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SUMARY 

Bolt Beranek and Newman Inc. 

A model for analyzing crew procedures in approach-to-landing 

is developed. The model employs the informat ion processing 

structure used in the Optimal Control Model and in recent models 

for monitoring and failure detection. Mechanisms are added to this 

basic structure to model crew decision-making in this multi-task 

environment. Decisions are based on probability assessmer~ts and 

potential mi~sion impact (or gain). Sub-models fcr procedural 

activities ere also incl-uded. Where these procedures affect 

aircraft responses or the information state of the crew, the 

effects are accounted for explicitly; where they affect sub-system 

operation, or~ly the atkentional load they impose is considered. 

Procedures can be interrupted and finished subsequently, or not 

completed at all, based on decisions made by the model. However, 

this initial implementation of the model does not permit procedural 

steps to be skipped over or reordered. 

The model distinguishes among external visual, instrument 

visual, and auditory sources of informction. The external visual 

scene perception models incorporate limitations in obtaining 

informaticn. The auditory information channel contains a buffer to 

allow for storage in memory until that information can be 

processed. 
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Though parts  of the model have been validated experimentally, 

no validation claims can be made for the complete model or a l l  of 

its parts. I n  addition, some important aspects of human behavior 

(such as faul t  diagnosis of ntrouble ehootingn, e r rors  i n  discrete 

actions, or the effects  of s t r e s s  or social pressures i n  the 

cockpit) are not modelled, except by di rect  assumption. 

Computer resul ts  are presented to  i l l u s t r a t e  the operation of 

the model. The e f fec t  on model predictions of some assumptions 

concerning crew ac t iv i ty  and/or scenario factors are also explored. 

- v i i i -  

/.r _- - %  - 
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1. INTRODUCTION 

This report summarizes the results of effo~ts in Contract 

NASZ-10035 for the NASA-Antes Research Center to "Analyze and Model 

Flight Crew Procedures in Approach to Landing." The objectives of 

this contract were to analyze the functions and responsibilities 

of the crew in nominal, Category I ILS approaches (of a 727) and 

to develop an analytic/computer model for the task that could be 

used to explore the effects of flight crew procedures and other 

critical factors on performance and safety. 

Chapter 2 of the report presents the results of the task 

analysis. The analysis was based on a detailed examination of 

flight manuals and discussions with flight personnel. A time-line 

was developed showing the activities of each member of the crew 

keyed to locatitm in the nominal approach profile and "triggering 

events." The time-line is not intended to reflect the specific 

procedures of any air carrier but is, instead, an amalgamation that 

attempts to capture the significant aspects of the various 

procedures used. These results were reported earlier in an interim 

report [I]. They are repeated here, with minor modifications, for 

the reader's convenience. 

In Chapter 3, we describe the model for the crew in the 

approach-to-lan3ing task that Mas developed (called PROCRU for 
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Procedure Oriented Crew Model). As the name implies, the model is 

procedure oriented. However, it also emphasizes information 

processing and decision making aspects of human performance. 

Briefly, each crew member is assumed to have a set of "procedures" 

or tasks to perform. The procedures include both routines 

established "by the book" (such as checklists) and tasks to be 

performed in some "optimizing" fashion (such as flying the 

airplane). The particular task chosen at a given instant in time 

is the one perceived to have the highest expected gain for 

execution at that time. The gain is a function of mission 

priorities and of the perceived estimate of the state-of-the-world 

at that instant. This estimate is based on monitoring of the 

displays, the external visual scene and auditory inputs from other 

crew members. PROCRU draws heavily on the concepts and submodels 

of the Optimal Control Model for the human operator (21 for its 

information processing and control representation. However, there 

are many novel aspects and features of the model that constitute 

new developments. 

Chapter 4 containe a detail.%d description of the specific 

procedures defined in PROCRU. The functions used in calculating 

the gain for selecting procedures as well as the "recipes" for the 

procedures are presented. 
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In Chapter 5, results illustrating the operation of PROCRU are 

presented. Sensitivity to system parameters and to operator 

parameters is examined. 

?he last chapter contains soma recommendations for further 

investigation with Pl?WRU and for extensions of this initial 

implementation. 
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2. TIME-LINE ANALYSIS 

I n  t h i s  chapter we present the resul ts  of a task analysis 

conducted to  define the primary ac t iv i t i e s  of each crew member, the 

"triggering eventsn associated w i t h  these ac t iv i t i es ,  and the major 

f l igh t  milestones occurring along a category I raw-data ILS 

approach.* Since the sequencing of a l l  of theke time-line 

ac t iv i t i e s  are dependent on the particular approach clown, a 

subsidiary goal of the analysis was to  define an idealized 

"nominaln radar-vectored vehicle trajectory, representative of t h i s  

type of ILS  approach; the resulting trajectory parameter 

time-histories are t h u s  also presented i n  t h i s  chapter. 

Our goal here has been to develop a broad characterization of 

the procedures required for conducting raw-data category I ILS 

approaches. To t h i s  end, we have attempted to  favor a composite of 

crew tasks and ac t iv i t i e s  identified in the formal publications of 

di f ferent  U. S. carr iers ,  reported on i n  other studies of f l i gh t  

management during approach and landing, and obtained from 

discussions w i t h  personnel representing the three crew ),msi tions 

(Captain, F i r s t  Officer, and Second Officer) of a 727. We believe 

that  the resulting representation, while not d i rect ly  representi:..j 

a specific carrier  under perfectly r e a l i s t i c  conditions, 

* 2m- decision height (DH) an-' runway visual range (RVR) . 
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s u c c e s s f u l l y  p o r t r a y s  t h e  major e l emen t s  o f  f l i g h t  management 

needed f o r  t h e  model l ing  e f f o r t .  

S e c t i o n  2.1 below d e f i n e s  t h e  nominal approach  t r a j e c t o r y ,  and 

i d e n t i f i e s  t h e  b a s i c  p rocedures  a s s o c i a t e d  w i t h  f l i g h t  p a t h  

c o n t r o l .  S e c t i o n  2.2 conc ludes  t h e  c h a p t e r  w i t h  a t ime- l ine  

a n a l y s i s  o f  bo th  a s t a n d a r d  and moni tored  ILS approech ,  and a 

d e f i n i t i o n  o f  g e n e r a l  missed apprgach  p rocedures .  Fo r  t h e  r e a d e r ' s  

convenience ,  a g l o s s a r y  o f  symbols and mnemonics is provided  i n  

Appendix A. 

2.1 Nominal Approach T r a j e c t o r y  - 

V e h i c l e  ground t r a c k  is shown i n  F i g u r e  2.1. The r e f e r e n c e  

c o o r d i n a t e  system is t h e  l o c a l  geograph ic  n a v i g a t i o n  frame ( n o r t h ,  

e a s t ,  and down), w i t h  t h e  o r i g i n  l o c a t e d  a t  t h e  e f f e c t i v e  g l i d e  

s l o p e  t r a n s m i t t e r  l o c a t i o n .  For convenience  i n  a n a l y s i s ,  i t  was 

assumed t h a t  t h e  runway (and l o c a l i z e r  c e n t e r  l i n e )  is a l i g n e d  

a l o n g  t h e  ea s t -wes t  d i r e c t i o n ,  and t h a t  t h e  runway and su r round ing  

t e r r a i n  a r e  a t  s e a  l e v e l .  

The f i g u r e  shows down range  and c ros s - r ange  d i s t a n c e s ,  

measured from t h e  g l i d e  s l o p e  t r a n s m i t i e r .  S p e c i f i c  p o i n t s  a long  

t h e  ground t r a c k  a r e  tagged  by time-to-go ( t  ime-to-touchdown) 

v a l u e s ,  and co r r e spond  w i t h  s p e c i f i c  f l i g h t  m i l e s t o n e s  t o  be 

d e s c r i b e d  s h o r t l y ,  
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Localizer "Active*' 

LOC 
8 . 
332 n2%is 16 164 ck 

t ' : " : : ' " * ' r "  
-120 -1 io loo -do -60 -70 -60 -5'0 -4b -3'0 -io --Go B i o  51 :o 

Distance to GS XMTR (lo3 ft) 

Figure 2 . 1 .  Vehicle Ground Track 
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The altitude, velocity, and heading profiles associated with 

this trajectory are given in Figure 2.2. Since the runway and 

surrounding terrain are at sea level, altitude and height above 

field elevation (AFE) are equivalent. Since no wind is assumed 

present, velocity and airspeed are likewise equivalent. 

The vehicle is assumed to be radar vectored to the point at 

which the localizer becomes "activea, following which final 

approach procedures are used to touchdown. As noted in Appendix B, 

it is assumed that a 2 dot localizer error (2 deg off final) will 

initiate AS1 activity; the point of Figure 2.1 tagged tgo=393 thus 

conveniently separates the approach into an initial portion (before 

localizer activity) and a final portion (after localizer turn on). 

The next two sections provide details regarding these two approach 

phases. 

2.1.1 Initial Approach 

At the beginning of the initial approach, the vehicle is at 

10000 ft, and travelling at 190 kts on a 210 deg heading; by the 

end of the phase the vehicle has descended to 2000 ft and slowed to 

160 kts, and attained a 120 deg intercept course with the localizer 

approximately 16 nm from the field. This is accomplished with two 

descents, two decelerations, and three heading changes. Specific 

assumptions regarding this initial phase trajectory are as follows: 
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1. A l t i t u d e ,  v e l o c i t y ,  and heading  changes  are i n  d i r e c t  
r e s p o n s e  to  ATC r e q u e s t s ,  and are accomplished i n  a n  
a c c u r a t e  and t i m e l y  manner. 

2. The i n i t i a l  d e s c e n t  from 10000 f t  to 3500 f t  is  made w i t h  
a n  1800 fpm s i n k  ra te ;  t h e  second d e s c e n t  from 3530 f t  to 
2000 f t  is made w i t h  a 900 fpm s i n k  rate. 

3. Both d e c e l e r a t i o n s  ( f rom 190 k t s  to  170 k t s  t o  160 k t s )  a r e  
made a t  a c o n s t a n t  r a t e  o f  1 k t / s ec .  

4. A l l  t h r e e  heading changes  assume a 3 deg/sec  t u r n  r a t e  
(two-minute t u r n s ) ,  and assume 5 sec maneuver times f o r  
bo th  r o l l i n g  i n t o  and o u t  o f  t h e  t u r n .  

2.1.2 F i n a l  Approach 

A t  t h e  beginning  o f  t h e  f i n a l  approach phase,  t h e  v e h i c l e  is  

a t  2000 f t ,  and t r a v e l l i n g  a t  160 k t s  on a 120 deg heading;  t h e  end  

o f  t h i s  phase i s  d e f i n e d  by touchdown. 

AS noted  e a r l i e r ,  i t  is assumed t h a t  t h e  l o c a l i z e r  becomes 

" a c t i v e n  when t h e  v e h i c l e  is 2 d o t s  o f f  t h e  l o c a l i z e r  p lane .  T h i s  

e v e n t  s i g n a l s  t h e  s t a r t  o f  t h i s  f i n a l  approach phase ,  and t r i g g e r s  

a 0.5 deg/sec  t u r n  from t h e  i n i t i a l  120 deg  heading  to t h e  f i n a l  

approach heading o f  90 deg.  Completion o f  t h e  t u r n  ( a t  

tg, = 332 sec) o c c u r s  a s  t h e  v e h i c l e  i n t e r c e p t s  t h e  l o c a l i z e r  

p l ane .  The v e h i c l e  t h e n  p roceeds  on a c o n s t a n t  a l t i t u d e  (2000 i t ) ,  

c o n s t a n t  speed (160 k t s )  c o u r s e  u n t i l  the g l i d e  s l o p e  becomes 

" a c t i v e w  . A s  noted i n  Appendix B, t h i s  occurs when t h e  v e h i c l e  is 

2 d o t s  below t h e  g l i d e  s l o p e  ( a t  tgo=272 sec as shown on  F i g u r e  
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The remainder  o f  t h e  f i n a l  approach t r a j e c t o r y  is shown i n  

more d e t a i l  i n  F i g u r e  2.3. T h i s  l o c a l i z e r  p l a n e  view shows 

s p e c i f i c  t r a j e c t o r y  p o i n t s  t agged  w i t h  a t r i p l e t  i n d i c a t i n g  

time-to-go, a l t i t u d e ,  and a i r s p e e d ,  and i l l u s t r a t e s  a s t a n d a r d  

approach based on t h e  f o l l o w i n g  assumptions:  

Environment 

1. The runway and su r round ing  t e r r a i n  a r e  a t  sea l e v e l .  

2. N o  winds or g u s t s  are p r e s e n t .  

Geometry 

3. The g l i d e  s l o p e  and runway g e o m e t r i e s  a r e  t h o s e  d e s c r i b e d  
i n  Appendix B. 

4. The g l i d e  s l o p e  becomes " a c t i v e "  a t  2 d o t s  below t h e  g l i d e  
s l o p e .  

5. The middle  and o u t e r  markers  a r e  0.67 nm (4000 i t)  and 
5.3 nm (32000 f t )  from runway t h r e s h o l d ,  r e s p e c t i v e l y .  

Vehicle /Coni  i gu r  a t  i o n  

6. V e h i c l e  g r o s s  l a n d i n g  weight  is  150,000 l b s .  

7. A 30 deg l a n d i n g  f l a p  s e t t i n g  is  chosen.  

Procedure  

8. A 1 kt/sec d e c e l e r a t i o n  to  150 k t s  is i n i t i a t e d  when t h e  
g l i d e  s l o p e  becomes a c t i v e  (tgo = 272 sec) . 

9. An 8 fpm s i n k  r a t e  is i n i t i a t e d  1/2 d o t  below t h e  g l i d e  
s l o p e  (tgo = 215 sec). 

10. A 1 kt/sec d e c e l e r a t i o n  to 140 k t s  is i n i t i a t e d  10  sec 
b e f o r e  g l i d e  s l o p e  i n t e r c e p t  (tgo = 169 sec) . 

11. S t a b i l i z a t i o n  on t h e  g l i d e  s l o p e ,  a t  t h e  approach speed o f  
139 k t s ,  is ach ieved  a t  t h e  o u t e r  marker (tgo = 149 sec).  



Distanca to GS XMTR (ft) 

Figure 2.3:  Final Approach Tra jec tory  
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12.  A 1 kt/sec deceleration, t o  the threshold speed of 134 k' #, 

is in i t i a ted  5 sec before threshold crossing 
(tgo = 15 sec).  

13. A f l a r e  to  touchdown is ini t ia ted a t  threshold crossing 
(tgo = 1 0  sec) . 

Items 11 and 1 2  above assume a bug speed (VBUG) of 134 k t s  is 

chosen, on the basis of the reference speed and landing f l ap  

procedural rules defined by Tables 2.1 and 2.2, and on the basis of 

items 6 and 7. I n  addition, items 11 and 1 2  assume the approach 

speech (VAPP) of 139 k t s  and the threshold speed (VTHRESH) of 

134 k t s  are chosen on the basis of the airspeed selection 

procedures summarized in Table 2.3, and on the basis of item 2. 

2.1.3 Trajectory Variables 

Time his tor ies  of the important trajectory variables are given 

i n  Table 2 .4 ;  the mnemonics associated w i t h  each variable are 

defined i n  Table 2.5. For convenient reference, the trajectory 

variables of Table 2.4 have been augmented w i t h  time his tor ies  of 

ATC requests, and a number indexing scheme has been used to  re la te  

these requests t o  the corresponding crew/vehicle responses (for 

example, ATC request number 3 a t  t g o = l O O O ,  "descend to  3500 f t " ,  is 

followed by a descent in i t i a t ion  a t  tg0=950). I n  addition, 

important t rajectory "eventsn have been tabulated, to  show the 

re! ation between these events and major trajectory changes. 



T a b l e  2.2: Land ing  F l a p  S e t t i n g  (LFLAP) v s .  
Bug Speed ( D U G )  

-. -,- - ? -- - -.------ . . . ----- - - --- -- - - - -a -*- 
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T a b l e  2.1: R e f e r e n c e  Speed (VREF) v s .  
Gross Weight  (GWT) 

LFLAP ( d e g )  1- VBUG ( k t s )  

GWT (lo3 l b s )  

110 

120 

130  

1 4  0 

150 

160  

170 

180 

1 9  0 

- 

VREF + 4 

VREF 

VREF ( k t s )  

108  

1 1 3  

119 

124 

130 

136  

1 4 1  

147  

1 5 3  

T a b l e  2.3: Approach /Thresho ld  Speed  D e t e r m i n a t i o n  

Note 1: a l l  s p e e d s  i n  k t s  

Note 2:  Maximum a l l o w a b l e  v a l u e  o f  VAPP is  (vBUG+~O) 

V W I N D  VGUST 

< 10 a n d  -. 0 

> 10 or  > 0 

VAPP 

VBUG+S 

VBUG+WIND/S+VGUST 

rn 
VTHRESH 

VBUG 

VBUG+VGUST 
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Table 2.5: D e f i n i t i o n s  of Symbols 

TGO 

v 

A 

: time- to-  touchdown (sec) 

: a i r s p e e d  ~ L t s  o r  f t / s e c )  

: a l t i t u d e  ( f t )  

H : heading (deg)  

RX : east-west ground-track r ange  t o  GS XMTR (it) I 
RY : nor th-south  ground-track r ange  t o  GS XMTR ( f t )  i 
G : f l i g h t  p a t h  a n g l e  (deg)  : I 

; 4 
ADOT: a l t i t u d e  rate ( f t / s e c )  

DTGO: t i m e  i n t e r v a l  between TGO markers (sec) 

DA : change i n  a l t i t u d e  ove r  DTGO i n t e r v a l  ( f t )  

DR : change i n  d i s t a n c e  a long  ground-track o v e r  DTGO i n t e r v a l  (it) 

THR : t h r o t t l e  ( A  = a d j u s t ;  SLF = set f o r  l e v e l  f l i g h t ;  
SF1 = set t o  f l i g h t  i d l e )  

GEAR: l and ing  g e a r  p o s i t i o n  (U = up; D = down) 

FLAP: f l a p  s e t t i n g  (deg)  
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2.2 Time-Line -. Analyeis 

To provide a qualitative and quantitative description of crew 

activity during approach-to-landing, we conducted a time-line 

analysis of crew procedures. Our effort centered on the baseline 

trajectory described in the previous section, and presmed ATC 

radar vectoring to an 1LS final. Glide slope and localizer 

geometries were assumeC to be those described in Appendix 8, 

Flight path management requirements (e.g., velocity, altitude, and 

heading transitions) were taken from the previous section, as were 

the procedural assumptions regarding transition  characteristic^ 

(e.g., deceleration rates, sink rates, and turn ratea) . 
In addition to these flight management requireme~~ts, the 

time-line analysis assumed additional procedural requirements 

imposed on the crew. The callout requirements assumed for the 

pilot flying (PF) and pilot not flying (PNF) are given in 

Tables 2.6 and 2,7. Requirements for verbal requests by the PF arc 

alao given in Table 2.6. 

Included amonu the procedural elements in the time-line are 

three checklists ty;lcally required to be completed between 10,000 

ft and the OM. Summaries of items assumed to be contained in each 

of the checklists are presented in Table 2.8. 
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Table 2 . 6 :  PF Requests /Cal louts  

Condit ion Reques t/Cal l o u t  

Flap Requests- 

a i r s p e e d  170 k t s  

a i r speed  150 k t s  

s t a b i l i z e d  on GS 

Gear Reaues t 

" I .  l a p s  13 ' 

"Flaps 25''  

"Landing Flaps " 

1/2 d o t  below G S  I "Gear Down" 

C a l l o u t s  

Cross OM 

A f t e r  OM 
I "Outer Marker" 



R e p o r t  N o .  

T a b l e  2.7: PNF C a l l o u t s  

C o n d i t i o n  C a l l o u t  

LOC/GS a c t i v i t y  

LOC " a c t i v e "  

GS " a c t i v e "  

" l o c a l i z e r  c a p t u r e "  

" g l i d e  s l o p e  a l i v e "  

Approach S t a b i l i z a t i o n  

v > v  + 1 0  o r  v < v  aPP aPP 

EGS > 1 d o t  

h i g h  " 
" s p e e d  { l o w )  

I* d o t { l e f t  )" 
r i g h t  

11 - 
h>2000 fpm a n d  10001<h<2000 '  - AFE 

>I030  fpm 3 0 0 ~ < h < 1 0 0 0 t  - " s i n k  r a t e  

> 700 fpm h <  - 300 '  

A l t i t u d e  C a l l o u t s  - 
h = 1000 '  AFE 

= 506' AFE 

= DH + 10P'  

= DH 

"1000 f e e t "  

" 500 f e e t "  

" a p p r o a c h i n g  minimums" 

" minimums" 
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Table 2.8: Summary of Check l i s t  Items Presented 

i n  Time Line Analysis 

A l t i t u d e  Challenge Response 
Phase Range I tern BY BY 

Descant 18000-10000 1. Fuel Panel "set" --- s/o 
Hydraulic System B 

' Pump 81 "ON" - -- S/O 

2 . P r e s s u r l e a t i o n  "SET" 

3 ,  Peck Cooling Doors "OPEN" 

4 .  Shoulder Harness "ON" 

5 .  Landing Data Card 
l * ~ ~ ~ ~ ~ ~ ~ l t  

6 .  CSD Temp. Switches "IN" 

I n i t i a l  35004M 1. Cont inuous I g n i t i o n  "ON" 
Approach 

2. Seat Belt  "ON" 

3. A l t . ,  F l t .  & Nav. l n s t s .  
"SET/CROSSCHECK" 

4. RA/Baro A l t  . Bugs "SET" 

5 .  Airspeed & EPR Bugs 
u ~ ~ ~ / ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 9 8  

F ina l  ON-CD 1. No Smoking "ON" S /o C 
Approach 

2.  Landing Gear "DOWN, I N ,  S /O C 
3 GREEN LIGHTS" 

3. Flaps  "30°, GREEN LINT" s /o F/Q 

4. Ant i -skid  "CHECK" --- S/O 

5. Hyd. Pressure  C Q u a n t i t i e s  --- s /o 
"CHECK" 
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I t  is  impor t an t  to  n o t e  t h a t ,  i n  c o n t r a s t  to f l i g h t  management 

and c a l l o u t  t a s k s  which c a n  be located f a i r l y  p r e c i s e l y  o n  t h e  

c h a r t  w i t h  r e s p e c t  to  o b j e c t i v e  states o f  t h e  a i r c r a f t ,  c h e c k l i s t  

t a s k s  c a n  be l o c a t e d  o n l y  app rox ima te ly  w i t h  r e s p e c t  t o  m i s s i o n  

t i m e .  T h i s  r e s u l t s  from t h e  fact t h a t  t h e i r  e x e c u t i o n  under real  

o p e r a t i n g  c o n d i t i o n s  v a r i e s  w i t h  such  f a c t o r s  as f l i g h t  t i m e  and 

p r o f i l e ,  c o c k p i t  tempo and workload, and crew c h a r a c t e r  ist ics. Our 

t ime- l ine  d e p i c t s  t h r e e  c h a r a c t e r i s t i c a l l y  d i f f e r e n t  c o n d i t i o n s  o f  

c h e c k l i s t  e x e c u t i o n  which can  occu r :  (1) a "latew s t a r t  and normal 

e x e c u t i o n  o f  t h e  Descent  c h e c k l i s t ;  (2 )  a 'normalw e x e c u t i o n  o f  

t h e  I n i t i a l  Approach c h e c k l i s t  w i t h  i n t e r r u p t i o n  f o r  heading ,  

a l t i t u d e  and t h r o t t l e  changes;  and (3) an  e a r l y  s t a r t  and "normalw 

e x e c u t i o n  o f  t h e  F i h a l  Approach c h e c k l i s t .  

The Lime-line a n a l y s i s  c o n s i d e r e d  crew a c t i v i t y  under bo th  a 

s t a n d a r d  approach p rocedure  (SAP) and a  moni tored  approach  

p rocedure  (MAP) , and t h e  fo l lowing  t w o  s u b s e c t i o n s  d i s c u s s  t h e s e  i n  

more d e t a i l .  A t h i r d  s u b s e c t i o n  fo?lowing d e t a i l s  t h e  missed  

approach procedure ,  a p p l i c a b l e  to  e i t h e r  SAP or MAP t ime- l ines .  

I n  ou r  p r e s e n t a t i o n  o f  "events"  on t h e  time l i n e ,  w e  have 

a t t empted  to  m a i n t a i n  a  c e r t a i n  r i g o r  i n  t h e  vocabu la ry  used f o r  

d e s c r i b i n g  i n d i v i d u a l  and crew t a s k s  and sub- tasks .  A summary o f  

t h e  t e rms  i n  t h i s  vocabu la ry  and o f  i n t ended  meanings is p r e s e n t e d  

i n  Tab le  2.9. 



