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SUMMARY 

A geometrical  nonlinear  analysis  based on  an a l t e rna t ive   de f in i t i on   o f  
s t r a i n  i s  presented.  Expressions  for  strain  are  obtained by computing t h e  
change in   l ength   o f   the   base   vec tors  i n  the  curvil inear  element  coordinate  sys- 
tem. The isoparametric  element  formulation i s  assumed i n  the  global   Cartesian 
coordinate  system. The approach i s  based on the  minimizat ion  of   the  s t ra in  en- 
ergy, and the  resul t ing  nonl inear   equat ions  are   solved by the  modified Newton 
method. Integrat ion  of   the first and second variation  of  the s t r a in  energy i s  
performed  numerically in   t he   ca se   o f  two- and three-dimensional  elements. Ap- 
p l i c a t i o n  i s  made t o  a simple  long  cantilever beam. 

INTRODUCTION 

The non l inea r   f i n i t e  element  formulation  described  here  represents a par t  
of   the  development  of t h e  BASIS f i n i t e  element  analysis  system  (ref. 1). The 
basic   idea w a s  t o  combine l i n e a r  and  nonlinear  behaviour in   o rde r   t o   dea l  more 
e f f i c i e n t l y  w i t h  s t r u c t u r a l   a n a l y s i s .  Thus, nonlinear  elements had t o  be  devel- 
oped  which f i t  into  an  existing  system  without loss of   general   val idi ty .  The 
Lagrange  formulation has therefore  been  chosen  (ref.  2 ) ,  expressing  the dis- 
placement  variables  directly  in  the  global  Cartesian  coordinate  system, 
a l though  loca l ly ,   for   p rac t ica l   purposes ,  a skew coordinate  system may be  pre- 
scribed. The advantage of  t h i s  formulation i s  the  numerical method a r i s i n g  from 
it. By adopting  the  modified Newton method ( r e f .  3, 4) a clear   solut ion  process  
has  been  chosen,  therefore  minimizing  errors due t o  a wrong understanding  of 
nonlinear  behaviour. The s t ra ins   can  be  adapted  to   the  nonl inear i ty   of   the  
problem.  This  feature may considerably  reduce  the  computational  effort. 

* Research  sponsored i n   p a r t  by t h e  Swiss  National  Science  Foundation  (contract 
No. 2267-079) and the  National Swedish  Board f o r  Energy  Source Development 
under  contract No. 5061-012. 
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A set of one-, two- and  three-dimensional  elements ( in   t e rms   of   curv i l in -  
ear coordinates)  can  be  derived  from  this  formulation (Fig. 1). The elements 
presented  here  are  based on the  isoparametric  approximation  (ref.  3). One-di- 
mensional  elements are w e l l  su i t ed   t o   dea l   w i th   cab le  and truss problems 
( r e f .  5 ) .  Membrane and volume elements are mainly  used t o  model e l a s t i c  com- 
pos i t e   s t ruc tu res .  

GOVERNING EQUATIONS 

Consider a point  P of   the undeformed  body (Fig .  2) .  The corresponding 
Cartesian  coordinate  vector {r} may be expressed as a funct ion of  the  body's 
curvil inear  coordinates 0 a 

n 
{ r ~  = 1 {r1.~.(8) ( 1 )  

i= 1 1 1  

where Y. are the  interpolation  functions  of  the  corresponding  nodes.  The base 
vectors a t  P are obtained by deriving {r} with  respect   to   the  coordinates  0 1 a 

For practical   purposes: ,  Eq.  2 can  be rewri t ten 

[ A l a  contains a l l  functions Y and {SI a l l  Cartesian components  of t h e  node 
vectors  {rli . 
I n  order   to   def ine   the   s t ra in   energy   the   met r ic   t ensor  a t  P 

i :,a 

and the   in f in i tes imal  volume 

dV = det  (gaB) do1 do2 do3 

- are  needed. In   the  deformed s ta te   the  base  vectors  become (Fig.  1) 

where {d} contains,  similar t o  {SI, a l l  Cartesian components of  the node 
displacements. The metric  tensor  of  the deformed body at P becomes 
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Subst i tut ing Eqs . 3 and 7 i n  Eq. 8, 

with 

The strains a r e  now defined as t h e   r e l a t i v e  change of  the  base  vectors:  

o r  

Eq. 12 can be expressed i n  terms  of {dl 

with 

Eq. 13 def ines   the   s t ra ins  E: used to  derive  the  numerical   equations from the  
s t ra in  energy. aB 

Note here that  i f  the  deformations  are   l imited  in   s ize   the  root   in  Eq. 13 can 
be  expressed as a series  expansion  according t o  . 

