master Sequence Tables from MDBs. There are no default STs. The user creates
new STs "from scratch" or by editing existing STs.

nanamgigcal The enfry number ls an unslgned Infeger and appears In ascendlng numerlcal
order (range: 1-32767). All of the Executive commands except QFF, CLEAR and EXIT may
be used In Sequence Tables. In particular, DO LOOP, LQOP END, IF, ELSE, and ENDIF may
be used only In Sequence Tables. Each command requires a speciflc order and format for
any associated parameters. See later discussions of commands for proper syntax.

USER
INVOKES ST
ST ! RESULTING ACTION
10, GET > -» GET, SIZE-IT
20, PERFORM » EXECUTIVE p———> PERFORM, PHYDM, SIZE
30, > —> ...
40, > ——

The user instructs the Executive to run a Sequence Table.

The Executive then acts on the various commands within the ST.

The initial ST may invoke other STs, or return control to the user
through the Executive.

14-1. Sequence Tables allow the user to store a series of commands for
later execution.

28

oSO TR

T o AT P I s g

s

Sequence Tables contaln sequences of Executive commands., By storing a series of
commands In an ST, the user is able to execute the series simply by Invoking the ST.
The commands are ordinarily executed In simple serlal order, but they can also be
Invoked repetitively, conditionally, or sequentially. STs are stored In AWAs, PDBs, or
retrieved from MBs. There are no default STs.

The normal approach to solving a basic flight design problem with FDS Is to
construct a Sequence Table which executes, In turn, each of the required

X Processors. The use of a stored "program" allows the user to correct errors
and re-execute the computational sequence with minimal effort. [t also provides
a mechanism for remembering the computational process at any time in the future.
The ST for the trajectory portlon of the example problem closely follows the
list of trajectory events presented previously.

This ST provides the commands and assocliated data necessary to simulate the
example mission through the GROUNDTRACK CHECK event. The majority of the
entries in this ST contalin a

PERFORM statement followed by

an X Processor name, and the

name of an assoclated

Interface Table., As one might SEQUENCE TABLE

guess, each of these commands

causes one of the X Processors " u
to be executed. The NOTE 100, NOTE,"INITIALIZATION

statement Is also used 200, PERFORM,BASTM,T1

300, PERFORM,PHYDM HOWBIG
frequently (entry numbers 100 ’ 4 4
700, etc.). The NOTE ’ 400, ALLOCATE,INVEC(30,20)-R

statements are not executed by 500, ALLOCATE,RESULT(30,20)-R
600, ALLOCATE,HIALT(30,20)-R

FDS, but are input by the user 700" NOTE . "ASCENT"

for clarification purposes. ’ A

800, PERFORM,ASCENT,UP
h ’ » >
T g T ot emery 5 alse 900, ASSIGN,RESULT(13,1) = 2.430089E+05
P ooy oo 1000, PERFORM,GPMP,ETSEP
numbers 400-600). ALLOCATE ’ ’ ’
allows the user to define 1100, PERFORM,GPMP,OMS]
corteln Dete Eloments 1200, PERFORM,GPMP,OMS2
1300, NOTE "PAYLOAD 1"
nacessary for X processor 1400, ASSIGN,RESULT(13,7) = -1.254199E+04
: y flumber's 1500, PERFORM,GPMP,SEP]
900 and 1400 contain ASSIEN 1600, NOTE,"UPPERSTAGE PAYLOAD 1"
statements., Thlis statement 1700' PERFORM. GPMP . PKM
allows the user to compute ' ’ ’

values and store them In an iggg’ Eg#ioﬁgﬂﬁt326Agw
existing DE. Flnally, the 2000, PERFORM,GPMP, TRANS
LIST statement Is used In the ’ ’ ’
example ST. Entry number 2500 2100, PERFORM,GPMP,CIRC 1
: 2200, ASSIGN,RESULT(13,13) = -6.319999E£+403
Instructs FDS to display the 2300 PERFORM.GPMP.SEP 2
o oy o g) oment 2400, NOTE,"DEQRBIT CHECK AND DISPLAY"
-p 2500, LIST-P,RESULT
printer (). 2600, PERFORM,ACOAST ,ORB
2700, PERFORM,INVAR, EFHH
2800, PERFORM,STCN,GSTDN
2900, PERFORM,SRSS,SUN
3000, PERFORM,LANDOPT ,LAND
3100, PERFORM,DEORBIT,DEORB
3200, PERFORM,GTRACK,GTK
3300, PERFORM,FPD,FLTP

29

ey

15 EDS HARDWARE

The FDS consists of four major hardware components, In addition to several user
workstation devices for interacting with FDS.

B () 2 X E¢ 8 Aandg A OCE O

+ This component Is the primary Interface between the user and the
functions provided by FDS. The Tektronix terminals are directly connected to this
component. Through these terminals, the user can access any of the functional
components of the FDS.

- . This component
functions as the center for automated documentation. Skeletal document forms reside on
the Xerox and can be requested by the user through the Interdata. These skeletal
documents are merged with data values and transmitted back to the Xerox for production.

=d

XEROX VT-3 WORD INTERDATA 8/32

|_PROCESSING SYSTEM __ | P | | emwmrsvstew | | UMvAC o8
SUPPORTS DOCUMENTATIOR DOCUMENTATION FLIGHT DESIGNER'S HOST COMPUTER FOR
DATA PRODUCTS, DATA LINK PRIMARY INTERFACE. HIGH FIDELITY BATCH
SECTIONS 4 AND 8 FIDELITY IS CONSISTENT PROCESSING. FIDELITY
OF PIP, PIP ANNEX, WITH CFP AND IS CONSISTENT WITH
CFP AND OFP FEASIBILITY OF OFP. DEVELOPMENT OF OFP.

15-1. Each of the FDS hardware components has a unique use.

Ihe HPZ2IMX Is used as an interface that passes document-related data between the
JInterdata and the Xerox. Although the HP21MX Is a separate computer system and could be
used for a varlety of purposes, this Is the only role It plays as a part of FDS.

Ihe UNIVAC 1108 Is the host computer for the Y Processors, which provide the RJE.
capabilitv of FDS. Y Processors are used to generate high-fldel ity OFP data. Thls
hardware component of the FDS Is larger than the others and can compute results to a
greater accuracy. Thls component can only be accessed In a remote job entry mode; It
cannot be accessed Interactively from a terminal, although Inputs to and outputs from
this component can be done via a terminal. Some outputs from Y Processors, such as
figures and graphs, cannot be transmitted back to the user terminal. However, all
nongraphlcal data that are needed for further work with X Processors or for document
production can be displayed at the terminal.

Most of the Interactions with the FDS are through the terminal. Communications with the
FDS are Inltiated through a TEKTRONIX terminal which Is connected to the Interdata. All
user commands are Inftlally Input through a terminal and most of the output from the FDS
Is returned to the terminal. There are other devices, however, that also ald In usling
the FDS.

- . The VERSATEK
printer/plotter Is one device that the user can access. Thls could be used, for '
example, to produce ground tracks. There Is only one such device and It must be shared
by al! users.

30

The FDS consists of four major hardware components =- an Interdata 8/32
primary computer, an HP2IMX minicomputer, a Xerox VT=3 Word Processling system,
and a Univac 1108, The user workstation provides a varlety ot devices that
allow the user to Interact with FDS for a varlety of functions.

Tekronix Terminal Printer/Plotter ™

15-2. FDS has several input/output devices.

e . The user may wish to have a copy of
some of the Information that is returned to the terminal. This device allows the user
to generate a copy of the current contents of the terminal screen, If the user wants to
save It.

The terminals assoclated with the Xerox can only be used for final document production;
they cannot be used to access other components of the FDS. Although using this device
is the only way In which documents may be printed, preparation for document procuction
can be done through any FDS terminal.

In solving the CFP portion of the example problem, primarily X Processors wlll
be used. This Involves use of the Interdata 8/32 primary system.

USER INTERDATA 8/32 |

In order to access Y Processors, for example to solve the OFP portlion, the
Univac Is accessed through the Interdata and data are returned to the
Interdata.

USER INTERDATA 8/32 UNIVAC 1108 |—»{ INTERDATA 8/32

In order to produce & document, such as an OFP or a CFP, the user Interacts
wlith the Interdata, which creates a communication |lnk with the Xerox via the

HP21MX.
LUSER INTERDATA 8/32 |—>{ HP21MX —>{ xeRox

31

o T TR R T I o S B e A e e Sl e st TR R

16 FDS COMMANDS

The FDS user communicates wlth the FDS system through a set of commands.

Each of the operations performed by FDS s supported by FDS commands. The cummand name
entered at the terminal tells the FDS system t¢ do the procedure or procedures Indicated
by that command. Most command names are followed by a |ist of parame’ers, separated by
commas. The pareameters supply FDS with Information about how It 1s to carry out the
command, or what values or files are required. The FDS system interprets each parameter
according to a syntax which specifles the order In which the possible parameters are
entered. For some commands, some of the parameters must be specifled every time the
command name Is entered. These are called requlired parameters, Other parameters can be
omitted, In which case FDS assumes default values for those parameters.

£ . When the syntax
of the command Is described, the command name w!ll| be followed by the set of parameters
assocfated with that command, separated by commas. Requlred parameters of a command,
which must be included each time that command Is used, will be Indicated by wunJderlilines.
Optional parameters will not be underlined. Ellipses (...} will be used to Indicate
t+hat a particular pattern can be repeated at will. An example of the format used for
commands In thls user guide Is shown below.

COMMAND, parameter 1,parameter 2, parameter 3,...

This command takes three parameters, only the first of which Is required.

=

COMMAND PROCE3SOR (3)

, BREAK DLOG MESSAGE
EYECUTIVE NEWS OFF

DATA MANAGEMENT
FUNCTION

DATA STORE/RETRIEVE

EUNCTION

ABSTRACT ALLOCATE

APPEND ASSIGN

ATTRIBUTES CHANGE

CLEAR copy

CROSSREFERENCE

DELETE FIND

GET LisT

RENAME 3TORE ; ‘ T

SUBST{TUTE 0¢ EXECUTICH FUNCTION(S)

YMOVE AUTOMATIC BATCH
PERFORM SEMIAUTOMATIC
YRUN

TABLE EDITOR

CHANGE EDIT rannll -

EAIT MODE DCCUMENTAT . i FUNCTION

INSERT LIST

HOTE NUMBER PERFORM

16-1, Each of the operations performed by the FDS Executive is supported by
a set of commands.

Each of the operations performed by FDS Is supported by one or more commands.
The user communicates with FDS by using these commands. The basic form in
which FDS commands are stated is

COMMAND, paramater 1,parameter 2,parameter 3,...
When FDS commands are described In the user guide, command names will be shown
in capltal letters and required parameters will| be under|ined. A command may
be useable as a directive (which Is executed Immedlately), or as 8 statement
(which iIs stored for later execution), or as elther.

. When a command is to be performed as soon as It Is entered
by the user, It Is called & DIRECTIVE. When a command Is stored for |ater use =~ much
like @& statement in a programming language -- it Is called a STATEMENT. Statements are
stored In Sequence Tables, while directives are executed Immediately by the FDS
Executive. Although most commands can be used as elther directives or statements, there

are a few commands which can only be directives, and a few which can be only statements.

[:::::7 FDS FXECUTIVE FDS EXECUTIVE

: (immediately }

performed))
EDITOR

(stores in
sequence table)

y

SEQUENCE
TABLE

16.2. FDS Directives are executed 16-3. FDS Statements are stored in sequence
immediately by the Executive. tahles for later execution.

To perform the computations assoclated with the OMS-2 trajectory

clrcularization maneuver, the user uses the PERFORM command. The purpose of

the PERFORM command Is to cause the execution of a single X Processor. The
- generic description of the command Is

PERFORM, X Processor name, interface table name

For this particular computation, the desired processor !s the General Purpose
Mansuver Processor, whose abbreviated system name 1Is GPMP, The Interface
Table which was constructed for this maneuver was called OMS2, Thus, the
actual command wilil be

PERFORM, GPMP, OMS2

This command can be stored as a statemen’ 'n a sequence table, so that It Is
executed at the appropriate point In a larger sequence of statements. |f the
user wanted to, though, he or she could type the same command when not edl!ting
a sequence table. In that event, It would be a OIRECTIVE and would be
executed Immedliately.

33

17 USING THE TERMINAL

Successful operation of FDS requires a very baslc knowledge of the terminal and Its use.

Although a varjety of terminal
types can be used with FDS, the
basic terminal s the Tektronix
4014. This terminal has a very
high=qual ity graphical display
capability. Uniess the user
Indicates otherwise when signing on
(see later discussion), FDS assumes
that this terminal is the type in
use. Although the basic FDS
dialogue does not make use of
graphics, several of the

X Processors prod.ce graphical
displays if the user Is using a
Tektronix terminal.,

Because the Tektronix 4014 s a
storage-tube display terminal.
from ordinary alphanumeric
terminals. After the terminal is
turned on (the switch is on the
pedestal, under the keyboard, on 17-1. The Tektronix 4014 is the basic FDS use
the right), i1t must be allowed to termina
warm up for a minute or two. The

screen must then be cleared (by pressing the RESET/PAGE key at the upper left corner of
the main keyboard) before information can be displayed on it. This same key can “e used
as desired to clear the screen. It Is also recommended that the screen be cleared
before the terminal Is turned off. |f no Information is input or written to the
terminal for a minute or so, the display intensity is automatically reduced in order tc
prolong the |i1fe of the CRT. The display can be reinstated by pressing the SHIFT key.
For more detalled information, the user should consult the User Manual for the terminal.

La e L3N & BT NN

N
|

— Y

17-2. The Tektronix keyboard has special features because the terminal uses a
storage-tube display.

34

Although many types of user terminals can potentially be used with FDS, the basic FDS
terminal Is the Tektronix 4014 graphical display terminal. It has some special features
which must be understood for satisfactory use, especiially as regards display clearing.
Other aspects of terminal use which the user should understand Include the RETURN key,
command abbreviation and termination, and multiple=|ine commands,

) P . e B Nng aTe B N e Nne
« This key (which is abbreviated "(CR)", for carriage return) must be pressed
before FDS can take any action. Thus, whern typing in a command, the user must always
press RETURN at the end, even though the command definitions do not indicate this.
RETURN is not actually a part of the command, but is merely the system's way of
recognizing that the user has finished typing.

Ihe user can abbreviate

L commands by typing in the The
first two (or more)

l. LOCAL/LINE switch set to LINE.

Thus, the ABSTRACT command 2. ASCII/ALT switch set to ASCII.,

can be abbreviated AB, ABS, 5. MARGIN CONTROL set to |I.

ABST, etc. Semicolons can 4, TTY LOCK depres<. 4.

also be used to terminate AFfer Turning o The terminki. e user Sho
any command, although only a tha o i S aiea b " 8y P8 use olon (:). 1
few commands actually '@ oscape key 1tobls, Tol'owed by T Or colon 1:
require this, Blanks can be

typed between arquments In a Escape,8 60 characters per line
command, !n orler to Improve Escape,9 80 characters per |ine
readabl|ity. Otherwise, Escape,: 120 characters per |ine
commands must be typed as Escape,: 132 characters per |ine
Indicated in the individual

command descriptions 7 .
presented In this user 17-3. For proper temminal operation, the user must assure

quide. correct switch settings.

» user should assure the following switch settinns:

set the character size. Allowable codes are:

Ordinarily, this facility will be needed only If the command contains many arguments, or
a long text string. The system wil| assume that the user Intends to continue typing
whenever the user presses RETURN within a |iteral character string
ABSTRACT ,MYPDS,"THIS IS (CR)
CONTINUE :MY ABSTRACT"(CR)
or immediately after a comma
ABSTRACT,MYPDS, (CR)
CONTINUE:"THIS IS MY ABSTRACT"(CR)
Notice that the system automatically prompts the user to continue by displayling
CONTINUE:
Such commands can be cuntinued over several |Iines, as necessary.

Control-C is abbreviated ® In this user gulde. This Is the character that Is generated
when +he user presses the key for tne letter C while holding down the "CONTROL" key.
This action, within a character string, causes the system to start a new |Ine whenever
this part of the text string Is reached. Thus, the Input

ABSTRACT ,MYPDS,"THIS |1S®*MY ABSTRACT"(CR)
causes the new abstract to be
THIS IS
MY ABSTRACT

18 Slgning On and the OFF Command

When the user signs on or off of the FDS, certain events occur automatically.

Iwo events happen both whan the user signs

. During Sign—on, FDS:
At sign-on, communication Is established » blishes user link with Executive
with the FDS Executive and an AWA Is Establishes user | €

assigned to the user. At sign-off, > Establishes (empty) AWA
communication with the Executive Is . ;
terminated and the AWA 1s purged. During Sign-off, FOS

» Purges AWA

» Terminates user link with Executive
Only quallified users may sign on to the
EDS. Each user of the FDS Is assigned a 18-1. Two events happen both when a user
two-character Identlflication code, called signs on and signs off of FDS.

an ACCESS CODE. This code Is assigned by

FDS support personnel and is used to sign on to the FDS. The user may sign on through
any terminal that is displaying the FDS sign-on prompt "FDS Sign-on:". The access code
is also used to Identity the owner ¢f a PDB. In order to access another user's POBs,
the corresponding access code must be known,

access code,data base name-class-access code,sequence table name,terminal type,DWA size

18-2. The user siqns on with an access code rather than with a command.

1 -on. At
slgn-on, the user can name 3 sequence table and it will be executed automatically. This
sequence table could, for example, cause desired files and data hases to be retrieved
into the AWA, system messages to be printed, etc. The user specifies the ST by giving
both the name of the data base (e.g., PDB) In which it resides and the name of the ST
itselt,

FOS Sign-on:UC sign-on under access code “UC"

FDS Sign-on:UC,INIT-PD-0C,TABI sign-on and cause sequence table TABI,
stored in PDB INIT and belonging user “0C"
to be executed

FDS Sign-on:UC,SET-MD,TAB3,,64 sign-on and cause TAB3 in MDB SLT 1o be
executed and set DWA size to 64 sectors

FOS Sign-on:UC,,,,64 sign-on under access code UC and set DWA size
to 64 sectors

18-3. There are several ways in which to sign on.

- d size .. the disk

At slgn-on. the user may also specify the terminal type and the desire .
2ortion of the AWA. If no terminal type Is speclifled, the Tektronix 4014 [s usc med,

and graphical displays may be prescated on the terminal. The final argument - ifles
the maximum number of sectors to te al!located for the disk-resident portion ot :ne AWA
(see belcw). This fleld 1s an integer in the range of 1-8192. The specified number
will be rounded up to the nearest 16-secior block, It this arqument is omitted, 400
sectors (25 16-sector blocks) 1s assumned.

36

g R '“;L’:,"',

R

My e 2

P

ik

¢

R

To sign on:

access coda,data base name-class-access code,sequence table name,terminal type,DWA size
To sign off:

OFF

In order to use the FDS, users must first sign on. Signing on establishes
communications with the FDS Executive and ellocates an AWA for each user, These effects

are reversed at sign-off. Only quallified users, who have been assigned an access code,
may sign on to the FDS.

The disk portion of the AWA is called the DISK WORK AREA (DWA). The DWA is an extension
of the AWA. The AWA has a flixed size. Any overflows of data from the AWA are

accommodated In the DWA, Excent for DRDEs, which are always stored in the DWA, the user
need not be concerned wlth whether a table, flle, etc.&1s In the random access memory
portion of the AWA or In the DWA; the FDS Executive automatically retrieves DWA data to
the memory portion of the AWA when It is needed. All DWA management functlons and data
transfers are accompllished --utomatically by the FDS Executive. At sign-on, the user
need only specify the desir:: slze¢ of the DWA, if different from the default value.

