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SUMMARY

A geometrical nonlinear analysis based on an alternative definition of
strain is presented. Expressions for strain are obtained by computing the
change in length of the base vectors in the curvilinear element coordinate sys-—
tem. The isoparametric element formulation is assumed in the global Cartesian
coordinate system. The approach is based on the minimization of the strain en-
ergy, and the resulting nonlinear equations are solved by the modified Newton
method. Integration of the first and second variation of the strain energy is
performed numerically in the case of two- and three—dimensional elements. Ap—
plication is made to a simple long cantilever beam.

INTRODUCTION

The nonlinear finite element formulation described here represents a part
of the development of the BASIS finite element analysis system (ref. 1). The
basic idea was to combine linear and nonlinear behaviour in order to deal more
efficiently with structural analysis. Thus, nonlinear elements had to be devel-
oped which fit into an existing system without loss of general validity. The
Lagrange formulation has therefore been chosen (ref. 2), expressing the dis-
placement variables directly in the global Cartesian coordinate system,
although locally, for practical purposes, & skew coordinate system may be pre—
scribed. The advantage of this formulation is the numerical method arising from
it. By adopting the modified Newton method (ref. 3, 4) a clear solution process
has been chosen, therefore minimizing errors due to a wrong understanding of
nonlinear behaviour. The stralns can be adapted to the nonlinearity of the
problem. This feature may considerably reduce the computational effort.
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A set of one—, two- and three-dimensional elements (in terms of curvilin-
ear coordinates) can be derived from this formulation (Fig. 1). The elements
presented here are based on the isoparametric approximation (ref. 3). One—di-

~mensional elements are well suited to deal with cable and truss problems
(ref. 5). Membrane and volume elements are mainly used to model elastic com-—
posite structures.

GOVERNING EQUATIONS

Consider a point P of the undeformed body (Fig. 2). The corresponding
cartesian coordinate vector {r} may be expressed as a function of the body's
curvilinear coordinates O

o]

fr} = ] {r}¥. (6% (1)

i=1

where Tl are the interpolation functions of the corresponding nodes. The base
vectors at P are obtained by deriving {r} with respect to the coordinates G

_ 9{r}
{g}a = aea (2)

For practical purposes, Eq. 2 can be rewritten
= |A
{g}a [ ]a{S} (3)

[Aly contains all functions W o 2nd {s} all Cartesian components of the node
vectors {r} s

In order to define the strain energy the metric tensor at P

= {g}a-{g}B a=1,3; B=1,3 (4)

and the infinitesimal volume

av = det(gae) + 30! « 0% «30° (5)
are needed. In the deformed state the base vectors become (Fig. 1)

_9_

{G}a N 00

e

: 1({r}iWi'F{u}iTi) (6)
Eq. 6 may be rewritten

{G}oc = [A]a - {a} +{g}a (7)

where {d} contains, similar to {s}, all Cartesian components of the node
displacements. The metric tensor of the deformed body at P becomes

G

o8 {G}a - {a} (8)

B
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Substituting Eqs. 3 and 7 in Eq. 8,
AT T -
Gyp = {4} [D]aB{d} + {d} ((D]a8+[D]Ba){s} * 848 (9)

with

D] . = [A]fL . [A] (10)

aB B

The strains are now defined as the relative change of the base vectors:

I{G}a + {G}BI - [{g}a + {g}BI

EOLB = — (11)
I{g}a+ {g}B[
or "o, 0 g, v, ]
00,
€ = (12)
oB 8o, +2g B+g88 J

Eq. 12 can be expressed in terms of {d}

ol

T {a)t [D1 _({a} +2{s})

€ , = af + 1 -1 (13)
ofB -
€48 —
with _
[D]as = [D]w + [D]aB + [D]Ba + [D]BB (14)
88 = Euo * EgaB * ggg (15)

Eq. 13 defines the strains SaB used to derive the numerical equations from the
strain energy.

