

N O T I C E

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT

CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH

INFORMATION AS POSSIBLE

e ^	 a
it ^dtir

C/ ^;-. 11

4^

National Aeronautics and
Space Administration

Lyndon B. Johnson Space Center
Houston, Texas

r
	 80-FM-47
	 "

JSC-16794

.4

User's Guide for the
flight Design system (FDS)

(NAS h—Tt-8.;..02)	 U:iF:R 1 - 6U1J C 1 JH 'Y ii:: k L;.G.4T
DESIGN SYSTEM! (F03) (I+ASA)	 12J P
HC AJo/MF AJ 1	 C^XL 22A

N8JI-3242u

J.«:l 1.i
.i.s/1v	 ZdcfJU

.0

IIFS
1.

Mission Planning and Analysis Division

August 1980
1

NfLV%

80-FM-47	 IJSC-16794

SHUTTLE PROGRAM

USER'S GUIDE FOR THE FLIGHT DESIGN SYSTEM (FDS)

-	 By H. Rudy Ramsey, Michael E. Atwood, William G. Frisius,
Althea A. Turner, and John K. Willoughby,
Science Applications, Inc.

Approved:	 A^ 4W4'1-4
Kenneth A. Yo &, Chie jfl
Flight PlanniK Branc

Approved:_	 ^^	 •
Ronald if. Berry, Chief
Mission Planning and Analysis DiviNlin

Mission Planning and Analysis Division

National Aeronautics and Space Administration

Lyndon B. Johnson Space Center

Houston, Texas

August 1980

1

Page intentionally left blank

FOREWORD

This document is the user guide for the Flight Design System (FDS), an interactive aid
for trajectcw , , attitude, and consumables planning of Space Transportation System
missions. rl.S has been devoloped by the Mission Planning and Analysis Division, NASA
Lyndon B. '_,hnson Space Center, Houston, Texas, and by Its contractors. This user
guide was developed for WAD by personnel of the Man-Computer Systems Division, Science
Applications, Inc., Englewood, Colorado, under contract NAS9-15535.

FDS has two major components. "Subsystem X" is a rapid, interactive planning system
residing primarily on an interdata 8/32 computer, while "Subsystem Y" is a batch-only,
high-fidelity simulation system residing on a Univac 1108. This present version of the
user guide contains an overview of th F d entire FDS system, but contains detailed
information only on Subsystem X. When Subsystem Y is better defined, it is intended
that this user guide be augmented with more detailed information on that portion of FDS.

This document was developed In an unusual manner. SAI analysts first compiled a
complete list of the identifiable concepts which must be understood for successful use
of FOS. The predecessor-successor relationships among these concepts were then
identified. The resulting, partially ordered set of concept descriptions might loosely
be called a "semantic network." On the basis of the content and structure of this
network, the concepts ware then divided into "modules", which were developed into actual
document sections via a technique called "storyboarding". Further information on the
approach used can be obtained from the authors. Constructive criticisms of the document
content and/or format would be appreciated by both SAI and MPAD.

The authors wish to acknowledge the assistance of many WAD personnel in the definition
of the material contained in this document. Dave Alexander, the project monitor,
assisted in a variety of ways, and helped particularly with the design of the example
problem. Bob Davis and George Welsskopf critiqued early versions of the user guide
semantic network and draft user guide sections, and provided considerable assistance in
understanding the detailed behavior of the FDS. Bernie Roush provided information and
demonstration of the document processing capabilities of FDS. Sandy Price and Jim Cook
helped convert the example problem scenario to a specific solution plan useable for
example discussions in the design guide. Others, too numerous to mention, helped
resolve specific questions, demonstrated capabilities, criticized drafts, and provided
other kinds of assistance.

a

l)

Page intentionally left blank

TABLE OF CONTENTS

Foreword .. i1t

	

Table of Contents ... 	 v
Overview

	

01 Introduction to the Flight Design System User Guide	 2

	

02 Overview of Flight Design .. 	 4

	

03 The Flight Design System ... 	 6T

Example Problem

	

04 An Example to Illustrate FDS Usage 	 8
05 Details of the Example Problem and Solution 10

Components of FDS

	

06 Functional Areas of FDS44.4............4..........	 12
07 The Executive Interacts with the User4....... 14
08 Data Storage Areas within FDS4.. 16

	

09 File Types ... 	 18
10 Data Management6..4..66..................... 20
11 Interface Tables4.....0................ 22
12 Detailed Contents of Interface Tables4 24
13 X Processors4.4..........4664...........4.4............ 26
14 Sequence Tables64..... 28

Preparing to Use FDS

	

15 FDS Hardware ... 	 30

	

16 FDS Commands4.......4.......6..4.44...... 	 32
_.	 17 Using the Terminal4..4....44...4.4	 34

18 Signing on and the OFF command4..........6. 36
19 System Messages 0....0..00..................... 38

Editing
20 EDIT Command, EXIT Command ... 40
21 Using the Editor, NODE Command ... 42
22 Basic Editor Responses and Directives 44
23 Interface Table Editing0 46
24 An Example of Interface Table Editing 48
25 Sequence Table Editing, NUMBER command, NOTE Command 50
26 An Example of Sequence Table Editing 52

Other FDS Commands
27 ABSTRACT Command (Creating, Replacing, and Displaying Abstracts) 54
28 LIST Command (Display Contents of Tables and Other Files) 56
29 GET, STORE, APPEND, SUBSTITUTE Commands (Permanent Storage and Retrieval

of Flies ... 	 58
30 TOC Command (List Names of Files, Data Bases, etc.) 60
31 CLEAR, DELETE Commands (Eliminating Files from Storage) 62
32 COPY, RENAME Commands (File Duplication and Name Changing) 64
33 CHANGE, INSERT Commands (Modifying and Merging) 66
34 CROSS REFERENCE, FIND Commands (Locating Information in Tables) 68
35 ATTRIBUTES, PERFORM Commands (X Processor Properties and Execution) 70
36 AUTOMATIC, SEMIAUTOMATIC, and BATCH Commands (Execution of Sequence

Tables) • 00.000.00 ... 4 ... 4	 72
37 ALLOCATE, ASSIGN Commands (Data Element Creation and Initialization) ... 74
38 IF Statement (Condition Testing In Sequence Tables) 76
39 DO LOOP Statement (Iteration in Sequence Tables) 78
40 BREAK, DLOG, FORMAT, MESSAGE, NEWS Commands (Miscellaneous FDS

Commands)4.......... 	 80

Page intentionally left blank

Document Production
41 Automated Document Production .. 82
42 An Example of Automated Document Production	 84

Appendices
ADDendix A -- Mathematical Functions
Aendix B -- Sizes and Dimensions ..
A^^endix C -- Glossary ..
Appendix D -- Time Data Type0
Appendix I -- Index ...
Appendix X -- Guide to Common Operations
Appendix Y -- Index to Commands4...0.4.0..........
Appendix Z -- Quick Reference to Commands44

Al
B1
C1
D1
11
X1
Y1
Z1

vii

}

F

USER'S GUIDE

for the

FLIGHT DESIGN SYSTEM

(FDS)

01 INTRODUCTION TO THE FLIGHT DESIGN SYSTEM USER GUIDE

This User Guide is designed as an aid to the community of users of the Flight Design
System (FDS).

The FDS User Guide has two Qutnoses: (1) to provide material which aids in user
understanding of FDS and Its environment,, and (2) to serve as a reference manual for the

use of FDS In flight do". The first section of this document presents information
about the Flight Design System in the context of flight design as carried out by NASA.
It also introduces the FDS user to the structure of FDS and to constructs within FDS
(such as files of information or the part of FDS which interacts directly with the
user). The second section of this document is a guide to the commands available to FDS

users. In addition, a glossary of important terms, an index to terms, and a quick
reference to the commands of FDS are included in the Guide.

The layout of this document provides its use with easy access to desired information.

Each topic is presented in a two-page "module". Each of these modules is Introduced by
an appropriate sentence which specifies the basic point of the module. Each paragraph
within a module begins with a sentence which introduces the main topic of the paragraph.

Specialized types of information, such as a summary or an example p.-oblem, are presented
with a module to aid in quick review (or in finding a module on a related topic).
Within each module, Important concepts which are introduced there for the first time in
the User Guide are printed in capital letters.

Title of Module
	

Summary Block

tinn/w^nnn/w
Basic Point

of Module
'VV vvvvvvv^vv Av '

vww^nnnnn/vtivvww^nn/V ^^

^nnn^vnnnnn,titinivvvwvvu^
IVVIL^vv^vvvw

virvtnr.^^/v^iv^vvvvv^/in/vvw	 vvvv^nNwvww
vvw^vwvv^n,^n.vutivw

First sentence
of paragraph	 NAAA nvvnnti	 Example

vvwvvv,nn"	 ^n/vvinn/vvwwti
Blockintroduces	 'lam '~/WV V\AvV	 vvVV\1tivwvvvtn,

its topic
viiv^vvvvvvv

vwvwwwnniw
1Vwvv1.vv%rn/w"
1yyyyvyW VyyINL

%l	 1VX/vVVVNVVVV	
q/VA VVVL/1 1/VV1/ V

1-1. The layout of the FDS User Guide helps users to access desired information.

2

Each module of the FDS User Guide contains a summary block to aid In quick reference of

material contained In that module. This block Is highlighted like this, with a red
background.	 It Is always located at the top of the right hand page of a module. A user
who does not wish to read a module In detail may use this block as a quick review of the
module.

Supplementary information is provided by 	 glossary. an Index.. and a Quick reference
page of FDS commands. Definitions of Important terms can be referenced easily in the
glos^sry section. An Index of the terms used in the User Guide provides page numbers on
which tha terms are discussed. The page numbers on which major definitions or
explanations appear are underlined. A page of sample commands, showing basic forms, is
located in the back of this document, along with some aids to finding desired commands.

The FDS User Guide Is aimed at a community of users cf varying background who are all
eng;3Qed in flight design using_FOS as a tool. Obviously, not all users will access this
document in the same way. Users who already know information In a module may wish to
simply read the summary block or to skip that module altogether. New users may wish to
read the modules carefully and in order the first time through. All users should be
able to use this document to become more proficient In their use of FDS.

Flight
Design
System
User
Guide

X Processor Y Processor
User User
Reference Reference
Manual I Manual

FDS
D^^T1ents

ether

1-2. Several documents serve as
reference material for FDS use.

Several other documents are available
which are more detailed references to

particular asRects of FDS. The "X
Processor User Reference Manual"
provides detailed information about
the X Processors.	 Included in this

volume is a guide to the documentation
function of FDS. The "Y Processor
User Reference Manual" is a reference
manual to the various high fidelity
simulation processors available on
FDS. For users who de w: re a deeper

understanding of FDS, the "FDS-2
Software Design and Description"
(79-FM-11) Is recommended. Vost users

will not need the level of detail
presented there, however. Finally,
hardware manuals are available for the
various computers, terminals, etc.,
which make up FDS. For most users,
though, this User Gui63 and the
processor reference manuals should be
an adequate source of information.

An example problem has been selecred

which la carried though the Guide.
The example Is printed on a green
background for easy Identification.
Not c1l modules have an example
problem block. By reading through the
example blocks from front to back, the

reader can obtain a review of the
procedures involved In FDS use.

02 OVERVIEW OF FLIGHT DESIGN

Flight design is A complex, Iterative process Involving several organizations within
NASA.

F1_iciht Desion for the Space Transportation System (STS) Is a planning process.
flight this process produces a schedule of events that will occur between the
and landing of the Space Shuttle. The planned events must satisfy the mission
objectives and be
operationally feasible.
That is, they must stay
wIthIn the performance
apabilities of the

spac ,i^craft, its crew, and
th y ground support system.
S ,sveral kinds of analysis
and planning are used to
produce a flight design.
Trajectory analysis

specifies launch criteria,
orbital maneuvers and other
activities that are needed

to guide the spacecraft.
Attitude planning determines
how the spacecraft is to be
pointed so that sensors and
communication equipment can
function properly and the
temperatures can be
controlled. Consumables
analysis is used to assure 	 --
that the consumption of
energy, propellants and
environmental control
chemicals is within the
limits of the spacecraft.
Crew activity considerations
can cause adjustments to the
plan in order to assure the
effectiveness and w ,:ll being
of the crew members.

For each
Iift-off

2-1. Space shuttle missions require precise planninq.

Virtually all decisions made in c siderina one aspect of flit desion affect the
others. For example, trajectory events can drive attitude, crew and consumables
planning, or crew activities constraints may necessitate trajectory alterations.
Because of this Interaction, flight design is fundamentally a process of fitting
together several different specialty-oriented views of mission activities so that things

happen in a feasible order and that t i e spacecraft, ground support sys+ems, and crew can

function effectively. The integration. of the various technical aspects needed to
accomplish flight design requires the ability to Iterate, that is, to produce
preliminary or tentative flight r'eslgns and then refine or redo those designs until all

deficiencies are removed.

Flight design Is a planning process that uses various technical inputs to produce flight
plans and profiles for the Space Transportation System. The process teglns with a
request from SPIDPO to MPAD for assistance In dev' loping a Payload Integration Plan.
From this point, WAD directs the Iterative proces, of flight design from Its Initial
stages of the development of a Conceptual Flight Profile, through a review process
Involving SPIDPO and CTPD, to the final production of the detailed Operational Flight
Profile.

Organizational responsibilities and communication mechanisms hgve evolved in order to
accomplish this iterative Integration task. The fligh-i design process begins with a

request from the Shuttle Payload Integration and Development Program Office (SPIDPO) to
the Mission Planning and Analysis Division (MPAD) for assistance in developing a Payload
Integration Plan (PIP). The cargo for the flight has already been determined. Thus,
the objectives for the flight are already established. From this starting point, MFP9

develops a Conceptual Flight Profile (CFP). This CFP Is a preliminary attempt to

produce a flight design that satisfies the Integrated constraints from all the technical
concerns. It is also the basic instrument for Iteration. The various organizations

within MPAD, the Crew Training and Procedures Division (CTPD), and SPIDPO are the
principal participants in the review of the Conceptual Flight Profile. A Cargo
Integration Review meeting and the publication of a final Conceptual Flight Profile end
this phase of flight design.

INVOLVEMENT OF GROUP OR ORGANIZATION IN FLIGHT DESIGN

CUSTOMER SPIDPO	 MPAD	 CTPD	 MISSION PLANNING PHASE

X	 X	 Determine payload specifications

X	 Assign payload to flight

X	 X	 Develop Payload Integration Plan

X	 Develop Conceptual Flight Profile

X	 X	 X	 X	 Review Conceptual Flight Profile

X	 Develop Operational Flight Profile

2-2. The flight design process involves several organizations within NASA.

The CFP Is the Input to the development of n detailed crew activity tlmgllne by the Crew

Iraining.and Procedures Dlvlslon. Iteration with MPAD occurs during this process.
F;nally, about one year before the flight, the development of an Operational Flight
Profile (OFP) begins. This is used for flight simulations and for support during the
actual flight. Approximately five months before the flight, the flight design is

completed or "frozen" and the final OFP Is published.

5

OS THE FLIGHT DESIGN SYSTEM

The Flight Design System helps In the planning and design of shuttle missions as well as
providing docum.3ntation and other support necessary in the development process.

MPAD uses the computerized FLIGHT DESIGN SYSTE (FDS) in support of tt.e flight des1ga-
process. The most basic requirement of The Flight Design System is to provide a
manpower-saving technique to plan essentially repetitive `lights z' d density of up to
20 flights per year. As the number of planned fllghts Increases, and slmllcrities
between flights become evident, operational envelopes will be standardized for speci'lc
payloads and experiments. For each new flight, a review of previous flights will be
performed to determine if any of them were similar enough to the proposed flight that
they may be used as a model. Using the flight reouirements end a model flight (if It
ex!sts) as a starting point, a Conceptual Flight Profile is generated which meets the
flight criteria.	 It Is entirely possible that several flight designers will be working
concurrently on the game flight or will be using the same node! time!lne to design
different flights.

_iiQ2.5 not

deslan techniques- the fllZhi—l^L_
categorized based on the procedures
and amount of work Involved in
neneratlna the Initial profile (CFP).
CATEGORY I flights are the highest
level of complexity that will be
supported by FDS. Flights in this
category require a large amount of new
flight planning with only limited use
of standard event timelines that were
developed for earlier flights.
CATEGORY it flights will typically be
anear repeat of a previous flight,
Involvinq only minor c'anges to event
timelines and a limited amount of
additional analysis. The approach to
CATEGORY III flights will consist
essentially of drawing Information
from a data bdse library -- which
contains previous flight data --
changing required values, and
re-running the flight profile on the

FDS. Flights more complex than
Category I (Category 0) Involve the
development of new techniques or forms
of analysis.	 While FDS is not

designed to support such flights, the
system can still serve as a useful
tool In developing new procedures.

H iyh

0
J
LL

to

O

W

a

O
IY
LL

a

a
CO

LL

O

w

LLJ

v7

Low	
I	 II	 I11

CATEGORIES

3-1. "Categories" of flights differ in the
degree to which they make use of data
from previous flights.

FDS Is a computer system that aids to mission planning and flight design. FDS supports
the flight design process by providing Interactive simulations, documentation such as-
PIP Section 4 and i, PIP Annex, CFP, and OFP, and products such as t Supertape, and Crew
Simulator Deft Pack. FDS is designed to save manpower In repetitive Planning, as well
as provide toois necessary to design new or unique flights.

FDS is used as a planning aid
throughout the fit ht design process.

First the CFP Is produced. The CFP Is
based on a relatively low-fidelity FDS
simulation from lift-off to touchdown.
After the CFP iF generated, it will be
examined for conflicts in various
aspects of the .light. Than It will
be refined in further iterations via
interactive FDS sessions until all
major criteria specified In the PIP

are satisfied. Following publication
of the CFP, the associated data files
will be archived. After the CFP is
reviewed, additional refinements of
the flight profile may be undertaken.
After the final refinements are made,
FDS is used to begin preparing the
OFP. The OR represents a

Pr OMMOMAtwo

P►, Sectla ♦ 00 B
PP Ammx

GM and DPP cadent•

AGOW Oata
Draw Data
D•o.at/an"ILM" Data

MO VOWAMV Cwwnaa•• low I tion

Proptdsly connrm tows 1Monnanen

eoad Rost Booster and EaterM Tanks —
separatton and Disposal Data

OUT cantanta oti„

FROM Proms BwtrnerY
Abort Plarmft Analysis

Raaallon Dosap• ArWysls

Other Products

swertme
Crew SW"ator Data Pack

high-fidelity FOS simulation of an	 3-2. FDS assists in the generation of
entire shuttle mission from lift-off 	 several documents and data products.
to touchdown. After the OFP is
planned, produced, and published, a S'PERTAPE and, for the first time, a CREW SIMULATOR

DATA PACK are produced by FDF, These products are used by CTPD to support the
generation of the crew activities timeline. Any conflicts or discrepancies discovered
after publication of the OFP will necessitate iterations of all or part of the CFP-OFP

development, planning, and publication cycle.

FDS alds in document production throughout the design process and will save flight
design data for future use. h flight designer may generate all or part of the

FDS-supported document products by obtaining a copy of any standardized, skeletal
document from the special-purpose document processor (Xerox) and merging it with data
generated using FDS. The user may verify the merged text at an FDS terminal before
final processing. As a last step In the flight profile development process, the
timelines and parameters used by FDS to generate the delivered products, along with any
supportive Information, will be archived as a history file. This information may be
used as a model for future planning.

In summary. WAD uses the FDS In flight design activity from generation of PIP
requirements (long before liftoff) until the flight Is actually flown. FDS provides the

computer simulations that support the flight design ^ocess. The FDS user performs the
decision process and FDS performs repetitive analyst . , math-model execution,

standardized documentation, and fine tuning necessary to complete the flight design

process.

04 AN EXAMPLE TO ILLUSTRATE FDC "SAnF

An example problem has been selected in illustrate the use of the FDS.

Most of the basic conceptsdls^alil in thil1,zer Guide are also illustrated r ,lth a
stale_ concrete example Aroblem. This proolem is described in this section, and is

used throughout the document. Each discussion of the example Froblem is presented on a
green background. The reader who understands the example prob l em in general terms
should have the background necessary to comprehend the example discussions which are
distributed throughout the User Guide.

Although the example mission Is not as complete tynlcal STS mission, it contalns
realistic, elements that frequently pear and that are aooropriate to illustrate the use
of FDS. The objective of the example mission Is to deploy two payloads. The first
payload Is a satellite which must be placed In a geosynchronous orbit -- that Is, in an
orbit In which the satellite will remain above a particular point on the earth's
equator. The Orbiter Is not capable of taking the payload to that orbit using its own

orbital maneuvering system. Therefore, an upper stage Is attached to the payload and
will be deployed from the orbiter's cargo bay. That upper stage will perform a transfer
maneuver from the Orbiter's parking orbit to the satellite's final geosynchronous orbit.
After the deployment of the upper stage and its payload, the Orbiter will maneuver to a

second orbit and deploy the second payload.

The elements of FDS that are used In the generation of a flight design ari d, of course.
not unlgue. The user is free to choose the processors to be used, the ord(-r In which
they will be Involved, the names of tables employed, and the operating modes of FDS. No
unique problem-solving sequence cnn be associated with a given problem. Nevertheless, a
representative problem-solving process has been assumed for the example problem In order
to Illustrate FDS capabilities and features. The reader should not assume that the
solution illustrated represents the only way the FDS could be used. Experience with the
system will enable the user to become Increasingly more efficient in the exploitation of

the FDS capabilities. This Is particularly true as results from previously-solved
problems are employed as starting points for solving new problems.

Forbit

stage

vor to destlnatlon
r payload i 1

deorbit

deploy payload *2

maneuver to
destination
orbit for

deploy upper	
Payload

ad

#2stage and	 fly
payload *1

launch	
land

4-1. The examp le Problem involves de p lovment of two p a y loads. one of which is raised

to a geosynchronous orbit by an upper stage maneuver.

s f► 	 A single example problem is used for Illustrative purposes throughout the User
Guide. Discussions of the example problem appear on a green background. The

rk A► 	 problem Involves two payloads, one of which is to be placed in a
geosynchronous orbit.

Some simplifying assumptlons have been made to insure that the problem Is a manageable

.exampl e. For example, it is assumed that the launch date and time have been determined

previously. Ordinarily, a launch window analysis would be performed to determine these
parameter values. It should also be noted that the order in which planning is done for
the upper stage and for the Orbiter, after the first payload deployment, is entirely
arbitrary.

It

PAYLOAD 1

TARGET ORBIT (GEOSYNCHRONOUS):

altitude = apogee = perigee = 19,323 nm.
inclination = 0 (equatorial)
eccentricity = 0 (circular)

SATELLITE WEIGHT AT DEPLOYMENT = 12,542 lbs.

PAYLOAD 2

TARGET ORBIT:
altitude = 200 nm.
inclination = 28.5 degrees
eccentricity = 0 (circular)

WEIGHT - 6,320 lbs.

LAUNCH:
DATE = 23 April 1981
GREENWICH MEAN TIME = 10:36:00
LOCATION = Eastern Test Range
,,,iO ALTITUDE = 57 nm.
LIFT-OFF WEIGHT = 4,504,485 lbs.

LANDING:
LOCATION = Eastern Test Range
CONSTRAINTS = DAYLIGHT (30 minutes before sunset, after sunrise)

INITIAL PARKING ORBIT
altitude = apogee = perigee = 150 nm.

inclination = 28.5 degrees

FIRST SEPARATION MANEUVER
velocity delta-V = 50 fps.
engine(s) = Foreward RCS

SECOND SEPARATION MANEUVER
velocity delta-V = 2.5 fps.
engine(s) = Aft RCS

4-2. The example problem uses simple, fairly common orbits and maneuvers.

9

05 DETAL $_ OF THE EXAMPLE PROBLEM AND SOLUTION

To help the reader understand the illustrative material presented elsewhere, details
about the example problem and the assumed solution process are presented here.

This example mission Is relatively simple and involves several aspects that arc likely
to have been designed previously or which are similar to past missions. The flight

designer would probably use data and procedures that he or she had stored ror the
purpose of future reference. In the Illustrations which follow in this book, the
assumption is sometimes made that computer files exist which will be retrieved for the
purpose of review and modification. At other times, iT is assumed that the designer
will "start from scratch". Although these two problem-solving modes are assumed
arbitrarily in order to best illustrate FDS capabilities, it is also true that real
world flight design will be a mixture of redesign of previous solutions together with
original design efforts.

A normal but not unique saguence in the flight design process begins with basic
tr,^ector y design. After launch window analysis and the selection of a launch date, the

conditions at orbital injection are determined. The event ihat is used as the beginning
of the orbital phase of the flight is called Main Engine Cut-Off (MECO). From MECO, the
orbital maneuvers are laid out. This process proceeds until the approximate deorbit
conditions can be determined. An analysis of land!ng opportunities leads to the
selection of the orbit on which the deorbit burn will be made.

After the basic tra jectory events are determined, the design of the attitude profile can

be accomplished. Crew requirements are factored into both the trajectory and attitude
profile design. The completion of the attitude profile design allows an analysis of the
propulsive consumables to be done. The non-propulsive consumables profiles can also be
determined. Any violations of constraints or recommendations for more efficient use of

the spacecraft or crew can cause the events of the flight design timeline to be altered.

The completion of the basic timelining, of events pertaining to trajectory, attitude
profiles- basic crew activity. and consumahles management are collected and documented
in the Conceptual Flight Profile (CFP). After approval cycles are completed, the
detailed Operational Flight Profile (OFP) is generated In approximately the same
sequence. The Flight Design System is used throughout the process of producing the UP
and the OFP.

10

One approach to the solution of the example problem begins with trajectory design.
Trajectory design Involves a series of somewhat sequential planning steps, which
correspond to the planned trajectory events. Once a satisfactory trajectory design has
been established, attitude and consumables planning can be Initiated.

TRAJECTORY ANALYSIS AND DESIGN

ORBITER THROUGH FIRST PAYLOAD DEPLOYMENT

Ascent Trajectory

Staging

1st burn of Orbital Maneuvering System (OMS) to achieve parking
orbital attitude

2nd burn of OMS to circularize parking orbit

Deploy 1st payload

Perform separation maneuver with Reaction Control System (RCS) to
move orbiter away from 1st payload

FIRST PAYLOAD AND ITS UPPER STAGE

Perform maneuver to change orbital plane and raise orbital altitude

Perform maneuver to make remainder of orbital plane change and to
circularize in geosynchror,-,us orbit

ORBITER AFTER FIRST PAYLOAD DEPLOYMENT

Perform OMS maneuver to achieve orbital altitude needed for second
payload

Perform OMS maneuver to put shuttle in circular orbit for deployment

of second payload

Deploy second payload and perform separation maneuver

Deorbit

Groundtrack check (orbiter branch of trajectory)

ATTITUDE ANALYSIS d DESIGN

PROPULSIVE CONSUMABLES ANALYSIS d DESIGN

NON-PROPULSIVE CONSUMABLES ANALYSIS 8 DESIGN

PUBLICATION OF CONCEPTUAL FLIGHT PLAN

DETAILED SIMULATION AND ANALYSIS

PUBLICATION OF OPERATIONAL FLIGHT PLAN

5-1. There are a number of planning operations involved in the solution of the
example problem.

11

06 FUNCTIONAL AREAS OF FDS

FDS consists of four main components: (1) X Processors, (2) Y Processors, (3) document
processing system and (4) an Executive program.

There are two types of application processors. the X Processors and the Y Processors,
that are designed to perform specific flight design tasks. The application processors

may be executed individually or in sequence to perform part, or all, of a flight design
task. The most basic requirement for X Processors is that the fidelity be sufficient
for producing the Conceptual Flight Profile ((;FP) and establishing the feasibility of
the Operational Flight Profile (OFP). Y Processors generate simulations and actually
produce the data products required for OFPs.

X PROCESSORS consist of a library of
independent application processors that
are used as building blocks in flight

design. These processors may be executed
in interactive or batch mode and in
whatever sequence is i;ecessary to satisfy
the computational requirements of a

particular flight design task. That is,
the user essentially structures a

special-purpose program by the proper
selection and sequencing of processors.
The X Processors are designed to perform
computational routines in an interactive
mode. The fidelity of these processors
Is consistent with CFP development, but
may be insufficiently detailed for OFP
development. The X Processors are
sometimes collectively called "Subsystem X".

X PROCESSORS

ATTITUDE & POINTING

CONSUMABLES & MASS PROPERTIES

MANEUVER - TARGETING

PROPAGATION

SHUTTLE UPPER STAGE

TRAJECTORY/AUXILIARY DATA SUPPORT

UTILITY

CONTROL, DISPLAY, & SIMULATION

6-1. Listing of types of X Processors.