Enter tge directive OFF in response to Executive's % prompt
%:OFF

Then FDS will issue a sign-off warning prompt:
*WARNING*E X*XDOF F*NNN*

SIGN-OFF REQUESTED FOR USER ID, AWA TO BE PURGED
%RESPOND “YES" TO PURGE AWA SIGN-OFF, "NO" TO ABORT SIGN-OFF: (response)

18-4. Signing off is done with the OFF command

§ . When the user enters thlis
directlve, FDS wlli Issue a prompt at the user's terminal, warning that the user's AWA
will be purged unless action Is taken to save Information in the AWA. Any action to
save AWA data must be taken tefore the sign-off is completed. |f data are to be
retalned, and have not previously been saved, the user may abcrt the sign-off procedure
by responding "™NO" to the prompt. This will terminate the sign-off procedure and
re-establ Ish conmunication with the Executive. A response of "YES" to the prompt will
cause the sign-off procedure to be completed.

When working on the example protlem, assume that INIT-ST

the Information that has been generated so far

is stored In a PDB called EXPL1. A sequence 100, GET,EXPL1-PD
table, for example INIT, could be constructed to 200, TOC

cause EXPL1 to be loaded Into the AWA. Assuming .

t+hat INIT Is stored In a PDB called SET, which M

belongs to user UC, INIT could be executed
automatically by signing on in the following
way:

uc, SeT-P0=-UC, INIT,,800

This particular sign-on entry also requested
that the DWA size be set to 800 sectors.

37

Ll o

19 SYSTEM MESSAGES

Certaln corditlions will cause FDS to generate a system message that may, or may not,
require a user response.

1S = OMEC
r . A system message wil! include a
severity code, origin of the message, name of the program Issuing the message, a number
Identifying the displayed message, and message text explaining the situation. The
severity code will consist of either ERROR, which indicates that a fallure occurred,
terminating the Immediate execution process, WARNING, which informs the user that a
problem nas been detected which may require action (at the user's discretion), or INFQ,
a system message that contains instructional or guidance Information. The origin of
these messages will elther be the Executive or a particular processor. As a general
rule, the user 1s not required to respond to these types of messages. The user
ordinarily will not make use of the program name and message number, but may use this
information in requesting a more detalled explanation of the error.

can obtain a more detalled explanation. If, for example, the message Is Identified with
the characters (*ERROR*PR*GPMP*001%), the user can obtaln more detatled information by
typing the characters (*ERRORXPR¥*GPMP*001%?),

*ERROR*PR¥GPMP*001 *

INPUT VECTOR IS NOT TEG/CARTESIAN

$: ¥PRXGPMP*001%?

**% MESSAGE PR*GPMPOO1

INPUT VECTOR 1S NOT TEG/CARTESIAN

*#% TUTORIAL

MEANING: THE USER HAS INPUT A VECTOR THAT IS NOT IN THE TRUE EQUATOR AND
GREENWICH MERIDIAN OF EPOCH CARTESIAN COORDINATE SYSTEM.

ACTION REQUIRED: TRANSFORM THE VECTOR TO TEG/CARTESIAN

19-1. After a system message, the user can request more information.

In most cases, an abnormal processor termination is caused by an error in the input
data. The user is notified of the processor abend and recovery procedures will depend
on the mode of operation, The PERFORM command which caused the processor to be executed
may have been entered directly by the user, or it may be in a Sequence Table. In all
cases, the PERFORM command Is terminated. |f a ST is belng executed In the AUTOMATIC
mode, execution of the entire ST Is also terminated. While In the SEMIAUTOMATIC mode,
an error will cause the user to be reprompted with the same entry of the Sequence Table
which caused the abend to occur. In the BATCH mode, an error will terminate the job and
the user Is notified of the abend via the BATCH printed output. In any case, output
data may be nonexlstent, or only partlally avallable, depending on where the abend
occurred. The user s responsible for examining the data and performing the necessary
housekeeping functions to correct the error.

r

pext action. When there Is no outstanding prompt on the user's terminal, the user can
strike the break key to obtaln the following message from FDS.

*¥INFO*EX®XMNTR*nnn *

USER INITIATED INTERRUPT
ENTER REQUEST - STATUS SUMMARY (SS), ABORT (%), OR CONTINUE (CR):

38

FDS generates system messages that expla’n certain conditions. ERROR, WARNING, or INFO
messages describe condiiions within the Executive or a processor. Mode of operation
will determine FDS notificatlon procedures during a processor abnormal termination
(abend). User-initiated processor abend (using the "break" key) will result in a status
summary display, acort of processor operation, or continuation of processor execution,
at the option of the user.

MODE DESCRIPTION
Manual User executes one processor by typing PERFORM command.
Semiautomatic System executes Sequence Table, one statement at a time,

as a result of SEMIAUTOMATIC command. User is given
opportunity to alter or veto each statement before
it is executed.

Automatic System executes entire Sequence Table as a result of
AUTOMATIC command. There is user interaction only if
the processor requires information not provided by the
Interface Table.

Batch A Sequence Table is submitted, via the BATCH command,
for later execution by the system. There is no
Interaction with the user, who may not even be signed
on at batch execution time.

19-2. Mode of operation will affect error recovery.

If the user responds with (SS), FDS will aisplay the functional status of all active
tasks associated with the terminal. |f a (CR) (carriage return) is struck in response
to the user initiated interrupt, no action is taken and the processor continues to
execute. When the (%) symbol is used, a second prompt is issued to solicit concurrence
to abort and to display information about the program name, stack position, and monitor
identification. The prompt is: (task name) TO BE CANCELLED, REPLY YES TO CANCEL, NO TO

ABORT CANCEL: A YES response will abnormally terminate the current'y active
program. The user is notified of the program termination and reprompted appropriately.
A NO response causes the processor to continue to execute.

When_there is an outstanding prompt o y
¢ nbol. At that

point, FDS notifies the user of the processor termination and the user Is reprompted
appropriately.

BREAK KEY STATUS DISPLAY
SYMB PROGNAME OLDTAB-CLASS NEUTAB SEG ¢
s XDEDIT - §T 21 o000
\ XDEDIT - I7 21 008000
s XDXCTL T - g7 000010
s XDALLO = 000000

19-3. If (SS) is keyed during a user initiated interrupt, FDS will
display a status summary.

39

20 EDIT Command,. EXIT Command

The editor is used to construct new tables and alter old tables.

Ihe editor is that portion of the FDS Executive that provides the user with the
capabilities to create new tables or modify existing tables. The user can edit
interface, sequence, |inkage, and Y-data tabies.

With the editor, the user can:

» create a new sequence or Y-data table

create a copy of a default linkage or interface table and modify it
create a copy of any existing table and modify it

modify an existing table

add new entries to any sequence or Y-data table

complete entries with incomplete or missing data fieids

modify data fields within an entry

YyYyYYVYVYY

-

20-1. The editor is used to create and/or modify tables.

. The FDS editor creates a
temporary, duplicate copy of a table being edited. Changes are made only to this
temporary table. |If the editing function is aborted, no changes are made to the table
being edited. |f the editor is terminated normally, then the modified table is stored
in the AWA, where it can remain for the duration of the terminal session. In order to
make these changes permanent, the revised table must be copied to a PDB.

The editor Is invoked EXPLICITLY by use of the EDIT command. The user does this in
order to create or modify a table and store it for later use.

I1C

. In this case, the system automatically invokes the
editor in order to allow the user to provide the required information. When this
occurs, the editor prompts the user to provide the specific information that is missing.
A typical implicit editor invocation is the situation In which an X Processor is
executed, and the interface table has missing or incomplete data. The editor is Invoked
because the data must be provided before the processor can continue. in the case of the
interface table, the user provides the missing data, and this information is relayed to
the processor, but it is not stored in the interface table. |f the same table ic used
again, the same missing or incomplete values must be provided.

Because tables differ in their # - sequence table editing function
cQnIe?fT_a_TlJghil%.dli%&nﬁni;gdiiing \ - interface table editing function
of table. The FDS editor Is divided { - 1linkage table editing function
Into four areas, each with Its own > - Y-data table editing function

unique prompt symbol. Each area
corresponds to a type of table and the
editing operations that can be appl ied
are a function of the type of table
involved.

20-2. There are four functional areas of
the table editor.

40

The EDIT command provides access to the FDS capabilities to create and modify tables.
This command invokes a table editor, whose behavior differs depending on the type of
flle (classification code) being edited.

EDIT,current table name, new table name-classification code,reference name
The EXIT command causes a normal termination of an editing operation, including storage

of the modified flle. An editing operation can be aborted by typing the $ character.
EXIT

Normally, the editor [s terminated by
typing in the EXIT command. EXIT is a
directive only, and cannot meaningfully be
EXIT stored in a sequence table. When the user
types EXIT, the modified table is stored in
the AWA (if the editor wes implicitly
invoked). Of course, the table must be
copied to a PDB if the user wishes to save
it beyond the current terminal session.

20-3. The syntax of the EXIT
command.

The user does this by typing the § character. This character is the normal prompt
symbol for the Executive. By typing it while in the editor, the user Is asking for an
immediate return to the condition which existed before the editor was invoked. No
Information Is saved from the editing operation, and the table being edited remains
unchanged. The user can do this even if the editor was implicitly invoked.

EDIT,current table name,new table name-classification code,reference name

20-4. The syntax of the EDIT command.

O 3 New 3 e = e
"reference name". The NEW TABLE name specifies where the table being edited will be
stored when the edltor is EXITed. The CURRENT TABLE name indicates the table to which
modifications will be made. The REFERENCE NAME is used to indicate the X Processor for
which a new Interface table Is being constructed or the document/segment associated with
a |inkage table. |f the current name Is omitted, then a2 new table will be created. |If
both the current table name and new table name are specified, then changes made to the
contents of the current table will be stored under the new table name. |f the current
table name and new table name are the same, then modifications are actually made to the
current table.

Command Effect
EDIT,,NEW-ST (create) EDIT = NEW TABLE
EDIT,,NEW-IT,PROCA (create) DEFAULT IT => EDIT = NEW IT
EDIT,OLD,NEW-IT (copy and modify) OLD TABLE = EDIT = NEW TABLE
EDIT,TAB1,TAB1-ST (modify) CURRENT TABLE => EDIT => MODIFIED CURRENT TABLE

N-5. There are four ways to use the EDIT command.

41

21 Using the Editor, MODE Command

The editor Interacts with the user in one of several modes, depending upon the type of
table being edited and what the user wants to do with that table.

. The CREATE mode Is used to create a
new sequence or Y-data table. These are the only types of tables that the user can
create directly. !nterface and |inkage tables can be created only by modifying an
existing table. This Is done by using the UPDATE mode. The update mode Is used to
Insert new table entries and modify existing table entries. |t is the only editing mode
In which directives to the FDS Executive can be given. For example, deleting an entry,
with the DELETE command, can onl!y be done In this mode. The INCOMPLETE mode causes the
editor to read through the file, looking only for instances of incomplete data. Each of
these Incomplete entries Is displayed, and the user is prompted to provide the needed
Information. The user can provide the data or skip to the next parameter for which no
value 's present in the table. The MISSING mode behaves the same way, but cycles
through @il Instances of optional data which are missing from the table. The missing
mode can be used only with | terface tables and |inkage tables, since these are the only
taole types which can have "optional"™ parameters. The ALL mode starts at the top of a
table and displays each entry in turn. |In addition to a simple display of every line,
th=2 user is prompted and allowed to edit any entries that are either incomplete or
missing.

Can be Used With

MODE PURPOSE IT LT ST YDT
CREATE Create new table No No Yes Yes
UPDATE Modify table entries

(Executive directives allowed) Yes Yes Yes Yes

INCOMPLETE Find and edit

parameters which are incomplete | Yes Yes Yes Yes
MISSING Find and edit optional

parameters which are missing Yes Yes No No
ALL Scan and edit entire table,

one entry at a time Yes Yes Yes Yes

21-1. The editor operates in anyv of several modes.

. A new sequence or
Y-data tabl'e can be created either by editing an existing table or actually creating a
new table. For these two types of tables, therefore, the user may either initialize the
editor with an existing table or directly enter the create mode. Interface and |inkage
tables can only be created by editing an existing table or the corresponding default
table.

42

e ——
B

The FDS Editor will be Inltiallized In one of several modes, depending on the
type of table being edited and the status of that table. Each mode Is used to

perform different editing tasks. The MODE command al lows the user to select a
desired mode.

- - <, 1 Ak . < < - 2 - B & - 118 "= -
entries. Sequence and Y-data table entries consist of commands ("statements") and
character strings, respectively. For each entry, the user must supply an entry number,
and individual entrles are referenced, or accessed, by this number. Although entries In
Interface and |inkage tables are also numbered, the user cannot alter these numbers.
Entries in these tables consist of parameter keywords and parameter values and they are
referenced by the parameter keywords.

Sequence table Depending on the state of the table being

Interface table Invoked In one of three modes. If a table
: has no incomplete or missing entries, then
Linkage Table the update mode will be used. If a table

> Y-Data table has Incomplete entries, then the incomplete
mode will be used. The create mode will be
21-2. The user types a prompt Invoked only if the user is creating a new
character to switch to the sequence or Y-data table.

update mode.

Ihe MODE command allows the user o select
an_ . When an editor is
explicitly invoked, It will be In either

the update, Incomplete, or create mode. :

The update mode is, In a sense, the basic MODE ,descriptor

mode of the aditor. It Is, for example,

the only mode In which FDS Executive A -- Al MODE ,A
directives can be typed in by the user, for C -- Create MODE,C
Immediate execution. When the editor Is I -- Incomplete MODE, I
not in the update mode, the user can switch M -- Missing MODE ,M
to the update mode by typing the prompt

character associated with the particular .

type of table being edited. Shcs (n Hhe 21-3. After the editor has beﬁ”
update mode, the user can, if desired, invoked, the MODEdcommagd cgn e
select another mode by using the MODE used to select a desired mode.

command.,

In a previous module ("DETAILED CONTENTS OF INTERFACE TABLES") a sample
Interface table for the GPMP processor was presented. That IT was called OMSZ,
and was Incomplete. Thus, the command

EDIT, OMS2, OMS2-IT
causes the edltor to be Invoked In the INCOMPLETE mode, and the editor generates
the prompt

\260,GEOPOTEN=:
This prompt asks the user to provide a value for the parameter GEOPOTEN.
Ordinarily, the value will be the name of a data element which defines the
mathematical properties of the geopotential model to be used by GPMP.

Once the user types In this value, the IT Is complete, since all other required
values have already been provided. The editor then reverts automatically to the
UPDATE mode, presenting the prompt

\¢
The user ‘can now type EXIT, or do any other deslired edlting operations.

43

22 BASIC EDITOR DIRECTIVES AND RESPONSES

Within the editor, there are several responses that can be used to obtain help or to
perform common operations, regardless of the type of table belng edited.

excep O ne . (¢ 3 3 X d
. When an editor Is ready for a user response, certain
Information Is displayed to the user. This Information differs as a function of mode,
as do the responses that will be accepted. The "all" mode uses the syntax of the
"update" mode if an entry Is complete and that of the "incomplete" mode if an entry has
Incomplete flelds.

RESPONSE OPERATION
carriage return skip to "next" entry
% abort and return to previous condition
? display list of statements, directives, or parameter keywords
directive execute named FDS Executive directive
directive? display syntax of named FDS Executive directive
& incomplete item indicator
&LABEL labeled incomplete item indicator

22-1. Some user responses are common to the editing of all table types.

. The "next entry", however, depends on the mode that the editor Is currently
ine In the "all" mode, a carriage refurn causes a skip to the next entry. In the
"missing" and "incomplete" modes, a carriage return causes the editor to display the
next missing entry or the next entry with incompliete data fields. In the "update" and
"create" modes, a carriage return has no effect.

\

the update mode. The user can always abort the editor and return to the prior condition
by entering the % symbol. To get Into the update mode, the user types the special
symbol corresonding to the type of table being edited.

?

The ? symbol Is used to obtain Information about the responses which the user can
"legally" make in the current situation. |f the editor Is in the Incomplete mode or the
missing mode, the user has been prompted with a request for specific Information (e.g.,
the value which is to be associated with a keyword. In this situation, the ? can be
used to obtain an "extended prompt" which provides additional Information about the
Incomplete or missing item (e.g., the definition of the Interface iable parameter whose
value Is missing). On the other hand, a ? In the update mode causes the system to |ist
all FDS directives and, In some cases, additional helpful informaiion.

44

Al though the FDS Ed!tor has somewhat different behavior for each type of table, some
user responses can be used reqardless of the type of table beirg edited. These
responses can be used to obtain help or in perform common operations,

An FDS command that Is to be acted on

o ". Such S ‘;.<>
directives can only be used In the §ﬂ§} q“',f
update mode (or, of course, outslide é’,;ﬁéﬁ.gf;
the edlitor altogether). |f the SN T
directive that Is named Is not vallid, b i xi“ SR
no actlon Is taken. Otherwise, the ? EHE SR
requested directive Is executed. The it Rodaguta U RE O LS
syntax of any vallid directive can be directive? it
displayed by typing the name of the - AEENEE:
directive, followed by a question LIST_ (
mark. st |

22-2. Editor responses can oniy be
used in certain modes.

-~

. The & can be typed as part
of an original entry, or can be given as a response to a prompt in the Incomplete,
missing, or all modes. The ampersand Is actually stored as part of the table, and is
the signal to FDS that this entry is incomplete. A given entry may have multiple
Incomplete values. In this case, the editor automatically assigns a sequence number to
the Incomplete item for display purposes. For example, an input of:

10,L15T,&,TAB3-ST, &, TAB4=IT

would be displayed with unique sequence numbers after the ampersands, as:
i0,LIST,81,TAB3-ST,82,TAB4~IT

The &LABEL "placeholder" is |lke the &, but a label of up to 7 alphanumeric characters

has been added to ald the user In identifying what Is left Incomplete. When the |abel
Is used, Incomplete Items are not numbered by the editor.

LIST,(first entry number - last entry number)
DELETE,(first entry number - last entry number)

Examples:
LIST,(10-40)

DELETE, (30-30)

22-3. When used as directives in the update mode, the LIST and
DELETE commands can be used in simplified form.

These directives can be
used to | ist or delete all or part of the table belng edited. These functions can also
be used as FDS Executive commands and the syntax that is used in the editor differs from
that used outside the editor. Within the editor, the user specifies the range of |Ines
to be |lsted or deleted. Typing only LIST, with no parameters, wili cause the entire
table to be |isted.

45

23 INTERFACE TABLE EDITING

The nature of Interface tables determines some of the actions the user can take during
IT editing.

The structure of an Interface table s determined b

the X Processor which will use It. The IT structure Is determined by FDS support
personnel, and cannot be changed by the user. Thus, keywords and entry numbers are
fixed. The only actions avallable to the user are those associated with adding,
deleting, or changing yalues associated with the keywords.

Io Insure that all tables have the correct structure, new tables can be created only by
editing existing tables. Thus, the create mode doces not exist for IT editing. The user
can create a new table by modifying an exising one, changing only those values which are
not already correct. Alternatively, the user can start with the default table (by
providing no "existing table name" in the EDIT command). In this case, all values not
present in the default table must be provided by the user.

MODE USE

UPDATE edit, list, change, etc., with Executive directives
INCOMPLETE view and change incomplete entries

ALL view each entry from start of table

MISSING view and change missing entries

23-1. Interface table editing can be done in any of four modes.

The way In which FDS prompts the user depends on the mode and the state of the IT entry
When the editor Is Initia!ly Invoked, It starts In the INCOMPLETE mode, giving the user
a chance to complete any Inccmplete entries. (Of course, 1f there are no Incomplete
entries, the editor automatically switches to the update mode.) Each Incomplete entry
generates a prompt which shows the entire Incomplete entry and glves the user an
opportunity to specify one or more missing values. The user Is prompted for each
succeeding nonexlstent value of the entry, until all such values have been addressed:

10,A=1,8ABLE, 41,4
\8ABLE:2
\&1:3

In this example, the user has provided the values 2 and 3, respectively, for the
nonexistent values. A simllar prompt Is provided In the ALL mode whenever an Incomplete
entry is encountered. A slightly abbreviated prompt Is provided In the MISSING mode,
since It Is known that no value fleld yet exists. This prompt shows the entry number,
parameter name, and the equivalence symbol which shows whether the entry Is an Input
(=), output (@), or Input/output (=@) parameter:

40 ,MODEL=: | IMODNAME

In this example, the user has typed the value !IMODNAME after the prompt. In the UPDATE
mode, the prompt consists simply of the IT editor cymbol:

\3

46

The Interface table editing function Is used to croate new interface tables from default
or other exlsting tables, and to modlfy existing Interface tables.

