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SUMMARY

The STEALTH code system, which solves large strain, nonlinear continuum
mechanics problems, has been rigorously structured in both overall design
and programming standards. The design is based on the "theoretical elements
of analysis'" while the programming standards attempt to establish a paral-
lelism between physical theory, programing structure and documentation.
These features have made it easy to maintain, modify and transport the
codes. It has also guaranteed users a high level of quality control and
quality assurance.

INTRODUCTION

A computer code system called "STEALTH" (ref. 1)*, has been developed
for the Electric Power Research Institute (EPRI) for the primary purpose of
solving nonlinear, static, quasi-static and transient problems involving
both fluids and solids. The numerical technology for this computer program
is based on the developments of Wilkins (ref. 2) and Herrmann (ref. 3).
Although this technology was originally developed for large deformation,
fast-transient defense-oriented applications (figure 1), it has been adapted
to be quite useful for studying thermal-hydraulic mechanical transients
(figure 2), nuclear waste isolation geologic burial stability (figure 3) and
a variety of structure-medium interaction (SMI) problems (figures 4 and 5).
The design and development of general-purpose

7""'__S_._ol:lds and Thermal hydraulics codes for EPRI Adapated from Lagrange
I00DY and HEMP", developed for Electric Power Research Institute by
Science Applications, Inc., under contract RP307.
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STEALTH involved extensive planning in order to make it adaptive enough to
handle this wide variety of nonlinear problems. This paper describes the
strategy that was (and still is) used.

ARCHITECTURAL OVERVIEW

The overall structure of the STEALTH nonlinear code system has been
built around a particular view of the physical equations being solved. This
view is based on the "theoretical elements of analysis of a physical system"
which are summarized in Table l. The theoretical elements of analysis are a
convenient conceptulization for solid and fluid mechanics problems. It
separates physics laws, material response characteristics, geometric aspects
(e.g., boundary conditions) and initial conditions. These distinct ca-
tegories are not only convenient theoretical groupings, but are also useful
programming and documentation entities.

The STEALTH architecture based on this view has stood the test of time
for over five years and continues to be quite flexible and adaptable to new
problems and more complex situations. Among the many adaptive features are
(1) the ability to couple other computer programs, (2) a standard procedure
for externally developed constitutive models, (3) a modular topdown archi-
tecture with a FORTRAN syntax that makes developing and changing subroutines
easy, and (4) a general-purpose, special-purpose version arrangement that
guaranteés good quality assurance. Finally, it has been possible to add
new capabilities that were not specifically anticipated when STEALTH was

originally designed.

STEALTHs 1D, 2D, and 3D are based on a modular architecture in which
many subroutines and COMMON blocks in each code are identical in every de-
tail. The top—-down design that was implemented requires each code to have
the same calling sequence at its highest levels. Subroutines and COMMON
blocks which must be different are found at the lowest (innerrmost) levels
of STEALTH. In between, there are subroutines that have identical names,
functions, and structure, but different specific programming.

The actual FORTRAN programming utilizes a subset of FORTRAN that is
common to IBM, Univac, and CDC computers. The use of these FORTRAN state-
ments is further restricted by format conventions that produce very struc-
tured programming. In addition, FORTRAN variable names are formed by com-
bining three-character roots with one- and two-character prefixes and suf-

fixes.

The STEALTH codes have been designed to be most efficient for the occa-
sional user. The standard version combines extensive checking logic which
checks and rechecks a user’s input and checks and rechecks the status of the
calculation as it proceeds. The codes also provide many standard models for
materials, boundary conditions, etc.
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Computer memory requirements range from 135 000 to 155 000 words of
octal storage in CDC 7600. This size has been achieved by overlaying the
GENERATOR. Further reduction of code size can be achieved by either over-
laying the GENERATOR some more, overlaying the PROCESSOR, or by reducing the
size of certain COMMON blocks. Reducing the size of COMMON blocks usually
results in a reduction in the number of grid points that can be computed.

Other tailorings of the codes can be made to suit specific computing
environments and/or problems. For example, it is simple to put "“hardwired"
material models into the code to improve code speed. It is also possible to
remove the trace and debug options, again improving speed. For short pro-
duction runs where generation is a larger proportion of the run time, it is
possible to write a pregenerator to reduce GENERATOR costs. Finally,
special-purpose versions of STEALTH can be created in order to improve effi-
ciency. For example, a hydrodynamic-only version of STEALTH runs 207 faster
than the standard version for the same fluids problem.