`light profiles and to produce the data
products required for OFPs. Typically,

the input parameters for Y Processors
will consist of flight profile data
generated on X Processors and transferred
by the FDS user to Y Processors, through
the FDS Executive. Y Processors reside
on another computer, but are considered
part of FDS. The Y Processors
are sometimes collectively called
"Subsystem Y".

Y PROCESSORS

ASCENT SIMULATIONS

ON-ORBIT SIMULATIONS

DEORBIT-TO-LANDING SIMULATIONS

RETURN TO LAUNCH SITE SIMULATIONS

PROXIMITY OPERATIONS SIMULATIONS

PROPULSIVE CONSUMABLES-USAGE SIMULATIONS

SUPERTAPE GENERATION

CREW SIMULATOR DATA PACKAGE GENERATION

SPECIAL DISPLAYS

6-2. Listing of types of Y Processors.

12

+Y

y

FDS has four components: X Processors, Y Processors, a documentation system, and
W	 an Executive program. X Processors are executed In Interactive or batch mode and

are used primarily for conceptual flight design. Y Processors are executed in
batch mode only, reside on another computer, and are used for very detailed

`I

	

	 simulation and design. The documentation system is used to create formal
documentation, such as CFP and OFP documents. The Executive Interfaces the user to

 the above functional areas. It provides capabilities for data storage and
retrieval, editing, and processor execution.

E

There are al;	 ial purpose aonlications of FDS, primarily document production.

The FDS user generates data that will be used in CFPs and OFPs. A special purpose
processor is provided that allows the user to merge this information with the supporting
text of the CFP and OFP documents:

The EXECUTIVE interfaces th@ user
to the other functional areas and
Is the functional area of FDS that

processes and responds to all user

commands. The FDS Executive is
designed to support interactive as
well as batch processing with X

Processors, to initiate remote jobs
with Y Processors, and to allow
access to document preparation
facilities. The Executive provides
the user with functional
capabilities in three areas: data
storage and retrieval, editing, and
processor execution. These
functions enable the user to get
ready to use the application 	 6-3. The executive processes and responds to
processors and provide the user 	 user commands and interfaces to other
with access to master data bases	 functional areas.
and the ability to retain data from
one FDS session to the next. The
input and output associated with the processors that perform flight design tasks and the
order in which these processors are executed is usually prescribed by FDS ts^'ss. The
execution control function is used to control the execution of processors.

To solve the CFP portion of the example problem using FDS, the user must first
prepare tables necessary to execute the particular X Processors required in
the flight design. To do this, the user interacts with the Executive.

USER	 EXECUTIVE

The X Processors are then executed, again using the Executive, through which
all user interaction occurs.

USER	 EXECUTIVE	 X PROCESSORS

When all necessary planning iterations have occurred, the document processor
Is executed to produce the CFP document.

USER	 EXECUTIVE	 DOCUMENT	 XEROX
PROCESSOR	 SYSTEM

13

07 THE EXECUTIVE INTERACTS WITH THE USER

The Executive interacts with the user ane processes the commands that are used to do
flight design tasks.

The EXECUTIVE Is the component of the FOS that interacts with the user and allows access

to the other components. The Executive provides users with a single interface to these
various components. Through the Executive, the user can access the X Processors, the
Y Processors, and the documentation system, and cause data to be transferred among these
components. The Executive performs four functions for the user -- data management,
processor execution, command processing, and access to the documentation function.

I E=
. y

EXECUTIVE
	

COMMAND PROCESSOR (%)

F DATA MANAGEMENT
FUNCTION

I JDATA STORE/ RETRIEVZ
I FUNCTION	 I

I	 ^I
TABLE EDITOR

I INTERFACE TABLE (\) I
SEQUENCE TABLE (^)
LINKAGE TABLE (<)	 I
Y-DATA TABLE (>)

I	 I
------------'

DOCUMENTATION FUNCTION

DOCUMENT PROCESSOR

XEROX WORD
PROCESSING SYSTEM
INTERFACE

EXECUTION FUNCTION ($)

SUBSYSTEM X EXECUTION
CONTROLLER

SUBSYSTEM Y RUN
SUBMITTAL

7-1. There are four basic functions performed by the FDS Executive.

The DATA MANAGEMENT FUNCTION is concerned with creating- deleting, storing, accessing.
and modifying files. In performing a flight design task with the FDS, users will access

files that contain standard flight profiles, standard processing sequences, flight

requirements, etc. Files will be created to store the flight profile, and other
associated data, for the current flight design task. These activities are handled by

the data management function.

14

I

The FDS Executive consists of several components. All user commands are processed by
the Command Processor, which determines which of the components to invoke. The Data
Management function provides the capability to access, create, delete, store, and modify
flies. The Execution Function controls the execution of X and Y Processors. For
producing documentation products, the Documentation Function is used.

The EXECUTION FUNCTION of the Executive controls the
execution of the processors. This function has two

principal parts -- the X Processor execution
controller and the Y Processor run submittal
controller. The X Processor execution controller can
operate in one of four modes -- one processor at a
time (manual), automatic, semiautomatic, or batch.
The Y Processor run submittal controller causes runs
using Y Processors to be processed in the

remote-Job-entry (RJE) mode.

The COMMAND PROCESSOR ,provides access to other

functional compgnents of the Executive. All user

commands are processed by the Command Processor,

which then determines which component to Invoke. The
Command Processor prom,- +s the user with the % symbol,
after which the user iiputs a command. There Is a

unique prompt symbol associated with each component
of the FDS, and the prompt symbol changes to indicate
which component of the FDS is active.

The DOCUMENTATION FUNCTION provides a means for
in p ut. editina. and output of text documents. These
documents include OFPs, CFPs, and the Flight Design
Annex to the Payload Integration Plan (PIP).
Skeletal forms of these documents are stored on the
Xerox word processing system. The FDS Executive
provides a means to merge flight design data with
these skeletal forms to produce final documents.

DATA MANAGEMENT CAPABILITIES

• Deleting, creating, accessing,
and editing personal files for

permanent retention of user data
from session to session

• Access to master data bases

• Entering and storing X Processor
input and output data

• Managing (naming, storing, delet-
ing, etc.) X Processor output data

• Entering and storing Y Processor
input and output data

• Managing Y Processor output data

EXECUTION FUNCTION CAPABILITIES

• Control the execution of X

Processors

• Submit Jobs which execute Y
Processors

DOCUMENTATION FUNCTION CAPABILITIES

• Combine flinht design data with
supporting text

• Prepare CFPs. OFPs, and parts of
the PIP documents

7-2. Each component of the FDS
Executive performs certain tasks

In solving the OFP portion of the example problem with FDS, the user will make
use of the Y Processors. The Y Processor Job is prepared by setting up an
input file.

	

USER	 EXECUTIVE	 Y PROCESSOR
(Data Management)	 INPUT

The Job Is then transmitted, via the Y Processor run submittal controller, to
a separate computer on which the Y Processors reside. The Job may or may not

actually be run for several hours. When the Job has run, the output is
returned to FDS and placed in a file. When the user next signs on to FDS, the
output is available for reading and editing.

Y PROCESSOR "EXECUTIVE F---o. Y PROCESSOR	 Y PROCESSOR

	

INPUT	 (Execution)	 L—_	 OUTPUT

15

08 DATA STORAGE AREAS WITHIN FDS

There are four major data storage areas over which the user has varying degrees of
control.

The ACTIVE WORK AREA (AWA) is one of the several areas used by FDS to store data. The
AWA consists of random access memory and disk storage, and is automatically allocated to
the user at sign-on. Many files may be stored in the AWA. The AWA stores input data
for use by the executing processors, and is used for constructing and manipulating data
and tables. In addition, all retrievable output data from X Processors are stored
there. The AWA is empty when allocated. The user must transfer any desired information
from MDBs and PDBs inia the AWA. The AWA belongs to the user, and cannot be accessed
directly by other users. It is a temporary work space that exists only during a user's
session, and is purged at sign-off unless the user takes action to store the information
in a Personal Data Base.

Personal
Data Base

Active Work Area (AWA)

POB

from
Y Processors

MDB	 YOD

Master	 Y Processor
Data Base	 Output Data

8-1. FDS has four major data storage areas.

16

FDS has four major data storage areas: AWA, PBD, MDB and YOD. As a temporary work
space allocated at sign-on, the AWA snores data for the processors and is used for
constructing and manipulating data and tables. PDBs are used for permanent storage of
all or part of the user's AWA. MDBs contain master flight Information that is made
available to ail users. Output data from a Y Processor run are stored in the YOD.

A PERSONAL DATA BASE (PDB) is a disk storage area that the user can create during an FDS
session for permanent storage of data and tables. Through the use of the FDS Exe itive,
the user names the PDB and transfers data between the AWA and the PDB. Single files or

entire data bases may be transferred in either direction between the PDB and the AWA.
As a general rule, each PDB should contain files that are used together. The PDB may be
accessed by a single user or a group of users working together. Each user can have
multiple PDBs. The user Is responsible for data management for the PDBs that the user
has created. PD3 files are not purged at user sign-off and are deleted only on direct
action from the user.

Another major data storage area used
by FDS Is the MASTER DATA BASE (MDB).
MDBs contain data that all users can
access. For example, tracking station

locations and global constants are
maintained on MDBs. FDS users can
transfer data from an MDB to their
AWA. Users can then modify the AWA
copy of this information to fit their
own requirements and store it in a
PDB. However, users cannot create,
modify or write to an MDB. The NOB is
a read-only source of data and is
created and maintained by FDS support
personnel. All MDB names begin with
"!1". No other data areas can have
names beginning with these two
characters.

P

lobs Is stored. YOD files are created
by user-Initiated Y Processor runs.
Each file name is derived from the job

name of the Y Processor run that
created It. Files can be transferred

from a YOD to the AWA and modified,
stored in a PDB, or used in another X
or Y Processor run. The user is
responsible for managing data Ir. YOUs
as well as deleting a YOD after It is
no longer needed. All or portions of
the YOD may be used to create files
within the AWA for access by the
X Processors.

in preparing to develop the flight
design for the example problem, the
user might begin by obtaining
Information about a prior flight which
has similar properties. Such data
would ordinarily be obtained by
accessing the PDB associated with the

prior flight. The user might also
obtain global constants and similar
data from one or more MDBs.

This Information Is all obtained by
moving It Into the AWA, where the user
can edit it, delete portions of it,
etc. When the user is finished with
this Initial terminal session, the
resulting data should be saved by
storing It In a new PDB. This PDB can
then be accessed In future sessions
dealing with this particular flight.

17

09 FILE TYPES

In addition to the four storage areas, FOS has six explicit file types, which differ In
form and purpose.

A DATA ELEMENT (DE) Is a collection of related Input or output data for a given
X Processor. Grouping such information together and storing it under a user-defined
name provides a convenient mechanism for managing large amounts of processor input and
output data. A DE may be stored in an MOB, In a user's PDB or in the AWA. When it is
in the AWA, it can be accessed by processors. Processor-to-processor communication can
be achieved by using an output DE from one processor as an input DE for another
processor. The user can also create DEs from the information that is returned from
Y Processors in the YOD storage area.

Any DE that Is too large to he stored in the random access memoryportion of the AWA is

stored as a DISK-RESIDENT DATA ELEMENT (DRDE). DRDEs are constructed by the execution
of processors, which determine their format and contents. Although DRDEs have the same
function as DEs, they differ In their form, in the manner in which the data they contdln
Is accessed, and in the fact that users cannot explicitly create a DRDE. A DRDE may be
stored In a PDB or MDB, but only the name and characteristics of the DRDE are stored in
the core-resident portion of the AWA. Since a DE is structured as an array, the
contents can be accessed by subscripting. Because a DRDE has a different structure, its
contents must be accessed differently.

Personal
Data Base

Active Work Area (AWA)
to

Y Processors

Sequence	 Interface
PDB Tables	 Tables

Linkage Tables

from
Y Processors

Y-Data
Tables

MOB Disk Resident YOD
FData Elements	 Data Elements

(DRDE's)

Master Y Processor
Data Base Output Data

9-1. Six types of files can reside in the AWA, POBs, or MDBs.

18

In addition to the four data storage areas already discussed, FDS has six file
types. The various file types differ with respect to the user's capabilities to
initialize, change, and control -their contents. The six file types are DE, DRDE,
IT, ST, LT, and YDT. Any of these file types may reside in the AWA, PDB, or MDB
storage areas.

An INTERFACE TABLE (IT) is associated with each X Processor and provides a mapjug of
user-specified input and outfit data items to the parameters programmed into the

processor. X Processors can read data from ITs, and can read and write to and from DEs
and DRDEs. For each value read or written by the X Processor, the IT contains either
the corresponding value or the name of a DE or DRDE (or, for document production, the

name of a linkage table). At the time an X Processor is created, the specifications for
its interface table are defined. Each interface table, therefore, Is built to the
unique specifications of one X Processor. A "default" interface table for each
X Processor has been constructed
by FDS support personnel. The
user may modify this table to

Type	 Purpose

create new tables for specific
tasks.	 PDB	 Long-term storage of user data

A LINKAGE TABLE (LT) is used as
mInput to the docuentation system

and is identical in structure to
an interface table. However, It

is associated with a document
rather than with an X Processor.
It serves to provide a
correspondence between the user's
data values and the corresponding

reserved spaces in a skeletal
document.

MDB long-term storage of master data

3 $s
YOD User-accessible storage of Y Processor output data

DE Collection of processor input or output data

DRDE large collection of processor input and output data

Ti IT Execution control of X Processors

v LT Execution control of documentation system

5T User-defined and controlled command execution

YDT Control of input to Y Processors

9-2. Each storage area and file type has a specific
use.

PD9

STSIT AWA	
PD8

8T

ITS.	
3T

iTS.
etc.	 etc.

IT

we

In working on the example problem,
information generated about a prior
flight may be used. From a PDB, for
example, the user could retrieve the
sequence table and associated
Interface tables used on the prior
flight. If the example problem
involves use of an X Processor that
was not used on the prior flight, the
interface table associated with this
processor could be retrieved from an
MDB.

A SEQUENCE TABLE (ST) is a collection of
FDS commands stored for later execution.

These commands can invoke FDS Executive
functions and cause X Processors to be
executed. The purpose of a sequence table
is to provide the user with the capability
for defining and executing often-used

sequences of commands. A typical use of a
sequence table Is to invoke, in turn, each
of the X Processors which correspond to the
events (e.g., orbital events) on the
timellne.

A Y-DATA TABLE (YDT) is a collection of
Information that defines the control and

data inputs reoulred to execute
Y Processors. Y-Data Tables provide a
means to create and control the Input data
for Y Processors. They can also refer to
DEs used to store output data from
X Processors, which can then be used as
Input data to Y Processors. The Y-INPUT

DATA f;le, which is the actual file that is
used by Y Processors is built from the YOT
ey the FDS Executive.

19

10 DATA NANAGFHENT

Dsta manaC!!-;rent is concerned with creating, storing, accessing, modifying, and deleting
files and data bases.

A file is a collection of related
information: a data base is a collection

of flies. A group of related Information,
or data, such as an interface table for a
particular processor, is stored as & file.
Multiple files, which are also related in
some fashion, can be stored as a data base.
When qualified by a classification code,
all of a user's files and data bases have
unique names that are used to access them.

Data base names can also be qualified by
the access code of the user who creates
them. Users can control access to any data
bases created under their access codes.

-ST sequence table
-IT interface table
-LT linkage table
-YT Y-data table
-DE data element
-DF disk-resident data element
-PD personal data base
•MD master data base
-YJ Y-output data
-XJ X Processor job

10-1. All file and data base names
are unique when they are qualified !
a classification code.

The operations that can be performed on a file depend on the type it Is and who owns it.
Some files, such as those in a MDB, are "read-only"; that is, they can be read but not

modified or written to. Files that are stored in PDBs, however, can be modified.

Files and data bases must be stored on a disk In order to trgsnved, but some flies can
reside temporarily In the random-access- emory portion of the AWA. Between FOS

sessions, a!I data bases and files that the user has saved reside on disk. During the
FDS session, however, some of these files can be in the AWA. large files cannot be
stored in the random-access memory portion of the AWA and must be kept in the
disk-resident portion of the AWA, as DRI)Es. The user must be aware of which files are

DRDEs, since some FDS functions can only be applied to random-access memory-resident
files and not disk files.

9,0

OLD	 AF,,	 14EW

PDB 	 PUB

CFl	
^1

AWA

MDB	 ^oG	 YOD

Users are responsible for managing env
files or data bases that they create or
Sause to be created. When users create

files, they are responsible for saving
those files in an appropriate data base,
making any modifications to those files,

and deleting those files when they are no
longer needed. Once created and saved, a
file will remain on the FDS until the user

explicitly deletes it. Since file storage

space Is limited, failure to delete old
files may prevent the user from having
sufficient roan to save new flies.

10-2. Data can be transferred from one data

X Processors and Y Processors return data
	 base or data storage area to another.

to the user: it Is the user's
resnonsibillt y to manaoe these data. The FDS X and Y Processors aid in the flight

design process by calculating data for the user. When using these features, the user
specifies where the output data are to go. The user must decide which of this

information can be deleted and which must be saved and where to save it.

20

The FDS user has certain responsibilities for data management. Data management Is
concerned with creating, storing, accessing, modifying, and deleting files and data
bases. Because file types and data storage areas differ in their function, some data
management actions apply only to certain files or data storage areas.

When the user creates files and data bases- certain naming conventions must be followed.

All files and data bases can be classified as to type and the classification code Is

sometimes used, in addition to the name, to indicate which file or data base Is being
referred to. For example, sequence tables are classified with -ST (e.g., TAB1-ST) and
Interface	 with -IT (e.g., TAB1-IT). All files and data bacPs that the user
creates must ! •,ave unique names, when they are qualified by type. No two files or data

bases of the same type can have the same name.

Different file tvoes exlst because they are stored and used differently. For example,
interface Tables and Sequence Tables are used for alfferent functions. Data Elements
and Disk-Resident Data Elements are used for similar purposes, but are stored
differently and, as a consequence, must be used slightly ;ifferently. The user can tell
what type a file is by looking at the classification code.

User data can be stored in one of four data storage areas on the FDS. These areas,

which were described earlier, are the Active Mork Area (AWA), Personal Data Base (PDB),
Master Data Base (MDB), and Y-Output Data (YOD) area. Any file type, such as a sequence
table, interface cable, etc., can be stored in the AWA, PDB, or MDB. A YOD can only
contain the data returned from Y Processors. The user can read the information in a
YOD, but cannot write to a YOD. Interface tables, data elements, etc., that are to be

used by the X Processors cannot be stored on YODs.

One tXpe of executive command allows the user to transfer files aran g data storage

Amu. These commands allow the user to save AWA data in one of the other storage arnas
or to retrieve data from one of these areas Into the AWA. The commands that are used
differ slightly as a function of the file involved.

ALLOCATE: create DE in AWA
APPEND: append portions of AWA

to existing PDB
CLEAR: purge AWA
COPY: copy and rename table, DE,

DRDE, PDB, or YOD
DELETE: delete table, DE, DRDE,

PDB or YOD
GET: retrieve portions of t4D6

or PDB into AWA
INSERT: combine portions of

tables

RENAME: rename table, DE, DRDE,
or PDB

STORE: copy portions of AWA to
new PDB

SUBSTITUTE: replace contents of
existing PDB

YMOVE: copy portions of YOD to
a DE in AWA

IO-?. These commands are used to
perform data mananeinent functions.

In solving the example problem, interface

tables, sequence tables, DEs, and DRDEs
will be create:. All of these files could
then be stored in one data base. For
example, we cold create a PDB for the
example problem and call it EXPL-PD.

=EXPL-PE)IITs, Srs, etc.

When working on a later flight, It would
then be possible to retrieve these files
from EXPL-PD, modify them for the current
problem, and store them in a new data base.
We could also delete the entire data base
or selected files, if we were certain they
would not beused again.

LX—PL-PD
M ITF, STs, etc.	 PROB-PD

21

Each X Processor has an Interface fable that controls execution of the processor and
defines input and output parameters.

An Interf:• a Table (IT) IS a named and formatted collection of 2arameter attributes and
values Associ,ted with one X Processor. Each IT is constructed to match the

specifications of the processor that will use it. At the time an X Processor Is
created, the specification for Its IT is defined and FDS support personnel construct the
"default" IT. ITs define a list of input and output parameters for each X Processor,
and provide a mapping of the user-specified input and output data to the variables in
the X Processor. Since some of the input variables may determine the *unction of the
X Processor, ITs are also used to control the execution of the X Processors.
X Processors can read data from ITs, and can read and write to and from DE= and DRDEs.
For each value read or written by the X Processor, the IT contains either the
corresponding value or the name of the DE or DRDE (or, for document production, the name
of a linkage table).

As a processor raijulres a pmrt!a;ular Input from an IT, or the name of an output DE or
DRDE. the IT is consulted. At the time the IT is consulted, the particular element must
be present. If it is not, the IT editor is invoked and the user must supply the missing
information. If the missing information Is marked as required by the application

processor, the editor will be invoked before the processor can be executed. If the
information is optional, the editor will only be invoked when the Information is needed;
thet Is, during execution of the X Processor. (IT editor functions will be discussed In
detail In a subsequent section.) It is Important to remember that X Processors can read

from ITs, but they do not write to ITs. Input data that are required by a processor can
either be read from a DE or DRDE that is named in Vie IT or be read directly from the
IT. Output from processors, however, can only go to DEs or DRDEs whose nameb bppcor in
the IT; they cannot go directly to the IT.

X Processor requires data for ARRYI and queries 1T. IT returns data to
X Processor.

	

X Processor	 IT

	

ARRYI Iol 	ARRYI =
9,28

X Processor has output and queries IT (1) for location of storage area for

output data. IT tells X Processor to write to (2) Data Element 1NTOUT.

X Processor	 IT	 1NTUUT-DE

OUTI 4,5,b	 (I)	 CUTI @ INTOUT	 4,5,6

(2)

11-1. An X Processor can read values directly from an 1T, but can tirite only to a
OE or DRDE named in the IT.

22

Interface Tables are required for all X Processors. ITs define Input and output
parameters for X Processors. The format for ITs Is pre-defined and can be found In
default or existing ITs. Default ITs can be obtained automatically from the system.
X Processors can read from ITs, and can read from, or write to, data elements named In
the ITs. Linkage Tables are similar to ITs, but are used in the document processing
function.

ITs for a particular processor have a constant pre-defined format. This format is

defined by the processor Involved. The pre-determined format for IT-, can be found in
default ITs (which are "templates" constructed by FDS support personnei), or in existing
ITs. Each processor has certain required parameters, but may also have optional
parameters. The default ITs generally contain default values for those variables which
the user is unlikely to change; otherwise, variables in the default IT are Incomplete
and/or missing. The user can create a specific IT by editing the default IT (or other

existing ITs), adding the missing and/or incomplete entries, and saving the new IT.
Interface tables generated by the user are automatically stored in the user's AWA;
however, the user may also store ITs in PDBs, or automatically receive default interface
tables from the system. During processor execution, the IT must be in the AWA. It
should be noted that users are responsible for managing any ITs they create. This
includes naming, modifying, deleting, etc.

A Linkage Table (LT) is structured exactly the same as an Interface Table, but is used

as input to the documentation system. Generally speaking, ITs will point to an LT (as

if it were a DE or DRDE) to satisfy data requirements or a particular document segment
which is being processed by the document processor. LTs are created In the same manner
as an IT, have the same basic structure/format, and changes are made to LTs in the same
manner as ITs. The difference is that an LT defines the list of input parameters for a
particular document/segment (rather than for a particular X Processor) and is used to
control the execution of the document processor. LTs are discussed further in
connection with the document processing function.

In the example problem, one of the trajectory 	 Interface Table
maneuvers is the 11OMS-2" maneuver used to

maneuver is "CIRC"
circularize the initial	 150-nm. orbit of the
shuttle.	 The basic computations associated with input state in RESULT
planning this maneuver will 	 be done by the

store output in RESULT
General-Purpose Maneuver Processor (GPMP).	 GPMP
Is an X Processor which computes a single vehicle
impulsive maneuver which Is Initiated at a
specified maneuver point in the vehicle orbit and

X Processoris targeted to a specified final orbit condition.
The Interface Table associated with a particular Caneral Purpose
execution of this processor contains information

Maneuverwhich describes the particular maneuver. 	 In the
case of OMS-2, the selected maneuver is Processor
identified as "CIRC", for circularization.	 The
Interface Table also names the data elements
which are to contain the state vectors which
describe the state of the orbiter before and Data Element
after the maneuver.	 In the case of OMS-2, this
information will	 be retrieved from, and stored

RESULT
in, a data element called "RESULT". 	 The
Interface Table contains a variety of additional
information dealing with other selected options,
physical	 units to be used, display(s) to be
produced, etc.

23	

+

12 DETAILED CONTENTS OF INTERFACE TABLES

Each entry of an Interface Table consists of an entry number, a parameter keyword, and
information which defines the value(s) of that parameter.

Each entry of an Interface Table consists of an ENTRY NUMBER and a DATA FIELD. The
entry number is a numeric field (range 1-170) that uniquely identifies the table entry.

Entry numbers are used, for example, to identify entries to be changed. Interface Table
entry numbers are preassigned and cannot be changed by the user. The data field in an
IT contains parameter names and associated value fields. The value field may consist of
one or more data values. Alternatively, it can be a reference to a DE or DRDE where
data values may be found for input, or where output values are to be stored. IT
variables are of three types -- input, output, and input/output. IT output and

input/output variables must contain the names of DEs or DRDEs (in the AWA) where data
values are to be found and/or stored. Data values can be stored in an IT only for input
variables.

1„3E000N -	 IIGEOCON (iI	 identifies MD8 element)
2,PHYCON -	 iIPMYCON
3,SESCON -	 ISESCON
4,OSPCON -	 ISESCON 0	 indicates a configuration controlled

DE built by a processor)
5.8DATE -	 ISDATE
6,PR000N -	 10.	 1.0E-4, 6.0E-4, 75. (array of	 literal numbers)
7,INVEC -	 RESULT(1,3) (RESULT is a data element allocated by user)
8,THRUST -	 1.200000E+0d
9,ISP -	 3.131999E+02
10,ENGID -	 "OMS ”
i1,MANID -	 "CIRC" (CIRC is the circularization maneuver)
12,DELVOPT -	 "LVLH"
15,ALTOPT -	 "ALT
22,CD n 	 2.0
23,AREA -	 2690.
24,DENSMODL -	 i:DEN90
25,SOLAFLUX -	 IISOLRhO
26,GEOPOTEN -	 d (d means missing data to be supplied by user)
27,SVPROP -	 "AEG "
28,DISPLAY "TRM " (- symbol describes	 Input data)
29,GPMPTET $	 RESULT0.3) ($ symbol describes output data)
30,SUMTAS $	 iCIRTAB

12-1. The Interface Table for an OMS-2 trajectory maneuver illustrates many

of the possible features of ITs.

An IT entry can be MISSING or INCOMPLETE. An "incomplete" entry is one in which the

parameter name is present, but one or more data fields have not been filled in. The d
symbol signals FDS of this condition. A given entry may have multiple incomplete
fields. The U ABEL symbol is like the d symbol alone, but a label of up to seven
characters can be added to aid in Identifying what is left incomplete. For example, if
the Incomplete item is the name of a data element containing a state vector, BSTATEV
could be used to indicate that this required item is a state vector. If a parameter is

not present at all, it is "missing". Since all required parameters are always present
(even if incomplete), only optional parameters can be missing.

Values entered in tables may be of different DATA TYPES. Data type refers to the way

that the value is represented. For example, integer data types cannot involve decimal

points, while real data types can. Each data type (e.g., 6 and 6.0) has a different

representation in the computer. Processors require certain data types to be used for

each of their Input and output values.

24

t

r

ITs consist of entry numbers and associated data flelds. Entry numbers Identify each
table entry. Data fields contain parameter names and value fields. Value fields denote
one or more data values, or locations of Input data, or locations In which output values
are 1-o be stored. d or &LABEL may be used in value fields to indicate missing or
Incomplete data to be filled in later. Parameter attributes are defined for each
X Processor. Attributes displays consist of parameter name, class, type, use, and
dimensions.

I - INTEGER » 1. -7, +17
» consists of digits and an optional sign (+ or

R - SINGLE PRECISION REAL » 6.12, -17.23EOi, 12.1E+C2, 17.3E-02, 4E2
» consists of digits, an optional dectmal point, an

optional sign, and an optional scale specification.

D - DOUBLE PRECISION NUMBERS » 6.12, -17.23001, 12.10+02, 17.30-02, 402
» like single precision, but uses D instead of E.

Cn - CHARACTER DATA » "AB", "U178C"
» alphanumeric data enclosed In quote (") marks. Character data

items consist of either 4, 8, 16, 32, or 64 characters (e.g., C16).
You may use fewer characters than those allowed, but not more.