-

. For example, If
the parameter INVALS Is an array, the user can enter values into Its third and fourth
elements by responding

40, INVALS=:(3)7.,8.
This Input causes INVALS(3) to have the value 7.0, and INVALS(4) to have the value 8.0.

S L L . The REPEAT LIST
allows the value or group of values to be typed only once, with a repetition factor
which indicates how many times it Is to be repeated. Thus, the Input 20R5 Is equivalent
to typing twenty separate values, each consisting of the number five. |f more than one
value appears in the repeat |Ist, the |Ist must be enclosed In parentheses, as In
20R(1,2,3). These expressions can even be nested to a dep*h of four or less, as In
20R(1,2R5). No subscripts may appear within a repeat |ist. A repeat |ist may contaln
only literal values or Incomplete Indicators (&). |f a table entry requires or Is
provided with reference to a DE, DRDE, or Linkage Table, only one such reference Is
needed and a repeat |ist cannot be used.

"REPEAT LIST" FORM EQUIVALENT

4R5 5,5,5,5

1,2R2,3R3 1,2,2,3,3,3

3rR(5,7,"AB") 5,7,"AB",5,7,"AB" ,5,7,"AB"
2R(2R3'“XY") 3,3,"XY".3,3,"XY"

23-2. The repeat list can be used to repeat a 1ist a values.

47

24 AN EXAMPLE OF INTERFACE TABLE EDITING

The preparation of the Interface table for the OMS=2 circularization maneuver provides a
good, falrly typical example of IT editing.

A previous module, "DETAILED CONTENTS OF INTERFACE TABLES", presented the OMS-2 IT as an
example. This module will discuss the use of the editor to construct that IT. Assuming
that the user starts with the default Interface table for GPMP, rather than an existing
IT, the command which starts the editing process Is

$:EDIT,,OMS2= 1T, GPMP

Because there are required parameters, for this interface table, which do not have
default values, the table Is Incomplete. Therefore, the editor starts In the Incomplete
mode, glving the user a chance to provide values for these parameters.

60,PROCON=&1,82,43,84
\&1:10

\&2:1.0E~-4
\&3:6,0/E~-4

\&4:75,

In the case of PROCON, the user provides four GPMP tolerance values to be used In the
computation., Similarly, the user provides values for other required parameters

70, INVEC=&1
\&1:RESULT(1,3)
80, THRUST=&1
\&1:1.2E+04

90, !SP=41
\&1:3,131999E+02
100,ENG 1D=41
\&1:"OMS"
110,MANID=41
\&1:"CIRC"
270,SVPROP=4&1
\&1:

Whenever the user needs addlitional Informat!on about the parameter, the ? character can
be used.

270,SVPROP=41

\&1=:?

STATE VECTOR PROPAGATOR SELECTION FLAG
"CON"=CON IC, "AEG"=ANALYT IC EPHEMERIS GENERATOR
\&1:"AEG"

290 ,GPMPTETE@&1

\N&1:RESULT(1,3)

300, SUMTABE&1

\ &1:ICIRTAB

\:

The editor switches to the update mode when all required parameters have been provided.

48

Interface table editing Is Illustrated by construction of the IT for the OMS-2
clrcularization maneuver,

It would be easy to assume that the Interface table Is now finished. 1%at Is not the
case, however, Values have been provided for all parameters which are required" but
this Includes only those parameters which are always needed by m e X Protessor In
question. In this particular case, there are also some optional p.. ameters for which
values will be needed hecause of the particular way the user [s applying the processor
this time. In this particular case, most of the optlional parameters are needed because
the "CIRC" maneuver optlion was selected. At this polnt, the user has two basic options.
One Is to walt and provide the values during actual execution -- each time the processor
needs a value not provided In the table, the editor will be Invoked automatically. The
other Is to provide the values now, before processor execution., To do this, the user
might use the MODE command to get Into the MISSING mode.

\ :MODE ,M

The system will then step through the optional parameters which are missing from the IT,
eventual ly reaching those of Interest to the user In this case.

\ 240 ,DENSMODL =: ! IDENSMD
\ 250, SOLAFLUX=:11SOLRMD
\260,GEOPOTEN=:?
GEOPOTENTIAL MODEL

\ 260,GEOPOTEN=:41

\¢

With the exception that the user has Intentionally deferred the detinition of an Input
date element defining the geopotential model, the IT Is now complete. It can be kept
(In the AWA) simply by a normal exit from the editor

\EXIT
$:

The table Is now avallable for actual use by the GPMP processor.

49

25 Sequence Table Editing, NUMBER Command, NOTE Command

Because sequence tables are the only tables that can contain Executive commands, some
unique ST editing capabilities are provided.

LY«

When the editor Is invoked with the name of an existing sequence table, It starts In the
INCOMPLETE mode, giving the user a chance to complete any incomplete entries. (Of
course, If there are no Incomplete entries, the editor automaticclly switches to the
update mode.) Each Incomplete entry generates a prompt which shows the entire
Incomplete entry and glves the user an opportunity to specity one missing value. The
user Is prompted for each succeeding nonexistent value of the entry, until all such
values have been addressed:

120 ,PERFORM, GPMP, & | TNAME
#41 TNAME : OMS2

In this example, the user has provided the name (OMS2) of the interface tabl!e which Is
to be used In cunnection with one execution of the GPMP processor. A similar prompt is
provided In the ALL mode whenever an Incomplete entry i¢ 2ncountered. Wheneser the user
substitutes Information for a placeholder, the substitured Information Is checked to see
that it follows the syntax rules for the particular statement. In the UPDATE mode, the
prompt consists simply of the ST editor symbol:

MODE USE

UPDATE edit, list, change, etc. with Executive directives
CREATE create new tables, add entries at end of existing table
INCOMPLETE view and change incomplete entries

ALL view each entry from start of table

25-1. Se‘uence Table editing can be done in any of four modes.

This mode can also be entered via the mode command, of course. |In the create mode, the
edltor allows the user to add new statements at the end of the table. The editor
automatical ly generates the entry numbe-s, and the user need only type the statemen®
itsel f:

#110, :PERFORM, GPMP, OMS 1
#120, :PERFORM, GPMP, & | TNAME

In this example, the user has typed In commands which will later cause the execution of
the GPMP processor for both OMS-1 and OMS-2 burns., The naming of the Interface table
for the OMS-2 burn has been deferred by the user.

: : : NE ts
able. By typing a question mark (?) character, the user
can obtaln a |ist of legal ST statements. These statements Include all Executive
directives except CLEAR and OFF, and also Include DO LOOP, LCOP END, IF and ELSE. By
typing a statement keyword followed by & question mark (e.g., STORE?), the user can

obtaln Information about the syntax of a particular statement.

50

The sequence table editing function Is used to create new sequence tables, and to modify
existing STs. Sequence tables are the only table type that can contaln commands to the
Executive. The NUMBER directive can be used to renumber the table which Is being

edited.
NUMBER

The NOTE statement al lows the user to store textual comments within STs,
NOTE , "text"

' lanand - < < - O(ared 5 e e -

NUMBER directive allows the FDS user to renumber the entries in a sequence table or
Y-data table which is being edited. The entries retain their original order, but are
renumbered, beginning with 10 and Incrementing by 10 for each subsequent entry. The
NUMBER directive can be executed only when the editor is in the update mode.

NUMBER

25-2. Syntax of the NUMBER directive.

. These
comments are not executed, but are used for clarifying the purpose of the sequence table
or to provide tutorial information. For example, the ST might be divided Into segments,
each Identifed by a NOTE:

110,NOTE, "THE FOLLOWING STATEMENTS ESTABLISH A 200 NM. ORBIT"

NOTE statements are simply stored In the table |lke any other statements. They are
always displayed when an ST Is |isted or executed In the SEMIAUTOMATIC mode. When a ST
Is executed in the AUTOMATIC or BATCH mode, the comments are displayed only If the
appropriate trace option Is specified. The text portlion of the comment Is bracketed by
quotation marks ("), and may be up to 1600 characters long (counting control-C
characters).

NOTE, "text"

25-3. Syntax of the NOTE statement.

51

26 AN EXAMPLE OF SEQUENCE TABLE EDITING

The preparation of the basic sequence table for trajectory planning of the example
problem provides a good, fairly typical example of ST editing.

A previous module, "SEQUENCE TABLES", presented a trajectory planning ST as an example.
This module will discuss the use of the editor to construct that ST. Assuming that the
user starts from scratch, rather than with an existing ST, the command which starts the
editing process Is

%:EDi1,,EXP1=ST
Since no old table name is given in this command, the editor starts in the CREATE mode.
In this mode, the editor generates the entry numbers and prompts the user for the
contents of each entry.

#10, :NOTE,"INITIAL IZATION"
#20, :PERFORM,BASTM, T1

#30, :PERFORM, PHYDM, HOWB I G
#40, : ALLOCATE, INVEC(30,20)-R
#50, :ALLOCATE ,RESULT(30,20)-R
#60, :ALLCCATE ,HIALT(30,20)-R
#70, :NOTE , "ASCENT"

#80, :PERFORM,ASCENT, & | TNAME

Note that the user has deferred the decision concerning the IT name for the ASCENT
processor.

By using the ? character, the user can obtain helpful Information. For example, the
response

#90,:7

will cause FDS to list all the statements which can appear in a sequence table, while
the response

#90,:ASSIGN?

allows the user to obtain information about the syntax of a particular statement (in
this case, ASSIGN). When the initial Input of the sequence table has been completed,
the user can Input the ST editor symbol to change to the UPDATE mode.

#320, :PERFORM, GTRACK , GTK
#330, :PERFORM,FPD,FLTP
#340,:#

#:

Now the table can be LISTed and edited further using CHANGE, INSERT, and other commands
discussed later. |f the user changes to the INCOMPLETE mode at this time, FDS will
provide prompts for any information which the user deferred.

#:MODE, |
80,PERFORM, ASCENT, & | TNAME
#8& | TNAME : UP

#:

Alternatively, the user might store the table In this Incomplete form, Iin which case the
editor would automatically start in the INCOMPLETE mode In any subsequent editing
sesslon,

52

Sequence table editing is illustrated by construction of a basic sequence table for the
trajectory design portion of the example problem.

When the editing session is finished, the user can EXIT normally,
#EXIT

In which case the generated table will be stored in the AWA under the name EXP1.

Alfernaf;vely, the editing results can be thrown away by entering the Executive prompt
symbol (%).

#:9
%:

In this case, the edited table (EXP1-ST) is deleted. Care must be used in aborting the
editor in this way, in order to avoid inadvertent deletion of needed information.

53

The ABSTRACT command displays the date/time tag and an abstract for any specified table,
DE, DRDE, data base, YOD, document/segment, Xjob, Yjob, or processor, and allows the
user to create or replace abstracts for personally owned filles, data bases, etc.

. An abstract is a textua
description of the contents of an OBJECT. Included with the abstract is information on
the date and time the object was last changed and the creator of the table, file, data
base, or processor. The user can add a new abstract where none exists or replace an
existing abstract for personally owned objects or for another user's PDB, if the user
has access to it. MDBs, X and Y Processors, and document/segments have abstracts that
are maintained by FDS support personnel. These abstracts can be displayed, but not

modified.

ABSTRACT-device code,object,"text of abstract™

27-1. Syntax of the ABSTRACT command.

OBJECT Is an argument used In some commands to reference a file, data base, table, or
processor. The OBJECT consists of an OBJECT NAME, a DATA CLASSIFICATION CODE, and, in
some cases, an ACCESS CODE. The object name is the name of the file or data base to be
processed while the data classification code indicates the file or data base type. |If
the object is a PDB belonging to another user, that user's access code must also be
provided. The access code is a two-character code; an access code is assigned to each
FDS user.

Abstracts can be added, replaced, or displayed for these data items

table name-class TAB1=-IT
data element name-DE STAT-DE
DRDE name-DF DSK-DF

PDB name-PL PROB6-PD
YOD file name-YJ YDAT1-YJ
X Job name-XJ XDAT1-XJ

Abstracts can only be displayed for these data items

MDB name-MD ! 1GLOCON-MD
X Processor name-XP XPYES-XP
Y Processor name-YP MNSTR-YP

document/segment name-DS CFPTRJ=-DS
To display the abstract for another user's PDB, use that user's access code

PDB name-PD-access code FILE1-PD=-UC

27-2. The OBJECT field is used to indicate a file, data base, or processor.

54

An abstract can be associated with all tables, files, data bases, and processors.
The abstract is a brief, textual description of the contents of a data item. By
addIng abstracts to each data Item that Is created, users will be able to Identlfy
the contents of that item more readily. The ABSTRACT command Is used to create,
replace, and display abstracts.

ABSTRACT-dev ice code,gb ject,"text of abstract"

The DEVICE 1D s used
« Output from the

ABSTRACT, and other commands, can be displayed
elther at the user's terminal or on the system

ST sequence table
IT interface table

LT linkage table line printer. If no device identifier Is

YT Y-data table specified, the |ine printer Is assumed for the
DE data element BATCH mode and the terminal [s assumed for

DF DRDE Interactive sessions.

PD personal data base

MD master data base " "

YJ YO[_) or Y-job of up to 256 characters. It must be enclosed In
XJ X-job quotation marks ("). |If the abstract to be

XP X processor entered requires more than one |ine of Input,
YP Y processor entering a carriage return will cause the prompt
DS document /segment CONTINUE: to appear, and the user can continue

entering the text. The text Is terminated with

27-3. DATA CLASSIFICATION CODES indicate 2 quotation mark ("). Typing Control-C within

the text causes a new line in the displayed

the type of data to be processed. sistract.

To display the abstract for an interface table (without update):

ABSTRACT, TAB1-IT

To display the abstract for another user's PDB:

ABSTRACT, PDB1-PD-KP

To replace and then display the abstract for a data element:

ABSTRACT, EVENTS-DE, "TRAJECTORY EVENTS THROUGH OMS-2"

27-4. Examples of use of the ABSTRACT command.

One cf the uses of the ABSTRACT command is to obtain Information about
processors and MDBs provided by the system. In the example problem, one of the
X Processors that will be used Is GPMP., In order to display the abstract for
this processor, the command Is:

ABSTRACT , GPMP=XP
and the resulting display provides basic Information about the nature and use of
this X Processor.

The second major purpose of ABSTRACT Is to allow the user to add Information to
a flle which describes Its nature and use. For the example problem, the user
might create a sequence table cal led EXPL1 and add an abstract that identifles
It as being related to the example problem. In this case, this coumand may be
used:

§:ABSTRACT,EXPL1=ST,"THIS TABLE CONTAINS A SEQUENCE OF COMMANDS (CR)
CONTINUE:THAT SOLVES THE ® CFP PORTION OF THE EXAMPLE PROBLEM (CR)
CONTINUE:IN THE FDS USER'S GUIDE."

28 Command (Display Contents of Tables and Other Files)

The LIST command is used to display the contents of tables and files.

LIST-device ID,object name (span)-file type,

28-1. Syntax of the LIST command.

YOD file. Ordinarily, the user indicates one or more files to be |isted, by name. |f
several files are named, they will be listed In the order given in the command. Files
can be |isted in their entirety, or the

user can speclify which line or |ines of the Sequence table - ST

file are to be |isted. The user can also Interface table - IT

specify the device on which the listing Is Linkage table - LT

to be done. If no device ID is given, the Y-data table - YT

listing is transmitted to the user's Data elements - DE

.erminal. |f the characters "-P" are added Disk-resident data elements - DF
after the word LIST, the output will go to YOD file - YJ

the system |ine printer.

28-2. The OBJECT field is used to
indicate a table or file.

For tables and YOD files, the span specifies the entry numbers of the first and last
table enfries to be listed. For DEs, the span fi~=ld consists of the subscripts of the
items to be |isted. |f either the start or end of the span is not indicated, the first
or last entries, respectively, are assumed. The user may specify individual subscripts
or a range of subscripts or any combination of these two. Only entire DRDEs may be
1i_ted.

MEANING EXAMPLE

" single entry number 100
% 2 start entry number - end entry number 100-600
38 start entry number - 100~
E E - end entry number -600
" single subscript 2
a start subscript - end subscript 2-6
E start subscript - 2-

- end subscript -6

28-3. The SPAN field sets boundaries on the information to be listed.

56

The LIST command

is used to display the conterts of tables and flles. Entire tables and

files or only parts of tables and files can be listed. Ordinarily, the listings will
use the same format as used In the table or file being |isted. However, if a DE or DRDE
uses the "free" data type, the user must Indicate the format tc be used.

LIST-device ID,object name(span)-file type,...

. To list the table

Ihe LIST function may be used as a directive within a table editor
being edited, the user need only specify the span of the table to be |isted:

L1ST, (200~

500)

If the span is omitted, the entire table is |isted.

LIST

Any table or file can be |isted, however, by using its name with the LIST function.

1f a DE or DRDE consists of Information that [s stored as free data, the user must
supply the format to be used. In this case, FDS will prompt the user to supply the
format to be used to list the DE or DRDE. If no format Is supplied, or If the LIST
function is executed from the batch mode, a hexadecimal format is assumed.

Dialogue

Comments

LIST,BIG-DF

FORMAT FOR NAME: The user is prompted to supply the format, which
may be:
I: Integer
R: Real
D: Double precision
Ch: Character (n=4,8,16,32,0or 64)
T: Time

BIG has free data

28-4. The user supplies the format for free data.

In solving the example problem, the user constructed an interface table for the
OMS-2 circularization burn (see "An Example of Interface Table Editing"). That
entire IT, or sections of it, can be displayed using the LIST command. For
example, by typing

LIST,0MS2(240-270)
The user can cbtaln the following display:

240 DENSMODL=!!DENSMD

250 SOLAFLUX=!!SOLRMD

270 SVPROP="AEG"
This display Illustrates a situation in which the user must be aware of the

clircumstances.
displayed here.

Entry number 260, a missing, optional parameter, Is not
IT entries which are (1) optional, and (2) not filled In, are

not printed when the LIST command Is used. |f they were, many missing entries
would be printed even through they are not relevant to the case In question.
Thus, the LIST command can be used to show all entries which have values
(Including all required entries even If Incomplete), but only the EDIT command

al lows the user
variables.

to see those additional entries which represent missing optional

57

29 GCET, STORE, APPEND, SUBSTITUTE Commands (Permanent Storage and Retrieval of Files)

The GET command, STORE command, APPEND command, and SUBSTITUTE command are used to
obtain files from permanent data bases, and to store files in such data bases.

The GET command allows a user fo retrjeve all or sel « The
files thus retrieved are added to the current contents of the AWA. In using the

command, the user glves the name of the data base which contalins the files now. This
mey be an MDB (all users have access to these) or any PDB for which the user knows the
name and access code. The user must also specify which file or files are to be moved.

GET,data base name-type-access code,files to be moved
STORE,PDB name-PD-access c-Zc,files to be moved
APPEND,PDB name-access code, files to be moved
SUBSTITUTE,PDB name-access code,files to be moved

29-1. Syntax of the GET, STORE, APPEND and SUBSTITUTE commands.

alifa

move whole classes of files, or individual files. If the "files to be moved" portionr of
the command is omitted, as in the command

GET,EXPL-PD
then all files are moved. Otherwise, a |ist of individual file names, file type codes,
or both, can be used. Ordinarily, a single file is specified by giving both its name
and type, as In the command

GET,EXPL-PD,OMS2-!T
If only a name is given, the file is assumed to be a DE. |f only a type code is given
(preceded by a hyphen), as in the command

GET,EXPL=-PD,~-IT
all files of the indicated type are moved. These same conventions apply to the STORE
and APPEND commands, which move flles from the AWA 1o permanent data bases.

