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SUMMARY

Most hyperelastic materials are treated as incompressible or nearly
incompressible in analytical approach. The use of the penalty function, to
account for near incompressibility is discussed and compared to that of
Lagrange multiplier. A scheme to use Lagrange multiplier, without having
to treat it as unknown, is also presented.

INTRODUCTION

The finite element analysis of hyperelastic materials involves large
displacements and nonlinear material description., These materials are
often considered as incompressible or nearly incompressible in theoretical .
developments. The incompressibility condition leads to certain simplifications
in the analysis for exact solutions. Such is not, however, the case in
finite element applications. :

In the variational formulation of the finite element problems of
incompressible media, the incompressibility condition is introduced through
the use of Lagrange multiplier (1,2). This multiplier is an additional
unknown scalar function which can be accommodated in the discrete model
by displacement shape functions or by similar methods. The procedure re-
sults in an increase in the number of unknowns.

The incompressibility condition, aside from being inconvenient in
finite element analysis, is an approximation for rubberlike materials.
Such approximation becomes increasingly less accurate as the percentage
of carbon black increases in the rubber compound (3). The exact enforcement
of incompressibility is therefore not actually required.

In this work the near incompressibility is accounted for by use of the
penalty function (4) in the expression for the strain energy function.
The constitutive equations are then obtained in incremental form. This
is most suitable for a nonlinear finite element. The incompressibility
is shown to be closely satisfied for large penalty numbers. The
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constitutive relations with penalty number are compared with the exact
solution for the incompressible case. It is shown that for a given accuracy
of the solution, the penalty number must vary in the course of finite

element solution from element to element and from one increment to the

next. Some numerical results are presented to illustrate these points.

A simple scheme to use variable penalty number is also proposed. Finally

the incremental form of constitutive equations for the case of incompressible
material is derived from the strain energy function with the Lagrange
multiplier. An alternative procedure is then proposed which does not require
treatment of the Lagrange multiplier as unknown.

BASIC EQUATION

The strain energy function W for isotropic hyperelastic materials
has the following form:

W = W (I, I2, I3) (1)

Where L1, I2, and Isare the three invariants of Green-Lagrange strain tensor
and are related to strain components, for the axisymmetric case, as follows:

t t t
I, = 3+2 (Y11 + Y22 + Ys33) (2)
t t t t t t t
Io = 3 +4 (Y11 + Y22 + Y33 + Y11 Y22 + Y11 Yss3 +
(3
t ot t
Y22 Y33 — Yi27)
t t t
Is = 4 %11 + 1) 2% +1) - 47y127 3 + 27Y33) (4)

tYll,tYZZand tY33 are the current values of strains. In this work, only the
axisymmetric case is considered. The discussion, however, can be extended to
the three~-dimensional case without any difficulty. In the axisymmetric case,
the strain invariants are related to current displacements by
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b~ Txe T 2 v fOT) (6)
t
to. . UL L ouye2 7
Y33 = T 3 ( - ) (7
e _ 13w 3%u, ] L1 [Btul 3%u;
Ti2= 5 5% 3 %1 2 L9x: 9x
t t
9 ux 9 uz] 8
tIx, 53X, (8)
X2 1s the axis of symmetry and x1X, is the axisymmetric plane. The
current displacements parallel to x; andxz axes are denoted by u; and uz
respectively.
£ 1
The second Piola-Kirchoff stress tensor components ™ at current
time, can be obtained from the following relations
R aW(Ig,’: Ieo 13) 4 5-1,2,3 (9)
To obtain the incremental form of constitutive equations we define
e h t+AtT13 _ tT13 i, =1,2,3 (10)
= t+AtY - i,j =1,2,3 (11)
Yij ij ij ’J b 3
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i3
where T and Y;sare incremental stress and strain components respectively,
The incremental stress—-strain relations may now be obtained from the
preceding equations, after some algebraic manipulations, as

ij _ < s o
T = Cijkl Ykl 135 = 19233 (12)
where
2
Cpa 7 (FroeT ) TR A
13 m “n ) Y1 Vij
2
+ -g%— é}liLh i,9...= 1,2,3 (13)
Tk1 YlJ

