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FOREWORD

The work reported herein was conducted by the Environmental

Research Institute of Michigan for Supporting Research, one of eight

projects of AgRISTARS, the program for Agriculture and Resources

Inventory Surveys through Aerospace Remote Sensing. AgRISTARS is a

six-year program of research, development, evaluation, and application

of aerospace remote sensing for agricultural resources which was

initiated in Fiscal Year 1980. AgRISTARS is a cooperative effort of

five federal agencies of the United States -- Department of Agriculture,

USDA; National Aeronautics and Spat-e Administration, NASA, Department

of Commerce, USDC; Department of Interior, USDI.; and the Agency for

International Development, USAID.

The goal of the program Is to determine the usefulness, cost, and	 =

extent to which aerospace remote sensing data can be integrated into	 =

existing or future USDA systems to improve the objectivity. reliability,

timeliness, and adequacy of information required to carr y out USDA

missions,. The overall approach is comprised of a balanced program of

remote sensing, research, development, and testing which addresses

domestic resource management as well as commodity production infor-

mation needs in both domestic and foreign regions.

The Supporting Research Project's objective is to develop improved

technology through research to ast;ess crap area and condition, in

support of tither projects w'jirh address improved commodity production

forecasts in foreign and domestic areas, early warning of changes in 	 =

production conditions and expectations, improved y ield cy stimition, and

ether applications. Dr. Jon D. Erickson, NASA Johnson Space Center,

Code SF3, is the NASA manager of the Supporting Research Project and

Thomas Pendleton, Code SF3, the Technical Coordinator for the reported

effort.
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This work was carried out within the Infrared and Optics Division,

headed by Richard R. Legault, a Vice- president of BRIM, under the

technical direction of Robert Horvath, Program Manager, and William A.

Malila, Leader of the Objective Labeling Technology Development Tank.

•

.

If

Vi



TABLE OF CONTENTS

r

Section	 La le

1	 INTRODUCTION. .	 ,	 . . ,	 1

2	 BASIS OF CROP CALENDAR SHIFT ESTIMATION FROtt
LANDSAT SPECTRAL DATA . . . . . . . . . . . . . . . . . 	 3

2.1 TEMPORAL-SPECTRAL PROFILE CHARACTERIZATION . . . .	 3

2.2 CROP CALENDAR SHIFT ESTIMATION CONCEPT . . . . . .	 6

3 CONSIDERATIONS AND LIMITATIONS . . . . . . . . . . . . 13

3.1 LEVEL OF ACCURACY . . . . . . . . . . . . . . . . 13

3.2 DUEL FORM ATTRIBUTES . . . . . . . . . . . . . . 14

3.3 DATA NORMALIZATION . . . . . . . . . . . . . . . . 15

4	 DETAILS OF CROP-CALENDAR-SHIFT SUBROUTINE CCSHFT . . . 17

REFERENCES. . . . . . . . . . . . . . . . . . . . . . 	 19

.

vii



LIST OF APPENDICES

Appendix Pa e

A USER DOCUMENTATION OF SUBROUTINE CCSHFT . . . . . . .	 21

B FORTRAN LISTING OF SUBROUTINE CCSHFT 	 . . . . . . . .	 27

C TEST CASES AND TEST RESULTS FOR SUBROUTINE CCSHFT . 35

viii



JIM

LIST OF FIGURES

Figure	 t'aRe

1	 Spring Small Grain Greenness Profile . . . . . . . .	 5

2	 Crop Calendar Shift Rstimati—i -- Basic Concept . . . 	 7

3	 Results of Crop Calendar Shift Estimation Applied
to Actual Landsat Data (Spring Wheat Pixels) . . . . .	 9

w

i
ix



1

INTRODUCTION

The cyclic coverage of satellite-borne remote sensing systems,

such as Landsat, and the availability of spatially registered data have

allowed the utilization of temporal information in analysis and dis-

crimination of crop types. While the temporal-spectral pattern of

development has proven to be an important piece of information, par-

ticularly in analyst identification of the crop type of data samples

(1], its use has been somewhat hindered by the intermittent nature of

the Landsat observations and confusion caused by differences in the

planting dates and development patterns of neighboring fields of the

same crop. This shortcoming may be overcome by estimating the overall

pattern of spectral development for each field or pixel from the set

of samples provided by Landsat. Based on this more complete description

of sample characteristics, important information can be extracted for

use in analysis and classification. This report presents an algorithm

designed to estimate one important piece of information--the relative

crop calendar shift--from observations of spring small grains (2,31.

r
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2

BASIS OF CROP CALENDAR SHIFT ESTIMATION

FROM LANDSAT SPECTRAL DATA

Temporal-spectral profile characterization plays a key role in the

utilization of multitemporal Landsat data for crop calendar shift

estimation. This section reviews the agrophysical basis of such

characterization, describes the crop calendar shift estimation concept,

and discusses profile modeling of spring small grains.

2.1 TEMPORAL-SPECTRAL PROFILE CHARACTERIZATION

The sequence of development stages through which plants of a given

crop type progress in the course of a growing season is accompanied by

a related sequence of spectral reflectance stages. While not every

stage of physiological de.-ulopment will necessarily result in a dif-

ferentiable set of reflectance properties, those stages corresponding

to observable differences in plant morphology or canopy structure will

influence reflectance. Since most of the morphological changes occur

gradually rather than abruptly, particularly when viewed at the popu-

lation (field or pixel, i.e., picture element) level, it is reasonable

to assume that the spectral development of a field could be represented

by a continuous function.