Table 2.9: Summary of Procedural Terms Used in Timeline 

Exaqple 

"Acknowledge" ATC 

Meaning Term 

Notify ATC of receipt of information/ 
instructions 

Acknowledge 

SB Lever *~djust"* Alter position of control to satisfy 
criterion 

Adjust 

Verbal indication of ~uidance system/ 
vehicle state or milestone 

Announce 
* 
hi 
w 
I Begin Turn to HC "Begin" 

Flaps "Set, "Check1' 

Initiate change in heading 

Verbal confirmation of desired condition; 
usually combined with term "set" 

Check 

m Fin61 Approach Checklist o 
"Complete" w E, 

fl 
Landing Dats Card 
"Compute" m 

(D 
n 

Terminate checklist procedure Complete 

Perform table-look-up/arithmetic 
operations 

Compute 

pi 
LOM altitude "Confirm" 3 

tD 
f;  

Verify required instrument/control/position 
indication 

Confirm 

9, 
Altimeters wCrosscheck" 3 a Verify correspondence between instruments Crosscheck 

Turn "End" Terminate change in heading End 

IN 

Monitor 

"Down, In, 3 Green" B 
9, 
3 

Used to indicate active device 
Synonymous with ON 

Hydraulics, Brakes 
"Moni tor" 

Scan instruments for out-of-tolerance 
conditions 



Table  2 . 9  ( c o n t ) :  Summary of Procedura l  Te rms  Used i n  T imel ine  

Term - 

Start  

Meaning 

Used t o  i n d i c a t e  a n  i n a c t i v e  d e v i c e ;  
Synonymous w i t h  OUT 

Used t o  i n d i c a t e  an  a c t i v e  d e v i c e ;  
Synonymous w i t h  I N  

Command e x e c u t i o n  o f  procedure  o r  
s a t i s f a c t i o n  o f  a c o n d i t i o n  

P o s i t i o n  a con t ro l /bug  a t  a  desired v a l u e  

I n i t i a t e  c h e c ~ l i s t  procedure  

A l t e r  c o n f i g u r a t i o n  t o  ach ieve  d e s i r e d  
s i n k  r a t e  

Example 

Gear and Door L i g h t s  "OFF" 

Shoulder  Harness "ONn 

F l a p s  25 "Request" 

F l a p s  30 "Set"  1 
F i n a l  Approach C n e c k l i s t  $ 
" S t a r t n  P 

rt 

A l t i t u d e  "Tr im"  

*NOTE: Speed Brake (SB) adjus tment  is  n o t  r e q u i r e d  on a l l  v e r s i o n s  o f  t h e  727. 
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2.2.1 S t anda rd  Approach Time-Line 

A s t a n d a r d  approach p rocedure  was d e f i n e d  i n  accordance  w i t h  

p rocedures  used by U.S. c a r r i e r s  d u r i n g  CAT I approaches .  The SAP 

was d e f i n e d  so as to  i n c l u d e  t h e  f o l l o w i n g  p r o c e d u r a l e l e m e n t s ,  i n  

a d d i t i o n  to  t h o s e  d e t a i l e d  e a r l i e r :  

1. N o  t r a n s f e r  of  v e h i c l e  c o n t r o l  is made, so t h a t  one  pi lot  
is always t h e  PF, t h e  o t h e r  a lways t h e  PNF. 

2. Both p i l o t s  a r e  "head-downw on  i n s t r u m e n t s ,  no la ter  t h a n  
t h e  o u t e r  marker . 

3. The PNF b e g i n s  to s e a r c h  f o r  e x t e r n a l  v i s u a l  c u e s ,  a t  no 
l a t e r  t h a n  a  s p e c i f i e d  " sea rch  h e i g h t w  ( S H ) ,  w h i l e  
c o n t i n u i n g  to  monitor  t h e  i n s t rumen t s .  

4. I f ,  b e f o r e  t h e  d e c i s i o n  h e i g h t  ( D H ) ,  t h e  PNF a c q u i r e s  an  
adequate  view o f  t h e  runway, and d e t e r m i n e s  t h a t  a  normal 
approach to  l a n d i n g  can  be made s o l e l y  on t h e  b a s i s  o f  t h e  
e x t e r n a l  v i s u a l  c u e s ,  t h e  PNF announces 'runway i n  s i g h t , "  
and r e t u r n s  to in s t rumen t  mon i to r ing .  I f  t h e  PNF a c q u i r e s  
an adequate  view o f  t h e  runway, b u t  d e c i d e s  t h a t  a  normal 
approach to l and ing  canno t  be made ( e i t h e r  because  o f  
v e h i c l e  p o s i t i o n i n g  o r  a n t i c i p a t e d  d e t e r i o r a t i o n  o f  t h e  
v i s u a l  environment)  , t h e  PNF announces "missed approach ,  " 
and r e t u r n s  to i n s t r u m e n t  moni tor ing .  

5. I f  t h e  PF h e a r s  "runway i n  s i g h t , "  t h e  PF d i r e c t s  h i s  
a t t e n t i o n  to  t h e  e x t e r n a l  v i s u a l  c u e s  and c o n t i n u e s  t h e  
approach.  I f  t h e  PF h e a r s  "missed approach ,"  t h e  PF 
i n i t i a t e s  t h e  missed approach procedure .  I f  t h e  PF h a s  
heard  n e i t h e r  o f  these announcements by t h e  DR, t h e  PF 
announces "missed approachn  and i n i t i a t e s  t h e  missed 
approach procedure .  

6. I f  t h e  PF h a s  swi tched  h i s  a t t e n t i o n  to t h e  e x t e r n a l  
v i s u a l  c u e s ,  and d e t e r m i n e s  t h a t  a  normal approach to  
l and ing  c a n n o t  be made (because  o f  v e h i c l e  p o s i t i o n i n g  or 
v i s u a l  cue  inadequacy) ,  t h e  PF announces "missed 
approach,  " and i n i t i a t e s  t h e  missed approach  procedure .  
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The s t andard  approach t i n e - l i n e  is shown i n  Table 2.10, and i a  

arranged i n  columns, wi th  time-to-go (to touchdown) running 

v e t  t i c a l l y  down t h e  page. The lef t -hand columns show tine-to-go 

(TGO) , ground range-to-go i n  t h e  localieer p lane  (R) , a l t i t u d e  (A) , 
v e l o c i t y  (V) , and heading ( 8 ) .  Unite  are those  i d e n t i f i e d  i n  

Table 2.5. The middle columns show procedura l  a c t i v i t y  by each  

crew member (Captain, F i r s t  Officer, and Second Officer) ; it is 

assumed h e r e  t h a t  t h e  Cap ta in  is t h e  PI ,  and t h e  F i r s t  Officer, t h e  

PNF. The las t  column shows s i g n i f i c a n t  e v e n t  occurrences ,  and 

i d e n t i f i e s  ATIS and ATC communications. 

Th i s  l a s t  column a l s o  i d e n t i f i e s  what might be l a b e l l e d  a s  

" t r i g g e r i n g  events"  which l e a d  to a s p e c i f i c  crew a c t i o n  i n  

response to t h e  event .  A s  an  example, t h e  t ime-l ine shows a f laps 

15 r e q u e s t  by t h e  PF a t  tg, 1 955 sec; the corresponding t r i g g e r i n g  

even t  is shown i n  t h e  r i g h t  hand column: t h e  v e h i c l e  v e l o c i t y  

reaching 170 k t s  (V = 170) ,  a f t e r  having undergone a d e c e l e r a t i o n  

from 190 k t s .  Responses t r i g g e r e d  by ATC r e q u e s t s  a r e  s i m i l a r l y  

shown. For example, a t  tgo = 500 sec, t h e  PF i n i t i a t e s  a t u r n  to  a 

270 deg heading, an  a c t i o n  t r i g g e r e d  by t h e  ATC heading r e q u e s t  

shown i n  t h e  right-hand column. I n  t h i s  case, t h e  p a r e n t h e s e s  

i n d i c a t e  t h a t  t h e  a c t u a l  r e q u e s t  was made e a r l i e r ,  a t  

tgo = 1010 sec. 



TGO/ R 4/V/H 

I n i t i a l  Conditions: 

Captalr~ (PF) F l r s t  Of f i cer  (PIF) Second Of f icer  (SO) h r k e r s ,  ATIS, 
a n .  An/H 
milestones 

Raro A1 t imeter 
"Set, Crosscheck" 
a t  18.000 

1500/ 10000/190/210 A l t i tude A ler t  "OFF* 
A t  10000 

Descent Check1 1st 
"Requestw 

Descent Checkl is t  'Start' 

D I .  Shoulder Harness 
"ONW 

Dl. Shoulder Harness? 

Dl. Shoulder Harness 
'OW" 

Inboard Land lng 
'011" 

Lights 

Table 2.10: Standard Approach Time-Line 

DZ. Fuel Panel 'Set' 
8. A l l  r a i n  tank 

f u e l  boost 
s v i  tches 'OW' 

2. A 1 1  crossfeed valve 
selectors '!+eta i n  
accord w i th  Fuel 
management Procedures 

D3. Hydraulic Systms 
'C hec k' 

1. Hg. Sys B pmp 81  
switches 'OM" 

2. A 1 1  pressures ( i n c l .  
brakes) end quan t i t i es  
normal 

3. ~ 1 1  low pressure 
1 i gh t s  *OFFm 

D4. Pressurizatioo 'Sat' 
1. Cabin A l t i tudes set to 

200' below A€ 
2. A 1 1  pressures ( i nc l .  

brakes) and quan t i t i es  
name1 

DS. Pack Cooliw Doors 
open 



D7. Landing Data Card 
wComp~te" and wPsss" 
t o  Captaln 

1. Transcribe LTIS 1.6.. 
wind* te rp . ,  osra., 
and RUT selected 

2. C a p u t e  GUT and VREF 
(130) 

3. Corpute VBUG (134) 
I). T r e n s c r l k  CIA EPl *s  

08. "Setw CSD T a p  
Sui tehes * Ina  

Descent Checklist 
wCorpletew 

Landlng Datn "Check. Set" 
1. Sct VBUG ( 1 3 4 )  
2. Set EPR buss t o  C/A 
3. Set other Alrspeed 

as desired 

Cab I n  Announcenents 
awd Company 
Couunlcat ions A I M  

F i n a l  Br ie t lng  "Star tn  
1. Runvay t o  be taken 
2. Type o f  approach 
3 .  UhP course 

Cabin Announcements 
and C a p m y  
Comnunlcetions A/R 

Cabin Announcemats 
and Compmv 
Cacnunlcatlons A/B 

F i n a l  BricClng 
~Conple te"  

Fue l  Heat " A d j w t W  
I /  R 

lonm/  1 YO/? 10 Continuous I g n l  t i o n  
'011' 

I T I S :  
I .  l V l  
2. Turbulence 
3. Ytnd S p e d  
11. W i n d  D i r e c t i o n  
5. L l t .  Setting 



"Set" A l  t i t u d t  
A l e r t  t o  3500 

10001 10n00/190/71~ Turn t--~ HC "R.?((in" 
1 deg/see t u r n  r a t e  

971-91 10n01)/190/270 Turn "End" 
Mainta in  170 deg 

T h r o t t l e  "Adjust" 
Ad Just  t o  make VC 

9551 100001 170/?70 Flaps 15 "Request" 

F laps "Set. Check" 
1. Observe f l a p  

p lacard speeds 
2. Uove f l a p  handle 

( t o  15 deg) 
3. Check l i g h t  

i n d l c 8 t l o n s  a a i n s t  
f l a p  handle s e t t i n g  

9501 10000/170/?70 T h r o t t l e  " AdJust" 
Set t o  f l  i g h t  i d l e  

R l t l t u d e  " t r i m "  
Tr im f--Jr 1800 fpw 
s i n k  r a t e  

"Announce".. ."Out o f  
10000 f o r  3500' 

f n i t l a l  Approach 
Cheek1 i s t  "Request" 

35001 1701270 A l t i t u d e  A l e r t  "OFF" 

T h r o t t l e  "Adjust" 
Set Tor l e v e l  r l  i g h t  

I n i t l e l  Approach 
Check1 1 s t  "S ta r ta  

I 1. Contlnwus 
Igni tion? 

I 1. C o n t l n w u s  
I g n l t l o n  "01" 



3500I l70/?70 t h r o t t l e  "AdJust" 
Adjust t o  make W 

35M)I 160I770 T h r o t t l e  "AdJust" 
Set f o r  l e v e l  f l l ~ h t  

3500/ 160/270 Turn t o  IK *ReuinW 
j deplsec t u r n  r a t e  

3500/160/1r)O Turn "End" 
Watntaln 180 dcR 

T h r o t t l e  "Adjust" 
Set t o  TI iRht  I d l e  

A l  t l tudc "Tr la" 
T r l n  t o r  900 fP 
s i n k  r a t e  

12. seat B e l t ?  

17. Seat B e l t  "01" 

Acknoul edge" AlC 

13.  Al t . ,  F l i g h t  and 
l e v  I n s t r u e n t s ?  

A l c  : 
Kt180 
K=moo 
Hc .120en=zooo 

13. A l t . .  F l t .  and 
Rev l n s t r u e n t n  
"Set. Crosscheck" 
1. Check f o r  warning 

r1-s 
2. Check f o r  i n s t r u e n t  

agreement 
3. Check RF 
4. Conf i rm WRIIW 

selec t o r s / s u i  tches 
for proper s l t i o n  

5 .  C o n r i m  OW  OW 
SUI tch p s i  t i o n s  



?000/ 1601 180 L l t l t u d e  a l e r t  aaFF" 

Throl t l e  "hdjust" 
Set tor. Ievr. T l lgh t  

Turn t o  K: "Begin" 
3 deg1st-c tu rn  ra te  

Z W O /  1601 120 Turn "End" 
Nalntain 12U drg 

C W S  switch "Check" 10. RA/Baro 1It. Bugs 
v e r l t y  l 0 m l l  setting aseta 

3911 ? O m /  l W /  l?tl "Lnnounce".. . 
aLoeal i zer Capturea 

Turn t o  Ht -Begina 
0.5 deglsec tu rn  r a t e  

33?/ROf l ln  7nOO/lbO/9O Turn "Fmd" 
Naintaln 90 dc(l 

SB Lever "MJustw 
Turn SBL DOH 

15. Airspeed E n  Bugs 

15. Llrspeed € P I  Bugs, 
*Set, Crossc?hcckw 

4 I t I t ude  L l e r t  "Set" 
Set t o  0500 



711 .o/ha?qn 7000/1601 .)n 
T h r o t t l e  *Adjust' 
ad just  t n  150 k t -  

a 7 .  q/h7ann ?nwf15s /  9D F laps  75 'Bequest' 

T h r o t t l  r "Adjust" 
5 r t  fo r  l c v r l  f l l uh t  

744.7/5nso93 >ooolr=,r)/.)o C r a r h l r n " I r q u e a t '  

'Trim' t o  In te rcep t  CS 

CJ a c t i v e  

' 1 x 1 5 0  
Flaps "Set. Check' 
I .  Observe f l a p  

ploeard speeds 
2. Hove f l a p  handle 

( t o  75 dc#) 
3. check 1 l g h t  

lm) lca t lons  a(lalnSt 
Clap hamile se t t l nU  

Gear Dnvn '.kt, Check* 
I. Cover Gear 
1. Confirm g ra r  dawn 

(green I l g h t s  .OW*) 
3. C a ~ t l r r ,  red Gear 

am) Obors 
l lah t s  "OFF* 

I yd rau l  lcs. Brakes 
onbn l to rg  

5m Lrvcr  "Arm' 
1. ?*t I e v r r  t o  'arm" S8 *Conf I r a "  
2. Conf I r a  'a rm4'  t a n r l r m  'arrled" 

I lah t  'on" I Iah t  "on' 



F i n a l  hpprnach 
C h r ~ k l  i ~ t  -Rrq :w~*"  

F l n a l  Mpproach 
Check1 t a t  -S ta r tg  

n I q\2(1/q10/ ?O Landi ry  F laps "R-qu*3tg 
t 30 4- r )  

F lap*  " S e t .  Chrck" 
t .  Oba-rwa f l a p  

p l r c a r d  s p r d s  
7. War- f l a p  h a n l l -  

( t o  3-F.) 
1.  Ch-k I i a h t  

I d L - a t  Inn- *aim-t 
f l a p  handle s c t t l n a  

Ff.. T a i l  5kI4 IIRII~. 
"fCF" 

F i .  an S a k l n a ?  

F?. Lmmllng Gear? 

f i .  b u n  In. 1 Green 

161.?/170an 1 6 * ~ / 1 5 n /  90 Thrnt t l  r " 1 4 j u ~ t ~  
I 4  ju%t. t o  malt- 
lan4lnR f l a p  tpc-3 * SS 

Appro.rh Dcstabla- 
I r a t I o n  aRoni torw 
M n j t m  IF. I n s t r u e R t s ,  
h 9 r m u l  l e  pr-ssure. 
ptc . 

F l .  MntlsLjO gChcek' 
F 5 .  Hydraul l c  Pressurc 

an3 Qunntl t les 
I l a r r a l ?  gChcek" 

Fb. T a i l  SkIJ Emtr?nslon 
"C hrc C' 
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C h e c k l i s t  items a r e  i d e n t i f i e d  by a letter code to i n d i c a t e  

Descent (D) ,  I n i t i a l  Approach (I), or F i n a l  Approach (F) . I n  

a d d i t i o n ,  items w i t h i n  a c h e c k l i s t  are numbered according to t h e  

sequence of t h e i r  execut ion ,  and items r e q u i r  ing  crew i n t e r a c t i o n  

are tagged by corresponding letter-number p a i r s .  Th i s  tagging t h u s  

p rov ides  a l inkage  between c h e c k l i s t  q u e r i e s  by one crew member and 

corresponding responses  by one o r  both of t h e  o t h e r  crew members. 

The t ime- l ine  presumes t h a t  t h e  v e h i c l e  'breaks ou t"  a t  250 f t  

W E ,  and t h a t ,  from t h i s  p o i n t  on, t h e  v i s u a l  c u e s  a r e  adequate  to 

con t inue  t h e  approach and to land t h e  veh ic le .  It is also assumed 

t h a t  t h e  PNF begins  h i s  sea rch  for runway c u e s  a t  a s e a r c h  h e i g h t  

100 it above DH, a c q u i r e s  those  c u e s  a t  t h e  breakout  a l t i t u d e ,  and 

makes t h e  a p p r o p r i a t e  runway-in-sight c a l l .  Although n o t  shown on  

t h e  t ime-l ine,  it is a l s o  assumed t h a t ,  a t  t h i s  p o i n t ,  t h e  PNF 

r e t u r n s  to ins t rument  monitoring,  whi le  t h e  PF t r a n s i t i o n s  to t h e  

e x t e r n a l  runway cues,  and l a n d s  t h e  veh ic le .  

2.2.2 Monitored Approach Time-Line 

A monitored approach procedure was de f ined  i n  accordance wi th  

procedures used by some U.S. c a r r i e r s  dur ing  CAT 11 approaches. 

The MAP was de f ined  to  have most o f  t h e  procedura l  e lements  of  t h e  

above-described SAP. The excep t ions  a r e  t h e  SAP procedures  g iven  

i n  t h e  preceding s u b s e c t  ion;  t h e  fo l lowing MAP procedura l  e lements  

a r e  de f ined  to r e p l a c e  themx 

i 

i 
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1. A p o t e n t i a l  e x i s t s  for t r a n s f e r  of v e h i c l e  c o n t r o l ,  so 
that  PF and PNF roles can  change. For ease of d i s c u s s i o n ,  
we assume h e r e  t h a t  t h e  c a p t a i n  (CAPT) is i n i t i a l l y  t h e  
PNF, and t h e  f i r s t  o f f i c e r  (F/O) is i n i t i a l l y  t h e  PF. 

2. Bath p i l o t s  a r e  "headdown" on ins t ruments ,  no later than  
t h e  o u t e r  marker. 

3. The CAPT (PNF) beg ins  to s e a r c h  for e x t e r n a l  v i s u a l  cues ,  
a t  no l a t e r  than  a specified "search  he igh t"  (SH) , whi le  
con t inu ing  to monitor instruments .  

4. I f ,  before t h e  DM, t h e  CAPT (PNF) a c q u i r e s  a n  adequate  
view of t h e  runway, and determines  t h a t  a normal approach 
to landing can  be made s o l e l y  on  t h e  basis o f  e x t e r n a l  
v i  s u a l  cues,  t h e  CAPT (PNF) announces " taking c o n t r o l ,  " 
takes over  v e h i c l e  c o n t r o l ,  and c o n t i n u e s  t h e  approach ( a s  
t h e  PF) . I f  t h e  CAPT (PNF) a c q u i r e s  a n  adequate  view of 
t h e  runway, b u t  d e c i d e s  t h a t  a normal approach to land ing  
cannot  be made ( e i t h e r  because of v e h i c l e  p o s i t i o n i n g  or 
a n t i c i p a t e d  d e t e r i o r a t i o n  of t h e  v i s u a l  environment) , t h e  
CAPT (PNF) announces "missed approach,* and r e t u r n s  to 
ins t rument  monitoring.  

5. X f  t h e  F/O (PF) h e a r s  " taking c o n t r o l , "  the F/O (PF) 
r e l i n q u i s h e s  v e h i c l e  c o n t r o l ,  and c o n t i n u e s  to monitor t h e  
ins t ruments  (as t h e  PNF). I f  t h e  F/O (PF) h e a r s  "missed 
approach," t h e  F/O (PF) i n i t i a t e s  t h e  missed approach 
procedure. f f  t h e  F/O (PF) h a s  heard n e i t h e r  of  these 
announcements by t h e  DH, the  F/O (PF) announces "missed 
approach," and i n i t i a t e s  t h e  missed approach 2rocedure. 

S ince  t h e  MAP d i f f e r s  from the  SAP o n l y  i n  t h e  l a s t  few 

hundred f e e t  of  t h e  approach, we show t h e  MAP t ime-l ine,  i n  Table 

2.11, to s t a r t  from t h e  S R  and proceeding to  TD. The MAP t ime- l ine  

f o r  e v e n t s  p r i o r  to t h i s  time would be i d e n t i c a l  to t h a t  shown for 

t h e  SAP i n  Table 2.10, wi th  t h e  f l y i n g  d u t i e s  of t h e  Capta in  and 

F i r s t  O f f i c e r  r eve rsed  (i.e., CAPT is PNF and F/O i s  PF). 
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A s  w i t h  the SAP time-line, a "break outn altitude of 250 f t  

AFE is presumed. It is also assumed here that the CAPT (PNF) 

begins h i s  search for runway cues a t  a search height 100 f t  above 

DM, and acquires those cues a t  the breakout altitude. After making 

- the appropriate takeover cal l ,  the CAPT takes control of the 

vehicle from the F/O, who remains on instruments to monitor the 

CAPT'S approach progress. 

2.2.3 Missed Approach Procedure 

Since neither ~f the above time-lines required the execution 

of a missed approach, the associated procedure is not called out. 

The procedure is detailed, however, i n  Table 2.12, which shows the 

specific control actions involved i n  the procedure, and the 

predicating conditions for their execution. The f i r  st condition is 

simply an affirmative decision to execute the overall procedure. 

The affirmative decision is followed by an immediate application of 

power and a change i n  pitch to  10 deg nose-up by the PF. These 

actions are followed by a request to the PNF for retraction of 

flaps to 25 deg. When a positive rate of climb has been 

established, PF requests gear retraction by PNF, and later ,  a t  an 

airspeed of (VBUG + l o ) ,  a retraction of flaps to 15  deg. I n  the 

event that airspeed reaches (VBUG + 10)  before a positive rate of 

climb is attained, the lat ter  two steps are performed i n  the 

reverse order. 



- 
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Table 2.12: Missed Approach Procedure 

1. dec ide  to  execu te  
missed approach 

Condit ion 

1 [ i) apply  "go-around" t h r u s t *  

Action 

I I ii) p i t c h  up t o  10 deg 
nose-up a t t i t u d e  

I iii) r e t r a c t  f l a p s  to  2 5  deg 

2. a t t a i n  p o s i t i v e  climb I re t r a c t  g e a r  
r a t e  

3. a t t a i n  a i r s p e e d  of  
(VBUG + 10) I retract f l a p s  to  15  deg 

* according t o  landing d a t a  c a r d  EPR v a l u e s  
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During execution of a  missed approach, it is assumed that a l l  I 
actions concerned with  thrust and attitude management are made ! 

directly by the PF and that a l l  actions concerned wi th  control i 
surfaces and gear are made by the PNF on request by the PF. 

