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SUMMARY 

Multilevel  self-adaptive Newton-Raphson type  strategies  are developed t o  
improve the solution  efficiency of nonlinear  f inite element  simulations  of 
s t a t i c a l l y  loaded s t ructures .  The overall  strategy  involves three basic  levels. 
The f i r s t  level  involves  preliminary  solution  "tunneling"  via  primative  opera- 
tors. Secondly, the  solut ion  is   constant ly  monitored via  so-called  quality/ 
convergence/nonlinearity tests.  Lastly,  the  third  level  involves  self-adaptive 
algorithmic  update  procedures aimed a t  improving the  convergence  characteris- 
t i c s  o f  the Newton-Raphson s t ra tegy.  Numerical experiments  are  included t o  
i l l u s t r a t e   t he   r e su l t s  o f  the  procedure. 

INTRODUCTION 

Finite element ( F E )  or  difference  simulations o f  continuum  problems gener- 
ally  lead t o  nonlinear  modelling  equations [1,2] .  Generally, such simulations 
must be solved by va r ious  techniques which are   inherent ly   i terat ive  in   nature .  
For instance, such methodologies as d i r ec t  numerical integration, Newton-Raph- 
son ( N R )  , and modified Newton-Raphson ( M N R )  , as  well  as  the  incremental ver- 
sions of  such  procedures (INR, IMNR) have a l l  been  employed [Z] .  Since  the 
types of  nonlinearity  exhibited by continuum problems are  b o t h  diverse and com- 
plex , the  question of the  best  choice of an appropriate  solution  algorithm 
inevitably  arises.  Note, while many alternatives  are  available,   generally  the 
various  solution  procedures may have special  advantages f o r  cer ta in   c lasses  of 
problems b u t  may exhibi t  poor convergence for   other   s i tuat ions.  

In this context,  the  ideal  general  purpose ( G P )  nonlinear FE code should 
have  numerous algorithmic  options augmented w i t h  a degree  of a r t i f i c i a l   i n t e l -  
ligence. Namely, the problem solving  capability  should  involve a heuris t i -  
ca l ly  gu ided  t r i a l  and error  search i n  the  space  of  possible  solution  via an 
automatically  structured  algorithm.  Unfortunately,  because  of the inherent 
d i f f icu l t ies   assoc ia ted  w i t h  code archi tecture  and kinematic,  kinetic, con- 
s t i t u t i v e  and boundary conditior!  formulations,  generally  only one algorithmic 
option i s  usually  available  in GP codes.  In this  context,  because  of i t s  wide 
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appl icabi l i ty ,  most GP nonlinear FE codes employ  some v a r i a n t  of either  the 
s t ra ight   o r  modified INR a1 gorithmic  procedures. 

Note, while  nonlinear codes present  the  user  with f a r  reaching  capabilities, 
without a priori  physical i n s i g h t ,  expensive  parametric  studies  are  oftentimes 
necessary  to  insure  adequate s o l u t i o n  convergence. For instance , unless  the 
proper  load  increment i s  employed, e i the r  poor convergence or o u t  of balance 
loads  are  generally  encountered.  Incorporating  heuristic programming could 
eliminate some of  the  expensive and time consuming parametric  studies t h a t  are  
now required t o  determine  the  proper  incrementation  necessary  for  reasonable 
convergence. 

In view of the shortcomings  of  the current  generation of solution  al- 
gorithms, th i s  paper will  consider  the development of self-adaptive NR s t r a -  
tegies  for  the  solution of nonlinear FE or  difference  simulations o f  s t a t i -  
cal ly  loaded s t ructures .  The  main thrust  will be to  consider  strategies which 
for  the most p a r t  are  compatible  with  currently  available GP codes. The over- 
a l l  development will be considered  in  three main levels.  The f i r s t  will  in- 
volve the use of INR operators t o  "tunnel"  into  the  solution  space  in  the usual 
manner. The second level  will  involve  the  constant  monitoring o f  the  different 
stages of solution  via  various qual i ty/convergence/nonl  ineari  ty t e s t s .  Finally, 
the 1 as t   l eve l   i s  an outgrowth of the  findings  of  the  second; namely, i f  one or 
more o f  the quality/convergence/nonlinearity tests  are  violated,  various  sce- 
narios  are then triggered t o  modify the INR strategy. 

