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INTRODUCTION 

With  the  advent  of  finite  element  models  of  varying  complexity  the  focus 
of  solutions  to  problems in solid  mechanics  has  shifted  very  strongly  into  the 
direction  of  more  accurate  material  description.  This  is  especially  true  for 
materials  for  which  strength  characteristics  vary  widely  with  state  of  stress. 
In  particular,  concrete  which  is  non-isotropic  at  any  level  of  deformation  and 
is  also  non-linear in terms of stress-strain  relationships  has  been  singled  out 
for  intensive  study.  This  includes  work  on  constitutive  relations  (refs. 1 to 
51, and  failure  (refs, 3 , 4 ,  and 6 to 15). 

Related  developments in failure  theories are  those  included in references 
16 to 25. 

This  list  is  by  no  means  exhaustive  but  formed a background  basis  which  led 
to  the  model  proposed in this  paper. In particular,  the  developments in the 
areas  of  maximum  deformation  theory  and  the  Von  Mises-Hencky  theory  provided 
motivation  for  the  concept  used  here  (ref. 26). 

FAILURE  SURFACE 

The proposed  generalized  constitutive  equation  is an extension  of  the  work 
of Hu and  Swartz  (26) on the  study  of  the  failure  of  materials so that  for  any 
kind  of  material in any  state. uf stress  its  mechanical  behavior can be  charac- 
terized  by  a  single  functional.  According  to  the  theory,  a  material  failure 
initiates when the  state  of  stress  at  a  point  is  such  that  the  following  func- 
tional  reaches  a  threshold  value  F : 
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In  this  equation 

a = a  material  related  scalar  factor  which  is  determined  by  experi- 
mental  data. 

J 1 = o  + o  + a  

J2 = (al - a2)2 + (a2 - a3) + (a3 - Dl) . 
1 2 3' 

2 2 

al, 02, o3 = the  components  of  principal  stresses,  tensile  stress ha? positive 
value. A vector of principal  stresses  is  expressed  by a. 

a o = the  absolute  value  of  the  ultimate  stresses  of  the  material  under C 

' uniaxial  tension  and  compression,  respectively. 

E E = the  absolute  values  of  strain  component  in  the  direction  of  uniaxial C 

' force  when  stress  reaches  the  corresponding  ultimate  value. 

E(o) = the  secant  modulus of elasticity  of  the  material  subjected  to  uni- 
axial  stress  (tension  or  compression  as  appropriate). 

p = the  Poisson's  ratio  of  the  material  (related  to  stress  level). 

CONSTITUTIVE  EQUATIONS 

Non-linear  response  will  take  place  when  the  increment  of  the  functional  is 
in  an  increasing  manner  and  its  value  is  beyond  some  threshold  level  (possibly 
zero). The  material  will  be  fractured at+ points  where  the  state  of  stress 
reaches  the  surface of failure,  i.e., F(o) = 1. 

Between  the  initial  state to fracture,  the  response  is  assumed to be  charac- 
terized  by  Drucker's (17) theorem of orthogonality  with  the  use  of  the  functional 
proposed  by  the  generalized  failure  theory,  eqn. (1). That is, if  the  increment 
of principal  strain  components  is  decomposed  into  linear  and  non-linear 
increments, 

{dE} = {dEe) + idsp}, (2) 

the  non-linear  part  is  characterized by 

where 

G(;) = a  scalar  function  of  stresses, 

{g(z)} = a  unit  vector  of  the  gradient of the  functional  at  the 
point  of  interest. 