Note here that if the deformations are limited in size the root in Eg. 13 can
be expressed as a series expansion according to

M e

- 1
(xa8+1) -1+2xa6+... (16)

Retaining only the first two terms of Eq. 16 leads to the quadratic approxima-
tion o —
{a}"Ip1 _,({a} +2{s})
v _ o
€, = — (17)
aB 5
gaB

from which the linear solution may be obtained.

Assuming linear elastic behaviour, the variation of strain energy leads directly
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to the nonlinear equilibrium equations of the element.

For ease of formulation the strains €y 2re rewritten in vector form, {e} =
{€11 5€22 €33 €12 » €13 »E23}. Furthermore, as the stress-strain relations are
mainly formulated in a rectangular coordinate system the strain 1s transformed

by
{y} = [Tl{e} (18)

The transformation matrix [T] is constant if the scalar products of the base
vectors in the undeformed and in the deformed system are the same.

The strain energy density then becomes

au = 3 (o} -{0o ) EI ({7} - {yeDav (19)

% ({e}T[TJT{E] —{oo}T) [Ti{e}av (20)

or au

Eq. 20 is then integrated over the element. For one—-dimensional elements an
analytical solution is possible (ref. 5), whereas for two- and three—dimen-
sional elements numerical integration must be performed. Using Gaussian inte-
gration the strain energy becomes

ne
(VYN

He~1B

(21)

T T T
U ({s}k[T]k[E]-{oo}k)[T]k{ek}gkwk

1

1

where Ve designates the weight factor at the corresponding point @; .

The set of nonlinear equations for one element is directly obtained from the
first variation of the total potential energy with respect to the global vari-

ables
ouU
g.(u.) = — =1, (22)
1] Bui 1
{f} denotes the vector of external loads. It is worth mentioning here that in
the case of dynamic analysis the equilibrium equations can also be obtained by
applying Hamilton's principle and a suitable operator for discretization in

time.

After rearrangement, Eq. 22 becomes

m —
{a} = ] (e}y[B) - 2 {og}}+[T1))-[P] +g +w_ (23)
k=1
o {q} = ? {—}T'[P] g * (24)
4 e Ol & Yy 2
with (P17 = [{p} ] @ =1,3; B=0,3 (25)
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and —%
(p} =08 . [D] " ({u} + {s) (26)
%16

In order to solve Eq. 22 by the modified Newton method the Jacobian of {q} is

needed:
- 32y —_
ou. ou.
i3

[X]

1]
t~1

T_
[P]k°[E]'[P]k +

- -3
oaB(XaB-+1)

1 —
L] D — 0 =1 - =a 2
{ [ ]aB {p}as {p}as} a=1,3;8=a,3 (27)
gaB
For a set of several elements the stiffness matrices [K] are assembled to the
global stiffness matrix and factored. Using the modified Newton method the n-th
iteration becomes

-1
{a)_,, -{a}_ = g1, ({£} - {a} ) (28)

[K] being factored at iteration step £ £ n. The relaxation factor is computed
using an extrapolation method for each iteration (ref. 5). Thus the final load
level is reached stepwise, and for each new load step the solution is extra-
polated quadratically. Convergence criteria are based on the Euclidean and
maximum norms {(ref. 6).

The computational procedure is essentially the same for all element types. How-
ever, for one-dimensional elements {gq} and [K] can be determined analytically
in terms of u. , and the transformation [T] is not necessary. The [T] matrices
for two- and three-dimensional elements are listed in the Appendix.