Based on the  foregoing,  the paper will  outline  in  detail  the  multilevel 
static  solution  strategy,  the development of the quality/convergence/nonlinea- 
r i t y   t e s t s   a s  well as overview the  various  self-adaptive  iterative update pro- 
cedures. The analytical  considerations  will be complemented by several nume- 
rical  experiments which outline  the  various  aspects of the  quality/convergence/ 
nonlinearity  tests and which demonstrate  the  self-adaptive  strategy. 

MULTILEVEL  SOLUTION STRATEGY: 

OVERVIEW 

As noted earlier,  unless  the  proper  load  incrementation i s  employed, 
e i ther  poor convergence o r  o u t  of balance  loads  are  generally  encountered. 
Such anomalous behavior is  generic t o  all  nonlinear codes employing non-self- 
adaptive INR a1 gorithms. In this  context,  the main thrust,  of  this work i s  t o  
establish a three  level  iterative  solution  strategy  involving: 

i )  Level 1 ; Preliminary  solution development via  the  primative b u t  
computational l y   e f f i c i en t  IMNR algorithm; 

i i )  Level 2 ;  Solution  monitoring v i a  qual ity/convergence/nonl  ineari  ty 
t e s t s  and;  

opera tor. 
i i i )  Level 3; Self-adaptive update  procedures t o  modify the  primative 
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Note here  computational efficiency i s  meant to be a measure of the amount of 
time spent d u r i n g  a cycle o f  i t e ra t ion  n o t  the  overall  process. 

The  main purpose of  the f i r s t   l e v e l  of the  overall   strategy  is   essentially 
twofold. The f i r s t  i s  to  generate  the most efficient  solution  if   the  requisite 
qual ity/convergence/nonl inear i ty   cr i ter ia   are   sat isf ied.   I f  n o t ,  the  infor- 
mation generated by the IMNR "tunneling" o f  the  solution  space  can,  through  the 
second level  tests,   tr igger  the proper t h i r d  level  action. 

In terms  of the  foregoing, i t  follows  that  the second level i s  essential  ly 
threefold  in  nature. The quali ty check involves  monitoring:  the ra te  of con- 
vergence;  monotonicity;  positive,  negative and semi-definiteness;  etc. The con- 
vergence t e s t s  check for   outr ight   solut ion  fa i lure ,  and lastly,  the  nonlin- 
earity  tests  ascertain  the  "degree" of nonlinearity  excited. 

In the t h i r d  level , the  foregoing  information i s  used t o  trigger  various 
self-adaptive  modifications of the IMNR i terat ive  s t ra tegy.  Namely: 

i )  Global stiffness  reformation; 

i i  ) Preferential  local  reformation a n d ;  

i i i )  Load increment  adjustment. 

Such algorithmic  adjustments form the  heart of the  third  level of the  overall 
strategy. 

INR FAMILY OF STRATEGIES 

The overall  family of INR s t ra tegies  can essent ia l ly  be established by 
introducing  increasingly  severe  restrictions t o  the  straight methodology. 
Specifically,   start ing w i t h  the  virtual work theorem depicted by [ l ]  

/ 6 g  S d v = Y  F 
R 

T T - " 

the  typical FE shape function  formulation  yields  the  following  nonlinear  large 
deformation field  equations [1] 

J [B*IT S dv = F 
R - - 

where 
65 T- = - 1 (6Ui , j+6u j  , i+u2 , i6U2 ,  j + u  

2 2,jGu!2,,i 1 

S T = ( S l l , S  - 2 2  Y S  3 3  , s 12 Y S  2 3  Y S  3 1  1 
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such t h a t  g ,  s,  and ,F are,   respectively,  the s t ra in   tensor  i n  vector form, 
the second Piola  Kirchhoff pseudo s t ress   t ensor ,  the nodal displacement  vector, 
and l a s t l y ,  the nodal, force  vector. 