If "files to be moved'" is: The effect is:

1 | omitted all files in the source data

base (or AWA) are moved.

2 file type with no file all files of the specified
name (e.g., -ST) type are moved.

3 file name with no type a data element with the
(e.g., ABXYZ) specified name is moved.

4 file name with type the specified file is moved.

(e.g., OMS2-IT)

a list of specifications each file or group so
5] of forms 2, 3, and 4, above specified is moved.
(e.g., ABXYZ, -ST, OMS2-IT)

29-2. The "files to be moved" are specified in the same way for all four
commands.

58

Transferring data from 2 POB or MDB into the AWA Is done with the GET command. The
files retrieved are added to the current contents of the AWA,
GET,data hase name-type-access code,flles to be moved

Storage of AWA files into a PDB Is done using the STORE or APPEND commands. STORE
creates a new PDB, and places the indicated AWA flles In It,
STORE ,PDB _name-PD-access code,flles to be moved

APPEND adds the Indicated flles to an exlIsting PDB.
APPEND,PDB name-access code,flles to be moved

SUBSTITUTE purges all files in the named PDB, then stores the Indicated flles there.
SUBSTITUTE ,PDB name-access code,files to be moved

Ne oOppo =1 on

e A ma m 3 w D - = N .
from AWA to PDB. The user specifies the name of the existing personal data base 1o
which files are to be moved from the AWA., The Indicated flles are "appended" to the
previous contents of that PDB. If any files to be moved have the same name as flles
already In the PDB, an error message Is generated and those particular files are not
moved. Since the FDS user is not allowed to modify the contents of master data bases,
only a PDB can be named in this command.

The STORE command [s similar to APPEND, but
creates a new PDB and moves the files from
the AWA into [t. This command Is the
mechanism for creating new PDBs, and Is the
ordinary way of saving all the information
associated with a particular flight design.
Although several approaches can be used, it
may be easiest to delete all extraneous
files from the AWA, and simply store the
rest in a new PDB by using the STORE
command with no "files to be saved"
specification. It should be noted that the
PDB must have a different name than any
other PDB having the same access code. |If
this condition is not satisfied, an error
message Is generated and no files are
moved. A STORE command will also generate
an error if the user already has the

max imum number of PDBs. |In thls case, the

Get all interface tables from a PDB:
GET,FLIGHT1-PD,-IT

Get entire MDB:
GET,CONSTANT-MD u

Save entire AWA in new PDB:
STORE,FLIGHT2 -PD

Add specified i1les to existing PDB:
APPEND,FLIGHT1,0MS2-1IT,TRAJECT-ST

Replace existing PDB with current
contents of AWA:
SUBSTITUTE,FLIGHT2

user must delete an exlIsting PDB, APPEND
the files to an existing PDB, or create a
PDB under another access code.

29-3. Examples of GET, STORE, APPEND,
and SUBSTITUTE commands.

c

. All files previously In the PDB are purged, but the name and

after clearing It
abstract of the PDB are retained.

The Indicated AWA files (or the entire AWA) Is then

stored in the PDB.

In solving new flight design problems, it may be helpful to develop a "Ilibrary"
of standard flight designs. Flight designs In such a |Ibrary can then be used
as a starting point when new, similar flights are to be planned. |f we suppose
that a PDB ("GEOSYNCH") already exists for launching a geosynchironous payload,
that fiight design might easily provide a good starting point for the example
problem. To load the PDB Into the AWA, the user might type:

GET,GEOSYNCH=-PD-AA
The user would then modify the GEOSYNCH flIght design as necessary, adding the
additlonal payload, etc. When completed, the resulting flight design
Information might be saved as PDB EXPL:

STORE ,EXPL=-PD.

59

30 IOC Commang (List Names of Files, Data Bases, etc.)

The TOC (Table of Contents) command allows the user to display a |ist of files In the

the AWA or a data base or to list X or Y jobs, X or Y processors, or avallable data
bases.

base to which the user has access. Thus, the command

TOC
produces a table of contents for the AWA, while the command

TOC, , EXPL=PD
produces a table of contents for the user's PDB, called EXPL. Tables of contents for
MDBs can also be produced. TOCs wlll be displayed on the user's terminal, unless the
system |ine printer is speciflied, as

TOC-P, , EXPL=-PD
When the TOC command |s executed In the batch mode the display automatically goes to the
printer.

TOC-device ID,class, data base name-classification code-access code

30-1. Syntax of the TOC command.

By specifying the file typc, *the user can obtain a list of the files of a particular
class which are contained in the AWA or in a specified data base. Standard file type
codes are used for this, so that

TOC, ST
produces a |ist of sequence tables in

the AWA, while
TOC, IT,EXPL=PD Class Meaning
produces a |ist of Interface tables In Codes
the PDB named EXPL.
-ST sequence tables
=17 interface tables
Other class codes can be used to |[st -LT linkage tables
the user's jobs, or avallable data =YT Y-data tables
bases, processors, or document -DE data elements
segments. For exampie, the command -DF DRDE files
TOC, XP -PD personal data base files
displays the names of all available X -MD master data base files
Processors. -YJ YOD files or Y-jobs
-XJ X-jobs
-XP X-processors
-YP Y-processors
-DS document/segments

30-2. The TOC command lists a variety
of objects depending on the
"class" selected.

60

A table of contents (TOC) Is assoclated with the AWA and each PDB and MDB.

The

table of contents Indicates the name, type, and slze of each AWA or data base

entry.

The TOC command Is used to display a table of contents and also to

provide a list of X or Y jobs or processors, or a |ist of avallable PDBs or

MDBs.

TOC-device I1D,class,data base name-class|flicatlion code-access code

In solving the example problem, the user will accumulate a number of Interface
tables, data elements, etc., which will reside In the AWA unti| stored In a PDB.
Some of these elements (e.g., Interface tables) are constructed by the user,
while others (e.g., data elements) are constructed as the Flight Design System

performs the commands In the sequence table.

When the sequence table has been

executed, the user can display the entire contents of the AWA via the command

TOC
and obtaln a display

similar to the following

06/02/80 TIME -

15723718

- w—-

DATA ELEMENTS
NARE ABS

DRDE FILES
NARE ABS

AUA SIZE = 16
DUR SIZE =
CORPACTIONS =

TABLE OF CONTENTS
DATE =«
ABLES
DATE TINE AC SIZE
04/12/80 11/47/36 \E %::
04/02/80 17/25/20 \E 390
DATE TIRE AC SIZE TYPE
04/12/80 11/47/36 UE 164 MO39
04/12/80 11/47/36 \ME 32 Me42
04/02/80 17/25720 \E 288 MO4i
04/02/80 17/25720 E 56 F
95/16/80 18/05-/05 UE 56 Me72
05/16/80 18/05/05 ME 240 Me73
DATE TIRE AC SIZE TYPE
05/16/80 18/05/95 \E 1 me72
000 FREE « 14408 (HALFUORDS)
400 FREE - . 377 (SECTORS)

61

coL

31 CLEAR, DELETE Commands (Eliminatin. Files from Storage)

The CLEAR and DELETE commands are used to elIminate unneeded Information from storage.

The CLEAR command purges all flles from the
user's Active Work Area. This results In
the deletion of all interface tables,
sequence tables, |inkage tables, Y-Data
tables, data elements, and disk-resident
data elements. Because MDBs, PDBs, and CLEAR
YODs do not reside In the AWA, they are not
affected. The CLEAR command can be used

only at the Executive level (l.e., with a 31-1. Syntax of the CLEAR command.
prompt of %:).

Ihe DELETE command can be used to eliminate Individual fl'es or whole Classes of flles
. For example, the command
DELETE,OMS2-iT
causes the interface table "OMS2" to be discarded from the AWA., The space previously
occupied by the deleted file Is thus made avallable for other AWA files. The command
DELETE,-DE,-DF
results In the elimination of all data elements and DRDEs (file type DF) from the AWA.
This command might commonly be given before execution of a sequence table which
constructs these elements, and might precede storage of the AWA as a PDB via the STORE
command.

DELETE ,object name-classification code,...
DELETE,(span)

31-2. The DELETE command has two forms.

. For example, a sequence table cannot be
deleted while 1t Is executing, as might happen If It contalned a statement such as
DELETE,-ST
Similarly, a YOD cannot be deleted unti| the corresponding Y job has finished executing.

. PDBs cannot be deleted as a

class, but the user can delete his own PDBs by specifyling thelr name and class codes, as
DELETE , EXPL~PD,0THER~PD

PDBs cannot be deleted If they belorg to access codes other than that used to log on.

By speclify " "
table currently being edited

. Thus, the command
DELETE, (20-40)
deletes entries 20 through 40 of the table which the user Is editing. |f a DELETE
command specifles a portion of an Interface table, that portion Is merely cleared of
values, but the variable names remalin, since entries cannot be deleted from an IT.

62

The CLEAR command is used to elIminate all flles from the AWA,
CLEAR

The DELETE command Is used to el Iminate Individual flles or whole file classes from the
AWA, to eliminate Indlvidual PDBs, or to delete specl!fled portions of AWA flles,
DELETE ,ob ject name(span)-classification code,...

DELETE, (span)
OBJECT MEANING
1. Name of PDB (e.qg., EXPL-PD) User's PDB with specified name
is deleted.

2. Name of file with file type Named file is deleted from AWA.
(e.g., OMS1-IT)

3. Name of file without file Named data element is deleted
type (e.g., RESULT) from AWA.

4. Span only (e.g., (50-60)) Indicated span of entries is

deleted from file currently
being edited.

5. File type only (e.g., -YD) A11 files of indicated type are
deleted from AWA.
6. List of objects of types Each object is deleted in turn.
1-5. (e.q., -YD,MINE-PD,
(20-60))

31-3. The DELETE command can be applied to a variety of objects.

A typical work session begins with the loading of a PDB, as by the command

GET,EXPL=-PD
in order to restore the conditions which existed at the end of the user's
previous session. In this case, the GET command restored the PDB Into which we
placed all the flles asso.lated with the example problem. Durling the course of
the work sesslon, the user may modlfy some of these fliles and wish to save the
updated versions. One approach might be

DELETE ,EXPL-PD

STORE , EXPL
which saves the entire current contents of the AWA. To conserve disk space, the
user might prefer to eliminate those flles which can easl|y be reconstructed.
In this case, the command sequence might be

DELETE,EXPL-PD,-DE,~DF

STORE , EXPL
When this operation Is completed, the user can sign off or begin a new problem,
as wlth the commands

CLEAR

GET ,NEWPROB=-PD
which clears the AWA of the remnants of the old problem before obtalning
Informatior assoclated with the new.

63

32 COPY, RENAME Commands (File Duplication and Name Changing)

The COPY command allows the FDS user to duplicate and rename a table, DE, DRDE, or PDB,
while RENAME only changes the name of the original.

The COPY I t indicate lac
1o be copied, and the name to be assigned
1o the new copy. The object may be a
sequence table, Interface table, |inkage
table, or Y-data table, as In

COPY, TRAJECT=ST, SAVET

or a data element or DRDE, as In
COPY ,RESULT,RESULT2 . .)
COPY,BIGF | LE=DF , WORKCOPY COPY,gbject.new name

or a PDB, as in
COPY,H!SPDB-PD=HE ,MYPDB.
In the case of PDBs, the new copy will have
the access code under which the user logged 32=1.
on, regardless of the access code of the
original PDB. All other objects are copled
from the AWA to the AWA, In every case,
the new name must not conflict with the
name of any existing object of the same
class,

Syntax of the COPY command.

of the original object, but does not make a
copy. The objects which can be renamed are
the same as those which can be copled,
except that the user may rename only his
own PDBs. Thus, the user can RENAME tables

RENAME ,gbject, new name and DROEs,

RENAME ,BUILD=1T, OM52
data elements
RENAME ,DATA, SAVEDATA

or FDBs
32-2. Syntax of the RENAME command. P[NAM[,EXPL-F'D,TEMPSAVE.
The new name must not confllict with any

existing object of the same class.

MID hQID CQEI ilnd BEteuﬁ commat 15 IDE une " LDiEEI lﬁ Ql ED.L.!'C [[EILI" ﬁiii'filmff ser
1D tag. 1his information, which Is associated with every file o- PDB, can be useful In
determining when flles were constructed or last modified. Actually, the date/time
information Is set to zero to Indicate "current" information and is only replaced by a
real date and time when the file Is stored In a PDB, Thus, a date/time tag of zero (In
a TOC dispay, for example), Indicates a file which has been generated or modified during
the current user session. |f the user makes use of the date/tIme !nformation, It should
be kept In mind that even renaming the flle causes the date and time to be updated.

stored. Any references to the old flle name which are made In sequence tables,
Interface tables, etc., are left unaltered. |t Is the user's responsibility to Insure
that such references point to the correct flle.

64

The COPY command Is used to copy and rename tables, DEs, DRDEs, and PDBs.
COPY,ob ject,new name

The RENAME command changes the name of a table, DE, DRDE, or PODB.
RENAME , ob ject .new name

Although COPY and RENAME operations can be done for a variety of purposes, a
particularly common reason Is the saving of flles or data bases which are about
to be changed. In the exampie problem, the user works with a PDB cal led EXPL,
which is assumed to be loaded (via the GET command) at the end of each session.
Thus, a session might include the commands

GET,EXPL-PD

SUBST!TUTE, EXPL-PD
The SUBSTITUTE command Is used, Instead of STORE, because the STORE command
cannot construct a PDB whose name conflicts with one already In existence. It
Is easy to Inagine circumstances In which the user wani to save this PDB, so as
to have a back-up copy of the PDB as It existed before thc session. |In this
case, the commands,

RENAME , EXPL-PD , BACKUP

STORE, EXPL-PD
might be used in place of SUBSTITUTE.

A simllar situation sometimes exists with respect to cdata elements or DRDEs. In
the example problem, the TRAJECT sequence table builds, among other things, a DE
called "RESULT". When mod!fications are made to TRAJECT, or to Interface
Tables, etc., which are used in executing TRAJECT, It might be desirable to save
a copy of RESULT. The new RESULT can then be compared with the saved copy In
order to observe the effects of the changes. Since TRAJECT builds, In effect, a
new copy of RESULT each time It is executed, the RENAME command can be used:
RENAME , RESULT, SAVECOPY
The reader wiil recall that the file type can be omitted when the file Is a DE.

The COPY command is the right mechanism to use when the file is built directly
by the user. Suppose, for instance, that the user Is about to modify OMS2-IT,
and wants to keep an unmodified version. An appropriate command might be
COPY,0OMS2- 1T, SAVEOMS2
The user can then edlt the OMS2 file as desired, as by the command
EDIT,OMS2-1T
or the CHANGE command (discussed later). |t should be noted that the EDIT
command accomplishes a similar, but not identical, function. The command
EDIT,OMS2-1T,SAVEOMS2
also results In the existence of two coples, but the file called "OMS2" is the
unmodified version. Another approach to the COPY and EDIT sequence above Is
RENAME , OMS2~- T, SAVECOPY
EDIT,SAVECOPY=-IT,0OMS2

Another common use of RENAME is the situation In which the user wants to GET
files from two or more data bases, but some files have the same name. Suppose,
for Instance, that the user Is beginning the solution of the example problem and
wants to construct the TRAJECT file by merging two existing TRAJECT flles, one
of which resides in the GEOSYNCH PDB and one In the CIRC200 PDB. The commands
used might Include

CLEAR

GET, GEOSYNCH=-PD=XY

RENAME , TRAJECT=ST, TEMP

GET,CIRC200, TRAJECT=-ST
fol lowed by the merging of the two files (see INSERT command).

33 CHANGE. INSERT Commands (Modifying and Merging)

The CHANGE command is used to modify abstracts or table entries, while INSERT merges the
contents of two tables.

+ + .
The command must specify which entry or entries are to be changed. Within the specified
span of entries, a search will be made for all occurrences of the indicated "current
data". Each occurrence will be replaced by the "new data". Current and new data may be
object names, as in the command

CHANGE, (300-300), ITAB1, ITABA
which replaces an Interface table name in |line 300 of the table currently being edited.
In STs only, they may be numbers, as in

CHANGE, (10-), 14,286.3E~14
(which searches all entries from 10 to the end of the file). Or (in STs) they may be
special symbols

CHANGE, (1285-1286) ,+,~
except that the comma and quotation mark (") may not be used in this way. The comma is
used in the command itself, and quotation marks are reserved as delimiters for string
I1terals, which are also allowed, as in

CHANGE, (=65) , "GPMP,OM" ,"FLT,FP".
In STs, the "current data" and "new data" need not be of the same type. Commands |lke

CHANGE, (287-290), ! I INPUT, 26
are acceptable. Furthermore, several whole elements of these types may be strung
together in order to unambiguously identify the desired current data or to replace this
Information with several elements, as in the command

CHANGE, (20-20) ,0MS2=-ST,0OMS2=1T
It is the user's responsibility to insure that the new d=ta satisfy the requirements of
the tabple type being modified. The syntax of the table is not checked until the table
Is actually used.

To alter abstracts:

CHANGE ,object name-classification code,current data,new data

To alter table being edited:

CHANGE, (span) ,current-data,new data

33-1. The CHANGE command has two forms.

R 2mmand can also be used to
ST = sequence table Ihe _CHANGE ¢
IT = interface table alter the contents of any abstract. In
LT = linkage table this case, the command must name the ob ject
YT = Y=data tabla and Its type, but does not, of course,
DE = data elem;ant includg entry numbers. For example, the
; . comman

gF = disk-resident data element CHANGE , EXPL=PD,, "LUNCH" , "L AUNCH"

D = pe?sonal data base searches the entire abstract of the EXPL
X = X JOb. - PDB for occurrences of the string "LUNCH"
XJ = YOD file or Y job (without quotation marks) and relaces each

h stri Ith "LAUNCH",
33-2. CHANGE can alter the abstract of IR SR INE W LAUNG

any object type which has abstracts.
66

o

The CHANGE command is used to modify abstracts or to modify a table which is currently
being edlted.

CHANGE ,ob ject name-classification code,current data.new data
or CHANGE,(span),current data,new data

The INSERT command Is used to combine all or a selected portion of a specified table
with another table, of the same class, which is currently being edited.
INSERT ,source table name(span),insert location

When used with sequence tables or Y-data tables,
. The inserted Information may be

takzn from some other table, as In the command

INSERT, TRAJECT=ST
which inserts the entire TRAJECT sequence table at the end of the sequence table which
is currently beng edited. Alternatively, information which Is already in the current
table can be Inserted In the same table by omitting the name of the source table. This
is useful when a particular segment of the table is to be repeated, perhaps with small
changes, somewhere else In the table. For example, entries 20-40 of the current table
are duplicated at the end of the table by the command

INSERT, (20-40)
The command can also specify that the inserted information is to be placed after a
particular entry number. Thus the command

INSERT, SAVETRAJ (100-200)=-ST,70
inserts |ine 100-200 of the SAVETRAJ sequence table after entry 70 of the sequence table
which is being edited. To insert at the beginning of the table, the user indicates that
the Insertion is to be made after the (nonexistent) entry zero, as In

INSERT,PREL IM=ST,0.
Whenever INSERT Is used with a sequence table or Y-data table, the table entries are
renumbered (10, 20, 30, etc.). Incidentally, FDS does not allow the INSERT operation to
occur when the source table and edited table are not of the same type (this operation
wouldn't make sense, anyway).

INSERT,source table name(span)-file type,insert location

33-3. Syntax of the INSERT command.

With Interface tables and |inkage tables, INSERT causes a logical merging of the fwo
tables. Because the structure of these tables is fixed, it is not possible to Insert
information between two existing entries. Thus, no insert location Is allowed. For
these tables, the table being edited Is retalned Intact, except that all exlsting
parameter values in the source table replace those In the edited table. That is, any
entry in the source table which has a value wil! replace the corresonding entry in the

edited table, whether it already nad a value or not.

