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ABSTRACT

The extraction of brightness temperature maps from scanting radiometer

data is described as a typical linear inverse problem. Spatial quantization and

parameter estimation is suggested as an advantageous approach to a solution.

Since this approach takes into explicit account the multivariate nature of

the problem, it permits an accurate determination of the most detailed reso-

lution extractable from the data as well as explicitly defining the possible

compromises between accuracy and resolution.

To illustrate the usefulness of the method described in this paper for algo-

rithm design and accuracy prediction. it was applied to the problem of providing

brightness temperature maps durit_g {he NOSS flight segment. The most detailed

possible resolution was determined and a curve which displays the possible com-

promises between accuracy aad resolution was provided.
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ON EXTRACTING BRIGHTNESS TEMPERATURE MAPS FROM
SCANNING RADIOMETER DATA

1. Introduction

Antenna temperatures measured by a scanning microwave radiometer can be represented as an

integral of the energy radiating from the earth's surface weighted by the antenna sensitivity pattern.

In the case of an ideal antenna whose sensitivity pattern is effectively a step function, the antenna

temperature and the brightness temperature of the corresponding area on the earth are proportional

and the one can be inferred from the other. However, actual gain patterns respond significantly to

large areas of the earth's surface. Hence, the extraction of detailed and accurate brightness tempera-

ture maps froin a set of apparent antenna temperatures requires a so-called antenna pattern correc-

tion {APQ algorithm.

Several APC prr,. ,-dunes have been described in the literature [11-[4]. Recently, Stogryn [s 1

pointed out the similarity of the APC problem to that which arises during atmospheric sounding

experiments where temperature profiles are desired. The similarity is that in both cases a continu-

ous function is to be inferred from a finite set of observations and each observation is an integral

transform of the function. Stogryn suggests the use of Backus-Gilbert theory [61 to develop accu-

racy versus resolution curves for any given set of antenna temperature observations.

The development of an APC algorithm can be properly viewed as a linear inverse problem [7 1.

The characteristic features of this tyre of problem are that a continuous function f must be deter-

mined and that the observations are linear functionals of f. Linear inverse problems are common in

Geophysics and investigators in this area have developed numerous approaches to a solution [8].

When geographically localized or in situ observations are available, a spatial quantization and linear

parameter estimation approach is often used. This technique has been effective in gravity field

determination 191 and ma,,gnetic field determination [io] . The purpose of this paper is to show that

spatial quantization and linear parameter estimation constitutes a particularly natural and suitable

approach to the APC problem which can directly lead to a tractible and accurate algorithm for
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extracting a geographically referenced brightness temperature map from a set of antenna temper-

ature observations.

In section 2, the development of an APC algorithm Is exhibited as a conventional linear inverse

problem. Also, a procedure is given for determining the most spatially detailed characterization of a

brightness temperature map which a given set of antenna temperature observations can support.

Additionally, this section describes a technique for developing APC algorithms which deliver optimal

accuracy for any given resolution level. Section 3 considers some of the computational aspects asso-

ciated with the APC problem and describes some compromises and approximations which can yield

effective and computationally efficient APC algorithms. Also, this section shows how the flexibility

of the spatial quantization approach can be used to exploit knowledge of the location of sea-land

boundaries in the estimation process. In section 4, the concepts and techniques explained in sec-

tions 2 and 3 are used to provide an example of a representative APC algorithm for the Large

Antenna Multifrequency Microwave Radiometer (LAMMR) on the National Oceanic Satellite

System (NOSS).
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2. A Linear Inverse Formulation Of The APC Problem

Consider a radiometer observing the earth from an orbiting satellite. By ignoring the effects of

a finite integration time, one can assume that an observation TA of antenna temperature is obtained

at an observation time indexed by 1. Let So be the associated boresight unit vector. The observa-

tion can be represented as

TAi - LJitG(SI, S)TB (p) do	 (I)

where S is a unit vector from the antenna in the direction of the differential solid angle d9l. The

region of integration R is the solid angle which includes all directions S which intercept the portion

of the earth visible from the satellite. In equation 1, G(So, S) is the antenna pattern function which

satisfies the normalization condition

f nG(So, S) dSt = 411
	

(2)

The symbol TB (p) represents the brightness temperature at some specified frequency and at a point

on the earth's surface identified by a unit vector p pointing from the earth's center. Since it is

desired to refer measurements to particular areas of the earth, it is convenient to change the variable

of integration in equation I to a differential surface area dA on the earth. This is accomplished as

dil-
(-S_p)dA

(3)
2 

where A is the distance from the antenna to the differential surface element dA. Hence