Note  that G values  (under  uniaxial  loading)  can  be  determined  by  Some  stress- 
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s t r a i n   r e l a t i o n s h i p .  In t h e   g e n e r a l  case, e s p e c i a l l y   f o r   t h o s e  materials l i k e  
g l a s s   o r   c o n c r e t e ,   t h e  G f u n c t i o n  i n  u n i a x i a l   t e n s i o n   d i f f e r s   f r o m   t h a t   o f   u n i -  
axial   compression  remarkably.   Therefore  a weighted  average is  proposed.  Accord- 
i n g  t o  t h i s ,   t h e   r e l a t i o n s h i p   b e t w e e n   t h e   v e c t o r s   a n d   p r i n c i p a l  strain increment 
a n d   t h e   p r i n c i p a l  stress increment is  proposed t o  b e   c h a r a c t e r i z e d  by the   fo l low-  
i n g   g e n e r a l i z e d   c o n s t i t u t i v e   e q u a t i o n :  

I n   t h i s  E = t h e   m o d u l u s   o f   e l a s t i c i t y   o f   t h e  material, LVF-I= t h e  row vec tor   o f  

t h e   g r a d i e n t  of t h e   f u n c t i o n a l  a t  t h e   p o i n t   o f   i n t e r e s t ,  and t h e   f u n c t i o n  G ( Z )  
is  c a l c u l a t e d  by 

which is  a weighted   average   accord ing   to   the   va lues   o f   the   cor responding   pr inc i -  
p a l  stress components. G .  (a. ) depends  on  the  value of t h e   i - t h   u n i a x i a l   p r i n c i -  

1 1  
p a l  stress and i s  ca l cu la t ed   acco rd ing   t o  

where g is t h e   i - t h  component of t h e  unit vec tor   {g} .  
i 

I f  U f C  = U E = E and a = 1 is s e l e c t e d ,   t h e   p r o p o s e d   f a i l u r e   t h e o r y  C 
f Y  f  f 

ag rees   w i th   t he  Von Mises' t h e o r y   a n d   t h e   g e n e r a l i z e d   c o n s t i t u t i v e   e q u a t i o n  
r e d u c e s   t o   t h e  w e l l  known P r a n d t l - R e u s s   s t r e s s - s t r a i n   r e l a t i o n   ( r e f s .  4 , l l ) .  
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NUMERICAL EXAMPLE 

Applying  the  proposed  theory  to  plain  concrete  for  the  purpose  of  illustra- 
tion  equ. (1) is.  modified  to  read 

F = -  a J2 + (1-a) b1+P (a2+u3) 1 (af t+(sfc) 
t C (8) 

afcaft - (af -af )J1 a c(l+v) + (af  -paf  )J1 c t  
f f  

The  implication  used  is an invariant  modulus  of  elastic2ty  and  for  concrete, so- 
called  initial  yield  occurs  at  about .45 f’ . 

C 

Using  test  data  for  concrete (3)  the  level  surfaces  of  the  functional,  the 
stress-strain  curves  of  uniaxial  tension  and  compression  tests  and  the  variations 

of G [F(ai)]  and  G-[F(cri)] are  shown in Figs. 1-3. The  best  value  of a for 

concrete  is 0.46 which  has  been  used  in  these  curves. 

+ 

Note  in Fig. 1 the  shape of the  curve in the  tension-compression  zone  follows 
very  closely  the  shape  of  the  experimental  curve  obtained  by  Kupfer,  Hilsdorf 
and  Rusch ( 3 ) .  The  stress-strain  curves  presented  in  Figs. 2 and 3 were obtained 
using  testing  equipment  described  in  Ref. 27. Using  these  data,  Equations 8 for 

F  and  7a  and  7b  for G+ and G- were evaluated  numerically to obtain  the  curves 
displayed. 

CONCLUSIONS 

A proposed  constitutive  model  for  non-linear  materials  has  been  presented. 
The  primary  virtues  of  the  model  are  its  logical  combination  of  distortion  states, 
inherent  simplicity  and  generality. 

Results  presented  for  the  model  applied  to  concrete  show  good  agreement  with 
published  experimental  data  for  failure.  The  model can be readily  incorporated 
into  existing  computer  codes  provided  sufficient  experimental  supportive  data 
are  available. 

