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Is INTRODUCTION

Fiber reinforced resin and metal matrix composite materials are finding

wide application due to their unique performance advantages over more traditional

monolithic engineering materials. High levels of stiffness and strength have

been achieved in combination with low composite material density. In addition,
other advantages such as thermal stability and wear resistance have added to the

range of engineering designs which can use composites to good advantage. The

herein described program, which has succeeded in developing a fiber strengthened

glass matrix composite system, provides yet another alternative for considera-

tion. By placing graphite fibers in a glass matrix, it has been possible to

achieve a unique material which is distinct from the resin and metal matrix com-

posites which precede it. It combines the attributes of low density, high

strength and stiffness, high toughness, mechanical and thermal fatigue resis-

tance, and exceptional dimensional stability over a temperature range well be-

yond that of resin matrix composites. In addition, its combination of low

density and environmental stability cannot be achieved by any metal matrix com-

posite system.

The use of glass as a matrix for fiber reinforcement is a consequence of

the increasing need for higher temperature, stable, low density composites.

This constitutes a direct outgrowth from the already well developed technology

of resin matrix composites in that the matrix can be caused to flow and encap-

sulate the reinforcing fibers without damage to fiber integrity. Also, as in
the case of resin and metal matrix composites, the elastic modulus of the fibers

exceeds that of the matrix sufficiently to provide an effective reinforcement.

The development of the fabrication procedures and technology which have led to

the herein reported data can be traced through the previous two interim tech-

nical reports of this program (Refs. 1,2) and several summary publications

(Refs. 3,4). The current report will deal in much greater detail with the

mechanical properties of the developed composite and also secondary processing

procedures which could eventually lead to engineering articles having complex

shapes.

Use of commercial products or names of manufacturers in this report does

not constitute official endorsement of such products or manufacturers, either

expressed or implied, by the National Aeronautics and Space Administration.
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II. EXPERIMENTAL

A.	 Composite Fabrication Procedures

1. Fibers and Glasses Used

Six different types of graphite fibers were used, Table I. They varied in

character from a very low elastic modulus pitch based carbon (Kureha) to an ex-

tremely high elastic modulus (Thornel pitch based) fiber and thus provided a

wide variation of fiber properties for composite performance assessment. Five

of the six fibers (not the Kureha) were utilized in their continuous strand form

while the Kureha fiber was examined only in the form of a chopped fiber paper
consisting of 3 x 10-3 m long fibers in a 2-D planar array. The Celion 6000

fiber was also used in a chopped fiber paper form with an average fiber length

of 2 x 10-2 M.

The Corning Glass Works borosilicate glass 7740 was used throughout the

program. Its properties, Table I, have been shown in the past (Refs. 1,2) to be

compatible with the fabrication procedures and graphite fibers used. Its prop-

erties are compared in the table with two other glasses which have been used less

successfully in that their use resulted in HMS graphite fiber reinforced composites

with inferior flexural strength.

2. Primary Composite Fabrication Procedures

Primary composite fabrication consisted, in all cases, of first making a

precursor tape consisting of fiber and dispersed glass powder. This tape was

then cut into segments and placed in graphite dies for hot press consolidation

into composite panels. The various stages of this overall process are described

below while greater background to the overall process can be found in Ref. 2.

a. Precursor Tape Fabrication.

Two types of precursor tape have been fabricated, one containing the con-

tinuous fibers and the other consisting of the chopped fiber paper. In the

former case the fiber is unwound from its spool and pulled through an agitated

slurry of glass particles and wound onto a mandrel at a controlled spacing to

produce a tape which can be cut from the mandrel after drying.

The precursor tapes fabricated using only the chopped fiber paper were pre-

pared using the same type of agitated slurry, however, in this case strips of

paper were dipped into the slurry and then dried. The chopped Celion 6000 fiber

paper was used with an areal density of 0.027 kg/m2.

2



Tab le I

Graphite Fiber Properties

Thornel
Pitch

Celion Thornel Type
Kureha 6000 300 VS0054-0 HMS GY-70

Fiber Diameter (microns) 12.5 7.1 7.0 11.0 7.3 8.4

Filaments Per Tow - 6000 1000 2000 10,000 384

Density, kg/m 3 1550 1760 1760 2100 1800 1960

Elastic Modulus, GPa 41 234 234 654 350 516

Tensile Strength, MPa 827 2758 2930 2070 2700 1860

Glass Properties

CGW 7740 CGW 1723 CGW 7940

Glass Type Borosilicate Aluminosilicate Pure Silica

Density, kg/m 3 2230 2640 2200

Elastic Modulus, GPa 63 88 72

Coeff. Thermal Expan-
sion, 10 7 m/mK 32.5 46 3.5

Strain Point K 783 938 1229

Anneal Point K 833 983 1357

Softening Point K 1093 1181 1853
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The slurry composition used in all cases was the same. It consisted of 85

grams of glass in 0.26 liters of isopropyl alcohol with 24 grams of polyethylene

glycol, 6 grams of DuPont Ludox H.S. 30 plus 5 drops of wetting agent. After

composite hot press consolidation was completed, this mixture results in a ma-

trix of 7740 glass that contains an additional 2% SiO 2 obtained from the Ludox.

For the remainder of this report this matrix will simply be referred to as 7740

glass; however, it is understood that this includes the 2% Si0 2 addition.

b. Composite Hot Press Consolidation

(1) Fabrication of Flat Plates

After drying in air, the precursor tapes were cut into segments of the de-

sired size and orientation and placed in graphite dies. Most frequently, com-

posite panels measuring 7.5 cm square were fabricated; however, in some cases

10 cm square panels were also produced. The loaded dies were then placed in the

hot press which was subsequently evacuated to achieve an initial vacuum atmos-

phere. Thereafter, if desired, controlled gases could be flowed through the

press or a vacuum maintained for heat-up and hot pressing. In general, compos-

ites were consolidated using the conditions found to be superior in the previous

phase of this program (Ref. 2), i.e. at a temperature of 1723 K, with a pressure

of 6.89 MPa maintained for 1 hr, and an atmosphere of argon. After consolidation

the pressure was held during cool down until the temperature dropped below 973 K.

(2) Fabrication of Hat Sections

One of the objectives of this program is to demonstrate that simple shapes

can be fabricated using the current state of the art glass matrix composite

technology. The recent fabrication of several composite hat section beam seg-

ments using two different techniques is an example of this technology. The hat

section beam shape was chosen because of its applicability to many structural

elements as well as the fact that it represents a three dimensional structure,

as compared to the essentially two dimensional flat plates produced to date.

A matched set of graphite tools was designed which could produce a hat sec-

tion with a uniform section thickness of 0.38 cm, a total length of 10 cm, and

a total span of 7.5 cm. The two fabrication procedures used to fabricate com-

posite articles are described below. In each case the material used consisted

of HMS fibers in a 7740 glass matrix. Composite plys were oriented in a 0/90

alternating ply sequence.

4



Process #1 - Hot Press Consolidation Directly to Final Shape

In this process the starting material is unconsolidated fiber plus glass

powder tape plys which are laid directly into the die cavity in a 0 0/90 0 se-

quence. The overall ply dimensions are 10 cm x 10 em which correspond to the

dimensions of the total surface area of the hat section. The total ply lay-up

is then hot pressed using standard procedures already developed in this program.
A resultant hat section (GC 514), pressed at 1623 K, is shown in Fig. 1. The

surface discolorations are due to the BN die release coating. During pressing,

one portion of the hot pressing die fractured causing a nonuniformity in resul-

tant hat section thickness; however, this was the only major imperfection re-

sulting from this procedure. One additional, less important, problem was that
the molybdenum foil on the convex side of the hat section wrinkled during press-

ing causing imprints of these wrinkles along the length of the top surface.

Process #2 - Hot Forming of a Preconsolidated Corn osite Plate

The second procedure utilized preconsolidated 0/90 reinforced flat plates

of composite which have been fully processed using standard bonding procedures.

