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SUMMARY

The effect of interaction between combustion processes and structural
deformation of solid propellant was considered. The combustion analysis was
performed on the basis of deformed crack geometry, which was determined from
the structural analysis. On the other hand, input data for the structural
analysis, such as pressure distribution along the crack boundary and ablation
velocity of the crack, were determined from the combustion analysis. The inter-
action analysis was conducted by combining two computer codes, a combustion
analysis code and a general purpose finite element structural analysis code.

INTRODUCTION

In recent years, much attention has been focused on the investigation of
the coupling effect between combustion phenomenon and mechanical behavior of solid
propellant. The solution of problems of this type can further better understand-
ing of the transient combustion processes inside solid propellant cracks, which
may significantly affect the performance of a rocket motor. The combustion pheno-
menon inside the crack of solid propellant is strongly influenced by the crack
geometry as the material is being deformed and burned away. Generally, there are
two major reasons for alteration of the crack geometry: 1) mass loss due to
gasification of propellant surface along the crack during the combustion process,
and 2) mechanical deformation of the propellant due to pressure.

On one hand, both the burning rate and mechanical deformation are governed
by pressure acting on the crack surface. On the other hand, a change in crack
size will cause the pressure distribution to vary. The pressure distribution
will strongly influence the deformation and stress concentration at the crack
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tip, which in turn will affect the manner of the crack propagation. It is,
therefore, apparent that the pressure distribution and the change in crack geo-
metry are strongly interdependent.

In the past, combustion and structural analyses of solid propellant were
conducted independently, with the result that interaction effects were completely
ignored. As noted above, such interaction effects can be quite important, especi-
ally when the deformation is large as compared to the original crack-gap width.
The deformation response of the material is categorized as linearly viscoelastic.
It is, therefore, the intent of this paper to present a method of analysis for the
combustion-structural interaction in a linear viscoelastic medium. To this end,
three major tasks are involved: 1) combustion analysis to model the transient
combustion process, 2) viscoelastic analysis in conjunction with moving boundary,
and 3) linkage of the two analyses.

For the combustion analysis, investigations of certain aspects of combustion
processes have been made. Taylor [l] conducted experimental tests to study the
convective burning of porous propellants with closed- and open-end boundary condi-
tions. Belyaev et al. [2] showed that the burning of propellant inside a narrow
pore may lead to an excess pressure buildup. In a later study, Belyaev et al. [3]
made a series of experimental tests to determine the dependence of flame-spreading
rate on crack geometry, propellant properties, boundary conditions, and combustion
chamber pressures. Cherepanov [4] stated that as a result of the impeded gas flow
in a sufficiently narrow and long cavity, the pressure reaches such high values
that the system becomes unstable. From his work, Godai [5] indicated that there is
a threshold diameter or critical width of a uniform cavity below which flame will
not propagate into the crack. Krasnov et al. [6] investigated the rate of pene-
tration of combustion into the pores of an explosive charge. Jacobs et al. [7,8]
studied the pressure distribution in burning cracks that simulate the debonding
of solid propellant from the motor casing.

Although results of previous experiments were of interest, no sound theore-
tical model was developed. In this study, a theoretical model was established
for predicting rate of flame propagation, pressure distribution, and pressuriza-
tion rate inside the crack. Two sets of coupled partial differential equations
were obtained: one from mass, momentum, and energy conservation of the gas phase
of the propellant product in the void region adjacent to the crack surface; the
other from consideration of solid-phase heat conduction. Due to the mathematical
complexity of governing equations and boundary conditions involved, the finite
difference method was used to obtain the solution for the combustion analysis.

In the numerical solution, the boundary conditions, which vary with time, are
specified in terms of the changing crack geometry, which in turn is found from the
structural analysis. In addition, the pressure distribution along the crack sur-
face, varying as a function of time, was obtained from the analysis and was used
as input for the structural analysis.