The FORTRAN coding conventions and the structural modularity make
STEALTHs 1D, 2D, and 3D portable and device-independent. Word size and
memory storage limitations are determined from the requirements of an actual
calculation. For most calculations, it is desirable to use a machine which
has a word size greater than 48 bits and memory of at least 30 000 decimal
words. However, it is possible to perform STEALTH simulations at a werd
size of 32 bits and a memory of 20 000 decimal words. The STEALTH code sys-
tem is made up of more than 100 000 FORTRAN cards.

PROGRAMM ING STRUCTURE

The development of a user-oriented, well documented, Wilkins explicit
finite-difference computer code is based on the premise that programming
structure, input/output, and documentation should be formulated from physi-
cal rather than mathematical (or numerical) concepts. Theory, code struc-
ture, and documentation are fundamental categories in the discussion of user
orientation. Elements of these categories (Table 2) should be as similar in
vocabulary and notation as possible. Using the theoretical elements of
analysis as the basis for this design, automatically links the physical
theory and programming structure in a way in which program development is
easily achieved. In the discussion that follows, a standard view of program
structure has been adapted to these concepts.

The STEALTH computer programs do numerical simulations as opposed to
numerical evaluations. A simulation is carried out through execution of
three separate ''phase groups'". Appropriate names for these phase groups are
GENERATOR, PROCESSOR, and OUTPUT ANALYZER. (Analogous processing concepts
exist for computer systems. They are: compiler/loader, central
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processing unit (CPU), and output devices, respectively.) The conceptual
functions of each phase group are summarized below.

® The GENERATOR accepts detailed data (from cards or keyboard) as
input for many different types of computer calculations. All input
data are checked as thoroughly as possible. If no serious errors
are detected, an input file for the appropriate PROCESSOR phase
group is prepared.

® The PROCESSOR accepts preresolved (link-edited) data from the
GENERATOR as a complete specification for a calculation in order to
perform a specific physics calculation. During the calculation,
output data are prepared to be input for both the OUTPUT ANALYZER
and the GENERATOR. These data take the form of archive files. The
file for the GENERATOR is called the restart file, while the data
for the OUTPUT ANALYZER are known simply as archive data. The
PROCESSOR is analogous to a CPU. 1Its primary purpose is to compute
(crunch numbers) and direct data to output devices.

@® The OUTPUT ANALYZER accepts data from the GENERATOR or PROCESSOR
phase groups in archive format. It performs analysis functions such
as plotting, special printing, data reduction, etc. Output data
from the OUTPUT ANALYZER are presented either in hard copy form or
as input files for other OUTPUT ANALYZERS. It is exactly analogous
to hard copy output functions of a hardware printer, plotter, or
other output device.

Figure 6 is a schematic display of the interaction between phase groups.

The GENERATOR phase group is a combination compiler/loader. For exam—
ple, input to the compiler function of the GENERATOR is the code input for a
particular problem. The loader (link-editing) function of the GENERATOR
performs the task of resolving several types of input into a single file to
be read by an appropriate PROCESSOR. The GENERATOR is capable of setting up

(loading) a variety of problems from a spectrum of input modes. There are
two GENERATOR input modes, standard and nonstandard.

® Standard Record Format (start or restart)

cards
keyboard

® Nonstandard Input (start only)

library file
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The PROCESSOR phase group is analogous to the CPU of a computer. Its
purpose is to compute physics from appropriate algorithms. Input data for
the PROCESSOR are prepared by the GENERATOR. Output data are in the form of
an archive file. The archive file contains a complete summary of all the
results of the physics calculations performed. The format of the file is a
self-contained, easy-to-read format and is designed to be used by other pro-
grams as input (e.g., programs in the OUTPUT ANALYZER phase group can read
the archive file as input). An abbreviated form of the archive file, known
as the restart file, is created as an input file for the GENERATOR. If a
calculation must be restated, it is more convenient to use the abbreviated
file than a complete archive file.

The OUTPUT ANALYZER phase group is composed of many different stand-
alone computer programs. Among these are plotting programs, Fourier
analyzers, data reduction codes, etc. Output analysis may be performed on
data from both the GENERATOR and PROCESSOR phase groups. All data are
transmitted in archive format but only the PROCESSOR creates a permanent
archive file. (The OUTPUT ANALYZER can be used to make a reduced archive
file, if required.)

Output from the OUTPUT ANALYZER phase group is usually in the form of
hard copy (that is, printed pages, plots, etc.). Files that are produced as
output are usually in archive format also so that they can be used as input
for other data analyzing functions. These files are not intended to be used
as input to the GENERATOR or the PROCESSOR, although it is conceivable that
they could be used this way-.