The intermittent observations from a remote sensing platform such

as Landsat can be viewed as discrete samples from such continuous

functions, and can provide important information for crop identification

and condition assessment. However, if the continuous function repre-

sented by the Landsat samples could be reconstructed, considerably more

complete information could be available. Profile characterization is

the process of fitting mathematical functions (profiles) to a set of

observations of a given scene element.



While the temporal pattern of any spectral band or variable could

be fit with a mathematical function, those spectral features most closely

correlated to describable plant or field phenomena are probably of

greatest use. In particular, indicators of "greenness" (spectral

variables which are sensitive to the green vegetation component of

agricultural signatures) such as the Greenness variable produced by the

Tasseled-Cap transformation (4,5] often exhibit temporal patterns which

are relatively easy to characterize mathematically and contain sub-

tantial information.

Most crops follow a general pattern consisting of a period of in-

creasing greenness to a maximum value, followed by a period of declining

greenness. The rate of greenness increase or decline is closely tied

to the rates of change in leaf area and canopy closure, and the rates

of plant maturation. Specifically, we would expect a low rate of

greenness increase as the plants emerge and begin to affect the spectral

reflectance properties of the field, followed by a more rapid rate of

increase corresponding to the period of most rapid bio-mass production.

Then, as the maximum greenness is approached, increases in greenness

will occur at a declining rate, since they involve lessening changes in

leaf area or canopy closure. A similar sequence of rate changes will

occur as the plants turn from green to yellow/brown.

The sequence of rate changes described suggests that sigmoidal

curve shapes could be used to characterize both the greenness-increase

and greenness-decline phases of crop spectral development. Such curve

shapes are commonly used to describe growth and development phenomena

in biological populations. A curve of Greenness vs. day of year for

spring small grains is illustrated in Figure 1.

Within the group of crops that follow this general spectral de-

velopment pattern, significant variations in the overall temporal

pattern can occur. The particular sequence of development stages

through which a crop passes affects the spectral character and the

.





temporal-spectral pattern of the crap. Variations in growing con-

ditions can also alter the character of the individual plants anti the

canopy structure in the field, and thus again change its spectral

qualities and temporal-spectral pattern. Some such differences can be

adapted to by a well-chosen profile model form and can be detected by

evaluation of model p:.-ameters. Other differences, however, may be of

such a nature that they cannot be accurately represented by the same

model. Different greenness measures can also behave differently in

this regard (.61.

2.2 C1' ,P CALEMAR SHIFT ESTIMATION CONCEPT

Healthy fields of a given crop type might be expected to follow a

common pattern of spectral development in the course of a growing sea-

son with the result that, on any given day, spectral signals from

nearby fields wouldn't vary to any great degree. It is more common,

however, to encounter wide e'apersion of signal values;, as depleted in

Figure 2a. Crip calendar shift techniques; are intended to account for

that portion of signal variability which is due to differences: in stage

of development on the day of observation. As illustrated in Figure 2b.

the highly variable data points of Figure 2a can all be fit with the

same profile shifted ai)ng the time axis. By shifting all the data

points to a common profile, as in Figure 2c, the spectral Impact of

development stage differences is adjusted for and better comparison of

fields is Horde possible.

The idea of using temporal-spectral patterns to adjust for de-

velopment stage differences was first suggested by Dr. Gautam 1).

Barhwar 171. Starting from this initial work by iladhwar, we at Elt1M

developed refinements of the crop calendar shift technique and alter-

native approaches 18.31. First, in order to represent the actual

pattern of spectral development of the crop of interest. we developed

and began to use the model form (Equation 2 ) wllicls Is discussed in

k
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Section 2.3. (liadhwar, in turn, continued development of his approach,

adding a model farm related to Equation Z (91.) Second, we used ra

cross-correlation computation in determining the goodness-of-fi_ of a

set of data values to the shifted reference profile. The cross-

correlation measure is of the form:

R—	 2	 ._..
2

1 + EFi+T2 * C1
(TF1+tf'i)

where

F i = reference prot i lei function value

u i v data value

T - shift value

This measure has the advantage of being es sentially independent of

scale and so places emphasis on the overall shape* of the data profile

rather than its amplitude which van be influenced by factors neat re-

lated to start, of development.

Figure 3 illustrates result, obtained when the F:RIM crop calendar

shift technique was applied to actual l.andsat data from sprint; wheat

pixels 1101.

2. 3 PROFILE MoDF L l Nt. FOR SPRUNGNG SMALL GRAINS

Any of a variety of mathematical model forms might be used to re-

present the temporal-slivet:ral characteristics of vrops. The initial

model form developed oat F:RIM for characterizing green development

a profiles of Spring small trains Is of the following form [2,3.8,101:

h ct"
F(t) - ate

(1)

y
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where

F(t) = profile value at time t

t . (day of year) - (day of first detectable
green development)

and

a,b,c = model parameters, with b and c determining
the shape of the profile.

This model form best exhibits the desired double-sigmoid shape for

representing green development, as illustrated in Figure 1, when the

spectral variable being used has values near zero at t =0. This implies,

in general, a need for both a spectral and a temporal offset, the first

being the value of the green measure for t < 0 (i.e., the value for

bare soil) and the second being the day of first detectable green

development.