For structural analysis, different approaches have been taken previously
in solving (analytically or numerically) several moving boundary problems in linear
viscoelasticity. Lee et al. [9] obtained a solution for the pressurization of
an annihilating viscoelastic cylinder contained by an elastic casing in which
the material was assumed to be a Kelvin model in shear and incompressible in bulk.
Arenz et al. [10] performed a similar analysis for a sphere. Corneliussen et
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al. [11,12] presented solutions for a spinning, annihilating, viscoelastic

cylinder with free outer boundary. Since the constraining case was not included
in their analyses, the stress distribution was independent of the material pro-
perties. With the assumption of a standard linear solid model, Shinozuka [13]
presented the analytical solution for a case-bonded pressurized viscoelastic
cylinder. More generalized solutions were obtained by Rogers et al. [14] for a
class of linear viscoelastic problems by using the numerical integration scheme.
Schapery [15] also developed a general method for solving moving boundary problems.
In his approach, the moving boundary condition was replaced by a fictitious non-
moving boundary subjected to a time-dependent pressure. Later, Christensen et

al. [16] obtained a series solution for the stresses of the same problem. As
noted above, most of the analytical solutions were available for viscoelastic prob-
lems of simple geometry. For complex geometry, the finite element method has
proven to be most useful.

Application of the finite element method for solving viscoelastic problems
is not new; reports of such work can be found, for instance, in references [17-20].
However, most of the previous work did not consider the effect of moving boundary,
an important feature for the structural analysis of solid propellant. Sankaran
and Jana [21] presented a technique for the solving of axisymmetric viscoelastic
solids with moving boundary. In their approach, the finite element mesh corres-
ponding to the new boundary was re-generated, while the stress-strain histories
and material properties were assumed to be carried over from those of the previous
time increment. This assumption is valid only if the time increment is very small.
An algorithm for automatically tracking ablating boundaries was given by Weeks and
Cost [22]. All previous work dealing with moving boundary viscoelastic problems
lacks both the appropriate treatment of material properties, and stress-—strain
histories for the newly generated mesh. It is the purpose of this paper to pre-
sent such a treatment.

Three major features must be included in the structural analysis for a solid
propellant: 1) proper modeling of viscoelastic behavior, 2) tracking of
ablating boundary in order to generate new finite element meshes, and 3) treat-
ment of the material responses (i.e., stress-strain histories and material pro-
perties) for the new mesh. All of these features have been incorporated into a
nonlinear finite element program called NFAP [23]. Combustion and structural
programs were combined in order to make possible an interaction analysis. Numeri-
cal results are presented to demonstrate the effect of interaction between
combustion and structural responses of the material.

COMBUSTION ANALYSIS

The theoretical model was developed to simulate the combustion phenomenon
inside a propellant crack, which is located in a transverse direction to the
main flow of the rock chamber. During the course of derivation, the following
assumptions are made:

1) All chemical reactions occur near the propellant crack surface, and the
combustion zone is so thin that it is considered a plane.

2) Rate processes at the propellant surface are quasi~steady in the sense that

characteristic times associated with the gaseous flame and preheated pro-
pellant are short in comparison to that of pressure transient variatiom.
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3) Gases flowing in the propellant crack obey the Clausius or Noble-Abel
equation of state.

4) Bulk flow in the pore is one-dimensional [24].

To describe gas-phase behavior inside a solid propellant crack, mass,
momentum, and energy equations in unsteady, quasi-one-dimensional forms have
been developed, based upon the balance of fluxes in a control volume within the
propellant crack.

The mass conservation equation is

a(pAp) B(DuAp)
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The momentum conservation equation is
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The energy conservation equation written in terms of the total stored energy
(internal and kinetic) per unit mass, E, is
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The conservation equations are further simplified by an order of magnitude
analysis in which the following terms are negligible: 1) forces between mole-
cules due to viscous normal stress in axial direction; 2) viscous dissipation
and rate of work done by the force caused by viscous normal stresses in the energy
equation; and 3) axial heat conduction between gas molecules in the energy
equation,

The propellant surface temperature at a fixed location along the crack before

the attainment of ignition is calculated from the solid-phase heat conduction
equation written in unsteady one-dimensional form:
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where the length variable y is measured perpendicular to the local propellant
crack surface. Initial and boundary conditions are

T (0¥ =T, (5)
Tor (t, ©) = Tos (6)
T__ Ec(t)

_P—ay (t, 0) = - >‘pr [T(t) - Tps(t)] N

The heat conduction equation is solved by using an integral method [25]
which employs a third-order polynomial, or by direct numerical solution of Egs.
(4-7) with variable mesh size in the subsurface.