These flat plates were cut to a dimension of 10 cm x 7.5 cm so that they would

fit into the open die cavity. It was recognized that this would not permit the

fabrication of specimens with full flange width ;a wider die opening would

have to be used to achieve the same size flange as resulted from Process #1

above. Each flat plate was individually formed to final shape by placing it

between the matched die halves, heating to a desired temperature, and then

applying pressure. Several pressings were made and it was soon found that com-

ponent shaping could take place rapidly and at relatively low pressure. The

details of three such hot forming operations are given in Table II and the re-

sultant hat sections are shown in Fig. 2 along with the component made by

Process #1. The most important point to be noted in Table II is that it was

possible to complete a forming operation in 1 min. This is the time during

which pressure was applied and material deformation took place. It was not

determined whether forming could have taken place even faster; however, this is

quite likely and points to the possibility of developing a very low cost fabri-

cation procedure which utilizes flat plate stock as the starting material. In

addition, the maximum pressure required to achieve this rapid rate of deforma-

tion was only 1.6 MPa.

Two significant problems were uncovered during these secondary forming

operations. One was that the molybdenum foil wrinkled on the convex sides of

the formed parts. These wrinkles consisted of two longitudinal folds that ran

the length of each of the completed hat sections and left their imprints in the

composite surfaces. This problem could be overcome by finding a die surfacing

5



Fig. 1 0/90 — HMS Reinforced 7740 Hat Section
Fabricated Using Process No. 1

I	 i	 i	 i	 i
CM 1	 2	 3	 4

514

Fig. 2 0/90 — HMS Reinforced 7740 Hat Sections Fabricated Using a
Variety of Conditions
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material that would act as a debonding agent and remain integral with the die

itself. The second problem was that the free edges of the formed sections be-

came rather ragged due to the fact that they were not fully contained in the

final stages of pressing. This is because the flat plate used initially was

only 10 cm x 7.5 cm in size so that it could fit into the die cavity. This

problem can be overcome by changing the die configuration to meet the particular

requirements of secondary forming and also by providing a simple edge trimming

operation after forming.

(3) Improved Graphite Die Material

As in all previous portions of this program, the tooling used in composite

fabrication consisted of ATJ graphite which, on the primary surface of contact

with the glass matrix composite, is covered with molybdenum foils which are in

turn coated with a BN powder. Without the use of these coated metal foils the

glass bonds , to the graphite tooling mainly by impregnating the graphite surfaces

which are somewhat rough and porous. It has been shown, however, that this prob-

lem can be overcome through the use of vitreous carbon tooling. Composite GC

670, which consisted of a 0/90 HMS fiber reinforced 7740, was hot pressed at

1723 K, 6.89 MPa, for 60 min with one of the die plungers consisting of a vitre-

ous carbon plate. The resultant composite did not bond to the vitreous carbon,

but instead separated cleanly without any force required to cause the separation.

This demonstration is important since, as was shown above, particularly for com-

plex shapes, the use of metal foil die liners is inconvenient, costly, and can

cause composite surface imperfections due to wrinkles in the metal foils.

3. Secondary Composite Fabrication Procedures

Several experiments were performed to ascertain whether graphite fiber rein-

forced glass matrix composites can be joined using secondary bonding procedures.

The following three different techniques were used to join composite plates con-

sisting of 0/90 HMS reinforced 7740 and also chopped Celion 6000 fiber reinforced

7740.

Metallic soldering in which both composite plate faces to be joined

were coated, by sputtering, with layers of first chromium and then

gold. The solder consisted of an 80% Au-20% Sn alloy foil.

• Glass soldering in which various slurry compositions were synthesized

by mixing glass powders in isopropyl alcohol and painting them onto

the surfaces to be bonded.

Field assisted bonding in which highly polished surfaces of composite

were sandwiched together with either thin molybdenum or glass foils

between them. Application of a very large electric potential across

the bond line and simultaneously raising the temperature to 773 K proved

insufficient to form any sort of bond.
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The experimental details of the above procedures are summarized in Table III

along with an enumeration of the composite specimens and equipment used. After

bonding, each of the composite plates was sectioned for microscopic analysis and

mechanical testing. All tests were performed in three point bending with the

specimen span-to-depth ratio of 4.0 or smaller and with the bond line located on
the specimen central plane !neutral axis) to induce shear failure within the bond.
The results of these tests are listed in Table IV, where it can be seen that, at

least in two cases, shear strengths in excess of 45 MPa were achieved and in fact

several measured values approached 65 MPa with the specimens failing first in

regions removed from the bond line. The microstructure of the strongest glass

solder bonded composite is shown in Fig. 3 where the starting glass was a slurry

comprised of 25 grams of Drakenfold E-1576, 25 grams of Al-95 or beta-spodumene,
and 25 grams of Ludox in 200 ml of isopropyl alcohol. While this single experi-

ment gave good results, it was not definitive since the best ratio of Drakenfold
E-1576 and beta-spodumene has not been determined. Also this single successful
bonding experiment was carried out at 1023 K and some slightly different tem-

perature might be better. Finally, the experiment was carried out in the vacuum

hot press and might be more suitably carried out in the large vacuum furance so
larger pieces could be bonded together.

The metallic solder bond is shown in Fig. 4. Again this single experiment
is far from definitive. It should be possible to obtain similar or superior re-

sults by sputtering other metals and by using higher-temperature metal solders.

B.	 Composite Characterization Procedures

1. Analysis of Fiber Content

A procedure was developed and verified for the determination of composite
fiber content, matrix content and porosity.

The procedure consists of the following steps.

(1) Measure the density of the total composite specimen (p c). This

is done either on the full composite plate after hot pressing,

or by using a smaller mechanical test specimen.

(2) Weigh the composite specimen prior to oxidation and obtain its
total weight (Wc) .

(3) Expose the specimen to 1073 K for 12 hrs in air. The graphite

fiber is oxidized completely by this procedure, leaving no char
or residue.

9
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Table IV

Results of Short-Beam Shear Tests on Two Composite
Samples Bonded Together - All Tests 2.5 cm Span

Span to Depth Max. Shear Nature
Specimen Identity Ratio Stress of Break

MPa

Glass Solder 3.6 9.7 Bond shear
Slurry A, GC 669 3.6 9.7 Bond shear

Glass Solder 4.0 14.1 Bond shear
Slurry B, GC 669 4.0 17.4 Bond shear

4.0 16.0 Bond shear

Glass Solder 1.8 58.8 Compression
Slurry C, GC 658 & flexural

1.8 48.7 Compression
& flexural

1.8 66.3 Compression
& flexural

Glass Solder 2.3 20.9 Shear-slip
Slurry D, GC 671 2.3 19.9 Shear-slip

2.3 17.8 Shear-slip

Metal Solder 1.9 44.9 Shear in
Solder, GC 658 material

1.9 61.3 Flexural &
compression

1.9 63.4 Flexural &
compression

11



5Qµ

Fig. 3 Bond Region for Glass Soldered Composite GC658 (Glass Slurry C Used)

50µ

Fig. 4 Bond Region for Metal Soldered Composite GC658

12	 80-5-82-2



(4) Weigh the specimen after oxidation to obtain the weight of the re-
maining glass (Wg).

(5) Using the known quantities

density of glass - pg

density of fiber - Pf

calculate the following:

(a) Weight of fibers in specimen

(b) Volume of composite specimen
(c) Volume of-glass in specimen

(d) Volume of fiber in specimen

(e) Volume of porosity in specimen

(f) Volume percent glass in specimen

(g) Volume percent fiber in specimen

(h) Volume percent porosity in specimen

Wf =Wc-W9
VC = We/Pc

Vg = Wg/Pg

Vf = Wf/P f

Vp = VC- V f-Vg

v/o G = Vg/Vc x 100%

v/o F = Vf/Vc x 100%

v/o P = Vp/Vc x 100%

A confirmation of the procedure's accuracy was obtained by determining the

fiber content of an HMS/7740 composite by two methods, i.e. oxidation and dis-

solution of the matrix in acid. The comparative data, Table V, indicate that
both methods provide equivalent values.

2. Three Point Flexural Strength

Three-point bend tests were performed on specimens of several thicknesses

using a range of testing spans to provide a wide spectrum of span-to-depth

ratios. In each case the specimens were 0.5 cm wide and 7.7 cm in overall

length with all surfaces ground prior to testing. The majority of tests were

performed in air with applied load vs mid-span deflection traces taken using

a deflectometer attached to the crosshead of the loading machine. Tests were

performed over the temperature range of 300 K to 973 K.