Specification of the bare soil value, i.e., the spectral offset,

is simplified by use of data normalization to reduce variability caused

by external. (non-crop) effects (as discussed in Section 3.3) and use of

Tasseled-Cap Greenness as the green measure because it tends to keep

constant values in the presence of sail reflectance variations. The

CCSHI+T subroutine described in this report expects to receive, as in-

puts, Tasseled-Cap Greenness values computed from Landsat multispectral

scanner (MSS) band values according to the following relationshipt [5]:

G = -0.2837 MSS4 - 0.66006 MSS5 + 0.57735 MSS6 	 (3)

+ 0.38833 MSS7 + 32.

where the Landsat MSS band values preferably have been normalized

against externally caused variations (Section 3.3). Values for the

profile variable in CCSHFT are computed as follows:

F i - G i - 25.	 (4)

*I.ACTF: t.andsat-2 calibration of the data is assumed.



r.

This spectral offset has been found satisfactory for use in analyzing

and processing spring small grains data from the Northern U.S. Great

Plains [2,101.

Determination of the temporal offset, which can vary from sample

to sample, can be accomplished with a crop calendar shift estimation

procedure, as previously discussed.

The reference profile of Greenness that is built into the code of

CCSHET was determined O rough regression analysis and least squares

fitting of data values from several 5x6-mile segments to the model farm

of Equation 2.

.
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CONSIDERATIONS AND LIMITATIONS

Three general categories for consideration in the application of

temporal-spectral characterization techniques are level of accuracy,

model form attributes, and data normalization.

3.1 LEVEL OF ACCURACY

Temporal-spectral profiles may be used for a wide variety of pur-

poses. Corresponding to this variety is a range of accuracies required

from the model form. For some purposes it may suffice to roughly

approximate the general shape of the profile, even to the point of

simply connecting the observations with a sequence of straight line

segments. At the other extreme, a highly accurate fit of physically-

based mathematical form may be required, drawing on growth and develop-

ment models, weather data, and other types of data in addition to the

spectral samples. Between these extremes is a range of profile appli-

cations with a range of accuracy demands. Each new application must

take into account its required level of accuracy, and any model should

be used only at the level of accuracy for which it was developed, or

at higher levels only after careful testing.

For crop calendar shift estimation of spring small grains, we have

found that the day on which the maximum profile value occurs is the

most dominant and consistent profile feature. This peak occurs just

prior to or at the start of heading when green leaf area is at a maxi-

mum. A good overall characterization of the profile shape is sufficient

for estimating the peak date, and we have found the model form of

Equation 2 to be satisfactory.

Other crop calendar dates, such as date of planting or specific

growth stages, might be inferred through use of this approach but only



nology applied to field reflectance measurements from soybean fields

found a correlation between the shift estimate and row spacing; row

spacing influenced when maximum cover occurred and, consequently,

affected the day of maximum Greenness. Fields planted on the same

day were shifted different amounts, and thus planting date estimates

based on crop calendar shift would have been in error.

3.2 MODEL FORM ATTRIBUTES

For a model form to be of practical use in characterizing crop

temporal-spectral profiles, the number of parameters which must be

estimated should be kept small. In addition, the overall characteris

tics of the profile shape should be easily derived from the estimated

parameters. The model must produce stable results, and be able to

adapt to the range of shape variations likely to be encountered. Nor-

mal variations shouldn't adversely affect the profile esti.nation process.

At the same time, however, and particularly itt applications for which

the accuracy requirement is high, the model must respond to those dif-

ferences which carry the information of interest and maintain a close

fit to the data samples.

Some characteristics of green development profiles of spring small

grains and Equation 2 were noted in the preceding section. During our

prior development [2,101 of a spring wheat labeling procedure, we com-

pitted separate profiles for wheat and barley for several segments. We

found that crop calendar shifts computed using these different profiles

for reference usually differed by less than two days and so were stile

to use a single reference profile for shift calculations in the pro-

cedure. For ether purposes, we have computed segment-specific profiler

based on shifts estimated with the genoral reference profile (2,3).



3.3 DATA NORMALIZATION

In order to insure that profile shapes fit to Landsat observations

are influenced only by agrophysical phenomena, and to allow comparison

of profiles over wide geographical regions, data normalization is

highly desirable, if not essential. Corrections for sun angle, sensor

calibration, and atmospheric haze effects, and detection of clouds,

defective data, etc., should be carried out prior to profile charac-

terization, particularly when profile features are to be used for crop

identification or condition assessment. We recommend and use ERIM's

spatially-varying XSTAR haze correction algorithm [10,11) for correc-

tion of atmospheric effects and associated preprocessing algorithms

[5,10].

I^
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DETAILS OF CROP-CALENDAR-SHIFT SUBROUTINE CCSHFT

This section describes our crop-calendar-shift subroutine called

CCSHFT. User documentation is presented in Appendix A, a FORTRAN list-

ing in Appendix B, and test cases and results in Appendix C.

It is important to indicate here what this subroutine does, what

it requires, what environment it will best operate in, and some things

it does not do.

The subroutine program does:

(1) Operate on multidate values of the Tasseled-Cap Greenness

variable (see requirements and preferences below),

(2) Determine if sufficient appropriate acquisitions are

present, and

(3) Compute an estimated day of peak Greenness and a goodness of

fit, assuming the observations to be from a spring small grain.