During the first assembly of [K] the [D}, [Tl, [E] matrices as well as the
geometry parameters 208 and g are computed once for each Gaussian point and
reused for further computations of [K] and {q}. For each iteration step {e}

and [P] are evaluated at each Gaussian point and the global {q} vector as-
sembled. The global load vector contalns not only extermal forces but also the
first variation coming from linear elements. In fact, their contribution has to
be evaluated only once for each load step, thus reducing the computing time.
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NUMERICAL RESULTS

An application of the theory is demonstrated using results obtained by the
BASIS computer program (ref. 1). A long thin cantilever beam (Fig. 3) has been
idealized by 8-noded membrane elements. Its length is 1000 mm, height 10 mm and
thickness 1 mm. The elastic modulus is 3000 N/mm® and the Poisson ratio 0.36.
The beam is subjected to a load case consisting of a variable locad Q at the
node A and a case with constant Q and variable compression load P. Since the
strains remain smaller than one in this example differences in the results are
not detectable when using Eq. 17 instead of Eg. 13. The convergence criterion
during iteration (Eq. 28) is based on the relative change of the displacement
vector norm and has been set to 0.0001. The active load is applied stepwise. If
convergence is rapid, the step 1s automatically increased. However, for highly
nonlinear problems, it is preferable to recompute and refactor the stiffness
matrix when the iteration diverges rather than to decrease the load step. The
first and second variation of U has been computed using 2 by 2 Gaussian inte-
gration. Fig. 4 shows the load-displacement function at node A for transversal
loading, and the same function for the divergence problem is exhibited in Fig.5.
Note the good behaviour of the two-element approximation even for large non-—
linearities.

To conclude, it should be mentioned that the problems currently being in-
vestigated include the influence of the integration order on numerical accuracy
and convergence behaviour as well as the nonlinear creep of structures.

SYMBOLS

Vectors are symbolized by {}-brackets and matrices by []-brackets. []F
means transposed matrix, []-1 inverted or factored matrix, and & stands for
dyadic product. Greek indices refer to the curvilinear coordinate system.

[A]u matrix of form functions of curvilinear coordinate @a
[D]uB product of form function matrices (Eq. 11)

{a} nodal displacement vector (global Cartesian components)
{e} strain vector, contains components €8

[E] elasticity matrix

8,8 metric tensor of the undeformed body

GaB metric tensor of the deformed body

{g}a base vector of the undeformed body, coordinate %
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{c}
a

{y}
{yo}
[X1]
[P]

{q}
{r}.
1
{s}
{o}
{oo}
[T]

{ul}.
i

base vector of the deformed body

determinant of the metric tensor gaB

strain vector in the local Cartesian system

initial strain vector in the local Cartesian system
second variation of the strain energy (stiffness matrix)
matrix defined in Eq. 26

interpolation functions for geometry and displacements
first variation of the potential energy

global Cartesian coordinate vector of node i

vector containing all Cartesian node coordinates

stress vector in local Cartesian system

initial stress vector in local Cartesian systen
transformation matrix relating {e} to {y} (see Appendix)
curvilinear element coordinates

global Cartesian displacement at node i

straln energy

weighting factor for Gaussian integration

orthogonal Cartesian coordinates

expression defined in Eq. 13.
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APPENDIX

The strain is always transformed to a Cartesian coordinate system defined
by {v} = {r}, - {r}, for two-dimensional elements and by {v} and {rl, for three-
dimensional elements. For membrane elements, [T] becomes

_1__1_ _ . —=
[Tl 5 [E1-+cos2¢a 5 1 cos2¢a ,251n¢acos¢a%l a=1,3

{v} - {g},
¢ {et |

cosd

For volume elements the six straln components are transformed similarly.
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Figure 1l.- Two- and three-dimensional elements.
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Figure 2.- Geometry of deformation.
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Figure 3.- Deformation of cantilever beam under transversal load Q.
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Figure Y4.- Load-displacement function at
node A under transversal load Q.

260



8.7

IN]

8.6

.5

LOAD P

8.4

8.3

8.2

8.1

B \«— X-DISPL.
L
<— Y-DISPL.
| 1 | | |
-40 8 40 88 128 1608

DISPLACEMENTS [MM]

Figure 5.- Load-displacement function at node A

under axial compression P.
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