3. Three Point Flexural Creep

Standard three-point bend specimens (0.2 cm x 0.5 cm x 7.7 cm) were cut

and surface ground in preparation for test. All tests were performed in three-

point bend with a span of 5 cm and in an air atmosphere. In each case the mid-

span deflection of the specimen was monitored continuously with an LVDT to

provide a recording of deformation vs time. Tests were halted either due to

specimen fracture or when the time of test exceeded 200 hrs.

13



Table V

Determination of Composite Fiber Content

Specimen Method Glass Fiber Porosity

v/o G v/o F v/o P

GC 414A-1 Oxidation 36.8 62.2 1.0

-4 to 61.6 0.3

-6 if 36.7 62.2 1.1

-8 " 35.9 63.8 0.3

Avg	 36.9 62.5 0.7

-3 Acid Leach 37.1 62.1 0.8
-7 11 61.3 0.9

-9 It 62.9 0.7

Avg	 37.1 62.1 0.8

1 0C

^-- 2.5cm

COMPOSITE SPECIM

END TABS

Fig. 5 Tensile Specimen Configuration
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4. Three Point Flexural Fatigue

Standard three-point bend specimens (0.2 cm x 0.5 cm x 7.7 cm) were cut and

surface ground in preparation for test. All testing was performed in three-

point bend with a span-to-depth ratio of 25 at a frequency of three cycles per

second in an atmosphere of air. Tests were run at 300 K and 703 K with several

unfatigued quality control specimens tested to fracture at 300 K from each test

group. All fatigue tests were run with a ratio of minimum to maximum applied

flexural stress of 0.1 (R = 0.1).

5. Tension Test

The tensile testing of seven different types of graphite fiber reinforced

glass composites was performed. Specimens with a total length of 10 cm were cut

from 10 cm x 10 cm panels fabricated in the standard manner. The specimens were

parallel sided and bonded into glass fiber reinforced resin tabs leaving a 2.5

cm free gauge length, Fig. 5. The specimen thickness and width were approximately

0.18 cm and 0.5 cm respectively. The doublers were slotted to accept these

specimen dimensions, and all specimens were strain gauged prior to test. Tensile

testing was performed at a crosshead rate of 0.25 mm per minute.

6. Thermal Exposure and Thermal Fatigue

Samples were machined for air oxidation in the dimensions 0.2 cm x 0.5 cm x

7.7 cm. All specimens had their major flat surfaces ground to expose the

graphite fibers and several specimens, to be exposed at each temperature, were

trimmed at the ends to remove excess glass. This was done to ensure uniformity
of structure throughout the specimens and remove any protective layer which

might inhibit oxidation. Mass and dimensional measurements were made prior to

and after exposure and cycling. Stainless steel wire baskets vertically supported

the samples to prevent contact with the center of the sample and ensure that the

samples remained in a relatively unstressed condition.

7. Thermal Expansion

Thermal expansion measurements were made in a Theta Industries differential

dilatometer which was operated in a horizontal mode. The composite specimens

consisted of 0.62 cm x 0.62 cm x 2.5 cm long parallel sided blocks of material

which were individually placed in series with instrument silica push rods and

holders. The comparative specimen consisted of a Corning 7971 (SiO2-TiO2) glass

sample of nearly the same dimensions which was located in a similar arrangement,

but in parallel with, the graphite reinforced glass specimen. The 7971 standard

had previously been calibrated by both the University of Arizona and Corning

Glass over a temperature range of 73 K to 873 K. The actual operative procedure

consisted of thermally stabilizing the specimen in the instrument, by holding at

room temperature for 5 hrs, followed by heating at a rate of 2 K per minute to

the maximum desired temperature. Thereafter the specimen was cooled at a rate

15



determined by the rate of heat loss of t
than the 2 K per minute heating rate. Th

between standard and composite) was then

change in length of the composite. Thus,

change in length divided by the original

room temperature condition. Testing was

he instrument, which was somewhat less
e differential length change (difference

analyzed by computer and plotted as a

the thermal strain was taken to be the

length, referred back to the starting
performed in air.
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III. RESULTS AND DISCUSSION

A.	 Flexural Strength of New Fiber Reinforced Composites

1. Continuous Fibers

The flexural strengths of the composites fabricated from the new continuous

fibers incorporated into the program are presented in Table VI. For each case

the composite fiber content, glass content, and porosity are also given. It can

be seen that both the Thornel 300 and Celion 6000 fiber reinforced composites

exhibited a very strong dependence of flexural strength on volume percent fiber
with the Thornel 300 fiber composite also exhibiting a considerable variation in

strength (composites 611 and 631) even for a nearly constant composition. This

points up one of the problems still existent in the program, which is the some-

time lack of reproducibility in composite performance. These composites were

made using identical fabrication procedures yet their flexural strength varied

substantially. Also of interest is the very high strength (1167 MPa) obtained

with a fiber obtained from Fiber Materials Inc. (FMI) of Biddeford, Maine. FMI

provided this boride coated fiber with the expectation that it might exhibit

superior oxidative stability during composite exposure to air at elevated tem-

perature. This, however, was not the case. Oxidative exposure caused as much

degradation as had been experienced with standard uncoated 11M graphite fiber

reinforced composites.,

2. Chopped Fiber Papers

The hot press consolidation of composites reinforced with chopped Celion

6000 fiber was performed using a variety of hot pressing conditions, Table VII.

It was found that the highest value of strength was associated with the lowest

fiber content obtained in the series. Despite the low fiber contents, these

values of strength are nearly equal to those obtained previously in the program

for 0/90 cross ply continuous fiber reinforced 7740 composites (Ref. 2). In

addition, the strengths obtained with the chopped fiber reinforcement should

be nearly isotropic in the fiber plane.

The procedure used to fabricate the above composites involved a preheat

treatment at 600 K for 2 hrs in air to remove approximately 10% by weight of

polyester binder. Although not difficult, this process was not felt to be de-

sirable and a request was made of the International Paper Company, suppliers

of the paper, to provide a binder that was more easily removed and that would

not result in undesirable by-products. In response to this request, International

Paper Co. supplied several sheets of graphite fiber with a carbohydrate binder

17



Tab le VI

0  
Three Point Flexural Strength of

Continuous Graphite Reinforced 7740

Composite Fiber Type v/o F v/o G v/o P Avg. Flex. Strength
MP a

630 Thornel Pitch 54 46 0 683
VS0054-0

731 Thornel 300 60 40 0 1046

631 Thornel 300 39 60 1 711

611 Thornel 300 37 63 0.5 407

608 Celion 6000 70 30 0.6 872

613 Celion 6000 45 54 0.7 313

395 Borided HM 65 35 - 1167

18
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which they had been developing. The removal of this binder was accomplished

simply by lighting, with a match, one edge of a piece of paper and observing

the rapid progression of the flame across the entire paper surface. This

appeared to completely remove the binder and still left the remaining paper

in a handleable form that could be easily dipped in a glass containing slurry

and used for composite fabrication. The resultant composite data, Table VII,

demonstrate that this procedure resulted in a superior product with flexural

strengths equivalent to or greater than those of previous specimens.

Kureha carbon fiber paper was obtained from the Mitsubishi International

Corp. This pitch based carbon fiber paper is anticipated to eventually be very

inexpensive and for this reason was examined as a possible means of achieving

a low cost composite. The grade papers E 704 and E 715 were used. They are

classified by Mitsubishi as graphite paper with areal weights of 0.04 Kg/m 2 and

0.15 Kg/m2 respectively. According to the Kureha data sheets, the graphitic

form of fiber provided should be characterized by a tensile strength of 827 MPa

and a density of 1.55 gm/cm 3 . Two 7740 glass matrix composites (GC 672 and 673)

were fabricated using this paper and standard bonding conditions. Resultant

composite appearance was excellent and an overall composite density of 1.8 to

1.9 gm/cm3 was obtained. Resultant composite strength, however, was quite low

with an average value of 54 MPa being well below that typical of the other

graphite paper reinforced glasses described above.