For the gas phase, the Noble-Abel equation is used for the equation of
state:

P(%- - b) = RT (8)

The gas-phase equations, i.e. Eqs. (1), (2) and (3), are non-linear, inhomo-
geneous, partial differential equations. Along with the partial differential
equation for the solid phase (Eq. (4)), they are solved simultaneously, using the
finite difference method. The derivation described above was implemented into a
computer program, crack combustion code (CCC) by Kuo et al. [26].

-

STRUCTURAL ANALYSIS

To conduct the structural analysis of the solid propellant, three main
features must be included in the numerical formulations: 1) modeling of
viscoelastic material behavior, 2) simulation of ablating boundary, and
3) treatment of material responses by an interpolation scheme. Each feature
is outlined below.

Viscoelastic Material Model

The material behavior of the solid propellant is assumed to be visco-
elastic in shear and elastic in bulk. Only the isothermal condition is considered.
The stress-strain relations with zero initial conditions are written in two parts.

1) Shear behavior:
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where Gy is the relaxation modulus in shear.

materials, it is usually considered

G1 = go

2) Bulk behavior:
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As discussed in [27], the incremental stress-strain relations in matrix form

are written as
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and the term mcij has a recursive relationship, i.e.,
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The advantage of Eq. (19) is that all of the strain history can be obtained by

referring only to information in the previous time step, thus reducing computer
storage and numerical calculations.

From the virtual work principle and the relationship of Eq. (12), the finite
element equilibrium equations for a typical time interval ([t, t + At] can be
derived as

K] {Av} = {Af} - {fo} 1)
where K] = S [B]T [DVE] [B] dv (22)
and £} =7 [B]T {0} dv (23)

Simulation of Ablating Boundary and Mesh Generation

Burning of the propellant causes a significant change in geometry, thus
presenting complications in finite element structural analysis. The effect of
ablating boundary is accounted for by redefining the finite element mesh at speci-
fied time intervals. This involves two stages of calculations: 1) tracking
of the ablating boundary, and 2) generation of new finite element mesh. With

some modifications, the procedures adopted herein are similar to those presented
in [22].

Consider a structural geometry with ablating boundary. The spatial posi-
tions of the ablating boundary are determined by the ablation velocities which
are found from the combustion analysis at discrete times. It is assumed that
the ablation occurs always in the directon normal to the boundary. For struc-
tural analysis, the entire surface is divided into an ablating part and a non-
ablating part; each part is formed by discrete line segments joining at the nodes
of the finite element mesh. The new position of each line segment is located from
the given ablating velocity. Consequently, the new boundary nodes are determined
by calculating the intersections of two subsequent new line segments. Likewise,
the nodes at the intersections of new ablating and non-ablating boundaries are
then determined.

During the locating process, however, some of the boundary nodes may not lie
on the new boundary and thus must be eliminated. If the distance from the tip
of the normal vector at a new nodal position to any node on the original boundary
is less than the value of the normal itself, the node is removed.
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In general, the total number of nodes on the boundary at discrete times
will be different because some of the nodes have been removed. However, in
the analysis it is more convenient to generate a finite element mesh similar to
the original one so that interpolation of material response can be made. One
way to accomplish this is by keeping the number of boundary nodes constant.
Consequently, the boundary nodes are redistributed between two discontinuity
points which are specified in the input data in such a way that the lengths
of the new line segments have the same ratio as those of the original lines.

Once the new boundary nodes are defined, an automatic mesh generation
scheme is used to create the interior nodes for further analysis. Because of
its flexibility in obtaining a desirable mesh, a Laplacian-isoparametric grid
.generation scheme [28] is utilized. However, this method is limited to a
geometry bounded by four sides. A finite element mesh is shown in Fig. 1. The
coordinates of the i-th interior node can be expressed in terms of those of
neighboring nodes by

= —1 _

Vi = Tomay Oy v Y0 v Y T yy) - Wl F e F Yyt Yie)] (24)
=1 _ B
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where w is the weighting factor for adjusting the distribution of interior nodes,
and 0 < w < 1.