M - MIXED TYPE » -7, "AB", 16.2003
» a fixed combination of the above types.

F - FREE DATA » 6, -14.2E03, "EXPL"
» a random, or unconstrained, combination of the above types.

T - TIME DATA » 10:9:15:32.1
a time expression (see Appendix 0).

12-2. An Interface Table may use one or more different data types.

Each X Processor has predefined Ingut_ /output attributes. The attributes are determined
at the time the X Processor is added to the FDS library and can only be altered by FOS
support personnel. Attributes of a particular X Processor serve as a foundation from

which Interface Tables are constructed. Use of the ATTRIBUTES command will display a
given X Processor's a--tributes. The attributes display provides, for each parameter,
its entry number, name, its data class (DE or DRDE), data type, dimensions (size or

subscripts), and codes indicating its required or optional nature and its use as input,
output, or both.

ATTRIBUTES DISPLAY FOR PROCESSOR GPMP VERSION 6

ENTRY KEYWORD SIZE ROW	 COL CLASS TYPE I/O R/0

1 GEOCON 60 15 DE 0 I R
2 PHYCON 60 15 DE D i R
3 GSL 4 1 DE 0 I R
4 LBMKG 4 1 DE D I R
5 FTN 4 1 DE D I R

6 SESCON 288 L44 OE F I R
7 BDATE 164 82 DE F I R
8 PROCON 14 7 DE F I R

9 !NUEC 56 28 DE F I R
10 THRUST 2 1 DE R I R

11 ISP 2 1 DE R I R
12 ENGID 2 1 DE C4 I R

12-3. Use of the ATTRIBUTES command will display the attributes
of a specific X Processor.

An interface Table used by GPMP to circularize the initial 150 nm. shuttle
orbit is presented in Figure 12-1. All of the parameter names necessary to

calculate the example problem's OMS-2 circularization maneuver are present.
With one exception, the individual data fields are complete. Only entry number
26 contains a data field that still must be completed by the user. The IT

contains examples of input values (e.g., entry number 6), input DEs (entry
number 3) and output DEs (entry number 30), as well as a variety of features
discussed in the figure. It would be useful to consider, together, all three of

the figures in this module.

25

13 X PROCESSORS

X Processors are used for flight design computations which do not require detailed
simulation, and are fully described in the X Processor User Reference Manual.

As previously exnlained. one of the major components of the Flight Design System is the

llbrary of X Processors. These independent application processors are used as building
blocks in flight design. X Processors are designed to perform the computational and
documentation support requirements of flight design tasks which lead to CFP development.
The fidelity of these processors is consistent with CFP development, but may be
insufficiently detailed for OFP development. X Processors may be executed in a
multi-user interactive environment or, if the user specifies, X Processors may be 	 -
executed in a background (batch) mode. In either case, the processors may be executed
individually or in sequence.

The General Purpose Maneuver Processor (GPMP) is one X Processor that is frequently , used

in the flight design process. GPMP computes a single vehicle impulsive maneuver that is
initiated at a specified maneuver point in the vehicle orbit and is targeted to a
specified final orbit condition. GPMP includes 13 commonly used impulsive maneuvers.
However, a particular Shuttle mission may require an impulsive maneuver not present in
GPMP singular options. In this case, a combination of GPMP maneuvers may enable the

user to achieve the desired results. For a detailed description and explanation of GPMP
capabilities and uses, as well as the capabilities and uses of the other X Processors,
the X Processor User Reference Manual should be consulted. Thar manual contains
information on the purpose, assumptions, computational methods, and input/output
requirements of each X Processor.

GPMP PROCESSOR INTERFACE TABLE
►r.",t

,"rn.rt er
I
1

1
1

1
1

1
1	 I

y.lwa stored
1" d•nalt I

.un^...< 1);JVi I têe„̂ 1 yu- I	 e^.-•+1^	 1 t.te.t.r. e.el. I	 _	 dre^et aser e.n.. t...

GEOCON i	 DE i 1	 RI i	 i IIQ CON i Geophysicat constants array. master data base
element

PNYCON i	 OE i i	 RI i	 i 11PRYCON i Physical and mathematical constants, master data
base element

SESCON DE ' RI 1	 i ISESCON i Session constants array

DSPCON j	 DE j RI ; ISESCON j Display constants array

BDAiE
t

DE
1 1

RI
t	 1
1	 76	 1 IODATE

1
Basetlme data array

PROCON j	 DE j i	 RI j	 4	 j GPMP limits and tolerances

INYEC 1	 DE t	 M t	 RI t	 16	 I ! Position/velocity input state vector

TURUST i	 DE i	 R i	 RI i	 1	 i i Vehicle thrust magnitude
1 I I t	 1 I

ISP j	 DE R RI j	 1 Vehicle specific impulse, seconds

ENGID DE C4 RI 1 Propulsion system identification code

(1)	 "SRD" " Solid Rocket Boosters

(2)	 "SSNE" - Shuttle System Main Engines

(3)	 "OMS" n Orbital Maneuvering System

(4)	 "RCSA" " Reaction Control System - AFT

I 1 I t	 I I	 "RCSF" " Reaction Control System - FWD(S)
I I t I	 t 1

6	 "SUS" " Shuttle Upper Stage

(1 (111ts.d d.ts ter".t .Deel tlsetlona: Mr..("IfM•••"1yr.1
n I W .2 net

lyIwr«
I WL I

o	 I	 of
T	 1	 "Met 11•t"e4

et
CI

ttl- o•Vulred I.p.t
101- optle".1 1".t

of/"	 I
RUM	 I

IL
	 t IM

•+Oeel
Meal Clt IMO - a•to1rN Output Us."

Wive	 I
S	 t IO 10 IOU - optl""al output	 OI/oo

13-1. For each X Processor, the X Processor User Reference Manual provides
detailed input/output requirements.

26

=T
f

z

a X Processors perform computations and provide documentation support for basic flight

i design and CFP development. 	 They can be executed individually or sequentially. 	 In an
interactive or batch mode.	 The X Processor User Reference Manual contains detailed

`

4

descriptions of all X Processors.

C

The following is a list of X Processors and associated ITs used In solving the
example problem.

BASTM, T1	 -- Establish time reference to be used by all
subsequent X Processors.

PHYDM, HOWBIG	 -- Establish physical dimensions to be used by
all subsequent X Processors.

ASCENT, UP	 -- Perform launch computation. 	 Establish state vector
at Main Engine Cutoff (MECO).

GPMP, ETSEP	 -- Perform computation associated with external
tank separation maneuver.

GPMP, OMS1	 -- Simulate first OMS burn to achieve parking orbit
altitude (150 nm.).

GPMP, OMS2	 -- Simulate second OMS burn to circularize parking orbit.

GPMP, SEP1	 -- Deploy (separate from) first payload.

GPMP, PKM	 -- Simulate upper stage perigee kick maneuver to place first
payload at geosynchronous altitude.

GPMP, AKM	 --. Apogee kick maneuver to circularize geosynchroncus orbit.

GPMP, TRANS	 -- Transition to 200 nm. shuttle orbit.

GPMP, CIRC1	 -- Circularize 200 nm. orbit.

GPMP, SEP2	 -- Deploy second payload.

ACOAST, ORB	 -- Project state vector forward as if "coasting".
Forward projection is to allow detailed ephemeris
computation.

INVAR, EPHM	 -- Compute smooth (detailed) ephemeris.

STCN, G';TDN	 -- Determine ground station contact intervals for
communication.

SRSS, SUN	 -- Compute day/night cycle information (Sunrise, Sunset).

LANDOPT, LAND	 -- Compute landing opportunities within crossrange
capability of orbiter.

DEORBIT, DEORB 	 -- For the selected landing opportunity, perform
detailed deorbit and	 landing computation.

GTRACK, GTK	 -- Compute ground track for entire mission.

FPD, FLTP	 -- Produce Flight Plan Display(s) for entire mission.

27

14 SEQUENCE T BLES

A Sequence Table contains a sequence of FDS commands ("statements") which have been
stored for later execution.

A Sequence Table (ST) is a named and formatted collection of FDS commands stored fQr
subsequent execution. STs allow the user to define and store often-used sequences of
commands. All or part of a Sequence Table may be executed as an entity in either
automatic, semi-automatic, or batch modes of execution. Although STs normally contain
commands that are executed sequentially, these commands can also be executed
repetitively or conditionally.

Sequence Tables may be created, altered, or deleted. STs created by the user are

automatically stored in the AWA; however, the user may also store STs in PDBs, or
retrieve master Sequence Tables from MDBs. There are no default STs. The user creates
new STs "from scratch" or by editing existing STs.

Each entry In an ST consists of an entry number and a command (with its associated

parameters). The entry number Is an unsigned Integer and appears In ascending numerical
order (range: 1-32767). All of the Executive commands except am, CLEAR and EXIT may
be used in Sequence Tables. In particular, DO LOOP, LOOP EW, J .E, f.LZ, and ENDIF may

be used onjy in Sequence Tables. Each command requires a specific order and format for
any associated parameters. See later discussions of commands for proper syntax.

USER
INVOKES ST

ST	 RESULTING ACTION

10, GET	 0	 GET, SIZE-IT
20, PERFORM	 EXECUTIVE	 PERFORM, PHYDM, SIZE
30,	 0	 i	
40,

The user instructs the Executive to run a Sequence Table.
The Executive then acts on the various commands within the ST.
The initial ST may invoke other STs, or return control to the user
through the Executive.

14-1. Sequence Tables allow the user to store a series of commands for
later execution.

28

Sequence Tables contain sequences of Executive commands. By storing a series of
commands In an ST, the user is able to execute the series simply by invoking the ST.
The commands are ordinarily executed In simple serial order, but they can also be
Invoked repetitively, conditionally, or sequentially. STs are stored In AWAs, PDBs, or
retrieved from MDBs. There are no default STs.

The normal approach to solving a basic flight design problem with FOS Is to

construct a Sequence Table which executes,	 In turn, each of the required

X Processors.	 The use of a stored "program" allows the user to correct errors
-	 and re-execute the computational sequence with minimal effort.	 It also provides

a mechanism for remembering the computational process at any time in the future.
The ST for the trajectory portion of the example problem closely follows the
list of trajectory events presented previously.

This ST provides the commands and associated data necessary to simulate the
example mission through the GROUNDTRACK CHECK event.	 The majority of the
entries in this ST contain a
PERFORM statement followed by
an X Processor name, and the
name of an associated

Interface Table.	 As one might SEQUENCE TABLE

guess, each of these commands
causes one of the X Processors

100, NOTE,"INITIALIZATION"
to be executed.	 The NOTE

200, PERFORM,BASTM,T1
statement is also used

300,
frequently (entry numbers 100,

400,
PERFORM,PHYDEC(30,IG
ALLOCATE,INVEC(30,20)-R

700, etc.).	 The NOTE
500, ALLOCATE,RESULT(30,20)-R

statements are not executed by
600, ALLOCATE,HIALT(30,20)-R

FOS, but are input by the user
700, NOTE, ASCENT

for clarification purposes.
800, PERFORM,ASCENT,UP

The ALLOCATE statement is also
900, ASSIGN,RESULT(13,1) = 2.430089E+05

present in the ST (entry
numbers 400-600).	 ALLOCATE 1000, PERFORM,GPMP,ETS

allows the user to define 1100, PERFORM,GPMP,OMS1

certain Data Elements 1200, MNOTE "P

necessary for X Processor 1300,
1400,

NOTE "PAAYLOAD
YLOAD 1""

ASSIGN,RESULT(13,7) _ -1.254199EQ4calculations.	 Entry numbers
1500, PERFORM,GPMP,SEP1

900 and 1400 contain ASSIGN
1600, NOTE,"UPPERSTAGE PAYLOAD 1"

statements.	 This statement
1700, PERFORM,GPMP,PKM

allows the user to compute
1800, PERFORM,GPMP,AKM

values and store them in an
1900, NOTE, PAYLOAD 2

existing DE.	 Finally, the
2000, PERFORM,GPMP,TRANS

LIST statement Is used In the
2100, PERFORM,GPMP,CIRC 1

example ST.	 Entry number 2500
2200, ASSIGN,RESULT(13,13) = -6.319999E+03

instructs FOS to display the
2300, PERFORM,GPMP,SEP 2

contents of the Data Element
2400, NOTE,"DEORBIT CHECK AND DISPLAY"

called RESULT on the Il
2500, LIST-P,RESULTprinter (-P).
2600, PERFORM,ACOAST,ORB

2700, PERFORM,INVAR,E---Hit
2800, PERFORM,STCN,GS'iON
2900, PERFORM,SRSS,SUN
3000, PERFORM,LANDOPT,LAND
3100, PERFORM,DEORBIT,DEORB
3200, PERFORM,GTRACK,GTK

3300, PERFORM,FPD,FLTP

29

15 FDS HARDWARE

The FDS consists of four major hardware components, in addition to several user
workstation devices for interacting with FDS.

The INTERDATA 8132 is the primar> system for the FDS. The Executive and X Processors

reside on this system. This component is the primary interface between the user and the
functions provided by FDS. The Tektronix terminals are directly connected to this
component. Through these terminals, the user can access any of the functional
components of the FDS.

The XEROX VT-3 Word Processing System supports document production. This component

functions as the center for automated documentation. Skeletal document forms reside on
the Xerox and can be requested by the user through the Interdata. These skeletal
documents are merged with data values and transmitted back to the Xerox for production.

0
XEROX VT-3 WORD

NP21KX	
tNTEROATA 8/32

UNIVAC 1108PROCESSING SYSTEM _ _ _ _	 _PRIMARY SYSTEM

SUPPORTS DOCUMENTATION DOCUMENTATION	 FLIGHT DESIGNER'S HOST COMPUTER FOR
DATA PRODUCTS, DATA LINK	 PRIMARY INTERFACE. HIGH FIDELITY BATCH
SECTIONS 4 AND 8 FIDELITY IS CONSISTENT PROCESSING.	 FIDELITY
OF PIP, PIP ANNEX, WITH CFP AND IS CONSISTENT WITH
CFP AND OFP FEASIBILITY OF OFP. DEVELOPMENT OF OFP.

15-1. Each of the FDS hardware components has a unique use.

The HP21MX is used as an interface that passes document-related data between the

Interdata and the Xerox. Although the HP21MX is a separate computer system and could be

used for a variety of purposes, this is the only role it plays as a part of FDS.

The UNIVAC 1108 is the host computer for the Y Processors, which provide the RJE
capability of FDS. Y Processors are used to generate high-fidelity OFP data. This
hardware component of the FDS is larger than the others and can compute results to a
greater accuracy. This component can only be accessed in a remote job entry mode; it
cannot be accessed interactively from a terminal, although inputs to and outputs from
this component can be done via a terminal. Some outputs from Y Processors, such as
figures and graphs, cannot be transmitted back to the user terminal. However, all
nongraphicai data that are needed for further work with X Processors or for document
production can be displayed at the terminal.

Most of the interactions with the FDS are through the terminal. Communications with the

FDS are Initiated through a TEKTRONIX terminal which Is connected to the Interdata. All
user commands are initially Input through a terminal and most of the output from the FDS
Is returned to the terminal. There are other devices, however, that also aid in using
the FDS.

For_hioh-nu_al._Ity output of graphical data. a printer/plotter is available. The VERSATEK
printer/plotter is one device that the user can access. This could be used, for
example, to produce ground tracks. There is only one such device and it must be shared

by all users.

30

Tekronix Terminal	 Printer/PIotter --Wow

0

Document Processing Workstation

The FDS consists of four major hardware components -- an Interdata 8/'.2
primary computer, an HP21MX minicomputer, a Xerox VT-3 Word Processing system,
and a Univac 1108. The user workstation provides a variety of devices that
allow the user to Interact with FDS for a variety of functions.

15-2. FDS has several in put/output devices.

P, hardcopy device is associated with each terminal. The user may wish to have a copy of
some of the information that is returned to the terminal. This device allows the user
to generate a copy of the current contents of the terminal screen, if the user wants to
save it.

The document Drocessina workstation uses both a terminal and a sDecial-DUr pose Drinter.

The terminals associated with the Xerox can only be used for final document production;
they cannot be used to access other components of the FDS. Although using this device
is the only way in which documents may be printed, preparation for document production
can be done through any FDS terminal.

In solving the UP portion of the example problem, primarily X Processors will
be used. This involves use of the Interdata 8/32 primary system.

USER	 iNTEROATA 8/32

In order to access Y Processors, for example to solve the OFP portion, the
Univac is accessed through the Interdata and data are returned to the

Interdata.

USER	 INTERDATA 8/32	 UNIVA^ 1]08	 INTERDATA 8/32

In order to produce a document, Such as an OFP or a UP, the user interacts
with the Interdata, which creates a communication link with the Xerox via the

HP21MX.

USER	 (INTERDATA 8/32HP?1MX	 XEROX

31

DATA MANAGEMENT
FUNCTION

DATA STORE/RETRIEVE
':UNCT10C1

ABSTRACT	 ALLOCATE
APPEND	 ASSIGN
ATTRIBUTES CHANGE
CLEAR	 COPY
CROSSREFERENCE
DELETE	 FIND
:,ET	 Li ST
RENAME	 STORE
SUBSTITUTE	 TOC
YMOVE

EXECUTICN FUNCTION(;)

AUTOMATIC BATCH
PERFORM SEMIAUTOMATIC
YRUN

16 FOS COMMANDS

The FOS user communicates with the FOS system through a set of commands.

Fach of the operations performed by FOS is supported by FOS commands. The command name
entered at the terminal tells the FOS system to do the procedure or procedures indicated
by that command. Most command names are followed by a list of parameters, separated by

commas. The parameters supply FOS with information about how it is to carry out the

command, or what values or files are required. The FOS system interprets each parameter
according to a syntax which specifies the order in which the possible parameters are

entered. For some commands, some of the parameters must be specified every time the
command name is entered. These are called required parameters. Other parameters can be
omitted, in which case FOS assumes default values for those parameters.

Commands in the FOS User Guide will always be typed in capital letters. When the syntax

of the command 1s described, the command name will be followed by the set of parameters
associated with that command, separated by commas. wired parameters of a command,
which must be included each time that command is used, will be Indicated by =Darlings.

Optional parameters will not be underlined. Ellipses (...) will be used to indicate
that a particular pattern can be repeated at will. An example of the format used for

commands in this user guide is shown below.

COMMAND,parameter I,parameter 2, parameter 3,...

This command takes three parameters, only the first of which is required.

Q

COMMAND PROCESSOR ^^)

BREAK. DLOG MESSAGE
EYECUTivE	 NEWS OFF

TABLE EDITOR

CHANGE EDIT	 DCCUMENTAT. - FUN:TICN
EMIT	 MODE
INSERT LIST	 I	 PERFORM
NOTE	 NUMBER

16-1. Each of the operations performed by the FOS Executive is supported by
a set of commands.

32

FDS EXECUTIVE

(immediately
performed)

4FDS EXECUTIVE

EDITOR

(stores in
sequence table)

SEQUENCE
TABLE

Each of the operations performed by FDS Is supported by one or more commands.
The user communicates with FDS by using these commands. The basic form In
which FDS commands are stated is

f	 COMIAND,paramatar t,parameter 2,parameter 3,...
When FDS commands are described In the user guide, command names will be shown
In capital letters and required parameters will be underlined. A command may
be useable as a directive (which Is executed Immediately), or as a statement
(which Is stored for later execution), or as either.

Most FDS commands can either he executed immediately , or can he stored in a senuence

table for later execution. When a command is to be performed as soon as it is entered
by the user, it is called a DIRECTIVE. When a command is stored for later use -- much
like a statement in a programming language -- it is called a STATEMENT. Statements are
stored In Ssquence Tables, while directives are executed immediately by the FDS
Executive. Although most commands can be used as either directives or statements, there
are a few commands which can only be directives, and a few which can be only statements.

16.2. FDS Directives are executed 	 16-3. FDS Statements are stored in sequence
immediately by the Executive. 	 tahles for later execution.

To perform the computations associated 	 with	 the OMS-2 trajectory
circularization maneuver, the user uses the PERFORM command. The purpose of
the PERFORM command is to cause the execution of a single X Processor. 	 The
generic description of the command is

PERFORM,X Processor name,interface table name

For this particular computation, the desired processor Is the General Purpose
Maneuver Processor, whose abbreviated system name is GPMP. The Interface
Table which was constructed for this maneuver was called OMS2. Thus, the
actual command will be

PERFORM,GPMP,OMS2

This command can be stored as a statemet, In a sequence table, so that it Is
executed at the appropriate point in a larger sequence of statements. If the
user wanted to, though, he or she could type the same command when not editing
a sequence table. In that event, it would be a DIRECTIVE and would be
executed Immediately.

C^

33

17 USING THE TERMINAL

Successful operation of FDS requires a very basic knowledge of the terminal and its use.

Although a variety of terminal
types can be used with FDS. the
basic terminal is the Tektronix
4014. Thi!. terminal has a very

high-quality graphical display
capability. Unless the user
indicates otherwise when signing on
(see later discussion), FDS assumes
that this terminal is the type in
use. Although the basic FDS
dialogue does not make use of
graphics, several of the
X Processors prod.ce graphical
displays if the user is using a
Tektronix terminal.

3

terminals. After the terminal is
turned on (the switch is on the
pedestal, under the keyboard, on 	 17-1. The Tektronix 401 4 is the hasic FDS user

the right), it must be allowed to	 to nninal.

warm up for a minute or two. The
screen must then be cleared (by pressing the RESET/PAGE key at the upper left corner of
the main keyboard) before information can be displayed on it. This same key can ',e used
as desired to clear the screen. It is also recommended that the screen be cleared

before the terminal is turned off.	 If no information 15 input or written to the
terminal for a minute or so, the display intensity is automatically reduced In order to
prolong the life of the CRT. The display can be reinstated by pressing the SHIFT key.
For more detailed information, the user should consult the User Manual for the terrinal.

A& '-

^

f 7 _1^	 • • 'J L< A Lei • U i

T

i_ iTi1
I	 T ^ ^	 lair	 —

r L4I
4:

i

17-2. The Tektronix keyboard has spczial features becau 	 Ic terminal u^c .^ d
storage-tube display.

.1

34

Although many types of user terminals can potentially be used with FOS, the basic FOS
terminal Is the Tektronix 4014 graphical display terminal. 	 It has some special features

which must be understood for satisfactory use, Pspeci -aIIy as regards display clearing.
Other aspects of terminal use which the user should understand include the RETURN key,

command abbreviation and termination, and multiple- lino commands.

When using any terminal. the user indicates completion of an input by depress) G the
RETURN kev. This key (which is abbreviated "(CR)", for carriage return) must be pressed
before FDS can take any action. Thus, when typing in a command, the user must always

press RETURN at the end, even though the command definitions do not indicate this.
RETURN is not actually a part of the command, but is merely the system's way of
recognizing that the user has finished typing.

The user can abbreviate
commands by typing in the
first two for more)

characters of the command.
Thus, the ABSTRACT command
can be abbreviated AB, ABS,
ABST, etc. Semicolons can
also be used to terminate
any command, although only a
few commands actually
require +!:is.	 Blanks can b(
typed between arguments in a
command, 'n or.'er to improve
readability. Otherwise,
commands must be typed as

indicated in the individual
command descriptions
presented in this user
guide.

The user should assure the following switch settings:

I. IOCA V LINE switch set to LINF.
2. ASCII/ALT switch set to ASCII.
3. MARGIN CONTROL set to I.
4. TTY LOCK depres , J.

After turning on tho terminal, the user should depres^

the escape key (ESC), followed by 9 or colon (:), to
set the character size. Allowable codes are:

Escape,S GO characters per line

Escape,9 80 characters per line
Escape,: 120 characters per line
Escape,:	 132 characters pc• r Iine

11-3.	 Ior proper teri^iinal operation, the user must assure
correct switch settings.

In most cases. FDS allows the user to type a single command on multiple lines.
Ordinarily, this facility will be needed only If the command contains many arguments, or
a long text string. The system will assume that the user Intends to continue typing
whenever the user presses RETURN within a literal character string

ABSTRACT,MYPDS,"THIS IS (CR)
CONTINUE:MY ABSTRACT"(CR)

or immediately after a comma
ABSTRACT,MYPDS,(CR)
CONTINUE:"THIS IS MY ABSTRACT"(CR)

Notice that the system automatically prompts the user to continue by displaying
CONTINUE:

Sucn commands can be continued over several lines, as necessary.

If the user wishes to Indicate a line weak within a text string. Control-C is used.
Control-C is abbreviated ' In this user guide. This is the character that Is generated
when +he user presses the key for the letter C while holding down the "CONTROL" key.
This action, within a character string, causes the system to start a new line whenever

this part of the text string is reached. Thus, the input
ABSTRACT,f4YP0S, 11THIS IS •MY AB M ACT"(CR)

causes the new abstract to be
THIS IS
MY ABSTRACT

35

18 Signing On and the OFF Command

When the user signs on or off of the FOS, certain events occur automatically.

Two events happen both when the user signs
on to the FDS and when the user signs off.
At s!gn-on, communication is established
with the FDS Executive and an AWA Is
assigned to the user. At sign-off,
communication with the Executive is

terminated and the AWA is purged.

During Sign-on, FDS:
Establishes user link with Executive

* Establishes (empty) AWA

During Sign-off. FDS
Purges AWA
Terminates user link with Executive

Only Qualified users may sign on to the 	 (1
EU. Each user of the FDS is assigned a 	 18-1. Two events happen both when a user
two-character identification code, called 	 signs on and signs off of FDS.
an ACCESS CODE. This code is assigned by
FOS support personnel and is used to sign on to the FDS. The user may sign on through
any terminal that is displaying the FDS sign-on prompt "FDS Sign-on:". The access code
is also used to Identify the owner cf a PDB. In order to access another user's PDBs,
the corresponding access code must be known.

access code,data base name-class-a:.cess code,sequence table name,terminal type,DWA size

18-2. The user signs on with an access code rather than with a command.

The user can cause a se quence table to he automaticall y executed at si gn-on. At
sign-on, the user can name a sequence table and it will be executed automatically. This
sequence table could, for example, cause desired files and data bases to be retrieved
into the AWA, system messages to be printed, etc. The user specifies the ST by giving
both the name of the data base (e.g., PDB) In which it resides and the name of the ST

Itself.

FDS Sign-on:UC sign-on under access code "UC"

FDS Sign-on:UC,INIT-PD-0C,TAB1 sign-on and cause sequence table TAB1,

stored in PDB INIT and belonging user "OC"

to be executed

FDS Sign-on:UC,SET-MD,TAB3,.64 sign-on and cause TA63 in MDB SET to be

executed and set DWA size to 64 sectors

FDS Sign-on:UC 64 sign-on under access code UC and set DWA size

to 64 sectors

18-3. There are several ways in which to sign on.

&t sign on, the user may a lso specify the terminal type and the des 1 rem size ... the disk
portion of the AWA.	 If no terminal type is specified, the Tektronix 4014 is Js^.-ned,

and graphical displays may be presented on the terminal. The final argument 	 ifles

the maximum number of sectors to to a l located for the disk-resident portion of +ne AWA
(see below). This field is an integer in the range of i-0192. The specified number

will be rounded up to the nearest 16-secttor block. If this argument Is omitted, 400

sectors (25 16-sector blocks) is asswned.

36

To sign on:
access coda ,data base name-class-access code,sequence table name,terminal type,DWA size

To sign off:
OFF
In order to use the FDS, users must first ;Ign on. Signing on establishes
communications with the FOS Executive and allocates an AWA for each user. These effects
are reversed at sign-off. Only qualified users, who have been assigned an access code,
may sign on to the FOS.

The disk portion of the AdA is called the DISK WORK AREA (DWA). The DWA is an extension
of the AWA. The AWA has a fixed size. Any overflows of data from the AWA are

accommodated in the DWA. Exce pt for DRDEs, which are always stored in the DWA, the user
need not be concerned with whether a table, file, etc.dis in the random access memory
portion of the AWA or in the DWA; the FDS Executive automatically retrieves DWA data to
the memory portion of the AWA when it is needed. All DWA management functions and data

transfers are accomplished --utomatically by the FDS Executive. At sign-on, the user

need only specify the desi! •	size of the DWA, if different from the default value.

Enter the directive OFF in response to Executive's % prompt
%:OFF

Then FDS will issue a sign-off warning prompt:
*WARNING*EX*XDOFF*NNN*
SIGN-OFF REQUESTED FOR USER ID, AWA TO BE PURGED
%RESPOND "YES" TO PURGE AWA SIGN-OFF, "NO" TO ABORT SIGN-OFF: (response)

18-4. Signing off is done with the OFF command

f	 Signing off is accomplished with the OFF directive. When the user enters this

directive, FDS will issue a prompt at the user's terminal, warning that the user's AWA
will be purged unless action is taken to save information in the AWA. Any action to
save AWA data must be taken before the sign-off is completed. If data are to be
retained, and have not previously been saved, the user may abcrt the sign-off procedure
by responding "NO" to the prompt. This will terminate the sign-off procedure and
re-establish communication with the Executive. A response of "YES" to the prompt will

cause the sign-off procedure to be completed.