B.	 Three Point Flexural Strength as a Function of Temperature and

Specimen Geometry

The three-point flexural strengths obtained by testing 0°-HMS/7740 over

the temperature range of 300 to 973 K (in argon) are presented in Fig. 6. The

specimens were tested at a span-to-depth ratio of 32 to 1 and the resultant

strengths are compared in the figure with those reported previously on this

program. The average 300 K strength of 930 MPa agrees well with the high levels

of strength we have been obtaining from the current system which consists of a

matrix of 7740 glass plus 2% Si0 2 and has been fabricated at 1723 K. The

current fabrication procedures are described in section IIA of this report.

Analysis of this composite indicated that it contained 71% by volume fiber,

27% matrix glass and approximately 1-2% voids. The flexural strength increased

with increasing temperature to a maximum average of 1324 MPa at 873 K and then

decreased with increasing test temperature. At 973 K the specimens deformed

without any sign of fracture. Thus, in general, it has been found that the

more recently fabricated composite material is improved in strength over the

entire temperature range when compared with 1976 vintage composites.
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O CURRENT (1979) 7740+2% SIO 2 MATRIX FABRICATED AT 1723 K
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Fig. 6 Three Point Longitudinal Flexural Strength for HMS Reinforced 7740 as a
Function of Test Temperature
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Composite three-point bend test data were obtained over a wide range of
span-to-depth ratios to better examine composite behavior. Because of both the
complex stress state generated in a three-point bend test, and also because of
multiple composite failure modes .possible, the resultant test data are presented
both as flexural strength and also shear strength values. In both cases the
strength calculations were made using the following simple beam equations which
determine the maximum flexural stress (omax) on the beam tensile surface, and
the maximum shear stress (Tmax) which occurs at the beam mid plane.

o	 = 3 PL T	- 3 P
max	 2 bh2	 max	 4 bh

. In these expressions P represents the load applied to the specimen mid span,
L is the span, b and h are the specimen width and depth respectively. Thus,
during any given test the ratio of maximum applied shear to flexural stresses
depends on the specimen span-to-depth ratio ( L/h). Since a given material can
fail by either shear or tension, one of these failure modes will occur first
depending on test configuration. For high longitudinal strength composites, the
large ratio of tensile to shear strength causes these materials to deform by
shear for test configurations having low values of (L/h) and to fracture in ten-
sion for high values of ( L/h) . In the figures to be described below, composite
flexural and shear strengths are calculated for all specimens tested. It should
be noted that actual composite strength does not vary with span-to-depth ratio.
It is only the calculated values which vary due to the fact that an inappropriate
failure mode is assumed. The first example below for 0 0-GY70/7740 demonstrates
this point clearly where it will be shown that the test data provide an accurate
assessment of material flexural strength and an underestimate of material shear
strength.

The data obtained for 0
0-GY70/7740 are presented in Figs. 7 and 8 as a

function of test span-to-depth ratio. The flexural strength data, Fig. 7,
exhibit little or no dependence on test geometry over the range of ( L/h) inves-
tigated. For all specimens tested, the average strength is 630 MPa. In con-
trast, the calculated shear strength data, Fig. 8, show a continuous decrease
in strength with increasing (L/h). The line drawn through the data was obtained,
not by fitting the data points, but by calculating an effective shear strength
for each value of (L/h), based on the average 300 K flexural strength of 600

MPa. This correlation suggests that failure of all of the specimens was
controlled by the flexural strength of the material and that true shear failure
did not occur. Thus, the data plotted in Fig. 8 are simply the calculated max-
imum shear stresses acting on the beam mid-plane during test. The true shear
strength of the material was not reached and thus it must exceed a value of 55-

60 MPa as determined by this test technique. On the other hand, the true flex-
ural strength appears to have been determined at 600 MPa.
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Examination of the fractured bend specimens confirms the above. Even at
the smallest value of L/h tested (5.4), the specimens failed without any sign
of shear deformation. Instead, fracture propagated across the specimen after
initiating on the tension side of each beam. This is characteristic of the
GY70/7740 system in which the fiber-matrix bond appears to be quite strong.

Another interesting aspect of this test is the value of elastic modulus ob-
tained as a function of (L/h), Fig. 9. The modulus calculation was performed based
on the assumption of no deformation due to shear taking place; however, as can be
seen from the figure, it is likely that this assumption is only true for very
large (L/h) values. For small values of span-to-depth ratio, elastic shear
deformation can be substantial because of the much lower shear modulus of the
material, as compared to the true axial elastic modulus of approximately 325 GPa.

The similarly obtained data for 0
0
-HMS/7740 composites are presented in

Figs.10 and 11. Unlike the GY70 reinforced composites, the flexural strength
was found to vary substantially with span-to-depth ratio. The significant de-
crease in calculated flexural strength in the low (L/h) region implies that
some shear failure is taking place. This is in agreement with the observation
that the specimens passed through the maximum in the load-deflection trace with-
out the appearance of any visible cracking on the specimen tensile surfaces.
The specimens were not, however, severely bent after testing; only a slight
overall change in specimen shape was detected after test. The shear strength
data, Fig.11, do not indicate unambiguously that the value of approximately 60
MPa can be taken as the effective material shear strength. However, by virtue
of the observed failure mode described above, it is highly probable that this is
fairly close to the actual material value.

The data for 0/90 cross,ply specimens of both GY70 and HMS fiber reinforced
7740 are presented in Figs. 12-15. In these cases both the calculated composite
flexural strengths and shear strengths were considerably less than those of the
unidirectionally reinforced specimens described above. All of the GY70 fiber
reinforced specimens tested in the 0/90 lay-up failed by the formation of visible
cracks on their tensile surfaces, while in the case of the HMS fiber reinforced
specimens, no evidence of tensile failure could be found at a span-to-depth ratio
of 10. It is also interesting to note that, for the HMS/7740 composites, the
calculated shear strength decreased with increasing test temperature. In all
cases the observed shear strength was significantly lower in the case of the
0/90 composites than their unidirectionally reinforced counterparts.
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C.	 Three Point Flexural Creep

The times to rupture vs the applied maximum flexural stress for unidirec-
tionally reinforced HMS and GY70 fiber reinforced 7740 glass are presented in
Figs. 16 and 17. The three-point flexural strengths of as-fabricated specimens
are also shown at the zero hour position. In both fiber cases it was found that
all specimens tested at 813 K failed prior to the 200 hr time used as a "run out"
condition. In contrast, at 703 K almost all specimens survived for the full
200 hrs even though some of the applied maximum flexural stresses were within
the range of the original composite strength.

To aid in interpretation of the stress rupture data, both figures also
include data which indicate the residual composite strength obtained from speci-
mens that were exposed to the temperatures indicated without any applied stress.
Thus, at 813 K it would appear that the application of stress accelerated com-
posite degradation and that specimen failures occurred at times and stress levels
less than anticipated simply on an oxidative basis. At 703 K, however, the
stress rupture times extend into the residual strength band indicating that the
continuous application of stress was not important in degrading composite
strength.

The residual strengths of the specimens which survived 200 hrs exposure at

703 K are presented in Table VIII. The data include the values of strength obtained
from unexposed specimens for comparison. The residual strengths fall well within
the range expected for specimens exposed to unstressed oxidation (refer again
to bands in Figs. 16 and 17) and in the case of the HMS fiber reinforced com-
posite, the residual strength is within the range characteristic of unexposed
specimens.

Specimen deformation, as measured by changes in mid-span deflection, was
found to be quite small for the 703 K test condition and very large for 813 K.
The data in Fig. 18 are for a specimen loaded at 703 K to 490 MPa, which is
approximately 70% of the average room temperature flexural strength of this
material. The initial deflection, recorded at the onset of loading, is a purely
elastic response of the specimen while the increase in deflection with time im-
plies gradual creep of the material. After 230 hrs the total extent of this
deflection is equal to approximately 38% of the total initial elastic deflection
of the specimen. Although most of this deformation occurred at a nearly constant
rate, there are three instances noted on the chart where small discontinuous in-
creases in deflection were recorded. The sum total of these displacement incre-
ments can account for approximately 50% of the total creep deflection recorded.
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Table VIII

Residual Strength of Specimens Which

Survived Stress-Rupture Testing at 703 K

S2ec. Fiber Exposure Condition Residual Flex. Strength
(Hrs) (Stress-MPa) (MP a).