The subroutine requires or assumes:

(1) A minimum of three acquisitions that are separated by 17 or

more days and occur during the growing stages of wheat --

after emergence and before harvest.

(2) Tasseled-Cap Greenness values with a 32-count offset having

been added to eliminate negative values. (See Equation 3,

Sec. 2.3)

The preferred operating environment provides:

Data that have been preprocessed to reduce non-crop-related

variations due to satellite calibration, sun angle, and atmos-

pheric haze. We use and recommend use of the ERIM spatially

varying XSTAR algorithm and associated correction factors.

(See Sec. 3.3)



The subroutine does not:

(1) Make a detailed estimate of any crop stage other than day

of peak Greenness (which apparently occurs just prior to

heading at the time of peak leaf area and/or flag leaf

development).

(2) Estimate the value of peak Greenness or other specific

profile characteristics, since they are not required for

the intended application, crop calendar shift estimation

for spring small grains.

The steps followed by the subroutine are as follows:

(1) Read in data values and corresponding days of year.

(2) Compute rough estimate of day of peak Greenness.

(3) Accept acquisitions within a prescribed window around

the estimated peak.

(4) Compute a cross-correlation function between the observed

values and corresponding values of a standard small-grains

rererence profile, as they are shifted in time past each

other.

(5) Choose tiIat shift value which maximizes the cross-correlation
function and compute the corresponding day of peak Greenness.

(6) output the shift value and a goodness of fit.

The goodness-of-fit value returned by the subroutine is derived

from the maximum cross-correlation coefficient, and typically ranges

from 0 to 1, where 1 represents a perfect fit. However, negative

values are possible and indicate a very poor fit.

Js



REFERENCES

1. Hay, C. M., "Manual Interpretation of Landsat Data", Proceedings
of the Technical Sessions, Vol. 1, The LACIE Symposium, NASA
Johnson Space Center, Houston, TX, July 1979, pp. 131-143.

2. Holmes, Q. A., R. Horvath, R. C. Cicone, R. J. Kauth, and W. A.
Malila, Development of Landsat-Based Technology for Crop Inven-
tories, AgRISTARS Report SR-E9-00404, Volumes 1 and 2, Envirnn-
mental Research Institute of Michigan, Ann Arbor, MI, December 1979.

3. Crist, E. P. and W. A. Malila, "A Temporal-Spectral Analysis
Technique for Vegetation Applications of Landsat". Proceedings of
Fourteenth International Symposium on Remote Sensing of Enviro:-
ment, ERIM, Ann Arbor, MI, April 1980.

4. Kauth, R. J. and G. S. Thomas, "The Tasseled-Cap -- A Graphic
Description of the Spectral-Temporal Development o: Agricultural
Crops as Seen by Landsat", Machine Processing of Remotely Sensed
Data, Symposium Proceedings, Purdue/LAPS, West Lafayette, IN,
1976.

5. Kauth, R., P. Lambeck, W. Richardson, G. Thomas, and A. Pentland,
"Feature Extraction Applied to Agricultural Crops as Seen by
Landsat", Proceedings of the Technical Sessions, Vol. II, the
LACIE Symposium, JSC 16015, NASA Johnson Space Center, Houston, TX,
July 1979, pp. 705-721.

6. Malila, W. A., P. F. Lambeck, E. P. Crist, R. D. Jackson, and
P. J. Pinter, Jr., "Landsat Features of Agricultural Applications",
Fourteenth International Symposium on Remote Sensing of Environ-
ment, ERIM, Ann Arbor, MI, April 1980.

7. Badhwar, G. D., "Small Grains" presented at NASA Supporting
Research and Technology Quarterly Review, NASA Johnson Space
Center, Houston, TX, September 1978.

°-	 8. Malila, W. A. and E. P. Crist, "Spectral Separability of Spring
Wheat from Other Spring Small Grains", presented at NASA SR&T
Quarterly Review, NASA Johnson Space Center, Houston, TX, September
1978; (Documented in ERIM Report 132400-12-P).

9. Badhwar, G. D., "Crop Emergence Data Determination from Spectral
Data", Photogrammetric Engineering and Remote Sensing, Mart-h 1980,
pp. 369-377.

t

1

/4



10. Cicone, R., E. Crist, R. Kauth, P. Lambeck, W. Malila, and
W. Richardson, Development of Procedure M for Multicrop Inventory,
'-: , th Tests of a Spring Wheat Configuration, Final Report 132400-
16-', Environmental Research Institute of Michigan, Ann Arbor, Ml,
March 1979.

11. Lambeck, P. F., "Spatially Varying XSTAR daze Correction", New
Technology Report, Environmental Research Institute of Michigan,
Ann Arbor, MI, March 30, 1979.



APPENDIX A

USER DOCUMEIMTION OF SUBROUTINE CCSHFT

IT



ROUTINE: CCSHFT

VERSION: 1.0

DATE: February 1980

PROGRAMMER: E. Criat	 C

LANGUAGE: FORTRAN

INTERFACE: A Standard FORTRAN Integer Function

PURPOSE: To compute an ustimate of the day of maxim m Greenness for
small grains targets.

CALLING SEQUENCE:

IRC-CCSHFT(DATA,ACQDAY,NACQ,PKDAY,GFIT)

or

CALL Cr'S.IFT(DATA,ACQDAY,NACQ,PKDAY.GFIT)

ARGUMENTS:

NAME	 TYPE	 DESCRIPTION

DATA(15)	 R	 Tasseled-cap Greenness values
(with 32-count offset), or
-99.0 if flagged by SCREEN.