The decision to  execute a  missed approach is less well-defined 

than the procedure i t se l f .  However, a  se t  of general conditions 1 
can be specified for defining when the procedure should be I 
executed, and these are: 1 
1, Vehicle altitude is less than FE f t  AFE, and a  failure is noted 

i n  either a  f l i g h t  instrument or an ILS instrument component. 1 
4 

2. The vehicle is w i t h i n  the OM, b u t  not stabilized on the glide 1 i slope, 
I 

3. An adequate view of the runway is acquired before DB, but a  1 
I 

normal visual approach-to-landing cannot be made, either j 
because of vehicle positioning wi th  respect to the runway, or 
because of anticipated deterioration of the visual environment. 1 

4 .  An adequate view of the runway is not acquired by the time the i 
vehicle reaches DH. i 

1 

The f i r s t  item above leaves unspecified the "failure heightn 1 

I 
ceiling (FH), b u t  it would appear that 500 it AFE would be a  A 

reasonable value. Instrument failures relating to t h i s  condition 

would be either "hard" failures, where the nature of the failure is 

obvious, or "soft" failures, such as migh t  be associated w i t h  an 

instrument disagreement between crew members. 
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The second item presume8 that stabilization requires the 

vehicle to be w i t h i n  a specified approach nwindow,m defined along 

specific position, velocity, and attitude coordinates. The 

position window is defined i n  terms of localizer deviation, glide 

slope cmiation, and altitude deviation (from a given nominal 

range-dependent alt i tude);  the velocity window i n  terms of 

deviations from the nominal approach speed and s i n k  rate; and the 

attitude window i n  terms of rol l ,  pitch, and yaw deviations from 

nominal trim values. Implicit i n  t h i s  window definition is that 

the rates-of-change of these vat iables are also w i t h i n  specif ied 

limits, to ensure stabilization throughout the entire course of the 

approach. 

The third item requires that two conditions be met for 

continuing the approach. First ,  the runway view m u s t  be clear and 

detailed to an extent which would allow for an approach and landing 

utilizing only out-the-window cues. T h i s  implies that possible 

future deterioration of the visual environment mus t  be considered, 

since a later loss of out-the-window cues would preclude a visual 

landing. Given an adequate visual environment, a second 

requirement is that the vehicle be w i t h i n  an approach window which 

is sufficiently small to allow for a normal approach and landing. 

A s  i n  the previous item, a multi-dimensional window is presumed, 

w i t h  sufficiently narrow tolerances to ensure sufficiently accurate 

touchdown footprints w i t h  a minimum of vehicle maneuvering. 
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The final item precludes a continued approach below DR, 

without the prior acquisition of an adequate out-the-window cue 

set. It presumes that no further attempt will be made to acquire 

the runway environment, and that a missed approach will be executed 

in a timely manner. 
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3. PROCRU: A MODEL FOR ANALYZING FLIGET CREW PROCEDURES 

The task that has j u s t  been deecribed involves a wide range of 

human behaviors and activities, both cognitive and 

perceptual-motor. These include monitoring and 

information-processing , f l i g h t  control, decision-making, execution 

of standard procedures, and conmaunication wi th  other crew members 

and wi th  ATC. The goal here war to develop a model for t h i s  

complicated process that would provide a means for systematic 

exploration of questions concerning the impact of procedural and 

equipment design and the allocation of resources i n  the cockpit on 

performance and safety i n  approach-to-landing. 

Given the objectives we have for the model and the nature of 

the issues we hope to analyze wi th  it, several general implications 

for modelling the task emerge. First, it is clear that a system 

model is needed; one that accounts for the interactions of crew, 

procedures, vehicle, approach geometry, and environment. Second, 

the issues of interest revolve pr incipally around allocation of 

tasks i n  the cockpit and crew performance wi th  respect to the 

cognitive aspects of the tasks. The model must, therefore, deal 

effectively w i t h  information processing and decision-making aspects 

of human performance. Third, despite the high cognitive content of 

the approach task, a large partion of the crewCs activities 
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modelled a t  a level that i e  adequate for determining how 

performance on these tasks interferes wi th  other tasks (and 

vice-versa) and for evaluating t h e  consequences of failure t o  

execute important procedurer. Fourth, coarmunication among crew 

members and between the crew and An: must  be considered i n  the 

model, a t  least w i t h  respect to accounting for the transfer of 

information and the load imposed by such communication, Finally, 

to examine the impact of vat ious system conditions and assumptions, 

it must be possible to compute performance parameters of interest. 

Moreover, for analysis purposetit, it w i l l  be very ueeful to  maintain 

an estimate of the information possessed by each member of the crew 

a t  each instant i n  time. T h i s  w i l l  allow evaluation of the 

information upon which decisions are made i n  the model. In 

addition, i t  may provide an implicit  perfotmance metric (not 

measurable i n  a simulation) for evaluating vat ious approach 

procedures. 

PROCRU (Procedure Oriented Crew Model), i s  a simulation model 

for examining crew procedures i n  approach to landing, developed 

w i t h  the above requirements i n  mind. It includes a system model 

and a model for each crew member. The crew i s  assumed to be 

composed of three members: pi lot  f l y i n g  (PI), pi lo t  not f l y i n g  

(PNF) and second officer (SO). I n  the present implementation of 

PROCRU, the SO model does not include any information processing or 
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decision-making conrponenta. Rather, the 80 is modelledby a purely 

deterministic program that responds t o  events and generates 

requests. PF and PNF, on the other hand, are each repre~ented by 

complex human operator models which have the sarm general form but 

differ i n  detail.  The basic structure of the PROCRO model for PF 

or PItF ia  illustrated i n  Figure 3.1. Xn the remainder of this 

chapter we describe the elements i n  that structure. 

3 . 1.1 Vehicle Dynamics 

The representation of vehicle dynamics must be sufficient to 

capture the essential aspects of the task b u t  there is an inceltive 

(computational cost) to keep it as simple as possible. Certainly, 

the equations of motion m u s t  be adequate to describe the position 

and velocity of the aircraf t  relative to the nominal approach path, 

b u t  for the issues to be addreased here linearized equations can be 

used and inner-loop (high-f requency) dynamics ignored, t o  a f i r  st 

approximation. Thus ,  we use as  a basis for the dynamic 

calculations the following standard point mass equations for the 

vehicle trajectorys 

mV - T cos a - mg~in Y - D( a )  

(mVcos Y 16 - ( ~ ( a )  + T s i n  a )  s i n 4  
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Figure 3.1: Model Structure for Crew Member Analysis 
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h = Vain Y 

x = VCOS Y COS J) 

y 3 VCOS Y s i n  J) 

where t h e  v a r i a b l e s  a r e  de f ined  a s  

v e l o c i t y  

heading 

f l i g h t  p a t h  ang le  

d i s t a n c e  nor th  from t h e  g l i d e  slope t r a n s m i t t e r  

d i s t a n c e  e a s t  from t h e  g l i d e  slope t r a n s m i t t e r  

a l t i t u d e  above t h e  runway (assumed to be a t  z e r o  

e l e v a t i o n  1 

L i f t  ( func t ion  of angle  of  a t t a c k )  

Drag ( func t ion  of angle  of  a t t a c k )  

angle of a t t a c k  

bank ang le  

Thrus t  

These equa t ions  may be w r i t t e n  i n  t h e  g e n e r a l  form 

where - X = (V, JI ,Y ,h,x,y) is t h e  v e h i c l e  s t a t e  vec to r  and U - = 

(T, @ , a ) is t h e  c o n t r o l  input .  
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The scheme u t i l i z e d  to  " i n t e g r a t e n  t h e  above e q u a t i o n s  and to 

p rov ide  t h e  l i n e a r  i zed  e q u a t i o n s  needed for implementing t h e  

c o n t r o l  and e s t i m a t i o n  p o r t i o n s  o f  PROCRU is somewhat nove l  and, w e  

b e l i e v e ,  is i n  keepin!? ~ L t h  t h e  manner i n  which approach  

t r a j e c t o r i e s  are flown. I t  is d e s c r i b e d  i n  d e t a i l ,  s p e c i f i c a l l y  

f o r  Eqn. (3 .1 ) ,  i n  Appendix C. B r i e f l y ,  f i v e  *nominal t r a j e c t o r y *  

segments,  co r r e spond ing  to  f i v e  s t a n d a r d  maneuvers, are de f ined :  

1) s t r a i g h t  and l e v e l  f l i g h t  ("S 6 L n )  

2 )  d e c e l e r a t i o n  a t  c o n s t a n t  f l i g h t  p a t h  a n g l e  and heading  

(*DECELn ) 

3)  t u r n  a t  c o n s t a n t  r a t e ,  a i r s p e e d  and a l t i t u d e  (wTURN") 

4 )  f l a r e  c o n s t a n t  r a t e  o f  change o f  f l i g h t  p a t h  a n g l e  a t  

c o n s t a n t  s p e e d  and heading  ( nFLARE") 

5)  descend a t  c o n s t a n t  s i n k - r a t e ,  a i r s p e e d  and head ing  

( " DSCNT" ) 

I t  is p o s s i b l e  to de t e rmine ,  a l g e b r a i c a l l y ,  f o r  e a c h  maneuver, t h e  i 

I 
" t r i m n  o r  "nominal" c o n t r o l s  3, n e c e s s a r y  to a c h i e v e  t h e  d e s i r e d  1 

I 

c o n d i t i o n  and, moreover,  to  i n t e g r a t e  t h e  co r r e spond ing  e q u a t i o n s  , 

o f  motion e x a c t l y  to  o b t a i n  &(t)  (See ~ p p e n d i x  C ) .  The e q u a t i o n s  
4 1 

c a n  then  be l i n e a r i z e d  abou t  t h e  p a r t i c u l a r  segment to  y i e l d  
I 

e q u a t i o n s  o f  t h e  form 

where 
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and t h e  s u b s c r i p t  Ni  means t h a t  t h e  q u a n t i t y  is e v a l u a t e d  a long  t h e  

i ' th nominal segment. 

W e  n o t e  t h a t  it is n o t  necessa ry  f o r  a  nominal segment to 

s t a r t  a t  a  p a r t i c u l a r  p l a c e  (see d i s c u s s i o n  o f  procedures  below). 

I n  a d d i t i o n ,  because t h e  system matrices change from segment to 

segment (and from moment t o  moment i n  a TURN segment) ,  t h e  

l i n e a r i z e d  e q u a t i o n s  (3.3) w i l l  be t ime-varying (p iecewise  

c o n s t a n t )  over  t h e  approach t r a j e c t o r y .  F i n a l l y ,  w e  may g e n e r a l i z e  

Eqn. (3.2) t o  inc lude  wind and o t h e r  p o s s i b l e  d i s t u r b a n c e s  by 

r e w r i t i n g  it a s  

where WN is  a zero-mean whi t e  n o i s e  wi th  cova r i ance  W and %i is 
i -Ni 

a  d e t e r m i n i s t i c  d i s t u r b a n c e  t h a t  is unknown to  t h e  p i l o t .  Eqn. 3.,5 

is i n  a form tha t  is s t a n d a r d  f o r  app ly ing  t h e  Optimal Con t ro l  

Model (OCM) o f  t h e  human o p e r a t o r  121. 

3.1.2 Subsystems 

A i r c r a f t  subsystems, such  as eng ines ,  h y d r a u l i c s ,  etc., a r e  

n o t  modelled i n  any d e t a i l .  Subsystem o p e r a t i o n ,  when r e q u i r e d  by 
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procedures,  is accomplished, or no t ,  as determined by t h e  models 

f o r  t h e  crew, (See d i s c u s s i o n  of procedures  and d i s p l a y s ) .  

3.1.3 ATC Communications 

A i r  T r a f f i c  c o n t r o l  v e c t o r i n g  commands are prepragrammed as 

p a r t  of t h e  approach scenar io .  They take t h e  form of a u d i t o r y  

guidance commands, to be processed and executed  by t h e  PF. 

3.1.4 Instrument  Landing System 

The ins t rument  l and ing  system model i n c l u d e s  t h e  g l i d e  s l o p e ,  

l o c a l i z e r ,  o u t e r  marker and middle marker. Computed v e h i c l e  

p o s i t i o n  is used to compute " a c t i v a t i o n "  o f  any of t h e s e  ILS 

s i g n a l s  and t o  determine  g l i d e  s l o p e  and l o c a l i z e r  e r r o r s  i n  "dots"  

(See Appendix B) . ILS t r a n s m i t t e r  p o s i t i o n s  a r e  as i n d i c a t e d  i n  

Chapter 2. The model does  n o t  p r e s e n t l y  inc lude  any beam errors 

b u t  t h e s e  could  be added wi thout  d i f f i c u l t y .  

3.1.5 Informat ion  Sources  

W e  assume t h a t  four  b a s i c  s o u r c e s  or " c l u s t e r s "  of 

informat ion  a r e  a v a i l a b l e  to a crew member: e x t e r n a l  v i s u a l  scene 

information,  v i s u a l  informat ion  concerning v e h i c l e  s t a t e  from t h e  

f l i g h t  ins t ruments ,  v i s u a l  informat ion  concerning subsystems and 

a u d i t o r y  information.  
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The information from the external visual scene depends on the 

position and attitude of the aircraf t  relative to  the airf ield and 

on the weather. Geometric analysis allows u s  to  define how the 

"displayedn quantities, , depend on vehicle s ta te  and scene 

content (see Appendix D) . Previous analyses of manually controlled 

approaches w i t h  visual scene information using the OCM have been 

performed fairly successfully wi th  such  a representation [3,4]. 

The information on the instrument panel, y ~ ,  can relate to 

vehicle status information (f ram f l i g h t  instr urnentation) , command 

information (from fl ight  directors) and subsystem information 

(including subsystem status and visual nalarmsn) . The information 

may be discrete as well as  continuous. We assume t h i s  information 

is separated into two clusters, one for vehicle state-related 

information, yI, and one for subsystem information. For the 

PROCRU analysis conducted herein, the f l i g h t  displays are assumed 

to indicate airspeed heading, altitude, rate-of -climb and, after 

beam intercept, localizer and glide slope error. The subsystem 

displays are not modelled w i t h  respect to information content b u t  

serve as an attention distraction or "sinkn when a procedure 

requiring subsystem operation is being per formed (see below) . 
Auditory information includes command information from ATC, 

auditory alarms, and communications from other crew members such as 

callouts, requests, etc. 
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The mode1 f o r  t h e  human o p e r a t o r  ( P I  or PNF) c o n t a i n s  

submodels f o r  monitoring,  informat ion  process ing ,  decision-making 

(procedure s e l e c t i o n )  and a c t i o n .  These a r e  d i scussed  below. 

3.2.1 Monitor 

The monitor sub-model accounts  for t h e  opera tor ' s  sensory  

l i m i t a t i o n s  a s  w e l l  a s  for moni tor ing  d e c i s i o n s  (i.e., a l l o c a t i o n  

o f  a t t e n t i o n ) .  The v i s u a l  sensory  l i m i t a t i o n s  a r e  modelled i n  t h e  

same manner a s  i n  t h e  OCM [2,3] ,  excep t  t h a t  t h e  p e r c e p t u a l  d e l a y  

is neglected.  I n  p a r t i c u l a r ,  an  o b s e r v a t i o n  n o i s e  and a t h r e s h o l d  

a r e  a s s o c i a t e d  wi th  each observed v i s u a l q u a n t i t y .  The t h r e s h o l d s  

a r e  important  f o r  e x t e r n a l  v i s u a l  scene pe rcep t ion ;  for example, i n  

l i m i t i n g  t h e  q u a l i t y  o f  a v a i l a b l e  v e r t i c a l  guidance information.  

Thus, i f  and & correspond to d i sp layed  informat ion  concerning 

v e h i c l e  s t a t e  from t h e  e x t e r n a l  scene o r  ins t ruments ,  r e s p e c t i v e l y ,  

then  

where vs and xI a r e  whi te ,  zero-mean g a u s s i a n  n o i s e s  wi th  t h e  

a u t o c o r r e l a t i o n  of 5 given  by 
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where 

/ 6 ( t - s )ds  = 1 t=s, 0 otherwise 
-a 

6 
i j 

= 1 i=j, 0 otherwise 

The quantity fE i n  (3.7a) i s  the attention devoted to  cluster E 

e .  external scene) and fE is the attention to  the j-th 
j - 

"displayn i n  that cluster.  
N ~ j  

is the random i n p u t  describing 

function for a threshold w i t h  value a The base observation noise 
j  

covariance V E ( t )  has a constant component vEO as  well as a portion 

that  scales w i t h  the signal; PE is the noise-to-siynal ra t io .  A 

similar set of expressions holds for t he  autocorrelation and 

autocovariance of I=. 

Auditory information is  assumed t o  be heard correctly. It is 

stored i n  a memory buffer for subsequent processing. 

The operator cannot process a l l  sources of inforlaation 

simultaneously and m u s t ,  therefore, decide which sources to  "attend 

to." I n  the case of visual information there is a fundamental 
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choice as to where to fixate, on the external world or on the 

instrumri panel. If the instrument panel is chosen, the operator 

must decide upon which instrument to fixate. We shall also assume 

that the auditory information similarly wcompetesw with the visual 

information for operator attention. 

Thus, we let 

where fg and fI are defined above and fs and fA are the attentions 

devoted to subsystem displays and the auditory channels, 

respectively. The quantity fg is either one or zero, depending on 

whether or not a "request" for ~ubsystem information has been made. 

Similarly, fA is one if an auditory message is being processed and 

zero otherwise. Within the flight displays, we follow [ S ]  and 

assume that attention is shared, and the observation noises 

modified, as indicated by (3.7a,b). The fractions devoted to 

individual flight displays st a given time are determined by the 

particular procedure invoked at that time, in a manner to be 

described later. For the moment, we simply note that if a crew 

member is observing the flight instruments and a procedure is 

activated that issues a "monitoring request" for a given display, 

then the fraction of attention devoted to that display is 

incremented to approximately full attention while the fractions 
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devoted t o  the  remaining d i sp l ays  a r e  decremented correspondingly. 

To summar iae ,  when audi to ry  or subsystem information is 

requested by a procedure, a t t e n t i o n  is d iver ted  from the  f l i g h t  

d i sp l ays  and no information concerning the  veh ic l ec s  state is 

obtained (except i f  it comes v i a  the  audi to ry  channel from another 

crew member). When f l i g h t  d i sp l ays  a r e  being observed, a t t e n t i o n  

is assumed t o  be shared among the  d i sp l ays  on a continuous basis 

ins tead  of being r e s t r i c t e d  t o  a s i n g l e  d i sp l ay  a t  a time. 

Employing t h i s  'mixed s t r a t e g y n  for  f l i g h t  d i sp lay  scanning appears 

t o  us to hava considerable  t h e o r e t i c a l  merit i n  an environment i n  

which randomness is an e s s e n t i a l  p a r t .  

3.2.2 Information Processor 

The information processor por t ion  of t h e  model c o n s i s t s  of two 

sub-models, an nestimatorn and a "d i sc re t e  event  de t ec to r  The 

est imator  is i d e n t i c a l  to t h a t  used i n  t h e  06M and is a 

time-varying Kalman f i l t e r .  The i n t e r n a l  model for  t h e  f i l t e r  

changes w i t h  changes i n  dynamics r e s u l t i n g  from a l t e r a t i o n  of the  

"nominaln o r  from f l ap  o r  gear extensions  o r  w i t h  changes i n  

dis turbance c h a r a c t e r i s t i c s .  I n  a manual approach, t h e  PF has  

knowledge of t h e  c o n t r o l  inputs ;  non-flying crew do not  have such 

information. 
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The outputs of the estimator are the estimate of the perturbed 
n 

state, t the covariance of the estimation error, and, perhaps, 

the innovations sequence, and its covar iance. + We will assume that 
a 

the probability distribution for - x is normal, in which case x and C - - 
are sufficient statistics for determining the conditional density 

of x - based on past observations ]L, ~(xly). Thus, the estimator 
a 

produces status information, - %,needed for control and nsubjectivea 
probability estimates that can be used for decision-making or 

detection. Note that the error covariance,g, is a measure of the 
4 

operator's uncertainty in the estimate x and will be a major - 
factor in determining monitoring decisions, as will be seen below. 

The discrete event detector is intendeO to model those aspects 

of operator information processing other than vehicle state 

estimation, Typically, it is concerned with determining or 

detecting that an event has occurred which "enablesa a subsequent 

procedure execution, The event may be a failure (that did or did 

not result in an alarm), a request for action (say from ATC), or 

some annunciated condition (e.g., crossing OM, glide slope active 

or, passing through some altitude). The inputs to the event 

detector are outputs of visual alarms, auditory information, and - 
the outputs of the state estimator. The state information is used 

to detect state related events such as an unstabilized approach 

condition. 

%1n the present implementation of PROCRU, it is assumed that the 
nominal etate &(t) is known to the crew. 
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Eighly sophisticated models exist for certain types of failure 

detection based on state estimation, and these might eventually be 

incorporated i n  the event detector model (e.g.,[b]). We did not 

get so sophisticated here, however. We assume, simply, that the 

occurrence of an event is detected with a specified, f ini te  

probability by the crew.* Rowever, the nature of the event is 

assumed to be unknown u n t i l  the procedure for decoding nessages 

(see Chapter 4 )  is invoked. The eelection of t h i s  procedure can be 

delayed by the requirements to perform other tasks, t h u s  delaying 

the effective time of event detection. Once the message associated 

wi th  the event is decoded, it w i l l  generally result i n  the 

"enabling* or "triggering" of an appropriate procedural response. 

3.2.3 Procedure Selector 

The operator is assumed to have a number of procedures or 

tasks that may be performed a t  each instant. These aprocedures* 

might be quite general, such as "fly th* airplanen or "monitor the 

approach," or they might be quite specific, such as performing a 

particular checklist or requesting a specific flap setting; they 

are deecribed i n  detail i n  Chapter 4. Here, we discuss the model 

for procedure select ion. 

a The probability is chosen to be one for this s tudy ,  for simpliGity. 
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We assume that the operator knows what is to be done and, 

essentially, how to accolagliah the objeative. However, he mus t  

decide what procedure to do next, Th i s  is a decision among 

alternatives and the procedure selected is assumed to be the one 

w i t h  the highest expected gain for execution a t  that time. The 

Expected Gain for executing a Procedure, EGP, is a function that 

is selected to reflect the urgency or priority of that procedure as 

well as its *valuea. I n  addition, the EGP can be a function of 

the *enablingw state of the procedure. Thus, i f  a procedure were 

not *enabledm it would have zero gain and would not  be chosen; 

i f  the enabling event had a non-zero probability of occurrence, the 

procedure might then be selected. 

In  PROCRO, we have assumed the EGP functions have the 

following general form (specific expressions are given i n  Section 

4.3.3) t 

where f denotes the I t h  procedure, G ( f )  is a function t h a t  reflects 

the "situational relevance* of the procedure and G o ( I )  is a 

constant that depends on the relative "valuea of the procedure. 

Pot procedures that are triggered by the operator's internal 

assessment of a condition related to the vehicle state-vector, the 
h 

G (I) functions are appropr iate subjective probabilities, based on x - 
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and - x ,  as determined by the information processing portion of the 

model. Procedures that are triggered by events external to the 

operator, such as  ATC commands, comunications from the crew, etc., 

are characterisad by O's that are explicit functions of time. For 

either type of function, the gain for performing a procedure w i l l  

increase, subsequent to the perception of the triggering event, 

u n t i l  the procedure is performed or u n t i l  a time such that the 

procedure is assumed to be wmissedw or no longer appropriate for 

execution. 

The Go terms have two principal purposes. F i r s t ,  they are 

used to establish a "defaultw procedure for each operator by 

assigning a base value for EGP for that procedure that is greater 

than for any other one. (The G ( 1 )  for any other procedure m u s t  

exceed t h i s  base value before the procedure can be selected.) For 

PF the default is f l y i n g  the airplane, whereas for the PNF > t  is 

monitoring the vehicle's status. The second purpose of the Go term 

i s  to establish priorit ies among procedures that might have the 

same situational relevanse a t  a given time. 

Procedures may be comprised of a number of sub-procedures, so 

that a t  the completion of each sub-procedure, a decision to 

continue must be made. This w i l l  permit interruption of such a 

procedure, depending on the outcome of the decision. 
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We believe that t h i s  model for procedure selection captures 

many important aspects of human performance i n  a multi-task 

environment, and is directly relevant to investigating the efficacy 

of f l ight  crew procedures. It allows for procedures to be misaed 

and/or interrupted: even flying the airplane may be neglected, as 

can happen. Although we do not expect sub-procedural steps to be 

performed out of order w i t h  t h i s  modelling approach, it would be 

possible to preprogram such errors i f  desired. 