When working on the example problem, assume that

the information that has been generated so far
is stored in a PDB called EXPL1. A sequence
table, for example INIT, could be constructed to

cause EXPL1 to be loaded into the AWA. Assuming
•	 that INIT is stored In a PDB called SET, which

belongs to user UC, INIT could be executed
'	 automatically by signing on in the following

way:

UC,SET-PD-UC,INIT „ 800

This particular sign-on entry also requested
that the DWA size be set to 800 sectors.

s

INIT-ST

100, GET,EXPL1-PD

200, TOC

37

19 UZEM MESSAGES

Certain conditions will cause FDS to generate a system message that may, or may not,
require a user response.

A system message, initiated and generated by FDS. Informs the user of some condition or
occurrence within the Executive or a processor. A system message will include a
severity code, origin of the message, name of the program issuing the message, a number
identifying the displayed message, and message text explaining the situation. The
severity code will consist of either ERROR, which indicates that a failure occurred,
terminating the immediate execution process, WARNING, which informs the user that a
problem nas been detected which may require action (at the user's discretion), or J=,
a system message that contains instructional or guidance information. The origin of
these messages will either be the Executive or a particular processor. As a general

rule, the user is not required to respond to these types of messages. The user
ordinarily will not make use of the program name and message number, but may use this
information In requesting a more detailed explanation of the error.

By typing in the identifier of an error message, followed by_a question mark, the user
can obtain a more detailed explanation. If, for example, the message is identified with
the characters (*ERROR*PR*GPMP*001*), the user can obtain more detailed information by
typing the characters (*ERROR*PR*GPMP*001*7).

*ERROR*PR*GPMP*001*
INPUT VECTOR IS NOT TEG/CARTESIAN
%:*PR*GPMP*001*?
*** MESSAGE PR*GPMP001
INPUT VECTOR IS NOT TEG/CARTESIAN
*** TUTORIAL
MEANING: THE USER HAS INPUT A VECTOR THAT IS NOT IN THE TRUE EQUATOR AND

GREENWICH MERIDIAN OF EPOCH CARTESIAN COORDINATE SYSTEM.
ACTION REQUIRED: TRANSFORM THE VECTOR TO TEG/CARTESIAN

19-1. After a system message, the user can request more information.

I f there is an abnormal processor termination (abend)- the user will be notified by FDS.
In most cases, an abnormal processor termination is caused by an error in the input
data. The user is notified of the processor abend and recovery procedures will depend
on the mode of operation. The PERFORM command which caused the processor to be executed
may have been entered directly by the user, or it may be in a Sequence Table. In all
cases, the PERFORM command is terminated. If a ST is being executed in the AUTOMATIC
mode, execution of the entire ST is also terminated. While in the SEMIAUTOMATIC mode,

an error will cause the user to be reprompted with the same entry of the Sequence Table

which caused the abend to occur. In the BATCH mode, an error will terminate the job and
the user is notified of the abend via the BATCH printed output. In any case, output
data may be nonexistent, or only partially available, depending on where the abend
occurred. The user is responsible for examining the data and performing the necessary
housekeeping functions to correct the error.

If the user initiates a processor abort (abend). FDS will venerate a message requesting
net action. When there is no outstanding prompt on the user's terminal, the user can

strike the break key to obtain the following message from FDS.

*INFO*EX*XMNTR*nnn*
USER INITIATED INTERRUPT

ENTER REQUEST - STATUS SUMMARY (SS), ABORT (%), OR CONTINUE (CR):

J

38

_	 FOS generates system messages that expla i n certain conditions. ERROR, WARNING, or INFO 	 n
messages describe conditions within the Executive or a processor. Mode of operation
will determine FOS no+l l icatlon procedures during a processor abnormal termination
(abend). User-initiated processor abend (using the "break" key) will result in a status
hummary display, awr - o` processor operation, or continuation of processor execution,
at the option of the vser.

MODE 	 DESCRIPTION

Manual	 User executes one processor by typing PERF0RM command.

Semiautomatic	 System executes Sequence Table, one statement at a time,
as a result of SEMIAUTOMATIC command. User is given
opportunity to alter or veto each statement before
it is executed.

9	
Automatic	 System executes entire Sequence Table as j result of

AUTOMATIC command. There is user interaction only if

the processor requires information not provided by the
Interface Table.

Batch	 A Sequence Table is submitted, via the BATCH command,
for later execution by the system. There is no
interaction with the user, who may not even be signed
on at batch execution time.

19-2. Mode of operation will affect error recovery.

If the user responds with (SS), FDS will display the functional status of all active

tasks associated with the terminal.	 If a (CR S (carriage return) is struck in response

to the user initiated interrupt, no action is taken and the processor continues to
execute. When the (%) symbol is used, a second prompt is issued to solicit concurrence

to abort and to display information about the program name, stack position, and monitor
identification. The prompt is: (task name) TO BE CANCELLED, REPLY YES TO CANCEL, NO TO

ABORT CANCEL: A YES response will abnormally terminate the current l y active

program. The user is notified of the program termination and reprompted appropriately.
A NO response causes the processor to continue to execute.

When there is an outstanding Drom t on the user's terminal. and the user wishes to abend

the executing command or processor. the uthe user merely enters the M sthe (^) s,;,bol. At that

point, FDS not ities the user of the processor termination and the user is reprompted
appropriately.

BREAK	 KEY	 STATUS DISPLAv

SYMB PROGNAME OLDTAB-CLASS NEWTAB SEO t

i XDEDIT - ST Z1 200900

XDEDIT -	 IT Z1 eeeeee

f XDXCTL T1	 - ST "Bel@

f XDALLO - eeeeee

19-3.	 If (SS) is keyed durinq a user initiated interrupt, FDS will

display a status summary.

39

20 EDIT Command. EXIT Command

The editor is used to construct new tables and alter old tables.

The editor is that portion of the FUS Executive that provides the user with the
capabilities to create new tables or modify existing tables. The user can edit

interface, sequence, linkage, and Y-data tabies.

With the editor, the user can:

create a new sequence or Y-data table

> create a copy of a default linkage or interface table and modify it

> create a copy of any existing table and modify it

> modify an existing table

> add new entries to any sequence or Y-data table

> complete entries with incomplete or missing data fields

> modify data fields within an entry

20-1. The editor is used to create and/or modify tables.

All editing is performed on a temporary copy of a table. The FDS editor creates a
temporary, duplicate copy of a table being edited. Changes are made only to this
temporary table. If the editing function is aborted, no changes are made to the table
being edited.	 If the editor is terminated normally, then the modified table is stored
in the AWA, whore it can remain for the duration of the terminal session. In order to
make these changes permanent, the revised table must be copied to a PDB.

The editing function can be invoked in either of two whys -- explicitly or implicitly.
The editor is invoked EXPLICITLY by use of the EDIT command. The user does this in
order to create or modify a table and store it for later use.

The editor can be 1 14PLICITLY invcked when the system is attempting to use a table that
has incomplete or missing items. In this case, the system automatically invokes the
editor in order to allow the user to provide the required information. When this
occurs, the edito r prompts the user to provide the specific information that is missing.
A typical implicit editor invocation is the situation in which an X Processor is
executed, and the interface table has missing or incomplete data. The editor is Invoked
because the data must be provided before the processor can continue. in the case of the
interface table, the user provides the missing data, and this information is relayed to
the processor, but it is aQ± moored in the interface table. If the same table is used
again, the same missing or incomplete values must be provided.

Because tables differ in their
content. a slig(Ly different editing
capability Is provided fcr each type
of table. The FDS (A itor is divided
into four areas, each with its own
unique prompt symbol. Each area
corresponds to a type of table and the

editing operations that can be appl;pd
are a function of the type of table
involved.

- sequence table editing function

\ - interface table editing function

- linkage table editing function

- Y-data table editing function

20-2. There are four functional areas of
the table editor.

40

i

The EDIT command provides access to the FDS
This command	 invokes a table editor, whose behavior

capabilities to create and modify	 tables.
differs depending on the type of

file	 (classification code) 	 being edited.
EDIT,current table name, new table name-classification code,reference name

The EXIT command causes a normal	 termination of	 an editing operation, 	 including storage
of	 the modified	 file.	 An editing operation can he aborted by typing the E character.

EXIT

Normally,	 the editor	 is terminated by
tynina	 in the EDIT command. 	 EXIT	 is a
directive only,	 and	 cannot meaningfully 	 be

EXIT stored	 in a sequence table.	 When the user
types EXIT,	 the modified table 	 is stored	 in
the AWA	 (if	 the editor	 wz-.	 implicitly

invoked).	 Of	 course,	 the table must be
copied to a PDB	 if the user wishes to save

20-3.	 The syntax of the EXIT it beyond the current terminal	 session.
command.

The editor can also ba abQrted• without saving any results of the editing operation.
The user does this by typing the % character. This character is the normal prompt
symbol for the Executive. By typing it while in the editor, the user is asking for an
immediate return to the condition which existed before the editor was invoked. No
information is saved from the editing operation, and the table being edited remains
unchanged. The user can do this even if the editor was implicitly invoked.

EDIT,current table name,new table name-classification code,reference naiie

20-4. The syntax of the EDIT command.

The EDIT command must name a "new table" and may also name a "current table" and a
"reference name". The NEW TABLE name specifies where the table being edited will be
stored when the editor is EXITed. The CURRENT TABLE name indicates the table to which
modifications will be made. The REFERENCE NAME is used to indicate the X Processor for
which a new Interface table is being constructed or the document/segment associated with
a linkage table.	 If the current name is omitted, then a new table will be created. 	 If
both the current table name and new table name are specified, then changes made to the
contents of the current table will be stored under the new table name. If the current
table name and new table name are the same, then modifications are actually made to the
current table.

Command

EDIT „ NEW-ST (create)

EDIT „NEW-IT,PROCA (create)

EDJT,OLD,NEW-IT (copy and modify)

Effect

EDIT =-> NEW TABLE

DEFAULT IT >> EDIT ;> NEW IT

OLD TABLE >> EDIT ;> NEW TABLE

EDIT,TAPI,TAB1-ST (modify) 	 I CURRENT TABLE 4> EDIT >> MODIFIED CURRENT TABLE

9-5. There are four ways to use the EDIT command.

41

21 Using the Editor. MODE C Qmmand

The editor interacts with the user in one of several modes, depending upon the type of
table being edited and what the user wants to do with that table.

The FOS Editor can operate in any of five modes. The CREATE mode Is used to create a
new sequence or Y-data table. These are the only types of tables that the user can
create directly.	 !nterface and linkage tables can be created only by modifying an
existing table. This is done by using the UPDATE mode. The update mode is used to
insert new table entries and modify existing table entries. 	 It is the only editing mode
in which directives to the FDS Executive can be given. For example, deleting an entry,
with the DELETE command, can only be done In this mode. The INCOMPLETE mode causes the
editor to read through the file, looking only for instances of incomplete data. Each of
these incomplete entries Is displayed, and the user is prompted to provide the needed
inf ^rmation. The user can provide the data or skip to the next parameter for which no
value ! q present in the table. The MISSING mode behaves the same way, but cycles

through e,l Instances of opt i onal data which are missing from the table. The missing
mod:; can be used only with i+terface tables and linkage tables, since these are the only
table types which can have "optional" parameters. The ALL mode starts at tho top of a

table and displays each entry in turn. 	 In addition to a simple display of every line,

the user is prompted and allowed to edit any entries that are either incomplete or
mis;ing.

MODE PURPOSE

Can be Used With

IT LT ST YDT

CREATE Create new table No

Yes

No

Yes

Yes

Yes

Yes

Yes
UPDATE Modify table entries

(Executive directives allowed)

INCOMPLETE Find and edit
parameters which are incomplete Yes Yes Yes Yes

MISSING Find and edit optional
parameters which are missing Yes Yes I	 No No

ALL Scan and edit entire table,
one entry at a time Yes Yes Yes Yes

21-1. The editor operates in any of several modes.

The mode reaulred to create a new table depends on the table type. A new sequence or
Y-data table can be created either by editing an existing table or actually creating a
new table. For these two types of tables, therefore, the user may either initialize the
editor wits, an existing table or directly enter the create mode. Interface and linkage
tables can only be created by editing an existing table or the corresponding default

table. w

42

t:

The FDS Editor will be Initialized In one of several modes, depending on the

type of table being edited and the status of that table. Each mode Is used to
perform different editing tasks. The MODE command allows the user to select a
desired mode.

The manner in which table entries are referenced is determined by the form of the table
entries. Sequence and Y-data table entries consist of commands ("statements") and
character strings, respectively. For each entry, the user must supply an entry number,
and individual entries are referenced, or accessed, by this number. Although entries in
interface and linkage tables are also numbered, the user cannot alter these numbers.
Entries in these tables consist of parameter keywords and parameter values and they are
referenced by the parameter keywords.

:I

OF

Sequence table

\	 Interface table

Linkage Table

Y-Data table

21-2. The user types a prompt
character to switch to the

update mode.

The MODE command allows the user to select
_4IL ed i t i na mQde. When an editor is
explicitly invoked, it wIll be in either
the update, incomplete, or create mode.

The update mode is, In a sense, the basic
mode of the aditor. It is, for example,
the only mode in which FDS Executive
directives can be typed in by the user, for
immediate execution. When the editor is
not in the update mode, the user can switch
to the update mode by typing the prompt
character associated with the particular
type of table being edited. Once in the
update mode, the user can, if desired,
select another mode by using the MODE
command.

Depending on the state of the table being
edited. the editor will initially be
invoked in one of three modes. If a table
has no incomplete or missing entries, then

the update mode will be used.	 If a table

has incomplete entries, then the incomplete
mode will be used. The create mode will be
invoked only if the user is creating a new
sequence or Y-data table.

MODE,descriptor

A	 --	 All MODE ,A

C	 --	 Create MODE,C

I	 --	 Incomplete MODE,I
M	 --	 Missing MODEM

21-3. After the editor has been
invoked, the MODE command can be
used to select a desired mode.

C^

In a previous module ("DETAILED CONTENTS Or INTERFACE TABLES") a sample
Interface table for the GPMP processor was presented. That IT was called OMS&';
and was incomplete. Thus, the comnand

EDIT, OMS2, OMS2-IT
causes the editor to be Invoked In the INCOMPLETE mode, and the editor generates
the prompt

\260,GEOPOTFN-:
This prompt asks the user to provide a value for the parameter GEOPOTEN.

Ordinarily, the value will be the name of a data element which defines the
mathematical properties of the geopotentlal model to be used by GPMP.

Once the user types In this value, the IT Is complete, since all other required

values have already been provided. The editor then reverts automatically to the
UPDATE mode, presentin g the prompt

\:
The user can now type EXIT, or do any other desired editing operations.

43

22 BASIC EDITOR DIRECTIVES AND RESPONSES

Within the editor, there are several responses that can be used to obtain help or to
perform common operations, regardless of the type of table being edited.

Lash of the editormodes, except for the "all" mode, has a u[jjQue syntax. and different
user responses are allowed. When an editor Is ready for a user response, certain
information is displayed to the user. This information differs as , function of mode,

as de the responses that will be accepted. The "all" mode uses the syntax of the
"update" mode if an entry is complete and that of the "incomplete" mode if an entr y has
incomplete fields.

RESPONSE	 OPERATION

carriage return	 skip to "next" entry
abort and return to previous condition

?	 display list of statements, directives, or parameter keywords
directive	 execute named FDS Executive directive
directive?	 display syntax of named FDS Executive directive
&	 incomplete item indicator
&LABEL	 labeled incomplete item indicator

22-1. Some user responses are common to the editing of all table types.

A CARRIAGE RETURN, used by itsel f , is a directive that causes an editor to skip to the
next entry. The "next entry", however, depends on the mode that the editor Is currently
in.	 In the "all" mode, a carriage return causes a skip to the next entry. 	 In the

"missing" and "incomplete" modes, a carriage return causes the editor to display the
next missing entry or the next entry with incomplete data fields.	 In the "update" and
"create" modes, a carriage return has no effect.

Certain special symbols can be input by the user to abort the editor, or to return to
the update mode. The user can always abort the editor and return to the prior condition
by entering the p symbol. To get into the update mode, the user types the special
symbol corresonding to the type of table being edited.

The ? symbol is used to obtain information about the responses which the user can
"legally" make in the current situation. 	 If the editor is in the Incomplete mode or the
missing mode, the user has been prompted with a request for specific Information (e. a.,

the value which is to be associated with a keyword. 	 In this situation, the ? can be
used to obtain an "extended prompt" which provides additional information about the
Incomplete or missing item (e.g., the definition of the interface --able parameter whose
value is missing). On the other hand, a ? in the update mode causes the system to list

all FDS directives and, in some cases, additional helpful information.

44

Al Though the FDS Edltor has somewhat different behavior for each type of iablo, some
user responses can be used re gardless of the type of table beii.g edited. These
responses can be used to obtain. help or -in perform common operations.

An 	 command that is to be acted on
Immediately is a "directive". Such
directives can only be used in the

update mode (or, of course, outside

the editor altogether). 	 If the
directive that Is named Is not valid,
no action Is taken. Otherwise, the
•-equested directive Is executed. The
syntax of any valid directive can be

•	 displayed by typing the name of the
directive, followed by a question
mark.

aj/'^j'j

carr l ,.ge	 return I	 X	 X	 X

L X x	 X	 X	 X

? x X I	 X	 ;	 X
revert to uDdetq X	 X	 x	 X
directive X

directive? X

s x	 z	 ^x	 iz
&LABEL X	 X	 r	 X	 i

LIST X

DELETE Y

EXIT

•	

22-2. Editor responses can only be
used in certain modes.

The & specifies that a data item is to be left incomplete. The & can be typed as part
of an original entry, or can be g iven as a response to a prompt in the incomplete,
missing, or all modes. The ampersand is actually stored as part of the table, and is
the signal to FDS that this entry is incomplete. A given entry may have multiple
incomplete values.	 In this case, the editor automatically assigns a sequence number to

the incomplete item for display purposes. For example, an input of:

10,LIST,&,TAB3-ST,&,TAB4-IT

would be displayed with unique sequence numbers after the ampersands, as:

0 ,LIST,&1,TAB3-ST,&2,TAB4-IT

The &LABEL "placeholder" is like the &, but a label of up to 7 alphanumeric characters
has been added to aid the user in identifying what is left incomplete. When the label
is used, incomplete items are not numbered by the editor.

LIST,(first entry number - last entry number)

DELETE,(first entry number - last entry number)

Examples:
LIST,(10-40)

DELETE,(30-30)

22-3. When used as directives in the update mode, the LIST and
DELETE commands can be used in simplified form.

The LIST and DELETE directives can be used within an editor. These directives can be
used to list or delete all or part of the table being edited. These functions can also

be used as FDS Executive commands and the syntax that is used in the editor differs from
that used outside the editor. Within the editor, the user specifies the range of lines
to be listed or deleted. Typing only LIST, with no parameters, will cause the entire

table to be listed.

45

23 JNTEK1 CF TABLE EO I T I NG

The nature of interface tables determines some of the actions the user can take during

IT editing.

The structure of an Interface table is determined by the input/out ut requirements of

the X Processor whI(h w1.11 us_p_Lt. The IT structure Is determined by FDS support

personnel, and cannot be changed by the user. Thus, keywords and entry numbers are
fixed. The only actions available to the user are those associated with adding,

deleting, or changing glues associated with the keywords.

To insure that all cables have the Correct structure, new tables can be created only by

gdaln(2 existino tables. Thus, the create mode does not exist for IT editing. The user
can create a new table by modifying an exising one, changing only those values which are
riot already correct. Alternatively, the user can start with the default table (by

providing no "existing table name" in the EDIT command).	 In this case, all values not

present to the default table must be Provided by the user.

MODE USE

UPDATE edit,	 list,	 change,	 etc.,	 with	 Executive	 directives

INCOMPLETE view and change	 incomplete entries

ALL view each entry from start of table

MISSING view and change missing entries

23-1.	 interface table editing can be done in any of four modes.

The way 12 which FDS prompts the user depends on the mode and the state of the IT entry.

When the editor is initia' 1,,, invoked, it starts in the INCOMPLETE mode, giving the user
a chance to complete an- Incomplete entries. (Of course, if there are no incomplete
entries, the editor aut-.xnatitally switches to the update mode.) Each Incomplete entry
generates a prompt wh ch shows the entire Incomplete entry and gives the user an
opportunity to specify one or more missing values. The user Is prompted for each
succeeding nonexistent value of the entry, until all such values have been addressed:

10,A=1,&ABLE,&1,4
\&ABLE:2
\d1:3

In this example, the user has provided the values 2 and 3, respectively, for the
nonexistent values. A similar prompt is provided In the ALL mode whenever an Incomplete
entry is encountered. A slightly abbreviated prompt is provided in the MISSING mode,
since It is known that no value field yet exists. This prompt shows the entry number,
parameter name, and the equivalence symbol which shows whether the entry Is an Input
(=), output (@), or Input/output (_@) parameter:

40,MODEL=:IiMODNAME

In this example, the user has typed the value IIMODNAME after the prompt. In the UPDATE
mode, the prompt consists simply of the IT editor _ymbol:

46

The Interface table editing function is used to create new interface tables from default
or other existing tables, and to modify existing Interface tables.

r

The user may respond to IT editor prompts with a subscript and value. For example, If
the parameter INVALS is an array, the user can enter values into Its third and fourth
elements by responding

40,INVALS=:(3)7.,8.
This Input causes INVALS(3) to have the value 7.0, and INVALS(4) to have the value 8.0.

u ^^

repetition. FDS provides a "shorthanf l method of inputting the values. The REPEAT LIST

d	 allows the value or group of values to be typed only once, with a repetition factor
I•	which indicates how many times it is to be repeated. Thus, the input 20R5 is equivalent

to typing twenty separate values, each consisting of the number five. If more than one
value appears in the repeat list, the list must be enclosed In parentheses, as in
20R(1,2,3). These expressions can even be nested to a dep-h of four or less, as In
20R(1,2R5). No subscripts may appear within a repeat list. A repeat list may contain
only literal values or Incomplete indicators W. 	 If a table entry requires or is
provided with reference to a DE, DRDE, or Linkage TaJle, only one such reference Is
needed and a repeat list cannot be used.

"REPEAT LIST"	 FORM EQUIVALENT

4R5 5,5,5,5

1,2R2,3R3 1,2,2,3,3,3
3R(5,7,"AB") 5,7,"AB"	 5,7,"AB",5,7,"AB"

2R(2R3."XY") 3,3,"XY",3,3,"XY"

23-2. The repeat list can be used to repeat a list a values.

E

47

i	 --

24 AN EXALIPLE OF INTERFACE 1ABLE EDITING

The preparation of the Interface table for the OMS-2 circularization maneuver provides a
good, fairly typical example of 11 editing.

A previous module, "DETAILED CONTENTS OF INTERFACE TABLES", presented the OMS-2 IT as an
example. This module will discuss the use of the editor to construct that IT. Assuming
that the user starts with the default Interface table for GPM°, rather Than an existing
IT, the command which starts the editing process Is

`L: ED IT„OMS2- IT,GPMP

Because there are required parameters, for this interface table, which do not have
default values, the table Is incomplete. Therefore, the editor starts In the Incomplete
mode, giving the user a chance to provide values fir these parameters.

60,PR000N=81,12,&3,&4
\&1:10
\&2:1.OE-4
\&3:6.0/E-4
\&4:75.

In the case of PROCON, the user provides four GPMP tolerance values to be used In the
computation. Similarly, the user provides values for other required parameters

70,INVEC=&l
\&l:RESULT(1,3)
80,THRUST=41
\&1:1.2E+04
90,!SP=&1
\&1:3.131999E+02
100,ENGID=&l
\ &1:"OMS”
110,K,MD=&1
\ &1:"CIRC"
270,SVPROP=&1

\&1:

Whenever the user needs additional informat!on about the parameter, the ? character can

be used.

270,SVPROP=&l
\&l=:?
STATE VECTOR PROPAGATOR SELECTION FLAG

"CON" =CONIC,"AEG" = ANALYTIC EPHEMERIS GENERATOR
\ &I :"AEG"

290,GPMPTET@&l
\ &,:RESULT(1,3)
300,SUMTAB@&l
\ &1:ICIRTAB

The editor switches to the update mode when all required parameters have been provided.

48

Interface tablt, editing Is Illustrated by construction of the IT for the OMS-2t	 circularization maneuver.

It would be easy to assume that the Interface table Is now finished. 'That Is not the
case, however. Values have been provided for all parameters which are required" but
this Includes Only those parameters which are always neuded by tie X Processor In
question.	 In this particular case, there are also some optional p— dmeters for which
values will be needed hecaus^ of the particular way the user Is applying the Processor
this ti m . In this particular case, most of the optional parameters are needed because
the "CIRC" maneuver option was selected. At this point, the user has two basic options.
One Is to wait and provide the values during actual execution -- each time the processor
needs a value not provided in the table, the editor will be Invoked automatically. The
other Is to provide the values now, before processor execution. To do this, the user
might use the MODE command to get Into the MISSING mode.

\:MODE,M

The system will then step through the optional parameters which are missing f rom the IT,

eventually reaching those of interest to the user in this case.

\ 24C,DENSMODL=:IIDENSMD
\ 250, SOL AFL l;X = : I I SOL READ
\ 260 , r,EOPOTEN = : ?

GEOPOTENTIAL MODEL
\ 260,GEOPOTEN=:di

With the exception that the user has intentionally deferred the definition of an Input
date element defining the geopotentlal model, the IT Is now complete. It can be kept

(In the AWA) simply by a normal exit from the editor

\:EXIT

The table Is now available for actual use by the GP'MP processor.

n 	 49

25 She uence Table Edltlno. NUMBER Command. 14 TE Command

Because sequence tables are the only tables that can contain Executive commands, some
unique ST editing capabilities are provided.

The ray In which FDS r.QM1s the user depends an the mode and the state of the ST entry.
When the editor is Invoked with the name of an existing sequence table, it starts in the
INCOMPLETE mode, giving the user a chance to complete any incomplete entries. (Of
course, If there are no Incomplete entries, the editor automatically switches to the
update mode.) Each Incomplete entry generates a prompt which shows the entire
incomplete entry and gives the user an opportunity to specify one missing value. The
user is prompted for each succeeding nonexistent value of the entry, until all such
-:clues have been addressed:

120, PERFORM, GPMP,VT NAME
xbITNAMF:OMS2

In this example. the user has provided the name (OMS2) of the interface table which is
to be used In c-.onnectlon with one execution of the GPMP processor. A similar prompt is
provided in the ALL mode whenever an Incomplete entry is 3ncountered. Wheneier the user
substitutes information for a placeholder, the substituted information Is checked to see

that it follows the syntax rul,,s for the particular statement. In the UPDATE mode, the

prompt consists simply of the ST editor symbol:
X:

MODE	 USE

UPDATE	 edit, list, change, etc. with Executive directives

CREATE	 create new tables, add entries at end of existing table

INCOMPLETE	 view and change incomplete entries

ALL	 view each entry from start of table

25-1. Seluence Table editing can be done in any of four modes.

Wk— +n., .,,41+nr Ic In-6nd wi+hnii+ naminn An nvIctlnn ST_ It ctnrtc in the CRFATF mndP_

This mode can also be entered via the mode command, of course. In the create mode, the
editor allows the user to add new statements at the end of the table. The editor
automatically generates the entry numbers, and the user need only type the statement

itself:

i110,:PERFORI.I,GPMP,OMS1
#120,:F`ERFORM,GPMP,&ITNAMF

In this example, the user has typed In commands which will later cause the execution of

the GPMP processor for both OMS-1 and OMS-2 burns. The naming of the Interface table

for the OMS-2 burn has been deferred by the user.

In the UPDATE mode the user can obtain simple tutorial Information about the statements

whi ch may appear in A sequence table. By typing a question mark (?) character, the user
can obtain a list of legal ST statements. These statements Include all Executive
directives except CLEAR and OFF, and also Include DO LOOP, LCOP END, IF and ELSE. By
typing a statement keyword followed by a question mark (e.g., STORf?), the user can

obtain Information about the syntax o' a particular statement.

50

The sequence table editino function Is used to create new sequence tables, and to modify
existing STs. Sequence tables are the only table type that can contain commands to the
Executive. The NUMBER directive can be used to renumber the table which Is being
edited.

NUMBER
The NOTE statement allows the user to store textual comments within STs.