ACQDAY(15)	 I	 Acquisition days (1-366) corresponding
to values in DATA().

NACQ	 1	 Number of acquisitions.

PKAAY	 I	 Output estimate of day of peak
Greenness. or '0' if no peak estimate
can be made.

GFIT	 R	 Output measure of data fit to profile
based on cross-correlation factor.

y



RETURN CODES:

CCSHFT - 0 Successful return

1 Too few acquisitions

2 Too few or inadequately spaced acquisitions
(after first rough shift)

DESCRIPTION:

CCSHFT carries out the following sequence of steps in estimating
the day of maximum Greenness:

1. Check acquisition availability -- there must be a minimum of
three non-SCREENed acquisitions. If there are less than three,
CCSHFT = 1, and return to calling program.

2. Fit a quadratic to three acquisitions, including the one witli the
largest Greenness value. The maximum value of the quadratic is
the first estimate of the day of peak Greenness. If the quadratic
cannot be fit, the acquisition day corresponding to the highest
Greenness value in DATA() is used as the first peak estimate.

3. Line up the data to a reference Greenness profile by matching
the peak day estimate to the peak day of the profile. The
reference profile is illustrated in Figure A-1.

4. Re-check acquisition availability -- now there must be at least
three acquisitions in the range marked 'A' in Figure 1. In
addition, a spacing constraint is applied, such that consecutive
acquisitions by different satellites (i.e., approximately 9-day
spacing) are only treatad as one acquisition in meeting the three
acquisition requirement. If there are less than three adequately
spaced acquisitions, CCSHFT - 2, and return to calling program.

5. Shift the data values in time relative to the reference profile
(±30 days) and select that shift which maximizes the cross
correlation term,

16
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^F2 * G2

1 +	
i+T	 i
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	 2
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where F  is the reference profile value,

G  is the data value,

T is the shift value.

b. Compute the final peak day estimate by using the selected
shift value to adjust the first peak day estimate.
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IMTEGFR FUNCTION CCSMFT(OA14aAC00AY,NACO,PKDAY,GFIT1
Ctfft!lfliflRttAtlAff#fitRtf*!AltRifff6ffRti!lfiiRff#lttt!#RttAfR6tlRttt
C*
C• ROUTINE TO ESTIMATE DAY OF PEAK GREENNESS FOR GRAIN TARGETS,
C*
;'irwwswwr•raw•wrwrrr-rrrrw--r•r-•-ww-r-w•r^rwrwr:•w•wr•••wr••••rw•wwr•-w•
C*
C* ARGUMENT	 TYPE	 OESCRIPTUIN
Co
C* OATA(tS)	 R	 TASSELED-CAP GREENNESS VALUES, OR
CA -94 ,0 IF FLAGGLO BY SCNEEM.
C*
C* ACQOAY(1S)	 I	 ACQUISITION DAYS (1.366) CORRESPONDING
C* TO DATA VALUES.
C*
C* NACO	 I	 NUMBER OF ACQUISITION$ INPUT.
C!
C* PKDAY	 I	 OUTPUT ESTIMATEO OAV OF PEAK GREENNESS
C* (x•366).
CR
C* &FITR	 MEASURE OF FIT 41 MAXIMUM
C*

_
CR03S•CORRELATIOM,

C*
C t•-r•r-ww--•••••-w-rwwr•rrw••-••••••-••-w-w••--. •••ww•w•••-••-•••-•••••
C*
C* WRITTEN BY E, P. CRIST
C* ENVIRONMENTAL RESEARCH INSTITUTE OF MICHIGAN
C* P.O, BOX 8610
C* ANN ARB()R. MICHIGAN	 46107
C*

-	 (,RRRRRAARl RlRRRlRlR!!RtlRRRtRlRRRRRRlRRlRttRRt*!tRlRRRkRlRflAttR1RlRtRRR
C*
C* DECLARATIONS AND OIMEMSInNS
C*

INTEGER PKOAV,SOAY,SMIFT,TDIFF,TOPDAY
Co

INTEGER ACODAY(15),DAY(IS),T(3)
C*

REAL TNT,MAX,MAXR
C*

REAL DATA(15),G(3),GR(15),PROFIL(1SO)
C*

DATA PRnfit/O.bS1,0.bSl,o.6S1.0.6S1.0,bSt,
90.bS1,0,6St,0_bSt•O.6S1.O.bSI,0,651,0.6S1,0.6S1,
90.651.olk681,0.b5t.0.651,0.6S1,0.6SI.0.6SI,0.651 ♦
90,651.0.6S1.0.bS1.O,sS1.0.651.0.6SI.0.bS1,0.6Si,
90,b51.0.651.1.59b.2.693.1.894.S,176,6.S17,7.9040
99.323,10.764,12.216,13.67t.1S.119.1b.SS3,17.96S,19.348,
920.697.?2.0o4r23.?65,24.474,2S.627.26.719,27.746,28,706,
929.59S,10. 412,31,iS3,31. 61A ,3?.405.32,915,33,145,13.696,
933.972.;4.170,34.292.34.340,34.318,;4.221,34.0SA,33,811,
933.84133.192.32.787,32.3P9,31.R121^31,268,30s673 ► 30,039,
929.371.P8.671.27.941.27.191,26.418*?5,620,24.024,24,010,
t23,18A,P2.362,21.S33s23,706.19.A82•t9.Ob4,18.?SS,t7,4SS.
916.668,iS.894#lS,136,14.394,13.671#12,967,12.28?,11.619,