The output of the procedure selector is a choice of the 

procedure to perform next; procedure (or sub-procedure) k* is 

selected according to r 

k* = ARG MAX EGP (1) 

3.2.4 Effectors 

The selection and execution of a procedure w i l l  result i n  an 

action or a sequence of actions. Three types of actions are 

considered : control actions, monitoring requests and 

communications. The control actions include continuous manual 

f l ight  control i n p u t s  to the aircraf t  and discrete control settings 

(switches, f lap settin7s, etc.) . Monitoring requests resqlt from 

procedural requirements for specific information and, therefore, 

raise the attention allocated to the particular information source. 
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We note that verifying that a variable is w i t h i n  l i m r  ts may not 

require an actual instrument check, i f  the operator already has a 

"conf identa internal estimate of that vat iable. Communications are 

verbal requests or response? as demanded by a procediare. They 

include callouts, requests or commands, and communications to  ATC. 

Associated w i t h  each procedural action is a time to 

complete the required action. (It is possible to modify PROCRU to 

allow for a probabilistic distribution of action times) . When the 

operator decides to execute a specific proceeure, it is assumed 

that he is "locked i n N  to the appropriate mode for a specified 

time. For example, i f  the procedure requires "checkingN a 

particular instrument and it is assumed that it takes t seconds to 

accomplish the check, then the "monitorN w i l l  not attend to other 

information for that period, (except for a minimal residual 

attention), nor w i l l  another procedure be executed. 

In  PROCRU, procedural implementation is modelled as essentially 

error free. However, errors i n  execution of procedures can occur 

because of improper decisions that result from a lack of 

information (quantity or quality) due to perceptual, procedural and 

workload limitations. If  the effects of action errors are also to 

be analyzed, t h i s  is accomplished by deliberately inserting such 

errors directly into the model. It  should also be pointed out that 

verbal communication is modelled directly as the transfer of either 

state, command or event information. 
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Summary 

In the previous sections, we have described the structure of 

the PROCRU model for analyzing crew procedures in 

approach-to-landing . The model employs the informat ion processing 
structure used in the Optimal Control Model and in recent models 

for monitoring and failure detection, Mechanisms are added to this 

basic structure to model crew decision-making in a multi-task 

environment, Decisions are based on probability assessments and 

potential mission impact (or gain). Sub-models for procedural 

activities are also included. Where these procedures affect 

aircraft responses or the information state of the crew, the 

effects are accounted for explicitly; where they affect sub-system 

operation, only the attentional load they impose is considered. 

Procedures can be interrupted and finished subsequently, or not 

completed at all, based on decisions made by the model. However, 

the initial implementation of the model does not permit procedural 

steps to be skipped over or reordered. 

The model distinguishes among external visual, instrument 

visual, and auditory sources of information. The visual 

perception models incorporate appropriate limitations for obtaining 

information. The auditory channel contains a buffer to allow for 

storage in memory of information until it can be processed. These 

models of the information sources, along with the monitoring and 
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information processing models, allow for investigation of isaues 

related to instrument display and external viewing, and to the 

transfer of information through ATC and crew conmunication. 

A key aspect of the model is the actual definitions of the 

various procedures incorporated. Those are given in the next 

chapter. 
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4. DEFINITIONS OF PROCEDURES 

The d e f i n i t i o n  of procedures is an e s s e n t i a l  s t e p  i n  

developing PROCRU. A l l  crew ac t ions ,  except fo r  t he  dec i s ion  as to 

which procedure to execute, a r e  determined by the  procedures. We 

emphasize t h a t  w e  use t he  term procedure here  to apply to t a s k s  i n  

general ;  a procedure i n  these  terms could have considerably more 

cogni t ive  conten t  than might normally be considered t o  be the  case. 

I n  t h i s  chapter ,  we  descr ibe  and de f ine  t he  procedures c u r r e n t l y  

included i n  PROCRU. An overview is presented f i r s t ,  followed by 

d e t a i l e d  d e f i n i t i o n s  of procedures, a d i scuss ion  of t h e  expected 

ga in  func t ions  (EGP's) and some comments on procedure execution. 

4 .1  Procedure Categor ies  and General Overview 

Table 4.1 ca t ego r i ze s  t h e  approach t o  landing f l i g h t  

procedures for  t h e  PF and PNF. For each crewman, s i x  ca t ego r i e s  

a r e  shown, and for  each category,  s p e c i f i c  types of procedures a r e  

itemized. W e  b r i e f l y  d i scus s  these  ca t ego r i e s  and types i n  t he  

following paragraphs. 

The veh ic le  c o n t r o l  procedures assigned to t h e  PF a r e  broken 

down i n t o  t h ree  types: maneuvering con t ro l ,  regu la tory  c o n t r o l  

and retrimming control .  The f i r s t  involves the  determinat ion of 

appropr ia te  maneuver r a t e s ,  s e t t i n g  t r im c o n t r o l  values  t o  e f f e c t  

these  r a t e s ,  and monitoring fo r  maneuver termination. I n  e f f e c t ,  



Report No. 4374 Bol t  Beranek and Newman Inc .  ! 

Table 4.1: PF and PNF Procedures f 
i 

i r' 
PF PNP ! 

1. Vehic le  Cont ro l  Procedures ( 1. Vehic le  ;?onitor Brocedures t 
I 

a)  Maneuver 
b) Regulate  
C )  R e t r i m  

a) Vehic le  n t a t u  d e t e r m i n a t i o n  1 1 
b) F a i l u r e .  d e t e c t i o n .  and 

i d e n t i f i c a t i o n  i 

2. Request Procedures 1 2. C a l l o a t  Procedures 
I 

I a) Vehic le  p o s i t i o n  c a l l o u t  a )  F lap  r e q u e s t  
b) Gear r e q u e s t  b) A l t i t u d e  c a l l o u t  I 
C )  C h e c k l i s t  i n i t i a t e  reques  C )  Aynroach s t a b i l i t y  c a l l o u t  1 

3. Subsystem Procedures 1 3. Subsystem Procesures  i 
a )  A l t i t u d e  a ler t  monitor/  

c o n t r o l  
b )  Misc. subsystem monitor/  

c c n t r o l  
b) Gear moni tor /cont ro l  

4 .  Acknowledqement Procedures I 4. Acknowledgement Procedures  

5. S A P / ~ P  Terminal Procedares  1 5. SRP/MA? Terminal Procedures  

L 

a) C h e c k l i s t  i t e m  acknowledge- a )  C h e c k l i s t  i t e m  acknowledge- 

6. Miscel laneous Procedures 1 6. Miscal laneous Procedures  

men t 

I a )  General message processincj a )  Geileral message p rocess ing  
b)  Landing parameter  s e l e c t i o n  

men t 
b)  AT(: r e q u e s t  acknowledgement 
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i 

open-loop maneuver control provides us with a means of generating 

the *nominaln trajectory of Eqn. 3.4. Regulatory control, on the 

other hand, involves monitor ing the display perturbations away from 

the nominal, estimating the corresponding vehicle state 

perturbations, and generating an appropriate perturbation control 

to control out the vat iations. Closed-loop regulatory control 

ensures proper execution of the desired maneuver. Finally, 

retr imming control provides a means of retrimming the vehicle after 

a flap or gear setting change has altered the vehicle trim 

conditions . 
The vehicle monitoring procedures assigned to the PNF are also 

broken down into two types: monitoring for vehicle status, and 

monitoring for event or failure detection, The former involves 

determining an appropriate monitoring strategy for attention 

sharing among the available displays, estimating the corresponding 

vehicle state, and evaluating the approach progress based on the 

current state estimate. The latter involves a similar process, but 

is centered on detecting events or failures. 

Requests and callouts made by the PF and PNF, respectively, 

involve verbal responses based on estimates of cur rent vehicle 

status. The flap, gear, and checklist requests made by the PF 

involve determining the vehicle's approach progress in terms of one 

or more trajectory/instrument parameters, and making the request 
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based on the  progress  and i n  accordance with a well-defined set o f  

reques t  procedures. The pos i t i on  and a l t i t u d e  c a l l o u t s  made by the  

PNF involve a s imi l a r  process. The approach s t a b i l i t y  and 

runway-in-sight (RWIS) c a l l o u t s ,  a l s o  made by the  PNF, involve the  

a d d i t i o n a l  requirement of determining when t h e  veh ic l e  is i n  an 

appropr ia te  wwindow* f o r  making or not making t h e  c a l l o u t .  

Subsystem monitoring and c o n t r o l  a c t i o n s  made by both p i l o t s  

a r e  assumed to be event  dr iven,  and involve d i s c r e t e  con t ro l  

ac t ions  and/or d ivers ion  of  a t t e n t i o n  from f l i g h t  d i sp l ays  f o r  

appropr ia te  subsystem servic ing.  For t h e  PF, s e rv i c ing  the  

a l t i t u d e  a l e r t  subsystem is d is t inguished  from the  se rv ic ing  of a l l  

o the r  subsystems, because of t h e  i n t e r a c t i v e  nature  of s e t t i n g  the  

t r i g g e r  po in t ,  responding t o  t h e  alarm, and r e s e t t i n g  it. For t h e  

PNF, t h e  ;lap and gear subsystems a r e  c a l l e d  o u t  because of  t h e i r  

impact on approach progress,  t h e i r  unique s t a t u s  o f  being dr iven by 

reques t s  from the  PF, and because of the  need for subprocedures 

involving v a l i d a t i o c  of  t h e  request ,  and s e t t i n g  and checking o f  

the  subsys tem involved. 

Verbal acknowledgements made by t h e  PF and PNF a r e  dr iven by 

c h e c k l i s t  item prompts generated by t h e  SO. These r equ i r e  t he  

checking of  an appropr i a t e  subsystem ( a t t e n t  ion-diver s ion)  and 

making t h e  appropr ia te  verba l  response. The PNF is also assigned 

the  duty of acknowledging t h e  r e c e i p t  of ATC vector  requests .  



Report No. 4374 Bolt Beranek and Neman Ina. 

The SAP/MAP terminal procedures provide for appropr ia te, 

calloute, head-upbead-down switching strategies, and missed 

approach init iation during the terminal phase of either the 

Standard Approach Procedure (SAP) or the Monitored Approach (MAP). 

Although t h i s  category of procedures could be allocated item by 

item to the other categories, it has been found to be more 

convenient to t reat  it as  a uniform procedural category, both for 

the purpose of modelling, and for discussion. 

The miscellaneor~s procedures shown are pr imar i l y  for the 

purpose of modelling convenience, and are not intended to directly 

represent: wby-the-bookw or actual procedures engaged i n  by the 

crew. They include processing an& decoding of verbal 

comn~unications, auditory alarms, and discrete visual events. I n  

addition, for the PF, they involve selection of appropriate landing 

configuration parameters. 

4.2 Detailed Procedure Descri~tions 

I n  rhe following subsections, we present additional detai l  

concerning the structure ai~d function of the procedures j u s t  

outlined. A s  is evident from Table 4.1, there is a natural 

corraspontlance between many of the procedures assigned to the DF 

and PIW; as a consequence, the discussion below w i l l  be organized 

along procedural lines, rather than s p l i t  between the two crewmen. 
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Before proceeding, however, it ahould be noted that some of 

the procedures described here differ sl ightly from some of those 

outlined earlier i n  Chapter 2. The differences are due to 

subsequent discussions with f l ight  crew membets, additional 

research with  current operations f l i g h t  manuals, and a need for 

semantic formalization imposed by the model programming effort.  As 

w i l l  be seen i n  Chapter 5, these changes have l i t t l e  impact on t h e  

overall appleoach progress and crew activity time-line already 

presented i n  Chapter 2. 

4.2.1 Maneuver Procedure 

T h i s  procedure is assigned to the PF, and has as its basic 

objective the open-loop control of the vehicle's f l ight  path. The 

sequence of functions which are required to implement t h i s  

procedure is outlined i n  Table 4.2. 

The f i r s t  step involves defining the maneuver: defining which 

vehicle s tate  variable is to be changed (x) , what value is to  be 

reached by the end of the maneuver (xmd), and a t  what rate the 

maneuver is to be carried out* (icrd) . The procedural rules Lor 

choosing these values are maneuver dependent, and we w i l l  discuss 

them shortly. Once the maneuver has been defined, the second step 

* T h i s  l a s t  item presupposes a constant rate maneuver. an 
assumption which wad utiiized i n  Appendix C, i n  the derivation of 
the nominal and perturbation aqua t ions of motion. 
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Table 4.2: Maneuver Procedure - Functional Sequence for PF 

Step Action 
1 Define stopping condition. maneuver rate (xmd . icmd) 

I Solve for t r i m  controls T a,, $c,) 

Define appropriate regulatory weightings ( ~ ~ ~ ~ . y ~ ~ ~ . . . ~ )  

Se t  t r i m  controls 

1 Monitor for stopping condition satisfaction 

6 1 Process next maneuver (go to step 1) 

involves a solution for the trim controls (Tctac,@c) needed to 

effect that maneuver. We w i l l  not detai l  that solution procedure 

here, but instead refer the reader to section C.7 of Appendix C, 

which outlines the basis of an appropriate algorithm. 

The third step requires a definition of the appropriate 

weightings to be used, for regulating out perturbations about the 

upcoming maneuver trajectory. A discussion of the choice of these 

weightings is deferred to section 4.2.2, where we discuss 

regulation control procedures. 
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Once t h e  maneuver parameters  have been set, t h e  f o u r t h  step 

prov ides  f o r  a n  a c t u a l  s e t t i n g  o f  t h e  t h r e e  c o n t r o l s  t o  t h e i r  

d e s i r e d  trim s e t t i n g s .  Once t h i s  h a s  been done, t h e  PF is assumed 

to t r a n s i t i o n  to t h e  r e g u l a t o r y  c o n t r o l  procedure,  to e n s u r e  t h a t  

t h e  d e s i r e d  maneuver is followed. 

As t h e  maneuver progresses, t h e r e  is a requirement  on t h e  p a r t  

of t h e  PF to  ensure  t h a t  t h e  naneuver is stopped a t  t h e  a p p r o p r i a t e  

po in t .  The f i f t h  item prov ides  for t h i s  c a p a b i l i t y  by r e q u i r i n g  

a p p r o p r i a t e  monitoring,  e s t i m a t i o n ,  and decision-making to i d e n t i f y  

when t h e  end c o n d i t i o n  (xmd) h a s  been reached. 

Once it h a s  been determined t h a t  t h e  maneuver h a s  been 

completed, t h e  PF f a c e s  one of two op t ions :  e i t h e r  c o n t i n u e  a long 

the f l i g h t  p a t h  set up by t h e  completed maneuver, o r  i n i t i a t e  

another  maneuver. The l a s t  s t e p  shown i n  Table 4.2 p rov ides  f o r  

those  o p t i o n s  by assuming t h a t  another  maneuver w i l l  always be 

i n i t i a t e d ,  e i t h e r  of t h e  type  which r e q u i r e s  a change i n  t h e  

c u r r e n t  f l i g h t  p a t h  (a maneuver i n  t h e  t r a d i t i o n a l  sense )  or of a 

" d e f a u l t a  type which e n s u r e s  t h e  cont inuance  of the c u r r e n t  f l i g h t  

path.* 

r- If a maneuver ends  w i t h  a d e v i a t i o n  from a commandetl va lue  of 
v e l o c i t y  o r  angle ,  t h i s  d e v i a t i o n  is t r e a t e d  a s  a p e r t u r b a t i o n  or 
e r r o r  to be " regu la ted  o u t n  dur ing  t h e  subsequent maneuver. 
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The "defaulta maneuver is defined by requiring that velocity, 

heading and flight path angle be held at the values achieved at the 

end of the last maneuver. Naturally, if the last maneuver involved 

a change in one of these states, executing the default maneuver 

will, at the least, require a change in the trim control settings. 

Thus, in generic form, the default maneuver has procedural 

requirements no different from any other. Table 4.2 thus provides 

for exactly the same procedural steps, except that step 5 is 

bypassed, since no explicit stopping condition is spacif ied for the 

default. 

We now define the procedural rules for executing step 1 of 

Table 4.2, and discuss them according to maneuver type. 

Table 4.3 summar i zee the velocity maneuver procedures 

considered here, in terms of the *trigger i ng" condition for 

executing a particular maneuver, the associated maneuver command, 

and the desired maneuver rate. 

The first entry indicates that velocity lbianeuvers will be 

initiated in response to A X  speed management requests. The 

commanded velocity is simply that requested by ATC; the maneuver 

rate is assumed fixed at 51 kt/sec, depending on whether an 

acceleration or deceleration is requested. 



Report No. 4374 Bolt Beranek and Neman Inc. 

Table 4.3: Velocity Maneuver Procedums 

T~IGGER EULTE 
CONDITION COMMAND COMMAND 

1. ATC ACCEL/DECEL =+ 1 kt/sec 
REQUEST 

2. CFL 6 LOC ACTIVE I 
4. eGS=-l.0 dot = V  =-I kt/sec aPP 
5. h = 150 ft 'thresh 1-0.5 kt/eec 

The remaining entries correspond to flight manual speed 

management procedures. The first deceleration to 150 kt is 

triggered by two events; localizer activity and a cleared for 

landing message (CFL) from ATC. The remaining decelerations are 

state/display dependent. The approach and threshold speeds, vapp 

and vthreeh, are assumed to have been previously specified by the 

landing parameter selection procedure identified in Table 4.1, in 

accordance with Tables 2.1, 2.2, and 2.3 of Chapter 2. 
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Heading Maneuvsre 

Table 4.4 summarizes t h e  heading maneuver procedures  i n  a 

s i m i l a r  format .  

The f i r s t  e n t r y  i n d i c a t e s  t h a t  heading maneuvers w i l l  be 

i n i t i a t e d  i n  response t o  ATC vec to r  r e q u e s t s .  The commanded 

heading is simply t h a t  reques ted  by ATC; t h e  t u r n  r a t e  is a 

s t andard  3 deg/sec, w i t h  t h e  s i e n  chosen to minimize t h e  t o t a l  

heading change. 

The second e n t r y  corresponds t o  a f l i g h t  manual f i n a l  approach 

procedure. I t  is t r i q g e r e d  by l o c a l i z e r  a c t i v i t y  and t h e  i n t e n t  is 

to ensure  t h a t  t h e  f i n a l  approach heading c o i n c i d e s  wi th  t h e  

inbound l o c a l i z e r  heading; $LOC. The r a t e  command, Jlfinal , is 

n o t  f i x e d ,  bu t  assumed t o  be c a l c u l a t e d  so a s  t o  ensure  t h a t ,  a t  

t h e  end of t h e  t u r n  maneuver , t h e  v e h i c l e  ground t r a c k  t a n g e n t i a l l y  

i n t e r c e p t s  t h e  l o c a l i z e r  p lane  (i .e., $ = when E~~~ = 0)  . 
? l a r e  Maneuvers 

Table 4.5 sunut~arizes t h e  f l a r e  maneuver procedures  i n  a 

s i m i l a r  format.  

The f i r s t  e n t r y  is t r i g g e r e d  by being 0.5 d o t  beiow t h e  g l i d e  

s lope .  The commanded f l i g h t  pa th  ang le  is chosen to equa l  t h e  

nega t ive  of t h e  g l i d e  s l o p e  e leva t io r .  angle ;  t h e  r a t e  command, . 
f i n a l ,  is no t  f i x e d ,  b u t  assumed t o  be c a l c u l a t e d  s o  as t o  ensure  
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T a b l e  4 .4 :  H e a d i n g  M a n e u v e r  Procedures 

TRIGGER 
CONDITION 

RATE 
COMMAND COMMAND 

1. ATC TURN REQUEST 

2. LOC ACTIVE 

T a b l e  4 . 5  : *lare' M a n e u v e r  P r o c e d u r e s  

THI  GGER RATE 
CONDITION COMMAND COMMAND 

1. E.. .=-0.5 5% 
C, s Y zmd =-8Gs ~ m d = ~  f i n a l  

2 .  h = 30 f t  I) Yflare 

T a b l e  4 .6 :  A l t i t x d e  M a n e u v e r  P r o c e d u r e  

THI  GGER RATE 
COMMAND COMMAND COMMAND 

ATC CLIMB/DESCENT 
REQUEST i ) ~  =-hC/vC i )  icmd=+ 0 . 2  deg/sec 

cmd 

ii) h ~ r n d = ~ f  o ii hcmd=hc 

I 
iii) ycmd=O iii); =+ 0.2 deg/sec cmd - 

. - 3 0 C t / s  i f  h > 5 0 0 0  f t  no te  1: if ATC requests DESCENT, hc= -15ft/s <SO00  f t  - 
note  2; I = f ( h c , v c )  

(0 
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that, at the end of the flare, the vehicle is on the glide slope 

(i.e., Y =- eGS when E ~ ~ ~ O ) .  

The second entry is triggered by a 50 ft AFE altitude and is 

intended to ensure a final flare which results in zero sink rate at 

zero altitude, via an appropriate choice of the free parameter . 
y flare* 

Attitude Maneuvers 

Table 4.6 summarizes the one climb/descent procedure required 

for the approach. 

In response to an ATC climb or descent request to a specified 

altitude hc, three maneuver sub-commands are generated. The first 

is a flare command, with yclnd chosen to achieve the desired 

climb/sink rate ( )  assuming the vehicle is maintaining its . 
current velocity (v). The nominal sink rate hc is procedurally 

specified as a function of current altitude, as shown in the table. 

The flare rate associated with this first sub-command is fixed at 

0.2 deg/sec, with the sign chosen appropriately. The second 

sub-command is an altitude command to 2 flare-out altitude, hfo. 

This flare-out altitude is c a l m  ~ t e d  to ensure that the 

commanded a1 t i tude , hc , is attained at the end of the flare-out. 
The third sub-command is the f lare-out command, again incorporating 

a fixed Flare rate of 0.2 deg/sec. 
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4.2.2 'Regulatory* or nClosed-Loopw Control 

In order to maintain the nominal or desired approach the PF 

must compensate for disturbances. This is especially important in 

a non-coupled final approach. The regulatory or closed-loop 

control task is one for which the standard OCM is particularly 

appropriate. However, we must account for this task being one of 

several competing for the PF's attention. 

Following the OCM, we assume that the PF'S (perturbation) 

control actions in regulating about the nominal, are given by 

where at) is PF'S estimate of the perturbation state and L is the - 
matrix of control gains chosen to minimize a quadratic cost 

function in error and control variables of the form: 

LOC 

max 
GS max 

Note that the control gains depend on the nominal segment 

being flown. They also can be time varying within a segment if 

the syst~sm matrices change (as in a turn) or if the weightings vary 

with time or range (as in the final approach). 
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As noted earlier, the weightings for the cost function (4.2) 

are chosen whenever the maneuver procedure is executed (recall step 

3 of Table 4.2) . The use of estimated maximum allowable deviations 
in defining the weightings is standard practice in applying the OCM 

[3 ]  . The particular values selected for these maxima were based on 
the literature, an examination of the cockpit instrumentation and 

neducated guessesm. The weightings are assumed to vary with 

approach progress and segment type as shown in Tables 4.7, 4.8 and 

4.9. Table 4.7 shows how the state/display-associated weightings 

are selected on the basis of approach progress, and Table 4.8 shows 

how selected weightings are modified on the basis of the maneuver 

being executed. Finally, Table 4.9 defines the control-associated 

weightings, as functions of maneuver-type. 

The other aspect of the closed-loop control procedure that 

must be specified is the manner in which the pilot shares attention 

among the displays of interest. We have assumed that this is done 

in accordance with the following sub-optimal algorithm. It can be 

shown that, in steady-state, the portion of J related to the 

operator's observation noise (and, therefore, to the attentions) 

is given by [7] 
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Table 4 . 7 :  State/Display Weightings vs. Approach arogress 

a 

After  
GS 

Intercept  

3 

OD 

1.0 

w 

0.33 

1.00 

A f t e r  LOC Intercept  
& 

Before GS Intercept  

3 

OD 

1.0 

300 

0.33 

cn 

v ( k t )  max 

vJ (deg) max 

~ ~ ~ ~ ( d e g )  

hma,(ft) 

E::: (dot)  

ma x 
cGS (dot )  

Before 
LOC 

Intercept  

3 

1.5 

1.0 

300 

OD 

w 
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Table 4 . 6 :  State/Displav Weighting !p~odifications v s .  Maneuver 

Maneuver Weighting Modif ication 

I 
DECEL I v max = v /3 max 
TURN 

FLARE 

DSCNT I 

Table 4 . 9 :  Control Weight ing~  vs .  Maneuver 

I 

TURN/ 
DECEL FLAaW DSCNT S & L  

Tmax ( lb 5000 50,000 5000 2500 

a (deg) max 5 

2 1 ' 2.5 

2.5 

@,, (deg)  2.5 

- .-- --- - 
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where is the control gain (41), the estimation error 

covariance and & is the control-weighting matrix in the cost 

functional. Thus, the estimation errors are weighted by their 

importance for the control objectives. Now, it is easily shown 

that the reduction in uncertainty obtained by "samplingm the 

ith display at time k is* 

where ci is the ith row of the display matrix (Eqn. 3.6) t2k/k-1 

is the uncertainty at time k if no observation is made, Zklk is 

the uncertainty with observation of display i, Vyi is the 

observation noise associated with display i (Eqn. 3.7) and A is 

the interval between samples. 