NOTE ,11texi"

Two FDS commands are especially associated with sequence tables and their edltir,^. The
NUMBER directive allows the FDS user to renumber the entries ;n a sequence table or
Y-data table which is being edited. The entries retain their original order, but are
renumbered, beginning with 10 and incrementing by 10 for each subsequent entry. The
NUMBER directive can be executed only when the editor is in the update mode.

•	 NUMBER

25-2. Syntax of the NUMBER directive.

The NOTE statement allows V e FDS user to add comments to sequence tables. These
comments are not executed, but are used for clarifying the purpose of the sequence table
or to provide tutorial information. For example, the ST might be divided into segments,

each identifed by a NOTE:

110,NOTE, "THE FOLLOWING STATEMENTS ESTABLISH A 200 NM. ORBIT"

NOTE statements are simply stored in the table like any other statements. They are

46
	 displayed when an ST Is listed or executed in the SEMIAUTOMATIC mode. When a ST

is executed in the AUTOMATIC or BATCH mode, the comments are displayed only If the
appropriate trace option is specified. The text portion of the comment is bracketed by
quotation marks ("), and may be up to 1600 characters long (counting control-C
characters).

NOTE,"text"

25-3. Syntax of the NOTE statement.

It

1

51

26 AN EXAMPLE OF SEQUENCE TABLE EDITING

The preparation of the basic sequence table for trajectory planning of the example
problem provides a good, fairly typical example of ST editing.

A previous module, "SEQUENCE TABLES", presented a trajectory planning ST as an example.
This module will discuss the use of the editor to .(nstruct that ST. Assuming that the
user starts from scratch, rather than with an existing ST, the command which starts the
editing process is

%:EDii„ EXP1-ST
Since no old t,ible name is given in this command, the editor starts in the CREATE mode.
In this mode, the editor generates the entry numbers and prompts the user for tho
contents of each entry.

#10,:NOTE,"INITIALIZATION"
#20,:PERFORM,BASTM,T1
#30,:PERFORM,PHYDM,HOWBIG

#40,:ALLOCATE,INVEC(30,20)-R
#50,:ALLOCATE,RESULT(30,20)-R

#60,:ALLCCATE,HIALT(30,20)-R

#70,:NOTE,"ASCENT"
#80,:PERFORM,ASCENT,BITNAME

Note that the user has deferred the decision concerning the IT name for the ASCENT
processor.

By using the ? character, the user can obtain helpful Information. For example, the
response

#90,:?

will cause FDS to list all the statements which can appear in a sequence table, while
the response

#90,:ASSIGN?

allows the user to obtain informatlon about the syntax of a particular statement (in

this case, ASSIGN). When the initial input of the sequence table has been completed,
the user can Input the ST editor symbol to change to the UPDATE mode.

#320,:PERFORM,GTRACK,GTK
#330,:PERFORM,FPD,FLTP
#340,:#

Now the table can be LISTed and edited further using CHANGE, INSERT, and other commands
discussed later. If the user changes to the INCOMPLETE mode at this time, FDS will
provide prompts for any information which the user deferred.

#:MODE,I
80,PERFORM,ASCENT,8ITNAME
#81TNAMF:UP

Alternatively, the user might store the table in this incomplete form, in which case the
editor would automatically start in the INCOMPLETE mode in any subsequent editing

session.

52

nom.,'.-..... ^...^	 _.. -_-

Sequence table editing is illustrated by construct i on of a basic sequence table for the
trajectory design portion of the example problem.

When the editing session is finished, -the user can EXIT normally,

#:EXIT

in which case the generated table will be stored in the AWA under the name EXP1.

_	
Alternatively, the editing results can be thrown away by entering the Executive prompt
symbol (^>.

In this case, the edited table (EXP1-ST) is deleted. Care must be used in aborting the

•	 editor in this way, in order to avoid inadvertent deletion of needed information.

53

27 ABSTRACT Command (Creating, Replacing, and Displaying Abstracts)

The ABSTRACT command displays the date/time tag and an abstract for any specified table,
DE, DRDE, data base, YOD, document/segment, Xjob, Yjob, or processor, and allows the
user to create or replace abstracts for personally ownr:d files, data bases, etc.

The ABSTRACT command can be used to learn what information is present in tables. files,
or data bases without viewing dIL of the Information. An abstract is a textual

description of the contents of an OBJECT. Included with the abstract is information on
the date and time the object was last changed and the creator of the table, file, data
base, or processor. The user can add a new abstract where none exists or replace an
existing abstract for personally owned objects or for another user's PDB, if the user
has access to it. MDBs, X and Y Processors, and document/segments have abstracts that
are maintained by FDS support personnel. These abstracts can be displayed, but not

modified.

ABSTRACT-device code,obiect,"text of abstract"

27-1. Syntax of the ABSTRACT command.

OBJECT is an argument used in some commands to reference a file, data base, table- or
processor. The OBJECT consists of an OBJECT NAME, a DATA CLASSIFICATION CODE, and, in
some cases, an ACCESS CODE. The object name is the name of the file or data base to be
processed while the data classification code indicates the file or data base type. 	 If

the object is a PDB belonging to another user, that user's access code must also be
provided. The access code is a two-character code; an access code is assigned to each
FDS user.

Abstracts can be added, replaced, or displayed for these data items

table name-class TAB1-IT
data element name-DE STAT-DE

DRDE name-DF DSK-DF

PDB name-PL PROBE-PD
YOD file name-YJ YDAT1-YJ

X Job name-XJ XDAT1-XJ

Abstracts can only be displayed for these data items

MDB name-MD	 !IGLOCON-MD
X Processor name-XP 	 XPYES-XP
Y Processor name-YP 	 MNSTR-YP

document/segment name-DS	 CFPTRJ-DS

To display the abstract for another user's PDB, use that user's access code

PDB name-PD-access code 	 FILEi-PD-UC

27-2. The OBJECT field is used to innicate a file, data base, or processor.

54

- ST sequence table
-	 IT interface table
- LT linkage table
- YT Y-data table
- DE data element
- DF DRDE
- PD personal data base
- MD master data base
- YJ YOD or Y-job
- XJ X-job
- XP X processor
- YP Y processor
- DS document/segment

27-3. hATA CLASSIFICATION CODES indicate
the type of data to be processed.

An abstract can be associated with all tables, files, data bases, and processors.
The abstract Is a brief, textual description of the contents of a data item. By
adding abstracts to each data Item that Is created, users will be able to Identify
the contents of that item more readily. The ABSTRACT command Is used to create,
replace, and display abstracts.

ABSTRACT-device code,oblect,"text of abstract"

The DEVICE ID is used to designate the output
device for display purposes. Output from the
ABSTRACT, and other commands, can be displayed
either at the user's terminal or on the system
line printer.	 If no device identifier is
specified, the line printer Is assumed for the
BATCH mode and the terminal is assumed for
interactive sessions.

To display the abstract for an interface table (without update):

ABSTRACT, TAB1-IT

To display the abstract for another user's PDB:

ABSTRACT, PDBi-PD-KP

To replace and then display the abstract for a data element:

ABSTRACT, EVENTS-DE, "TRAJECTORY EVENTS THROUGH OMS-2"

27-4. Examples of use of the ABSTRACT command.

One cf the uses of the ABSTRACT command is to obtain information about
processors and MDBs provided by the system. In the example problem, one of the
X Processors that will be used is GPMP. 	 In order to display the abstract for
this processor, the command is:

ABSTRACT,GPMP-XP

and the resulting display provides basic Information about the nature and use of
this X Processor.

The second major purpose of ABSTRACT is to allow the user to add information to
a file which describes its nature and use. For the example problem, the user

	

•	 might create a sequence table called EXPL1 and add an abstract that identifies
it as being related to the example problem.	 In this case, this con,mand may be
used:

%:ABSTRACT,EXPL1-ST,"THIS TABLE CONTAINS A SEQUENCE OF COMMANDS (CR)
CONTINUE:THAT SOLVES THE ° CFP PORTION OF THE EXAMPLE PROBLEM (CR)

	

4	 CONTINUF:IN THE FOS USER'S GUIDE."

The "'iEXT OF THE ABSTRACT" is a character string
(^J up to 256 characters.	 It must be enclosed in
quotation marks ("). If the abstract to be
entered requires more than one line of input.

entering a carriage return, will cause the prompt
CONTINUE: to appear, and the user can continue
entering the text. The text is terminated with
a quotation mark ("). Typing Control-C within
the text causes a new line in the displayed
abstract.

55

28 Command (Display Contents of Tables and Other Files)

The LIST command is used to display the contents of tables and files.

LIST-device ID,object name(span)-file type, ...

28-1. Syntax of the LIST command.

The LIST command allows the FDS user to display the contents of any table, DE. DRDE. or
YOD file. Ordinarily, the user indicates one or more files to be listed, by name. If
several files are named, they will be listed in the order given in the command. Files
can be listed in their entirety, or the
user can specify which line or lines of the 	 Sequence table - ST
file are to be listed. The user car also 	 Interface table - IT
specify the device on which the listing is	 Linkage table - LT
to be done. If no device ID is given, the	 Y-data table - YT
listing is transmitted to the user's	 Data elements - DE
.erminal. If the characters 11-P" are added	 Disk-resident data elements - DF
after the word LIST, the output will go to 	 YOD file - YJ
the system line printer.

28-2. The OBJECT field is used to
indicate a table or file.

The CPAM fioli is — —i +_ onorlfu limit, — +ho ++. n4 +.bloc — n pF +. h. Ilc+cl

For tables and YOD files, the span specifies the entry numbers of the first and last
table entries to be listed. For DEs, the span fi-ld consists of the subscripts of the
items to be listed.	 If either the start or end of the span is not indica ted, the first
or last entries, respectively, are assumed. The user may specify individual subscripts
or a range of subscripts or any combination of these two. Only entire DRDEs may be
listed.

MEAN 1N G, i:XXVLE

single entry number 100
N

U11 start entry number - end entry number 100-600

start entry number - 100-

ro
10 - end entry number -600

single subscript 2
N

a start subscript - end Subscript 2-6

o start	 subscript	 - '_'-

- end subscript -6

28-3. The SPAN field sets boundaries on the information to be listed.

56

The LIST command is used to display the concerts of tables and files. Ent!re tables and
files or only parts of tables and files can be listed.	 Ordinarily, the listings will
use the same format as used In the table or file being listed. However, If a DE or DRDE
uses the "free" data type, the user must Ind!cate the format t„ be used.

LIST-device ID.object name(span)-file type....

The LIST function mayLbe used as a directive within a table editor. To list the table
being edited, the user need only spec!fy the span of the table to be listed:

LIST,(200-500)
If the span is omitted, the entire table is listed.

LIST
Any table or file can be listed, however, by using its name with the LIST function.

•	 if a DE or DRDE consists of information that is stored as free data, the user Wst

supply the format to be used.	 In this case, FDS will prompt the user to supply the

format to be used to list the DE or DRDE. 	 If no format is supplied, or if the LIST
function is executed from the batch mode, a hexadecimal format is assumed.

Dialogue .omments

LIST,BIG-DF BIG has free data

FORMT FOR NAME: The user is prompted to supply the format, which
may be:

I:	 Integer
R: Real

D: Double precision
Ch:	 Character	 (n= 4,8,16,32,or 64)
T:	 Time

28-4. The user supplies the format for free data.

In solving the example problem, the user constructed an interface table for the
OMS-2 circularization burn (see "An Example of Interface Table Editing"). That

entire IT, or sections of it, can be displayed using the LIST command. For
exam p le, by typing

LIST,0MS2(240-270)
The user can obtain the following display:

240 DENSMODL=!IDENSb1D
250 SOLAFLUX=I!SOLRMD
270 SVPROP="AEG"

This display illustrates a situation in which the user must be. aware of the
circumstances. Entry number 260, a missing, optional parameter, is not
displayed here.	 IT entries which are (1) optional, and (2) not filled In, are
not printed when the LIST command Is used. 	 If they were, many missing entries

would be printed even through they are not re!evant to the case in question.

Thus, the LIST command can be used to show all entries which have values
(including all required entries even if Incomplete), but only the EDIT command
allows the user to see those ddditlonal entries which represent missing optional

variables.

57

9

29 GET, STORE, APPEND, SUBSTITUTE Commands (Permanent Storage and Retrieval of Files)

The GET command, STORE command, APPEND command, and SUBSTITUTE command are used to
obtain files from permanent data bases, and to store files in such data bases.

The GET command allows a user to retrieve all or selected portions of a PDB or MDB. The
files thus retrieved are added to the current contents of the AWA.	 In using the
command, the user gives the name of the data base which contains the files now. This
may be an MDB (all users have access to these) or any PDB for which the user knows the
name and access code. The user must also specify which file or files are to be moved.

GET,data base name-fie-access code,files to be moved

STORE,PCB name-PD-access c^_':,files to be moved

APPEND,PDB name-access code, files to be moved

SUBSTITUTE,PDB name-access code,files to be moved

29-1. Syntax of the GET, STORE, APPEND and SUBSTITUTE commands.

The user may specify that all files in the data base are to be moved to the AWA. or may
move whole classes of files, or individual files. If the "files to be moved" portion of

the command is omitted, as in the command
GET,EXPL-PD

then all files are moved. 	 Otherwise, a list of individual file names, file type codes,
or both, can be used. Ordinarily, a single file is specified by giving both its name
and type, as in the command

GET,EXPL-PD,OMS2-!T
If only a name is given, the file is assumed to be a DE. 	 If only a type code is given
(preceded by a hyphen), as in the command

GET,EXPL-PD,-IT
all files of the indicated type are moved. These same conventions apply to the STORE
and APPEND commands, which move files from the AWA fQ permanent data bases.

If "files	 to be moved"	 is: The	 effect	 is:

1 omitted all files in the source_ data
base (or AWA) are moved.

2 file type with no file all files of the specified

name	 (e.g..	 -ST) type a.:, moved.

3 file name with no type a data element with the

(e.g.,	 ABXYZ) speeded name is moved.

4 file name with type the specified file	 is moved.
(e.g. ,	 01-?S2-IT)

a	 list of specifications each file or group so

5 of forms 2,	 3,	 and 4,	 above specified is moved.

(e.g.,	 ABXYZ,	 -ST,	 OMS2-IT)

29-2. The "files to be moved" are specified in the same way for all four
commands.

58

Transferring data from a PDB or NOB Into the AWA Is done with the GET command. The
files retrieved are added to the current contents of the AWA.

GET,data hase name-type-access code.files to be moved

Storage of AWA files into a POB Is done using the STORE or APPEND commands. STORE
creates a new PDB, and places the indicated AWA files In it.

STORE,PDB name-PD-access code,files to be moved

APPEND adds the indicated files to an existing PDB.
APPEND,PDB name-access code,flle5 to be moved

SUBSTITUTE purges all files in the named PDB, then stores the Indicated files there.
SUBSTITUTE,PDB name-access code,files to be moved

The APPEND command is similar to GET, but moves the files In the opposite direction.
from AWA to PDB. The user specifies the name of the existing personal data base J.Q
which files are to be moved from the AWA. The indicated files are "appended" to the
previous contents of that PDB.	 If any files to be moved have the same name as files
already in the PDB, an error message is generated and those particular files are not
moved. Since the FDS user is not allowed to modify the contents of master data bases,
only a PDB can be named in this command.

The STORE command is similar to APPEND but
creates a new PDB and moves the files from
the AWA into it. This command is the
mechanism for creating new PDBs, and is the
ordinary way of saving all the information
associated with a particular flight design.
Although several approaches can be used, it
may be easiest to delete all extraneous
files from the AWA, and simply store the
rest in a new PDB by using the STORE
command with no "files to be saved"

specification. It should be noted that the
PDB must have a different name than any
other PDB having the same access code. If
this condition is not satisfied, an error
message is generated and no files are
moved. A STORE command will also generate
an error if the user already has the
maximum number of PDBs.	 In this case, the
user must delete an existing PDB, APPEND
the files to an existing PDB, or create a
PDB under another access code.

Get all interface tables from a PDB:
GET,FLIGHTI-PD,-IT

Get entire MDB:
GET,CONSTANT-MD

Save entire AWA in new PDB:
STORE, FLIGHT2-PD

Add specified ales to existing PDB:
APPEND,FI.IGHTI,OMS2-IT,TRAJECT-ST

Replace existing PDB with current
contents of AWA:

SUBSTITUTE,FLIGHT2

29-3. Examples of GET, STORE, APPEND,
and SUBSTITUTE commands.

The SUBSTITUTE command Is similar to STORE, but places AWA files into an existing PDB
after clearing it. All files previously in the PDB are purged, but the name and
abstract of the PDB are retained. The indicated AWA files (or the entire AWA) Is then
stored in the PDB.

In solving new flight design problems, it may be helpful to develop a "library"
of standard flight designs. Flight designs in such a library can then be used
as a starting point when new, similar flights are to be planner'. 	 If we supposes

that a PDB ("GEOSYNCH") already exists for launching a geosynch onous payload,
that flight design might easily provide a good starting point for the example
problem. To load the PDB Into the AWA, the user might type:

GET,GEOSYNCH-PD-AA
The user would then modify the GEOSYNCH flight design as necessary, adding the
additional payload, etc. When completed, the resulting flight design
information might be saved as PDB EXPL:

STORE,EXPL-PD.

59

30 TOC Commanu (List Names of Files, Data Bases, etc.)

The TUC (Table of Contents) command allows the user to display a list of files in the
the AWA or a data base or to list X or Y jobs, X or Y processors, or available data

bases.

The basic purpose of the TOC command is to list_the contents of the AWA_ or of any data
base to which the user has access. Thus, the command

TOC
produces a table of contents for the AWA, while the command

TOC„ EXPL-PD
produces a table of contents for the user's PDB, called EXPL. Tables of contents for
MDBs can also be produced. TOCs will be displayed on the user's terminal, unless the

system line printer is specified, as

TOC-P„ EXPL-PD
When the TOC command is executed In the batch mode the display automatically goes to the

printer.

TOC-device ID,class, data base name-classification code-access code

30-1. Syntax of the TOC command.

specifying the file typc..yhe user can obtain a list of the files of a particular
class which are containr;..d_Ln the AM or in a specified data base. Standard file type
codes are used for this, so that

TOC,ST
produces a list of sequence tables in
the AWA, while

TOC,IT,EXPL-PD
produces a list of interface tables in
the PDB named EXPL.

Other c I c
the user

seaments. For exampie, the command
TOC,XP

displays the names of all available X

Processors.

30-2. The TOC command lists a variety

of objects depending on the
"class" selected.

Class
Codes

Cleaning

-ST sequence tables

-IT interface tables

-LT linkage	 tables
-YT Y-data	 tables
-DE data elements
-Df DRDE	 files
-PD personal	 data	 base files

-MD master data base files
-YJ YOD	 files or Y-jobs

-Xi X-,jobs
-XfX-processors
-YP Y-processors
-DS document/segments

60

A table of contents (TOC) is associated with the AWA and each PDB and MDR. The

ii
table of contents	 Indicates the
entry.	 The TOC command	 is used

name, type,	 and size of each AWA or data base
to display a table of contents and also to

provide a	 list of X or Y Jobs or processors, or a	 list of	 available PDBs or
rues.

TOC-device ID,class,data base name-classiflcatlon code-access code

In solving the example problem, the user will accumulate a number of interface
tables, data elements, etc., which will reside In the AWA until stored In a PDR.
Some of these elements (e.g., Interface tables) are constructed by the user,
while others (e.g., data elements) are constructed as the Flight Design System
performs the commands In the sequence table. When the sequence table has been
executed, the user can display the entire contents of the AWA via the command

TOC
and obtain a display similar to the following

(TOC
TABLE OF CONTENTS

FOR THE A"	 DATE • 06/62/80 TIME • 15/23/15
--

a

INTERFACE TABLES
NAME	 ADS	 DATE	 TINE

DASE1	 01/12/80 11/17/36
PCOASTI
UNITS	 01102180 17/25/29

DATA ELEMENTS
NAME	 ADS	 DATE	 TIME

--------	 --- --------	 --------
1 1DATE	 04/12/80 11/47/36
4 5COEF	 04/12/80 11/17/36
'SESCOM	 04/02/80 17/25/20
suet	 04/02/80 17/25/20
sVIN	 05/16/86 18/05/05
TETAB	 05/16/80 18/05/05

DRDE FILES
NAME	 ADS	 DATE	 TIME

ISFILE	 05/16/80 18/05/05

AWA SIZE	 160e0	 FREE	 14408
DWA sIZE	 408	 FREE	 377
COMPACTIONS •	 01	 0,

AC	 SIZE

WE	 141
384

WE	 390

AC	 SIZE TYPE

ROY	 COL
----	 ------	 ------

WE	 164 14039 50
WE	 12 M042 15
WE	 286 n041 72
WE	 56 F 28
WE	 56 14072 15
WE	 240 14 073 42	 2

AC	 SIZE TYPE LRL	 FT

UE	 1 140 7 2 56	 I

(HALFUORDS)
(SECTORS)
0,	 0, e,	 e

61

31 CLEAR, DELETE Commands (Eliminatin; G iles from Storage)

The CLFAR and DFLETE commands are used to eliminate unneeded Information from storage.

The CLEAR command purcos all files from the
user l s Active: Work Area. This results in
the deletion of all Interface tables,
sequence tables, linkage tables, Y-Data

tables, data elements, and disk-resident
data elements. Because MDRs, PDBs, and
YODs do not reside In the AWA, they are not
affected. The CLEAR command can be used
only at the Executive level (i.e., with a
prompt of %:).

CLEAR

31-1. Syntax of the CLEAR command.

The DELET E command can be used to eliminate individual fl i es or whole classes of files

by specif y ing_ file names and/or t ype:. For example, the command
DELETE,OraS2-iT

causes the Interface table "OMS2" to be discarded from the AWA. The space previously

occupied by the deleted file Is thus made available for other AWA files. The command
DELETE,-DE,-DF

results In the elimination of all data elements and DRDEs (file type DF) from the AWA.

this command might commonly be given before execution of a sequence table which
constructs these elements, and might precede storage of the AWA as a PDB via the STORE

command.

DELETE,object name-classification code....

DELETE,(span)

31-2. The DELETE command has two forms.

Files which are in use cannot be deleted. For example, a sequence table cannot be
deleted while It is executing, as might happen if It contained a statement such as

DELETE,-ST
Similarly, a YOD cannot be deleted until the corresponding Y job has finished executing.

The DELETE command can be used to eliminate PDBs by name. PDBs cannot be deleted as a
class, but the user can delete his own PDBs by specifying their name and class codes, as

DELETE,EXPL-PD,OTHER-PD
PDBs cannot be deleted If they belorg to access codes other than that used to log on.

By specifying first and last entry numbe r s ("span"), the user can delete a portion of a
table currently being edited. Thus, the command

DELETE,(20-40)
deletes entries 20 through 40 of the table which the user Is editing. 	 If a DELETE

command specifies a portion of an Interface table, that portion is merely cleared of
values, but the variable names remain, since entries cannot be deleted from an IT.

62

i

f

The CLEAR command Is used to eliminate all files from the AWA.
CLEAR

The DELETE command Is used to eliminate Individual fllos or whole file clnsses from the
AWA, to eliminate Individual PDBs, or, to delete specified portions of AWA files.

DELETE,object name(span)-classiflcatlon code,...
DELETE,(span)

OBJECT

1. Name of PDB (e.g., EXPL -PD)

2. Name of file with file type
(e.g.. Oi1S1-IT)

3. Name of file without file
type (:.y., RESULT)

4. Span only (e.g., (50-60))

5. File type only (e.g., -YD)

MEANING

User's PDB with specified name

is deleted.

'lamed file is deleted from AWA.

Named data element is deleted
from AWA.

Indicated span of entries is
deleted from file currently
being edited.

All files of indicated type are
deleted from AWA.

	

6. List of objects of types	 Each object is deleted in turn.
1-5.	 (e.g., - YD,MINE-PD,

()	 1	
(20-60))

31-3. The DELETE command can be applied to a variety of objects.

A typical work session begins with the loading of a PDB, as by the command

GET,EXPL-PD
In order to restore the conditions which existed at the end of the user's
previous session. In this case, the GET command restored the PDB Into which we
placed all the files assc,;lated with the example problem. During the course of
the work session, the user may modify some of these files and wish to save the
updated versions. One approach might be

DELETE.EXPL-PD
STORE,EXPL

which saves the entire current contents of the AWA. To conserve disk space, the
user might prefer to eliminate those files which can easily be reconstructed.

In this case, the command sequence might be
DELETE,EXPL-PD,-DE,-DF
STORE,EXPL

When this opc.ration Is completed, the user can sign off or begin a new problem,

as with the commands

CLEAR
GEI,NEWPFDB-PD

which t:leari the AWA of the remnants of the old problem before obtaining

Informatior• associated with the new.

63

32.COPY,N	 QMW1d1 (File Duplication and iJ yn(, Changing)

The COPY command allows the FOS user to duplicate and rename a table, DE, DRDE, or PDB,
while RENAME only changes the name of the original.

The COPY command must	 `;,,fie the ob, iec_t
to be copied. and the name to be assioned
to the new copy. The object may be a

sequence table, Interface table, linkage
table, or Y-data table, as In

COPY,TRAJECT-ST,SAVET
or a data element or DRDE, as in

COPY,RFSULT,RESULT2
COPY,BIGFILE-DF,WORKCOPY

or a PDB, as in
COPY,HISPDB-PD-HE,MYPDB.

In the case of PDBs, the new copy will have
the access code under which the user logged
on, regardless of the access code of the
original POP. All other objects are copied
mom the AWA IQ the AWA. In every case,
the new name must not conflict with the
name of any existinq object of the same
class.

RENAME .object . neW name

32-2. Syntax of the RENAME commanr'.

COPY.object.new name

32-1. Syntax of the COPY corvand.

The RE N AI-'F command mer el y chances the name

of the original object. but does not maY_e a
j4 . The objects which car be renamed are
the same as those which can be copied,
except that the user may rename only his

own PDBs. Thus, the user can RENAME tables
and DRD[s,

RFNAMF,BUILD-IT,0MS2

data elements
RENAML, DATA, SAVEDATA

or FDBs
RENAME,EXPL-PD,TEMPSAVE.

The new name must not conflict with any
existing object of the same class.

J,jth both COPY and RENAME commari?s. the "new" object Is ri ven _j1"currenJ" date/time/user
IDIDtaa. This information, which is assx sated with every file o- POP, can be useful In
determining when files were constructed or last modified. Actually, the date/time
Information Is set to zero to indicate "current" information and is only replaced by a
real date and time when the file is stored in a POP. Thus, a date/time tag of zero (In
a TOC dlspay, for example), Indicates a file which has been generated or modified during

the current user session.	 If the user makes use of the date/time Information, it should
be kept in mind that even renaming the file causes the date and time to be updated.

It Is Important to nuts that RENA14E chances only the name under which the file i-^
stored. Any references to the old file name which are made In sequence tables,

interface tables, etc., are left unaltered. 	 It is the user's responsibility to insure

that such references point to the correct file.

64

The COPY command is used to copy and rename tables. DEs, DRDEs, and PDBs.
COPY,obiect-new name_

The RENAME command changes the name of 	 a table, DE, DRDE, or PDB.
RENAME,obJect.new name

Although COPY and RENAME operations can be done for a variety of purposes, a
particularly common reason	 is the saving of	 files or data bases which 	 are about

to be changed.	 In the example problem,	 the user works with a PDB called EXPL,

which	 is assumed to be	 loaded	 (via the GET command) at the end of 	 each session.
Thus,	 a session might	 include the commands

GET,EXPL-PD

SUBST!TUTE,EXPL-PD
The SUBSTITUTE command is used, 	 instead of	 STORE, because the STORE command
cannot construct a PDB whose name conflicts with one already 	 in existence.	 It

is easy to	 iragine circumstances 	 in which the user wan,	 to save this PDB,	 so as

to have a back-up copy of	 the PDB as	 It existed before ti	 session.	 In this

case, the commands,
RENAME,EXPL-PD,BACK.UP

STORE,EXPL-PD
might be used	 in	 place cf	 SUBSTITUTE.

A similar situation sometimes exists with respect to :ata elements or DRDEs. 	 In
the example problem, the TRAJECT sequence table bellds, among other things, a DE
called "RESULT". When mod!f!catlons are made to TRAJECT, or to Interface
Tables, Etc., which are used in executing TRAJECT, It might be desirable to save
a copy of RESULT. Tie new RESULT can then be compared with the saved copy In
order to observe the effects of the changes. Since TRAJECT builds, in effect, a

new copy of RESULT each time it is executed, the RENAME command can be used:
RCNAME,RESULT,SAVECOPY

The reader wiil recall that the file type can be omitted when the file is a DE.