T i - 1 f G(S i , S) (-S • p) 
T (p) dA	 (4)A 4II E	 o	

g2	
B

where E is the area on the earth viewed by the satellite. Since the satellite orbit and the time

history of the antenna pointing direction in spacecraft coordinates are known, the vectors So and S

as well as the distance A are known functions of p. This implies that equation 4 can be simplified to
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T,; s "-IE 1h(p)Ta (p) dA
	

(5)

Equation 5 is valid assuming the data has been corrected for cross polarization effects and that

a small contribution due to cosmic background noise has been subtracted from the data. The

dependence of the brightness temperature function on viewing angle has also been surpassed.

Assume that N such observations are available and are arranged in a column vector symbolized

by ^^ . From knowledge of T., one desires s much information as possible about the

brightness temperature function Ta . According to equation 5, each scalar element of T A is related

to TS by means of a linear functional. Hence,

TA - L(TS )
	

(6)

where the linear transform L : H ♦ EN is a mapping from the Hilbert space of integrable functions

on E to Euclidean N space E N . The Kemal space K C H of L consists of all functions f E H such

that LW _ U where a represents the N dimensional null vector. The transform L is one to one if

and only if K consists of only the null function fa E H. However, one can show that for any finite

data set TA , the Kemal space K is necessarily infinite dimensional It 11.  It follows that it is not

possibl- to identify a unique brightness temperature function from a set of antenna temperature

observations. This is an exhibition of the se -called "ill-posed" nature ( a ) of linear inverse problems.

To obtain uniqueness the terms of the problem must be changed. Copventionally this is done

by utilizing knowledge of the physical nature of the signal to restrict the class of admissable func-

tions. In most cases this involves the imposition of smoothing assumptions. Specifically, assume

that the brightness temperature function to be estimated is included in a subspace H' C H of H. It

is desirable that the space H' be so chosen that when the transform L is restricted to H', it is inverti-

ble. Hence, define L' : H' -► EN to be identical to L on H'. The transform L' is one to one and,

hence, invertible if and only if

H'r) K a If0 }
	

(7)
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In words, the restriction of L to L' is invertible if and only if the intersection of the subspace It

of H with the kernal space K of L is the zero dimensional space consisting only of the null function

f o. The an of solving. APC problems in particular and linear inverse problems in general is that of

finding the least restrictive and most physically realistic subspace If c" functions which satisfies

equation 7.

The smoothing assumption required to define H' can be defined either in the spatial or the fre-

quency domain. In the case of APC algorithm development there are advantages to imposing

smoothing assumptions in the spatial domain. Hence, let I Bj I, be a decomposition of E into K

regularly shaped, disjoint regions. For instance, each set Bj can be defined is a square area on the

earth's surface in a longitude-latitude coordinate set. Alternatively, any one of numerous

schemes [12 1 can be employed to define the sets I Bj 1, as equal area rectangles in a longitude-

latitude coordinate set. Define H' as follows

x
H' = TB TB _	 )TB	 (8)

where Xj is the characteristic function of Bj - If TB E H', then T j represents the constant value that

TB assumes on the set Aj . It follows that TB is completely characterized by a K dimensional column

vector I T^ I j and the problem of estimating T B from a set of antenna measurements reduces to

the problem of estimating a finite set of parameters. In what follows, assume that E has been

divided into a finite set I Bj 1, of areas and that the brightness temperature to be estimated is

included in the function subspace H' as defined in equation 8. No confusion should result by now

identifying the symbol TB 4=- H'  which formally represented a brightness temperature function

with the set of parameters I TB 1 i which characterize it.

According to equation S, equation 6 can now be given the matrix formulation

T,, =ATB	 (9)

where A represents an N by K matrix and is defined by
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A0, D -11^ gl(p) dA
	

(10)

The matrix A can be simply interpreted. Let P i and Si respectively be the satellite position

vector and antenna boresight direction vector at the instant that observation TA 4 obtained. Then

A(i, J) is the integral of the antenna pattern function over the solid angle subtended by area B i on

the earth 's surface when the satellite is in position Pi and the antenna boresight is in a direction

given by Si.