Phases are the logical subdivisions of a phase group. They are groups
of subroutines which perform a particular logical "macrofunction'" which
preserves the simplicity of physical concepts. 1In contrast, subroutines
perform "microfunctions' and are defined by a specific functional task such
as reading, checking, calculating, etc., or a well defined combination of
these tasks.

A phase group can be divided into as many phases as necessary. One
special phase known as the Utility phase is part of every phase group. It
contains subroutines which are used by more than one phase and which fall
into one of the following categories:

(1) System or Machine Dependent
(2) Input Related

(3) Output Related

(4) Enter/Exit

(5) Error

(6) Arithmetic

(7) Miscellaneous
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All phases are chosen from logical or conceptual considerations dictated by
the tasks to be performed by a particular phase group.

Phases in the OUTPUT ANALYZER cannot be defined a priori. This phase
group may require different phase structure for different types of problems
and different types of analyses, respectively. However, the GENERATOR and
PROCESSOR phases are amenable to a general design concept based on the phy-
sical notions associated with the partial differential equations being
solved.

The fundamental ideas behind the design of the phase structure for the
GENERATOR and PROCESSOR phase groups of STEALTH come directly from the
theoretical elements of analysis of a physical system. That is, logically,
STEALTH may be viewed in terms of the following distinct subdivisions:

® Conservation Equations

mass
moment um
energy

® Boundary Conditions

geometric constraints
boundary values

® Initial Conditions

intensive
extensive

® Constitutive Equations

mechanical
thermal

Designing the GENERATOR and PROCESSOR for STEALTH from these four ca-
tegories is relatively straightforward. The conservation equations (equa-
tions of change) are the equations to be solved; they are the kernel of the
PROCESSOR. They describe the response or motion of a physical system. The
initial and boundary values and the constitutive equations supply the condi-~
tions or constraints for solution. The computational network is formed from
the geometric constraints and the time~dependence specification.

The STEALTH GENERATOR phase group is broken down into nine phases which
are further divided into two groups. The first group contains two non-
optional phases which must be executed prior to the execution of other
GENERATOR phases and the Utility phase. The second group is composed of six
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opt ional phases which are used selectively to satisfy specific processing
requirements of a particular PROCESSOR. While the two nonoptional phases
in the former group must be executed in a particular order, the phases in
the latter group may be executed in any order.

The two phases in the nonoptional group are called CMNGEN and PRBGEN.
CMNGEN initializes all common blocks and PRBGEN provides data for a
GENERATOR scheduler. The GENERATOR scheduler is a subroutine which deter-
mines which of the latter group’s optional phases is necessary for a partic-
ular PROCESSOR.

The functions of the optional phases in the GENERATOR phase group are
(1) material model definition, MATGEN, (2) mesh or grid-point generation,
GPTGEN, (3) zone interior initialization, ZONGEN, (4) boundary value specif-
ication, BDYGEN, (5) time control, TIMGEN, and (6) edit specification,
EDTGEN. Figure 7 is a flow chart of the phases in the GENERATOR phase
group. Table 3 shows the correspondence between the six optional GENERATOR
phases and the logical elements of design.

Within each GENERATOR phase the subroutine calling structure (logic) is
similar. Each phase contains a phase scheduler subroutine which calls all
the "mainline" subroutines. The scheduler name is __ _ _GEN, where _ _ _ is
the phase name.

The mainline subroutines are an input processing subroutine, _ _ _INP; a
subroutine that checks input data, _ _ _CHK; a subroutine that prints out
relevant data for the phase, _ _ _PRT; and a subroutine that allows input and
computed data to be plotted, _ _ _PLT.

In addition to the mainline subroutines, there is a group of subrou-
tines known as "kernel" subroutines. These subroutines perform generation
tasks specific to that phase. Figure 8 shows a conceptual flowchart for a
typical GENERATOR phase. Kernel subroutines may be called at any time in
the phase, whereas mainline subroutines must be called in the proper order.

All GENERATOR phases may call Utility subroutines from any subroutine.
(Utility subroutines are defined as those subroutines which are common to
more than one phase in a phase group). However, certain utilities are
called from specific locations or only at specific times. For example,
ENTER/EXIT utilities are the first and last executable statements in each
mainline subroutine; only _ _ _INP and _ __ _CHK call ERROR utilities; INPUT
utilities are concentrated in _ _ _INP, etc. A list of typical utilities
are shown in Table 4.