GC 404C-1,6,12 IIMS - - 638, 1081, 634

GC 424A-1,6,12 " - - 1102, 992, 1085

404C-4 " 255 597 795

404C-5 " 200 498/636 799

424A-3 " 200 560 943

GC 436A-1 11 6,12 GY 70 - - 544, 560, 580

436A=2 if 209 290 506

436A-3 " 200 362 488

436A-10 " 200 362 499
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The second creep curve, Fig. 19, was obtained by first loading (at 703 K)
a specimen to 500 MPa and the, after 138 hrs, increasing that stress to 640 MPa.
The latter stress level is approximately 90% of the average room temperature
flexural strength of this material; however, no extensive specimen creep was
noted after an additional 60 hr exposure.

At 813 K specimen deformation occurred much more rapidly, Fig. 20, with
the rate of deformation increasing with increasing time. This is undoubtedly
due to the degradation and progressive fracture of graphite fibers due to oxi-
dation. In addition, the fractured composites did not appear to be bent, indi-
cating the absence of any major matrix deformation controlled mode of failure.

D.	 Three Point Flexural Fatigue

The fatigue data are presented in Figs. 21-24 where the maximum applied
flexural stress is plotted vs the number of cycles to failure. Those specimens
which did not fail after 10 6 cycles were then monotonically loaded in three-
point bend to determine their residual strength. The 300 K data for 00-GY701
7740 composites are presented in Fig. 21 where it can be seen that maximum
applied fatigue stresses well into the range of the monotonic composite strength
were sustained for 10 6 cycles. Only one specimen failed prior^to the run out
level and the applied maximum stress on that specimen was well within the un-
fatigued strength range. In addition, the residual strengths of all of the
fatigued specimens were also well into this range indicating that the fatigue
process had not degraded overall composite performance. The 703 K data, Fig.
22, also indicated excellent composite fatigue strength; however, in this case
more premature failures were noted. The high residual strength of the specimens
that survived 10 6 cycles at 703 K also indicates that the oxidative degradation
process was not accelerated by fatigue testing. A 10 6 cycle run out required
air exposure at temperature for 93 hrs. The unstressed static exposure of
GY70 / 7740 specimens to this condition will be shown to have only a minor effect.
on composite properties. In the description of thermal exposure results it will
be shown that a mass loss of approximately 0.6% takes place and no significant

strength loss is measured.

The data for 0 0 -HMS / 7740 are presented for both test temperatures in Fig.

23. As in the case of the GY70/7740, fatigue resistance was excellent at
300 K. A departure from the standard fatigue testing format can also be noted
in the figure in that one specimen was subjected to 276 , 000 fatigue cycles at

a maximum applied stress of 689 MPa. This "preconditioning" at this low stress
level was then followed by additional fatigue at a higher stress level to as-
certain whether the earlier low stress cycles caused any improvement or degra-
dation in performance. An improvement would indicate the possible presence of
a flaw blunting mechanism while degradation could relate to a deterioration of
the microstructure. Final fatigue testing to failure at a stress of 940 MPa
caused ultimate specimen fracture after an additional 2,820 cycles which was very
similar in lifetime to other specimens tested without prefatigue exposure. Thus,
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the test result showed no effect of the lower stress preconditioning. At

703 K it was not possible to achieve a full 10 6 cycle run out at even the

lowest stress level of 689 MPa. However, three specimens tested approached

this number of cycles, with one reaching 916,690 cycles prior to fracture.

Several 0/90 GY70/7740 cross ply specimens of 0.25 cm thickness were

tested in fatigue at 300 K, Fig. 24. The span-to-depth ratio of these test

specimens was only 20 because they were not surface ground to the usual speci-

men thickness prior to testing. Grinding was avoided to prevent damage of the

0° surface plys of the specimens. As in the case of the 0° specimens des-

cribed above, the cross ply material exhibited excellent fatigue resistance

with 106 run out occurring at relatively high stress levels and residual

strength being equal to or greater than that of the unfatigued material.

E.	 Tension Test

The tensile strength, elastic modulus and strain to failure data obtained

are summarized in Table IX. Each of the systems tested will be considered in

turn.

1. HMS Fiber Reinforced 7740 - Composites GC 628, GC 594 and GC 593

The tensile stress vs strain curve for one of the 0° specimens is shown

in Fig. 25. Although the curve appears to be quite linear, it actually is com-

posed of two nearly linear portions that transition at a stress level of

approximately 75 MPa. The specimen fracture surface is quite flat with no

signs of fiber pull out or gross delamination.

The 0/90 cross ply reinforced specimens were considerably weaker than their

all Oo counterparts and fracture occurred in only one case completely within the

test gauge length. The overall composite failure strain, Fig. 26, however, was

similar to that achieved with the O o material.

2. HTS Fiber Reinforced 7740 - Composite GC 629

The stress-strain curve for this O o composite, Fig. 27, was essentially linear

to the point of failure. This system exhibited the highest strength and failure strain

combination of any of those tested. It also contained the highest percentage of

fiber reinforcement. The composite fracture surface was markedly different from

that of the HMS specimen. In this case it was very fibrous with the entire

gage length of the specimen taking on a brush-like appearance after fracture.
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Table IX

Tensile Test Data (300 K Test)
for 7740 Matrix Composites

v/o v/o v/o Fracture
Specimen Fiber G F P Orientation UTS E Ef Location

MP a GP a M
GC 594-14 HMS 46 54 0 0 

412 195 0.20 Gage
-15 HMS - - -

0 
398 193 0.20 Gage

GC 628-4 HMS 52 .48 0 Oo 342 195 0.17 Dbl. Edge
-6 HMS Oo 354 173 0.20 Dbl. Edge
-8 HMS 0 

349 - Dbl. Edge

GC 593-3 HMS 56 46 - 00/900 137 60.1 0.27 Gage*
-4 HMS - - - 00/900 126 67.8 0.20 Dbl. Edge*

GC 629-4 HTS 32 67 1
0 

572 151 0.36 Gage
-6 HTS 0 658 153 0.41 Gage
-8 HTS

0 
613 - - Gage

GC 630-4 Pitch 46 54 0 0 616 338 0.22 Gage
-6 Pitch 0 

511 329 0.16 Gage
-8 Pitch Oo 534 - - Gage

GC 631-4 Th 300 60 39 1
0 

359 126 0.32 Gage + Db 1.
-6 Th 300 0 

460 121 0.40 Gage + Dbl.
-8 Th 300 0 

386 - - Dbl. Edge

GC 632-4 GY-70 42 58 0 0 
424 293 0.14 Gage

-6 GY-70 0 
362 273 0.12 Gage

-8 GY-70
0 

Failed prior to loading

GC 633-4 Cel
0 

447 117 0.32 Gage
-6 6000 0 

395 110 0.40 Gage
-8 It 0 

432 - - Gage

GC 576-2 Cel 67 27 6 Paper 157 55.2 0.65 In Dbl.
6000 - - - Oo 142 48.4 0.61 In Dbl.
Paper

*Specimens were not surface ground prior to test. All other specimens were
surface ground prior to test.
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3. Thornel Pitch Fiber Reinforced 7740 - Composite GC 630

The 0° stress vs strain curve, Fig. 28, was linear up to about 65% of the

UTS, after which it became very nonlinear. This latter behavior was probably

due to the formation of large longitudinal shear cracks which were a prominent

feature of the fractured specimens. No fiber-matrix debonding or pullout, how-

ever, accompanied these cracks. The very high elastic modulus obtained is a

major aspect of this composite and hence, even though the composite tensile

strength was relatively high, the final failure strain was low.

4. Thornel 300 Fiber Reinforced 7740 - Composite GC 631

The 0° stress vs strain curve, Fig. 29, is bi-linear with the decrease in

slope occurring at approximately 100 MPa. Although the composite tensile strength

is relatively low, the failure strain is quite high due to the low elastic

modulus of both fiber and composite. The slight nonlinearity in the curve near
the UTS is probably associable with the formation of large longitudinal shear

cracks, some of which followed an interlaminar path. Again, as in the case of

the Pitch based fiber, no fiber-matrix debonding or pullout occurred.