At this point it is useful to inhWu,,e statistical concepts by recognizing that the actual

observation vector % which is obtained by the measuring process is the ideal observation vector TA.

whose components are given by equation 1, plus a contribution due to thermal noire. Hence,

TAI = TA + v, E(v) - O, E(vvT ) - Q	 01)

Let Ter be an estimate of T. obtained as a linear function of T A . A conventional statistical measure

of the quality of f. as an estimator is given by

M(Ta) -TRACE [E I4-- Te XT3 - To )T 1)	 (12)

The object is to find a fl, as a linear combination of TA which minimizes M(%). This is generally

called the minimum variance estimate of TS . This can also be considered as a least squares solution

since the estimate which minimizes the right side of equation 12 will also minimize the quadratic

form [13 1

q - (TA - ATa )T Q-' (TA" - At.)	 (13)

The solution is known to be Ii31

Ts - (AT Q"'i Ari AT Q-1 TA	 (14)
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Generally the thermal noise can be considered as stationary and uncorrelatW over the satellite pass

and the covariance matrix Q assumes the form

Q • 02 1
	

(1S)

where I is the N dimensional identity matrix. Anuming the validity of equation IS, the minimum

variance or least squares solution can be written as

11, • (AT Art ATTA 	(16)

The statistical properties of the solution given by equation 16 are

E(f. ) • Ts	 (17a)

E( (f, ' - E( , )X`; - E(% ))T I = 02 (AT Ar 1	 (17b)

The matrix AT A to be inverted in equation 16 Is non-singular if and only if the choice of Jr u

defined by equation 8 satisfies equation 7. If this is the case then equation 16 can be interpreted as

specifying the unique function Ts in Jr which best fits the data according to fitting criterion q as

defined in equation 13. In this sense one is provided a technique for extracting the most accurate

possible estimate of Ts from the data set T; at the resolution level defined by the decomposition

of E into areas { Bj I,. Acme further that { Bj I j represents a decomposition of E into equal area

rectangles and let IBj I represent the common equal area. The maximum resolution which is achiev-

able in the recovery of Ts from a data set TA can be described as follows: Let B be the set of all

equal area decompositions of E for which the associated matrix A T  is invertible. Then define

IBIMb M min 
f 

IBj 1 I { Bj } j E B }	 (18)

The maximum resolution achievable from a data set TA' is defined to be Amin . A minimum vari-

ance or least squares solution for Ts associated with an equal area decomposition of common area

1111p,,, will be referred to as a n=lmum resolution solution. For any given data set a maximum

resolution solution can be approximated by forming and inverting the matrix A T A for increasingly

7



finer equal area decompositions of E until inversion difficulties are encountered. This ability to

determine a maximum resolution solution solution represent an advantage over the Gilbert-Bacus

method (s) - The spatial quantization approach as described in this paper takes into explicit account

the multivariate nature of the APC problem. Thus, it is capable of determining at what resolution

uniqueness is lost by examining the invertibility properties of a well defined set of square matrices.

By contrast, the Dacus Gilbert method cannot be conveniently used to determine maximum

resolution.

In addition, it follows from equation 17b that one can compute the accuracy with which To

can be recovered at any given resolution level before the data is actually obtained. Hence, computer

simulations based on equations 10 and 17b can be employed to influence design parameters of a

mission as well as to develop optimal estimation strategies and predict expected accuracies.
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3. Computedfonal Coaidesa

If N olservat ; t, a are available and K brightness temperature parameters are to be estimated,

the least squares algorithm given by equation lb implies N by K separate evaluation of t he right

side ofequationlO. Inmost cases this repreaants a heavy computational burden. Fortunately the

localized character of antenna observations permits arc to decompose the large dimensional estima-

tion problem defined by equation lb into several smaller dimeralonal estimation problems while

introducing very little error. Specifically, attention is focused on a single brightness temperature

Parameter T^ associated with a region Bj . Intuitively it is clear that only antenna temperature

observations whose associated boresight vector intersect the earth at points near to the rim Bj

contain information which is useful in estimating T4. Also the model used in processing this data

set to estimateto Td need only take into account brightness temperature parameters whose associated

regions are wnhin a certain neighborhood of Bj . Define two brightness temperature parameters Ts

and Tsi to be uncoupled in data set T if no observathm in TA experkmm a non-zero contribuU*n

from be-ih regions Bm and Bj . Otherwise, brightness temperature values T. and Td are referred

to as being coupled In data set TA .  One can show (11 1 that in processing Ts or any subset of TA