ORIGNAL 
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t10.41Tt10.3^STt4,Tslt4.lRSti1.03I•t•10itT,S4TtT,1/9,
ta,652.0.,213.S,74b•S•NOQ ►S,O2S.14.6tO,M,31N•t.011► •
t3.T2i,3,0a1.3.174,2,oa3,a.703•^.rw1Tt2,2eTt2.le0t
tl,O2St1^Tt►tl,1.a1it1,^liStt.386ti,2l► TP!•11Ta1s010t
tQ, V?3tR, 11S0.0,TS4t0,bTtAtO,b?2t0,5^+?t0,5RFt0,AS4•
t0,+tt1t0,349.0.33I•G,tot•0,21T+0.214.0.213.O.I40t
t0.iT0/

CA
CCSHF T=9

C*
-	 CliAfiAftlfif* ii##1RRf!! ♦i*^*A#1RRiARRAf!!i!ltltRlffRitRA#t!t#t!i#tft/i*

C*
C* STEP Is
C*
Co FIT A QUADRATIC TO THE THREE HIGHEST GREENNESS VALUES IN ORDER TO
C* GET A FIRST ROUGH ESTIMATE r►F THE DAY nF PFAK GRFENNESS.
CR

ausED:O
MAX 80
DO t0 tA:t,NACO

IF (DATA(IA),EQ,•99,) GO TO 10
NI ► SFDsNIJSED• t

C*
C* GRt, Cn4T4INS NON-SCREENED 04TA VALUES. OFFSET RV 2S COUNTS&
C* DAY() CONTAINS THE CORRESPONDING ACQUIsITInN DAYS lw YEAR,
C*

GR(4U5ED)RDATA(IA) •2S.
DAf(NUSED)sACADAY(IA)

Ci
C* LOCATE HIGHEST GREENNESS VALUE,
C*

IF (DAta(I A ),LE. MAX) GO TO 10
MAX:DalActA)
IMAl2NUSED

10 CONTINUF
C*
C*	 THREE NON-SCRFFNED ACQUISITIONS ARE REQUIRED LESS KIEL
C* NOT PRnDUCF A RELIABLE ESTIMATE OF THE SHIFT, IF THREE
Ct ACQUISITIONS ARE NOT AVAILARLE P SET CCSHFTs! AND RETURN.
C*

IF (auSFD.GE.3) GO TO 10
CCSHF721
PKDAYx0
GFIT=p,
RFTURN

C*
13 CONTINUF

C*
C*	 twn ACnUTsTTION3 IN ADDITION TO THE MAXIMUM ARE TO BE USFD, THE
C* CHnICE OF ACQUISITIONS DEPENDS ON TMF LOCATION OF THE MAXIMUM.
C* IDFALLVP ONE ACQUISITION ON EITHER SIDE OF THE MAXIMUM 13 CH( ►SFN. IF
C! THE MAXIMUM tS THE FIRST OR LAST ACP^)ISIToNP HnwFVER t THE Twn
C* NEARFST ACQUISTTIONS ARE USFD,
C*

IF (NUSFD•IMAX)20,20.2S

^5



20	 IUSE41MAX02
Gn TU MQ

2S IF (INAX.i)1@0340s
36	 IUSFsTNA%

60 711 46
35 IUSEsIMAx.i-
40 CONTINUE

C* DATA ARRAYS ARE FURTHER SUBSET FOR EASE QE QUADRATIC C"PUTATiON.

IUSEsTUSE -1
On SO tA2i,1

IUSFsTUBF*i
GC.a)sGRt1USE)
T(tA)sDAY(IUSE)

SO CnhIINUE
C*
Co {(IMPUTE A STRAIGHT LINE THROUGH THE FIRST AND THIRD POINTS. If THE
C* MIDDLE VALitf FALLS BflnN THIS LINE, THE QUADRATIC COMPUTATION MILL
C* FIND A MINIMUM INSTEAD OF A MAXIMUM. IN THIS CASE, USE THE DAY nF
C• THE. MAXIMUM GREENNESS nbSERVATION AS THE FIRST PFAK DAY ESTIMATE,
C•

SU)PEstftl)-Gt1))/tTii)-T(3I)
INT=G(11-T(1)*SLOPE
CHKVALXSLnPE*T(2)*INT

C*
IF (G(2i.GE,CHKVAL)6(I In SS

TnPOAYsOAY(IMAX)
GO TO 70

SS CONTINUE
C*
C* COMPUTE TERMS OF THE QUADRATIC EQUATION,
C*

OIFIsTti).Tt2)
DIFPSTM -1(1)
BUNtsT(i)tTt21
SUM?sTt?)^Tt3)
DIFSQI=nlFl*SUMI
DIF30?=DIF2*SUM2
OIFGIsG(l)-G(2)
DIFG2sGt21-G(3)

C*
As(DIF2*DTFGI•DIFI*DIFG2)1(DIF2*OIFSQI-DIFI*DIFS92)