If the table being and the source then the yields the result
edited is table is command
Sequence table: B-ST: INSERT,B, 10 10,PERFORM,PA,TA
10,PERFORM,PA,TA 10,STORE 20 ,STORE
20,PERFORM,PB,TB 20,LIST,DE1-DE 30,L1IST,DE1-DE
40 ,PERFORM,AB,TB
Interface table: A-IT: INSERT,A 10,A=1,2,3
40,D=BETA 10,A=1,2,3 40 ,D=BETA
60,F=1,2 60,F=ALPHA 60 ,F=ALPHA
80,1=1,&,2 80 ,H=1,&,2

33-4. INSERT has different effects for different table types.

34 CROSS REFERENCE, FIND Commands (Locating Information in Tables)

The CROSS REFERENCE command finds all references to specifled objects within
AWA-resident tables, while FIND searches one particular table or table segment for items
which need not be object rames.

QUINQNG

I\ C aTe g ererence d ar Ta
. Suppose, for example, that the user wishes to substitute interface table

ol

other object
OMS2A for OMS2 In certain Instances, but not in others. It might be helpful fo use the

CROSS REFERENCE command to locate al | references to OMS2 in existing sequence tables in
the AWA:

CROSS REFERENCE,=-ST,OMS2-1T
This causes a cross reference display to be presented on the user's terminal, showing
each instance, in any sequence table, of a reference to OMS2. The command can be used
to search only a particular table, as In

CROSS REFERENCE , TRAJECT-ST,OMS2-IT
which searches only the TRAJECT sequence table. When searching for references to data
elements, DRDEs, or X Processors, the user may prefer to allow all AWA tables to be
searched, regardless of type. DEs, for example, can be referred to from any table type.
This Is done by simply omitting both table name and type from the command:

CROSS REFERENCE,, RESULT-DE
By adding the line printer device code (-P) to the command, the user can cause the
display to go to the system |ine printer:

CROSS REFERENCE-P, , GPMP-XP

CROSS REFERENCE-device ID,searched table name-file type,reference name-class

34-1. Syntax of the CROSS REFERENCE command.

. The user can
search for any table (interface table, sequence table, Y-data table, or |inkage table),
as well as data elements, DRDEs, data bases (PDBs and MDBs), X Processors, YOD files,
and document/segments.

If the item) then the following table types may be searched.
searched for is: ST T YD LT

Sequence table (ST)

Interface table (IT)

Y-data table (YD)

Data element (DE)

Disk-resident data element (DF)
Personal data base (PD)

Master data base (MD)

YOD file (YJ)

X Processor (XP)
Document/segment X

> > X X >X >X >xX >x <
>
>

34-2. Not all searcn and reference combinations are valid in CROSS REFERENCE commands.

68

g T

The CROSS REFERENCE command Is used to search AWA-resident tables for references to
tables, DEs, DRDEs, data bases, YOD files, X Processors, and document/segments.
CROSS REFERENCE~-device ID,searched table name-flle type,ceference name-class

The FIND command searches an individual table for speciflc names, numbers, s*rings, or
speclal symbols.
FIND,searched table name(span)=file type,data

_for other data. Each entry, thus
found, Is displayed on the user's terminal. The search data can consist of object
names, as In CROSS REFERENCE, but can also Include numbers

FIND, ITAB=-IT,=27.6
or, In sequence tables, qualifiers (classification codes, device codes, and access
codes, which are normal ly preceded In use by a hyphen). FIND can search for individual
symbols

FIND, |SEQ-ST,+
as weli as character string segments

FIND, ISEQ-ST,"SPIDPO SUPPORT. ON"
Furthermore, several components can be strung together in order to uniquely identify the
Information sought, as in the command

FIND, ISEQ-ST,ABC+10.
These must be whole components, however. The above command would not find an entry
contalning the group

BABC+10
since It looks for the whole name "ABC" followed by a plus sign and the number 10. The
search data may not include a comma (unless it is part of a string literal), since the
comma would be taken as part of the syntax of the command, rather than as part of the
search data. And, of course, quotation marks may be used only as part of a string
literal. A command such as FIND, ISEQ-ST,END." 1is not allowed. Percent (%) and
semi=colon (;) characters are also not al lowed, except within a string |iteral.

FIND,searched table name(span)-file type,data

34-3. Syntax of the FIND command.

Ihe FIND command can be used to search Indlvidual tables or table segments. Multiple
tables cannot be searched with a single FIND command, as they were with CROSS REFERENCE.
If the table to be searched Is currently being edited, it need not be named. Thus,
FIND,,OMS2-1T
searches the table now being edited for references to OMS2-1T. The span can be |imited
by speclifying starting or ending numbers in the usual way, as In the commands
FIND, (=500) ,0MS2-1T
FIND, TRAJECT (300-500)~-ST,OMS2

35 ATTRIBUTES, PERFORM Commands (X Processor Properties and Execution)

The ATTRIBUTES command displays the attributes of all or selected parameters of an X
Processor (or document/segment), while PERFORM causes the X Processor to be executed.

‘. The user may speclfy parflcular paramefers, or may obtaln
an attributes display for all the parameters associated with the processor. Thus, the
command

ATTRIBUTES, GPMP=XP, APSOPT, SUMTABLE
produces the following display:

ATTRIBUTES DISPLAY FOR PROCESSOR GPMP VERSION 6

ENTRY KEYWORD SIZE ROW COL CLASS TYPE 1/0 R/O
19 APSOPT 2 1 DE C4 | 0
39 SUMTABLE 368 4 46 DE F 0 R

This display Indicates that entry no. 19 is for parameter APSOPT. APSOPT occupies 2
physical half-words and is a single logical entity (an array of size 1, if you |ike).
It is defined as a data element (CLASS = DE) containing character data of up to 4
characters (TYPE = C4). It is an input parameter (1/0 = |) and is optional (R/0 =
Entry 39 is for parameter SUMTABLE. This Is a two-dimensional array (4x46 elements)
occupying 368 haif-words of storage. It is a data element and contains free data. It
Is an output parameter and is required. This particular display was obtalined because
the command specified the parameters APSOPT and SUMTABLE. I|f no parameters are
specifled, as In the command

ATTRIBUTES, GPMP-XP
then all parameter attributes are displayed. Llke most display-generating commands,
this one can be made to produce its output on the system |ine printer, as in the command

ATTRIBUTES=-P, GPMP-XP

ATTRIBUTES DXSPLAY FOR PROCESSOR GPMP VERSION 6

ENTRY KEYWORD SIZE ROW COL CLASS TYPE /0 R/O

1f an interface table s currently 1 GEOCON 60 15 OE D 1 R
= 2 PHYCON 60 15 DE 0 I R
being edited, the atfributes of the 3 GSL 4 1 DE 0 1 R
4 LBMKG 4 1 0E 0 ! 3

5 FTM 4 D ! R

. For example, the user 6 SESCON 288 14} QE ? 1]

may be editing the OMS2 table for ; 2&& ﬁ: " % d } R
processor GPMP, and be prompted as 9 INUEC 6 28 0E F 1 R
" 10 THRUST 2 1 0E 3 I B
follows: . 11 Isp 2 1 OE R 1 7
24 ,SVPROP=: 12 ENGID 2 1 0E ca it 3

13 MANID 2 1 DE cs ! 3

Responding with a question mark, 16 DELUOPT 5 1 o ce I)
\24 ,SVPROP=:? {g %ﬁﬂ? g 3 DE R t 0

L 1 DE R 1 0

results In the display of Information 7 ALTOPT > 1 oE ce : 3
about the nature of the parameter, but 18 ALTITUDE 2 i DE R ! 0
d + tde attribut 19 APSOPT 2 1 DE cs 1 0
oes noT provide artTribures 50 HA 2 1 DE R I 0
Information. T h 1 w 2 1 %€ R 1 0
(] hus, the user may not - - 5 1 = . : 9

know the size of an array, or, In this 23 ONSFLAG 2 1 DE ca t 0
case, whether or not the parameter Is & s & o = g 8
required. By entering the update mode ;3 ﬁ& g 1 0E R I 0
A 1 0E R 1 0

and 1"yplng an.ATTRIBUTES Cmmand, fhe 28 DENSMODL 0 150 DE (3 1 0
user can obtain such Information. To §g g&:am zﬁ ég gg F é g
obtain Information Abcut the X g; GEOPOTEN 0 86 E F 1 0
P DISPLAY 2 1 0E cs I R
rocessor for which an IT is belng 3 oeIT B 164 3 . : -
edited, the user simply omits the X 3¢ IGUECNAM 1 0E C16 I 0
35 BRUECNAM @ 1 DE c16 I E

Processor name. Thus, the sequence 3% OSPTIMEL 4 2 % ¢ I ,
might be 7 DSPTIMEZ ¢ 2 0E c4 ! 2
\ ~ 38 GPMPTET 0 50 3 DE F 0 2

24, SVPROP=:\ 39 SUMTABLE 388 ¢ 46 D F 0 R

\:ATTRIBUTES, , SVPROP
35-1. The ATTRIBUTES display for an X Processor
provides information about all of its parameters.

70

The ATTRIBUTES command allows the user to display the attributes of all or selected
parameters of a specifled X Processor or document segment.
ATTRIBUTES~-device |D,object name-class,parameter keyword,...

The PERFORM command causes a particular X Processor to be executed.

PERFORM, X Processor name, interface table name

aln 1 - DO ne pa amete
. This use of ATTRIBUTES is discussed
further In the later section on document preparation.

ATTRIBUTES-device ID,object name-class,parameter keyword,...
PERFORM,X Processor name,interface table name

35-2. Syntax of the ATTRIBUTES and PERFORM commands.

. Ordinarily, the user will
specify not only the X Processor name, but also the name cf the interface table to be
used for input/output control. Thus, a typical PERFORM command is

PERFORM, GPMF , OMS2
It Is possible, however, to Initiate execution of an X Processor using the default IT
for that processor, as by the command

PERFORM, GPMP
Whenever a value is needed which is not provided in the default IT (or whatever [T is in
use), the editor will automatically be invoked by the system, In order to obtain the
value from the user. Thus, It is possible to successfully execute a processor without a
specially prepared interface table, although in most cases this is rather tedious. This
approach also has the disadvantage that the values Input are not permanently stored, and
must be re-entered If the processor Is executed again. Like most commands, PERFORM can
be used as a statement in a sequence table. It wil! be very common to collect a whole
series of PERFORM commands in a sequence table In order to execute them In one
operation.

As was Just indicated, the usual mode of FDS use involves construction of
interface tables before X Processor execution. During the IT editing process, a
variety of commands may be used (all from the update mode, of course). Included
among the commonly used commands are LIST, CHANGE, and ATTRIBUTES. The
ATTRIBUTES command is helpful when the user Is uncertain of the properties of a
parameter and must know them in order to successfully complete the editing
operation. Thus, during initiai construction of the OMSZ IT, the user might
encounter a prompt for the parameter PROCON and be unsure of the number of
elements to be provided. Use of the ATTRIBUTES command settles this Issue.

\8,PROCON=:\

\:AT,,PROCON
The user will recall that command keywords can be shortened to as few as twe
characters, If desired. The "AT" here Is short for "ATTRIBUTES".

ATTRIBUTES DISPLAY FOR PROCESSOR GPMP VERSION 6

ENTRY KEYWORD SIZE ROW COL CLASS TYPE 1/0 R/O

8 PROCON 14 7 DE F | R
\:MODE, |

\8,PROCON=:
When the editing has been completed, the GPMP processor can be executed.
PERFORM, GPMP, OMS2
Alternatively, this PERFORM command can be placed In a sequence table for |ater
execution as part of sequence.

n

36 AUTOMATIC, SEMIAUTOMATIC, and BATCH vemuands (Execution of Sequence Tables)

The AUTOMATIC, SEMIAUTOMATIC, and BATCH commands allow execution of sequence tables with
varying levels of user Interaction.

- H .)| - BX & < - < < S Se) % - H sis
deslignated sequence table. Each statement Is executed as It Is encountered In the
sequence table. User interaction will occur only If the system detects inccmplete data,
or If an X Processor Is executed which Is Itself interactive with the user. |In the
absence of these clircumstances, the entire sequence table will be executed before any
further user Input is required. The user specifies the sequence ftable to be executed

AUTOMATIC, TRAJECT
“a1e ST must be In the AWA for execution to occur. The user may specify that a portion
«f the ST Is to be executed, by providing starting and/or ending entry numbers. Thus,
AUTOMAT IC, TRAJECT (20-230)
executes entries 20 through 230 of ST TRAJECT before returning control to the user.

AUTOMATIC-trace level,sequence table name(span)
SEMIAUTOMATIC,sequence table name(span)

BATCH-trace level,data base,sequence table name(span),job limits
36-1. Syntax of the AUTOMATIC, SEMIAUTOMATIC, and BATCH commands.

By specifying a trace leve!, the user can cause the system to print statements before
executing them. |f the trace level selected is "C", only "comments" inserted in the ST
via the NOTE command are printed.

AUTOMAT IC-C, TRAJECT
If the trace level is "A" (for "ALL"), the system prints both NOTES and executable
statements

AUTOMAT IC=A, TRAJECT

The SEMIAUTOMATIC command behaves [n the same
way, except that [t stops for user actlon

If, for example, the user executes statements AUTOMATIC:
lgg?efhrough 1200 of the TRAJECT sequence Interacts with user only when
’ .
SEMIAUTOMAT IC, TRAJECT (1000-1200) (1) incomplete data detected
the system will respond with (Editor is invoked)
1000, PERFORM, GPMP, ETSEP (2) an X Processor directly
$1000: interacts with user

This response Indicates the statement which
Is about to be executed, as well as Its entry SEMIAUTOMATIC:

number in the table. The user may cause the As above, and before each statement.
statement to be executed by pressing the . }
carriage return. Alternatively, the user User can skip statement, override
may : it, or allow it to be executed
o Skip to the next entry (by typing $)
o Specify the entry number of another BATCH:
statement at which execution Is to begin None. User need not even be

o Type In a statement to be executed

o Abert the ST execution (by typing %)

o Obtain a |Ist of legal commands (?) or 36-2.
the syntax of a particular command
(by typing, e.g., LIST?)

Togged on when ST is executed.

These commands differ primarily with
regard to interaction with the user.

et

The AUTOMATIC, SEMIAUTOMATIC, and BATCH commands cause the execution of entire sequence
tables. AUTOMATIC executes the entire ST without user interaction (unless Incomplete
data exlIst or an Interactive processor is executed).

AUTOMAT IC-trace level,sequence table name(span)

SEMIAUTOMATIC halts before the execution of each statement, allowing tte user to concur
or to skip or overide the statement.

SEMIAUTOMATIC,sequence table name(span)

BATCH causes the later executlion of the ST In backjround mode, with no terminal
Interaction.

BATCH-trace level,data base,sequence table name(span),job Iimits

RESPONSE EFFECT Iha_BAIQﬂ_cgmman.d_cmas_ED.S_m" _exacuie_a."
Carriage Return| Statement is executed sequence table later, as a "batch", or
as displayed. background, job. This allows more
B igzgzéﬁpgzggvmxt efficient system operation when the user
Entry number System skips to indicated does not require instant turnaround, and
e.g., 1210) statement in ST. 2lso allows the user to leave or do other
Any Tegal Systen executed this work while the job Is executing. It also
BERSPRAR gt A el has the advantage that it produces a
one it displayed.
§$exemnion¥saomwed hardcopy (lineprinter) record of the entire
:"dt;"";;g‘i‘s ri:""‘” execution. Since no AWA will exist for
7 S;ste:l disM:;:u, ‘{f;t 14 this job at the -ime execution is begun,
legal statements. the user must specify the name of a PDB or
@““"ﬁrﬂ \ 5“‘“¥°“P?Y5§ﬁh MDB. Thus, the command
e.g., ? correct syntax o e
c Specified statement. _ BATCH, EXPL-FD, TRAVECT
36-3. During SEMIAUTOMATIC exe- Indicates that FDS is to use the PDB cal led
. . . EXPL as if it were the AWA, obtaining the
cution, the user has several options TRAJECT f1le § that PDB. as well as al |
available each time the system dis- raauirad ln$ r;°me fabl 'da#awzlemenfa
plays the "next statement'. eire Sriace rabies, ds S»

etc. When the system has executed this
command (l.e., submitted the job for later execution), it will return a job name to the
user, who may then log off or do other FDS work. Later, when FDS executes the job, it

will work from the EXPL PDB as it exlists then, so it is important that it be left intact
unti| the job has finished executing.

The BATCH command
i . Thus, the command

BATCH=-A,FL IGHT=MD,BUILDPLN(10-200)
directs FDS to execute |ines 10-200 of the BUILDPLN sequence table from an MDB cal led
FLIGHT, and to |ist each statement before executing it. Job |imits can be added In
order to control the disk space, CPU time, and number of print lines allowed. The
default values of these parameters should be satisfactory for most batch jobs, but the
user may override them when necessar,. For example, the command

BATCH,H | SPDB-PD-AY,0FT2,800,240,25
sets |imits of 800 disk sectors, 240 cpu seconds, and 25,000 print |ines.

BATCH, EXPL-PD, TRAJECT ,400,300, 25
DWA Size /’m SNPrint lmit

Maximum number of disc Maximum CPU time, Maximum number of
sectors to be allocated in seconds, for print lines (in
to Disk Work Area (disk this job. 1000s) to be
portion of AWA). Must produced by this
be integer in range job.

1-8192. Default is 400.

36-4. The "job Timits" portion of the BATCH command has three components.

73

37 ALLOCATE, ASSIGN Commands (Pata Element Creation and Initlallzation)

The ALLOCATE command is used to create a data element In the AWA with user-specified
properties, while ASSIGN is used to place information into an already al located DE.

ALLOCATE ,data_element name(dimension,dimension)-data type,...

ASSIGN,data element name(expression,expression)=expression 'range '...;

37-1. Syntax of the ALLOCATE and ASSIGN commands.

. AWA. 'n this command,
the user speclfles the name of the new DE, which musf nof conflict with any exlisting DE

names. The user also speclifies the data type which the DE will contain. For example,
the command
ALLOCATE ,NUMVAL- |

creates a DE called "NUMVAL" which will contain a single Integer value. The data types
avallable are Integer (1), real (R), double precision (D), character (Cn), free (F),
time (T), or mixed (Mn, where n = format number). ALLOCATE can also specify the
dimensions of a DE which Is to be used as an array. These arrays may have one or two
dimensions, and are specifled by giving the upper |imit of each subscript, as might be
done, for example, In a FORTRAN DIMENSION statement. Thus,

ALLOCATE ,ONEDIMEN(16)=R, TWOD IMEN(21,4)-D
creates two new data elements. The DE called ONEDIMEN is to contain an array of 16 real
values, which will occupy 64 bytes of

storage (each real variable takes 4 bytes DATA TYPE BYTES PER VALUE
of storage). Values In this array will be integer (1) 2
referred to by name and subscript, so that real (R) 4
ONEDIMEN(3) is a reference to the third double precision (D) 8
value In this array. TWODIMEN contains 84 .

character (Cn) 4,8,16,32,0r 64
double precision values (672 bytes) and Is free (F) words allocated

referenced with two subscripts. For
example, TWODIMEN(6,2) refers to the second
value In the sixth row of the 21 x 4 array.
Data elements m.y not be allocated for more
than 4095 bytes, or an error message will

(4 byte: each)
time (T) 8
mixed (M) combinations of
above types

result. 37-2. The data type of a DE affects its
storage requirements
Ihe ASSIGN command computes values and stores them In a DE. Functionally, ASSIGN is

very simllar to the assignment statement found in FORTRAN or other high-level
programming |anguages. Thus the command

ASSIGN, NUMVAL=10;
simply places the value 10 in the (single-valued) data element cal led NUMVAL,
Expressions for the value can be arbitrarily complex, Involving addition, subtraction,
multiplication, division and/or exponentation. They may Include a variety of
mathematical functions (see Appendix A) and nested parenthetical expressions.
Expressions are evaluated In the conventional way (as In FORTRAN, for example), so that
the command

ASS IGN, NUMVAL=4%2%%3-6/2+3;
is evaluated as If it had been written

ASSIGN, NUMVAL= (4% (2%%3))=(6/2)+3;

74

The ALLOCATE command is used to create one or more data elements In the AWA, The user
must speclify the name and type of the data element and may speclfy its dimensional Ity,

ALLOCATE ,data element name(dimension,dimension)-data type,...