to obtain a minimum variance estimate of a given parameter T. , it is only necessary to include in

the model those parameters which are coupled with T,,l in the data set. Hence attention is directed

to equation 9 which provides the model for the data reduction and concentration on estimating

a single brightness temperature parameter as a linear function of surrounding data points. Without

loss of generality, assume the parameter to be estimated is the first element Ts' in the parameter

list Ts. The vector T.' is the set of N' observations, which are associated with points on the earth

which are within a sufficiently small radius of II I , to contribute to a solution. The K '+ i dimen-

sional parameter vector Ts in equation 9 is completed by including the K' parameters that are

coupled with T. in the data set. Equation lb can now be implemented for a reduced dimensional

minimum variance solution. Let V be the 1 by N' vector which is the first row of the matrix

(AT Ar m AT which appears in equation lb. Then

To = VT„
	

(19)
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Equation 19 expresses the minimum variance estimate of Ts as a normalized linear combination

of dam points in the vicinity of Bt . The computation of V will depend on the duty and distribu.

tion of data pests about the buck Won whialh Ts is defined. For a typical satellite mission this

dinribution will vary somewhat Wn black to bit and from pass to pass. Hence the sampling

coefficients used to determine a parameter estate cannot be precomputed while strictly preset

optimality. However, if the density and distribution do not vary a great deal one can consider the

coefficients of an opal sampling to be obtained from a faxed sampling function. To be specific.

assume that the coefficient associated with each data point in an optimal linear estimate of Ts is

obtained by evaluating a polynomial samplin Ainction P(d - 0', X - l►') where if and a' are respec.

dvelY the latitude and longiftide of the midpoint of Br and when 8 and a are respectively the lati-

tuds and longitude of the data point in question. The sampling poiynot-"; -,im be determined by

computing V of equation 19 for a 	 manic al data distribution and Bing the 2 
dimensional

polynomial which but fits the optimal sampling 
coeftienm in a least squares sense.

The quantity of dam required for an optimal estimate of a given Wotnen temperature

parameter and the coefficients of the optimal sampling polynomial can be computed from krwwE

edge of the geometric distribution of the data at and the antenna pattern function. Herne com-

puter simulations performed before mission implementation can determine for any resolution level

in efficient APC algorithm and the expected accuracy associated with the algorithm. A strong

advantage of this procedure is that the actual data processing would not involve an execution of the

expensive algorithm implied by equation 14.

Tba reader should also notice the peat flexibility provided by the spatial quantircation approach

to the development of an APC a*orithm. The procedure is applicable to any dtcomposition of the

viewing area E into dint regions I  I i . Herne it is straightforward to choose the decomposition

I Bi I, to expkAt knowledge of the spatial properties of the brightness temperature map Ta . In

men when T. is expected to chsnge slowly, each region can subtend a large area. and where
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significant gradients are expected, each moon can be defined to subtend a smaller area. Also, It Is ---

advantageous to arrange the regions so that their boundaries are congruent to land-a& boundaries

where emissivity differences cause discontinuities in the brightness temperature.

Another feature of the procedure described in this paper is exhibited when muldfrequency

antenna temperature data sets are available and the antenna pattern ftmctions at the various fre-

quencies are substantially different. It is often required to produce a coregistered multivariate

data set consisting of brightness temperature at the various fre juencies. This problem can be

directly solved by implementing the spatial quantization method to develop the highest resolution

brightness temperature map at each frequency. A multivariate and coregistered data base can be

developed at a given resolution level by a simple resampling process since each scalar brightness

temperature map is geographically referenced.



4. An Example

To provide an example of the application of the spatial quantization approach to estimating

brightness temperature functions, attention was focused on the'NOSS whose goal is to obtain

measurements of ocean surface parameters and to provide processed geographical data to primary

users within 80 minutes of data receipt at the processing center. Among the instruments that have

been selected for use on the NOSS flight segment is the Large Antenna Multifrequency Microwave

Radiometer (LAMMR). The LAMMR will provide pixels at a rate of approximately 256 per second

for each of 7 channels and for horizontal and vertical polarizations. The result is that several

million pixels are generated for every 100 minute orbit. By far, the most expensive component in

the LAMMR data processing operation is the APC algorithm and it is in this area that attention

must be focused to obtain acceptible accuracy and efficiency. In what follows the intent is to

illustrate the use of the techniques described in this paper for algorithm design and accuracy predic-

tion rather than to provide specific results applicable to the NOSS flight segment.