C•
C* COMPU7ATIO4 nF DAY OF PEAK RE411IRES DIVISION BY W TERM, SO
C* IF A*O# THE ('AMPUTATION CANNOT BE MADE, IN THIS CASE, AGAIN*
C* THE DAY nF THE MAXTMUM GREENNESS OBSERVATION 13 USED AS THE
C* FIRST PEAK DAY ESTIMATE,
C*

IF (A,NF . O,) GO Tn 60
TnPDAYsDAYtIMAXi
Gn Tn To

60	 CONTINUE
C*

BstDIFG?•DIF'802*A)/DIF2

'RIO"
X76



TOPnAY9.I.*BJ(2, *A)*,15
C*
C+	 THE MAXIMUM VALUE nF THE QUADRATIC MUST FALL IN THE RANGE
C* OF THE TMRFE DATA VALUES USFn IN ITS 0ETERMINATInN, t1TMERMIIEe
C+ USE THE NEARFST OF THE THREE AS THE PEAK DAY ESTIMATE,
C+

If (TnPnAY•T(1))bt.6s,a5
61	 TnPnAYaT(I)

Gn To TQ
6S	 If (TDPnAY-T(3))T0rT0,b6
66	 T0PnAYsT(3)
TO CnNTINUF

Ct
C*	 COMPUTE THE DIFFERENCE BETWEEN THE RFFERENCE PROFILE PEAK
C* DAY AND IMF ESTIMATED PEAK DAY OF THE GIVEN TARGET,
Co

3MIFTR1eO.tnPDAV
C*
Cal iAltlaaAt#iitAAllAAtt#iaiAa!•Alit!!•a#t#ia!!t #• #ta#Att#A a•#aai+ttRt *•
C+
C* STEP 21
C*
C*	 THE F tNA( ESTIMATE Of TMF DAY nF PEAK GREENNESS IS COMPUTED
C* RY DFTFRNINING THE SHIFT AL(ING THE DAY OF YEAR AXI1 WHICH
Ct MAXI M IZES THE CknSS•CORRELATIUN BETWEEN THE DATA VALUES AND
Ct A RFFERENCF PRnFILF,
Ca	 TMF aEFERENCF PRnFILF CONSISTS OF VALUES 0H REgPONnING in
Ca A 90 •nAY INTFRVAL WHICH ENCOMPASSES FSSENTTALLY TMF ENTIRE
C* GR(IWTNG SEASnN FOR SPRING SMALL GRAINS, AND A ZG.DAY ITAILI
C* nN EITHER R10F. Fnk ANY GIVEN SFT nF (THSFRVATILNS * nNLY THOSE
C* WHICH FALL IN THE 90-DAY INTFRVAL (USING THE DAY OF PEAK
Ct GNEE N(+FSS FSTIM A tE JUST COMPUTED) ARF CONSIDERED IN THE
C* CRnSS-CURRFL A TTUN CALCULATION.
C*

NSPRDsO
NitSFDaO
on 9Q lm ,NACo

IF (DATA(TA),EG,•99.) Gn TO 40
3DAYRACQDAY(IA)+SHIFT•94
IF (3DAY.LE,30 ,OR, 3nAV,GT,120) GO To 90

C*
C*	 OASERVATInNA MUST HE MORE THAN 9 DAYS APART (SEE BELOW),
C*

IF (NUSED.GT.0) Gn In T5
TnIFFSIA
Grl TO ao

?S	 CnNTIN:IF
TDIFF=SnAY•DAY(IPREV)

BO	 CnNTINUE
IF (TMIFF.LT,151 Gn fn as

IcRFVsNUSfD+I
NSPRU=NSPRD*t

as	 CnNTINUF
NIISFD=NUSED+I
GR(NUSEP)SDATA(TA).25.



DAY(NUSED)nSDAY
•o Cni(tINuF

C*
C*	 SECOND CMEPK OF ACDOtSITInN AVAILABILITY, Rf011IRENENTS AREI
C*	 1) TMRFE` ACQUISITI()NS IN THE 90-DAY PROFILE INTERVAL
C*	 S) MnRF ?NAN 9 DAY SPACI NG NETWEFN SUCCE RSIVF ACQUISITIONS,
C* THE BECU40 CnNSTRATNT IS ME RESULT 11F ORSFRVATTnNS THAT

C* IN TFRMS OF THE SHIFT CALCI (LATION, DATA NHTCH ARF mn CLn$FLY
C* ,PACED on NOT NVIAVE Al 14nFPFNDFNT n(ISFOVATT043. THE CUT-OFF
C* OF 15 DAYS USED IN THE PRnGpAM IS NOT AHSOLUTE. RUT WAS
Co C1403EN In F.LTNTNATF C(INSFU ► TTVF ACCUtSITION3 FRO" DIFFERENT
C* SATELLITES %RILE AI.LOMTNG. Cn%sFCUTTVF ACOUISIT1UNS FRI1M IMF
C* SAME SATFL! ITE.
C*	 ACQUISITIONS NnT MFFTING THE SPACING CRITERION A pt. STILL USED
C* IN THE SHIFT CALCULATInN • IF THERE ARE ENOUGH WEI . I •SPACED
C* ACQUISITIONS.