Each PROCESSOR phase group is composed of eight phases —- one phase
less than the GENERATOR phase group (there is one phase corresponding to
each of the GENERATOR phases except the MN phase). For STEALTH, all phases
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are mandatory and all phases must be executed in a precise order. Figure y
displays the PROCESSOR phase group flowchart for serial STEALTH.

In each PROCESSOR phase there is at least one mainline subroutine called

_ _PRO. It is analogous to _ _ _GEN in the GENERATOR, where _ _ _ is the
phase name identifier. In the GPT and ZON phases there are two other main-
line subroutimes, _ _ _OLD and _ _ _NEW. Subroutine _ _ _OLD transfers data

at times n-1/2 and n from array variable storage locations to storage loca-
tions in nonarray variables. These nonarray variables are used in physics
calculations to update "old" values of variables (times n-1/2 and n) to
"new" values of variables (times n+l/2 and n+l). Subroutine _ _ _NEW then
transfers the data at times n+l/2 and n+l from nonarray storage locations
to appropriate array storage locatiomns.

All other subroutines in the PROCESSOR are kernel or utility subrou-
tines. A special group of kernel subroutines, which describes material
model response characteristics, is found in the ZON phase of the PROCESSOR.

For a vector mode version of STEALTH, the PROCESSOR would take a
slightly different form at the subroutine level and would require a dif-
ferent phase calling order. However, the overall design concepts would
remain.

CONCLUSION

Implementing a structured architecture for the STEALTH code system has
made it (1) easier to debug and modify logic, (2) simpler for new users to
learn how the codes work, and (3) ideal for maintaining versions on dif-
ferent computer hardware. The 'theoretical elements of analysis", which are
the basis for program design in STEALTH, have proven to be a useful concept
for solving general nonlinear equations approximated by the Wilkins explicit
finite-difference solution technique.
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TABLE 1. THEORETICAL ELEMENTS OF A PHYSICAL SYSTEM
Conservation laws physical principles
governing all motion

Boundary conditions geometric constraints
and boundary values

Initial conditiomns initial state of things

Constitutive relations material models

TABLE 2. ELEMENTS OF THEORY, CODE STRUCTURE, AND DOCUMENTATION
AFFECTING USER ORIENTATION

THEORY
l. Physical Laws
2. Mathematical equations

3. Numerical equations

CODE STRUCTURE DOCUMENTATION
l. Programming practices l. Input manual
2. Modular structure 2. Flow charts
3. Input/Output 3. Vocabulary
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TABLE 3. CORRESPONDENCE BETWEEN OPTIONAL GENERATOR PHASES
AND CONTINUUM MECHANICS ELEMENTS OF ANALYSIS

Constitutive Equations (material models) - « « . « . MATGEN
Boundary Conditions (control volume definition)

geometric constraints =+ ¢ ¢ ¢ o o o o o o o « » GPTGEN
boundary values =« ¢ ¢ ¢ « o o o 2 « s« « s« « « « BDYGEN

Initial Conditions « « ¢ o ¢ o ¢ o ¢ o o ¢ o o o o @ ZONGEN
Conservation Equations . « ¢« ¢ ¢ o « o « s ¢ o « « o TIMGEN

OUutput « « = o o o o o o o o « o o« o« s « « o o o o« » EDTGEN

TABLE 4. TYPICAL UTILITY PHASE SUBROUTINES

SYSTEMS OUTPUT ENTER /EXIT ARITHMETIC
RUNDAT PGEHDG SBRENT FNCONE
RUNTIM TIMHDG PHSENT MYFNO

PHSHDG SBREXT FNCTWO
INPUT INPHDG* PHSEXT MYFENT
CHKHDG GENEXT FDVONE
CRDITL* PRTHDG PROEXT MYFDO
CRDINP* PLTHDG ERREXT
CRDPRT *
LIBTTL
LIBINP
LIBPRT ERROR MISCELLANEOUS
KBDTTL*
KBDINP* CHRERR INPDGT
KBDPRT FLDERR FLDCHK*
REWFLS LIMERR CNVDTA
RINREC MDLERR PHSCHK
GETDTA RGEERR
WOTREC SBRERR
PUTDTA TYPERR

*
Uses standard input record format
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Figure 1.- Penetration of steel projectile into aluminum target using STEALTH 2D.
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Figure 8.~ Typical GENERATOR phase structure.
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Figure 9.~ PROCESSOR phase group flowchart.