The ASSIGN command computes values and stores them In an existing AWA-resident DE.
ASSIGN,data element name(expression,expression)=gxpresslon 'range '...i

involves multiplying an Integer (2) by a data element value (using whatever data type it
has), multiplying the result by a real constant, and converting the result back to an
integer (NUMVAL was ALLOCATEd, above, as an integer). No conversion is applied to free
data, however. Character sirings may also appear as values, as In the command

ASS I|GN,HOLDCHAR="SPACE TRANSPORTATION SYSTEM";
but arithmetic operations are then not allowed. The ASSIGN command must be terminated
with a semicolon,

Subscrlp?s can be any val Id numerical expresslons, as deflned above. Thus,
ASSIGN,ONED IMEN(2%%2-14/7)=12;

Ie valid, and is equivalent to
ASSIGN,ONED IMEN(2)=12;

Naturally, references to two-dimensional arrays require two subscript expressions:
ASSIGN, TWOD IMEN(ONEDIMEN(1) ,6=NUMVAL)=26,183;

array. Thls Is done ln a manner similar to the ordlnary DO s*afemenf in FORTRAN For
example, the command

ASSIGN, TARGET(1)=SOURCE(I) 'I=1,10;
coples the values of an entire ten-element array (SOURCE) Into another array (TARGET).
The range specification is indicated by an apostrophe, and contains the following
Information:

'Index=initial value,terminal value,increment
where the Increment is optional. The "index" is a variable name. The variable takes
Integer values as indicated by the remaining Information. For the first iteration, the
Index is equal to the Initial value. On each successive Iteration, the index value Is
increased by the increment until it exceeds the terminal value. Thus

'IVAL=1,10,3
causes IVAL to take on the values 1, 4, 7, and 10. The next value, 13, Is past the
terminal value, so the fifth iteration does not cccur. |If the increment is not
specified, a value of | is used (=1, if terminal value is smaller than initial value).
More than one range specification can be used, to a maximum of four. Thus,

ASSIGN,PRODUCT(1,J)=1%J

CONTINUE: 'I=1,6 'J=1,4;
assligns values to all 24 elements of a 6 x 4 array. |In each case, the value assigned Is
equal to the product of the row and column numbers by which it is indexed.

Evaluate and store a root of a quadratic equation
ASSIGN,R1=(-B+SQRT(B**2-4*A*C))/(2*A);
The range field can be used to set values in a data element.
ASSIGN,VECTOR2 (NUMBER) = COUNT(NUMBER) 'NUMBER)=1,10;
Compute and store the scalar product of two vectors
ASSIGN,DOT=0;
ASSIGN,DOT = DOT + A(IND) * B(IND) 'IND = 1,3;
Character data can be stored in DEs created for character data
ALLOCATE,TITLE-C32
ASSIGN,TITLE = "ROOT1 AND SCALAR PRODUCT";

37-3. ASSIGN can be used for a variety of purposes.

38 |F _Statement (Condition Testing in Sequence Tables)

The IF...ELSE...ENDIF (or IF...ENDIF) block al lows selective execution of sequence table
statements.

more statements. In Its simplest
more other statements, and ENDIF.

IF, INUM>6;

ASSIGN, INUM=6;

ENDIF
For instance, the above sequence sets the value of data element INUM to 6
It started with a value greater than 6. Logically, the condition specified in the IF
statement is tested to determine whether it is true or false. If It is true, the
statement(s) following the IF statement are executed; 1if false, they are skipped until
ENDIF (or ELSE) Is found. |f an ELSE clause Is present,

1F, INUM>6;

ASSIGN, INUM=6;

ELSE

ASSIGN, INUM=0;

ENDIF
then the statements following ELSE are
executed only if the condition Is false,
and are skipped If it is true. Thus,
either of two blocks of statements can be
selected, depending on the truth value of
the condition. in the above Instance, INUM
is set to 6 If It started out greater than
6, and Is set to 0 If it started out less
than or equal to 6. Any number of éiggtements)
statements can occur after IF and after (statements)
ELSE. |IF, ELSE, and ENDIF can appear only ENDIF
In sequence tables; they cannot be entered
as directives for immediate execution by

form, the IF hlock consists of aﬁ IF statement, one or

IF,condition 'range '...;
(statements)
ENDIF

IF,condition 'range '...;

the FDS Executive. Incidentally, the IF 38-1. The IF statement can be used
statement must be terminated with a with or without an ELSE-clause.
semicolon.

consists of two mathematical expressions and
false arelational operator. The IF statement

amounts to a construct of the form
expression relation expression.
i The expressions can take any of the forms

IF

true e
| condition

statements statements discussed In connection with the ASSIGN
following following statement. They can Include add!tion,
IF ELSE, if any subtraction, etc., as well as parentheses and
mathematical functions. They may refer to

data elements, with or without subscripts, as
well as numerical constants. The relations
include equal (=), not equal (<> or ><),
less than (<), greater than (>), less

statements than or equal (<= or =<), and greater than
following ENDIF or equal (>= or =>), Thus, very complex
tests are possible, although It will usvally

be advantageous to kenp things simple.
38-2. The function of IF blocks is
illustrated by a flowchart.

76

The IF...ELSE...ENDIF (or IF,..ENDIF) block allows condltional
execution of statements in a sequence table.
' IF,condltlon 'range '...1
(statements)
ELSE
(statements)
ENDIF

AF blocks may be nested In a hlerarchical fashion. Thus, the sequence

IF,1=1;
IF, J<10; §
L|§T,XYZ-ST Symbol Operation
ENDIF /
: ELSE 4 less than
t&gT;NXY'ST > areater than
is allowed. In this sequence, the lnside (= less than or equal

IF block is executed only If | equals 1.

If | Is not equal to 1, the ELSE clause Is
executed (l.e., the statement "L IST,WXY=ST"
is executed). Notice that, if | Is 1 and J
Is 10 or greater, nothing Is LISTed.
Interpretation of such a construct may be S " " " "
easier If 1t is writtenr In Indented form to
show [ts hierarchical structure.

- " " " "

) = greater than or equal

IF, i=1; - SRRl
’ ’
IF J(10; N ¢ 3
'LIST,XYZ—ST p L4 not equal
END'F), " "
ELSE <2
LIST,WXy=ST "
ENDIF 38-3. Several relational operators

can be used in the "condition" portion
of IF statements.
. ", For example, the statement
IF,MATRIX(1)>0 'I=1,10;
could be used to test all values of & 10-element array. The condition Is true gonly If
all Individual tests are true. Thus, in the above case, ai.l 10 elements of MATRIX must

be greater than zero or the condition is false. Up to four range speclifications can be
used. Thelr form Is the same as that discussed In connection with the ASSIGN statement,

X CONDITIONAL EQUIVALENT ARITHMETIC EXPRESSION

EXPRESSION* (assume [=2,J=2,K=3) TRUTH VALUE
I =1 2 =2 TRUE
I =K 2 =3 FALSE
1< J 2¢ 2 FALSE
1< K 2<¢ 3 TRUE
I1{= 2¢{= 2 TRUE
1,>4J 2) 2 FALSE
K> 1 3> 2 TRUE
I)= 2)= 2 TRUE
1<) J 24D 2 FALSE
1) K 2<> 3 TRUE
1*J> = K 4)= 3 TRUE
[**) = (K-1)**) 4 =1 FALSE

38-4. The truth value of a condition is determined by computing the numerical values
of the expressions and applying the relational operator.

39 DO LOOP Statement (lteration In Sequence Tables)

The DO LOOP block is used for conditional looping In sequence tables.

a function of 2
. Thus, the sequence

ASSIGN, I=1;

DO LOOP,WHILE, I<=10;

ASSIGN,ARRAY (|)=1;

ASSIGN, I=141;

LOOP END
causes the last two ASSIGN statements to be executed 10 times, with the data element |
taking on the values 1, 2, 3, ... 10. The loop has the effect of setting each element
of ARRAY to Its iIndex position (ARRAY(1) = 1, ARRAY(2) = 2, etc.). This is an example
of a WHILE loop, In which the loop Is repeatedly executed while the specified condition
Is true. The test is performed each time the ioop is entered. When it is found to be
false, the loop is exited, and thuse statements which follow LOOP END are executed. DO
LOOP (and LOOP END) statemente can be used only in sequence tables, DO LOOP statements
must end in a semicolon,

DO LOOP,WHILE,condition 'range
(statements)
LOOP END

DO LOOP,UNTIL,condition 'range
(statements)
LOOP END

39-1. The DO LOOP statement has both WHILE and UNTIL forms.

In the UNTIL form of DO LOOP, the test Is performed at the end of the loop. Compare the
sequence

ASSIGN, I=1;

DO LOOP,WHILE, I1>=10

ASS IGN, 129999;

LOOP END
with the sequence

ASSIGN, I=1;

DO LOOP,UNTIL, I1>=10

ASSIGN, 1=9999;

LOOP END
When the WHILE sequence Is executed, | Is given as value of 1, which Is not changed by
the DO LOOP, This Is because the condition I1>=10 Is false and the statement within tte
DO LOOP b!ock I1s not executed. On the other hand, the UNTIL loop Is executed exactly
once. Since no test Is performed unti| after the stntemart within the !ocp Is executed,
| takes on the value 9999. When the test is then applie., It Is found to be true, which
causes the loop to be exited. As the words suggest, WHILE causes Iteration as long as
the conditlon remains true, and UNTIL causes [teration untll the condition hecomes true.

78

The DO LOOP block al lows conditional looping within a sequence table. A collection of
sequence table statements can be repeatedly executed WHILE specified conditions are met
or UNTIL specified termination conditions are satisfled.
DO LOOP,WHILE,condition 'range '...:
or DO LOOP,UNTIL,condition 'range '...i

(statements)
LOOP END
DO LOOP,WHILE,condition DO LOOP,UNTIL,condition
condition statements

true
?

after DO LOOP

statements
after DO LOOP

—

statements statements
after LOOP END after LOOP END

39-2. WHILE and UNTIL Toops differ in the time at which test is applied.

rent can involve a "range". To

be considered true, the condition must be true across all values of the index variable.
For example, the loop

DO LOOP,WHILE,ARRAY(1)>0 '1=1,5;

{statements)

LOOP END
wi | be skipped, if any of the first five elements of ARRAY is nonpositive. Up to four
range specifications can be used.

DO LOOP blocks can be nested with other DO LOOP blocks or with IF blocks. Thus, a
sequence such as

ASSIGN, I=1;

DO LOOP,WHILE, 1<=10;

IF,B(1)>A(1);

ASSIGN,A(1)=B(1);

ENDIF

ASSIGN, I=1+1;

LOOP END
Is possible. This sequence causes the first 10 elements of A tc take cn a value which
Is the greater of: (1) thelr Initial value, and (2) the corresponding valu. In array 3.
When blocks are nested In this way, it is Important to recognize that the Inside block
must be closed first. Thus, the following "overlapping" structure Is 1llegal.

DO LCOP,WHILE, <63

IF,J=0;

(s1atements)

LOOP END

ENDIF

79

40 BREAK, DLOG, FORMAT, MESSAGE, NEWS Commands (Miscellaneous FDS Commands)

The commands BREAK, DLOG, FORMAT, MESSAGE, and NEWS allow the user to obtain system
status, transaction log, mixed data format displays, and current news information, and
t0 communicete with other users.

EDS

2 . The current contents of the execution stack are
displayed to the user. The appropriate prompt symbol, task name, and the names of any
tables being processed are displayed.

file. The transaction log Is a "circular" file which has a predetermined size. As new
transactions are added, the oldest ones are thrown away Iin order to make room for the
new Information. Each FDS prompt, each user input, and each error message, is placed In
this file, along with date and time tags. The user can display all transactions for the
current day on the terminal

DLOG
or on the system |ine printer

DLOG-P
or can specify starting and/or ending dates or times. For example, the command

DLOG,12/18/83,14/23/00
causes all stored transactions, which occurred on 18 December 1983, after 2:23 P.M,, to
be displayed. Date fields take the form month/day/year. The current day Is assumed, if
date is omitted but time Is given, as In

DLOG, ,14/23/00
Time fields take the form hour/minute/second. |If start time is omitted, but other date
or time information Is given, time 00/C /00 (midnight) is assumed. I|f end time is
omitted, 23/59/59 is assumed. |f a start date is given, but no end date is given, the
start date is assumed to be the end date. Thus, the command

DLOG,12/17/83,,,14/23/00
displays all stored transactions from the start >f the day on 17 December 1983 through
2:23 P.M, on the same day.

12/18/83 08/04/24 * INFO *EX*XMINITO1* 53*
FDS SIGNON COMPLETED,FDS VERSION IS 6C

12/18/83 08/04/24 7% :

12/18/83 08/04/45 GET,EXPL-PD

12/18/83 08/04/46 % :

12/18/83 08/04/59 TOC

12/18/83 08/05/01 % :

12/18/83 08/05/27 EDIT,,0MS2-1T,GPMP

40-1. The transaction Tog contains a time-stamped record of recent FDS prompts and
user inputs.

The mixed data type iIs used when elements of more than one type are contained in a
single data element or DRDE. While data types may be combined, they must be combined
according to an existing format definitior. These definitions are numbered, and may be
displayed using the FORMAT command. Thus,

FORMAT,M31,M33
displays the contents of format definitions 3! and 33, while

“ORMAT-P
displays all current format definitions on the system |ine printer.

80

The BREAK command displays the current functlional status of all active FDS tasks
associated with the current user.
BREAK

The DLOG command displays all or part of the user's transaction log file.
DLOG-device ID,start date,start time,end date,end time

The FORMAT command displays current mixed data formats.
FORMAT-device ID,format number,...

The MESSAGE command transmits a message to one or more other users.
MESSAGE, access code(s),"text"

The NEWS command displays system status Information which has been placed In a NEWS flle
by system support personnel.
NEWS-device ID,start date

. The
message will be displayed for the recipient(s) with the date and time of transmission
and the originating user's access code. |If a recipient is currently logged on, the
message will be displayed on that user'c terminal just prior to the next Executive level
(%) prompt. !f the reciplent is not logged on, the message is retained and
automatically presented when the user next logs on. Once a retained message has been
displayed, it Is purged from the system.

BREAK

DLOG-device ID,start date,start time,end date,end time
FORMAT-device ID,format number,..

MESSAGE-access code(s),"text"

NEWS-device ID,start date

40-2. Syntax of miscellaneous FDS commands.

Ihe MESSAGE command specifies the message text, and may specify the access code(s) of
. For instance, the command

MESSAGE,AV, "MEETING HAS BEEN POSTPONED TO 3:30"
transmits a message only to user AV. |f no access code is given,

MESSAGE, ,"SYSTEM WILL BE DOWN 3:30-4:00 P.M."
It is transmitted to all users. The user should keep in mind the message retention
feature. The above message is clearly unsatisfactory. A user who next logs on a week
later may not recognize this messiye as inapplicable at that time. Multiple recipient
access codes are allowable, as In

MESSAGE, AW,CW, "HAS ANYONE UPDATED THE

CONTINUE: OMS-2 INTERFACE TABLE YET?"
This command takes advantage of the multiple |ine facility available in all commands.
Note, however, that the message will be displayed in a single line

MESSAGE FROM CY,12/18/83 02/16/27

HAS ANYONE UPDATED THE OMS-2 INTERFACE TABLE YET?
unless Control-C is used to break it into multiple I|ines. The message text is |Imited
to 122 characters, Including Control-C characters.

£ e
. This faclillity Is used primarily to convey information
about the system itself, Including updates to system software and to Master Data Bases.
If no device D is speciflied,
NEWS
the Information Is displayed on the user's terminal. |f the line printer device code is
specified,
NEWS-P
the news Is printed on the system printer. |f no date is specifled (as In the above
commands), the entire news file Is displayed. To obtain only news entered on or after a
specified date, that date Is added to the command in the form month/day/year.
NEWS,12/18/83

81

41 AUTOMATED DOCUMENT PRODUCTION

FDS supports automated production of standard documentation.

. Briefly, FDS
accompl Ishes this by substituting computed and user-provided informaticn for "holes", or

placeholders, In a predefined text document. The overall document production process is
fairly complex, involving five groups of personnel, thrce computers, and a large number
of procedural steps. From the user's point of view, though, the process is fairly
simple and automatic.

. Each standard document (e.g., CFF) has a large amount
of Information which remains the same across all, or many, flights. Only the changeable
Information needs to be provided In order to produce documentation which fully describes
a unique mission. Support personnel have created a number of standardized document
segments, and have left spaces ("holes") to show where user=-provided information goes.
The information already provided by the support personnel includes format
specifications, units of measure (conversion is automatic), and other data required to
fill each "hole". The user must only indicate to FDS the values, or where the values
are to be found, so that FDS can automaticaily fill in all the "holes" in a
document/segment.

ﬂlihg.lgb Ibg IISQE'S DaEI [n dgc“meni QEleICIlQD [S Eelaillfﬁlll Simplﬁ a Qlﬁa[
understanding of the process requires an awareness of several components. For each
DOCUMENT/SEGMENT, there Is a FORM, which consists of the basic text (and tables, etc.)
of the segment, with placeholders showing where values are to be provided by FDS. These
forms are provided by system support personnel. For each document/segment, there is
also a DATA DESCRIPTOR TABLE (DDT) provided by support personnel. This table indicates
the name of each missing value or set of values In the Form, and provides information
about format, units of measure, etc. Although this information is actually stored in
FDS Linkage Tables, it is convenient to think of it as a separate entity; it is not
under user control, as Is the rest of the Linkage Table information. The DOCUMENT
PROCESSOR uses this DDT information, and information provided by the user, to construct
a finished document. The Document Processor Is an X Processor, and is executed In the
same way as any other X Processor, using a PERFORM command which specifies an Interface
Table.

s ompone W ne o ge are = apn C S
Jable. The LI!NKAGE TABLE (LT) is the user's way of Identifying, for the system, the
values which are to be placed in the "holes" in the Form. Because the Document
Processor (DOC) is an X Processor, it obtains its basic information from an Interface
Table. In this case, the IT identifies the name of the Document/Segment, name of the
Linkage Table, and other Information necessary for the DOC to proceed.

82

FDS supports automated production of standard documents with minimal effort by the user.
To produce a document, the user must provide the values (or thelr locations) which are
to be placed In the "holes" in a standard Form. Th!s process utlllzes Forms and Data
Descriptor Tables (both provided by support personnel), a Documentation Processor
(DOC-XP), and Linkage Tables and Interface Tables (both provided by the user).

Form:

Text, tables, etc., with "holes" to show where FDS-supplied values are to be
placed. These Forms are provided by support personnel.

Data Descriptor Table (this Information Is actually stored as part of the default
Linkage Table):

A description of the data items which are to be placed in the "holes". This
table provides a name for each data Item, Information about its format, and
unit of measure (where appropriate). The order of the entries In the DDT

corresponds to that of the "holes" in the form. DDTs are provided by support
personnel .

Linkage Table (user-modifiable portion):

A table which indicates the values which are to be placed In the "holes", or
the names of data elements or DRDEs In which the values are stored. This

table Is the user's means of caucing appropriate values to appear In the
automatical ly produced document.

Interface Table:

An ordinary Interface table (for the DOC X Processor) which tells the Document
Processor the name of the document/segment, |Iinkage table, etc., needed to
prepare a finished document/segment.

Document Processor:

An X=Processor (called DOC) which performs ihe document preparation. DOC
obtalns the Form and uses information in the DDT and LT +o f1!! In a!! the
"holes". The resulting document/segmant can be displayed for user review, and
can be deleted or stored for actual production.