To sol ve ( 2 )  , the Taylor  expansion theorem can be used t o  establ ish the 
following  tangent stiffness formulation, namely 

where A& denotes the i th nodal displacement  iterate  associated  with  the Rth 
load  increment. T h e  nodal displacement,  tangent st iffness and load  imbalance 
are  defined by 

R 

AFi = F - J [B*(Y! ) I T  a ( v i -  ) dv R R  R - " R  -1 - 1  

such that   Ik ,  [ O ( Y ~ - ~ ) ] ,  ED and F respectively  denote  the number of 
i t e ra t ions  required of k t  foad step, t h i  i n i t i a l  stress matrix,  the  tangent 
material   st iffness and the  total  nodal load a f t e r  R increments. For the   s t ra i -  
g h t  INR approach, [ K t ]  i s  continuously  reformed and inverted. This is  obvious- 
ly  quite  expensive. In this context,  the  following  versions  of  the INR a1 gor i -  
t h m  can be established  for a specific  load  increment  solution  cycle, namely: 

R 

i )   S t r a i g h t  INR w i t h  constant  reformation  of  tangent  stiffness  matrix 
during  i teration; 

i i )   I n t e rmi t t en t  global  reformation  during  iteration; 

i i i )   Preferent ia l   local   reformation  during  i terat ion;  

i v )  BFGS type [3] reformation  during  iteration; 

v )  Classical  modified INR procedure  wherein s t i f fnes s  is  reformed only 
a t  beginning  of  load step; 

v i )  No reformation, just  i t e ra t ion ;  

v i i )  Reformation with no i t e r a t ion ,   e t c .  

As will be seen later,   various  versions of  the foregoing INR family  of  al- 
gori thm are  incorporated i n  the  self-adaptive  strategy. This will  obviously 
lead to  a hierarchy w i t h  varying  degrees o f  computation  power/efficiency. 
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QUALITY/CONVERGENCE/NONLINEARITY TESTS 

The quality/convergence/nonlinearity tests are  the  core  of the m u l t i -  
level  strategy. Such t e s t s   a r e  themselves  organized i n t o  three main cate- 
gories, namely: 

i ) C1 assical norm type convergence t e s t s ;  

i i ) Qual i t y  of convergence t e s t s  and; 

i i i )  Degree of  nonlinearity  tests. 

The f i r s t  group  of tes ts   are   essent ia l ly  of the normed type  pass  or  fail  vari- 
ety  as  typified by: 

a )  The out  of  balance norm t e s t ;  

b )  The global  displacement norm t e s t ;  

The main intent  of such t e s t s   i s   e s sen t i a l ly  t o  monitor  the  success o r  fa i lure  
of the  iterative  process. Note, while such tes t s   a re   e f f ic ien t  and well adap- 
ted t o  th i s  purpose,  they  cannot be used effectively t o  forecast  potential 
d i f f icu l t ies   un t i l  o u t r i g h t  failure  occurs. 

In this  context,  what i s  required  are  so-called  quality checks which en- 
able a constant moni tor ing  of  the  solution so as t o  determine  whether  the  direc- 
tion of convergence i s  proper.  This i s  the purpose  of the second stage of 
checking. Namely, the  quality checks t e s t  whether the  i terat ive process pos- 
sesses  the  requisite:  rate;  monotonicity;  positive,  negative and  semi definite- 
ness: e t c .  Once determined, such information i s  used t o  trigger  the  various 
modifications of the  primative f i r s t   l e v e l  IMNR strategy. 

Since the paper i s  mainly  concerned w i t h  s t a t i c  loading  problems,  various 
statements  concerning  the  quality  of  solution convergence can be  made a t  the 
outset. For instance,  since most s t a t i c  loading i s  applied  in a monotone fash- 
ion, i t  i s  expected t h a t  unless  there i s  overshoot,  successive  iterated 
solutions should behave as a monotone, positive,  negative  or semi definite  se- 
quence.  Behavior to  the  contrary  obviously  represents  either  overshoot  or po- 
tential  divergence. 