The LAMMR embodies a 3.6 meter aperture antenna which scans the earth in a circle of 430

half cone angle from nadir. Data sampling occurs during the forward 120° of rotation as shown in

Figure 1. The basic specifications and major characteristics of LAMMR as used in the computer

simulations are given in Table 1. The half power beam width ranges from seven to forty kilometers

and the swath width is about 1300 kilometers. The LAMMR will be flown on board an observatory

class satellite in a circular orbit at an altitude of 650-760 km with an inclination between 70°

and ;10°.

The results which follow were obtained from a FORTRAN program which simulates the

recovery of a brightness temperature map from an antenna temperature data set. A 700 km, polar

orbit was assumed and for simplicity, the effect of earth rotation was ignored. The program was

written so that the antenna pattern function was a separate subroutine and, thus, easily modified.

The regions used for the spatial quantization are squares in a longitude, latitude space whose size is

specified by the user. The simulations occur near the equator so the regions are of nearly equal

12
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area. The numbers on Table 1 imply a data density shown on Figure 2. The square regions shown on

the iij;vre are approximately 20 km by 20 km in size and the points on the figure represent the

intersection of the boresight vectors with the earth's surface. Hence, if 20 km resolution is required,

the ratio of data points to parameters to be estimated is about 10 to 1. The antenna pattern func-

tion was chosen to be a reference pattern for the 43 GHz frequency and is shown in Table 2. The

format for Cie simulations can be simply described. A sequence of resolution levels at S km incre-

ments are successively investigated. At each resolution level a grid of square regions is arranged

along the satellite subtrack. Attention is focused on the estimation of a single temperature param-

eter associated with a region on the satellite subtrack and the covariance matrix of the minimum

variance solution as given by equation 17b is computed. To accomplish this it is necessary to deter-

mine how many parameters are coupled with the parameter in question so that they can be included

in the solution, and how much data should be included in the solution. The number of parameters

to be included can be determined by examining the fractional response of an antenna temperature

observation to a particular grid of regions. For instance, Figure 3 shows the fractional response of

an observation to a grid of regions that are 20 km on a side. The bull's eye shows the approximate

location of the boresight vector intersection and the numbers shown were computed assuming the

antenna pattern function shown in Table 2. An examination of Figure 3 shows that if two regions are

separated by at least two other regions they are virtually decoupled in the data. Hence, to estimate

a temperature parameter associated with a 20 km by 20 km region, it is sufficient to include in the

solution the temperature parameters associated with the twenty-four nearest regions. It follows that

the dimension of the estimation problem whose solution is simulated is reduced to twenty-five. The

quantity of data to be included in a solution is determined by a trial and error method. All data

within a square area centered on the region in question is included in the solution, the area is incre-

mented by 10 km and the process is repeated. As an example, when the resolution required is

between twenty and forty kilometers, data within an area seventy kilometers on a side is sufficient

to provide an optimal solution. This implies that an optimal estimate of brightness temperature



To implement equation 17b to obtain the covariance matrix of a minimum variance solution

requires the computation of the elements of the matrix A as defined in equation 10. Recall that

each element of A is the integral of the antenna pattern function over the solid angle subtended at

the satellite by a specified region on the earth. The simulation program computes these elements

numerically by uniformly distributing one hundred and twenty one points over a specified region.

For a given satellite position and antenna boresght direction the antenna response along the line of

sight to each point is computed. The values are averaged and then multiplied by the solid angle

subtended at the satellite by the region. Once these elements are formed, obtaining the required

covariance matrix is just a matter of performing the matrix operations defined in equation 17b.

The results of the simulations are shown on Figure 4. At a 15 km resolution, matrix inversion

difficulties are encountered. This implies that solutions are not unique at resolutions of 15 km -.md

less. As shown on Figure 4, a unique solution is available at a 20 km resolution. These results imply

that the optimal resolution extractible from the data is between 15 and 20 km.

Figure 4 displays the standard deviation with which a brightness temperature map can be

recovered at 43 GHz under the assumptions provided by Table 1 and Figure 2. The results are pro-

portional to the standard deviation of the thermal noise which in this case is taken to be 1° K. The

figure explicitly shows the compromise between accuracy and resolution which applies for this

particular data reduction problem.
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S. ConchWons

The extraction of brightness temperature maps from antenna temperatures is a conventional

linear inverse problem. In this context the spatial quantization' and parameter estimation approach

to a solution is particularly applicable. The flexibility of this approach permits ready incorporation

of apriori signal information such as the location of land-sea boundaries. Also, since the multi-

variate nature of the problem is taken into explicit account, it permits a determination of the most

detailed revolution at which a brightness temperature map can be estimated.