1 

3 . 1 ) '  = 1 + - x + ... 1 
2 ai3 

( 1 6 )  

Retaining  only  the f i r s t  two terms of Eq. 16 leads   to   the   quadra t ic  approxima- 
t i o n  

from  which the l inear   so lu t ion  may be  obtained. 

Assuming l inear   e las t ic   behaviour ,   the   var ia t ion  of s t r a i n  energy  leads  directly 
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to   the   nonl inear   equi l ibr ium  equat ions   o f   the  element. 

The transformation  matrix [TI  i s  constant i f  the  scalar   products   of   the   base 
v e c t o r s   i n   t h e  undeformed  and i n   t h e  deformed  system a r e   t h e  same. 

The s t ra in   energy   dens i ty   then  becomes 

or 

Eq. 20 i s  then  integrated  over   the  e lement .  For one-dimensional  elements  an 
a n a l y t i c a l   s o l u t i o n  i s  p o s s i b l e   ( r e f .  51, whereas f o r  two- and  three-dimen- 
sional  elements  numerical   integration must be  performed.  Using  Gaussian  inte- 
g r a t i o n   t h e   s t r a i n   e n e r a  becomes 

where w designates   the  weight   factor  at the  corresponding  point 0 c1 k k .  

The set   of.   nonlinear  equations  for  one  element i s  d i rec t ly   ob ta ined   f rom  the  
f irst  va r i a t ion   o f   t he   t o t a l   po ten t i a l   ene rgy   w i th   r e spec t   t o   t he   g loba l   va r i -  
ab les  au q;(u.) = - - - f .  (22)  

J aut 1 

If) denotes  the  vector  of  external  loads.  It i s  worth  mentioning  here  that   in 
the  case  of  dynamic analysis   the  equi l ibr ium  equat ions  can  a lso be  obtained by 
applying  Hamilton's  principle  and a s u i t a b l e   o p e r a t o r   f o r   d i s c r e t i z a t i o n   i n  
time . 
After  rearrangement, Eq. 22 becomes 

o r  

with 
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and 

In   o rder   to   so lve  Eq. 22 by the  modified Newton method the  Jacobian  of  {q) i s  
needed : 

[K] = [I au. yuJ]  aU. 

For a set   of   several   e lements   the  s t i f fness   matr ices  [K] a r e  assembled t o   t h e  
g loba l   s t i f fness   mat r ix  and factored.  Using  the  modified Newton method the  n-th 

[K] being  factored a t  i t e r a t i o n   s t e p  R,< n. The r e l axa t ion   f ac to r  i s  computed 
using an  extrapolation method f o r  each i t e r a t i o n   ( r e f .  5 ) .  Thus t h e   f i n a l   l o a d  
l e v e l  i s  reached  stepwise,  and  for  each new load   s tep   the   so lu t ion  i s  extra- 
polated  quadratically.  Convergence c r i t e r i a   a r e  based on the  Euclidean and 
maximum norms ( r e f .  6 ) .  

The computational  procedure i s  e s sen t i a l ly   t he  same f o r  a l l  element  types. How- 
ever,  for  one-dimensional  elements {q) and [KI can  be  determined  analytically 
i n  terms  of u. ,and  the  transformation [TI i s  not  necessary. The [TI matrices 
f o r  two- and three-dimensional   e lements   are   l is ted  in   the Appendix. 

During  the f i r s t  assembly  of [ K l  t h e  [ D l  , [TI  , [El  matrices as wel l  as t h e  
geometry  parameters  gap  and g are computed once f o r  each  Gaussian  point and 
reused for further  computations  of [K] and (9). For each i t e r a t i o n   s t e p  {E) 
and  [PI are   evaluated a t  each  Gaussian  point and the   g loba l  {q) vector  as- 
sembled. The global  load  vector  contains  not  only  external  forces  but  also  the 
f irst  var ia t ion  coming from l inea r   e l emen t s .   In   f ac t ,   t he i r   con t r ibu t ion   has   t o  
be  evaluated  only  once  for  each  load  step,  thus  reducing  the  computing  time. 
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NUMERICAL RESULTS 