Since i t  is  difficult  to  ascertain  the  monotonicity and  definiteness 
from e i the r  of the normed or  vectorial  versions  of  the nodal displacements and 
forces ,   a l ternat ive  f ie ld  measures must be employed. In this   direct ion,  the 
1 oca1 (element) and global s t r a in  energy  stored can serve i n  such a capacity. 
This follows from the f ac t  t h a t  fo r  monotone loading  situations,  successive 
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i terations  lead  to a monotone posit ive  definite sequence o f  energy i t e r a t e s  
for  softening  structure. In the  case of hardening s i tuat ions,   successive  i te-  
ra tes  may  be nonmonotone f o r   a t   l e a s t   t h e  f i rs t  two iterates.   Thereafter,   the 
energy i te ra tes  tend t o  be  monotone  and negative  definite.  This process is  
c lear ly  seen by the normed analogy  of  the i t e r a t ive  process  depicted i n  Figures 
1 and 2. 

The incremental i t e r a t e  energy  stored d u r i n g  a given  iteration  step is 
essentially  the shaded area  i l lustrated i n  Figure 1 .  Realizing t h a t  the or- 
dinate  values o f  the  true  solution  curve  are given by (1 ) , i t  fo l l  ows that   the  
incremental  energy  stored d u r i n g  the k t h  i t e ra t ion   s tep  o f  the Rth load  incre- 
ment can be approximated by the  following  inner  product, t h a t  i s  

Assuming tha t  a to ta l  o f  KR i teration  steps  are  associated w i t h  the Rth  load-  
step,  then  the  following  expression can be developed for the  energy  stored, 
namely: 

R K -1 

k=l ' k = l  (!k + !k+l) '!k+l 

R K -1 
E = C E:= R T R  

Note ( 1 2 )  i s   e s sen t i a l ly  a trapezoidal  type  integration a proximation for 
the  area under the hyper-curve defining  the  solution of  the RtR loadstep. Now, 
sumning ( 1 2 )  over the  ent i re   set  of L loadsteps  associated w i t h  a given problem 
yields  the  requisite  overall   strain energy  stored,namely: 

= 1  c ""I R R T R 
R=l k = l  (!k + !k+l) '!k+l (13) 

To obtain  the  strain  energies  for  say the eth  element, (13) must be inter-  
preted from a local  point of view. Namely, the  requisite  parti t ions of Fke 
and Ayke must be employed i n  a partitioned  version of (1  3 )  , tha t  i s  

- 

where here AYRe and _Fie, are  respectively  the  local and element nodal displace- - 
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ments  and forces. Note, due t o  the form of (14) ,  any  form of tangent  stiffness 
type of consti tutive law can be accomodated. 

In terms of the  iteration  process  associated w i t h  softening media, i t   f o l -  
lows t h a t  fo r  convergent s i tuat ions 

t h a t  i s ,   successive  i terates   are  monotone and posit ive  definite.  Hence, for  
softening media, a check of successive  iterates  for monotone decreasing pos i -  
t ive  definiteness  will   establish a measure of  the  quality of convergence. For 
the hardening  case , the E; sequence associated w i t h  the  convergent  solution 
process  takes  the form: 

E < E <.. .< E k  < ... < O < E  R R  R R 
2 3 1 

As can be seen, f o r  k>l,  the sequence Ek i s  monotone increasing b u t  negative R 

def ini te .  In this  context,   similar t o  the  softening  case, a check of the mono- 
tone  increasing  negative  definiteness of successive  i terates  is  used as one of 
the measures of the  quality of convergence. 

A l a s t  b u t  very  important way of predicting  potential  solution  difficul- 
t i e s  can be achieved by  moni toring  the  degree of nonl ineari  ty  excited  as  the 
deformation  process  continues.  This can  be achieved by selectively checking 
the changes  of curvature  of  the  global and local  strain energy space. Such 
behavior can  be ascertained  using  difference  operators t o  evaluate  either  the 
slope,  rate of change of  slope, o r  more elaborately,  the  radius of curvature of  
the  energy  space  as e i ther  a function of the  loading  parameter  or  the nodal 
displacements. An a1 ternative approach would  be t o  locally spl  ine f i t  the ene- 
rgy-loading  parameter  space. In t h i s  way, the  current  curvature/slope can be 
obtained  either on a 1 oca1 el ement o r  global  basis. Such information can be 
used t o  i n i t i a t e  changes i n  load step  size  as we1 1 as t o  control  local and  
global stiffness  reformation. 