5. GY70 Fiber Reinforced 7740 - Composite GC 632

The stress vs strain curve for this composite, Fig. 30, was totally linear

to the point of fracture and the resultant composite fracture surface appeared

relatively featureless. The fracture plane was flat and no signs of pullout or
shear cracking were evident.

6. Continuous Celion 6000 Fiber Reinforced 7740 - Composite GC 633

The stress vs strain curve for this O o material was the most nonlinear of
all the O o specimens measured, Fig. 31. An initial decrease in slope occurred

at about 100 MPa followed by a major nonlinear portion of the curve at approxi-

mately 85% of the UTS. This latter feature contributed to raising the ultimate

composite failure strain to approximately 0.50% and is probably associated with

the extensive fiber-matrix debonding characteristic of the final fracture. The

entire gage section turned into a "brush" of graphite fibers after fracture.

7. Chopped Celion 6000 Fiber Paper Reinforced 7740 - Composite GC 576

The stress-strain behavior, Fig-32, of the Celion 6000 paper reinforced

glass matrix composites differed significantly from that of the above

materials. In this case the specimen exhibited a significant decrease in slope

at an applied stress of 40 MPa, which was then followed by an increase in

slope and final failure at approximately 0.6% strain. This unique behavior is

probably related to the occurrence of matrix cracking at the 40 MPa stress level

and the extreme difficulty for crack propagation through the specimen cross

section. The resultant high level of failure strain is highly desirab le for

most applications; however, the low level of overall strength, compared to the

unidirectionally reinforced material, would be unsatisfactory for many high

performance situations.
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A further comparison of composite properties is presented in Table X

where manufacturer's claimed fiber properties of strength and elastic modulus

are used as a baseline. A simple rule-of-mixtures calculation of composite

elastic modulus, using the tabulated values for fiber and 7740 glass matrix

properties, indicates that all of the measured axial moduli fall below those

expected. The level of agreement ranges from between 79% and 95%. Some of the

inaccuracy may be related to the fact that the manufacturer's "typical" data
are used rather than those for a particular spool. In addition, the use of

the full matrix elastic modulus of 63 MPa may overestimate the matrix contri-

bution. Matrix cracking may lower this value significantly.

Although it was expected that a "rule-of-mixtures" approach should yield

relatively good agreement for the elastic modulus comparison, no such agreement
should be expected for composite tensile strength. Even a simplified calcula-

tion, used in the table, which completely neglects any matrix contribution term,

would not be expected to be very accurate since, at the very least, an effec-

tive bundle strength should be used for the fiber strength. However, the

statistical data needed to determine the bundle strength are not available.

The calculation presented in Table X is used simply in a relative sense. The

Pitch fiber reinforced composite came closest to achieving a large fraction of

the fiber average strength, 49%, while all of the other composites were at a

27-36% level of achievement. Because of the relatively linear shapes of the

stress vs strain curves, the levels of agreement in composite failure strain
resemble those based on strength.

Three point flexural bend strengths were also determined for specimens

taken from the same composite panels used to obtain the above described tensile

data. A comparison between the average tensile and flexural strengths and

elastic moduli is presented in Table XI. It can be noted that composite elas-

tic modulus is nearly identical as measured by either test while the composite

flexural strength is substantially higher than the tensile strength in four

out of eight cases. In the case of the HMS fiber reinforced specimens, the

flexural strengths in this table are lower than those reported earlier in this

report, Fig. 5. This is parimarily due to the lower percentage of fiber rein-

forcement present in the current specimens but may also relate to variations in
starting fiber properties.

The superiority of flexural strength was expected for several reasons.

First, on a statistical basis it is expected that a higher flexural strength

would result due to the smaller volume of material undergoing the maximum cal-

culated beam stress. Second, the problems of alignment and gripping induced

failure should be less for the flexural test. On the other hand, it is possible

to measure a low flexural strength due to the occurrence of other failure modes
such as shear or compression. Examination of the fractured three point bend

specimens did indeed fail by an interlaminar shear mode rather than in tension.

A very poor fiber-matrix bond existed and this was also reflected in the
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Table XI

Comparison of Tensile and Flexure Data

Composite Flexural Composite Tensile

Properties Properties

Fiber Elastic Elastic Flex Strength/

S2ecimen Type Strength Modulus Strength Modulus Tensile Strength

(MPa) (GPa) (MPa) (GPa)

594 Oo HMS 620* - 405 194 1.53

628 00 HMS 527** 180 348 184 1.51

593 0/90 HMS 325* - 132 64 2.46

629 Oo HTS 806** 155 614 152 1.31

630 00 Th. Pitch 683** 332 554 334 1.23

631 Oo Th.	 300 711** 127 400 124 1.78

632 0  GY70 432** 275 395 283 1.09

633 0  
Cel 6000 388** 94 425 113 0.91

576
0  

Cel 6000 433* 85 150 52 2.88
paper

* 5 specimens tested to obtain an average flexural strength

** 4 specimens tested to obtain an average flexural strength
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fractured tensile specimen character where the specimens appeared brush-like

after testing. In the case of specimen set GC 632 consisting of.GY70 reinforced

glass, it was not possible to ascertain whether specimens failed in tension or

compression by simply looking at the fractured specimens. Therefore, three

additional specimens were tested from the same panels and again it was not

possible to ascertain the exact mode of failure because of its very sudden

nature and the rather brittle appearance of the fracture surfaces. In the

cases of both the Thornel Pitch (GC 630) and HTS (GC 629) fiber reinforced

specimens it was possible to note evidence for compression, rather than ten-

sile, failure in the flexural test. This was particularly true for the Thornel

Pitch reinforced composites which exhibited only compression failure.

The fracture surfaces of three types of tensile specimens were examined in

the scanning electron microscope. The fracture surface of a O o HMS fiber rein-

forced 7740 specimen, Fig. 33, is characterized by the presence of almost no

fiber pull out from the matrix. However, large axial splits are observed which

appear to occur primarily along fiber rich zones. These may correspond to re-

gions of low transverse strength which, upon the sudden release of energy during

tensile failure, fracture. The fracture of a 0 0/90 0 HMS reinforced 7740 com-

posite, Fig. 34, includes the same above-mentioned features as well as trans-

verse ply fracture which occurs primarily along fiber-matrix interfaces. Finally,

the tensile fracture of chopped Celion 6000 fiber reinforced glass, Fig. 35, is

characterized by extensive fiber pull out on a microscale. Fiber lengths of

300-500 microns in length are readily observed completely free of any surrounding

matrix.

F. Thermal Exposure and Thermal Cycling

The change in mass of unidirectionally reinforced 7740 glass matrix compos-

ites is given in Figs. 36 and 37 as a function of their exposure time to air at

the indicated temperatures. For both the HMS and GY70 reinforced materials it

was found that the total loss of mass after even 500 hrs at 703 K was less than

5% while a similar length of exposure to 813 K resulted in between 30 to 50%

mass reduction. As shown in Fig. 36, there was very little dependence of per-

formance on whether the specimen ends were glass rich (untrimmed ends) or

whether the ends were trimmed to remove any excess glass.

After measurement of their residual mass the specimens were tested to

failure in three point bend to measure their flexural strength, Figs. 38 and 39.

As would be expected from the change in mass data, the composite strength was

significantly reduced after exposure at 813 K. Significant strength loss, how-

ever, was also observed for those specimens exposed to 703 K, particularly in

the case of the GY70 fiber reinforced composites. To get a better understanding

of this and the mechanisms which control composite mass and strength loss,

several specimens were sectioned and polished. The examination of both trans-

verse and longitudinal sections taken from exposed composites revealed two

distinctly different rate processes taking place, one from the specimen ends
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and one from the transverse sides inward. Figures 40 and 41 can be used to ex-

amine the process of fiber oxidation which occurs from the composite specimen

sides. As described previously in the experimental procedure, these surfaces

were ground prior to exposure to fully expose fibers and remove any excess glass.