The  proposed  constitive  equation  is  presently  being  utilized  in  the  develop- 
ment  of  a  finite  element  code  for  determination  of  unstable  crack  growth  and 
stress  intensity in concrete  beams. 

1 90 



REFERENCES 

1. Andenes,  Einar,  "Response  of  Mortar  to  Biaxial  Compression,  "Thesis 
presented  to  the  Faculty of the  Graduate  School,  University  of  Colorado, 
in  partial  fulfillment  of  the  requirements  for  the  degree  of  Masters of 
Science,  Boulder,  Colorado, 1974. 

2. Chen, A.  C.  T.,  and Chen, W. F., "Constitutive  Relations  for  Concrete." 
J. ASCE 101, EM 4, 1975, pp.  465-481. 

3. Kupfer,  Helmut;  Hilsdorf,  Hubert  K.,  and  Rusch,  Hubert,  "Behavior  of 
Concrete  Under  Biaxial  Stresses," J. American  Concrete  Inst.,  Vol. 66, 
NO. 8, Aug. 1969, pp.  656-666. 

4. Palaniswamy, R.,  and  Shah, S. P.,  "Fracture  and  Stress-Strain  Relationship 
of  Concrete  Under  Triaxial  Compression," J. Struct.  Div.,  ASCE 100,  1974, 
pp. 901-916. 

5.  William,  K. J., and  Warnke, E. P.,  Constitutive  Model  for  the  Triaxial 
Behaviour  of  Concrete,  IABSE  Proc.,  Seminar  Concrete  Structures  Subjected 
to Triaxial  Stress,  LLL-1, ISMES, Bergamo,  1974. 

6.  Bresler,  B.,  and Pister, K. S., "Failure of Plain  Concrete  Under  Combined 
Stresses."  Trans.  ASCE,  Vol. 122,  1957, pp.  1049-1059;  Discussion, 
pp. 1060-1068. 

7. Hannant,  D. J., and  Frederick, C. O., "Failure  Criteria  for  Concrete  in  Com- 
pression."  Mag.  Concrete  Res.,  Vol. 20, 1968, pp. 137-144. 

8. Iyengar, K. T.,  Sundara,  Raja,  Chandrashekhara,  K.,  and  Krishnaswamy, K. T., 
Strength of Concrete  Under  Biaxial  Compression," J. American  Concrete 11 

Inst.,  Vol. 62, No. 2, Feb. 1965, pp. 239-249. 

9.  McHenry,  D.,  and Karni, J., "Strength  of  Concrete  Under  Combined  Tensile 
and  Compressive  Stress," J. American  Concrete  Inst., Vol  54, No. 10, Apr. 
1958, pp. 829-840. 

10. Newman,  K.,  and  Newman, J. B.,  "Failure  Theories  and Design  Criteria  for 
Plain Concrete."  Structure,  Solid  Mechanics  and  Engineering  Design - 
Proceedings of  the 1969 Civil  Engineering  Materials  Conference,  edited 
by  M.  Te'eni,  Vol. 2, pp.  963-995. 

11. Reimann,  H.,  "Kritische  Spannungszustande  des  Betons  bei  mehrachsiger," 
ruhender  Kurzzeitbelastung,  Deutscher  AusschuB  fur  Stahlbeton  175,  Berlin, 
1965, pp. 35-63. 

12.  Saucier,  K. L.., "Equipment  and  Test  Procedure  for  Determining  Multiaxial 
Tensil  and  Combined  Tensil-Compressive  Strength  of  Concrete,"  Technical 
Report  C-74-1, U.S. Army Engineer  Waterways  Experiment  Station,  Vicksburg, 
Miss., March 1974. 

191 



13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

Vile, G. W. D.,  "Strength of Concrete  Under  Short-Time  Static  Biaxial 
Stress,"  International  Converence  on  the  Structure of Concrete,  Paper F2, 
Sept . 1965. 
Wastlund, G.,  "New  Evidence  Regarding  the  Basic  Strength  Properties  of 
Concrete,"  Betong,  Stockholm,  Vol. 3, 1937. 