Equation (4.4) may be thought of as the monitoring gain for 

observing display i. However, we are interested in the gain for 

observing display i with respect to control objectives, so we 

substitute (4.4) in (4.3) to obtain 

If we were to implement a pure scanning strategy, we would simply 

assume PF monitors the display for which Ji is a maximum. Here, 

instead, we use a "mixedn scanning strategy and define fractional 

and Newman Inc. 

I 
I 

attentions by 
3 We use the discrete ~iccati equation for estimation [a). We also 
assume no rate information obtained from the display but this is 
easily changed. 
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Should any of the fibs defined by (4.6) tall below .01, we set them 

to .01 and modify the remaining attentions in an appropriate 

manner. The monitoring algorithm just described actually is in 

operation during maneuver control and retrim as well, so long as 

another monitoring request has not been made. 

A question arises in the multi-task environment: "What ia the 

control law when another task is being performed?". We shall 

assume that control is continuously applied according to (4 . 1) . 
The effect of executing another procedure will not be one of 

interrupting control, but rather, one of diverting attention from 

the observation of those variables needed for control. This will 

necessitate using predicted values for q in (4.1, during the 

interval of interrupted observation, resulting in an "open-loop" 

perturbation control until the vehicle control procedure is 

invoked again. 
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4.2.3 Retrim Procedure 

This procedure is also assigned to the PF, and has as its 

basic objective the retrimming of the vehicle whenever flap or gear 

settings change the trim conditions. Since no maneuvers are 

involved, this procedure can be simply summarized as shqwn in Table 

Table 4.10: Retrim Procedure (PF) 

Step - 
1 

4.10. As in the maneuver procedure, the trim controls are obtained 

by use of an algorithm based on the solution outlined in section 

C.7 of Appendix C. 

Action 

Solve for trim controls (Tc, act 4,) 

2 

4.2.4 Monitor Procedure 

Set trim controls 

This constitutes procedure category 1 for PNF, as shown in 

Table 4.1. The background or default monitoring is to determine 

vehicle status and to detect failures or events. Monitoring for 

approach progress has been associated with callout procedures. 
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Monitoring for status determination could involve attention 

sharing to minimize uncertainty in a manner similar to that of the 

closed-loop control procedure (but without the control gain 

weights) . Monitoring for failure or event detection and 

identification might be predicated on the relatively sophisticated 

algorithms discussed in [1,6,9]. In this initial investigation 

with PROCRU, we assumed that PNF shares attention among flight 

instruments so as to minimize uncertainty (i.e., Tr & ) when 

exercising the monitoring procedure. 

4.2.5 PF Request Procedures 

The verbal requests made by the PF include calling for 

appropriate flap settings, lowering of the gear, and initiating 

checklists. 

The flap request procedure is summarized in Table 4.11. Note 

tnat all the triggering conditions involve the vehicle velocity 

reaching some "setpoint" velocity (from above), and all of the 

procedural actions involve a verbal request to the PNF. The two 

unspecified parameters are assumed to have been previously 

specified by the landing parameter selection procedure identified 

in Table 4.1, in accordance with Tables 2.2 and 2.3 of Chapter 2. 

The gear request procedure is defined by Table 4.12. When the 

vehicle is 2 dots below the glide slope, a lower gear request to 

the PNF is called for. 
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T a b l e  4 . 1 1 :  F l a p  Request P r o c e d u r e  (PF) 

TRIGGER 
CONDITION Ac:C 'ON * 

* v e r b a l  rsluest f r o m  PF to PNF 

v=190 kt 

1 6 0  kt 

1 5 0  kt 

1 4 0  kt 
v 

~ P P  

T a b l e  4 . 1 2 :  Gear R e q u e s t  P r o c e d u r e  (PF) 

"set f l a p s  to 2 deg" 
5 

1 5  
35 

6~~ 

TRIGGER 
CONDITION ACTION* 

* v e r b a l  r e q u e s t  from PF to PNF 
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The procedure for requesting initiation of the initial 

approach checkliet ( IAC)  and the final approach checklist (FAC) is 

given in Table 4.13. Both triggering conditions involve the 

vehicle altitude reaching some *setpointW altitude (from above), 

and both procedural actions involve a verbal request to the 80. 

4.2.6 PNF Callout Procedure 

The verbal callouts made by the PNF include calling out 

vehicle approach progress and approach stability. 

The vehicle approach progress callout procedure is summarized 

in Table 4.14. The first four items have trigger conditions 

associated with the ILS beacon system, and result in a verbal 

indication to the PF of vehicle position relative to the ILS 

geometry. The last four items are altitude callouts, and are 

predicated on vehicle height AFE and the selected decision height 

(hDH), the latter assumed to have been previously specified by the 

landing parameter selection procedure. As noted in Chapter 2, the 

decision height for this study was fixed at 200 ft. The altitude 

callouts are used by PF as discrete measurements to update PF's 

estimate of altitude. 

The approach stability callouts made by the PNP have already 

been detailed in Table 2.7 of Chapter 2. 
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Table 4.13: Check l i s t  I n i t i a t i o n  Request Procedure (BF) 

TRIGGER 
CONDITION ACTION* 

"s tar t  IACn 

"s t a r t  FP.3" 

*verbal  r eques t  from PF to  SO 

Table 4.14: Approach Progress  Ca l l ou t  Procedure (PNF) 

TRIGGER 
CONDITION 

LOC ACTIVE 

GS ACTIVE 

OM ACTIVE 

MM ACTIVE 

h = 1000 f t  

h =  500 i t  

h = hDH+lOO f t  

= h~~ 

" l o c a l i z e r  cap tu re"  

" g l i d e  s l ope  a l i v e "  

" o u t e r  marker" 

"middle marker" 

"1000 it" 

" 500 f t "  

"approaching minimums" 

"min imums"  

* 
ve rba l  ca l lou t  from PIJF t o  PF 
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4.2.7 Subsystem Monitoring and Control Procedures 

As noted earlier, the subsystem monitoring and control 

procedures for the PC can be conveniently separated into those 

dealing with the altitude alert (M) subsystem, and those dealing 

with other subsys tems. 

The altitude alert setvising procedure is summarized in Table 

4.15. The first entry indicates that ATC descent requests will 

trigger AA servicing. The servicing involves paying almost full 

attention to the M while setting the alert altitude, hAA, on the 

basis of the requested descent altitude and a scale factor K, 

which, for our study was set to 1.15. This provided for AA alarm 

turn-on at an altitude 15% higher than the requested descent 

altitude. 

The second entry indicates that similar AA servicing will be 

triggered '3y passage of the OM. Here the alert altitude hm is 

specified to be set to the decision height hDH. 

The final entry provides for AA alarm servicing. Again, this 

implies a diversion of attention from flight displays while the 

alarm is turned off . 
Other miscellaneous subsystem servicing procedures assignedto 

the PF (and PNF) are summarized in Table 4.16. The trigger 
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Table 4.15: A l t i t ude  A l e r t  Subsystem Serv ic ing  Procedure (PF) 

TRIGGER 
CONDITION I ACTION 

1. ATC DSCNT REQUEST set hAA = K h ~ ~ c  
(hcmd ' h ~ ~ ~ '  

2.  OM ACTIVE 

3. AA ALARM "on" I set AA ALARM "off"  

Table 4.16 : Subsystem Servic ing Procedure (PF/PNF)  

TRIGGER 
COiJ D I  T I ON ACTION BY ACTION 

1. F I R S T  ATC REQUEST P F  t u r n  continuous i g n i t i o n  "on" 
PNF t u r n  s e a t  b e l t  s i g n  "on" 

speed brake l e v e r  "arm" 

3. speed brake l eve r  armed 

4.  no smoking s i g n  "on" 

5. ATC CFL; 

t u r n  no smoking s i g n  "on" 

t u r n  a n t i s k i d  system "on" 

checl: GPWS 
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conditions and actions are self-explanatory. Mote that all of the 

actions require a diversion of attention, away from the primary 

flight control displays and towards the appropriate subsystem being 

serviced. 

The final category of subsystem servicing procedures are those 

concerning flap and gear settings performed by the PNF, which are 

Table 4.17: Flap/Gear Subsystem Servicing Procedure (PNF! 

TRIGGER * 
CONDITION I ACTION 

-- - 

1. "set flaps to - deg" i) check speed/flap table 
ii) set flap handles I iii) confirm flap setting 

2. "lower gear" i) set gear handle 
ii) confirm aear down 
iii) confirm doors open 

*verbal request from PF to PNF 

summarized in Table 4.17. The first item shows the verbal flap 

request made by the PF triggering three actions: a validation 

concerning the appropriateness of the request; a setting of the 

flap hzndles; and a confirmation of the flap handle setting with 

the associated indicator lights. All three actions divert 

attention from the flight displays. In addition, the actual 

setting of the flaps affects the vehicle dynamics (as described in 
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Appendix C) so that a requirement is placed on the PI to retrim the 

vehicle (via the retrim procedure discussed earlier). 

The second item shows a similar verbal request trigger which 

results in three actions: a setting of the gear handle, and two 

subsystem confirmations. Again, these are all modelled as 

attention "sinks", and the actual gear lowering drives the vehicle 

dynamics, similarly requiring a retrimming by the PI. 

4.2.8 Acknowledgement Procedure 

The verbal acknowledgements made by the PF and PNF involve 

responses to checklist item prompts made by the SO. In addition, 

the PNF is required to respond to and acknowledge ATC vectoring 

requests. 

The acknowledgement procedure is sununar ized in Table 4.18. 

The first item is conditioned by a checklist item prompt by the SO. 

The intended recipient of that prompt is then required to monitor 

the appropriate subsystem associated with the checklist item (an 

attention sink), and verbally respond with a confirmation of 

subsystem validity.* Currently, nine checklist item prompts are 

targeted for the PNF, and one for the PF. The second item is 

similarly structured, involving a confirmation by the PNF of the 

* In this study, we assume no subsystem failures. 
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Table 4.188 Acknowledgement Procedure 

TRIGGER ACT1 ON 
CONDITION BY ACTION 

1. SO: "subsystem - i) monitor subsystm - 
ii) "subsystfi~ - OK" 

2. ATC REQUEST ' PNF "confirm., ." 

ATC vector request. No subsystem monitoring is required here, 

however. 

4.2.9 SAP/MAP Terminal Procedures 

The SAP/MAP terminal procedures include appropriate callouts, 

decisions on display monitoring strategy, and control actions. 

Although operationally considered different procedures, both the 

SAP and MAP can be conveniently summarized as shewn in Table 4.19. 

The first item indicates that, for either procedure, the PNF 

begins monitoring the external scene at a "search height* hSH. In 

accordance with operationalmanualdictates, we assume that the PNF 

divides his attention equally between the external scene and the 

instruments, in order to maintain back-up monitoring capability 

while searching for visual landing cues. 
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Table 4.19: SAP/MAP Terminal Procedures 

TRIGGER 
CONDITION 

ACTION 

I BY I ACTION 

1. h = hSH 

2. RWIS & monitoring 
ex t e rna l  scene 

PNF 

3. "runway i n  s i g h t "  

begin monttoring e x t e r n a l  scene 

PNF 
PNF 

4. 'I t aking control"  

SAP : "runwav i n  s igh t "  
MAP : " tak ing  cont ro l"  

PF 
PNF 

5. h = hDH & no "RWIS" PF I 
c a l l o u t  & no " tak ing  

monitor e x t e r n a l  scene 
m o n i t w  ins t ruments  

PF 
PNF 

i) "execut?-ng missed approach" 
ii) execute missed approach 

t a k e  c o n t r o l  of  veh ic l e  
r e l i nqu i sh  con t ro l  of veh ic l e  

i) monitor instruments 
ii) execute missed approach 

cont ro l"  c a l l o u t  
PNF 
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If the PNF observes the runway while monitoring the external 

scene, tho SAP dictates a "runway in sightw callout, while the MAP 

dictates a "taking controlw callout, as shown by item 2.* Items 3 

and 4 show the appropriate follow-on action for each of these 

callou ts . 
If no callout has been made by the time the vehicle reaches 

the decision height, hDH, then item 5 provides for the PF to 

announce and execute a missed approach while the PNF switches to 

instruments and assists in the missed approach. The missed 

approach procedure itself has already been outlined in Table 2.12 

of Chapter 2. 

It should be noted that the SAP/MAP procedures outlined above 

are considerably simplified f ran those outlined and discussed in 

Chapter 2. This has been done for the purpose of modelling 

simplicity, but an attempt has been made to retain the essential 

monitor and control aspects which differentiate the two basic 

approach procedures. 

Table 4.19 requires the specification of two height 

parameters, and a definition of RWIS. The .search heightw hsH was 

specified to be 300 ft; the decision height, hDH was set at 200 ft. 

* For simplicity, we assume the vehicle to be appropriately 
positioned for a VFR landing when the runway is in sight. 
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The RWIS condition was determined simply by epecifying a wbreakoutw 

altitude of 250 ft. 

4.3 Expected Gain Functions for Procedures 

As discussed in Chapter 3, each of the procedures just 

described has associated with it an expected gain EGP(1) for 

determining the "value" of executing that procedure at any given 

time during the approach. This section defines the EGP's 

associated with each of the procedures and provides a rationale for 

these definitions. 

4.3.1 General Form of BGP Function 

In Chapter 3, we defined the EGP(1) function as 

where G(1) is a function related to the relevance of executing the 

Ith procedure and Go(I) is a constant chosen to reflect the 

baseline value of the procedure, independent of its situational 

relevance. It is useful to write G as the product of two 

functions, i.e.* 

* For convenience, here and subsequently, we do not show the 
dependence on procedure number explicitly. 
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where R is a function of the relevance of the procedure and U is, 

for this initial implementation of PROCRU, a unit step function 

that is one when the procedure is 'enableda by an appropriate event 

and is aerc otherwise.* 

For all of the procedures considered in this study, one of 

three generic functional forms is used to specify the R component 

of the EGP. We discuss these functions in the following 

paragraphs. 

One of the generic functions which we call a 'timelinessw 

function, T, is applicable to procedures which are "event 

drive;;". If we asstme a procedure should be executed immediately 

after, or within a short time following, the occurrence of the 

event e, then the corresponding relevance function should be 

predicated on the time of event occurrence, te. Equation 4.9 

shows such a functional dependence. 

* In future work, U could be a more sophisticated *utilitym 
function. 
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Prior to t h e  *event timem t,, T i m  zero; after t h a t  time, it grow8 

exponentially, wi th  a time-constant t ,appropriate for that 

procedure, t o  a limiting value of u n i t y .  

The type of procedures utilizing t h i s  general function are 

those which are " t r  iggeredm by discrete events: the PNF's verbal 

acknowledgement of a verbal ATC vector request; the PF'S turning 

off of the altitude a ler t  alarm, the PNF'S callout of localizer 

activity, etc. 

The other two generic R functions, called Nappropriatenessm 

functions, A, are intended for use w i t h  procedures which are 

triggered by the satisfaction of one or more vehicle state/display 

conditions (egg., the gear lowering request made by the PF when the 

vehicle i s  2 dots below the glide slope). For a crewman to 

determine when such a procedure is nappropriaten, calculation of 

the subjective probability that the procedure's t r  igger ing 

condition is satisfied is required. Since a high probability 

indicates that procedure execution is h igh ly  appropr fate, and 

conversely w i t h  a low probability, the probability calculation 

provides a direct measure of 'appropriatenessn on a zhro to one 

scale. 

I f  a procedure i s  to be triggered when a particular s tate  

variable that i s  chancing monotonically reaches a predetermined 
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value, we may define an "appropriateneaan function by the  

expressions 

and 

where x is the appropriate s tate  variable for the procedure 
j ' X j s ~  

is the trigger cr set-point value and x is a tolerance level 
j~ 

added to provide some "ant icipationn. The subjective probability 

calculation implied by (4.10) is based on the crew member's 

estimate of the state and the uncertainty i n  that estimate. The 

probability function (A1) w i l l  continue to increaee monotonically 

as the set-point is approached and pasaed; i t  w i l l  have a value of 

.5 when the estimate of the s tate  equals the set-point plus the 

tolerance. Thus, t h i s  functional form implies that the procedure 

never becomes inappropr iate once the t r  igger conditions have been 

met1 i.e., the procedure should s t i l l  be executed even i f  late.* 

Examples of procedures u t i l i z i n g  t h i s  appropr iateness function 

are the altitude callouts by the PNP, the velocity-triggered flap 

requests made by the PF, and the glide-slope dependent speed-brake 

t w e v e r ,  i f  the procedure is executed, or i f  for some other 
reason it becomes inappropriate to execute, the U function can be 
se t  to zero. 
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rubryrtem rervicing gerformetd by the PI. The variour set-gointo 

are the trigger values given i n  t h e  tables describing the 

procedures. 

A second, sl ightly mdif ied, form for the appropr iatene~rr 

function is used when the procedure is driven by a wwindoww 

requirement on the s tate# i . ~ . ,  i f  a procedure is triggered when 

the otate enters or *escapesa, or is about to enter or escape, some 

window of acceptability. For such a procedure, we use a two-sided 

probability calculation for the wappropriatenessm function: 

A2 = 1 - ~ r  {X -X (4.11) 
~ S P  

The A2 function is used for the EGP calculation associated 

w i t h  the regulatory procedure ( w i t h  x Jw =.Sx jmax , where 'jMX is the 

value used i n  computing the cor resp~ding  cost functional 

weighting) and for the procedure for approach destabilization 

callouts. 

Tables 4.20a and 4.20b summarize the parameters associated 

w i t h  the procedures defined for PF and PNF. Shown are the enabling 

events and the function type and parameter values for the EGP 

functions. Also shown are the nominal lock-up times associated 

w i t h  execution of each procedure (see below). 

4.4 Procedure Execution 

I n  terms of execution, it is useful to  separate the procedures 

into two classes, those that require a condition or predicate to be 

satisfied before an action is taken, and those that don't. 
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If no predicate is specified, an apptogriate control, 

monitoring or communication action w i l l  immediately follow the 

selection of a procedure. The only exception to t h i s  is the 

message decode procedure which can have as its output the 

"enablingm of n subsequent - procedure. Examples of procedures 

without predicates are the default procedures of regulatory control 

and monitoring and some event-driven procedures, such as check list 

execution. 

If a procedure has a predicate for execution, then the f i r s t  

step of the procedure involves a check to determine the situation 

with respect to t h i s  predicate. I n  the case where the predicate is 

a discrete event, the event detector is checked to see whether or 

not the requisite event has occurred. I f  so, action is taken; i f  

not, the procedure is exited. Usually, however, the predicate 

condition is one on a vehicle state variable. I n  t h i s  caw, what 

ensues upon the selection of such a procedure is determined by the 

level of the procedural appropriateness function, A, as follows: 

A < 'MON exit procedure (4.12a) 

PMON < A < PACT monitor request 

A > P~~~ control action - ( 4 . 1 2 ~ )  
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Equation 4.12a is included to account for the possibility that a 

procedure may have the highest gain and yet still not be 

sufficiently close to the triggering condition, in the operatorcs 

estimation, to warrant action. This could happen during a 

'relaxed" portion of the approach. When the probability of 

satisfying the condition (a8 determined bj A) exceed8 a monitoring 

threshold (PMON), but ie less than an aation threshold (Pam), a 

monitoring request is issued, This results in full attention being 

devoted to the 'displayn to be monitored,* so a8 to reduce the 

uncertainty in the corresponding estimate and thereby increase the 

likelihood that an action/no action decisi~n will be made 

subsequently. If Eqn. (Q.I.Zc)is'satisfied, the appropriate 

discrete action (set flaps, extend gear or make callout) is then 

taken. We note that either type of appropriatenese function, A1or 

A2,  may be used in establishing the predicate, depending on the 

procedure. 

The other important aspect of procedure execution is that each 

action is assumed to take some specified time, during which no 

other activity takes place. The "lock-up timesn used in this 

initial implementation of PROCRU are, essentially, "reasonable 

guesaes". The spacif ic values are given in Table 1.20. 

a Meet, full attention corresponds to 95% for numerical reasons. 
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5. SIKULATION RESULTS 

In this chapter, we present results to illustrate the 

operation and capabilities of the PROCRU model. Sensitivity of 

model results to selected variations in system and operator 

parameters is examined briefly. 

5.1 Simulation Conditions 

5.1,l System Variables 

We will consider two approach scenarios starting from the same 

initial conditions (Figure 2.2, 2.3). One scenario, ATCLO, a low 

workload approach, is essentially the nominal approach described in 

Chapter 2; the other, ATCHI, is a higher workload scenario in which 

the tempo is increased by having the final segment shortened by an 

early turn towards the localixer .* The ATC commands far the two 

scenarios are given in Table 5.1. 

For this analysis, we have not attempted to model wind 

disturbances in any realistic fashion, Instead, we have simply 

added zero-mean white gaussian noise sequences in parallel with 

each of the control inputs. Two values for the covariances of the 

noise sequences were used in the analysis: 

* Dut late with respect to time to touchdown. 
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where the subscript on the covariance indicates the (control) 

input injection point of the noise.* Thece two Bets of values arc 

considered so as to span a range of approach difficulty. 

5.1.2 Crew Variables 

With respect to crew variables, we w i l l  consider variations i n  

observation noise (a workload related parameter [53 ) , i n  procedure 

alock-up* tines, and i n  the base priority level (Go) for performing 

the default procedures of f ly ing  (for PF) and monitoring (for PNF) . 
The base value for PY i n  Eqn. (3.7) is set a t  -20 dB, a value 

obtained i n  laboratory tracking experiments i n  which subjects were 

devoting f u l l  attention (or a large amount of attention) to the 

task [ 2 ] .  Nominal thresholds for instruments were set  a t  zero, b u t  

the constant components of observation noise, which have a similar 

effect, were non-zero (see Eqn. 3 . 7 ) )  . I n  particular, the 

constant values were set at: 

? The noise levels correspond to control i n p u t  levels i n  that the 
noise disturbance is multiplied by the control injection matrix B 
(see Eqn. (3.5)). 
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Thresholds for the externail scene were set to the values in  

Appendix D; constant noises for the external scene were set to 

gero. 

The above observation noise parameters wrca assumed to 

correspond to full attention. The observation noise w a s  also 

doubled to correspond to a case in whioh lees (one-half) attention 

is devoted to the modelled task (perhaps because of inner loop 

control requirements or less motivation). 

Base lock-up times and other parameters for the various 

I proczedutes are those shown in Table 4.20. Base values for PIDR and 

Pam in Eqn.(4.6) were chosen to be .8 and .95, respectively. Ta 

explore the effects of some of these parameters, variations in 

lock-up times and in the base gain value of the default procedures 

were considered. A simulation was run in which all lock-up times 

were increased by approximately 50%. In another case, default gain 

valuea were increased from . 3  to .6. 
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5.1.3 Procedural Variables 

The only prooedural variation examined here is between basfa 

SAP and W grooedures a6 defined in Seetion 4,2,9, 

P E R U  generates a number of outputs that are useful for 

analyzing crew procedures and performanee. Firat, one can obtain 

full trajectory information, This information is provided at any 

time in terms of the total state (TblTATE xt) (and/or the nominal 

state) and the perturbation or deviation (DSTATB x) from the 

nominal. In addition to this information, one can obtain each crew 

membercs estimate of the state (xh) and the standard deviation of 

the estimation error (SDEV) , the attentional allocation (AT) at 
that time and PF's control inputs (u). These data, along with 

significant events, eta., are tabulated in an ANS (answer) file as 

illustrated in Figure 5.1, The ordering of state and control 

information, from left to right, is (x,y,h,v, 3,,y ) and ($ , u,T, 
Flaps, Gear), PF is crew member 1 and PNF crew member 2, 

In addition to the ANS output, PROCRU provides three separate 
f 
1 

time lines: a procedural time line (PTL) , a message time line 
(MTL), and a milestone time line (TL) . Table 5.2 lists the 

Q 

mnemonics used for these time lines. The procedural time-line , 
i illustrated in Figure 5.2 for the nominal approach conditions, 

provides a listing of the procedures (PROC) being executed by each 



Report NO. 4374 Bolt Beranek and Newman Ino. 