Setting up the equations for each interior node yields two systems of simul-
taneous equations. It is observed that the resulting systems of equations are
banded and symmetric. The Gaussian elimination scheme is employed to solve for
the coordinates of the interior nodes,

Interpolation of Material Responses

As seen from Eq. (16), the stress increment Ao for the time interval
[t, t+At] varies with material properties and with the strain history at both
current and previous time steps. When the region of an element changes over a
period of time due to ablation, the material response history of the new elements
is lost and must be determined by an interpolation procedure from the old ele-
ments at previous time steps. Accordingly, the interpolation procedure is carried
out on the element level. For calculations, the material responses are separated
into two groups: the first includes such variables evaluated at the Gaussian
integration points, i.e., AC Ae and C%t,; the second includes the nodal
displacements which are evaluited aE nodaT pglnts. In the present calculations,
two limitations are imposed: 1) eight-node quadrilateral elements are used
throughout the analysis; and 2) the four sides of each element remain straight
before and after ablation.

1) Interpolation of Gaussian variables - It is noted that the quadratic dis-
placement approximation of an eight-node element yields a linear strain varia-
tion. With this fact in mind, the quantities of Gaussian variables at nodal
points are first evaluated for évery old element. As shown in Fig. 2a, b, this
can be done by using the linear isoparametric shape functions, namely,
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point are known. The global coordinates, (yk, zk), of that point are, therefore,
computed by using the following equations:

4
Y='zh(1',s)*y.
k 1=1 ik k i
27
z g
z, = h,(r,, s,) * z,
koL 1R K i

After (yk, z. ) are found, the old element to which the point belongs must be
identifieéd. "A search process based upon the values of r' and s' is developed for
this purpose. The search starts from the old element which corresponds to the
neighboring elements. Equations for such calculations are given by
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Fig. 2c shows how to identify the element to which the points, (r', s'), belong.
Once the location of the point is verified, an interpolation procedure is per-
formed, using the relationship

4
w, = .Z hi(r', s') * wi' (29)
i=1

2) 1Interpolation of nodal displacements - A similar procedure to that explained
above is also used to determine the position of the node in question with refer-
ence to the old element. However, the interpolation procedure in Eq. (26) is no
longer necessary since the nodal displacements are known. The nodal displacements
of the new mesh are computed from

8
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where hi are the standard quadratic isoparametric shape functions.



All formulations discussed in this section have been implemented into a
general purpose nonlinear finite element program called NFAP for conducting
viscoelastic analysis of solid propellant with ablating boundary. Some numer-
ical examples are presented in a later section.

COUPLING EFFECT

For structural analysis, the boundary condition along the crack geometry
is defined by pressure distribution which varies with time, and ablation velocity;
both are determined from combustion analysis. In the combustion analysis, the
regression rate of the propellant is dependent on the deformed crack geometry.
Therefore, the two processes are strongly interdependent. Such a coupling effect
is obtained by combining the analysis of two computer programs: a crack combus-
tion code (CCC) and a structural analysis code (NFAP). Both codes were developed
independently to facilitate program verifications. Linkage of the two codes was
made subsequently.

The coupling effect considered in the present analysis is limited to the
major parameters, namely pressure loading, ablation velocity, and crack deforma-
tion. Pressure and ablation velocity are calculated by the CCC at each nodal point
located on a one-dimensional grid along the length of the crack. The analysis
of crack combustion incorporates the crack geometry variation caused by both
mechanical deformation and mass loss through gasification of the propellant
surface. Once the gas-phase equations are solved and the pressures and ablation
velocities along the crack are calculated for a given time t, the data are trans-
ferred to the NFAP as the input information. NFAP then simulates the updated crack
geometry from the ablation velocities and generates a new finite element mesh.
With the new mesh and pressure data, NFAP updates the stiffness matrix and inter-
polates material responses for conducting a quasi-static analysis at time t. After
obtaining the deformation, the change in the crack width at each finite different
node is calculated and added to the existing crack width. Since the crack width is
the input of the combustion analysis, one cycle of calculations is thus completed.
The same procedure is followed for every specified time increment.