The COPY command is the right mechanism to use when the file is built directly
by the user. Suppose, for instance, that the user is about to modify OMS2-IT,
and wants to keep an unmodified version. An appropriate command might be

COPY, OMS2- IT, SAVEOMS2

the user can then edit the OMS2 file as desired, as by the command
EDIT,OMS2-IT

or the CHANGE command (discussed later). It should be noted that the EDIT

command accomplishes a similar, but not Identical, function. The command
EDiT,OMS2-IT,SAVEOMS2

also results in the existence of two copies, but the file called 11OMS2" is the

unmodified version. Another approach to the COPY and EDIT sequence above Is
RENAME,OMS2-IT,SAVECOPY
EDIT,SAVECOPY-IT,OMS2

Another common use of RENAME is the situation in which the user wants to GET
files from two or more data bases, but some files have the same name. Suppose,
for instance, that the user is beginning the solution of the example problem and

want=_ -ho construct the TRAJECT file by merging two existing TRAJECT files, one

of which res des in the GEOSYNCH PDB and one in the CIRC200 PDB. The commands
used might include

CLEAR
GET,GEOSYNCH-PD-XY
RENAME,TP^JECT-ST,TEMP
GET,CIRC200,TRAJECT-ST

followed by the merging of the two files (see INSERT command).

65

33 CHANGF INSERT Commands (Modifying and Merging)

The CHANGE command is used to modify abstracts or table entries, while INSERT merges the
contents of two tables.

The CHANGE command can be used to alter information in a table which is being edited.
The command must specify which entry or entries are to be changed. Within the specified
span of entries, a search will be made for all occurrences of the indicated "current
data". Each occurrence will be replaced by the "new data". Current and new data may be
object names, as in the command

CHANGE,(300-300),ITABi,ITABA
which replaces an interface table name In line 300 of the table currently being edited.
In STs only, they may be numbers, as in

CHANGE,(10-),14,286.3E-14
(which searches all entries from 10 to the end of the file). Or (in STs) they may be
special symbols

CHANGE,(1285-1286),+,-
except that the comma and quotation mark (") may not be used in this way. Thu comma is
used in the command itself, and quotation marks are reserved as dellmiters for string
literals, which are also allowed, as in

CHANGE,(-65),"GPMP,OM","FLT,FP".
In STs, the "current data" and "new data" need not be of the same type. Commands like

CFIANGE,(287-290),!iINPUT,26
are acceptable. Furthermore, several whole elements of these types may be strung
together in order to unambiguously identify the desired current data or to replace this
information with several elements, as in the command

CHANGE,(20-20),OMS2-ST,OMS2-IT
It is the user's responsibility to insure that the new d?ta satisfy the reqiiirements of
the table type being modified. The syntax of the table is not checked until the table
Is actually used.

To alter abstracts:

CHANGE,object name-classification code,current data,new data

To alter table being edited:

CHANGE,(span),current-data,new data

33-1. The CHANGE command has two forms.

-[b,,,-CHANGE c_)mmand can also be used to
alter the ntents of any abstract. In
this case, the command must name the object
and its type, but does not, of course,
nclude entry numbers. For example, the

command
CHANGE, EXPL-PD, "L (INCH 11 , "LAUNCH"

searches the entire sbstract of the EXPL
PDB for occurrences of the string "LUNCH"
(without quotation marks) and relates each
such string with "LAUNCH".

ST = sequence table
IT = interface table
LT = linkage table
YT = Y-data table
DE = data element
DF = disk-resident data element
PD = personal data base
XJ = X job
XJ = YOD file or Y jot)

33-2. CHANGE can alter the abstract of
any object type which has abstracts.

66

0

The CHANGE command is used to modify abstracts or to modify a table which is currently
being edited.

CHANGE, obiect name-classification code current data,new data
or CHANGE,(shan).current data.new data

The INSERT command is used to combine all or a selected portion of a specified table
with another table, of the same class, which is currently being edited.

INSERT,source table name(span),Insert location

When used with sequence tables or Y-data tables. the INSERT command allows all oraR rt
of a table to be Inserted into the table being edited. The inserted information may be
tak:n from some other table, as in the command

INSERT,TRAJECT-ST
which inserts the entire TRAJECT sequence table at the end of the sequence table which
is currently bong edited. Alternatively, information which is already in the current

table can be inserted in the same table by omitting the name of the source table. This
is useful wher a particular segment of the table is to be repeated, perhaps with small
changes, somewhere else in the table. For example, entries 20-40 of the current table
are duplicated at the end of the table by the command

INSERT,(20-40)
The command can also specify that the inserted information Is to be placed after a

particular entry number. Thus the command
INSERT,SAVETRAJ(100-200)-ST,70

inserts line 100-200 of the SAVETRAJ sequence table after entry 70 of the sequence table

which is being edited. To insert at the beginning of the table, the user indicates that

the insertion is to be made after the (nonexistent) entry zero, as in
INSERT,PRELIM-ST,O.

Whenever INSERT is used with a sequence table or Y-data table, the table entries are

renumbered (10, 20, 30, etc.).	 Incidentally, FDS does not allow the INSERT operation to
occur when the source table and edited table are not of the same type (this operation

wouldn't make sense, anyway).

INSERT,source table name(span)-file type,insert location

33-3. Syntax of the INSERT connnand.

With interface tables and linkage tables. INSERT causes a logical merging of the twc
tables. Because the structure of these tables is fixed, it is not possible to insert
information between two existing entries. Thus, no Insert location is allowed. For
these tables, the tahle being edited is retained Intact, except that all existing
parameter values in the source table replace those in the ed ted table. That is, any
entry in the source table which has a value will replace the corresonding entry in the
edited table, whether it already rrad a value or not.

If the table being
edited is

and the source
table is

then the
command

yields the result

Sequence table: B-ST: INSERT,13,10 10,PERFORM,PA,TA
10,PERFORM,PA,TA 10,STORE 20,STORE
20,PERPORM,P13,TB 20,LIST,DE1-DE 30,LIST,DE1-DE

40,PERFORM,AB,TB

Interface table: A-IT: INSERT,A 10,A=1,2,3
40,D=BETA 10,A=1,2,3 40,D=BETA
60,F= 1,2 60,F=ALPHA 60,F-ALPHA

80, 1 1= 1,6,2 60,11=1,6,2

33-4. INSERT has different effects for different table types.

i

67

34 CROSS REFERENCE, FIND Commands (Locating Information in Tables)

The CROSS REFERENCE command finds all references to specified objects within
AWA-resident tables, while FIND searches one particular table or table segment for items

which need not be object names.

The (ROSS REFERENCE command is used to locate ail references to a particular table or
other object. Suppose, for example, that the user wishes to substitute interface table

OMS2A for OMS2 in certain instances, but not in others.	 It might be helpful to use the

CROSS REFERENCE command to locate all references to OMS2 In existing sequence tables in
the AWA:

CROSS REFERENCE,-ST,OMS2-IT
This causes a cross reference display to be presented on the user's terminal, shorting
each instance, in any sequence table, of a reference to OMS2. The command can be used
to search only a particular tab!e, as in

CROSS REFERENCE,TRAJECT-ST,OMS2-IT
which searches only the TRAJECT sequence table. When searching for references to data

elements, DRDEs, or X Processors, the user may prefer to allow all AWP tables to be
searched, regardless of type. DEs, for example, can be referred to from any table type.
This is done by simply omitting both table name and type from the command:

CROSS REFERENCE „ RESULT-DE
By adding the line printer device code (-P) to the command, the user can cause the

display to go to the system line printer:
CROSS REFERENCE-P „ GPMP-XP

CROSS REFERENCE-dev i ce ID,searched table name-file type,reference name-class

34-1. Syntax of the CROSS REFERENCE command.

CROSS REFERENCE can be used to search for a variety of object types. The user can
search for any table (interface table, sequence table, Y-data table, or linkage table),
as well as data elements, DRDEs, data bases (PDBs and MDBs), X Processors, YOD files,

and document/segments.

If the item
searched	 for	 is:

then the following table types may be searched.

ST IT YD LT

Sequence table	 (ST) X

Interface	 table	 (IT) X

Y-data	 table	 (YD) X

Data element	 (DE) X X X X

Disk-resident data element	 (DF) X X X

Personal	 data base	 (PD) X

Master data base	 (MD) X

YOD file	 (YJ) X

X	 Processor (XP) X X

Document/segment X

34-2. Not all search and reference combinations are valid in CROSS REFERENCE commands.

68

The CROSS REFERENCE command Is used to search AWA-resldent tables for references to
tables, DEs, DRDFs, data bases, YOD files, X Processurs, and document/segments.

CRnSS REFERENCE-device ID,searched table name-flle type,reference name-class

The FIND command searches an individual table for specific names, numbers, s`rings, or
special symbols.

FIND,searched table name(span)-file type,data

The FIND command is somewhat similar. but can search for other data. Each entry, thus
found, Is displayed on the user's terminal. The search data can consist of object

names, as In CROSS REFERENCE, but ca.i also include numbers
FIND,ITAB-IT,-27.5

or, In sequence tables, qualifiers (classification codes, device codes, and access
codes, which are normally preceded in use by a hyphen). FIND can search for individual

•	 symbols
FIND,ISEQ-ST,+

as well as character string segments
FIND,ISEQ-ST,"SPIDPO SUPPORT. ON"

Furthermore, several components can be strung together in order to uniquely identify the

information sought, as in the command
FIND,ISEQ-ST,ABC+10.

These must be whole components, however. The above command would not find an entry
containing the group

BABC+10
since it looks for the whole name "ABC" followed by a plus sign and the number 10. The
search data may J1.QJ include a comma (unless it is part of a string literal), since the
comma would be taken as part of the syntax of the command, rather than as part of the
search data. And, of course, quotation marks may be used only as part of a string
literal. A command such as FIND,ISEQ-ST,END." is not allowed. Percent (%) and
semi-colon (;) characters are also not allowed, except within a string literal.

w

FIND,searched table name(span)-file type,data

34-3. Syntax of the FIND ummdnd.

The FIND command can be used to searcn indivi.ival tables or table seamen nts. Multiple
tables cannot be searched with a single FIND command, as they were with CROSS REFERENCE.
If the table to be searched is currently being edited, it need not be named. Thus,

FIND„ OMS2- I T

searches the table now being edited for references to OMS2-IT. The span can be limited
by specifying starting or ending numbers in the usual way, as in the commands

FIND,(-500),OMS2-IT
FIND,TRAJECT(300-500)-ST,OMS2

I
69

35 AITP.IBULL PERFORM Commands (X Processor Properties and Execution)

The ATTRIBUTES command displays the attributes of all or selected parameters of an X
Processor (or document/segment), while PERFORM causes the X Processor to be executed.

The ATTRIBUTES command allows the FDS user to display information about the input/output
parameters of an X Processor. The user may specify particular parameters, or may obtain
an attributes display for all the parameters associated with the processor. Thus, the
command

ATTRIBUTES,GPMP-XP,APSOPT,SUMTABLE
produces the following display:

ATTRIBUTES DISPLAY FOR PROCESSOR „PMP	 VERSION 6

	

ENTRY	 KEYWORD	 SIZE	 ROW	 COL	 CLASS	 TYPE	 1/0	 R/0

	

19	 APSOPT	 2	 1	 DE	 C4	 1	 0

	

39	 SUMTABLE	 368	 4	 46	 DE	 F	 0	 R
This display indicates that entry no. 19 is for parameter APSOPT. APSOPT occupies 2

physical half-words and is a single logical entity (an array of size 1, if you like).

It is defined as a data element (CLASS = DE) containing character data of up to 4
characters (TYPE = C4).	 It is an input parameter (1/0 = 1) and is optional (R/O = 0).
Entry 39 is for parameter SUMTABLE. Th's is a two-dimensional array (4x46 elF:ments)
occupying 368 ha;f-words of storage. 	 It is a data element and contains free data. 	 It

Is an output parar retsr and is required. T l is particular display was obtained because
the command specified the parameters APSOPT and SUMTABLE. If no parameters are
specified, as in the command

ATTRIBUTES,GPMP-XP
then all parameter attributes are displayed. Like most display-generating commands,
this one can be made to produce its output on the system line printer, as in the command

ATTRIBUTES-P,GPMP-XP

	

ATTRIBUTES DISPLAY FOR PROCESSOR GPMP	 lERSIDN 6

ENTRY KEYWORD	 SIZE	 RCM	 COL	 CLASS TYPE	 1/0	 R/0

1	 GEOCON	 60	 15	 DE	 0	

1R2	 PHYCON	 60	 115	 DE	 D	 1	 R

3	 GSL	 4	 1	 DE	 0	 I	 R

4	 LBMKG	 4	 1	 CE	 D	 I	 R

5	 FTM	 4	 1	 DE	 0	 1	 R

6	 SESCON	298	 144	 DE	 F	 I
7	 BDATE	 164	 82	 CE	 F	 I	 R

8	 PROCON	 14	 7	 DE	 F	 I
9	 iNUEC	 56	 28	 OE	 F	 I	 R

10	 THRUST	 2	 1	 OE	 R	 i	 R

11	

is
	 2	 1	 CE	 R	 I	 R

12	 ENGID	 2	 1	 OE	 C4	 I	 R

13	 MANID	 2	 1	 CE	 C4	 1	 R

14	 OELUOPT	 2	 1	 OE	 C4	 I
15	 DUCO"P	 6	 3	 OE	 R	 I	 0
16	 ANGLE	 2	 1	 DE	 R	 I	 2
17	 ALTOFT	 2	 1	 DE	 C4	 1	 0
18	 ALTITUDE	 2	 1	 DE	 R	 I	 0
19	 APSOPT	 2	 1	 OE	 C4	 I	 0
20	 HA	 2	 1	 DE	 R	 I	 C
21	 HP	 2	 1	 DE	 R	 I	 0
22	 NUMOPB	 2	 1	 OE	 R	 1	 0
23	 04SFLAG	 2	 1	 OE	 C4	 I	 0
24	 SUPROP	 2	 1	 CE	 C4	 I	 R

25PROPCON	 22	 11	 DE	 F	 I	 0
26	 CO	 2	 1	 CE	 R	 I	 0
27	 AREA	 2	 1	 OE	 R	 I	 O
28	 DENSMCDL	 0	 150	 DE	 F	 I	 C
29	 SCOEF	 32	 16	 OE	 a	 I	 C
30	 SOLRFLUK	 246	 123	 DE	 F	 I	 0
31	 GEOPOTEN	 0	 86	 OE	 F	 1	 0
32	 DISPLAY	 2	 1	 CE	 C4	 1	 R
33	 DSPUNITS	 288	 144	 OE	 F	 I	 R
34	 IGUECNA."	 9	 1	 DE	 C16	 f
35	 SRUECNAM	 e	 1	 DE	 C16	 I	 a

36	 DSPTIMEI	 4	 2	 DE	 C4	 1	 P

37	 DSPTIME2	 4	 2	 DE	 C4	 I	 P

38	 GPMPTET	 0	 60	 3	 DE	 F	 0

39	 SUIfTABLE	 Sic'	 46	 CE	 0	 R

35-1. The ATTRIBUTES display for an X Processor
provides information about all of its parameters.

P

be displayed. For example, the user
may be editing the OMS2 table for
processor GPMP, and be prompted as
follows:

\24,SVPROP=:
Responding with a question mark,

,24,SVPROP=:?
results In the display of information
about the nature of the parameter, but
does not provide attributes
Information. Thus, the user may not
know the size of an array, or, in this

case, whether or not the parameter is
required. By entering the update mode
and typing an ATTRIBUTES command, the

user can obtain such Information. To
obtain information About the Y

Processor for which an IT is being
edited, the user simply omits the X
Processor name. Thus, the sequence
might be

\24,SVPROP=:^

\:ATTRIBUTES „ SVPROP

70

ThP ATTRIBUTES command allows the user to display the attributes of all or selected
parameters of a specified X Processor or document segment.

ATTRIBUTES-device ID,object name-class,parameter keyword,...

The PERFORM command causes a particular X Processor to be executed.
PERFORM,X Processor name,interface table name

The ATTRIBUTES command can also be used to obtain information about the parameters
associated with a particular document/seamen'.. This use of ATTRIBUTES is discussed

further in the later section on document preparation.

ATTRIBUTES-device ID,object name-class,parameter keyword,...
PERFORM,_ Processor name,interface table name

35-2. Syntax of the ATTRIBUTES and PERFORM commands.

X Processors are executed by using the PERFORM command. Ordinarily, the user will
specify not only the X Processor name, but also the name of the interface table to be

used for input/output control. Thus, a typical PERFORM command is
PERFORM,GPMF,OMS2

It is possible, however, to initiate execution of an X Processor using the default IT

for that processor, as by the command
PERFORM,GPMP

Whenever a value is needed which is not provided in the default IT (or whatever IT is in

use), the editor will automatically be invoked by the system, in order to obtain the
value from the user. Thus, it is possible to successfully execute a processor without a
specially prepared interface table, although in most cases this is rather tedious. This
approach also has the disadvantage that the values Input are not permanently stored, and

must be re-entered if the processor is executed again. Like most co rirands, PERFORM can

be used as a statement in a sequence table. It will be very common to collect a whole
series of PERFORM commands in a se q uence table In order to execute them in one

operation.

As was Just indicated, the usual mode of FDS use involves construction of
interface tables before X Processor execution. During the IT editing process, a
variety of commands may be used (all from the update mode, of course). Included
among the commonly used commands are LIST, CHANGE, and A TTRIBUTES. The

ATTRIBUTES command is helpful when the user is uncertai,l of the properties of a
parameter and must know them in order to successfully complete the editing
operation. Thus, during initial construction of the OMS2 IT, the user might

encounter a prompt for the parameter PROCON and be unsure of the number of
elements to De provided. Use of the ATTRIBUTES command settles this issue.

' 8,PR000N=:`
\ : AT„ PROCON

The user will recall that command keywords can be shortened to as few as twc
characters, if desired. The "AT" here is short for "ATTRIBUTES".

1	 ATTRIBUTES DISPLAY FOR 	 PROCESSOR GPMP	 VERSION 6
ENTRY	 KEYWORD	 SIZE	 ROW	 COL	 CLASS	 TYPE	 1/0 R/0

8	 PROCON	 14	 7	 DE	 F	 I	 R

\:MODE,I
`8,PR000N=:

When the editing has been completed, the GPMP processor can be executed.
PERFORM,GPMP,OMS2

Alternatively, this PERFORM command can be placed in a sequence tablo for later

execution as part of sequence.

.

71

36 AUTOMATIC. SEMIAUTOMATIC, and BATCH L mivands (Execution of Sequence Tables)

The AUTOMATIC, SEMIAUTOMATIC, and BATCH commands allow execution of sequence tables with

varying levels of user interaction.

The AUTOMATIC command executes a sequence of statements which have been nrestored in a
designated sequence table. Each statement is executed as it is encountered In the
sequence table. User interaction will occur only if the system detects incomplete data,
or If an X Processor is executed which is itself interactive with the user. 	 In the

absence of these circumsiunces, the entire sequence table will be executed before any
further user input is required. The user specifies the sequence cable to be executed

AUTOMATIC,TRAJECT
ie ST must be in the AWA for execution to occur. The user may specify that a portion

cf the ST is to be executed, by providing starting and/or ending entry numbers. Thus,

AUTOMATIC,TRAJECT(20-230)
executes entries 20 through 230 of ST TRAJECT before returning control to the user.

AUTOMATIC-trace level,seauence table name(span)

SEMIAUTOMATIC,seauence table name(span)

BATCH-trace level,data base,sequence table name(span),job limits

36-1. Syntax of the AUTOMATIC, SEMIAUTOMATIC, and BATCH commands.

By specifying a trace level, the user can cause the system to print statements before
executing them. If the trace level selected is "C", only "comments" inserted in the ST
via the NOTE command are printed.

AUTOMATIC-C,TRA.JECT
If the trace level is "A" (for "ALL"), the system prints both NOTES and executable

statements
AUTOMATIC-A,TRAJECT

J

The SEMIAUTOMATIC command behaves in the same
way, except that it stops for user action
pefore each statement in the sequence table.
If, for example, the user executes statements
1000 through 1200 of the TRAJECT sequence
table,

SEMIAUTOMATIC,TRAJECT(1000-1200)
the system will respond with

1000,PERFORM,GPMP,ETSEP
$1000:

This response Indicates the statement which
is about to be executed, as well as Its entry
number in the table. The user may cause the
statement to be executed by pressing the
carriage return. Alternatively, the user
may:
o Skip to the next entry (by typing E)
o Specify the entry number of another

statement at which execution is to begin
o Type in a statement to be executed
o Abort the ST execution (by typing %)

o Obtain a list of legal commands (?) or
the syntax of a particular command
(by typing, e.g., LIST?)

AUTOMATIC:

Interacts with user only when

(1) incomplete data detected
(Editor is invoked)

(2) an X Processor directly
interacts with user

SEMIAUTOMATIC:

As above, and before each statement.

User can skip statement, override
it, or allow it to be executed

BATCH:

None. User need not even be
logged on when ST is executed.

it-2. These conmiands differ primarily with
regard to interaction with the user.

72

RESPONSE EFFECT

Carriage Return Statement is executed
as	 displayed.

S System skips 	 to ne.t
stateme' •	in ST.
System	 skips to indicatedEnt:'y number

e.	 .,	 1210) statement.	 in ST.
ny	 ega ystew executed this
statement statement instead of the

one	 itdis	 laved.
ST execution	 is aborted
and control	 is	 returned
to the FOS Executive._
System displays	 a	 list of
le^alstatements.

:ommand? System disp ay5 the
,e.?..	 LIST?) correct syntax of the

specified statement.

36-3. During SEMIAUTOMATIC exe-
cution, the user has several options
availahle each tome the system dis-
plays the "next statement".

Fir

l ►

to

fol

The AUTOMATIC, SEMI AUTOMAiIC, and BATCH commands cause the execution of entire sequence
tables. AUTOMATIC executes the entire ST without user interaction (unless Incomplete
data exist or an Interactive processor is executed).

AUTOMATIC-trace level ,1=1wnce table name(span)

SEMIAUTOMATIC halts before the execution of each statement, allowinq the user to concur
or to skip or overide the statement.

SEMIAUTOMATIC,sequence table name(span`

BATCH causes the later execution of the ST In back1round mode, with no terminal
Interaction.

BATCH-trace level,data base.sequence table name(span),Job limits

The BATCH command causes FDS to execute a
cigquence table later., as a "batch". or
backaroundiob. This allows more
efficient system operation when the user

does not require instant turnaround, and
also allows the user to leave or do other

	

work while the job is executing. 	 It also
has the advantage that it produces a
hardcopy (Iineprinter) record of the entire

execution. Since no AWA will exist for
this job at the -,ime execution is begun,
the user must specify the name of a PDB or
MDB. Thus, the command

BATCH,EXPL-PD,iRAJECT
indicates that FDS is to use the PDB called
EXPL as if it were the AWA, obtaining the

TRAJECT file from that PDB, as well as all
required interface tables, data elements,
etc. When the system has executed this

command (i.e., submitted the job for later execution), it will return a job name to the
user, who may then log off or do oiher FDS work. Later, when FDS executes the job, it
will work from the EX aL PDB as it exists then, so it is Important that it be left intact

until the job has finished executing.

The BATCH command can also specify a trace level, execute only a seament of a sequence
table. and specify iob limits. Thus, the command

BATCH-A,FLIGHT-h11),BUILDPLN(10-200)

directs FDS to execute lines 10-200 of the BUILDPLN sequence table from an MDB called
FLIGHT, and to list each statement before executing it. Job limits can be added in
order to control the disk space, CPU time, and number of print lines allowed. The
default values of these parameters should be satisfaCTory for most batch jobs, but the
user may override them when necessar,. For example, the command

BATCH,HISPDB-PD-AY,OrT2,800,240,25
sets limits of 800 disk sectors, 240 cpu seconds, and 25,000 print lines.

BATCH,EXPL-PD,TRAJECT,400.300,25

DWA Size	 Time limit	 Print limit

Maximum number of disc	 Maximum CPU time,	 Maximum number of
sectors to be allocated	 in seconds, for	 print lines (in
to Disk Work Area (disk	 this job.	 1000s) to be
portion of AWA). Must	 produced by this
be integer in ramie	 job.
1-8192.	 Default is 400. 1	-- 	 '

36-4. The "job limits" portion of the BATCH command has three components.

73

37 ALLOCATE, ASSIGN Commands (Dana Element Creation and Initialization)

The ALLOCATE command is used to create a data element in the AWA with user-specified
properties, while ASSIGN is used to place Information into an already allocated DE.

ALLOCATF,clata element name (dimensi on, dimeisi on) -data type,...

ASSIGN,data element name(expression,expression) = ex ression 'ranqe

37-1. Syntax of the ALLOCATE and ASSIGN commands.

The ALLOCATE command creates one or more new data elements in the ,AWA. ;n this command,
the user specifies the name of the new DE, which must not conflict with any existing DE
names. The user also -.pecifies the data type which the DE will contain. For example,
the command

ALLOCATE,NUMVAL-I
creates a DE celled "NUMVAL" which will contain a single integer value. The data types
available are Integer (1), real (R), double precision (D), character (Cn), free (F),
time (T), or mixed (Mn, where n = format number). ALLOCATE can also specify the
dimensions of a DE which is to be used as an array. these arrays may have one or two
dimensions, and are specified by giving the upper limit of each subscript, as might be
done, for example, In a FORTRAN DIMENSION statement. Thus,

ALLOCATE,ONEDIMEN(16)-R,TWODIMEN(21,4)-D
creates two new data elements. The DE called ONEDIMEN is to contain an array of 16 real
values, which will occupy 64 bytes of
storage (each real variable takes 4 bytes
of storage). Values in this array will be
referred to by name and subscript, so that
ONEDIMEN(3) is a reference to the third
value in this array. TWODIMEN contains 84
double precision values (672 bytes) and Is
referenced with two subscripts. For
example, TWODIMEN(6,2) refers to the second
value in the sixth row of the 21 x 4 array.
Data elements m.y not be allocated for more

than 4095 bytes, or an error message will

BYTES PER VALUE

2
4
8

4,8,16,32,or 64
words allocated

(4 bytei each)
8

combinations of
above types

result.	 37-2. The data type of a DE affects its
storage requirements

The ASSIGN command computes values and stores them in a DE. Functionally, ASSIGN is
very similar to the assignment statement found in FORTRAN or other high-level

programming languages. Thus the command
ASSIGN,NUMVAL=10;

simply places the value 10 in the (single-valued) data element called NUMVAL.
Expressions for the value can be arbitrarily complex, involving addition, subtraction,
multiplication, division and/or exponentation. They may Include a variety of
mathematical functions (see Appendix A) and nested parenthetical expressions.
Fxpressions are evaluated in the conventional way (as in FORTRAN, for example), so that
the command

ASSIGN,NUMVAL=4*2**3-6/2+3;
is evaluated as if It had been written

ASSIGN,I4UMVAL=(4*(2**3))-(6/2)+3;

74

The ALLOCATE command is used to create one or more data elements in the AWA. The user
must specify the name and type of the data element and may ,pecify Its dimensionality.

ALLOCATE,data element name(dlmenslon,dimension)-data tvoe,...

The ASSIGN command computes values and stores them In an existing AWA-resident DE.
ASSIGN,date element name (express Ion, expression) =g2arx_jjj= 'range '...:

involver multiplying an integer (2) by a data element value (using whatever data type it
has), multiplying the result by a real constant, and converting the result back to an
integer (NUMVAL was ALLOCATEd, above, as an integer). No conversion Is applied to free
data, however. Character s-rings may also appear as values, as in the command

ASSIGN,HOLDCHAR = "SPACE TRANSPORTATION SYSTEM";
but arithmetic operations are then not allowed. The ASSIGN command must be terminated
with a semicolon.

T

Subscripts can be any valid numerical expressions, as defined above. Thus,
ASSIGN,ONEDIb1EN(2**2-14/7)=12;

1= valid, and is equivalent to

ASSIGN,ONEDIMEN(2)=12;
Naturally, references to two-dimensional arrays require two subscript expressions:

ASSIGN,TWODIMEN(ONED114EN(1),6-NUMVAL)=26.183;

ASSIGN can also be used iteratively, to asslon values to more than one el@ment of an
array. This is done in a manner similar to the ordinary DO statement in FORTRAN. For
example, the command

ASSIGN,TARGET(I) = SOURCE(I) 11 =1,10;
copies the values of an entire ten-element array (SOURCE) Into another array (TARGET).

The range specification is indicated by an apostrophe, and contains the following
information:

'index = initial value-terminal value,increment
where the increment is optional. The "index" is a variable name. The variable takes
Integer values as indicated by the remaining information. For the first iteration, the

index is equal to the initial value. On each successive iteration, the index value Is
increased by the increment until it exceeds the terminal value. Thus

'IVAL=1,10,3
causes IVAL to take on the values 1, 4, 7, and 10. The next value, 13, is past the
terminal value, so the fifth iteration does not c--cur.	 If the increment is not
specified, a value of I is used (-1, if terminal value is smaller than Initial value).
More than one range specification can be used, to a maximum of four. Thus,

ASSIGN,PRODUCT(I,J)=1*J
CONTINUE:	 1 1=1,6 1J =1,4;

assigns values to all 24 elements of a 6 x 4 array. 	 In each case, the value assigned is
equal to the product of the row and column numbers by which it is ind?xed.