Figur* 5.18 Sample PROCRU T~ajectory Information File (-8. 1 ~ )  -----.--. ~o----*---HH--------------------- 

*** Tim- Sm816E+02 *** 
Tstate xt: l0489E+04-8.6193+04 2.091E+O3 l.S99E+02 lO799E+02-2.9423+00 
Dstate xt 1,278E-01 3.2993-01 1.832E-01-8,S64E-02-7.831E-O2 3,503E-02 

lO263E+00 1.221E+00-2.7723-02 1.923E-02 5.3703-02-2.5968-02 ik: : 1 kk: 9.636E-Ol-3.1S6E+O0-4.201E-01 1.5'14B-02-7.4411-03 3.3231-02 
SDevl k kt 1.251E+02 l0O92E+02 7,8463+00 1.971E-01 3.031E-01 8.4S9E-02 
SDev2 k k: 10227E+02 lO081E+O2 5.64311+00 2.192E-01 2.753E-01 1.084E-01 
AT1 : 

I 
Vt  ,015 PSI: .240 Eft .010 BBott .713 LOC: .010 GS: .010 

AT2 : V: .O86 PSI: -629 H: .I12 Hdot: .I53 LOCI .010 GSt ,010 
***** Altitude Alert Active ***** 
GUIDE: ' Executing FLARE to OoOOOE+OO Beg at 2.001E-01 deg/s " 
Total u: -8.950S-02 2.5743+00 9.398E+03 Flaps= S. Gear is UP 

*** TIME- 5.818E+02 *** 
Tstate xtt 1.483$+04-8,619B+04 2.088E+O3 laS99E+02 1.799E+02-2.864E+OO 
Dstate x: 1.605E-01 3,879E-01 2.360E-01-1.082E-01-6.4678-02 7.2933-02 

1.260E+00 1.172E+00-2.823E-01-4.249E-04 5.151E-02 1.534E-02 % :I:: 1.432B+00-5.007E+00-1.348E-01 1.177E-02 4.980E-02 6.5011-02 
SDevl k'k; 1.251E+02 1.0923+02 7.847E+00 1.972E-01 3.080E-01 8.745s-02 
BDev2 k 1 k: 1.2278+02 1.081E+02 5.64(E+00 2.192E-01 2.7531-01 1.08511-01 
AT1 : V: 0.000 PSI:0.000 E: 0.000 Edot:0.000 LOC:0.000 GS: 0.000 
AT2 : V: .086 PSI: -628 8: ,112 Hdot: .I54 LOC: ,010 GS: .010 
***** Altitude Alert Inactive ***** 
GUIDE: " Executing FLAaE to Oo000E+OO deq at 2.0013-01 deg/s " 
Total u: -8.5863-02 1.955E+00 9.502E+03 Flaps- 5.  Gear is UP 

*** TIME* 5.820E+02 *** 
Tstate xt: 1.478E+04-8.6193+04 2.0863+03 1.599E+02 1.7993+02-2.852E+00 
Dstate x: 1.9553-01 4.469E-01 2.933E-01-9.887E-02-6.040E-02 4,449E-02 

la258E+00 1.124E+OG-2.789E-01 1.015E-02 4.9428-02-7.8613-03 
xh2 Ich1 k k l k r  k: 1.234E+00-4.404E+00-2.94SE-02 1.631E-02 2.63lE-02 5.0463-02 
SDevl k k: 10252E+02 1.0923+02 7.848E+00 i.972E-01 3.1283-01 9.021E-02 
SDev2 k k: 1.227E+02 1.081E+02 5.644E+00 2.1923-01 2.7538-01 1.08SE-01 
AT1 : 

I 
V Z  0.000 PS1:O~OOQ K: 0.000 Hd0tt0.0OO LOC:OoOOO GS: 0.000 

AT2 s V: .086 PSI: -628 8 :  .I12 Rdot: .I53 LOC: .010 GS: .010 
GUIDE: " Executing FLARE to 0.000E+00 Beg at 2.001E-01 deg/s " 
Total u: -8.236E-02 2.301E+00 9.606E+03 Flaps= 5. Gear is UP 
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FlapR 
GearR  

DCR 
IACR 

FACR 
OMA 

WCA 

GslpA 
Al tco 
APPDS 
RwisC 

ATCcn 
D C # l  

I A C # l  

IAC#2 

IACI3 

IAC#4 
IAC#5 
FAC#l 
FACI2 
FACC3 
FAC # 6 
SBck 

SBSon 
Flaps 
Gear D 

ILLon 

\ 

Table 5.28 Mnemonic6 f o r  Time Line8 

Flap  requeet  
Gear reques t  
Begin descent  c h e c k l i s t  reques t  
Begin i n i t i a l  approach c h e c k l i s t  reques t  
Begin f i n a l  approach c h e c k l i s t  reques t  
Outer marker a c t i v e  c a l l o u t  
Local iaer  cap ture  c a l l o u t  
Glide elope a l i v e  c a l l o u t  
A l t i t ude  c e l l o u t  
Approach d e s t a b i l i z a t i o n  c a l l o u t  
Runway i n  s i g h t  c a l l o u t  
Confirmation o f  ATC msg. 

Descent c h e c k l i s t  i tem #1 
I n i t i a l  approach c h e c k l i s t  i tem #1 

I n i t i a l  approach c h e c k l i s t  i tem $2 
I n i t i a l  approach c h e c k l i s t  i t e m  #3 
I n i t i a l  approach c h e c k l i s t  i t e m  #4 

I n i t i a l  approach c h e c k l i s t  item 15 
F i n a l  approach c h e c k l i s t  item t l  
F ina l  approach c h e c k l i s t  i t e m  42 
F i n a l  appxoach c h e c k l i s t  i t e m  13  
F i n a l  approach c h e c k l i s t  i t e m  #6 

Speed brakes armed - check. 
Sea t  b e l t  s i gn  on announcement 
Flaps s e t  announcement 
Landing gear down announcement 
Inboard landing l i g h t s  on announcement 
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SBarm 
NSSon 
ASon 
GPWon 
AAon 
AAof f 
LOCon 
GSon 
OMOn 
MMon 
GPWSa 
AltAl 
Decel 
Turn 
Flare  
ChAlt 
D C s t  

I A C s t  

FACst 
DCf n 
IACf n 
FACf n 
ClrFl  
CIgON 

MMa 

Table 5.28 (Cant.) 
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Speed brakes armed . 
No smoking s ign  on 
Anti sk id  on 
Ground proximity warning system armed 
Alt i tude  a l e r t  on armed 

+. 

Alti tude alert Bfsaramd 
Localiaer on 
Glide s lope on 
Outer marker on 
Middle marker on 
Ground proximity warning system alert on 
Alt i tude a l e r t  on 
Decel command 
Turn command 
F la re  conmand 
Change Alt i tude corraaand 
S ta r t ing  descent check l i s t  announcement 
S ta r t ing  i n i t i a l  approach check l i s t  announcement 
S ta r t ing  f i n a l  approach check l i s t  announcement 
Finished descent 'checklisf  announcement 
Finished i n i t i a l  approach checkl i s t  announcement 
Finished f i n a l  approach check l i s t  announcement 
Cleared f o r  landing announcement 
Continuous ign i t ion  on announcement 
Middle marker ac t ive  c a l l o u t  
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Figure 5 .2  : Sample PROCRU Procedure Time Ltrre !case 1LS) 
~~-.~ooO-~~~-.--o---m-------------------- 

CAPTAIN (PF) r r m ~  OFFICER (PNF) 

C TIME PR0C:EGP CLUST DISP PROCtBGP PROCsEGP CLUST DISP PROCsEGP 
I 

I n s t r  Scan 0: .00 22: 030  
Radio SBsys 26: .30 1: .32 
I n a t r  Scan 5: .14 22: .30 
I n s t t  Saan 26: .30 22: .30 
I n s t r  Scan 26: .30 10: -32 
I n e t r  Scan 26% .30 22: 030 
I n s t r  Scan 0; .00 22: .30 
I n s t r  Scan 25: .3O 22: .30 
I n s t r  Scan 0: .00 22: 030 
Audio SBsys 26: -30  1; .32 
I n s t r  Scan 5: .14 22: .30 
Xnstr Scan 26: .3C 22: .30 
I n s t r  Scan 26: .30 10: 032 
I n s t r  Scan 26: .3O 22: .30 
I n s t r  Scan 0: ,00  22: .30 
Audio SBeys 26: .30 I: *32  
Icstr Scan 5: .14 22: . 3 O  
I n s t r  Scan 26: .30 22: .36 
I n s t r  Scan 26: .30 10: .32 
I n s t r  Scan 26: .30 22: .30 
f n s t r  Scan 26: .30 22: .30 
Audio SBsys 25: .a0 22: .30 
I n s t r  Scan 0: .00 22: 030 
I n s t r  Scan 26: .30 22: .30 
I n s t r  Scan 0: .00 22: .30 
Audio SBsys 26: .33  22: .30 
I n s t r  Scan 24: .04 22: .30 
I n s t r  Scan 24: .22  1: .32 
I n s t r  Scan 24: .27 22: .30 
Audio SBsys 26: .30 22: .3O 
I n s t r  Scan 26: .3O 22: .3O 
I n s t r  Scan 0: . O O  22: .30 
Pgdio  SEsys 26: .30 22: .30 
I n s t r  Scan 0: . O O  22: .30 
I n e t r  Scan 26: .3O 22: .30 
I n s t r  Scan 0:  . O O  22: .30 
Audio SBsys 26: .30 1: .32  
I n s t r  Scan 5: .14 22: .30 
I n s t r  Scan 26: .30 22; .30 
I n s t r  Scan 26: .30 10: .32  
I n s t r  Scan 26: .3O 22: .30 
Xnstr Scan 0: .00 22: .30 
I n s t r  Scan 0: .00 1: .32  
I n s t r  Scan 0: .00 22: .30 
I n s t r  Scan 0: .00 11: .32 

Zns t t  Scan 0: .00 
Audio SBsys 22: .30 
I n e t r  Scan 10: .04 
In r t r  Scan l o t  .a2 
SBsya SBsys 22 t .30 
I n s t r  Scan 0: .00 
I n s t r  Scan 0: .00  
I n s t r  Scan 0: . O O  
Xnatr Scan 0: .00 
Audio SBsys 22: -30  
I n s t r  Scan 10: .04 
I n s t c  Scan L o t  .22 
SBsys SBsys 22: .30 
I n s t r  Scan 0: .00 
I n s t r  Scan 0: .00 
Audio SBsys 22: .3O 
I n s t r  Scan 10: .04 
I n s t r  Scan 10: . I7  
SBsys SBsys 22: .3O 
I n s t r  Scan 0: .00 
I n s t r  Scan 0: .00 
I n e t r  Scan 0: .00 
I n s t r  Scan 0: .00 
I n s t r  Scan 0: -00 
I n s t r  Scan. 0: .00 
I n s t r  Scan 1 : . l o  
I n s t r  Scan 1: .14 
Audio Sbsys 22: .3O 
I n s t r  Scan 0: .00  
I n s t r  Scan 0: .00 
I n s t r  Scan 0: .00 
I n s t r  Scan 0:  .00 
I n s t r  Scan 0: .00 
I n s t r  Scan 0: .00 
I n s t r  Scan 0: . O O  
f n s t r  Scan 0: .00 
Audio SBsys 22: .3O 
I n s t r  Scan 10: .04 
Sns t r  Scan 10: .22 
SBsys SBsys 22: - 3 0  
I n s t r  Scan 0: .00 
I n s t r  Scan 0: .00 
Audio SBsys 22: .30 
I n s t r  Scan 11: .04 
SBsys SBsys 22: .30 
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Figure 5.2 ( a n t . )  1 
I n r t r  Scan 0: .00 22: .30 I n r t r  Scan 0: .OO 
I n s t r  Scan 26: .3O 22: -30 I n s t r  Soan 0: .00 
I n r t r  V 26: 030 22: .3O I n s t r  Scan 0: .00 
I n r t r  Scan 26: .3O 22: -30 I n r t t  Scan 0: .OO 
$Bays SBsys 26: .30 22: .30 I n s t r  Scan 0: .00 
~BSYS SBsyr 26: .30 1: .32 Audio 888yS 22: .30 
SBsyr SBsyr 26: .30 22: .3O I n r t r  Scan 8: .04 
In*t r  Scan 0: .00 22: .3O I n r t r  Scan 8; , I 7  
I n s t r  Scan 0: .00 0: .32 I n s t r  V 22: 030 
I n r t r  Scan 0: .00 8: 032 SBsvs 88ayr 22: 030 

22: .30 i n r t r  Scan 0: .OO I n s t r  Scan 0: -00 
I n s t r  Scan 0: .00 i: .32 Audio SBryr 22: .30 
I n r t r  Scan O r  .00 22: .3O f n s t r  Scan 121 .04 
I n s t r  Scan 0: .00 12: .32 S B s y r 8 8 r y s 2 2 : . 3 0  
I n s t r  Scan 0: .00 22: .3O I n s t r  Scan 0: .00 
I n s t r  Scan 0: .00 i t  .32 Audio 8 8 s ~ ~  22: -30  
I n r t r  Scan 0: . O O  22: .3Q I n s t r  Scan 13: .04 
I n s t r  Scan 0: .00 13: .32 SBsys 8Bsys 22: .3O 
I n s t r  Scan 0: . O O  22: .30 I n s t r  Scan 0: .00 
I n s t r  Scan 0: . O O  1: .32 Audio 88sys 22: .30 
I n s t r  Scan 0: .00 22: .3O I n s t r  Scan 14: .04 
I n s t r  Scan 0: .00 14: .32 SBsys SBsys 22: .3O 
I n s t r  Scan 0: . O O  22: .3O I n s t r  Scan 0: .00 
I n s t r  Scan 0: . O O  1: .32 Audio SBnys 22: .30 
I n s t r  Scan 0: .00 22: .3O I n s t r  Scan 15: .04 
I n s t r  Scazr 0: . O O  15 : .32 SBsys SBsys 22: .3O 
I n s t r  &an 0: . O O  22: .3O I n s t r  Scan 0: .00 
Audio SBsys 26: .30 1: .32 Audio SBsys 32: .3O 
I n s t r  Scan 9: .14 22: -30 I n s t r  Scan 10: .04 
r n s t r  Scan 26: .3O 22: .3O I n s t r  Scan LO: .22 
I n s t r  Scan 26: .3O 10: .32 SBsys SBsys 22: .30 
I n r t r  Scan 26: .30 22: .3O I n r t r  Scan 0: . O O  
I n s t r  Scan 0: .00 22: .3O I n s t r  Scan 0: .00 
I n s t r  Scan 26: .3O 22: .3O I n s t r  Scan 0: .00 
I n s t r  Scan 0: .00 22: .3O I n s t r  Scan 0: .00 
Audio SBSYS 26: .3O It a32 Audio SBSyS 228 030 
I n s t r  Scan 5: .14 22: .3O I n s t r  Scan l o t  .04 i 
I n s t r  Scan 26: .3O 221 .3O l n s t r  Scan 10: .22 
I n s t r  Scan 26; .3O 10; .32 SBeys SBsys 22: .3O 
I n s t r  Scan 26: .30 22: .30 I n s t r  Scan 0: .00 
Audio SBsys 26: .30 22: .30 I n s t r  Scan 0: . O O  
I n s t r  Scan 0: . O O  22: .30 I n s t r  Scan 0: .00 
I n s t r  Scan 26: .3O 22: .30 I n s t r  Scan O r  . O O  
I n s t r  Scan 0: -00 22: .3d I n a t r  Scan O r  .00 
Audio 8 B ~ y s  26: 030 1: .32 Audio SBsys 22: .30 
I n s t r  Scan 5: . I 4  22: .3O I n s t r  Scan 10: .04 
I n r t r  Scan 26: .30 22: .30 I n s t r  Scan 10: .22 
I n r t r  Scan 26: .3O 10: .32 g8sys SBeys 22: .3O 
I n s t r  Scan 26: .3O 22: .30 I n s t r  &an O r  .00 
I n a i r  Scan 0: . O O  22: .30 I n s t r  Scan 0: .00 
Audio SBsys 26: .30 22: .30 I n r t r  Scan 1 1  . L O  
I n s t r  Scan 4: .04 22: .3O I n r t r  Scan 1: .I4 
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16: .32 
168 m32 
268 a30 
268 m30 
1: .32 
26: .30 
78 m32 
7: -32 
26: .3O 
21: .32 
26: -30 
4: m39 
4: m39 
4: a39 
6: .79 
6: .79 
6: .79 
26: .30 
26: .30 
26: .3O 
26: .30 
22: .32 
22: .32 
22: .32 
6: -78 
6: .78 
6: .78 
26: .30 
26: .3O 
26: .3O 
26 : .30 
26: .30 
26: .3O 
26: .3O 
17: 1.00 
26: .3O 
26: .30 
26: .30 
26: .30 
4: .41 
4: .41 
26: .30 
l:l.O0 
268 .30 
26 : .30 
26: .3a 
1: a 3 2  
26: .30 
26: .3a 
26: .30 
1: .32 
27: 1.03 
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Figure 5.2 (cont.1 
Audio n 8 y 8  26: .3O 1: .32 Audio SBryS 22: .30 
Audio SBryr 26: ,3O 22: .30 I n r t r  Scan 9: .04 
I n s t r  Saan 0: .OO 22: -30 I n r t r  Scan 9: .17 
I n r t r  Scan 0: .00 9: .32 SBryr SBrya 22: . 3 C  
w d i o  888~8 26: .30 9: .32 msqs 3a.y~ 22: . 30 
I n r t r  Scan 7: .04 9: .32 SBrys SBsyr 22: .30 
88rys 8Bsys 26: -30 9: 32 SBrys SBsys 22: 30 
SBays SBsys 26: .30 22: .3O I n r t r  Scan 0: .00 
I n s t r  Scan 0: .00 22: .30 I n r t r  Scan 0: .00 
I n r t r  Scan 26: .3O 22: .30 I n r t r  Scan 0: .OO 
I n s t r  Sean 0: .00 22: .3O I n r t r  Scan 0: .00 
I n s t r  Scan 26: .3O 22: .30 I n r t r  Scan 0: .OO 
I n s t r  V 26: .3O 22: .30 I n s t r  Scan 0: .OO 
I n r t r  Scan 26: .3O 22: .3O I n r t r  Scan 0: .00 
SBrys 8Bb;s 26: .3O 22: -30 I n s t r  Scan 0: .00 
m a y s  gBryr 26: .3O l r  .32 Audio SBsys 22: .30 
88ryr SBsyr 26: .3O 22: .30 I n r t r  Scan 0: .04 
I n r t r  Scan 0: .00 22: .30 I n r t r  Scan 8: .I7 
I n r t r  Scan 0: .OQ 8: .32 t n s t r  V 22: .30 
I n o t r  Scan 0: .00 8: .32 '7:rys SBsyr 22: .3O 
I n s t r  Scan Or .00 22: .3O : . , r t r  Scan 0: .00 
I n r t t  Scan 26: .3O 22: .30 i n r t r  Scan 0: .00 
Tnstr V 26: .3O 22: .30 f n s t r  Scan 0: .00 
I n s t r  Scan 26: .3O 22s .30 ~. .* : t . *  Scan 0: .00 
~ ~ r y r  SBsys 26: .3O 22: -30 II , , :  Scan Ot .00 
SBsyr SBsys 26: .3O I: .32 A d i o  SBsys 22: .3O 
SBrys SBrys 26: .3O 22: .3O I n s t r  Scan e :  .04 
I n s t r  Scan 0: .00 22: .3O I n s t r  Scan 8: .17 
I n s t r  Scan 0: *00 8: .32 I n s t r  V 22: .3O 
I n r t r  Scan 3: .00 8: .32 SBsys SBsys 22: ,3O 
I n s t r  Scan Ot .00 lr1.00 Audio SBsyr 22: .3O 
I n s t r  Scan 0: .OO 22: .3O I n s t r  Scan 18: .04 
I n s t r  Scan Ox .OO 18: .32 SBsys SBsys 22: .3O 
I n s t r  Scan 0: .00 22: .3O Instr Scan 0: .00 
I n s t r  Scan 26: .3O 22: .3O I n e t r  Scan 0: .00 
f n s t r  Scan 0: .00 22: .30 f n s t r  Scan 0: .00 
I n s t r  Scan 0: .00 1: .32 Audio SBsys 22: .30 
I n r t c S c a n  0: .00 22: .3O I n s t r  Scan 19: .04 
I n s t r  Scan 0: .00 19: .32 SBsys SBsys 22: .10 
I n s t r  Scan 26: .3O 19: .32 SBsys SBsyn 22: .3O 
I n s t r  Scan 26: .3O 22: .30 I n s t r  Scan 0: .00 
I n s t r  Scan 0: .00 22: .30 I n s t r  Scan 0: .00 
Audio SBsys 26: .30 lr1.00 Audio SBsye 22: .30 
I n s t r  Scan Or .00 22: .3O I n s t r  Scan 4: .04 
I n r t r  Scan Or .\JO 4 : .32  SBsyr SBsys 22: .3O 
I n s t t  Scan I: .27 22: .3O f n s t r  Scan Ot .00 
Audio SBsys 26: 30 22: .30 I n s t r  Scan 9: .00 
I n s t r  Scan 0: .00 22: .30 I n s t r  Scan Ot .a0 
I n s t r  Scan 0: .00 23: .32 I n s t r  B 22: .30 
I n s t r  Scan 0: .00 23t1.00 Audio SBsys 22% .3O 
Audio SBsyr 26 : .3O 22: .30 I n r t r  Scan 0: .OQ 
Audio SBsys 26: .30 22: .3O I n s t r  Scan 0: ,OO 
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Figure 5.2 (cont.) 

I n s t r  Scan 0: .00 221 .30 
I n s t r  Scan 0: .00 24: -33 
I n s t r  Scan 0: .00 24t1.00 
Audio SBSYS 26: .30 228 a30 
Audio SBsys 26: -30 22: 30 
I n s t r  Scan 0: .00 22: .30 
I n s t r  Scan 0: .00 25: .37 
I n s t r  Scan 0: .00 25r1.00 
Audio SBsys 26: 30 6: .55 
Audio SBsys 26: .30 6: .55 
I n s t r  Scan 0: .00 6: .S5 
I n s t t  Scan 0: .00 6: .S5 
I n s t r  Scan 0: .00 6: .55 
Audio SBsys 26: .30 6: .55 
I n s t r  Scan 1: .lo 6: .55 
Audio SBsys 26: .3O 6: .55 
SBsys SBsys 26: .30 6: .55 
SBSyS SBSyS 26: 030 6: -55 
SBsys SBsys 26: .3O lrl.00 
SBsys SBsys 26: .30 26r1.00 
Eutnl Scan 26: .30 22: .30 
Audio SBsys 26: -30 22: -30 
Audio SBsys 26: .30 22: .30 
Extnl Scan 0: .00 22: .30 
Extnl Scan 26: .30 22: -30 
Extnl Scan 0: -00 22: .30 
Extnl Scan 26: .30 22: -30 
Extnl Scan 26: -30 22: .30 
Extnl Scan 26: .30 22: -30 
Extnl Scan 26: .30 22: -30 
Extnl Scan 0: -00 22; .30 
Extnl Scan 26: .30 22: -30 

Xnrtr Scan 
Instr 11 
Audio SBsys 
I n s t r  Scan 
I n s t r  Scan 
I n s t r  Scan 
I n s t r  H 
Audio SBsys 
SBsys SBsys 
SBsys SBsys 
SBsys SBsys 
E x t n l  Scan 
SBSYS SBSyS 
SBsys SBsys 
SBSyS SBSYS 
SBpys SBsys 
SBsys SBsys 
I n s t r  Scan 
Audio SBsys 
Audio SBsys 
I n s t r  Scan 
I n s t r  Scan 
I n s t r  Scan 
I n s t r  Scan 
I n s t r  ,Scan 
Instr Scan 
Ins  tr Scan 
Ins  t r Scan 
I n s t r  Scan 
I n s t r  Scan 
I n s t r  Scan 
Ins  t r  Scan 



* 
4 

4 

Report No. 4374 sblt ~ e r ~ \ e k u r d ~ & m a ~ ~ ~ .  , 

i 
9 . 

i 

crew m~mber, the gain for doing that procedure (&PI and the 
, 

information cluster and display being attended to at a gimn tiam. 
* 

A180 ptovided for eaoh acew m r k r  is' the prhdute that has tb. 

next higheat gain far exea"tion a& that time. koaedure numer; 
'C  

.< used in the PTt correrpond to thopet in Table 4.20. Thu;, for 

example, at time 915,4 seconds, PF wps flyirig on instruments 

(scanning) and no other procedures ware competing for attention, 

At the same time, PI@ was monitoring the altimeter in order to make 

an altitude callout (at tr919.6) , while the default monitoring task. 
was the task with the next highest priority. shortl; thereafter 

(920.8 oec) , PF diverts attention from regulating about the nominal 
to process the callout and PNF has reverted to basic monitoring, 

The message time line (MTL) is a record of all the 

comarunicetion traffic and auditory signals that =cur in the 

simulated cockpit. Figure 5.3 is a message time line for the 

nominal approach. The type of message (Signal name) , the source of 
the message and its destination, its processing status, its time of 

origin and processing, as well as an indication of the signal 

content are all presented using mnemonics that are fairly 

transparent. For example, on the message time line, we see the 

communication activity noted above, The 500' altitude callout is 

made by the F/O (PNF) at 919.6 seconds and directed to the CAPT 

(PF) . It is processed (i .e , used to update PF's altitude estimate) 

at 921.0 seconds. 
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Figure 5.3: Sample PROCRU Messaqe Tine-Line (case 1LS) .-.*-----..-.------------------"------- : 
SIGNL SOURC DESTN PROCS TIME TXME SIGNL 1 

NAME CODE CODE STATS ORIGN PROCIS corns 

Turn A.?.c Capt. Prcsd 0,O 2.2 270. 
Turn ~ . T . C  FO Prcsd 0.0 2.6 270. 
ATCcn FO A.T.C Ignrd 3,4 3.6 

1 
Oecel A.T.C Capt. Prcsd 30.0 32.2 170. 

11 
Decel A.T.C PO Prcsd 30.0 32.6 170. 1 4  
ATCcn FO A.T.C Ign td  33.4 33.6 - 1 4  
CMlt A.T.C Capt. Prcsd 50.0 54.0 3500, I !  
C M l t  A.T.C $0 Prcsd 50.0 52.6 3500. 
A%cn I0 A,T.C Ignrd 53.4 53.6 \ 1 
AAon Capt. Annoc Ignrd 57.8 58.0 3500. 
A l t A l  SBsys Capt. krcsd  269.2 270.8 3500. 
UtAl SBsys FO Xgnrd 269.2 270.4 3500. 
AAoff Capt. Annoc tgnrd  270.8 271.0 
IACR Capt,  SO Prcsd 294.2 294.4 

-1 
IACst SO Annoc Ignrd 294.4 294.6 i 
Decel A.T.C Capt. Prcsd 310.0 312.2 160. 
Decel A.T.C FO Prcsd 310.0 312.6 160. , 
ATCcn FO A.T.C Ignrd  313.4 313.6 
IAC#l SO PO Frcsd 314.4 317.0 
1ACI)lFO SO Prcsd 320.8 321.0 
FlapR Capt. FO Prcsd 324.0 326.6 5 . 
Flaps  FO Annoc Ignrd 326.6 326.8 C :. 
IAC#2 SO FO Prssd  341.0 343.6 
IACP2 FO SO Prcsd 347.4 347.6 

, 

rnc#3 SO FO P ~ C S ~  367.6 373.2 
IACP3 FO . SO Prcsd 374.0 374.2 

4 ' 

Prcsd 394.2 396.8 
1 .  