Repeated indices imply summation convention.
STRAIN ENERGY AND PENALTY FUNCTION

The strain energy function for nearly incompressible materials can be ob-
tained by a series expansion of the strain energy function about (I;-1)
and retaining the leading terms

W = Wi(I,,I2) + Wa(Iz,I;) (I3 -1)

+ W3(I1,I2) (I:-1)2 + . .. (14)

We only consider the following special case

W o= Wi(I1,I2) + Hi (I3-1) + Hp (I3-1)2 (15)

where H, and H, are constants. Many different strain energy functions
have been proposed in the literature by further expansion of W; and
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retaining the leading terms. A general form covering the proposed:hodels is

W= E,Cy (11-3)1 (12-3) + Hi(Ts-1) + Ha(Is-1)2 (16)

wWhere Ci‘ are constants. The constant H, is“not independent if the undeformed
state is stress free, and should satisfy the following relation

Hy = = (Cig + 2 Co1) an

Coo = O

We may now consider H2 as a penalty number to handle the imcompressibility.
The satisfaction of incompressibility requires H2 to approach infinity.

For practical purpose the incompressibility can be approximately satisfied
by not too large values of H2 . The incompressibility can, however, be
satisfied more accurately as H2 gets larger.

In finite element analysis, however, the large values of H:z can
lead to computational problems due to overriding stiffnessassociated with
H2 |, as discussed in (4). A scheme to employ the variable H, , depending
on the local deviations from ideal incompressibility, can therefore improve
the solution as discussed later. On the other hand we can recover the
classical approach by letting H2 be zero and treating Hi as the unknown
Lagrange multiplier

W =X Cij (Il—B)i (Iz—3)j + A(I3-1) (18)

I3—l=0

Unlike the penalty function, A is then considered as an additional unknown
and is equivalent to hydrostatic pressure.

ONE DIMENSIONAL STRESS-~STRAIN
RELATION

To compare the expressions (16) and (18) and to see the behaviour of the
material with penalty number, we consider the case of one dimensional stress-
strain relation. Let us consider an axisymmetric medium subject to the
following uniform strain field:
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Yi1 = Y = constant

Y22 =Y

Yss = Y 19

where Y and ¥ are constants, Let us further assume the simplest form of
Wi such that

Wy, = C1 (I;-3) + C2 (I2-3) o 20)

For strain energy function (18), the stress-strain relations are

I = 20 4+ 4G (LAY +Y) +20 (1 +2y) (L +2Y)

122 = 20, + 4C, (1L +27) + 2X (1 + 27)2

3% = 2C; + 4C, (L +y4+Y) + 23 (L +2Y) (1 +2Y)

e (21)

Y is, however, not independent and is related to Y by

(L+2y) @+29)2-1 = 0 (22)

We choose A , so that ! and 1% are both zerc to simulate the uniaxial
loading. This choice would then lead to the following stress-strain relation
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in

3 1
T2, = [1 - @ +27)" /2] <201 + 2 C2(1 + 2y )'/2> (23)

The Cauchy stress 0?%is then related to T?Z by
022 = (1 +2y) T?? (24)

The one-dimensional stress-strain relation for the case of penalty
number is now obtained from (16)

il = 20, +4C, A+ Y +7F) +2 (1 +2Yy) (1+2V)x

|:H1 + 2H, (Ia—l)]

~
Il

22 2C1 + 4C2 (1 +2V) +2 (1L + 27 ° [m + 2H, (13-1)]
8% = it (25)

Following the same procedure, we arrive at the following one dimensional
constitutive equation

1
122 = <1 - ————8 - §Y§> <201 +2C (1 +2y)” /2> (26)

where 7 is now related to Hj by
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2H, [(l+27)2(1+2'y) - 1]:

4C1 (Y + Y +2yy) + 4Ca (y+ 7Y + 16yy ) )
2 (L +27) (1 +2y) (27)

The above equation must be satisfied for all values of H_ . It can be
seen that, for H, approaching the infinity, the above equation degenerates to

L+2V2 @ +2y) -1 = 0 (28)

which is the expression of incompressibility condition. In this case
equation (26) would become identical to equation (23).