The importance  of  such t e s t s  follows from the f ac t  t h a t  a1 t h o u g h  FE simu- 
lations of structures composed of general media undergoing large  deflections 
are  inherently  nonlinear,  the  degree of nonlinearity  excited  varies from p o i n t  
t o  p o i n t  as well as  from load  increment t o  load  increment. As i t  i s  possible 
t h a t  large por t ions  of the  structure may exhibit  basically  linear  behavior, 
many general purpose  codes a1 low the  user t o  p a r t i t i o n  the  overall  structure 
i n t o  i t s   l i n e a r  and nonlinear groups.  A1 though this   cer ta inly adds to  the  ef- 
ficiency  of  the  code,  generally such information i s  n o t  known a priori  unless 
extensive  parametric  studies have already been performed. In this  context,  the 
nonlinearity check will  enable  the  automatic  partitioning  of  the  structure by 
allowing for  preferential  reformation of the  tangent  stiffness depending on the 
amount of  local nonl ineari  ty  excited. 
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ADAPTIVE STRATEGY 

In the  context  of  the  inherent  features o f  the INR family  of  algorithms, 
the  adaptive  strategy  incorporates  the  following  procedural  options namely: 

i )  Tangent stiffness  reformation  and; 

i i )  Load increment  adjustment. 

Each of  these  options  in turn involves  several  different  levels. For instance, 
stiffness  reformation can be considered i n  several  stages, t h a t  i s :  

i )  Global reformation; 

i i )  Preferential  local  reformation or; 

i i i )  BFGS [3] reformation. 

The adaptive  incremental  load can also be achieved  in  several ways namely: 

i ) Increment  expansion; 

i i )  Increment contraction o r ;  

i i i )  Corrective  incrementation. 

As noted ear l ie r ,   the   in i t ia t ion  of  e i the r  o p t i o n  i s  dependent on three  basic 
c r i t e r i a ,  t h a t  i s :  

a )  Qual i ty  of convergence; 

b )  Outright  failure  to converge o r ;  

c )  The degree of nonl i neari  ty  excited. 

While the  reformation o p t i o n  is   t r iggered by the second level  tests,   the 
specific  adaption  triggered  is  primarily dependent on the  degree of nonlinear- 
i ty  excited.  Hence, for  mildly  nonlinear  (elastic)  si tuations,   the BFGS refor- 
mation process i s  employed. In the  case where significant  local o r  global non- 
l inear i ty  i s  excited,  then  either  global o r  preferential  reformation  is  ini- 
t ia ted.  

As can be seen from the  proceeding categories,  various  types of load 
crementation  are  possible. The overall strategy i s  a combination of such 

i n -  

options.  Specifically, when significant  solution  degradation  is  monitored by 
the  level two t e s t s ,  then  corrective  incrementation i s   i n i t i a t ed .  Namely, ne- 
gative load  incrementation i s  employed t o  enable  the  retracing  of a portion of 
load history wherein a lower order  algorithmic  strategy  yielded  poorly conver- 
ged resul  ts. 

To s t r ike  a balance between solution convergence and  economy, the  overall 
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adaptive  strategy i s  centered a b o u t  a primative  version of the INR algorithm 
namely the IMNR. Depending on the  results  of  the qual ity/convergence/nonl  inea- 
r i ty   tes ts ,   the   level  of the IMNR is  e i ther  upgraded o r  lowered by modifying 
the  pattern  of  stiffness  reformation and incrementation. Note, since  the main 
incentive is t o  achieve a successful  solution a t  least   cost ,   the   hierarchy  is  
ordered t o   f i r s t  implement increment  adjustment and then  reformation. As a 
further move to  achieve economy, the  global  reformation  process  typically em- 
ployed a t  t he   s t a r t  of an IMNR increment can be established  preferentially de- 
pending on the  curvature  tolerance  associated  with  the  global and local non- 
1 ineari  ty  checks. 