EXAMPLES

For program verification and demonstration of its analysis capability, three
sample problems were run either by NFAP alone or in the combined NFAP/CCC program.
The results of the analysis are discussed in the following. The numerical results
obtained from CCC alone are contained in reference [26].

1. A Reinforced Thick-walled Cylinder

Figure 3 shows a cylinder of viscoelastic material bonded by a steel casing
and subjected to a step~function internal pressure. The example was selected
because it is composed of two different materials and the analytical results
are readily available for comparison. Only five eight-~node axisymmetric elements
were used to model the cylinder. The material properties of the elastic casing
are

E = 2.068 x lO6 MPa v = 0.3015
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The material properties of the viscoelastic core are defined by

K = 689.5 MPa G1 = 51.71 * exp (-0.1lt) MPa

In Fig. 4, the variations of circumferential stresses with time are plotted
for comparison with the analytical solution obtained in [9]. It is observed that
both solutions agree very closely. This problem was analyzed previously by
Zienkiewicz et al. [18], using strain rate formulation of the finite element
method. However, the formulation presented in the present paper is more easily
incorporated into the NFAP program.

2. A Star-shaped Solid Rocket Motor

As an application of the present approach in dealing with the moving boundary,
a star-shaped solid rocket motor was analyzed by assuming both a constant and
ablating inner boundary. The configuration and finite element mesh are shown
in Fig. 5, and the material properties of outer casing and inner propellant are
identical to those of the first example. Taking advantage of the symmetry
condition, only a 30°-sector was modeled by finite element mesh. The contours
of maximum compressive stress analyzed by constant inner boundary at various
times are shown in Fig. 5. Comparing the present results with those of [18], it
is evident that the general pattern is quite similar but that some small differences
do exist. Since the geometry of the rocket motor in [18] was not clearly defined,
the difference in dimension used in these two analyses could be the cause of such
deviations.

The actual case of a solid rocket motor can be modeled more closely by con-
sidering the inner boundary being ablated. Figure 6 shows the contours of maximum
compressive stress predicted by NFAP, using the option of moving boundary. The
results obtained are quite different from those of [18]. However, observing the
differences between Figs. 5 and 6, we can conclude that the results obtained by
NFAP are quite reasonable. The solution reveals that the high stress region
obtained for ablating boundary propagates faster than that with non-ablating
boundary.

3. A Propellant Crack Specimen

As a final example, a propellant crack sample was analyzed, using the
combined NFAP/CCC program to demonstrate the coupling effect. The initial geo-
metry and finite element mesh generated by NFAP is given in Fig. 7. The crack
is 0.15 m long and the initial gap-width is 0.89 mm. The web thickness is
8 mm along the crack and 20 mm at the tip. Because of symmetry, only half of the
sample was modeled by 80 plane strain elements. The shear relaxation modulus of
the propellant was assumed to be

Gl(t) = 1,461 + 7.43 * exp (-.095t) MPa; and K = 4,826 MPa,

Calculated pressure distributions at various times, from the CCC alone, are
given in Fig. 7. The burning phenomenon of the propellant can be briefly des-
cribed as follows. The pressure in the chamber increases with time, causing
the hot gases to penetrate further into the crack. As time passes, the pressure
wave travels along the crack and is reflected from the closed end. At about
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200 us, the pressure front has already reached the tip and is reflected, causing
pressure at the tip to increase.