IMCOMPRESSIBILITY AND PENALTY NUMBER

We consider the case where incompressibility is to be satisfied within
some prescribed accuracy € ; that is we require

(1 +2N2 (1 +2Y) -1 =c¢ (29)
For numerical illustration, consider the case where

c

-C‘L =4 (30)
2

Combining equations (27) to (30), we arrive at the following relation

1 )
H€=6—%-—£{-—:1%g— (1+€)/2 (31)

where
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X=1+ 2y

2H,
C>

(32)

and g << 1

For small values of £ , the relation (31) can be further simplified to

_ 1 X + 4
ie = 6 -x T TEm (33)

The stress—-strain relation of the equation (23) is plotted in Figure (1).
The variation of HE as function of strain is plotted in Figure (2).

It can be seen that as Y increases, H must also increase accordingly,

to maintain the same accuracy € on incompressibility condition. It can
also be noted that higher values of H are required in compression than in
tension. The relation (26) may now be written as follows:

1
/2 1
w2 - - %——HZY) ) <4 + (L + 27) /2> (34)

Comparing (34) and (23), it is observed that the stress for a nearly incom-
pressible model is always less than that of an incompressible model, for the
same strain., This difference, however, depends on the € and approaches
zero as € approached zero, or H approaches infinity. The relative error,
however, is

e = 32 - T2A, = 2e (35)
22 a+2v°2 -1
inc

For a fixed H, € increases with Y but the relative error in the stress
is governed by (35) which is less sensitive to a variation in H .
Eliminating € between (35) and (33), we obtain
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3 .
= £§E§%2> (x é—1) (36)

W=

He = <6 -

The above equation relates the magnitude of H to level of strain for

a prescribed error € . The equation (33) or (36) may serve as an
approximate method of updating H, in a problem of combined stresses, for
improved accuracy in incompressibility or stress calculation. Further
work is, however, required to develop a more vigorious scheme

in the general case.

INCREMENTAL FORM OF LAGRANGE MULTIPLIER

We now consider an alternative approach to incompressibility problems,
Let us consider the following strain energy function

W = Wi(I;, I2) + A (I3-1)
(37)
I -1 = 0
where A is the Lagrange multiplier. The second Piola-Kirchoff stresses
can now be obtained as follow
t
t ij oW t (1, - 1 9 A
TlJ = W + A_BLE;__)_ + (I3 - l) W (38)
i3 ij ij

where A is the current value of A . The incremental stress-strain
relations may be obtained by a procedure similar to that used in the
preceding pages. This would lead to
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A _ 3%w

- t t
335 ¥ M

+ )\ o(Iz -~ 1)

t
3 Yij

\ = t+AtA _ tX

where A is the increment in the Lagrange multiplier between two consecutive

Y.

Kl

steps in the. incremental solutiomn.

condition is

9Is
t ij
) Yij

multiplying both sides of (39) by Yif,and use of (41), leads to

+

tABZ(Ig —1)
LIS )
o Yij 9 Vi1

.(39)

(40)

The incremental form of incompressibility

N 2
ij oW
Ty, = Y Y.,
i ey Sty kl 4]
Y5 M
2 -
+ 5 3%(13- 1)
t t
955 3 M
or
t _ ij _
A= Y1 Cisrt Yi3 YL
_ %1, 1) ia Vi
t t
) 3
Ay Y1
c _ 32w
ijkl t t
9 Vi 37

Ykl Y-.

(41)

(42)

(43)
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The following scheme may now be considered for the solution of
incompressible materials without the need for introducing the unknown Lagrange
multiplier. In the process of incremental solution, the last term in the
right hand side of equation (39) is ignored. At the end of each increment,

A can be updated from relation (43). There is, therefore, no need of
treating - A as an independent unknown. No numerical work, however, has
been carried out with this alternative proposed scheme at this time,
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Figure 1.- One-dimensional stress-strain relation.
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Figure 2.- Variation of He with strain.
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