IAC#4 SO FO 
IACO4 10 SO Prcsd 400.6 400.8 i 
I A C t S  SO FO Prcsd 420.8 423.4 
IAC#5 FO SO Prcsd 427.2 427.4 
Turn A.T.C Capt. Prcsd 440.0 442.2 180. : 

Turn A.T.C FO Prcsd 440.0 442.6 180. 
ATCcn FO A.T.C Ignrd 443.4 443.6 

1 
IACfnSO AnnocIgnrd 447.4 447.6 
ChAlt A,T.C Capt. Prcsd 480.0 482.2 2000. 
ChAlt A.T.C FO Prcsd 480.0 482.6 2000. 

t 
ATCcn FO A.T.C Ignrd 483.4 483.6 
AAon Capt. Annoc Ignrd 486.0 486.2 2000. 
Turn A.T.C Capt. Prcsd 530.0 532.2 120. 
Turn A.T.C FO Prcsd 530.0 532.6 120. 
ATCcn FO A.T.C lgnrd 533.4 533.6 
AltAl SBsys Capt.  Prcsd 578.4 581.6 2000. 
AltAl SBsys FO Ignrd 578.4 579.6 2000. 
A A o f f  Capt. Annoc Ignrd 581.6 581.8 
FACR Capt. SO Prcsd 589.6 589.8 
FACst SO Annoc Ignrd 589.8 590.0 
FAC#l SO FO Prcsd 594.8 597.4 
FACll FO SO Prcsd 601.2 601.4 
ClrFL A.T.C Capt. Prcsd 605.0 606.2 

-11 7- 
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Figurer 5.3 t a n t . 1  
t t t 

. 
ClrFL A.T.C FO Brcsd 605.0 ' 607.6 
ATCcn FO A.T.C Igntd 608.4 608.6 
FlapR Capt. FO Frcsd 628.8 631.4 15. ' 
Flap81PO AnnocIgnrd 631.4 631.6 15 . 
LOCon SBsys Capf. PrcioA 635.2 636.4 
LWon 88sys PY) Prcsd 633.2 639.4 
L o c A M )  Capt. Ignrd 636.8 639.6 . 
GSon SBsye Cagt. Prcsd 653.6 654.8 
GSon SBsysFO Prcsd 653.6 653.8 
G s l p A  PO Capt. fgnrd 655.2 636.4 
GearR Capt. FO Prcsd 704.8 707.4 1 . 
GBarD FO Annoc Ignrd 707.4 707.6 
PAC82 SO Capt. Ptcsd 707.6 71C.2 
FACX2 Capt. SO Prcsd 712.0 712.2 
FlapR Capt. PO Prcsd 738.2 740.8 25. 
Flaps FO Annoc Ignrd 740.8 741.0 2s. 
FlapR Capt. FO Frcsd 748.4 751.0 30. 
Flap8 FO Annoc Ignrd 751.0 751.2 30. 
FAC#3 SO FO Prcsd 751.2 756.4 
FACI3 FO SO Prcsd 760.2 760.4 
FAC#6 SO FO Prcsd 785.4 788.0 
FAC#6 FO SO Prcsd 791.8 792.0 
FACfnSO AnnocIgnrd 797.0 797.2 
OMon SBsys Capt. Prcsd 827.2 827.4 
OMon SBsys FO Prcsd 827.2 827.4 
OMann FO Capt. Ignrd 828.8 830.0 
AltCo FO Capt. Prcsd 870.6 872.0 1000. 
AltCo FO Capt. Prcsd 919.6 921.0 500. 
A l t C o  FO Capt. Prcsd 938.6 940.0 300. 
MMon SBsys Capt. Prcsd 945.2 945.4 
Won SBsysFO Przsd 945.2 948.4 
R w i s C  FO Capt. Prcsd 945.2 946.8 
AltCo FO Capt. Prcsd 948.6 950.2 200. 
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- 
The milestone time line (TL) is an approximation to the time 

line ueed in Chapter 2, It contains selected trajeatory variables 

of interest (altitude, speed and heading), an indioation of otew 

ictivitp and a listing of important flight milestones and event.. 

The milestone tiara line for the nominal approaah is given in 

Figure 5.4; and this can be directly compared with the time line 

in Chapter 2. Note that the time marker given in the TL, tgo, ie 

the time-to-go, computed simply as 9808 minus the event time. This 

provides a fair approximation to the actual time-to-go. 

5.3 Simulation Results 

Table 5.3 is a list of the cases simulated here with PROCRU. 

The designations L and H refer to the ATC scenario (low and high 

workload) while the S and M refer to SAP and MAP. Case 1LS is the 

nominal approach, L e e ,  nominal in terms of both scenario and 

PROCRU model parameters. The other cases correspond 50 variations 

in approach conditions and model parameters. 

In discussing the results from these cases we must note that a 

single sample of the random disturbances has been used throughout, 

to facilitate comparison without resorting to Monte Car10 

simulation. Thus, one should not draw any definitive conclusions 

with respect to perforn.ince or procedures from these results. 
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T a b l e  5.38 PROCRU Simulated Cases 

Default  
Lock-Up Gain 

C a s e  No. App. Scen. D i s t u r b a n c e  A t t e n t i o n  Tines (PF/PNF) Procedure 

1 L 6  ATC&O Low Full  B a s e  B a s e  SCAP' 

lLt4 ATCLO Low Fal l  -- B a s e  B a s e  MAR 

2LS AWL0 H i g h  F u l l  B a s e  B a s e  SAP 

3LS ATCLO Law One-Hal f B a s e  B a s e  SAP 

4LS ATCLO H i g h  One-Half B a s e  B a s e  S k i  

4LM ATCLO H i g h  One-Hal f B a s e  B a s e  MAP 

5LS ATCLO Low F u l l  1 .SxBase  B a s e  SZ@ . 
6LS ATCLO Low F a l l  B a s e  2 x B a s e  SAP 

1HS 

1HM 

4HS 

4HM 

ATCHI 

ATCHI 

ATCHI 

ATCHI 

Low 

Low 

High 

H i g h  

F u l l  

F u l l  

One-Half 

One-Hal f 

B a s e  

B a s e  

B a s e  

B a s e  

B a s e  

B a s e  

B a s e  

B a s e  

SAP" 

MAP 

SAP 

MAP 
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5.3.1 Nominal Approaoh (SAP) 

The milestone time line in Figure 5.4 presents an overoisw of 

orew activity for the nominal ease and will be disouseed in detail. 

The time-line begins with the vehicle at 10,000 ft altitude, 

on a 210 deg heading, prooeeding at 190 kts. In the first SO 

seconds, three ATC requests, for a heading change, deceleration, 

and descent, are processed by both the PF and PNFo As shown in I 
i 
I 

both Figure 5.4 and Figure 5.3, each request involves: a) a , 
1 

message generated by ATC (occurring at the time specified by Table 

5.1) , sent to both the PF and PNF; b) message processing by the PF, I 

resulting in a new maneuver (e.g., "Prcsd Turna) ; and c) message 

processing by the PNF, resulting in a verbal confirmation of the 

A X  request (e .go, @ATCcnw) . Note that Figure 5 .3  shows that each 

confirmation message (from PNF to ATC) is ignored by ATC, since the 

ATC module used in this simulation operates in a time-locked 

open-loop fashion. Naturally, a more sophisticated module would 

take into account the procedural activity of ATC, and incorporate 

the verbal confirmatory feedback provided by the crew. 

The descent request made by An:  at tgO = 930s triggers a 

number of crew activities. As just noted, it triggers a verbal 

confirmation by the PWF. It also triggers the generation of a 

three-segment maneuver (flare/descent/flare) by the PP, in 
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Figurs 5.48 Samole PROCRU Milestone Time-Line (Case 1LS) 
~ ~ ~ . ~ o " ~ ~ ~ o ~ ~ ~ ~ ~ ~ o ~ ~ . ~ ~ ~ ~ ~ ~ . ~ . ~ o ~ o ~ o ~ ~ . ~ ~ ~ ~ ~ - ~ ~ ~ ~ ~ o - - ~ - - - - ~ - m " ~ ~ . - - - - .  

TIME VEIIICLE STATE CREW ACTIVITY FLIGHT MILESTWS 
TGo A l t  Vel Head Captain FOfficer SOfficer 

(PP) (PW) 
~ ~ ~ ~ ~ ~ ~ H I ~ ~ ~ I I ~ I ~ I I ~ ~ ~ ~ ~ ~ ~ ~ o . ~ ~ ~ . o ~ ~ ~ o ~ ~ ~ . ~ ~ ~ ~ ~ . ~ ~ ~ ~ ~ ~ ~ ~ o ~ . o ~ ~ ~ - . - m o -  

ATCtT- to 270. beg 
980.0 10000 190 210 

Bad S 6 L Begin TURN 
to 270.0 deg 

Pr csdTur n 
977.8 10000 189 210 

Pr csdTur n 
977.4 9999 189 211 

ATCcn 
976.C 9999 190 213 

End TURN Begin S & L 
957.8 10000 190 270 

ATC: DECELto 170. kts 
950.0 10002 189 270 

End 8 & L Begin DECEL 
to 170.0 k t s  

PrcadDecel 
947.8 10003 189 270 

Pr csdDecel 
947.4 10003 189 270 

ATCcn 
946.6 10004 188 270 

ATCtDSCNDto3SOO. ft 

End DECEL Begin S & L 

End S & L Begin FLARE 
to -6.0 deg 

End FLARE Begin DSCNT 
to 3947.0 ft 

AA a c t i v e  

AA inac t ive  
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Figure 5.4 (cont.) 
End DSCI!UT Begin FLARE 
to 0.0 aeg 

3912 170 269 
I ACR 

3500 170 269 
IACst 
Pr csdIACR 

3498 170 269 
End BLARE Begin S & L 

3466 169 269 
ATCtDECBLte 160, kts 

3465 170 269 
End S a L Begin DECEL 
to 160.0 kts 

PrcsdDecel 
3465 170 269 

PtcsdDecel 
3465 169 269 

ATCcn 
3465 168 269 

IAC# 1 
3465 167 269 

PrcsdIACIl 
3465 165 269 

IAC# 1 
3465 161 269 

PrcsdIACi 1 
3465 161 269 

End DECEL Begin S & L 
3465 159 269 

FlapR 
3466 159 269 

Flaps at 5.0 
Flaps 
PrcsdFlapR 

3467 159 270 
IAC# 2 

3464 160 270 
PrcsdIACt 2 

3464 160 269 
1ac12 

3465 159 269 
PrcsdIACIZ 

3465 159 269 
IACO 3 

3467 159 269 
PrcrdIACb3 

3467 159 269 
IACt 3 

3467 159 269 
PrcsdIACI 3 

3467 159 269 
1acx4 
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~rcsdIAC@4 

IACI 4 

PrcrdIACt4 

IACI S 

~rcsdIACI5 

IAC#S 

prcsdIAC#S 

ATCtTUMO to 180. Beg f 
m d s C L B e g i n ~ m  f 
to 180.0 deg 

Pr csdTurn 
537.8 3463 160 270 

PrcsdTur .I 
537.4 3463 160 268 

ATCcn 
536.6 3464 159 266 

IACfn 

1 500.0 3465 159 180 
End S & L Begin FLARE 

i 
to -3.2 deg 

PrcsdChAlt 
497.8 3465 159 180 

I 
1 

Pr csdChAlt 
497.4 3465 159 180 

ATCcn 
496.6 3464 159 180 

AAan 
494.0 3457 160 180 

End FLARE Begin DSCNT 
to2118.5 f t  

481.2 3334 160 180 ATC;Trn to 120. deg 
450.0 2866 159 179 

Pr csdTur n 
447.8 2034 199 179 

Pr csdTur n 
447.4 2828 159 179 

ATCcn 
446.6 2815 159 179 

-124- 
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Figure 5.4 icont.) 

AA a c t i v e  
401.6 2138 1S9 179 

End DSQQT -gin FLARE 
to 0.0 469 

399.4 2109 159 179 
AAoff 
Prcs&AltAl 

398.4 2091 159 179 
M tnac t ive  

e 
1 398.2 2086 159 179 

FACR 
390.4 2008 159 179 

FAC8t 
Pt  c8dFACR 

390.2 2007 159 179 
FACil 

385.2 1988 159 180 
End BtARB Begin TURN 
to 120.0 deg 

383.0 1987 159 180 
PrcsdFACa 1 

382.6 1987 159 158 
FAC#1 

378.8 1987 159 167 
PrcsdFAC) 1 

379.6 1987 159 167 
ATC: Cleared to  land 

375.0 1988 159 15 6 
PrcsdC1;FL 

373.8 1989 159 152 
PrcsUClrFL 

372.4 1989 159 148 
ATCcn 

371.6 1990 159 146 
End TORN Begin DECEL . 
to  150.0 k t 8  

363.0 1986 159 120 
End DECEL Begin S & L 

352.8 1988 149 120 
FlagR 

35i.2 1988 149 120 
Flaps a t  15.0 

f1ag5 
PrcsdFlapR 

348.6 1985 149 :20 
LOCI on -2.5 dots 

344.8 1981 149 120 
PtcsdLOCon 

344.6 1981 149 120 
Prc8dLOCon 

343.6 1980 149 120 

-125- 
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End S & L Begin TlZtU 
to 90,O deg 

Gear R 

Landing gear down 
GearD 
PrcrdGear R 

FAC? 2 

FAC? 2 

End S & L Begin DECEL 
to 140.0 k t s  

End DBCEL Begin 9 f L 

Plaps a t  25.0 
f1ap8 
Pr csdFlapR 

end 8 6 L Beg1 OECEL 
to 139.0 ktr 

End DECEL Begin 8 6 L 

Flaps a t  30.0 
f1ap8 
Pr crdFlapR 
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End 8 6 L Beg in  FLARB 
to -2 .5  dw 

End FLARE Begin  DSClQT 

FACf n 

OM active 

OM i n a c t i v e  

AltCo 

AltCo 

AltCo 

Efwisc 
34.8 248 139 89 

Pr csdMMon 
34.6 246 139 89  

P r c s a R ~ i s c  
33.2 233 138 90 

Pr csdMMon 
31.6 217 138 90 

AltCo 
31.4 215 138 90 

MM A c t i v e  
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Figure 5.4 ( c o n t . )  

MM i n a c t i v e  
30.4 205 138 90 

PrcrdAltCo 
29.8 199 138 90 

End D8- Begin DtCEL 
to 134.0 k t 8  

26.0 160 138 90 
End DECEL Begin DSCNT 

15 .2  4 9 1 3 3  89 
End DSCMT Begin FLARE 
to 0.0  deg 

14.4 41 133 89 
GS off 

12.0 20 133 90 
LOC off 

8.2 0 133 09 
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accordance with the procedure outlined in Table 4.6. Thus, a flare 

to -6 deg flight path is initiated at tgo - 926s, and conetant sink 
rate is maintained until tgo = 707s, at which point a flare-out is 

initiated, and completed at tgo = 676s. The A X  descent request 

also triggers an altitude alert setting by the PF (mAAonm at tgo * 

922s), in acclt dame with the procedure outlined in Table 4.13. 

As the vehicle approaches the requested 3500 ft altitude, the 

PF makes a verbal request for the initial approach checklist 

(aIACRm at tgo = 686s) which, as shown by Figure 5.3, is processed 

by the S/O at t = 294s. This then initiates the series of IAC 

prompts by the S/O, shown in the next few minutes of the time-line. 

Bach such prompt (cog., .IAC #Im at tgo - 666s ) results in a 

requirement on the PF or PNF to process that prompt (e.g., 'Procsd 

IAC lm at tgo = 663s), and verbally acho the prompt back to the 

S/O. Subsequent processing of the confirmation by the S/0 (e.g., 

*Prcsd IAC' at t = 659s), initiates generation of another 
90 

prompt by the S/O (e.g., .IAC at tgo = 639s). The IAC is 

concluded at tgO = 533s by a mIACfna message generated by the S/O. 

The descent to 3500 ft also triggers the altitude alert (AA) 

subsystem. Thus, at h = 4019 ft the AA becomes active, which 

requires the PF to turn it off at tgO = 709s. which, in turn 

deactivates the AA at the next time step in the simulation. Note 

that this occurs prior to the flare-out initiated hy the PI, thus 
I 

providing an appropriate warning to begin the flare-out. 

-129- 
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After the PF levels off near the requested 3500 ft altitude, 

ATC requests a deaeleration to 160 kt. As before, this triggers a 

maneuver by the PF and a msseJage confirmation by the PtW. Note 

that aompletion of this maneuver triggers a S deg flap request by 

the PI (tgo - 6S6), in accordance with the flap/speed management 

procedure outlined in Table 4.11. 

Following an ATC-requested turn to 180 deg (tg, = 540s) , a 
second descent to 2000 ft is initiated (tgo = 498s). The same 

activity sequence is followed as in the first descent, except that 

ATC makes a 120 deg turn request (tgo = 450s) while the vehicle is 

descending. The message is processed by both crew members (as 

shown in Figure 5.3) , and confirmation is provided by the PNF. The 

PF, however, does not act on this request, but merely stores it in 

his memory. Once he levels off to the requested 2000 ft altitude 

(tgo = 383a), he then immediately initiates the turn to 120 deg. 

As in the initial descent, the PF requests the checklist 

during his levelling off to his aesigned altitude ("FAR" at tg, = 

390s). Again, this initiates a series of S/O prompts and PI and 

PNF confirmations, lasting until checklist termination by the S/O 

("FACfnW at tgo = 183s). 

While the PF is turning to the requested 120 deg heading, ATC 

notifies the crew that they are cleared to land (tgo - 375s). This 
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message is processed by both the PF and PNF, and 'enablesa a aeries 

of velocity, altitude, and heading management proceduces designed 

to ensure proper touchdown performance. 

The first of these is a deceleration to 150 kt, following 

completion of the turn to 120 deg (tgo = 363s). Once this spemd is 

reached, 15 deg flaps are requested and set, by the PF and P W  

respectively (tP = 349s). Shortly thereafter , the loaali8er 
becomes active, which results in an announcement by the P%F, which, 

in turn, triggers a turn to final by the PF. 

During the turn, the glide slope becomes active (tgo - 326s). 
and is announced by the PNF. After the turn is completed, the 

vehicle has achieved its final inbound heading, with a small 

localiaer error (not shown on the time-line). Shortly thereafter, 

a 2 dot low glide slope error (also not shown), triggers a 

gear-down request from the PI, which is acted on by the PNF (tgo - 
273s). 

As the vehicle approaches the glide slope, the PF initiates 

two decelerations in accordance with the velocity maneuver 

procedures of Table 4.3; one to 140 kt at 1.5 dots low, and the 

second to the final approach speed of 139 kt, at 1 dot low. Each 

of these trigger new flap requests and settings (to 25 and 30 deg) 

in accordance with the flap/speed management procedure of Table 

4.11. 
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When the vehiale ie 0.5 dots below the glide elope, the PF 

initiates a pitah down (tgo - 210s). This flare set. up the final 

desaent followed Lor the remainder of the approauh, 

During the d e s ~ n t ,  the PNF announass OM aotivity (*OMannn at 

t90 - 151s), and makes the required 1000 ft, SO0 ft, and 

*approaching minimum's (300 ft) calloute, He is also monitoring 

out-the-window, and, with the 250 ft ceiling simulated, m a k ~ a  t5e 

appropriate RWIS callout at tgo = 358. 

While the PNF is nnonit~ring for this RWIS callout, the MM 

alert  sound^ , and both pilots process this message. The PNF should 

announce MM activity dur ing this time, but is engaged in monitoring 

the altimeter for his required aminimumsa callout at 200 ft, He 

makes the altitude callout slightly early (at hm215ft and tpo * 

31s), and by the time he can attend to making the MM announcement, 

the MM become8 inactive (at tgo = 30s). Since the announcement 

procedure, as programmed, requires the MI4 to be active for an 

announcement to be made, the PNF remains silent. 

The PF begins decelerating to the required threshold speed of 

134 kt slightly early (at tgo = 26s) and 10 ft above the 150 ft 

altitude specified in Table 4.3. The final flare is initiated 

about 1 sec late and 10 ft below the 50 ft altitude specified in 

Table 4.5. During this flare the Gf3 signal turns off because of 
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the f l a r e  away from the  g l i d e  slope beam, and the  LOC s igna l  turns  

of f  a t  touchdown, a s  required by t h e  LOC charac te r i s t ios  modelled 

i n  t h i s  eimulation (see Appendix 8). 

5.3.2 Monitored Approach (MAP) 

Since the  monitored approach procedure (MAP) d i f f e r s  from the  

standard approach procedure (SAP) only i n  t h e  last  few hundred feet 

of the approach, we show only the  las t  half-minute of t h e  XUAP 

time-line i n  Figure 5.5. The assumption hare is t h a t ,  during the 

e a r l y  portion of the approach, the  CAPT is the  P W ,  and the  F/O the  

PF. Thus, the  MAP milestone time-line fo r  events e a r l i e r  than 

those shown i n  Figure 5.5 would be i d e n t i c a l  to those  shown f o r  the  

SAP i n  Figure 5.4, w i t h  the  f ly ing  d u t i e s  of t h e  CAPT and F/O 

reversed. 

The time-line of Figure 5.5 begins with a RWIS recognition by 

t h e  CAPT (near the  c e i l i n g  a l t i t u d e  of 250 f t ) ,  and subsequent 

cont ro l  t ransfer .  A s  i n  the SAP time-line, t h e  requirement to make 

t h e  200 f t  a l t i t u d e  ca l lou t  causes the  PIUF (now t h e  F/O) to miss 

the  announcement of MM ac t iv i ty .  The remainder of the  descent, 

f l a r e ,  and touchdown c lose ly  p a r a l l e l s  t h a t  of the  SAP shown 

ear  1 i e r  . 
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Figure 5.): Monitored Approach Time-Line (case 118) 
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5.3.3 High Workload Approach(BAP/ATCHI) 

Figure  5.6 shows t h e  milestone tima-line aorrespondirtg to t h e  

high workload approach seenar io  (ATCHI) conduated under s tandard 

approach procedurea. The ATC aonnnands assoc ia ted  wi th  t h i s  

scenar i o  are given i n  Table 5.1. 