Weigler, H., and  Becker, G., "Untersuchungen  uber  das  Bruch-und  Verformungs- 
verhalten  von  Beton  bei  Zweiachsiger  Beanspruchung,"  Deutscher  Ausschuss 
fur  Stahlbeton, V. 157,  Berling,  1963. 

Argyris, J. H.,  Faust,  G.,  and  William,  K.  J.Limit  Load  Analysis  of 
Thick-Walled  Concrete  Structures - A  Finite  Element  Approach  to  Fracture, 
ISD-Report  No. 166, University of Stuttgart  (1975),  also  in  Comp.  Meth. 
Appl.  Mech.  Eng.,  Vol. 8, No. 2, 1976, pp. 215-243. 

Drucker, D. C.,  "A  More  Fundamental  Approach  to  Plastic  Stress-Strain 
Solution",  Proceedings,  1st  U.S.  National  Congress  Applied  Mechanics, 
ASME,  New  York,  1951, pp. 487-491. 

Cornet, I., and  Grassi,  R. C.,  "Study  of  Theories  of  Fracture  Under  Combined 
Stresses." J. Basic  Eng., Vol. 83, No. 1, 1961,  pp.  39-44. 

Eisenstadt,  M.  M., 
MacMillan  and  Co., 

Grassi, R. C.,  and 
Biaxial  Stresses. I' 

Introduction  to  Machanical  Properties  of  Materials, 
New  York,  1971. 

Cornet,  I.,  "Fracture  of  Gray  Cast  Iron  Tubes  Under 
J. Appl.  Mech.,  Vol. 16, No. 2 ,  1949, pp. 178-182. 

Mair, W. M.,  "Fracture  Criteria  for  Cast  Iron  Under  Biaxial  Stress."  N.E.L. 
report  No.  261.  National  Engineering  Laboratory,  East  Kilbride,  Glasgow, 
1966. 

Murphy,  Glenn,  Advanced  Mechanics of Materials,  1st  Edition, p. 83, McGraw- 
Hill  Book  Co.,  New  York,  1946. 

Nadai,  A.,  Theory  of  Flow  and  Fracture of Solids,  2nd  ed.,  McGraw-Hill  Book 
Co.,  New York, 1950. 

Prandtl,  L.,  "Spannungsverteilung  in  plastischen  Koerpern,"  Proceedings 
of the  1st  International  Congress  on  Applied  Mechanics,  Delft,  Technische 
Roekhandel  on  Druckerij, J. Waltman,  Jr.,  1925, pp. 43-54. 

Reuss,  E.,  "Beruecksichtigung  der  elastischen  Formaenderungen  in  der 
Plastizitaetstheorie," Z. Angew.  Math.  Mech., 10, 1930, pp. 266-274. 

192 



26. Hu, K. K., and Swartz, Stuart E., "A Proposed  Generalized  Material 
Failure Theory," Proceedings of the  15th  Midwestern  Mechanics  Conference, 
University of. Illinois at Chicago Circle, Chicago,  Illinois,  March 23-25, 
1977, pp. 144-147. 

27. Swartz, S. E., Hu, K. K., Huang, J., and Jones, G. L., "An Apparatus  for 
Tensile  Testing of Concrete", Experimental  Mechanics, Vol. 19, No. 3, 
March 1979. 

193 



4 

I / 

Compressive Strain (UE) 

1,500  2,000  2,500 3,000 

0.2 0.4 0.6 0.8 1.0 
~ 

Figure 3.- Data of uniaxial compressive test of concrete. 
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Figure 1.- Yield  and fracture surfaces of concrete. 

195 

I 



Figure 2.- Data of uniaxial   tensi le  test of concrete. 
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