An appl icat ion of the   theory  i s  demonstrated  using  results  obtained by t h e  
BASIS computer  program ( re f .  1 ) .  A long   t h in   can t i l eve r  beam (Fig.  3) has  been 
idea l ized  by 8-noded membrane elements. I ts  length i s  1000 mm, height 10 mm and 
thickness 1 mm. The e l a s t i c  modulus i s  3000 N/mm2 and the   Po i s son   r a t io  0.36. 
The beam i s  sub jec t ed   t o  a load  case  consisting  of a var iable   load Q a t  t h e  
node A and a case  with  constant Q and variable  compression  load P .  Since  the 
s t r a i n s  remain  smaller  than one i n   t h i s  example d i f f e r e n c e s   i n   t h e   r e s u l t s  are 
not  detectable when using Eq.  17 instead  of Eq. 13. The convergence c r i t e r i o n  
du r ing   i t e r a t ion  (Eq.  2 8 )  i s  based on t h e   r e l a t i v e  change  of  the  displacement 
vector norm and has   been  set   to  0.0001. The act ive  load i s  applied  stepwise. If 
convergence i s  r a p i d ,   t h e   s t e p  i s  automatically  increased. However, for   h ighly  
nonlinear  problems, it i s  p r e f e r a b l e   t o  recompute  and r e f a c t o r   t h e   s t i f f n e s s  
matrix when the   i t e r a t ion   d ive rges   r a the r   t han   t o   dec rease   t he   l oad   s t ep .  The 
f irst  and  second v a r i a t i o n  of U has  been computed using 2 by 2 Gaussian  inte- 
gration.  Fig.  4 shows t h e  load-displacement  function a t  node A fo r   t r ansve r sa l  
loading, and t h e  same function  for  the  divergence  problem i s  exhibi ted  in   Fig.5.  
Note t h e  good behaviour  of  the two-element approximation even for l a rge  non- 
l i n e a r i t i e s .  

To conclude, it should be  mentioned t h a t  the  problems currently  being  in- 
vest igated  include  the  inf luence  of   the  integrat ion  order  on numerical  accuracy 
and  convergence  behaviour as wel l  as the  nonl inear   creep  of   s t ructures .  

SYMBOLS 

Vectors  are  symbolized by {)-brackets and matrices by []-brackets. [ I T  
means transposed  matrix,  inverted or factored  matrix,  and @ stands  for  
dyadic  product. Greek indices   refer   to   the  curvi l inear   coordinate   system. 

[Ala matrix  of form functions  of  curvil inear  coordinate 0 

product  of  form  function  matrices (Eq.  11) 

a 

ID IaB 
id)  nodal  displacement  vector  (global  Cartesian  components) 

{ E l  s t ra in   vec tor ,   conta ins  components E 
aB 

[El  e l a s t i c i t y   m a t r i x  

gaB 

Gaf3 

{gla base  vector  of  the undeformed  body,  coordinate 0 

metric  tensor of the  undeformed  body 

metr ic   tensor   of   the  deformed  body 

a 
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{GIa base  vector  of  the deformed  body 

g determinant of the  metric  tensor g 

(Y 1 s t r a in   vec to r   i n   t he   l oca l   Ca r t e s i an  system 

(Yo I i n i t i a l   s t r a i n   v e c t o r   i n   t h e   l o c a l   C a r t e s i a n   s y s t e m  

aB 

[Kl second v a r i a t i o n  of  t h e   s t r a i n  energy ( s t i f fnes s   ma t r ix )  

[PI  matrix  defined i n  Eq. 26 

'i in te rpola t ion   func t ions   for  geometry  and  displacements 

(9) f i rs t  v a r i a t i o n  of the   potent ia l   energy 

{'Ii global  Cartesian  coordinate  vector  of node i 

{SI vector  containing a l l  Cartesian node coordinates 

{o 1 s t r e s s   vec to r   i n   l oca l   Ca r t e s i an  system 

{a01 i n i t i a l   s t r e s s   vec to r   i n   l oca l   Ca r t e s i an   sys t em 

[TI  t ransformation  matr ix   re la t ing {E) t o  {y) ( s e e  Appendix) 

Oa curvil inear  element  coordinates 

{Uli global  Cartesian  displacement a t  node i 

U s t ra in   energy  

W k weighting  factor  for  Gaussian  integration 

x , x , x3 orthogonal  Cartesian  coordinates 

X 

1 2  

aB 
expression  def ined  in  Eq. 13. 
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APPENDIX 

The s t r a i n  i s  always  transformed t o  a Cartesian  coordinate  system  defined 
by {VI = {r12 -{rI1 for two-dimensional  elements  and by {VI and {r14 for three- 
dimensional  elements. For membrane elements, [TI becomes 

- - 
[TI-’ = b 1  + cos2$ , 1 - cos2@ , 2sin$  cos$ } a = 1,3 a a c1 a 1 

For volume e lements   the   s ix   s t ra in  components are  transformed  similarly.  
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Figure 1.- Two- and  three-dimensional  elements. 

BODY BEFORE 
DEFORMATION 

Figure 2.- Geometry of deformation. 
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X 

Figure 3.- Deformation of c a n t i l e v e r  beam under 
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Figure 5.- Load-displacement  function  at  node A 
under  axial  compression P. 
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