It is also possible to exploit the ir. situ character of antenna temperature observations to esti-

mate local blocks of brightness temperature parameters in local blocks of data. This procedure can

represent a substantial reduction in computer time. If the data distribution is dense and fairly

uniform a further reduction can be achieved by precomputing a polynomial sampling function.

To illustrate the usefulness of the spatial quantization and parameter estimation approach for

algorithm design and accuracy prediction, it was applied to the problem of extracting brightn-. ..A

temperature maps from antenna temperatures during the NOSS flight segment. It was shown that

at 4.3 GHz, the finest resolution achievable from the data is between 15 and 20 km. A curve which

shows the compromise between accuracy and resolution was al.;o provided.
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Table 1. SiVdflcant LAMMR Characteristics

Weight (kgm) 318

Effective Aperture (m) 4.0

Swept Volume in Orbit (m3 ) 140

Power (W) 300

Primary Radiometer Frequencies (GHz) 43, S. 1, 6.6, 10.65,
18.7, 21.3, 36.5

Primary Radiometer Wavelengths (cm) 0.8, 1.4, 1.6, 2.8,
4.5, 5.8, 6.9

Scan Rate (rps) 1

Swath Width (km) (for 120° Scan) 1300

Beamwidth C) 0.26 to 1.3

Pixels per Scan 256

Water Temperature Precision (°K) 1

Pointing Knowledge (°) 0.03(3a)
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Table 2. Reference Pattern for 4.3 GHz

Angle
(degrees) Gain (0) Integrated

Power

0.00 44.0 .017

0.10 43.9 .067

0.20 43.7 .147

0.30 43.3 .249

0.40 42.8 .36S

O.SO 42.1 .486

0.60 41.2 .603

0.70 40.2 .700

0.80 38.9 .799

0.90 37A .870

1.00 3S.6 .922

1.10 33.4 .956

1.20 30.8 .977

1.30 27.6 .987

1.40 23A .988

1.SO 17.1 .990

1.60 1.5 .993

1.70 10.0 .993

1.80 15.6 .994

1.90 17.6 .99S

2.00 18.0 .997

2.10 17.6 1.0

2.20 15.6 1.0

2.30 10.0 1.0

2.40 1.S 1.0
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Figure 2. LAMMR Data Density Superimposed on a 20 km by 20 km Grid

21



WRE SIGHT
VECTOR
INTERSECTION

WO
6.67°

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 ^0 a 0 0 a o

0 0 0 a 4 ^^ 2 01 0 0 0

p 01 0 1 18 197 8 0' 0 0

0 0 0 4 455 1J51 142 2 0 0 0

0 0 0 4 1069 3S 3NI 3 0 0 0

p 0 O 4 401 1649 115 1 0 0 0

0 0 0 0 11
i
48 i a 0 0 0

01 0 0 0 1 ^ 4 0 0 0 0 0

0 0 0 0 0 1 0 0 1 O 01 0 0

01 01 0 01 o 1 a 0 0 0 0 0

O.or
LONGITUDE

Fiture 3. Fractional Response x 104 of an Antenna Observation (4.3 GHz)
to a 20 km by 20 km Grid

22



1.5

lua
acW W
^ Q
$	 1.0

W
0
.+ WY FL
> 0.5
us
.n

m

0.0
20	 25	 30	 35	 40

RESOLUTION (KM)

Fi=ure 4. Standard Deviation of the Estimated Brishtneu Temperature

Map u a Function of Resolution

23


	1980024330.pdf
	0020A02.TIF
	0020A03.TIF
	0020A04.TIF
	0020A05.TIF
	0020A06.TIF
	0020A07.TIF
	0020A08.TIF
	0020A09.TIF
	0020A10.TIF
	0020A11.TIF
	0020A12.TIF
	0020A13.TIF
	0020A14.TIF
	0020B01.TIF
	0020B02.TIF
	0020B03.TIF
	0020B04.TIF
	0020B05.TIF
	0020B06.TIF
	0020B07.TIF
	0020B08.TIF
	0020B09.TIF
	0020B10.TIF
	0020B11.TIF
	0020B12.TIF
	0020B13.TIF
	0020B14.TIF