Figure 8 shows the results obtained from the combined NFAP/CCC program.
During the initial period, the general trend of the pressure distribution is simi-
lar to that from convective burning analysis alone. However, as time progresses,
noticeable differences between the two cases begin to appear. Up to 200 ys, the
pressures obtained from the combined analysis are lower, except near the crack
entrance region. At t = 300 Us, two pressure peaks appear. At t = 325 us, three
pressure peaks appear. These pressure peaks are caused by the partial closure of
the gap. The deformation pattern of the propellant is quite irregular because
of the uneven distribution of the pressure along the crack surface. The elements
at the crack entrance are compressed by the high chamber pressure, which results
in the propellant being pushed into the crack. Since chamber pressure increases
more quickly than pressure inside the crack, the propellant is pushed toward the
lower pressure region inside the crack. The mechanical deformation of the
propellant causes narrowing of the crack width, and consequently results in a local
crack closure. This local gap closure manifests itself in a pressure peak. The
localized pressure peaks or gap closures move along the crack. At t = 325us, this
localized pressure phenomenon becomes evident at x/L = 0.167, 0.433, and 0.633.

CONCLUSION

The computer program for evaluating the coupling effect between convective
burning and structural deformation was developed by combining the Crack Combustion
Code and a Nonlinear Finite-Element Analysis Program. In structural analysis,
the linear viscoelastic material model, together with the capabilities of simu-
lating ablating boundary and interpolating material responses, was considered.
Also, the coupling effect estimated by the combined analysis shows some signifi-
cant interaction between the combustion and mechanical deformation. This pheno-
menon will be verified further by future experiments.
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SYMBOLS

1. Combustion Analysis

AP = cross-sectional area of crack

Bx = body force

b = co-volume

cP = gpecific heat at constant pressure

E = total stored energy

E; = local convective heat-transfer coefficient

E;p= local convective heat-transfer coefficient over propellant surface
E;w= local convective heat-transfer coefficient over nonpropellant port wall
hf = enthalpy of combustion gas at adiabatic flame temperature

Ph = burning perimeter

PW = wetted perimeter of port

p = static pressure

R = specific gas constant for combustion gases

ry = burning rate of solid propellant, including erosive burning contribution
T = temperature (without subscript, static gas temperature)

Tf = adiabatic flame temperature of solid propellant

Tpi= initial propellant temperature

Tps= propellant surface temperature

Tws= nonpropellant wall surface temperature

t = time

u = gas velocity

ng= velocity of propellant gas at burning surface

x = axial distance from propellant crack opening

vy = perpendicular distance from propellant surface into solid

o = thermal diffusivity
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Subscripts
i =

PY =

Cc

ratio of specific heats

thermal conductivity

gas viscosity

density (without subscript, gas density)
shear stress on port wall

normal viscous stress

angle measure, in a counterclockwise direction, at lower side of
propellant, degree

initial value
solid propellant (condensed phase)

rocket chamber

2, Structural Analysis

S, .
1]
e..
1]

O'ij

{Ac}
{Ae}
{c }

(o]
{x1]
[ 1T

L]

stress deviators

= strain deviators

= stress tensor

= shear relaxation modulus
= bulk modulus

= a quantity at time t

incremental stress

incremental strain

equivalent initial stress vector due to viscoelastic behavior
= stiffness matrix
= transpose of matrix

= pumber of terms of series in relaxation modulus




material constants in relaxation modulus

increment of nodal displacement vector

viscoelastic material matrix

: strain-nodal displacement transformation matrix

values of Gaussian variables at k-th integration point referred
to old element i

values of Gaussian variables at i-th nodal point referred to
old element

local coordinates of k-th integration point referred to old
element

global coordinates of i-th nodal point referred to new element
i-th nodal displacement referred to new element
i-th nodal displacement referred to old element

local coordinates of point in equation referred to o0ld element
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Figure 2.- Interpolation scheme.
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Figure 3.- Finite element mesh of a reinforced thick-walled cylinder.
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Figure 5.~ Finite element mesh and contours of maximum

Principal stress of a star-shaped rocket motor
with fixed boundary.
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Figure 6.- Contours of maximum principal compressive stress of
a star-shaped rocket motor with moving boundary.
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Figure 7.- Finite element mesh of a propellant crack and
calculated pressure distributions for various
times from the crack combustion code.
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Figure 8.- Calculated pressure distributions for various
times from the combined crack combustion and
non-linear finite-element analysis program.