C*
IF (NSPRD.GE ,I) Gn TO 100
CCSHFTXP
PK0AYs0
GFITsA.
RFTI ► RN

100 WNTINUF
C•
C* ALI SNTFTS OF • OR . 30 DAYS FROM THAT COMPUTED WITH THE
C* QUADRATIC ARf CONSIDERED. THE MAXIMUM CROS3•CnRRELAT10N,
C* AND THE CI IRRESPn%DING SHIFT, ARE UPDATFO AS APPRnPRIATE.
C*

MAXRsO.
ISTFPw-Al
an Ian tsral,til

IATEPsI,TFP*1
301-04 ^21 .

SSlnAraA.
Jn 11 4 tflaW."SED

5^ A rs^AV( If) 1#TStFP
5,"awnsiUwPRDOGa(TD)•PanFIL(SnAY)
11a .f^slSnb atNP pIlFI1 (SnAY)*PRnFIL(SDAY)
5^:^Ats^SQOAt^GpllO)•GR(tD)

110	 06.I 1..1or
C*

Rs?,/(I.•S30DAt/S1 ►MPRn•(3iQPRn/SUMPRO))
C•

if (W,LT.^ArR) GO In 120
MAX480
NSPITFTaISTEP

TJo CoNT14UF
C•
C* THE FINAL JNtFT 13 THE COMB/NATION OF THE F103T (BASED ON THE
C* OUAORATIC), ANn THE SECOND (RASED nN THE CROSS•CnRRELATION In
C• IMF REFEREaCF PRnFTLE), IMF FSTIMATFO DAY OF PEAK GREENNESS
C* 13 THE RF F F.RFNCE DAY OF PEAK GREENNESS MAY 160) ADJUSTED RY
C* THE FSTIMATEO SHIFT,
C*

PKDAysIA0-(3HTFT+NS4IFT)

C*
GFITa10.*4AVR-9,

RF TURN

END

19
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APPENDIX C

TEST CASES AND TEST RESULTS FOR SUBROUTINE CCSHFT

l



TEST CASES FOR ROUTINE CCSHFT

A series of test cases was run to verify the proper functioning

of CCSHFT. Attached are listings of the testing program 'TESTCC.F',

test data 'TESTDATA', and output results 'TEST.RESULT'. The cases

and their purposes are as follows:

Case 1	 - test normal flow of program

Case 2	 - test first check of acquisition availability
(lines 74-101)

Case 3	 - test mechanism for assuring that the quadratic
estimates a maximum rather than a minimum
(lines 134-141)

Case 4,5 - test selection of acquisitions for quadratic,
and mechanism for adjusting peak estimate
to fall in data range (lines 111-118,173-178)

Case b	 - test second acquisition check - less than 3 acgs

Case 7	 - test second acquisition check - minimum spacing
requirements (lines 204-244)

Case 8,9 - illustrate GFIT values from non-typical data
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##tRtA#AAIRR#RttAR*tR #A! ##lRRAARRR #RARAA ##!R##RRR!
r#

rR
RA	 T E5 TDAT&	 R#
rr

RR
rr	 14:54 t40 	 0?-28-8n	 ##
Ar
rrrRr# R#A RRr,^r#ARRRrAIRR#RR*tR:Rr+ ► !##r^arRRRR#AR^► ^

t

1 139	 157	 17S 193	 ?11
2 4S,0	 60.0 55-0 40.0 3n.0
3 139	 157	 175 l9i	 ?11
4 4S.0	 .99,0 SS.n .99.0 -9a.9
5 139	 157	 179 193	 ?ii
6 60.0	 45,0 55.0 40.0 30.0
7 139	 157	 175 193	 ?11
e 30.0	 30.0 44. 1 55.0 65.0
9 139	 157	 175 193	 ?11

10 65,0	 55,0 40.n 30,0 30.0
11 139	 157	 17S 193	 ?tt
12 60,0	 •99,0 40.0	 -99,4 30.0
13 139	 157	 165 193	 ?11
14 45.0	 60.4 55.n	 .99.0 .99.0
15 139	 157	 17S 193	 ?11
16 45,n	 45.0 45,n 45.0 4S,0
17 139	 157	 175 193	 ?11
18 55.0	 500 Q%.n 5n.0 SS.o

Op'll
p^^ P  AA L p^

Gz
 I^^

^?U-441 p y
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RRRRRRRR#Rf#Rt1#R#RRRR##R#RRR#R##RRR*RRRR#RR• #R#+!#+
MR	 ♦ R

RR	 TFST.RFSOLT	 #*
#R	 fR
•^	 14:S4:4n	 02-28.80	 *R
AR	 •#
RR#RR# #!RR#RR#R#RR#*# RrR+Rl +R+rtf++R+R ► +RlARRRRR#R

CASE I

RETURN CODEz 0 PKpAYz 161 GFTTz 0.99Ssln4R4

CASE 2

RETURN CODFz i PKpAYz 0 GFITz 4 .n

CASE "
RETURN CODFa 0 PKOAY= 152 GFITz 0.32548237

CASE 4
RETURN CODFz 2 PKpAYz (i GFITs 0. 4

CASE S
RETURN CODFz 0 PKUAY= 141 GFITs 4.9972A203

CASE b
RETURN CODF z 2 PKr)AY= n GF I Tz n.0

CASE 7
RETURN CODFz 2 PKpAYz 0 GFITs 4.0

CASE 8
RETURN CnOF: 0 PKpAYz 1bn GFITz 0.44945 671

CASE 9
RETURN CnUEz 0 PKUAY= ISS GFITz 0.29122353

f

? `t
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