Since  space is  limited, a full   description of the  various  detailed  hier- 
achies must be lef t   to   future   publ icat ions.  In this context,  for  the  present 
purposes,  Figure 3 gives a good overview  of all  the  possible  flows o f  control 
associated  with  the  three-level  strategy. As can be seen from this   f igure,  
contingent upon the  various  "flags"  generated in the  level two tes ts ,   the  con- 
dition code check routine  will  initiate  the  actual  modification of the INR 
strategy a l o n g  the  lines  outlined i n  the proceeding discussion. 

DISCUSSION 

Interestingly,  while such factors  as geometry, material  properties, 
boundary condi t ions,   e tc . ,   a l l  have some ef fec t  on the  choice of load  incre- 
ment s ize ,  once an excessive  value has been chosen, typically  similar  types 
of  solution  degradation  are  encountered when only  the  primative  non-self-adap- 
tive  algorithm i s  used.  Specifically,  three  basic  types of solution  pathology 
tend t o  occur. These can  be categorized by: 

i )  Immediate  and strong nonmonotonicity; 

i i )  Moderate b u t  progressively  increasing nonmonotonicity and  non- 
positive  definiteness and; 

i i i )  Mild monotonicity  with e i ther  very  gradual increases o r  decreases 
i n  solution  oscil lation. 

Note, such behavior can be excited  either  in  the  f irst  o r  successive  load  steps. 
Figures 4 and 5 give examples of such behavior. While the  resul ts   i l lust rated 
pertain t o  a rubber  sheet,  similar  results were obtained  for   e las t ic /plast ic  
media as  well as  for  different  geometries and boundary conditions. 

The solution  failure  depicted i n  Figure 5 is   typical of  those  that  usually 
arise.   Specifically,   as can be seen,  for  the given load  increment  excellent 
convergence is obtained i n  t he   f i r s t   s t ep .  In the  second, a mild form of non- 
monotonicity and nonpositive  definiteness  is  encountered.  Finally, i n  the 
t h i r d  step,  strong and progressively  increasing  nonpositive  definiteness  is 
encountered.  Solution  failure i s   f i n a l l y   i n i t i a t e d  by out  of  balance  loads. 
T h i s  scenario  is   typical of excessive  load  incrementation. Note, a s  can be 
seen from these  results;  the  onset o f  such behavior i s  signalled by the i n i -  
t i a t ion  of nonmonotonicity or  incorrect  definiteness. By studying  the  behavior 
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of  local  element  energies,  additional  insights  are  obtained. For the problems 
illustrated  in  Figures 4 and 5 ,  the  solution  degradation is  in i t ia l ly   loca-  
l ized b u t  gradually  spreads  to  the  entire  structure  as  the  iteration  process 
continues. Employing the  self-adaptive  strategy  to  the  foregoing problems 
caused the second level  monotonicity t e s t s  t o  trigger  automatic  increment ad- 
justment and preferential  stiffness  reformation. T h i s  led t o  the  generation 
of the  correct  solution. The overall  strategy was tested on several  nonlinear 
problems which exhibited  pathological  behavior  for given  load  increment  choices. 
The types o f  problems considered combined varying  degrees o f  kinematic,  kinetic 
and material  nonlinearity. In each case  barring  possible  bifurcations,  the 
level two t e s t s  were able  to  automatically  initiate  the  requisite  corrective 
self  adaptions t o  enable  successful  solutions. The .main problem encountered 
with the  concept  of  self-adaptive  strategies  arises from the  fact t h a t  some 
engineering  insight must be practiced  in  order  to  cut down overall running 
times.  Otherwise,  excessive  execution  times  are  encountered a s  the  adaptive 
strategy  shifts   gears t o  adjust for improper incrementation. 
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Figure 3.- Overall flow o f  control of three-level  self-adaptive  strategy. 
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