Evaluate and store a root of a quadratic equation
ASSIGN,R1=(-(i+SQRT(a**2-4*A*C))/(2*A);

The range field can be used to set values in a data element.
ASSIGN,VECTOR2(NUM4ER) - COUNT(NUMBER) 'NUMBER)- 1,10;

Compute and store the scalar product of two vectors
ASSIGN,DOT=O;
ASSIG'V,DOT = DOT + A(IND) * BOND) 'IiiD = 1,3;

Character data can be stored in DES created for character data

ALLOCATE,TITLE-C32
ASSIGN,TITLE = "RUUT1 AND SCALAR PRODUCT";

37-3. ASSIGN can be used for a variety of purposes.

75

38 IF Statement (Condition Testing in Sequence Tables)

The IF ... ELSE...ENDIF (or IF ... ENDIF) block allows selective execution of sequence table
statements.

The IF statement is used In senuence tables to allow conditional execution of ona or
more statements.	 In its simplest form, the IF block consists of an IF statement, one or
more other statements, and ENDIF.

IF,!NUM>6;
ASSIGN,INUM=6;
ENDIF

For instance, the above sequence sets the value of data PIement INUM to 6 if and only if
it started with a value greater than 6. Logically, the condition specified in the IF
statement is tested to determine whether it is true or false. 	 If it is true, the
statement(s) following the IF statement are executed;	 if false, they are skipped until
ENDIF (or ELSE) is found.	 If an ELSE clause is present,

IF,INUM>6;
ASSIGN,INUM=6;
ELSE
ASSIGN,INUM=O;
ENDIF

then the statements following ELSE are

executed only if the condition is false,
and are skipped if it is true. Thus,
either of two blocks of statements can be 	

(statemertsn 'range
(statements)

selected, depending on the truth value of 	
ENDIF

the condition.	 in the above instance, INUM
is set to 6 if It started out greater tian 	 ,

6, and Is set to 0 If it started out less	
(s ,

taatemtem ents)
i t ion range

than or equal to 6. Any number of 	
(s

ELSE
statements can occur after IF and after
ELSE.	 IF, ELSE, and ENDIF can appear only	

(statements)
ENDIF

in sequence tables; they cannot be entered
as directives for immediate execution by
the FDS Executive.	 Incidentally, the IF 	 38-1. The IF statement can be used

statement must be terminated with a	 with or without an ELSE-clause.

semicolon.

the "condition" portion of an IF statement
consists of two mathematical expressions and
a relational operator. The IF statement
amounts to a construct of the form

expression relation expression.

The expressions can take any of the forms
discussed in connection with the ASSIGN
statement. They can include add!tlon,
subtraction, etc., as well as parentheses and
mathematical functions. They may refer to
data elements, with or without subscripts, as
well as numerical constants. The relations
include equal (_), not equal (<> or ><),
less than (<), greater than (>), less
than or equal (<= or =<), and greater than
or equal (>= or =>). Thus, very complex
tests are possible, although It will usually
be advantageous to ke^p things simple.

true	 IF	 false
condition

statements	 statements
following	 following

IF	 ELSE, if any

statements
following ENDIF

38-2. The function of iF blocks is

illustrated by a flowchart.

76

The IF ... FLSE ... ENDIF (or IF ... ENDIF) block allows conditional
execution of statements in a sequence table.

F
	 IF,condltlon 'range '...i

(statements)
EL SE
(statements)
ENDIF

l7 IF blocks may be nested In a hierarchical fashion. Thus, the sequence
:F	 1=1•
IF, J -e10;
LIST,XYZ-ST

ENDIF
ELSE
LIST,WXY-ST
ENDIF

is allowed.	 In this sequence, the inside
IF block is executed only if I equals 1.

If I Is not equal to 1, the ELSE clause Is
executed (i.e., the statement "LIST,WXY-ST"
is executed). Notice that, If I Is 1 and J

Is 10 or greater, nothing Is LISTed.
Interpretation of such a construct may be
easier if It is written in Irdented form to

show Its hierarchical structure.
IF, i-1;

IF,J<10;
LIST,XYZ-ST
ENDIF

ELSE
L I ST, WAY-,T

ENDIF	 36-3. Several relational operators
can be used in the "condition" portion
Of iF ctatemerito;.

An IF statement can also have a "range". For exam p le. the statement

IF,MATRIX(I)>O 11 =1,10;
could be used to test all values of a 10-element array. The condition is true Qnly If

all Individual tests are true. Thus, In the above case, all 10 elements of MATRIX must
be greater than zero or the condition is false. Up to four range specifications can be
used. Their form Is the same as that discussed In connection with the ASSIGN statement.

CONDITIONAL CQUIVALEIJI	 ARITHMETIC EXPRESSION

EXPRESSION* (assurre	 1=2.J=2.K=3) TRUTH VALUE

I	 = J 2=2 TRUE

I	 =	 K 2 =	 3 FALSE

I <	 J 2<	 2 FALSE

I <	 K 2<	 3 TRUE

I <=	 J 2< = 2 TRUE

I) J 2 J 2 FALSE

K > I 3 > 2 TRITE

I >- J 2 >- 2 TRUE

1 0 J 20 2 FALSE

10 K 2 <) 3 TRUE
I*J> = K 4 >=	 3 TRUE

I**J	 =	 (K.-1)**J 4	 •	 1 FALSE

38-4. The truth value of a condition is determined by cof-puting ?he numerical values
of the expressions and applying the relational operator.

IF

Symbol Operation

less	 than

g reater than

<— less	 than or equal

< n	 n	 u	 11

greater than or equal

equal

< not equal

<>

11

39 DO LOOP Statement (Iteration In Sequence Tables)

The DO LOOP block is used for conditional looping In sequence tables.

The DO LOOP... LOOP END block allows Iterative execution of statements as a function of-.Q

Specified condition. Thus, the sequence
ASSIGN,I=1;

DO L.00P,WHILF,I<=10;
ASSIGN,ARRAY(I)=1;
ASSIGN,1=I+1;

LOOP END
causes the last two ASSIGN statements to be executed 10 times, with the data element I
takinq on the values 1, 2, 3, ... 10. The loop has the effect of setting each element
of ARRAY to its index position (ARRAY(1) = 1, ARRAY(2) = 2, etc.). This is &n example
of a WHILE loop, in which the loop is repeatedly executed while the specified condition
is true. The test is performed each time the loop Is entered. When it is found to be

false, the loop is exited, and those statements which follow LOOP END are executed. DO

LOOP (and LOOP END) statements can be used only in sequence tables. DO LOOP statements
must end in a semicolon.

DO LOOP , WHILE cond i t ion ' rangt	 i
(statements
LOOP END

DO LOOP,UNTIL,condition 'range '...i
(statements)
LOOP END

39-1. The DO LOOP statement r;u both WHILE and UNTIL forms.

In the UNTIL form of DO LOOP, the test Is performed at the end of the loo . Compare the

sequence
ASSIGN,1=1;
DO LOOP,WHILF,I>=10
ASSIGN,1=9999;
LOOP END

with the sequence
ASSIGN,1=1;
DO LOOP,UNTIL,1>=10

ASSIGN,1=9999;
LOOP END

When the WHILE sequence is executed, I is given as value of 1, which is not changed by

t^,e DO LOOP. This Is because the condition I>=10 is false and the statement within tKe

DO LOOP b!ock is not executed. On the other hand, the UNIII. loop Is executed exactly
once. Since no tes+ Is performed until after the s+ii3mirt within the !oop Is executed,
I takes on the value 9999. When the test is then applleu, It Is found to be true, whlcb
c use loop to be exited. As the words suggest, WHILE causes iteration As Iona ds
fip condition remains true, and UNTIL causes Iteration until the corditlon Jerome true.

78

statements
after DO LOOP

no	 conditiontrue/
yes

0

The DO LOOP block allows conditional looping within a sequence table. A collection of
sequence table statements can be repeatedly executed WHILE specified conditions a-e met
or UNTIL specified termination conditions are satisfied.

(,.2101	 DO LOOP.WHILE.condition 'range '..

or DO LOOP.UNTIL.condit(^m 'range '...^
(statements)
LOOP END

DO LOOP,WHILE,condition
	

DO LOOP,UNTIL,condition

statementsstatements
after LOOP END	 after LOOP END

39-2. WHILE and UNTIL loops differ in the time at which test is applied.

s in the IF statement. the condition in a DO LOOP state^ent can involve a "ranee". To

be considered true, the condition must be true across all values of the index varizbla.

For example, the loop
DO LOOP,WIIILE,ARRAY!I)>O 11=1,5;
(statements)
LOOP END

w I be skipped, ifrs^.]_Y of the first five elements of ARRAY is nonpositive. Up to four

range specifications can be used.

DO LOOP blocks can be nested with o+'ar DO LOOP blocks or with IF blocks. Thus, a
sequence such as

ASSIGN,1=1;

DO LOOP,WI-!ILE,I<=10;
IF,R(I)>A(I);
ASSIGN,A(11=B(I);

END Ir

ASSIGN,1=1t1;
LOOP END

is possible. This se q uence causes the first 10 elements of A tcc take cn a value which
is the greater of;	 (1) their Initial value, and (2) the corresponding valut- in array 2.
When blocks are nested In this way, it is important to recognize that the inside block

must be closed first. Thin, the following "overlap p ing" structure is LL f.' .

DO LOOP,WHILE,I<6;
IF,J=O;
(statements)
LOOP END

ENDIF

79

40 BREAK, DLOG. FORMAT, MESSAGE. NEWS Commands (Miscellaneous FDS Commands)

The commands BREAK, DLOG, FORMAT, MESSAGE, and NEWS allow the user to obtain system
status, transaction log, mixed data format displays, and current news information, and

to communicEte with other users,

The BREAK Command causes FDS to display the current functional status of all activ _E23
tasks associated with the current user. The current contents of the execution stack are
displayed to the user. The appropr i are prompt symbol, task name, and the names of any
tables being processed are displayed.

The OLOG commend allows the user to display all or Dart of the user's transaction log

111. The transaction log is a "circular" file which has a predetermined size. As new
.ransac:tions are added, the oldest ones are thrown away in order to nake room for the
new information. Each FDS prompt, eazh user input, and each error message, is placed In

this file, along with date and time tags. The user can display all transactions for the

current day on the -terminal
DLOG

or on the system line printer

DLOG-P
or can specify starling and/or ending dates or times. For example, the command

DLOG,12/18/83,14/23/00
causes all stored transactions, which occurred on 18 December 1983, after 2:23 P.M., to
be displayed. Date fields take the form month/day/year. The current day Is assumed, if
date is omitted bu+ time is given, as in

ULOG „ 14/23/00
Time fields take the form hour/minute/second. If start time is omitted, but other date
or time information is given, time OO/C /00 (midniqht) is assumed. 	 If end time is

omitted, 23/59/59 is assumed. 	 If a start date is given, but no end date is given, the
start date is assumed to be the end date. Thus, the command

DLOG,12/17/83,,,14/23/00
displays all stored transactions from the start Df the day on 17 December 1983 through
2:23 P.M. on the same day.

12/18/83 08/04/24 * INFO *EX*XMINIT01 w 53*

FDS SIGNON COMPLETED,FDS VERSION IS 6C

12/18/83 08/04/24
12/18/83 08/04/45 GET,EXPL•-PD

12/18/83 08/04/46
12/18/83 08/04/59 TOC
12/18/83 08/05/01	 .
12/18/83 08/05/27 EDIT „ OMS2-IT,GPMP

40-i. The transaction log contains a time-stamped record of recent FDS prompts and
user inputs.

Tie FORMAT command displays current definitions of all, or selectYd. mixed da;a formats.
The mixed data type is used when elements of more than one type are co ntained in a
single data element or DRDE. While data types may be combined, they must be combined
according to an existing format definition. These definitions are numbered, and may be
displayed usinq the FORMAT command. Thus,

FORI . ,-T,M31 ,1433
displays the contents of format definitions 31 and 33, while

cORMAT-P
displays all current format definitions on the system line printer.

J

80

The BREAK command displays the current functional status of all active FOS tasks

associated with the current user.
Ae-,,^	 BREAK

n(̂ ^/̂nj	 The DLOG command displays all or part of the user's transaction log file.
OLOG-device ID,start date,start tlme,end date,end time

The FORMAT command displays current mixed data formats.
FORMAT-device ID,format number,...

The MESSAGE command transmits a message to one or more other users.
MESSAGE,access code(s),"text"

The NEWS command displays system status Information which has been places in a NEWS file

by system support personnel.
NEWS-device ID,start date

•	 The MESSAGE command allows the user to transmit a message to any other FDS user. The
message will be displayed for the reclpient(s) with the date and time of transmission
and the originating user's access code. 	 If a recipient is currently logged on, the
message will be displayed on that user'= terminal just prior to the next Executive level

(%) prompt.	 !f the recipient is not logged on, the message is retained and
automatically presented when the user next logs on. Once a retained message has been
displayed, it is purged from the system.

BREAK

DLGG-device ID,start date,start time,end date,end time

FORMAT-device ID,format number,...

MESSAGE-access code(s),"text"

NEWS-device ID,start date

40-2. Syntax of miscellaneous FDS coronands.

The MESSAGE command specifies the message text. and may specify the access code(s) of
one or more recipients. For instance, the command

MESSAGE,AV,"MEETING HAS BEEN POSTPONED TO 3:30"
transmits a message only to user PV. 	 If no access code is given,

MESSAGE „ "SYSTEM WILL BE DOWN 3:30-4:00 P.M."
it is transmitted to all users. The user should keep in mind the message retention
feature. The above message is clearly unsatisfactory. A user who next logs on a week
later may not recognize this messa je as inapplicable at that time. Multiple recipient
access codes are allowable, as in

MES^AGE,AW,CW,"HAS ANYONE UPDATED THE
CONTINUE: OMS-2 INTERFACE TABLE YET?"

This command takes advantage of the multiple line facility availahle in all commands.
Note, however, that the message will be displayed in a single line

MESSAGE FROM CY,12/18/83 02/16/2.7

HAS ANYONE UPDATED THE OMS-2 INTERFACE TABLE YET?
unless Control-C is used to break it into multiple lines. The message text is limited
to 122 characters, including Control-C characters.

The NEWS command displays system status information which 1a5 been placed in a NEWS fil-e
by system support personnel. This facility is used primarily to convey information
about the system itself, including updates to system software and to Master Data Bases.
If no device :D Is specified,

NEWS

the information is displayed on the user's terminal. 	 If the line printer device code is
specified,

NEWS-P
the news is printed on the system printer. 	 If no date is specified (as In the above
commands), the entire news file is displayed. To obtain only news entered on or after a
specified date, that date Is added to the command in the form month/day/year.

NEWS,12/18/83

81

41 AUTOMATED DOCUMENT PRODUCTION

FDS supports automated production of standard documentation.

A major function of FDS is its support of automated document production. Briefly, FDS
accomplishes this by substituting computed and user-provided f nformatlen for "holes", or
placeholders, in a predefined text document. The overall document production process is
fairly complex, involving five groups of personnel, three computers, and a large number
of procedural steps. From the user's point of view, though, the process 1s fairly
simple and automatic.

In automated document production. the user's job is to provide the information which
changes from mission to mission. Each standard document (e.g., CFF) has a large amount
of information which remains the same across all, or many, flights. Only the changeable
information needs to be provided in order to produce documentation which fully describes
a unique mission. Support personnel have created a number of standardized document
segments, and have left spaces ("holes") to show where user-provided information goes.
The information already provided by the support personnel includes format

specifications, units of measure (conversion is automatic), and other data required to
fill each "hole". The user must only indicate to FDS the values, or where the values
are to be found, so tha'r FDS can automatically fill in all the "holes" in a
document/segment.

Although the user's part in document production is relatively simple. a clear

understanding of the process requires an awareness of several components. For each
DOCUMENT/SEGNIENT, there is a FORM, which consists of the basic text (and tables, etc.)

of the segment, with placeholders showing where values are to be provided by FDS. These

forms are provided by system support personnel. For each document/segment, there is
also a DATA DESCRIPTOR TABLE (DDT) provided by support personnel. This table indicates
the name of each missing value or set of values In the Form, and provides information

about format, units of measure, etc. Although this information is actually stored in
FDS Linkage Tables, it is convenient to think of it as a separate entity; it is not
under user control, as Is the rest of the Linkage Table information. The DOCUMENT
PROCESSOR uses this DDT information, and information provided by the user, to construct
a finished document. The Document Processor is an X Processor, and is executed In the
same way as any other X Processor, using a PERFORM command which specifies an Interface
Table.

The components which the user mustrp ovide are the Linkage Table and the Interface
fable. The L!NKAGE TABLE (LT) is the user's way of Identifying, for the system, the
values which are to be placed in the "holes" in the Form. Because the Document

Processor (DOC) i5 do X Ptucessor, it Duta,ris its basic 1 nformatlon from a n Interface
Table.	 In this case, the IT identifies the name of the Document/Segment, name of the
L i nkage Table, and other information necessary for the DOC to proceed.

82

4W VIP

FDS supports automated production of standard documents with minimal	 effort	 by	 the user.

To produce a document, the user must provide the values (or	 their	 locations)	 which	 are

to be placed in the	 "holes"	 in a standard Form.	 Th!s process utilizes Forms and Data
Descriptor Tables (both	 provided by	 support personnel), a Documentation Processor

(DOC-XP),	 and Linkage Tables and Interface Tables	 (both provided by the user).

Form:

Text, tables, etc., with "holes" to show where FDS-supplied values are to be
placed. These Forms are provided by support personnel.

Data Descriptor Table (this information Is actually stored as part of the default
Linkage Table):

A description of the data items which are to be placed in the "holes". This
table provides a name for each data item, information about its format, and

unit of measure (where appropriate). The order of the entries in the DDT
corresponds to that of the "holes" in the form. DDTs are provided by support

personnel.

Linkage Table (user-modifiable portion):

A table which indicates the values which are to be placed In the "holes", or
the names of data elements or DRDEs In which the values are stored. This
table is the user's means of causing appropriate values to appear in the
automatically produced document.

Interface Table:

An ordinary interface table (for the DOC X Processor) which tells the Document
Processor the name of the document/segment, linkage table, etc., needed to

prepare a finished document/segment.

Document Processor:

An X-Processor (called DOC) which performs the document preparation. DOC
obtains the Form and users infmrmation in the DDT and L T to f11! I^. a!! the
"holes". The resulting document/segment can be displayed for user review, and
can be deleted or stored for actual production.

41-1. Production of a finished document/segment requires sevt_ral components.

83

42 AN EXAMPLE OF AUTOMA TED DOCUMENT PRODUCTION

The user controls the behavior of the Document Processor by making appropriate entries
in a Linkage Table and an Interface Table.

Preparation of a Linkage Table Is the main user activity involved in document
rQd	 iQn .	 In almost all respects, this is just like preparing an interface table.
Suppose, for example, that the user wishes -to prepare a linkage table called EXAMPLE,
starting with the defaul + Linkage Table for a document called CFF1, segment LIFT. The
user would type in the command

EDIT „ EXAMPLE-LT,CFP11_IFT
Just as in interface table editing, the editor starts in the incomplete mode unless the
default LT is complete. In the LT, the parameTers are the names of the Item; of
Information which are to be substituted for placeholders ("holes") in the form. As in

an IT, the user can specify the actual value to be used, or can specify the name of a DE

where the information can be found. Thus, in response to an editor prcxnpt, the user
could type in an actual value

1,LSITET=81
<&1:"KSC"

or the name of a data element which contains the value
<81:SITE

When arrays are - s quired, the whole set of values can be typed in, or the name of a DE
containing the whole set can be provided. The user can also indicate a particular
position In an array. Assume, for example, the lift-off time is ordinarily found in
element i of the first row of the flight state vector. Then, the user might respond

2,TLO=81
<81:RESULT(1,7)

In order to point the document processor to element (1,7) of the RESULT DE. 	 If TLO
required more than one value, the required number of values would be taken from RESULT,
starting in location (1,7).

The user must also provide an Interface Table. which DOC uses to find all the
information it needs. to write to the correct file. etc. Thus, the user- might construct
an IT called EXAMiT, using ord i nary procedures for IT editing. The user must state the
name of the document (here it is assumed to be CFP1), the seament name (LIFT), Linkage
Table name (EXAMPLE), output test file name (CUTTEXT) and other Information. A portion
of this dialogue might be:

EDIT,EXAMIT-IT,DOC
1,D000MENT=81
\81:"CFP1"
2, SEGMENT=81
\81:"LIFT"
3,LTABLE=81
\ 81 : FXAMPI F

4,FILENAME@81
\81:OUTTEXT

For more detail about the use of DOC, the user should consult the X Processor User
Reference Manual.

Once the LT and IT have been constructed, the user simply executes DOC. The appropriate
command is

PERFORM,DOC,EXAMiT

DOC performs the document construction, and gives the user an opportunity to screen the

results, vihen the user is satisfied, the output text can be stored for transmission to
the Xerox Word Processing System, where final output will be accomplished.

84

An example Illustrates the Information used by the Document Processor to produce
documents In an automated way. For further Information, the user is referred to the
X Processor User Reference Manual section dealing with the DOC processor.

I U
4

i

Form (assume this document/segment is called CFP1/LIFT):

Lift-off from [I occurs at [] seconds after solid rocket booster (SRB)
Ignition (MET = [] seconds) after which a vertical rise to tower clearance
phase Is initiated, ending at a relative velocity of [] fps (MET = []

seconds).

Data Descriptor Table (for document/segment CFPi/LIFT):
(This Information is actually stored In the Linkage Table, mostly In the
"extended prompt" records. See X Processor User Reference Manual for more
Information.)

flame	 tvoe	 format	 nits	 prompt taxt

LSITET	 C4	 A3	 -	 LAUNCH SITE

TLO	 R	 TO:0:0:1	 -	 TIME OF LIFTOFF(GET)

TLO1	 R	 TO:0:0:3.1	 -	 TIME OF LIFTOFF(GET)

RELVEL	 R	 13	 FT/S	 RELATIVE VELOCITY

TCLNCE	 R	 70:0:0:3.1	 -	 TIME OF TOWER CLEARANCE

Linkage Table (assume this is called EXAMPLE-LT):

I LSITET="KSC"
2,TLO=RESULT(l,1)
3,TL01=RESULT(1,2)
4,RELVEL=RESULT(7,3)
5,TCLN(:E=RESULT(1,3)

Interface Table (assume this is called EXAMIT-IT)

1,D00UMENT=11CFP111
2,SEGMENT=11LIFT"
3,LTABLE=EXAMPLE
4,FILENAME=OUTTEXT

Date Element (called RESULT. This is Just an example):

Assume tnat KESULT(1,7)=3.0
Assume that RESULT(2,7)=_'.l
Assume that RESULT(3,9)=2C.0

Assume that RESULT(3,7)=3.8

Finished text (stored by DOC in OUTTEXT-DF):

Lift-off from KSC occurs at 3 seconds after solid rocket hooter (SRB) ignition
(GET= 3.1 seconds) after which a vertical rise to tower clearance phase is
initiated, ending at a relative velocity of 20 fps (GET=3.8 seconds).

42-1. An example shows how the various components are used by the Document Processor to
produce the finished document.

85

APPENDIX A -- MATHEMATICAL FUNCTIONS

In contex- in which mathematical functions may be used (e.g., ASSIGN command), any of
the functions listed below are available. The user should be aware of a peculiarity of
the operating system. When a function error occurs (e.g., ATAN(O,G)), no inte r rupt or
error message to the user terminal occurs. The system returns a default function value

and writes an erro r message onl y to the system console, this should be kept in mind

when debugging operations involving functions.

Function Result
Nar-,e Type

ABS R
ACOS R
HINT R
ALOG R

ALOG10 R
AMOD R

ASIN R

ATAN R

ATAN2 R
COS R

DABS D

DATAN D
DATAN2 D
DBLE D

DCOS D
' 	 DEXP D

DINT D

DLOG D
DLOG10 D
DrAOD D
DSIGN D
DSIN D
DSQRT D
DTAN D
DTANH D
EXP R

FLOAT R
?ABS I
1DINT I

IFIX I
ICIrN I

MOD I
SIGN R
SIN R

SNGL R

SQRT R
TAN R

TANH R

Argument(s)	 Number of
Type	 Arguments

1
1
1
1
1
2
1
1

2
1
1

1
2
1
1
1
1

1
1
2
2
1
1
1
1

1
1
1
i

1
2
2
2
1
1
1
1

1

Operation

Absolute value
Inverse cosine
Truncate fraction
Natural logarithm
Base ten logarithm
ModuIo
Inverse sine

Inverse tangent
Inverse tangent
Cosine
Absolute value

Inve r se tangent
Inverse tangent
Convert to double

Cosine
e
e

Natural logarithm
Base ten logarithm
Modulo
Apply sign
Sine
Square root
Tangent
Hyperbolic tangent

e**x
Convert to real
Absolute value
Convert to Integer

Convert to integer
Apply sign
Modulo
Apply sign
Sine
Convert to real

Square root
Tangent

Hyperbolic tangent

Al

APPENDIX B -- SIZES AND DIMENSIONSA
I tem L I m_Lf

Absi-act	 length 256 bytes = 256 characters

AWA size 32768 oytes = 8192 words

Data element column	 length 1024 components

Data element size 4096 bytes =	 1024 words

nWA size 8192 sectors	 (2 Mbytes)

Entry number	 in table range	 1-32767

Execution stack	 levels 8

Interface/Linkage/Sequence table size 4096 bytes =	 102 .1 words

MDB/PDB size 32767 sectors	 (8 Mbytes)

MESSAGE command text 122 characters

Messages queued ner user assignable by user

Nested repeat fields 4	 levels of	 nesting

NOTE command text 1600 characters

PDBs per user assignable by	 user
(also	 limited	 by	 disk	 space)

Sequence Table entries 226

Subscript of data element range 1-2047

TOC entries (AWA or data base) 630

X batch jobs pPr user assignable by	 user

X batch jobs queued	 (all	 users combirad) 50

B1

Co	 APPENDIX C -- GLOSSARY

abstract -- text associated with a given file or processor which contains description of

the file contents or processor function. The user is responsible for creating and
updating abstracts for files In PDBs.

access code -- a two-character code by which a user logs on, and by which ownership of
PDBs Is indicated.

Active Work Area -(.AblA -- an area of memory and disk storage utilized as working space
for the constructior and manipulation of data. An AWA Is automatically allocated to
a user at sign-on and purged frcxn the system at sign-off.

automatic (execution mode) -- a mode in which FDS interactively executes the statements
it a Sequence Table without requiring user approval at each step.

batch (execution mode) -- a mode In which FDS executes the commends in a Sequence Table
at some later time, as the system's processing load allows.

character (data type) -- a data type consisting of text strings which occupy 4, 8, 16,
32, or 64 bytes (characters) of stoi;,ge.

command -- a user-specified instruction to FDS. Commands which are executed Immediately
are called c:rectives. Commands which ,re stored in sequence tables for later

execution are called statements.

data base -- a set of files stored on disk which are relatively permanent, such as
personal data bases or master data bases.

Dafa Element (DE) -- a collection of related processor input and output variables
grouped together into a s!ngle file and stored under a user-defined name. Data
element. coin be stored !n the AWA, a PDB, or an NUB.

device_J_Q -- a code which can be added to many commands to specify the device on which
generated output is to be displayed. The only allowable device code is (-P), which
indicates the system printer.

dlre_tive -- see command.

Disk Resident Date Element (ORDE)_ -- A "data element" which is potentially too large for
the memory-resident portion of the AWA, and which is therefore declared to be
disk-resident,

disk work area (DWA) -- the disk-resident portion of the AWA.

^ocumcnj, processor -- i% seeclal X Processor whose functlor is to produce documents based
on information computed in designing a flirht.

C1

document/ segment -- A portion of a standard document which can be produced using FDS.
Each such portion is specified by giving Its document name and segment name.

editor -- A portion of the Executive which allows the user to construct and modify
tables.

Executive -- that part of FDS which com ,^,unlca + -_s with the user and through which the
user manages files, invokes the ed i tor and initiates processor activity.

file -- an organized, named collection of information.

Interface Table (IT) -- A table which contains Input/output inforr —tion for use by an
Y Processor.

Liake ne Table (LT) -- A table which contains i°furmation on the values which are to be
placed in an automatically produced document.

Master Data Base (M_DB) -- collection of permanent files which provide a source of data
to all FDS users. The MDB supplies basic data on a read-only basis.