41-1.

Production of a finished document/segment requires several components.

83

42 AN EXAMPLE OF AUTOMATED DOCUMENT PRODUCTION

The user controls the behavior of the Document Processor by making appropriate entries
In a Linkage Table and an Interface Table.

Preparation of a Linkage Table Is the main user activity involved In document
production. In almost all respects, this Is just |ike preparing an Interface table.
Suppose, for example, that the user wishes to prepare a |inkage table cal led EXAMPLE,
starting with the defaul+ Linkage Table for a document called CFP1, segment LIFT. The
user would type In the command

EDIT,,EXAMPLE-LT,CFPILIFT
Just as In Interface table editing, the editor starts in the Incomplete mode unless the
default LT Is complete. In the LT, the paramerters are the names of the Items of
Information which are to be substituted for placeholders ("holes") In the form. As In
an IT, the user can specify the actual value to be used, or can specify the name of a DE
where the information can be found. Thus, in response fo an editor prompt, the user
could type In an actual value

1,LSITET=&1

<&1:"KSC"
or the name of a data element which contains the value

<&1:SITE
When arrays are rcquired, the whole set of values can be typed in, or the name of a DE
containing the whole set can be provided. The user can also indicate a particular
position In an array. Assume, for example, the |ift=off time Is ordinarily found In
element 7 of the first row of the flight state vector. Then, the user might respond

2,TLO=&i

<&1:RESULT(1,7)
In order to point the document processor to element (1,7) of the RESULT DE. |If TLO
required more than one value, the required number of values would be taken from RESULT,
starting in location (1,7).

« Thus, the user might construct
an IT called EXAMIT, using ordinary procedures for |IT editing. The user must state the
name of the document (here it is assumed to be CFP1), the segment name (LIFT), Linkage
Table name (EXAMPLE), output test file name (OUTTEXT) and other information. A portion
of this dialogue might be:

EDIT,EXAMIT=-IT,DOC
1,D0CUMENT=&1
\&1:"CFP1"
2,SEGMENT=&1
\&13"LIFT®
3,LTABLE=&1
\&1:EXAMPLE
4 ,FILENAMERR1
\N&1:0UTTEXT
For more detall about the use of DOC, the user should consult the X Processor User
Reference Manual.

Once the LT and IT have been constructed, the user simply executes DOC. The appropriate
command is

PERFORM,DOC, EXAMIT
DOC performs the document construction, and gives the user an opportunity to screen the
results. when the user Is satisfied, tne output text can be stored for transmission to
the Xerox Word Processing System, where final output will be accomplished.

84

An example 1llustrates the information used by the Document Processor to produce
documents In an automated way. For further Information, the user is referred to the
X Processor User Reference Manual section deal Ing with the DOC processor.

Form

Data

(assume this document/segment is calied CFP1/LIFT):

Lift-off from [] occurs at [] seconds after solid rocket booster (SRB}
Ignition (MET = [] seconds) after which a vertical rise to tower clearance
phase Is Initiated, ending at a relative velocity of [] fps (MET = []
seconds).

Descriptor Table (for document/segment CFP1/LIFT):

(This Information Is actually stored In the Linkage Table, mostly In the
"extended prompt" records. See X Processor User Reference Manual for more
information.)

name type format = wunits prompt text
LSITET ca A3 - LAUNCH SITE

TLO R T0:0:0:1 - TIME OF LIFTOFF(GET)
TLOY R T0:0:0:3.1 - TIME OF LIFTOFF (GET)
RELVEL R 13 FT/S RELATIVE VELOCITY
TCLNCE R T0:0:0:3.1 - TIME OF TOWER CLEARANCE

Linkage Table (assume this is called EXAMPLE-LT):

1,LSITET="KSC"
2,TLO=RESULT(1,1)
3,TLO1=RESULT(1,2)
4,RELVEL=RESULT(7,3)
5, TCLNCE=RESULT(1,3)

Interface Table (assume this Is called EXAMIT=IT)

Date

1,DOCUMENT="CFP 1"
2, SEGMENT="L |FT"
3, L TABLE=EXAMPLE
4,F | LENAME=OUTTEXT

Element (called RESULT. This Is just an example):

Assume That RESULT(1,7)=3,0
Assume that RESULT(2,7)=Z.1
Assume that RESULT(3,9)=20.0
Assume that RESULT(3,7)=3.8

Finished text (stored by DOC in OUTTEXT=DF):

Lift-off from KSC occurs at 3 seconds after sclld rocket booter (SRB) ignition
(GET=3,1 seconds) after which a vertical rise to tower clearance phase Is
Initlated, ending at a relative velocity of 20 fps (GET=3.8 seconds).

42-1.

An example shows how the various components are used by the Documert Processor to

produce the finished document.

85

APPENDIX A == MATHEMATICAL FUNCTIONS

In contex*s in which mathematical functions may be used (e.g., ASSIGN command), any of

the functions |isted below are avallable.
the operating system.
error message to the user terminal occurs.
and writes an error message only to the system console.
when debugging operations involving functions.

function
Name

ABS
ACOS
AINT
ALOG
ALOG10
AMOD
ASIN
ATAN
ATANZ
CO0S
DABS
DATAN
DATANZ2
DBLE
DCOS
DEXP
DINT
DLOG
DLOG1C
DMOD
DSIGN
DSIN
DSQRT
DTAN
DTANH
EXP
FLOAT
1ABS
IDINT
IFIX
ISIGN
MOD
SIGN
SIN
SNGL
SQRT
TAN
TANH

Result
Type

DD VDV ——— ==V VOO0 ODO0OO0D0D0DO0O000D0O0O0DDDVDIDDDIVO

Argument(s)
Type

Number of
Arguments

DOV X0V —~—V 0 —=-—DDVD0000O0O0DUO0O0O00XDO0O0O0O DDV VDVDIIO

A-1

—_ s 2 A NININ) — s b b b b st t RO N) — =2 == s s N) — = s N) = = N) =

The user should be aware of & pecullarity of
When a function error occurs (e.g., ATAN(0,G)), no interrupt or
The system returns a default function value
This should be kept in mind

Operation

Absolute value
Inverse cosine
Truncate fraction
Natural logarithm
Base ten logarithm
Modulo

Inverse sine
Inverse tangent
Inverse tangent
Cosine

Absolute value
Inverse tangent
Inverse tangent
Convert to double
Cosine

e *¥% x

e ®¥% x

Natural logarithm
Base ten logar ithm
Modulo

Apply sign

Sine

Square root
Tangent

Hyperbolic tangent
e *# x

Convert to real
Absolute value
Convert to Integer
Convert to Integer
Apply sign

Modulo

Apply sign

Sine

Convert to real
Square root
Tangent

Hyperbolic tangent

APPENDIX B == SIZES AND DIMENSIONS

ltem
Absiract length
AWA size
Data element column length
Data element size
DWA size
Entry number in table
Execution stack levels
Interface/Linkage/Sequence table size
MDB/PDB size
MESSAGE command text
Messages queued ner user
Nested repeat fields
NOTE command text
PDBs per user
Sequence Table entries
Subscript of data element
TOC entries (AWA or data base)
X batch jobs per user

X batch jobs queued (all users combired)

B-1

Limit
256 bytes = 256 characters
32768 bytes = 8192 words
1024 coumponents
4096 bytes = 1024 words
8192 sectors (2 Mbytes)
range 1-32767
8
4096 bytes = 1024 words
32767 sectors (8 Mbytes)
122 characters
assignable by user
4 levels of nesting
1600 characters
assignable by user
(aiso Iimited by dlsk space)
226
range 1-2047
630
assignable by user

50

APPENDIX C == GLOSSARY

abstract -- text assoclated with a glven file or processor which contains description of
the file contents or processor function. The user is responsible for creating and
updating abstracts for files In PDBs.

-- a two-character code by which a user logs on, and by which ownership of
PDBs Is Indicated.

-- an area of memory and disk storage utilized as working space
for the construction and manipulation of data. An AWA Is automatical ly al located to
a user at sign-on and purged from the system at sign-off.

automatic (execution mode) -- a mode In which FDS interactively executes the statements
in a Sequence Table without requiring user approval at each step.

-- a mode In which FDS executes the commends In a Sequence Table
at some later time, as the system's processing load al lows.

-- a data type consisting of text strings which occupy 4, 8, 16,
32, or 64 bytes (characters) of storuage.

command -- a user-speclfied Instruction to FDS. Commands which are executed Immediately
are called dlrectives. Commands which .re stored In sequence tables for later

execution are called statements.

data base -~ a set of files stored on disk which are relatively permanent, such as
personal data bases or master data bases.

Data Element (DE) -- a col lection of related processor input and output variables
grouped together into a single file and stored under a user-defined name. Data
element: can be stored !In 1he AWA, a PDB, or an MDB.

device |D == a code which can be added to many commands to specify the device on which
generated output is to be displayed. The only al lowable device code is (-P), which
Indlicates the system printer.

direztive =-- see command.

Disk Resident Datc Element (DRDE) -~ A "data element" which is potential Iy too large for
the memory-resident portion of the AWA, and which is therefore declared to be
dlsk=resldent.

disk work area (DWA) -- the disk-resident portion of the AWA.

document processor -- A speclal X Processor whose functior Is to produce documents based
on information computed In designing a flicht,

C-1

document/segment == A portion of a standard document which can be produced using FDS.
Each such portion is specified by glving Its document name and segment name.

editor -- A portion of the Executive which al lows the user to construct and modify
tables.

Executive -- that part of FDS which comrunicat2s with the user and through which the
user manages flles, Invokes the ed!tor and Initiates processor activity.

flle -- an organized, named col lection of information.

Interface Table (IT) -- A table which contalns Input/output inform~tion for use by an
X Processor.

Linkeage Table (LT) -- A table which contains information on the values which are to be
placed In an automatical |y produced document.

== col lection of permanent files which provide a source of data
to all FDS users. The MDB supplies basic data on a read-only basls.

Personal Data Base (PDB) -- A col lection of flles "permanent|y" stored on disk by a

user.

remote job entry -- Submission of a job to a computer, from a remote location, for
subsequert processing and return of output to the originating location.

semi-automatic (execution mode) -- a mode In which #DS interactively executes the
statements In a Sequence Table, stopping at each step for user approval or other
action.,

Sequence Table (ST) -- a group of FDS commands stored for later execution.

slgn-off -- process by which communication Is ended with FDS, resulting in the AWA data
belng purged.

slgn-on ~- process by which communication Is established with FDS, resulting In the
aliocatlion of the AWA.

statement -- see command.

table -- a flle of one of the following types: Interface table, |Inkage "able, sequence
table, Y-data table.

C-2

- -- a directory of the data contained In the AWA or in varlous
data bases. |t includes the names and attributes of all data elements and tables.

X Job == The process, events, and output associated with the execution of a Sequence
Table in the batch mode.

X Processor == A computational support routine avallable to the FDS user for elther
Interactive or batch executlion. X Processors reside In FDS and perform simulations
at an appropriate level of detall for preliminary planning and development of a
Conceptual Flight Profile.

Y Processor == a computational support routine which resides on a separate computer from
FDS and is avallable for execution via remote job entry. Y Frocessors perform
highly detalled simulations compatible with development of an Operational Flight
Profile.

C3

APPENDIX D =~ TIME DATA TYPE

1. Pase Date:
= User specifled as year, month, and day of month

- Defined to be zero hours, zero minutes, zero seconds, Greenwlch
zone time on the user-speclified year, month, day of month

- Base date Is the Instant In time at which the FDS inertlal reference
axls systems (MEE, TEE, and TEG) are defined (l.e, the Precession
matrix, Nutation matrix, and initial right ascension of Greenwich
are computed)

= User specifles the Base Date for a session by exccuting the BASTM processor

2. Iime References: In FDS=2 there are four time references available for user Input
and display of event times. They are defined as fllows:

IET = Internal Elapsed Time - It Is an event time which Is measured from
the user defined hase date. All internal FDS time tags (e.q.,

position/velocity state vector or attitude event time tags) are stored In
this measure. The time Is expressed In days, hours, minutes, and seconds.

MET

- It Is an event time which Is measured from a
user defined reference time. The time Is expressed in days, hours, minutes,
and seconds.

PET = Phase Elapsed Time - It Is an event time which Is mcasured from a

second ucer detinad reference time. The time Is expressed in days, hours,
m.nutes, and seconds.

GMT = Greenwich Mean Time - |t Is an event time which s measured from the
beginning of the year of hase date. The time Is expressed In day of year
and time of day. The day of year Is an Integral day count from the
beginninc of the base date yeezr. The day count is negative In the years
prior to base date year and continues to Increment positively in the years
after bacc dave year. Day of year does not recycle to one at the end of
tase date year whern time tag I peyond that year.

Time of day Is expressed as hours, minutes, and seconds In Greenwich zone
time. For example, It the base date year is 1980 and the date to be
expressed In GMT Is Dec. 1, 1980, noon GMT, the GMT Is 366:12:0:0. |If the
date I1s Jan. 1, 1981, noon GMT, the GMT Is 367:12:0:0. |f the date Is
Dec. 31, 1979, noon GMT, the GMT Is =1:12:0:0, There is no zero day of
year.,

3. Speclfication of MET and PET Reference Times:

- The user must specify the MET and PET reference times (l.e., the MET = 0
and PET = 0 times) In the IET reference.

- The user can speclfy and change MET and PET reference times Independentl|y
of each other utlilizing the BASTM processor.,

Iime Type for Interface Table Prompt Parametars and Processor Prompis: The letter T
designating the time type is used io identlfy it In the Processor Interfacc Table
and Processor Prompt Table. The input user syntax for time is % d.d:h.h:m.m:s.s
where the sign applies to the total time value. Each number is any numeric data
type. Colon Is the cnly valld separator and all colons prior to the first number
are required.

-—

APPENDIX | == INDEX

This Is an index of the terms and concepts used In this user guide. The numerical
references are to page numbers. In cases In which one or two pages are especlally
relevant to the term or concept, those page numbers are underlined.

Module 17 has not been Indexed

Modules 41 ff have not been Indexed

Speclal Symtols

' (in range specification)
75-77, 719

@ (IT cutput value symbol)
24, 46

& (missing value symbol)
24, 44-45, 47, 49

SLABEL (missing value symbol)
25-! 44'52' 46, 48» 52

\ (prompt symbol for IT editor) see prompt symbol, \

\ (tc switch to IT editor update mode)
43

, (to separate fields In commands)
32, 66, 69

(equal)
76=77

(IT input value symbol)
24, 46

=@ (IT input/output value symbol)
46

=< (less than or equal)
76=77

=> (greater than or equal)
76=77

I file names
24
Il fllenames

17, 24

> (greater than)
76=77

\

> (prompt symbol for YDT editor) see prompt symbol, >

> (to switch to LT editor update mode)
43

= (greater than or equal)
76=77

>< (not equal)
76=77

< (less than)
76=77

< (prompt symbol for LT editor) see prompt symbol, <

< (to switch to YDT editor update mode)
43

<= (less than or equal)
76=77

<> (not equal)
76=77

% (prompt symbol for Executive) see prompt symbol, %

% (to abort and return to Executive)
41, 44-45. 33, 72-73

««s (ellipses in command definition)
32

$ (to skip entry in semiautomatic execution)
72-73

$ (prompt symbol for semiautomatic execution) see prompt symbol, §
(prompt symbol for ST editor) see prompt symbol,

(to switch to ST editor update mode)
43, 52

? (to obtalin help) see also directive?
44-45, 48, 52, 70, 72-73

" (string literal delimiter)
55, 66, 69

; (to terminate a command)
35, 75-76, 78

(as part of prompt) «..... see prompting

: (in time data type) see Time data

M.,'nd" 1

A

abbreviation, of commands
35, N

abend see abnormal processor termination

abnorma |, rocessor termination
38-39

abort of a processor
38-39

abort of an editor
40-41, 44-45, 53

ABSTRACT command
32, 35, 24=55

abstracts, of files, data bases, processors, etc.
54-55

access code
20, 36, 54, 59-60, 62, 64, 69, 81

accuracy of computation
Active Work Area (AWA)
16, 21, 23-24, 28, 36-37, 40-41, 49, 53, 58-64, 72-74

Active Work Area allocation

16, 36
|

’ ALL mode (editor)
ﬁ 42-43, 44, 46

ALLOCATE command
21, 29, 32, 52, 14=15

APPEND command
20-21, 32, 58=59

application processor
1

arithmetic expressions
74-76

arrays
16, 24-25, 70, 74-75

ASSIGN command
29, 32, 14-15, 78-79

attitude analysis
Ao 10'11

ATTRIBUTES command
25, 52, 10=71

attributes, of X Processors see X Processor attributes

AUTOMATIC command
32, 39, 12=13

automatic execution mode
15, 28, 38-39, 51

B | [

BATCH command
32, 39, 12=13

batch execution
12-13, 15, 26, 28, 30, 38-39, 51, 55, 57, 60, 12=73

BREAK command
32, 80-81

break key
38

C

Cargo Integration Review
b

carriage return (see also Control-C) |
35, 44, 45, 55, 72-73

categories of flights
6

CFP «.e... see Conceptual Fligh* Profile

CHANGE commend
32, 49, 52, 65, 66, 71 ‘

changing «..... see modification

character data (Cn) see also string literals
25, 70, 74=75

classification code
20-21, 54-55, 58, 60, 69

CLEAR command
21, 28, 32, 62=63, 65

clearing of screen
34

Command Processor
1 2‘.1.1' 32

commands

21, 28, 32=33
comments, In sequence table see help; NOTE statement

communication among users
80-81

Conceptual Flight Profile (CFP)
5-7, 10-13, 15, 26, 30, 82

conditional execution
28, 76=79

consumables analysis
4, 10-11

CONTINUE: (prompt)
35, 55

Control=C
35, 55

COPY command
21, 32, 64-65

copying, of files
64-65

CPU time |imit
73

CREATE mode (editor)
42-43, 44, 46, 52

creation, of abstracts
54=55

creation, of data elements
14-75

creatlion, of personal data bases
59

creation, of tables
40-42

crew activity planning
4, 10

Crew Simulator Data Pack
7

Crew Tralining and Procedures Division (CTPD)
5

I-5

CROSS REFERENCE command
32, 68-69

CRT display
34

CTPD «..... see Crew Training and Procedures Division

D

data base

20=21

Data Descriptor Table (DDT)
82-85

Data Element (DE)
18-19 20-22, 24-25, 47, 54-58, 60-66, 68, 70, 714-75, 80, 83, 85

data element name
74-75

data formats see Mixed data

data management
14-15, 17, 20-21, 32

data storage areas

16=17

data type
25, 74-75

date/time tag
54, 64, 80

DE «¢e... see Data Element

decimal point, In number
25

default Interface table
22-23, 40-41, 46, 48, 71

default |inkage table
40-41

default values, In commands
352

default values, In Interface tables
23, 48

default values, of disk, CPU time, and print line |imits
73

DELETE command
21, 32, 42, 45, 62-63, 65

z deletion, of files

62-63
deletion, of lines from table
42
deletion, of personal data bases
-» 59, 62-63
- device ID (=P)

55-56, 60, 68-70, 80-81
DF v¢eees see Disk=Resident Data Element

dimensions, of array
25, 74

directive
33, 41-46, 57

directive? (to learn syntax of a directive)
44-45, 52, 72-73

disk allocation
whi=37, 13

Disk=Resident Data E!ement (DRDE)
16-22, 24-25, 37, 47, 54-57, 60-62, 64, 66, 68, 80, 83

disk storage
16-18, 20, 36-37, 63, 73

Disk Work Area
36-371, 73

display, of abstracts
54-55

display, of available processor names
60

display, of files
56-57

display, of names of available data bases
60

display, of names of outstanding jobs
60

display, of system news
80

display, of system status
80

display, of table of contents
60-61

display, of transaction log
80

display, of X Processor attributes
20-71

DLOG Command
32, 80-81

DO LOCOP statement
28, 18-19

document processing
7, 12=-15, 19, 22-23, 30-31, 82-85

document processing workstation

1

Document Processor (DOC=XP)
25, 82-85

document/segment
23, 41, 54-55, 60, 68, 70-71, 82-85

double precision data (D)
23, 74

duplication of lines in table see INSERT command

duplication of tables «...... see COPY command

E

EDIT command
32, 40-41, 43, 52, 57, 65

editing of tables

13-15, 40-45
edltor abort
40-41
editor directives and responses
44-45
editor modes
42-43
ellipses, in command definition
32
ELSE
28, 16-71
END IF