The transverse section in Fig. 40 is typical of an unexposed specimen which has

already been tested to failure in three point bend, while Fig. 41 is the cross

section of a specimen which had been exposed at 813 K for 500 hrs. The photo-

graph on the left in this figure illustrates the actual composite structure while

the drawing on the right represents the outline of the oxidized portions of ma-

terial. This transverse section was taken from the center of the exposed speci-

men so that any end effects, to be discussed below, were not operative in this

vicinity. The dark areas in both the photo and the outline are those which have
exhibited oxidation of the fibers. As can be seen, the oxidative process pro-

ceeds on both a broad front, and also along preferred paths. The latter are

frequently, but not always, associated with glass rich regions which exist be-

tween adjacent tows of fibers. The fibers adjacent to these glass rich areas

appear to be oxidized more rapidly than those within the tows themselves. The

drawn outline outer boundary represents the original unoxidized specimen outer

surface.

As would be expected, the extent of transverse oxidation increased with in-

creasing time at temperature, Fig.42. The outlined areas indicate the general

progress of fiber oxidation. (Note, the transverse section of specimen GC 371-C-1

in this figure was taken from another portion of the specimen shown in Fig. 4]).

By taking several sections of oxidized specimens, and measuring the average depth

of oxidation penetration, it has been possible to make a plot of transverse pene-

tration depth versus time of exposure, Fig.45. The average depth was arrived at

by measuring the total area of oxidized material and dividing by the original

specimen surface length, i.e. twice the thickness plus width.

It was found that the rate of oxidation in the longitudinal direction was

much more rapid than that in the transverse direction. This can be seen in Fig-43

where both the original longitudinal section and the representative outline are
presented. In this case the specimen end had been trimmed prior to oxidation to

remove any excess glass. As in the case of transverse oxidation, the extent of

observable degradation increased with increasing exposure time, Fig. 44, and con-

sisted of paths of preferential attack. The nature of these paths, i.e. glass

rich or other, was not resolvable. The average depth of longitudinal oxidation

penetration is given in Fig.45 as a function of exposure time for specimens with

both trimmed and untrimmed ends. No discernable difference was noted in pene-

tration of oxidation due to end condition. Note, for the glass rich or untrimmed

end specimens, the depth of penetration is taken from the ends of the fibers in-

ward, and not from the outside glass end surface of the specimen.
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By use of the data in Fig. 46 it was possible to calculate the contributions

to specimen mass Joss due to both transverse and longitudinal penetration. The

total percent mass loss can be calculated using the formula

Mass Loss = (p F) (v/o F) (dL AL + dT AT)

We

where	 pF = density of the fiber

v/o F = the volume percent of fiber

dL ,dT = longitudinal and transverse depth of penetration respectively
AL ,AT = longitudinal and transverse original specimen surface areas

respectively

W e = original unoxidized mass of the composite.

The resultant total calculated mass loss, as well as the individual longi-

tudinal and transverse contributions, are presented in Fig. 46. The range of

originally measured mass loss is also plotted in the figure and it can be seen

that the calculated and measured values agree quite well. It is also interesting

to note that, although the rate of oxidation is much more rapid from the specimen

ends, the relatively small specimen end surface area causes this path to be the
minor, contributor to total specimen mass loss.

An attempt has also been made to calculate the expected rate of composite

flexural strength loss due to oxidation. This has been accomplished by assuming

that strength loss is due to a simple reduction in composite beam transverse

cross section and that the effects of nonuniform transverse attack are unimportant.

The calculation was put in the following form to result in a measure of percent

flexural strength retained

Flexural Strength Retained = (b-2dT)(h-2dT)2 x 100%

bh2

where b,h = the original unexposed specimen width and depth.

This formula stems from the ratio of three point bend flexural strengths of exposed

and unexposed specimens. The calculated level of strength retention is presented

in Fig. 47 along with the originally measured data reported previously. The level

of agreement substantiates the postulated mechanism and indicates that there are

no major additional degrading effects due to a notch sensitivity or the occasional

deeply penetrating regions of degradation.

60



UU

50	 O TOTAL CALCULATED PERCENT MASS LOSS
A CALCULATED TRANSVERSE PERCENT MASS LOSS
p CALCULATED LONGITUDINAL PERCENT MASS LOSS

20

10

5	
^N^ ^nPŜ 	
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The results obtained by thermally cycling specimens were rather similar in

form to those obtained by static thermal exposure. Both the HMS and GY70 fiber

reinforced composites exhibited gradual mass loss with increasing number of

cycles and this mass loss caused a measurable decrease in composite flexural

strength, Figs. 48 and 49. In the case of thermal cycling to 813 K, examina-

tion of the thermal history which took place during each cycle, Fig. 50, it

can be judged that 1000 cycles corresponds to approximately 117 hrs at tempera-

tures above 573 K and nearly 75 hrs at 813 K. The 70 to 85% strength retention

after 1000 cycles, Fig. 48, is in good agreement with the level of strength re-

tained after 100 hrs of constant temperature exposure, Fig. 38.

Several thermal cycling experiments were also performed on 0/90 cross plied

composite material to ascertain whether the degradation mechanism is accelerated

by a complex lay-up pattern. The data, Table XII, indicate no degradation after

500 thermal cycles which is, in fact, superior to the data presented in Fig. 49
for unidirectionally reinforced material.

G.	 Thermal Expansion

The axial and transverse thermal expansion of unidirectionally reinforced

HMS/7740 composites is presented in Figs. 51-54. In both cases a series of six

thermal cycles was performed with the first three cycles going to a maximum tem-

perature of approximately 725 K and the last three cycles extending the maximum

temperature to 860 K. The initial axial thermal expansion curve, Fig. 51, pre-

sents several interesting features. First, the initial deformation of the

specimen on heating is a contraction. The rate of contraction decreases with

increasing temperature until, at about 510 K, the specimen reverses the direc-

tion of deformation and begins to expand. Thus, over a limited temperature

range, the thermal expansion coefficient is approximately zero due to the re-

versal of deformation. Also of importance is the observation that the heating

and cooling curves do not coincide, but instead there is evidence of a hysteresis

effect. By comparison with cycle 2 it is clear that this hysteresis is trans-

ient and, for almost all of the second thermal cycle, has disappeared. A residual

strain at room temperature remains, however. Because of the very small magnitude

of the residual strain it was not clear whether this is an artifact, due to a

failure of the system to return completely to the initial starting condition, or

whether it is indeed a true residual contraction of the specimen.

By increasing the maximum temperature, Fig. 52, it can be seen that the

hysteresis effect once again becomes prominent. Additional thermal cycles also

tend to decrease the magnitude of this difference between heating and cooling,

although it is still quite evident in the sixth cycle.
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Table XII

Flexural Strength of 0/90 - GY70/7740 after Thermal Cycling
in Air Between 323 K and 703 K

Numbez of Cycles	 Three Point Flex. Strength
(MPa)

0	 207
0	 145
0	 248
0	 213

500 210
500 209
500 210
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To further examine the nature of this effect, this, tested specimen GC 377-1

was allowed to "age" in the ambient laboratory environment for 60 days after

which time it was placed once again in the dilatometer and cycled between 300 K

and 680 K. No hysteresis effects were noted during this thermal excursion and

the shape of the strain versus temperature curve agreed', with that shown in Fig.

51. Thus the "precycling" treatment succeeded in substantially stabilizing com-
posite thermal performance.

It is interesting to note that in all of the thermal cycles shown in Figs.

51 and 52, the cooling curve occurred at more negative strain values than the

heating curve. Also, the residual strain was always negative. The reason for

this probably relates to the fact that the graphite fiber has a highly negative
axial thermal expansion coefficient (approximately-1 x 10 -6 K-1 ) while 7740 glass
has a positive value of 3.2 x 10-6 k-1 . Thus, on heating the composite contracts
and the matrix is loaded in compression. It is likely that the fibers may slip

slightly along the fiber-matrix interface and some compressive matrix yield may

also occur. On cooling the specimen attempts to return to its initial room tem-

perature dimension; however, because of the above two postulated effects which

occurred at the elevated temperature, it cannot. Thus the cooling curve occurs

with more negative strain values and a residual negative strain remains after

test. It should be noted, however, that this material was fabricated at ele-

vated temperature and was subjected to one very large cooling cycle prior to

the cycles herein reported. From the above data it would appear that if the

composite were subjected to several thermal cycles prior to removal from the

fabrication hot press almost all signs of hysteresis would be removed from sub-

sequent tests. It should also be noted that the levels'of strain which are being

measured are extremely small, i.e. 20 x 10-6 m/m. For a 2.54 cm long specimen this
corresponds to 5 x 10-5 cm.