Personal Data Base (PDB) -- A collection of files "permanently" stored on disk by a
user.

remote job entry -- Submission of a job to a computer, from a remote location, for
subsequert prucessing and return of output to the originating location.

semi-automatic (execution mode) -- a mode in which FDS interactively executes the
statements in a Sequence Table, stopping at each step for user approval or other
action.

Sequence TAb1 p,_l;J -- a group of FDS commands stored for later execution.

sign-off -- process by which communication is ended with FDS, resulting in the AWA data
being purged.

scn—en -- process by which communication is established with FDS, resulting In the

aliocatlon of the AWA.

statement -- see command.

table -- a file of one of the following types:	 Interface table, linkage able, sequence
table, Y-data table.

C2

Table-Of -Contents (TOC) -- a directory of the data contained In the AWA or In verlous
data bases.	 It includes the names and attributes of all data elements and tables.

X Job -- The process, events, and output associated with the execution of a Sequence
Table in the batch mode.

X Processor -- A computational support routine available to the FDS user for either
interactive of batch execution. X Processors reside In FDS and perform simulations

at an appropriate level of detail for preliminary pldnn:ng and development of a
Conceptual Flighi Profile.

Y Processor -- a computational support routine which resides on a separate computer from
FDS and is available for execution via remote job entry. Y Frocessors perform
highly detailed simulations compatible with de-elopment o f an Operational Flight

Profile.

f (-,)

'M

C3

APPENDIX D -- TIME DATA TYPE

- User specified as year, month, and day of month

- Defined to be zero hours, zero minutes, zero seconds, Greenwich
I	 zone time on the user-specified year, month, day of month

- Base date is the Instant In time at which the FDS inertial reference
axis systems (MEE, TEE, and TEG) are defined (I.e, the Prccesslon
matrix, Nutation matrix, and initial right ascension of Greenwich
are computed)

- User specifies the Base Date for a session by executing the BASTM processor

2. Time References:	 In FDS-2 there are four time references available for user inpit
and display of event times. They are defined as fllows:

IET = In iu-nal Elapsed Time - it is an event time which Is measured from
the user defined Ease date. All Internal FDS time tags (e.g.,

position/velocity state vector or attitude event time tags) are stored in
this measure. The time is expressed in days, hours, minutes, and seconds.

MET = Mission Elapsed Time - It is an event time which Is measured from a
user defined reference time. The time Is expressed in days, hours, minutes,

and seconds.

PET _ Phase Elapsed Time - It is an event time which Is measured from a
^IQcond user deti;Qd reference time. The time is expressed In days, hours,
minutes, and seconds.

GMT = Greenwich Mean Time - It is an event time which is measured from the
beginning of the year of base date. The time Is expressed In day of year
and time of day. The day of year is an Integral day count from the
beglnninc of the base date yezr. The day count is negative In the years
prior to base date year and continues to increment positively in the years
after base dale year. Day o f year does = recycle to one at the end of
tale date year when time iag is Deyond that year.

Time of day Is expressed as hours, minutes, and seconds in Greenwich zone
time. For example, If the base date year is 1980 and the date to be

expressed in GMT Is Dec. 1, 1980, noon GMT, the GIFT Is 366:12:0:0. 	 If the
date is Jan. 1, 1981, noon GMT, the GMT Is 367:12:0:0. 	 If the date is
Dec. 31, 1979. noon GMT, the GMT is -1:12:0:0. There is no zero day of
year.

3. SneclficatIon of MET and PET Reference Tlmec:

- The user must specify the MET and PET reference times (i.e., the MET = 0
And PET = 0 times) In the IET reference.

- The user can specify and change MET and PET reference times independently
of each other utilizing the BASTM processor.

D1

and Processor PromL;s: The letter
In the Processor Interface Table

ax for time is ± d.d:h.h:m.m:s.s
Each number is any numeric data
colons prior to the first number

4. Time Type for LajjaLLdce T able PrcmQt Parameters
designating the time type is utio,J'a ide,itlfy It
and Processor Prompt Table. The input user synt
where the sign applies to the total time value.
type. Colon Is the only valld sepnrator and all
are required.

U?

`W	 mar

I ^.

APPENDIX I -- INDEX

This is an index of the terms and concepts used In this user guide. The numerical
references are to page numbers. In cases In which one or two paces are especially
relevant to the term or concept, tho.:e page numbers are underlined.

Module 17	 .. has not been Indexed

Modules 41 ff have not been Indexed

Special Symtols

' (in range specification)
75-77, 79

@ (IT cutput value symbol)
24, 46

8 (missing value symbol)
Z4, 44-42, 47, 49

BLABEL (missing value symbol)

24, 44-42, 46, 48, 52

\ (prompt symbol for IT editor) see prompt symbol, \

\ (to switch to IT editor update mode)
43

(to separate fields in commands)

'2, 66, 69

(equal)
76-77

(IT input value symbol)

24, 46

(IT input/output value symbol)

=< (less than or equal)
76-77

=> (greater than or equal)
76-77

1 file names

11 filenames
17, 24

> (greater than)
76-77

1 1	
l

,2-

> (prompt symbol for YDT editor) see prompt symbol, >

> (to switch to LT editor update mode)
43

>= (greater than or equal)
76-77

>< (not equal)
76-77

< (less than)
76-77

< (prompt symbol for LT editor) see prompt symbol, <

< (to switch to YDT editor update mode)
43

<= (less than or equal)
76-77

<> (not equal)
76-77

% (prompt symbol for Executive) see prompt symbol, %

% (to abort and return to Executive)
41, 44-45. 23, 72-73

... (ellipses in command definition)
32

S (to skip entry in semiautomatic execution)
72-73

S (prompt symbol for semiautomatic execution) see prompt symbol, S

(prompt symbol for ST editor) see prompt symbol,

(to switch to ST editor update mode)
43, 52

? (to obtain help)	 see also directive?

4.4- 4 5, 48, 52, 70, 72-73

" (string literal delimiter)
55, 66, 69

(to terminate a command)
35, 75-76, 78

(as part of prompt) see prompting

(in time data type) see Time data

1-2

0 A

abbreviation, of commands
35, 71

abend see abnormal processor termination

abnorm^a	 rocessor termination
38-39

abort of a processor
33-39

abort of an editor
40-_4_L, 44-45, 52

ABSTRACT command
32, 35, 54-55

abstracts, of files, data bases, processors, etc.
54-55

access code
20, 3L, 54, 59-60, 62, 64, 69, 81

accuracy of computation
30

Active Work Area (AWA)
]L, 21, 23-24, 28, 36-37, 40-41, 49, 53, 58-64, 72-74

i

Active Work Area allocation
16, 31

ALL mode (editor)
42-43, 44, 46

ALLOCATE command
21, 29, 32, 52, 74-75

APPEND command
20-21, 32, 58-59

application processor
12

arithmetic expressions
74-76

arrays
1E, 24-25, 70, 74-75

ASSIGN command
29, 32, 74-75, 78-79

+titude analysis
10-11

dor

13

ATTRIBUTES command
25, 32, 70-71

attributes, of X Processors sE

AUTOMATIC command
32, 39, 72-73

automatic execution mode
15 9 28, 38-32, 51

B

BATCH command
32, 39, 72-73

batch execution
12-13, 15, 26, 28, 30, 38-39, 51, 55, 57, 60, 72-73

BREAK command
32, 80-A1

break key
38

Cargo Integration Review
s

carriage return (see also Control-C)
35, 44, 45, 55, 72-73

categories of flights
6

CFP see Conceptual Fligh' Profile

CHANGE command
32, 49, 52, 65, ¢L, 71

changing see modification

character data (Cn) see also string literals
2_^, 70, 74-75

classification code
20-21, 54-55, 58, 60, 69

CLEAR command
21, 28, 32, 62-63, 65

1.4

clearing of screen
34

Command Processor
12-13, 32

commands
21, 28, 32-33

(comments, in sequence table see help; NOTE statement
MW

communication among users
80-81

•	 Conceptual Flight Profile (CFP)
5-7, 10-13, 15, 26, 30, 82

conditional execution
28, 76-79

consumabies analysis
g, 10-11

CONTINUE: (promp+)

35 55

Control-C
35, 55

`	 COPY command
11	21, 32, 64-6^

copying, of files
64-65

CPU time limit
73

CREATE mode (editor)
42-43, 44, 46, 52

creation, of abstracts
54-55

creation, of data elements
74-75

creation, of personal data bases
59

creation, of tables
40-42

crew activity planning
g, 10

Crew Simulator Data Pack
7

Crew Training and Procedures Division (CTPD)
5

1-5

I&

CROSS REFERENCE command
32, 68-69

CRT display
34

CTPD see Crew Training and Procedures Division

12

data base
20-21

Data Descriptor Table (DDT)
82-85

Data Element (DE)
1 -19 20-22, 24-25, 47, 54-58, 60-66, 68, 70, 74-75, 80, 83, 85

data element name
74-75

data formats see Mixed data

data management
14-15, 17, 20-21, 32

data storage areas
16-17

data type
2^, 74-75

date/time tag
54, 64, 80

DE see Data Element

decimal point, in number

25

default Interface table

22-21, 40-41, k, 48, 71

default linkage 1-able
40-41

default values, In commands
32

default values, in Interface tables
23, 48

default values, of disk, CPU time, and print line limits
73

DELETE command
• 21, 32, 42, 4.^, 62-63, 65

j

16

r

deletion,	 of	 files
62-63

deletion,	 of	 lines	 from table
42

deletion,	 of	 personal	 data bases
59, 62-63

device	 ID	 (-P)
55-56, 60, 68-70,	 80-81

' DF		 see Disk-Resident	 Data Element

dimensions,	 of	 array
25.	 74

directive
31, 41-46, 57

directive?	 (to	 learn syntax of	 a directive)
44-g,^,	 52,	 72-73

disk	 allocation
3.rz-37, 12

Disk-Residen4 Data Element 	 (DRDE)
]L-22, 24-25, 37, 47, 54-57, 60-62, 64, 66, 68, 80, 83

disk storage
16-18,	 20,	 36-37, 63,	 73

Disk Work Area
36-31, 73

display,	 of	 abstracts
54-55

display,	 of	 available processor	 names

60

display,	 of	 files
56-57

display,	 of	 names of	 available data bases
60

display,	 of	 names of	 outstanding jobs
60

display,	 of	 system news
80

display, of	 system status
80

display,	 of	 table of	 contents
60-61

1-7

display, of transaction log 	 NW-11

80

display, of X Processor attributes
IQ-71

DLOG Command
32, 80-81

DO LOOP statement

28, 712
document processing

7, 12-15, 19, 22-23, 30-31, 82-85

document processing workstation

31

Document Processor (DOC-XP)
23, 52-85

document/segment
23, 41, 54-55, 60, 68, 70-71, 82-85

double precision data (D)

21, 74

duplication of lines In table see INSERT command

duplication of tables see COPY command

E

EDIT command
32, 40-41, 43, 52, 57, 65

editing of tables
13-15, 40-45

editor abort
40-41

editor directives and responses
44-45

editor modes
42-43

ellipses, in command definition

32

ELSE
28, 76-77

ENDIF
28, 76-77, 79

18

	

CA 	 entry number see also span

24, 2$, 43, 46, 52, 56, 66, 70, 72

errors
38

example problem, in user guide
2-3, $:^, 10-11

execution, conditional
76-77

execution, of sequence tables
72-73

execution, of sequence table, at sign-on
72-73

execution, of X Processors sae PERFORM command; X Processor execution

execution stack
80

Executive
12-13, L4-J-5, 17, 19, 21, 28, 30-33, 36-37, 40-46, 62, 81

EXIT command

	

_	 32, 40-41, 45, 49, 53

explicit editor invocation
40, 43

expressions, mathematical
74-76

extended prompt
44

F

file

20-21

file names
17, 21, 59, 62, 64-65, 68-69

file types see also classification codes

C."
18-19, 21, 58, 60, 62, 65, 68-69

FIND command
32, 68-69

fixed point see Integer data

flight design process
4-7

floating point see real data

`qM
	 1 9

forms (for automated document production)
82-85

FORMAT command

U

free data (F)
25. , 57, 70, 74-75

functions, mathematical
74-75, Appendix A

.t

General Purpose Maneuver Processor (GPMP)
26

GET command

20-21, 28, 32, 37, 58-59, 63, 65

glossary, of user guide
2, 3, Appendix C

H

hardccpy device, at terminal

31

hardware
30-31

help (tutorial aids, commenting, etc.)
44-45, 46, 51, 72-73

HP21MX computer

34-31

F	 IF statement
28, 76-77, 79

implicit editor Invocation
22, 4Q, 49

INCOMPLETE mode (editor)

42-43, 44, 46, 48, 52

incomplete values
23-24, 40, 42-44, 46, 72

Index, of user guide
2, 3

1 10

informational messages (INFO)

initialization, of data elements
74-75

input and output variables
24-26, 46, 70-71

INSERT command

	

Cl	21, 32, 52, 65, 66-67
insertion, of lines in tables

42, 67

Integer data (1)
74

interactive execution
12-13, 15, 26, 72-73

INTERDATA 8/32 computer
-31

Interface Table (IT)
18-1-2, 20-21, 22-25, 26-27, 41, 54-56, 60-62, 64-68, 70-71, 82-85

Interface Table editing
14, 22-23, 40-43, 46-49, 84-85

IT see Interface Table

iteration, In ASSIGN statement
75

iteration, in sequence table execution

28, JEIJ.2

J

Job limits
73

K

r
	 keyword see parameter keyword

L
line printer

29, 55-56, 60, 68, 70, 73, 80-81

Linkage Table (LT)

	

4	 18-12, 20-2.^, 41, 47, 54-56, 60, 62, 64, 66-68, 82-85

Linkage ;able editing
I	 14, 40-43, 84-85

LIST command
29, 32, Q5, 49, 52, 56-57, 71

logging on see sign-on

LOOP END
28, 78-79

loopinci see Iteration

LT see Linkage Table

M

manual execution mode
15, D

Master Data R&se (MDB) (MD)

16-11, 18-21, 28, 54-55. 58-60, 62, 68, 73, 81

Master Data Base names
17

mathematical expression!
74-76

mathematical functions
74-75, Appendix A

MD see Master Datb Base

MD(' see Master Data Base

merging, of tables
66-67

MESSAGE command
80-81

messages from system
38-39

MISSING mode (editor)
42-43, 44, 46, 49

missing values
23-24, 40, 42-43, 46, 57

Mlssion Planning and Analysis Division (MPAD)

5

mixed data (M)
Z, 74, LW

MODE command
42-43, 52, 71

1 12

modes, of ed!tor
42-43, 46

modification, of abstracts s ne rlso ANSTRACT command; CHANGE command
54-55, 66

mod Ificatlon, of data elements so+e ASSIGN command

modification, of file name; see RENAME command

.r
modification, of tables

40, 42, 46, 66-67

•	 movement of files
58-59

MPAD see Mission Planning and Analysis Division
5

b

names see also data element names, file names, personal data base names
66

nested blocks
77, 79

NEWS command
32, 80-81

news file
81

NOTE statement
29, 32, ^.1-52, 72

NUMBER command
32, ^j

numerical data see also Jouble precision; integer; real
25, 66, 69

4

OFF command

28, 32, 36-37

OFP see Operational Flight Profile

Operational Flight Profile (OFP)
5, 7, 10-13, 15, 26, 30

operators, relational
76-77

optional parameters, In commands
f	 32

R.

1 13

optional values
22-23, 42, 49, 57, 70

P

PAGE key
34

parameter keyword
24, 43-44, 46

Payload Integration Plan (PIP)
5, 7, 13, 15, 30

PD see Personal Data Base

PDB see Personal Oata Base

PERFORM command
28-29, 32-33, 38-39, 52, 7Q-71, 72, 84

permanent storage
17, 58-59

Personal Data Base (FDB) (PD)
16-11, 18-21, 23, 28, 36, 40-41, 54-55, 58-64, 66, 68, 73

Personal Data Base names
59, 64-65

PIP see Payload Integration Plan

print line limit
73

printer see line printer

processor see X processor; Y processor

prompt symbol, ' (IT editor)
40, 46

prompt symbol, > (YDT editor)
40

prompt symbol, < UT editor)
40

prompt symbol, % (Executive)
1^, 32, 37, 62, 81

prompt symbol, # (ST editor)
40, 52

prompt symbol, S (semiautomatic execution)
72

1.14

prompt symbols
15, 40

prompting
15, 44, 46, 80

quick reference to commands
xi, 2, 3

1	 R

random access memory
16, 18, 20, 37, 74

range (iteration specification)
75-77, 79

real data (R)
2^, 74

reference documents, other than user guide
3

relational operators
76-77

remote job entry (RJE)
13, 15, 30

RENAME command
21, 32, 64-65

renumbering, automatic
67

renumbering, of table entries see NUMBER command; renumbering automatic

repeat list

43

repetition factor
47

repetitive execution see Iterative execution

required parameters, in commands
32

required values, in Interface tables
22-23, 42, 48-49, 70

90

15

retrieval of stored files
58-59

RETURN key see carriage return

sample commands
Appendix. Z, 3

searching, for information ,n tables
68-69

SEMIAUTOMATIC command
32, 39, 72-73

semiautomatic execution mode
15, 28, 38-32, 51

Sequence Table (ST)
18-]4, 20-21, 28-29, 33, 38-39, 41, 54-56, 60-62, 64-68, 71-73

Sequence Table editing
14, 28, 33, 40-43, 50-53

sequence table execution
72_-73

Sequence Table execution, at sign—on
36-37

SHIFT key
34

Shuttle Payload Integration and Development Program Office (SPIDPO)
5

sign-off see also OFF command
63

sign-on
34, 36-37

simulation
7, 11-12

single precision data see real data

span (group of table entries)

56, 62-63, 66-67, 69, 72-73

SPIDPO see Shuttle Payload Integration and Development Program Office

ST see Sequence Table

standardized flights
6, 10, 17, 59

1 16

M^	 wMNrw	 +r	 .ns.

statement (command in sequence table)
28, D_, 43, 71-73

status dis?lay
38-39

STORE command
20-21, 32 : 58-59, 62-63, 65

string data	 • . see character data; string literals

string I i trsr a l s
55, 66, 69, 75

subscripts
18, 25, 47, 56. 75

SUBSTITUTE command
58-59, 65

Subsystem X
12

Subsystem Y
12

summary blocks, in user guide

Supertape
7

syntax of commands
32, 44-45

system messages
38-39

system status display
80

I

table see file; Interface Table; Linkage Table; Sequence Table; Y-data Table

table of contents see TOC command

Tektronix terminalr	 30-31, 34-35
terminal type

34, 36-37

Time data (T)
25, 57, 74, Appendix D

117

TOC command
32, 37, 60-61

trace option
51, 72-73

trajector y analysis
4, 10-11

transaction log
80

transmission of messages
80-81

tutorial aids st-e help

Univac 1108 comp,te-
fQ-31

UNTIL (DO LOOP)
78-79

UPDATE mode (editor)
42-43, 44, 46, 48, 51-52, 70

update notices
81

Y

value
24-25, 43, 67, 71

variables
22

Versatek printer/plotter
30-31

h

warnings
38

WHILE (DO LOOP)
78-79

X

XJ see X job

i

1 18

7	 n

r	 X Job	 r

20, 54-55, 60, 66, 73

XP see X Processor

X Processor

12- 16, 18-20, 22-•23, 26-27, 30, 34, 41, 46, 49, 54-55, 60, 68, 70-71, 82-83

X Processor attributesa, U-71

X Processor execution
14-15, 22-23, 29, 70-71, 72-73

X Processor input and output

22-x, 26

X Processor messages
38

X Processor termination see abnormal processor termination

X Processor User Reference Manual
3, a

Xerox VT-3 Word Processing System
7, 13-15, 30-31, 82-85

Y

YD see Y-Data Table

Y--Data Table (YDT)
18-1^, 20, 54-56, 60-62, 64, 66-68

Y-Data Table editing
14, 40-43, 51

Y-Input Data (YID)
19

YJ see Y job, Y Output Data

Y job
54-55, 60, 62, 66

YMOVE command
20-21, 32

Y Output Data (YON (YJ)
16-1Z, 18-21, 54-56, 60, 62, 66, 68

YP see Y Processor

Y Processor
12-21, 30, 54-55, 60

1 19

Y Processor execution
14-15

Y Processor User Reference Manual
3

YRUN command
32

1 20

i

M

APPENDIX X -- GUIDE TO COMMON OPERATIONS

Operation

Copying,	 of	 files	

Command

COPY

ABSTRACT
r

Creation,	 of	 abstracts	
.........................of data elements ALLOCATE

of	 personal	 data	 bases	 STORE,	 SUBSTITUTE

of	 tables	 EDIT

• Deletion,	 of	 files	 DELETE
of	 lines	 from	 table	 DELETE
of	 personal	 data	 bases	 DELETE

Display,	 of	 abstracts	 ABSTRACT

of	 available	 processor	 namei,	 TCC
of	 files	 LIST
of	 mixed	 data	 formats	 FORMAT

of	 names of	 available data bases	 TOC

of	 names of	 outstanding	 jobs	 TOC

of	 system	 news	 NEWS

of	 system	 status	 BREAK

of	 table	 of	 contents	 TOC
of	 transaction	 log	 DLOG

of	 X	 Processor	 attributes	 ATTkIBUTES

Duplication,	 of	 lines	 in	 table	 INSERT
e of	 tables	 COPY

Editing,	 of	 tables	 EDIT

Execution,	 conditional	 IF

iterative	 DO LOOP

of	 seq.?nce	 tables	 AUTOMATIC, BATCH,	 SEMIAUTOMATIC

of	 X	 Processors	 PERFORM

Initialization,	 of	 Active	 Work	 Area	 CLEAR, GET

of	 data	 elements	 ASSIGN

Insertion,	 of	 lines	 in	 table	 INSERT

Merging,	 of	 tables	 INSERT

Modif'cation,	 of	 abstracts	 ABSTRACT, CHANGE
of	 data	 elements	 ASSIGN

of	 file names RENAME

of	 tables	
::::::::::::::::::::::::

EDIT, CHANGE,	 INSERT,	 DELETE

Movement,	 of	 files	 APPEND, GET,	 STORE,	 SUBSTITUTE

Renumbering	 of	 tables	 NUMBER

Searching,	 for	 Information	 in	 tables	 CROSS REFERENCE, FIND

Sign	 off	 OFF

jr

X1

0	 r

4;	 APPENDIX Y -- INDEX TO COMMANDS

FORMAT 80

GET 58

IF...........................	 76

INSERT 66

LIST 56

MESSAGE 80

HODE 42

NEWS 80

NOTE 50

NUMBER 50

OFF 36

PERFOP.M 70

RENAME 64

SEP41ALIT014ATIC 72

Sign —on 36

STORE 58

SUBSTITUTE 58

TOC 60

YF40VE TBS

YRUN TBS

ABSTRACT	 ^4

ALLOCATE	 74

APPEND	 58

ASSIGN	 74

+ ATIRIBUTES	 70

AUTOMATIC	 72

BATCH	 72

BREAK	 80

CHANGE	 66

CLEAR	 62

COPY	 64

CROSS	 REFERENCE	 68

DELETE	 62

DLOG	 80

DO	 LOOP	 78

EDIT	 40

ELSE 76

ENDIF	 76

END	 LOOP	 78

EXIT	 40

FIND 68

C^
Y1

APPENDIX Z -- QUICK REFERENCE TO COMMANDS

The following are sample commands.	 They are	 Intended to be typical, 	 but do not exhaust
the possible uses and parameters associated with the commands.

FOS	 SIGNON:HR,INIT-PD,INIT1
ABSTRACT,GPMP-XP
ABSTRACT,OMS2-IT, 1-INTERFACE TABLE FOR OMS-2 BURN"
ALLOCATE,NUMVAL-IT,TWODIMEN(21,4)-DE
APPEND,EXPL
APPEND,EXPL,OMS2-IT,RESULT
ASSIGN,NUMVAL=20;
ASSIGN,TWODIhIEN(21,1)=26.2*ONEDIMEN(1)11=2,4;
ATTRIBUTES,GPMP-XP
ATTRIBUTES,GPMP-XP,APSOPT,SUP•ITABLE
AUTOPIATIC,TRAJECT(20-230)
BATCH,EXPL-PD,TRAJECT
BREAK
CHANGE,TRAJECT-ST,OMS2,OMS2A
CLEAR
COPY,OMS2-IT,OMS2A
CROSS REFERENCE,-ST,OMS2-IT
DELETE,EXPL-PD
DELETE,(20-40)
OLOG-P
DO LOOP,WHILE,I<10;

(statements)

LOOP END
DO LOOP,UNTIL,I>=10;

(statements)
LOOP END
EDIT „ OMS2B-IT,GPMP
ED I T„TRAJECT-ST.
EXIT
FIND,TRAJECT-ST,OMS2
FIND,(40-200),X+16
FORMAT,M31,M33
GET,EXPL-PD
GET,!IFLIGHT-MID,-IT
IF,I<10;

(statements)
ENDIF
IF,1<10;

(statements)
ELSE

(statements)
ENDIF
INSERT,TRAJECT(50-100)-ST,20
LIST-P,TRAJECT-ST
MESSAGE,AB, 1-1 1 VE FINISHED THE OMS-2 TABLE”
MODE,I
NEWS
NOTE,"UPPER STAGE MANEUVERS"
NUMBER
OFF
PERFORM,GPdP,OMS2
RENAPIE,OMS2-IT,OMS2A
SEMIAUTOMATIC,TRAJECT
STORE,EXPL
STORE,EXPL,TRAJECT-ST

ir
SUBSTITUTE,EXPL
SUBSTITUTE,EXPL,TRAJECT-ST
TOC
TOC-P „ EXPL-PD

%ASA•1SC

Z1

	1980023918.pdf
	0024A02.JPG
	0024A03.JPG
	0024A04.JPG
	0024A04.TIF
	0024A05.TIF
	0024A06.TIF
	0024A07.JPG
	0024A08.TIF
	0024A09.JPG
	0024A10.JPG
	0024A11.TIF
	0024A12.JPG
	0024A13.TIF
	0024A14.TIF
	0024B01.TIF
	0024B02.TIF
	0024B03.TIF
	0024B04.TIF
	0024B05.TIF
	0024B06.TIF
	0024B07.TIF
	0024B08.TIF
	0024B09.JPG
	0024B10.TIF
	0024B11.TIF
	0024B12.TIF
	0024B13.TIF
	0024B14.TIF
	0024C01.TIF
	0024C02.TIF
	0024C03.TIF
	0024C04.TIF
	0024C05.TIF
	0024C06.TIF
	0024C07.TIF
	0024C08.TIF
	0024C09.JPG
	0024C10.TIF
	0024C11.TIF
	0024C12.JPG
	0024C13.JPG
	0024C13.TIF
	0024C14.TIF
	0024D01.TIF
	0024D02.TIF
	0024D03.JPG
	0024D04.JPG
	0024D05.JPG
	0024D06.JPG
	0024D07.JPG
	0024D08.JPG
	0024D09.JPG
	0024D10.JPG
	0024D11.JPG
	0024D12.JPG
	0024D13.JPG
	0024D14.JPG
	0024E01.JPG
	0024E02.JPG
	0024E03.JPG
	0024E04.JPG
	0024E05.JPG
	0024E06.JPG
	0024E07.JPG
	0024E08.JPG
	0024E09.JPG
	0024E10.JPG
	0024E11.JPG
	0024E12.JPG
	0024E13.JPG
	0024E14.JPG
	0024F01.JPG
	0024F02.JPG
	0024F03.JPG
	0024F04.JPG
	0024F05.JPG
	0024F06.JPG
	0024F07.JPG
	0024F08.JPG
	0024F09.JPG
	0024F10.JPG
	0024F11.JPG
	0024F12.JPG
	0024F13.JPG
	0024F14.JPG
	0024G01.JPG
	0024G02.JPG
	0024G03.JPG
	0024G04.JPG
	0024G05.JPG
	0024G06.JPG
	0024G07.JPG
	0024G08.JPG
	0024G09.JPG
	0024G10.JPG
	0024G11.JPG
	0024G12.JPG
	0024G13.JPG
	0024G14.JPG
	0025A02.JPG
	0025A03.JPG
	0025A04.JPG
	0025A05.JPG
	0025A06.JPG
	0025A07.JPG
	0025A08.JPG
	0025A09.JPG
	0025A10.JPG
	0025A11.JPG
	0025A12.JPG
	0025A13.JPG
	0025A14.JPG
	0025B01.JPG
	0025B02.JPG
	0025B03.JPG
	0025B04.JPG
	0025B05.JPG
	0025B06.JPG
	0025B07.JPG
	0025B08.JPG
	0025B09.JPG
	0025B10.JPG