28, 16=71, 79

QP entry number see also span
24, 28, 43, 46, 52, 56, 66, 70, 72

errors
38

e OV

example problem, In user gulde
! 2-3, 8=9, 10-11

executlion, conditional
76=77

executlon, of sequence tables
72-73

execution, of sequence table, at sign=-on
72-73

executicen, of X Processors see PERFORM command; X Processor execution

execution stack
80

Executive
12-13, 14-15, 17, 19, 21, 28, 30-33, 36-37, 40-46, 62, 81

EXIT command
32, 40-41, 45, 49, 53

explicit editor Invocation
40, 43

expressions, mathematical
74-76

extended prompt
44

L

flle
20-21

file names

17, 21, 59, 62, 64-65, 68-69

flle types see also classification codes
18-19, 21, 58, 60, 62, 65, 68-69

FIND command

32, 68-69
fixed point see Integer data

flight design process
4-7

floating point see real data

forms (for automated document production)

82-85

FORMAT command
80

free data (F)
25, 57, 70, 74-75

functions, mathematical
74-75, Appendix A

(¢}

General Purpose Maneuver Processor (GPMP)
6

GET command
20-21, 28, 32, 37, 58=59, 63, 65

glossary, of user guide
2, 3, Appendix C

H

hardccpy device, at terminal

2l

hardware

:Q_‘l]

help (tutorial aids, commenting, etc.)
44-45, 48, 51, 72-73

HP21MX computer
30-31

IF statement
28, 16-11, 79

implicit editor Invocation
22, 40, 49

INCOMPLETE mode (editor)
42-43, 44, 46, 48, 52

Iincomplete values
23=24, 40, 42-44, 46, 72

Index, of user guide
2; 3

1110

Intormational messages (INFO)

initlialization, of data elements
74=75

input and output varlables
24-26, 46, 70-7|

INSERT command
21, 32, 52, 65, 66=617

insertion, of lines in tables
42, 67

Integer data (1)
25, 74

Interactive execution
12-13, 15, 26, 72-73

INTERDATA 8/32 computer
20-31

Interface Table (IT)
18-19, 20-21, 22-25, 26-27, 41, 54-56, 60-62, 64-68, 70-71, 82-85

Interface Table editing
14, 22-23, 40-43, 46-49, B4-85

IT eeeees Ssee Interface Table

Iteration, In ASSIGN statement
75

iteration, In sequence table execution

28, 18-79

Jd

Job limits
73

K

keyword see parameter keyword

L

IIne printer
29, 55-56, 60, 68, 70, 73, 80-81

Linkage Table (LT)
18-19, 20-23, 41, 47, 54-56, 60, 62, 64, 66-68, 82-85

Linkage ‘able editing
14, 40-43, 84-85

LIST command
29, 32, 43, 49, 52, 26=37, N

logging on ...es. See sign-on

LOOP END
28, 18=79

100ping «seeess see [teration

LT «eee.. see Linkage Table

manual execution mode
15, 39

Master Data Base (MDB) (MD)
16-17, 18-21, 28, 54-55. 58-60, 62, 68, 73, 81

Master Data Base names
17

mathematical expressions
74-76

mathematical functions
74=75, Appendix A

MD See Master Date Base
MDB see Master Data Base

merging, of tables
66-67

MESSAGE command
80-81

messagos from system

MISSING mode (editor}
42-43, 44, 46, 49

missing values
-24, 40, 42-43, 46, 57

Mission Planning and Analysis Division (MPAD)
5

mixed data (M)
25, 74, 80

MODE command
42-43, 52, N

112

modes, of ed!tor
42-43, 46

modiflication, of abstracts »2e 7150 ABSTRACT command; CHANGL command
54=55, 66

modification, of data elements S0e ASSIGN command
modification, of file names see RENAME command

modiflcation, of tables
40, 42, 46, 66-67

movement of files
58-59

MPAD see Mission Planning and Analysis Division
5

N

names see also data element names, file names, personal data base names
66

nested blocks
77, 719

NEWS command
32, 80-81

news file
81

NOTE statement
29, 32, 51-52, 72

NUMBER command
32, 31

numerical data see also Jdouble precision; Integer; real
25, 66, 69

Q

OFF command

28, 32, 36-37
OFP +s.e4ss see Operational Fllight Profile

Operational Flight Profile (OFP)
5, 7, 10-13, 15, 26, 30

operators, relational
76=77

optional parameters, In commands
32

optional values
22=23, 42, 49, 57, 70

4

PAGE key
34

parameter keyword
24, 43-44, 46

Payload Integration Plan (PIP)
S 7, 13; 15, 30

PD «ee... see Personal Data Base

PDB see Personal Data Base

PERFORM command
28-29, 32-33, 38-39, 52, 10-71, 72, 84

permanent storage
17, 58-59

Personal Data Base (FDB) (PD)
16-17, 18-21, 23, 28, 36, 40-41, 54-55, 58-h4, 66, 68, 73

Personal Data Base names
59, 64-65

PIP «.c... see Payload Integration Plan

print line |imit
73

printer see |line printer
processor see X processor; Y processor

prompt symbol, \ (IT editor)
40, 46

prompt symbel, > (YDT editor)
40

prompt symbol, < (LT editor)
40

prompt symbol, % (Executive)
15, 32, 37, 62, 81

prompt symbol, # (ST editor)
40, 52

prompt symbol, $ (semlautomatic execution)

1-14

v
4

prompt symbols
15, 40

prompting
15, 44, 46, 80

Q

quick reference to commands
Sl ey B

R

random access memory
16, 18, 20, 37, 74

range (iteration specification)
75=77, 79

real data (R)
22, 74

reference documents, other than user guide
3

relational operators
76-77

remote job entry (RJE)
15, 15, 30

RENAME command
21, 32, 64-65

renumbering, automatic
67

renumbering, of table entries see NUMBER command; renumbering automatic

repeat |lst
47

repetition factor
47

repetitive execution see Iterative execution

required parameters, in commands

required values, In Interface tables
22-23, 42, 48-49, 70

1-15

retrieval of stored files
58=59

RETURN key «..... see carrlage return

S

sample commands
Appendix Z, 3

searching, for Information .,n tables
68-69

SEMIAUTOMATIC command
32, 39, 12=13

semiautomatic execution mode
15, 28, 38-39, 51

Sequence Table (ST)
18-19, 20-21, 28-29, 33, 38-39, 41, 54-56, 60-62, 64-68, 71-73

Sequence Table editing
14, 28, 33, 40-43, 50-53

sequence table execution

72=73

Sequence Table execution, at sign-c
36-37

SHIFT key
34

Shuttle Payload Integration and Development Program Office (SPIDPO)
5

sign-off see also OFF command
63

sign=-on
34, 36=31

simulation
Ty 11=12

single precision data see real data

span (group of table entries)
56, 62-63, 66-67, 69, 72=73

SPIDPO see Shuttle Payload Integration and Development Program Otfice
ST see Sequence Table

standardized flights
6, 10, 17, 59

I-16

statement (command In sequence table)
28, 33, 43, 71=73

status display
38-39

STORE command
20-21, 32, 58-59, 62-63, 65

string data see character data; string |literals

string literals
55, 66, 69, 75

subscripts
18, 25, 47, 56. 75

SUBSTITUTE command
28-59, 65

Subsystem X
12

Subsystem Y
12

summary blocks, In user guide

1

Supertape
7

syntax of commands
32, 44-45

system messages

38=39

system status display
80

i
table «..... see file; Interface Table; Linkage Table; Sequence Table; Y-data Table
table of contents see TOC command

Tektronix terminal
30-31, 34=35

terminal type
34, 36-37

Time data (T)
25, 57, 74, Appendix D

1-17

IIlll..lll...llIllIIll.'..'IIlIIIll!IIlIZ______________TT_

TOC command
32, 37, 60=61

trace option
51, 72=73

trajectorv analysis
4, 10-11

transaction log
80

transmission of messages
80-81

tutorial alds see help

U

Univac 1108 computer-
30-31

UNTIL (DO LOOP)
78-79

UPDATE mode (editor)
42-43, 44, 46, 48, 51-52, 70

update notices

81
y
value
24-25, 43, 67, 71
variables
22
Versatek printer/plotter
30-31
b}
warnings
38

WHILE (DO LOOP)
78=79

X

XJ eeeess see X job

1-18

e e

! N Y s

X Jjob
20, 54-55, 60, 66, 73

XP eev... see X Processor

X Processor

12-16, 18-20, 22-23, 26-21, 30, 34, 41, 46, 49, 54-55, 60, 68, 70-71, 82-83

X Processor attributes

23, 10-M

X Processor execution
14-15, 22-23, 29, 10-71, 72-73

X Processor Input and output

22=25, 26

X Processor messages
38

X Processor termination see abnormal processor termination

X Processor User Reference Manual
3, 26

Xerox VT-3 Word Processing System
7, 13-15, 30-31, 82-85

X
YD ¢ees.. see Y=-Data Table

Y-Data Table (YDT)
18-19, 20, 54-56, 60-62, 64, 66-68

Y-Data Table editing
14, 40-43, 51

Y=Input Data (YID)
19

YJ eeesee see Y job, Y Output Data

Y job
54-55, 60, 62, 66

YMOVE command
20-21, 32

Y Output Data (YOD) (YJ)
16-11, 18-21, 54-56, 60, 62, 66, 68

YP ¢eese. See Y Processor

Y Processor
12-21, 30, 54-55, 60

1-19

Y Processor executlion
14-15

Y Processor User Reference Manual
3

YRUN command
32

1-20

APPENDIX X == GUIDE TO COMMON OPERATIONS

Operation

Copying, of fil@S ecesececssscsscscscccssasssncne

Creation, of
of
of
of

Deletion, of
of
of

Display, of absTracts ccssssesscscscsconcsscncss
avallable processor names ...ecee.
flles sevvcsonssacssasesevsosasncsne
mixed data formats eceececcsccescace
names of avallable data bases
names of outstanding jobs ..evvess
SYStem NewS cececccscccccocsscscnns
system sTatus ccecececccccceccccenss
table of contents ceececccceccecnss
transaction 100 ceceeccecescccccens
X Processor attributes ..eceececcces

of
of
of
of
of
of
of
of
of
of

Duplication,
of

Editing, of tables essecsccccoscscsscsssscasscss

Execution, conditional .sesssessssnsesssssssenne
[terative ccecacescssccesccscsncncssnce
of sequance tablesS seesccescssscscscscs
Of X ProcesSOrS ccsecceassccsscsscsscsse

Initialization, of Active Work Area seeeecesccss
of data elements cecececccccocssccssnse

Insertion, of IInes In table cecsccecccsaccssnse
Merging, of ta8bleS ceeocccccscsvscsscscsscsscnss
Modification, of abstracts ccecsccecscnsecs

of data elements ccececeoccccscsceccss

Of flle NAMOS ccossscoccsosossianrssnse
TBDI®8 svsisvovsesassnisssssasesses

of

Movement, Of fIl@8 ccescsscescsncsssessssssssane

ADSTracts seeceveccsscncssccscecces
data elements ceeccesssccscccccncne
personal data bases seeeeesccccanss

*ab'es L R I N R R A

fll@S cococccccsccecsoscscscsncanse

lines from table cececesccsccssaces
personal data bases .sceceeccsssccces

of lines In table cecsccccsccccnnes

18D 85 csevesscensssssssssrsonasnee

Renumbering of tables seseccseccescvccccacans

Searching, for Information in tables seeeevecaes

SIgn Off cesescccvocssescocsecescsccssssssscsnse

X1

Command
COPY

ABSTRACT

ALLOCATE

STORE, SUBSTITUTE
EDIT

DELETE
DELETE
DELETE

ABSTRACT
TCC

LIST
FORMAT
TOC

TOC

NEWS
BREAK
TOC

DLOG
ATTRIBUTES

INSERT
COPY

EDIT

IF

DO LOOP

AUTOMATIC, BATCH, SEMIAUTOMATIC
PERFORM

CLEAR, GET
ASSIGN

INSERT

INSERT

ABSTRACT, CHANGE

ASSIGN

RENAME

EDIT, CHANGE, INSERT, DELETE
APPEND, GET, STORE, SUBSTITUTE
NUMBER

CROSS REFERENCE, FIND

OFF

APPENDIX Y == INDEX TO COMMANDS

ABSTRACT cesecccccocsscscesnss
ALLOCATE «ocesocssoccoccsccess
APPEND cecoscecccssccccsnnes
ASSIGN ceesecccccsccccsccanse
ATTRIBUTES cesecccccaccnccanss
AUTOMATIC cesceccsscossssasnse
BATCH cevecevcconcscscncesccses
BREAK cesssvcscccscccscsssnces
CHANGE cevecssccssccssssescnss
CLEAR seevescscssccscsscssansse
COPY cevossvconcccscsccsssnsace
CROSS REFERENCE sececeocsccssse
DELETE eeececcecesccssccsacass
DLOG ceccecocecsscocscsnccnnse
DO LOOP seveevecccocscacecnans
EDIT eceoesccocccscecssrsocscns

ELSE ceoceccscacevecscosncanes

ENDIF cecescsoccsccsccncsnaces

END LOOP ceevsossccscsossccsse

EXIT secesccscacscscscocscacss

FIND seevesccccscocecccscnsnsns

54
74
58
74
70
72
72
80
66
62
64
68
62
80
78
40
76

76

40

68

Y-1

FORMAT L R R R R R

GET .

IF o

L R)

INSERT secsecscsncsnncecansans

LIST

MESSAGE ccececesccasscacaccnse

MODE
NEWS

NOTE

R R N)

NUMBER scecevecocscocascnsnane

OrF .

L R)

PERFORM sccecececscsccsacscsne

RENAME ceccevcecnsocrcecccaces

SEMIAUTOMATIC ceceeccscescasss

SIgN=0N cecssccccsssscccsscsnse

STORE

I R A N

SUBSTITUTE cececscocecccacaces

TOC .
YMOVE

YRUN

R R R)

I N N)

D R

80
58
76
66
56
80
42
80
50
50
36
70
64
72
36
58
58
60
TBS

TBS

APPENDIX Z == QUICK REFERENCE TO COMMANDS

The following are sample commands. They are Intended to be typical, but do not exhaust
the possible uses and parameters associated with the commands.

FDS SIGNON:HR, INIT=PD, INIT1
ABSTRACT , GPMP=XP
ABSTRACT,OMS2=IT,"INTERFACE TABLE FOR OMS=2 BURN"
ALLOCATE ,NUMVAL=IT,TWODIMEN(21,4)-DE
APPEND, EXPL
APPEND ,EXPL ,0MS2-IT,RESULT
ASSIGN,NUMVAL=20;
ASSIGN, TWODIMEN(21,1)=26 ,2*ONEDIMEN(1)'1=2,4;
ATTRIBUTES , GPMP=XP
ATTRIBUTES ,GPMP=XP ,APSOPT , SUMTABLE
AUTOMAT IC, TRAJECT (20-230)
BATCH,EXPL=-PD, TRAJECT
BREAK
CHANGE , TRAJECT=ST,0MS2,0MS2A
CLEAR
COPY,OMS2-1T ,OMS2A
CROSS REFERENCE,=ST,0MS2=IT
DELETE ,EXPL-PD
DELETE, (20-40)
DLOG=P
DO LOOP,WHILE, 1<10;
(statements)
LOOP END
DO LOOP,UNTIL, 1>=10;
(statements)
LOOP END
EDIT,,OMS2B=-I1T,GPMP
EDIT,, TRAJECT=ST
EX!IT
FIND, TRAJECT=ST,OMS2
FIND, (40-200) ,X+16
FORMAT ,M31,M33
GET,EXPL=FD
GET,!!FLIGHT=MD,-IT
IF,1<10;
(statements)
ENDIF
IF, 1<10;
(statements)
ELSE
(statements)
ENDIF
INSERT, TRAJECT(50-100)=ST, 20
LIST=P, TRAJECT=-ST
MESSAGE,AB,"|'VE FINISHED THE OMS-2 TABLE"
MODE, |
NEWS
NOTE , "UPPER STAGE MANEUVERS"
NUMBER
OFF
PERFORM, GPMP , OMS2
RENAME ,OMS2-1T,0MS2A
SEMIAUTOMAT IC, TRAJECT
STORE , EXPL
STORE ,EXPL , TRAJECT=ST
SUBSTITUTE , EXPL
SUBSTITUTE ,EXPL , TRAJECT=ST
TOC
TOC-P, ,EXPL=PD

NASA - I5C

Z1

	1980023918.pdf
	0024A02.JPG
	0024A03.JPG
	0024A04.JPG
	0024A04.TIF
	0024A05.TIF
	0024A06.TIF
	0024A07.JPG
	0024A08.TIF
	0024A09.JPG
	0024A10.JPG
	0024A11.TIF
	0024A12.JPG
	0024A13.TIF
	0024A14.TIF
	0024B01.TIF
	0024B02.TIF
	0024B03.TIF
	0024B04.TIF
	0024B05.TIF
	0024B06.TIF
	0024B07.TIF
	0024B08.TIF
	0024B09.JPG
	0024B10.TIF
	0024B11.TIF
	0024B12.TIF
	0024B13.TIF
	0024B14.TIF
	0024C01.TIF
	0024C02.TIF
	0024C03.TIF
	0024C04.TIF
	0024C05.TIF
	0024C06.TIF
	0024C07.TIF
	0024C08.TIF
	0024C09.JPG
	0024C10.TIF
	0024C11.TIF
	0024C12.JPG
	0024C13.JPG
	0024C13.TIF
	0024C14.TIF
	0024D01.TIF
	0024D02.TIF
	0024D03.JPG
	0024D04.JPG
	0024D05.JPG
	0024D06.JPG
	0024D07.JPG
	0024D08.JPG
	0024D09.JPG
	0024D10.JPG
	0024D11.JPG
	0024D12.JPG
	0024D13.JPG
	0024D14.JPG
	0024E01.JPG
	0024E02.JPG
	0024E03.JPG
	0024E04.JPG
	0024E05.JPG
	0024E06.JPG
	0024E07.JPG
	0024E08.JPG
	0024E09.JPG
	0024E10.JPG
	0024E11.JPG
	0024E12.JPG
	0024E13.JPG
	0024E14.JPG
	0024F01.JPG
	0024F02.JPG
	0024F03.JPG
	0024F04.JPG
	0024F05.JPG
	0024F06.JPG
	0024F07.JPG
	0024F08.JPG
	0024F09.JPG
	0024F10.JPG
	0024F11.JPG
	0024F12.JPG
	0024F13.JPG
	0024F14.JPG
	0024G01.JPG
	0024G02.JPG
	0024G03.JPG
	0024G04.JPG
	0024G05.JPG
	0024G06.JPG
	0024G07.JPG
	0024G08.JPG
	0024G09.JPG
	0024G10.JPG
	0024G11.JPG
	0024G12.JPG
	0024G13.JPG
	0024G14.JPG
	0025A02.JPG
	0025A03.JPG
	0025A04.JPG
	0025A05.JPG
	0025A06.JPG
	0025A07.JPG
	0025A08.JPG
	0025A09.JPG
	0025A10.JPG
	0025A11.JPG
	0025A12.JPG
	0025A13.JPG
	0025A14.JPG
	0025B01.JPG
	0025B02.JPG
	0025B03.JPG
	0025B04.JPG
	0025B05.JPG
	0025B06.JPG
	0025B07.JPG
	0025B08.JPG
	0025B09.JPG
	0025B10.JPG