The transversely oriented specimen thermal expansion behavior, Figs. 53,54

differs significantly from that of the axial material. The magnitude of strain

measured is much larger and is everywhere positive. The first three cycles,

run to a maximum temperature of 725 K, exhibit no evidence of hysteresis using

the scales shown. In actual fact, however, there was some hysteresis which is

observable on a higher resolution scale. As in the case of the axial specimens,

however, it has not yet been demonstrated that the residual strain measured at

room temperature is purely due to the composite and not 'an artifact of the

experimental apparatus and procedure. Reheating to the 'higher temperature of

865 K, Fig. 54 cycle 4, caused a larger hysteresis effect which decreased with

additional cycles. The reasons for this transverse hysteresis are less clear
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since the fiber transverse thermal expansion (af) is not well known. Values of

of larger than that of the 7740 matrix, however, have been quoted in the litera-
ture and the overall composite transverse thermal expansion coefficient would

agree with this.

Similar axial and transverse thermal strain vs temperature curves for uni-

directional GY70 (Figs. 55,56), Thornel Pitch (Figs. 57,58), and Thornel 300

(Figs. 59,60) fiber reinforced composites are also presented for temperatures

of up to 625 K. The general features of these materials' behavior agree with

those of the above described HMS/7740. Two major differences, however, are

the values of thermal expansion coefficient and location of the axial specimen

inflection point (a = 0). It appears that this point occurs at a higher tem-

perature for the higher modulus Thornel pitch fiber than for either of the other

materials. The thermal expansion coefficients for all of the fiber reinforced

glass composites are listed in Table XIII. These values, taken from the figures

at 300 K in both the axial and transverse directions, indicate the tendency for

a more negative axial coefficient with increasing fiber elastic modulus. The

following expression, which has been used successfully to calculate composite

axial thermal expansion, illustrates how this can happen:

c	 Em am Vm +Ef of Vf
all

Em Vm + E f V f

E, V and a are the elastic modulus, volume percent and thermal expansion of fiber

and matrix, and the of term refers to the axial component of fiber thermal expan-

sion. Thus, even without altering the already negative value of a f , an increase

in fiber elastic modulus will result in a more negative value of composite axial

thermal expansion, allc.

A recent tabulation of GY 70 fiber data (Ref. 5) permits an examination of

the validity of the above expression. The fiber properties are E f = 537 GPa,

of = - 1.08 x 10-6 K-1 while 7740 matrix properties are Em = 62.7 GPa and am =
3.25 x 10-6 K-1 . Using these values and a fiber volume fraction of 75% obtained

experimentally, a resultant value for a ll c was calculated to be -0.92 x 10-6 K_'.

This is in excellent agreement with the value of -1.0 x 10 -6 K-1  obtained

experimentally.

The composite transverse thermal expansion coefficient a22 c did not indicate

a consistent trend with fiber elastic modulus. At present an accurate formulation

for the calculation of a22 c based on fiber and matrix properties is not available

because of the extreme complexity introduced by the orthotropic nature of the fiber.
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Table XIII

Thermal Expansion at 300 K of Graphite Fiber Unidirectionally
Reinforced 7740 + 2% Si0 2 Matrix Composites

Fib er
Elastic Thermal Expansion Coefficient

Composite Fiber Type Modulus v/o Fiber (10-6 m m7 1 K-1)
(GPa) 00 900

377 HMS 350 70 -0.50 +6.5

398 GY 70 537 75 -1.0 +8.1

609 Pitch 654 50 -1.0 +4.4
(VS0054-0)

614 Thornel 300 234 54 -0.10 +4.6

Table XI V

GY 70 Fiber Reinforced 7740 Composite
Thermal Expansion Coefficients

Composite Lay-Up

Unidirectional @ 00
@ 900

0/90 Cross Ply

a300 K
(10-6 m M-1 K-1)

-1.0
+8.1

-0.8

a300-550 K
(10-6 m m I K-1)

-0.95
+8.1

-0.6

78



The thermal expansion of a 0/90 cross ply GY70 fiber reinforced 7740 com-

posite is presented in Figs. 61 and 62. These curves bear a close resemblance
to those obtained for the axial thermal expansion of unidirectionally reinforced

GY 70/7740, Figs. 55,56• However, there are some differences. First, the slope

of the curve is slightly less than that for the unidirectional case at 300 K and

the overall specimen contraction up to 500-600 K is significantly less. The data

are compared in Table XIV in terms of thermal expansion coefficients. Second, the

apparent extent of hysteresis is less for the 0/90 composite. Within the resolv-

able limits of the experimental system, it does not appear that, after the first

cycle, there is any residual specimen strain after thermal cycling. As can be

seen in Figs. 61 and 62. the final specimen dimensions are equivalent to the
starting dimensions.
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IV. SUMMARY AND CONCLUSIONS

In this most recent phase of the program a wide variety of unique aspects

of graphite fiber reinforced glass have been demonstrated. It has been shown

that shaped articles can be fabricated by two different procedures. The first is

a simple extension of the previously developed hot press consolidation process

while the second makes use of the exceptional thermoplastic nature of the glass

matrix which permits it to be softened and shaped by reheating. Thus, as demon-

strated by the fabrication of simple hat sections, low pressures and short time

durations can be used to reshape preconsolidated composite plates. In addition to

this ability to form shaped parts, it was also shown that sections of composite
material can be joined together using glass solder and metal brazing techniques.

The use of chopped graphite fibers was demonstrated to be an effective way

of achieving multidirectional composite reinforcement. The fibers, obtained in

a two dimensional random array, were combined with glass powder and then con-

solidated into composites which contained approximately 30-45 v/o reinforcement.

Average three point flexural strengths of as high as 315 MPa were obtained by

this procedure when Celion 6000 fiber was used as the reinforcement while

strengths of only 54 MPa resulted when a low cost pitch based fiber was used.

An extensive characterization of composite mechanical properties demonstrated

that excellent performance can be achieved. These findings include the following.

• The selection of graphite fiber type determined the values of

strength (flexural and tensile) and elastic modulus achieved. A high

elastic modulus pitch based graphite fiber provided the highest level

of composite tensile elastic modulus, 334 GPa, while an HTS graphite

fiber reinforcement achieved the highest value of tensile strength,

614 MPa.

• Composite resistance to mechanical fatigue was found to be excellent

for both unidirectional and 0/90 cross ply material. Composite 10 6 run

out stresses were found to reach levels within the range of composite

monotonic strength, and residual strength after fatigue was found to be

equivalent to original "as fabricated" composite strength.

• Composite creep and stress rupture properties were found to be limited

by the oxidative stability of the graphite fibers. At 703 K composites

withstood stresses equivalent to their as fabricated flexural strength

for over 200 hrs without rupture or degradation while at 813 K fiber

oxidation limited composite life.

• Composite resistance to thermal cycles between 300-703 K and 300-

813 K was also found to be limited only by fiber oxidation.
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The thermal expansion characteristics of several different fiber-matrix

combinations were measured over the temperature range of 300 K - 860 K and it

was shown that exceptionally low values of axial and transverse thermal expan-

sion coefficient (a) can be achieved. These low values are due to the low a

values of the fiber and matrix materials themselves which also contribute to

the very small amount of hysteresis observed on repeated thermal cycling. A

unique form of axial composite thermal expansion was also noted to take place

wherein, at room temperature, the initial composite thermal deformation is con-

traction upon heat up which is then followed by a gradual change to expansion

at some elevated temperature. The magnitude and temperature range over which

these effects take place were found to depend on the type of graphite fiber

used; however, in each case this type of thermal contraction-expansion cycle

was found to be exceptionally stable over repeated temperature excursions. It

was ' thus possible to find both a temperature and a temperature range over which

the composite thermal expansion coefficient was precisely zero.

When combined with the fact that the density of graphite fiber reinforced

glass matrix composites is approximately 2000 kg/m3, the above characteristics

indicate that this system offers a unique combination of high specific mechanical

properties and environmental stability not achievable in either resin or metal

matrix systems.
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