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SUMMARY

This paper deals with calculating the non-linear behaviour of a wave-like
deformed metal strip during the levelling process. Elastic-plastic material
behaviour as well as nonlinearities due to large deformations are considered.
The considered problem leads to a combined stability and contact problem. It is
shown that, despite of the initially concentrated loading, neglecting the
change of loading conditions due to altered contact domains may lead to a
significant error in the evaluation of the nonlinear behaviour and particularly
to an underestimation of the stability limit load. The stability is examined by
considering the load deflection path and the behaviour of a load-dependent
current stiffness parameter in combination with the determinant of the current
stiffness matrix.

INTRODUCTION

The stability of nonlinear structures is the goal of many recent papers.
Especially the snap-through behaviour of initially curved slender bars has been
analytically as well as numerically considered (e.g. ref. 1,2). But
investigations in which the influence of contact between the loading and the
loaded structures is considered are rather rare. Such a combined contact and
stability problem will be treated in this paper. In order to show how the
loading conditions influence the nonlinear behaviour and the stability limit in
particular, let us draw our attention to the following simple example.

Figure 1 shows a shallow circular arch which is loaded once directly by a
concentrated load and in a second case by a rigid horizontal plane plate moved
towards the arch. The latter is treated as a contact problem. In both cases,
symmetry with respect to the vertical axis is assumed for simplicity.

Applying the algorithm which is described later we get results shown in
figure 2. In figure 2 the load displacement path, P(w), the dependence of the
normalized determinant of the current stiffness matrix, det,K(P), and of the
current stiffness parameter (ref. 3,4), CS(P), on the applied load, P, is
described. In both cases, distinct snap~through behaviour can be observed by
considering the final tangent of the det K(P) curve which crosses the P-axis
perpendicularly (ref. 5). Also the vanishing current stiffness parameter, CS,
indicates snap-through. However in the case b (load application by a rigid
plate) a significantly higher stability 1limit than in case a was found. Thus,
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it is important to recognize the altering loading conditions even if the load
is applied-at a single point in the initial state (i.e. at a very low load
level). The problem being dealt with in the following chapters is a typical
stability and contact problem.

DESCRIPTION OF THE WAVED STRIP PROBLEM

The behaviour of an infinite strip with periodic wave-like initial out-
of-plane deformations is investigated during a straightening process. Periodic
out-of-plane deformations at the boundaries (fig. 3) or in the middle domain of
the strip sometimes appear in metal sheets as a consequence of the rolling
process. The straightening is based on plastic deformations caused by moving
the strip through a leveller in which it is bent by rollers in a repeated
manner. In some cases, a snap—-through of the waves can be observed which
renders an unsuccessful result of the levelling process. In order to find proper
conditions for avoiding snap-through, a procedure for calculating the non-
linear elastic~plastic stability problem was developed. The deformations during
levelling are caused by rather stiff rollers. A contact problem has to be
solved simultaneously with the stability problem in order to account for the
stiffening effect due to expanded contact.

To approach the real behaviour of the waved strip during the levelling
process by mathematical investigation, the complicated transient problem is
simplified to a static consideration: The nonlinear behaviour of the shaded
area of the strip in figure 3 under a downward moving rigid roller is
calculated with the aid of the finite element method.

THE MATHEMATICAL MODEL

The following data were taken from an example in which instabilities in
the practical levelling process were observed: B = 3500 mm, L = 1000 mm,
S =20mm, t = 10 me. The material is assumed to be elastic-plastic with linear
strain hardening. The following material properties correspond to
experimentally derived values at a temperature of 600 ©C (the strip temperature
during the levelling process): E = 180000 N/mm? (Youngs' modulus), v = 0.3
(Poisson's ratio), oy = 130 N/mm2 (initial yield stress), Ep = 5000 N/mm2
(strain hardening modulus). The shaded area in figure 3 under consideration
represents a doubly curved shallow shell which is modeled using ADINA shell
elements (ref. 6). These elements allow for nonlinear material behaviour as
well as geometric nonlinearities using the total Lagrangian formulation.
Figure 4 shows the finite element model.

The midsurface of the shell is approximated by

4v2 -
z(x,y) = S E%y— sin 153%513 . (1)

As shown in reference 7 the contact conditions can be verified with the
aid of contact elements. These contact elements are simple truss elements
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which have a certain nonlinear elastic material behaviour (figure 5).

The contact elements give only contributions to the global current
stiffness matrix if the shell nodes to which they are attached belong to the
contact area. They allow only transmission of compression forces corresponding
to the contact pressure. Before a shell node becomes a contact point, the gap
between the rigid roller and the shell surface must be closed. This is
accounted for in the location-dependent activating strain, Egap(y):

S-z (x=0,Yy)
S+h-z (x=0,Yv)

= - 2
€ p(Y) (2)

ga

The values of the tangent moduli, E1, Ep, the stresses, 01* and 02*, the
fictitious length, h, and the cross section area, A, of the contact elements
must be properly chosen. This means that the contact elements should be stiff
enough to prevent the roller from penetrating in the shell and, that the
properties must not lead to a numerical instability of the incremental-
iterative algorithms described below. The following values appear in the
presented analysis: Eq = 1000 N/mm?, E% = 7500 N/mm?, 01*= -5 N/mm?Z,
02*= -20 N/mm2, h = 80 mm, A = 1000 mm?. These values render a well-
conditioned system of equations. If one would like to regard the local
compressibility of the roller, a certain choice of the o-e-behaviour of the
contact elements would make it possible. Furthermore, bending deformations of
the roller could be considered, if beam elements would represent the axis of
the roller instead of the rigid line BC (figure 4). Both effects, local
compressibility and bending of the roller, are negligible in the investigated
example.

In orxrder to represent the periodicity of the structure, the boundary
conditions of the finite element model are introduced as shown in figure 4.
The waved strip will elongate globally due to the levelling process. For the
x—-displacement at the boundary x = L/2 the following restriction is wvalid:
uy (x=L/2,y) = uy(x=L/2,y=0).

DESCRIPTION OF THE ALGORITHMS

The analysis is performed in an incremental-iterative manner, using the
tangent stiffness matrix concept and the BFGS iteration procedure as described
elsewhere, e.g. in references 8,9. Let us concentrate our attention to the
stability algorithms. Algorithms which treat nonlinear stability problems as
a sequence of eigenvalue problems are described in recent papers (e.g. ref.

10 - 12). Let us now use the normalized determinant of the current tangent
stiffness matrix, detpK, and the current stiffness parameter, CS, recently
introduced by Bergan (ref. 3,4) as indicators for the stability behaviour of
the structure during the lowering of the rigid roller. It is a well-known fact
that at the stability limit, A—e=Acrit (A... load amplifier, Acrit... critical
load amplifier), the determinant of the tangent stiffness matrix vanishes:

lim det K(A) = O. ) (3)
A—=Acrit
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This criterion holds for both buckling as well as snap—through_because it
is based on the existence of a nontrival solution §y of the equation

K(Acrit). 8y = O (4)
valid at the bifurcation point and at the snap-through point.

One can distinguish between buckling and snap-through by considering how
the determinant approaches zero (ref. 5,10): In the buckling case

. detkK
lim 0detE _ (—w,0) (5)
o
crit

holds. If the determinant behaves according to

1im o0detK e (6)
oA
A=A .
crit

snap—through is indicated.

The Gauss elimination procedure which is implemented in ADINA (ref. 6) is
used in combination with the LDIF fractorization (ref. 13) to solve the finite
element equation system during the incremental-iterative analysis. Thus, it is
almost no effort to calculate the determinant of the nxn stiffness matrix using

the following relations:
K=1LDL', 7)

L is a lower unit triangular matrix and D is a diagonal matrix. Hence,

n
det K =det D = .7, D,.. (8)
- - i=1 ii
This det K is normalized so that dety K(A=0) = 1. At each load level at which

a further contact element is activated, the current global stiffness matrix
increases suddenly due to the added contribution of the activated contact
element. In order to avoid discontinuities in the detng(k) curve the current
dety values are smoothened by a further normalizing procedure which levels the
detp value just after a jump to that which appeared immediately before it. It
might be proper to delete all contributions related to the contact elements
from the current stiffness matrix if detpK(A) is calculated. This would
represent the determinant behaviour of the shell itself and the contact would
only contribute to the load vector on the right-hand side of the incremental
finite element equations.

The current stiffness parameter, lCS, has the following meaning (i
denotes the increment number): It represents the current stiffness of the
structure as being a relation between a load increment and the corresponding
displacement increment. Assuming proportional loading one can express

i i
R = "ARres- (9)
. i .
lB_denotes the external load vector at load level "), Ryof is the constant
reference load vector. Relating the current stiffness to the initial stiffness
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(with 1A &« 1) *cS can be defined as

ig = R VA I |

1,1
Al a

(10)

using the Euclidean norm of the incremental displacement vector to scale the
relations.

The combination of the determinant analysis and the current stiffness
parameter calculation offers a good tool to predict the stability limit, A ,igr
as well as the instability mechanism (i.e. buckling or snap—through) as shown
in reference 14.

DISCUSSION OF THE RESULTS

Figure 6 shows the load displacement path of the initial contact point
(node A in figure 4), the normalized determinant of the stiffness matrix,
detnK(A), and the current stiffness parameter, CS(A). The results of the
analysis of the same shell loaded by a concentrated load in A are also
presented in figure 6 as a comparison. The following facts can be observed: In
both cases a stability limit is reached and snap-through of the wave takes
place. The shell loaded by the rollexr behaves significantly stiffer than the
point-loaded shell. This is caused by the altering loading conditions due to
the increasing contact domain as explained above. In the concentrated load
approach, a horizontal tangent of the load displacement path is reached before
considerable plastification takes place. In the contact solution, plastic
domains appear in the vicinity of the contact area long before a significant
stiffness loss (i.e. a rapid decrease of CS) can be observed.

In figure 7 the deformed state of the shell immediately before snap-through
is shown. One can see that the contact domain between roller and strip is
considerable. Furthermore, it is interesting to notice that the initial contact
point A belongs no longer to the contact area.

CONCLUSION

From these considerations one can conclude that neglecting the change of
loading conditions due to deformation dependent contact conditions may lead to
an unnegligible error even if initially concentrated load conditions are
justified.
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EJ=2.5x10'Nmm’
EA=3.0x10"N

Figure l.- The circular arch loaded by concentrated load directly (a)
or via rigid plate (b).
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Figure 2.~ Load displacement behaviour, normalized determinant of the current
stiffness matrix and current stiffness parameter for the two different

loading conditions.
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Figure 3.~ The waved strip.

HINGED

183



]
€ gap
) y | 61*
GAP €,
6,

6
\\ \‘\\
5 L\ ™~
\ a/ "\
LOAD 4 L\ 6\
AMPL. \ \
\
1 \ b .CS
3t \
, \ \
\\\ \
1r det.K > \
~
\\\\~ \
0 L | ~J

. |
5 10 15 20
DISPLACEMENT u, mm

L | I | I I
0 2 & 6 8 10
det,K(4), CS(A)

Figure 6.- Results of the analysis of the wavy strip plate obtained by
(a) solving the contact problem and (b) concentrated load approach.
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Figure 7.~ Undeformed shell and configuration immediately before snap-through.
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