A comparison with  t h e  nominal workload approach p a i n t s  o u t  a 

number of i n t e r e a t i n g  d i f f e r ences  i n  p r o ~ e d u r a l  a a t i v i t y  . We 

di scuss  a few of these  d i f f e r ences  i n  t h e  following paragraphs. 

Figure  5.6 shows t h e  high workload procedural  a c t i v i t y  to be 

i d e n t i c a l  to t h a t  of t h e  nominal approach of Figure  5.4 up u n t i l  

t!30 = 6158, when the  e a r l y  ATC tu rn  reques t  is made. The PF's 

response is to i n i t i a t e  t he  t u r n  ( a t  tg, = 613s) and t h e  ~l(lr'8 

response is to confirm the  request  ( a t  tgo - 612s). A comparison 

with t he  nominal case shows t h a t  t h i s  r equ i r e s  t h e  PIUF to 

in t e r l eave  t h i s  confirmation w i t h  a c h e c k l i s t  v e r i f i c a t i o n  ("IAC 

#3" i n  response a t  tgo = 606) to the S/O's prompt. 

While t h e  I / O  and S/0 cont inue t h e  IAC, t h e  PF f i n i s h e s  t h e  

t u r n  to t h e  new 180 deg headingr and, i n  response to  t h e  

acce le ra ted  ATC descent  request  (tgo - 575s). begins t h e  flare to  

achieve the  des i red  s ink  rate. Shor t ly  t h e r e a f t e r  (tgo = 533s),  

t h e  S/0 completes t h e  IAC. A comparison w i t h  t h e  nominal approach 

t ime-l ine shows the  I A C  completed during t h e  t u r n  t o  180 deg, and 

p r i o r  to t h e  descent  maneuver. Thus, i n  the  high workload 
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Figure 5.6: Milestone Time-Line: High A1Y: Workload Scenario (case ILS) 
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Figure 5.6 (.cont. ) 
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Figure 5.6 (cont. ) 
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Figure 5.6 (cont . )  
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Figurr 5.6  (cont. ) 1 : 
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approach, t he  IAC is completed "late", i f  we assume t h a t  t h e r e  

e x i s t s  a requirement to complete it p r i o r  to  leaving t h e  3500 f t  

assigned approach a l t i t u d e .  

Later  i n  the  descent  toward the  new assigned a l t i t u d e  of 2000 

f t ,  the  high and nominal workload time-lines again  p a r a l l e l  one 

another (i.e., tgo = 450s on the  nominal corresponds to tgo = 480s 

on the  high workload approach) . This p a r a l l e l  procedural  a c t i v i t y  

continues through level-out  a t  2000 f t ,  and down to  08 t u r n  on (tgo 

= 409s on the  high workload approach and tgo = 326s on the  nominal 

workload approach) . A t  t h i s  po in t  considerable procedur a 1  a c t i v i t y  

d i f fe rences  become evident.  

I n  t h e  high workload approach, t h e  tu rn  to f i n a l  ( a t  tgo = 

410s) begins r e l a t i v e l y  close i n  to the  f i e l d ,  wi th  a l a t e r a l  

posi t ioning t h a t  p laces  the  vehicle  s l i g h t l y  more than 2.5 deg off 

the  LOC plane (as  measured about t h e  GS t r ansmi t t e r ) .  A s  noted i n  

Appendix B, t h i s  ensures  t h a t  the  GS ind ica tor  w i l l  be inac t ive ;  

however, approximately one second l a t e r ,  t he  veh ic le  comes to 

within 2.5 deg of the  LOC plane, and the  GS i nd i ca t ion  provides the  

crew w i t h  s GS measurement. Because of t h e  r e l a t i v e  c loseness  t o  

the  f i e l d ,  however, t h e  GS ind ica tor  does not  become a c t i v e  a t  t h e  

customary -3 do ts ;  ins tead it shows a r e l a t i v e l y  small -1.4 d o t  

e r ro r .  



This small etror immediately plaaes the ccew 'behindu in the 

approach, sinoe the gear should haws been dropped at 2 dots loror 

and the vehiale slowed to 140 kt at: 1.5 dots low. The time-line of! 

Figure 5.6 shows an almost immediate gear down reguest by the OF 

(at tpo = 4 0 8 ~ ) ~  but this is not acted on imediately since the P*F 

is busy announcing 08 activity (at t o  = 407s). To capound 

matters, the PF cannot initiate the required deceleration to 140 kt 

until he completes the turn to final, which doesn4t occur until tgo 

= 3698. 

By this timer the glide slope error has been reduced to less 

than 0.5 dot, which means that the PI is *behinda in both his 

required deceleration to the approach speed of 139 kt, and his 

pitch down to the final glide path. As shown in the time line, he 

*stacksa both of these commands immediately after ending the turn 

to final, in an attempt to catch up. 

Once having initiated the pitch down (at tgo = 358s), two 

neglected flap requests are made, one which should have been made 

after the deceleration to 140 kt, and the other after the 

deceleration to 139 kt. While the PF then concentrates on 

stabilizing the vehicle on the glide slope, the PNF sets the flaps 

(at tgO = 355s and tgo = 349~1, and continues with the final 

approach checklist. Because the late flap requests delay the 

checklist progress t>e FAC is not completed until tgo = 3038, after 
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the vehicle has paaaed through the OH beaoon. Thus, in the high 

workload apptoach, the PAC is oompleted 'latea, if we assume that 

there exists a requirement to complete it prior to OM arrtivity. 

Mote also that the PtW mirses making the OM announoement, beaaurre 

of his preoccupation with the PAC. 

Although slightly "laten at this potnt, the crew has 

effectively caught up with the nominal workload approach. Thus, 

the 1000 Zt altitude callout is made appropriately (at tgo - 2618), 
and the subsequent callouts by the PNF, and maneuver by the PF, 

directly parallel those of the nominal workloa6 approach. Rote 

that because of slight numerical differences in the nominal and 

high workload simulations, the end-points of the two runs differ 

slightly: the former terminates at zero altitude with a small 

negative sink rate, while the latter terminates at 1 ft altitude, 

and begins to wfloat* down the runway. No attempt has been made to 

"fine-tune" these differences out of the simulation, since this 

type of terminal performance is beyond the scope of the current 

approach to landing study. 

5.3.4 Model Parameter Variations 

Variations in crew model parameters considered here will 

affect all aspects of the approach. Inasmuch as the trajectory 

performance is most likely to be biased by the sample effects 
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associated with using a particular noise sequenoe (and by the 

simplified disturbanae model as well), we will refrain from a 

detailed discussion of this aspect of the simulations. Suffiue to 

say that the high noise cases did result in poorer glide path 

control on final approach, as expected, and these variations and 

others had some effect on the final flare, as noted below. 

On the other hand, estimation error uncertainty is somewhat 

less sensitive to sample effects because it depends primarily on 

noise covariances rather than on the particular noise sample. 

Table 5.4 gives the standard deviation of the estimation errors of 

several states (h,V,$,y) at the decision height of 200'. It is 

clear from these results that increasing disturbances or decreasing 

attention increases the standard deviation of the estimation error 

(uncertainty) as expected. Increasing lock-up times has a small 

effect on PF'S uncertainty and virtually none on that of PNF. 

There is virtually no effect on uncertainty resulting from the 

change in the default gains. 

The difference in ATC scenario doesn't have an effect on 

estimation uncertainty for the nominal configurations(cases il); 

there is some difference in the high noise, low attention cases, 
v+ 
(#4) but a consistent trend is not apparent. The differences 

between MAP and SAP are also not completely consistent except that 

the effect of changing roles is reflected in the estimation 



Table 5.48 Standard Deviation o f  Estimation Errors a t  Decision Height 

, 

C a m #  h(ft4 V( ftI8-l tlr (dgg) Y (a-1 

PF PNF PF PNF PF PNF PF PNF 

1LS 7.1 5.2 -21 -16 .36 .51 .13 .13 

1LM 5.2 6.3 -16 .21 .25 .42 .13 -13 

2LS 12.4 10.9 -73 .81 .77 1.24 -53 -59 

3LS 7.9 6.3 .24 .16 .41 .61 .15 .14 

4LS 14.5 11.4 .77 .91 .92 1.94 .56 .60 

4LM 12.3 11.8 .83 -73 .83 1.84 .64 - 5 3  

5LS 7.6 5.2 -24 -16 .46 -59 -13 .13 

6LS 7.0 5.3 .20 .16 -37  .52 .13 -13 

1HS 7.1 5.4 .Z1 -16 .39 -58 .13 .13 

1HM 5.3 6.4 -16 -21 .27 .41 .13 .13 

4HS 12.7 12.3 -70 -85 1.48 1.84 .SO .61 

4HM 13.1 11.8 -87 -79 .96 1.84 .65 .55 
- - 
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performances of PF and Pw. In addition, it is interesting that, 

with the exception of the high workload, high noiee case, the PF's 

estimation uncertainty in altitude is reduced for the MAP 

procedure. 

For the most part, the variations investigated did not have 

major effects on the time-lines. The time-lines for case 3L8 did 

not differ from those of case 1LS, showing that for a mall 

disturbance level and relaxed tempo a significant reduction in 

attention from high levels is possible. This is both expected and 

as it should be. 

The most striking difference in time-lines with regard to 

procedural execution occurs near the end of the high disturbance 

level approaches. As illustrated in Figure 5.7 for case 4LS 

(similar results are obtained for case 2LS), the deceleration to 

threshold speed is late (h<1004). Typically, this is not 

sufficient to cause a missed approach but it could result in a 

modified landing procedure (not simulated), in which PF would 

[ i forego decelerating to threshold speed and would increase the final 

flare rate. The late execution of the deceleration procedure in 

these cases is due to the larger uncertainty in altitude (see Table 

5.4) compounded by a delay in going wheads-upw after hearing the 

RWIS call. 
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Figure 5.7 also ahowe that PtUF fa i l s  to make the "approaching 

minimumsm aailout i n  the high noise situation, T h i s  appears to be 

the result of the large uncertainty i n  altitude estimation along 

w i t h  (our) requirement that the P14F be 958 aertain of being with in  

25 f t  of the callout altitude before making the sallout. 

The imposition of longer procedure lock-up times naturally 

results i n  a longer time to complete the various procedures.* This  

does not have any noticeable effect u n t i l  the very end of the 

approach. Then, as i n  the high noise case, the final deceleration 

is delayed and the landing altered. 

The effects of increasing the default gains for control and 

monitoring were as expected. Control and estimation performance 

improved s l i g h t l y .  Almost a l l  procedures were executed i n  timely 

fashion, though there was some delay associated wi th  the 

requirement for the other EGP'S to  exceed .6 (rather than .3)  

before they could be selected. The one exception is the OM callout 

which was not made i n  t h i s  case. This m i s s  occurs because the gain 

for that callout does not exceed .6 before the outer marker turns 

off. 

* Increased lock-up times could also be used to simulate the 
demands of another (unmodelled) problem. 
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Figure 5 . 7  : Final  Port ion  of Time fine for High Disturbance Level 
(Case 4LS) 
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Ths results tor crew parameter variations (attention, lock-up 

time and default gains) indicate that, while P E R U  does exhibit 

some sensitivity to these variables, there is a desirable degree of 

latitude in selecting specific values for them, 
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6. CONCLUDING BEMABAS 

PROCRU, a new simulation model for analyzing crew proaedureu 

in approach to landing, has been described. The model is a system 

model that can account for vehicle dynamics, environmental 

disturbances and crew activities in information processing, 

decision making, control and communication. Crew sub-tasks are 

defined based on a time-line analysis of nominal procedures. 

Information processing and control behavior is modelled at ter the 

approach utilized in the Optimal Control Model. Decision making 

behavior is based on maximizing subjective expected gain. The 

result is a complex, stochastic model for analyzing the impact on 

approach and landing of system, procedure and crew variables. 

The PROCRU model has not been validated experimentally, though 

the information processing and control parts of it have been tested 

in manual control experiments. In addition, for this initial 

implementation, several important aspects of human behaviot have 

been simplified or neglected. Nonetheless, it is likely that even 

in its present state of development, with some upgrading of wind 

models and vehicle dynamics, PROCRU could be used to analyze many 

questions of interest regarding procedures for approach and 

landing. Candidate areas of application would include: 
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i) Appliaation of the model to simulation of other agproaah 
soenarios, This muld inolude an examination of other high 
workload radar-veotored approaohesr and variations in airoraft 
conf igurationo (e ,gb, engine out) ILS beam geometrier , runway 
and terrain elevations, and winds and guatr, Clearlyr a large 
range of scenario parameters a u l d  b studied with the 
facility now provided by the PROCRU model, 

ii) Model analysis of procedural variations. i s  could 
include analysis of different category landingar given 
standard operating proaedurest and a determination of the 
impact of procedural variations away from a given standard 
operating procedural set. By examining variation8 in 
time-line activity, crew tempo, monitoring requirements, and 
trajectory propagation, a model-based evaluation of prooedural 
improvements could be conducted, and thus provide the basis 
for the potential develogsagnt of a rat10,lal and analytic 
procedural design methodology. 

iii) Analysis of the effects of changes in the oockpit 
environment resulting from the introduction of various control 
and display aids. Thus, one could, for example, compare 
manual and coupled approches or examine the effects of auto 
throttles, HUb's, etc. 

iv) Application of the model to other flight phases, such as 
takeoff or the touchdown/rollout/braking phase. As in the 
approach to landing study, an analysis of the impact of 
various vehicular, procedural, and environmental factors could 
be conducted, to provide a model-based assessment of crew 
workload and flight performance variations. 

V) Application and validation of the model using detailed 
NTSB incident and accident reports. By amodel-matchinga the 
simulation results to one or more documented case studies, 
open areas of model implementation could be identified, and 
modifications proposed to ensure procedural parallels between 
simulation and actual time-line. In addition, such a 
modelling effort would provide a means of testing various 
hypotheses of accident/incident causation, and could directly 
suggest means of ameliorating or eliminating such causal 
factors. 

There are also many directions for extending and improving 

PROCRU; some simple, some mote complicated. A few of these are 

discussed below. 
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In the area of inoreased model rophiatiaation, a number of 

potential improvements suggest tbemaelvea. By intrdluaing a 

failure capabilty in the various vehiale eubaystems, and providing 

the crew members with a failure detection and identification logia, 

abnormal and emergency reaponlre models aould k studied. 

Naturally, this would require the speaification of additional 

procedures to handle such situations, but the current model 

structure is ideally suited to handle this expansion, and the 

currently available operations handbooks provide a reasonably 

concise specification of the required procedures, 

By continuing an interaction with active flight crew 

personnel, more sophisticated inodels of procedural gains could be 

developed. These cocld reflect not only the explicit procedural 

requirements stated in the operations manual, but also the implicit 

requir-ts, and the crews' goals, motivation, and experience . We 
would expect that the model requirements would guide us in our crew 

queries, and their responses would provide us with additional data 

for developing more sophisticated and representative procedural 

gain expressions. 

The development and implementation of a more detailed model of 

out-the-windw visual cue processing could provide additional 

insight concerning the dynamics of runway acquisition, and the 

impact of different monitoring strategies. Such a model w m l d  also 
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have the potential of providing for gradual aaquirition of runway 

ouer, and not be limited to the all-or-none oieibility oonditions 

oonventionally utilised in ILS approaah m t u d i 8 0 .  

Finally, there ate revetal urer-orlented improvements that 

would enhance PROCRU'r utility. The addition of a graphioal output 

oapabilty and of statistical analysis program8 would greatly 

facilitate the rapid and thorough analyres of approach perf omance, 

Modifications to increase computation rpeed (such as modifying the 

program to allow variable length integration time steps) would be 

very useful for reducing the cost of Monte Carlo simulation 

analysis. 
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A: altitude (ft) 

AA: altitude alert 

Act altitude command from ATC (ft) 

AS: airport elevation (ft above sea level) 

AEg: above field elevation 

A/R: as required 

ATC: air traffic control 

ATIS: airport traffic information service (weather and 
visibility info) 

CAT I: category I landing, with a DH of 200' AFB, and an RVR 

of 2400 ft 

CFL: cleared for landing 

CSD: constant speed drive 

DH: decision height (ft) 

EPRt exhaust pressure ratio setting for engines 

FAC: final approach checklist 

F/O: First Officer 

fpm: feet per minute 

G/At go around 

68: glide slope 

GWTt vehicle gross weight 

H: heading (deg) 
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HC: heading command f tom ATC (deg) 

HBIs horisontal situation indiaator, driven by localiser beam 

IAC: initial approach checklist 

I&S : instrument landing system 

In: inner marker 

kt: m/hr 

LOC: localiaer 

LOM: outer marker 

MA: missed approach 

MAP: missed approach procedure; monitored approach procedure 

MEO: middle marker 

NAV r navigation 

nmt nautical mile 

OM: outer marker 

PF: pilot flying 

PNF: pilot not flying 

RE": radio frequency 

RVR: runway visual range (it) 

RW t runway 

SAP : standard approach procedure 

SB: speed brake 

SH: search height (ft) 

S/Ot Second Officer 
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SOP: standard operating procedures 

TD: touchdown 

V: velocity (kts) 

VAPP: desired approach speed, determined by VBUG and 
wind/gust correction factor 

VBUG: bug speed, set on airspeed indicator, and 
determined by VRBP and landing flap choice 

VC: velocity command from ATC (kts) 

VGUST: gust velocity 

VEF: very high frequency 

WIR/ADF: VEF omni range/automatic direction finder 

VREF: reference speed, determined by vehicle gross weight 

VTHRESH: desired speed at RW threshold, determined by 
VBUG and gust correction factor 

VWIND: wind speed 
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Appendix Bt OfrIDE SLOPE AND LOCALIZER 

B.l Basic Geometry 

Glide slope and localiser geometries are shown in Figure B,1. 

The runway is assumed to be 10000 ft long, with the glide slope 

transmitter located 1150 f t beyond runway threshold and the 

localizer transmitter located 1000 ft beyond the end of the runway. 

The nominal glide slope is assumed to be 2.5 Beg, with a 

sensitivity of 1 dot/0.35 Beg. The localizer is assumed to be 

aligned along the east-west direction, and to have a sensitivity of 

1 dot/deg. 

The figure also shows specific above field nominal altitudes 

along the glide slope, with the corresponding range-to-go, measured 

in the plane of the runway, and referenced to glide slope 

transmitter location. The nominal touchdown point is 1140 it 

beyond the glide slope transmitter, assuming flare initiation at 50 

it over runway threshold. 

8.2 Functional ~escription 

8.2.1 Localizer 

Figure 8.2  shows a bottom view of the basic localizer 

geometry, referenced to the local geographic navigation frame 

(north, east, down). The parameters specifying the geometry are: 



Report No.. 4374 



Report No. 4374 Bolt Beranek and Newman Ino. 

LOC 

Figure B.2: Basic Localizer Geometry (bottom view) 
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*LOE inbound heading of LOC beam 

( x ' ~ ~ Y ~ ~ )  location of LOC transmitter, in N frame 

coordinates 

( x , Y )  location of vehicle, in N frame coordinates 

The prime frame indicated in the figure is the LOC frame, with its 

origin at the L K  transmitter, and with the xO-axis aligned with 

the inbound heading. In this coordinate frame, vehicle position is 

given by: 

Range to the LOC transmitter is then given by 

and LOC error, as defined in the figure, is given by 

Our model of the localizer assumes minimum and maximum operating 

ranges, so that if 

:nax min 
r~~~ ' 'LOC Or 'LOC < 'LOC 

the localizer is "inactive*. A similar angular limit was imposed, 

so that if 
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max e m >  € mc 

the localizer is ainactivea. 

Particular parametera chosen for the nominal geometry are 

given in Table 8.1. 

8.2.2 Glide Blope 

Figure B.3a shows a bottom view of the basic glide slope 

geometry, referenced to the local geographic navigation frame. The 

parameters specifying the geometry are: 

$LOC inbound heading of LOC beam 

(XGS P ~ G S  ) location of GS transmitter, in N frame 

coordinates 

( x  ,Y 1 location of vehicle, in N frame coordinates 

The double prime frame indicated -in the figure is the 08 frame, 

with its origin at the GB transmitter, and with the xc'-axis 

aligned with the inbound heading. In this coordinate frame, 

vehicle position is given by: 

x" cos y LOC I = [sin Yrac "" =OS '-1 ~ L O C  [;I;:] 
Range to the GS tranamittez is then given bya 
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Table 8 .2 :  Glide Slope Parameters 

Parmeter Value Dimensior: 

min 
('GS ' CX) 

max " GS 2 
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Figure B.3a: Basic Glide Slope Geometry (bottom view) 

f VEHICLE 

Figure B.3b: Basic Glide Slope Geometry (side view) 
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I i Figure B.3b shows a side view of the glide #lope geometry. 

It The parameter8 specifying the geometry are: 

l i elevation angle of the glide elope 

I t  h 
vehicle altitude AFB 

l i The vehiale elevation angle is given by 

so that the glide slope error, as defined in the figure, is given 

1 i Our model of the glide slope assumes minimum and maximum operating 
t f 

f ranges, so that if 
I 

1 max min 
! 'GS ' 'GS or 'GS < 'GS 

I I the glide slope is 'inactive'. A similar vertical plane angular 

I:; limit was imposed, so that if 

max 
I 'GsI' 'Gs 

the glide slope is 'inactivem.  ina ally, a lateral angular limit 

was implicitly imposed, by not allowing the glide slope to be 
max active until the vehicle was within E , ~  of the localizer plane, 

as measured about the glide slope transmittsr. 

5-8 



Report #om 4374 Bolt Beranek and #eman Ino. 

Part ioulu  parametera chosen for the nominal geometry are 

given i n  Table 8 .2 .  
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APPENDXX C t VEHICLE DYNAMICS 

C.1 Non-Linear Equations of W t i o n  

Assuming t h e  vehicle  is a poin t  mass acted upon by aerodynamic 
and g rav i t a t iona l  forcer ,  we can w r i t e  t h e  following standard 
equations of motion: 

mv - Tcosa - D - mgainy 
mvcosy ) = (L+Tsina ) s in8  

-4 = -(L+Tsina) cot84 + mgcosy 
X = vcosy cosg 

i = vcosy s ing  

(C . la )  
(C. l b )  
(C. lc) 
(C .la) 
( C . l e )  

(C.lf) 

where t h e  vehicle " s t a t e s"  are:  

v: speeC! with respect  to the  loca l  navigation freune 
g : heading measured clockwise w i t h  respect  t o  north 
Y :  f l i g h t  path angle measured up from the locql  horizontal  

(x,y,z):  vehicle posi t ion i n  t h e  l o c a l  navigation frame north, 
e a s t ,  and dwn di rec t ions .  

and where t h e  vehicle " c o ~ t r o l s "  are:  

T: t h r u s t  (assumed to be along t h e  vehicle 's  x-axis) 
a :  angle-of-attack between the  vehicle 's  x-axis and t h e  

veloci ty  vector 
$ t  bank angle between t h e  vehicle 's  y-axis and t h e  loca l  

horizontal  
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The form of the l i f t  and drag forces  (L arid D) w i l l  be discussed 

i n  t h e  next section. 

I f  we  assume t h a t  both angle-of-attack and f l i g h t  path angle 

a re  small (which is the  case, as shown i n  t h e m a i n  t ex t ) ,  and 

replace the  vehicle 's  z-position with t h c  negative of its a l t i t u d e  

h, ((2.1) then becomes: 

(C. 2a) 

(C. 2b) 

(C. 2c) 

(C .2d) 

(C, 2e) 

(C* 2f)  

C. 2 L i f t  and Drag 

The l i f t  and drag forces can be expressed as follows: 

where the  reference area S is  a f ixed constant and where the 

dynamic pressure is given by 

An exponential density model is  assumed, so t h a t  

(C. 3a) 

(C. 3b) 
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B 

1 i where 

The l i f t  and drag  c o e f f i c i e n t s  are assumed to have t h e  fol lowing 
func t iona l  dependence: 

where 

a: angle-of-attack 
C S f :  f l a p  s e t t i n g  

6g 
: gear  s e t t i n g  

I n  t he  above func t iona l  forms, Mach number dependence has  been 

ignored,  because of t h e  r e l a t i v e l y  smal l  v a r i a t i o n  i n  Mach 
number occurr ing over t h e  approach and landing t r a j e c t o r i e s  under 

study. I n  addi t ion ,  it i s  assumed t h a t  gear  s e t t i n g s  have 
n e g l i g i b l e  in f luence  on t h e  l i f t  coe f f i c i en t .  , 

! 

The l i f t  c o e f f i c i e n t  is assumed t o  be l i n e a r  i n  angle-of-attack, j 
I 

with t h e  f l a p s  cont r ibu t ing  i n  an a d d i t i v e  fashion:  1 
i 

a 
i 

1 -  CL = CL (a- aZ)  + CL (C. 8) 
r - 

a f 
i 
1 

where ::-I - 4  I 1 1 
i 

C : l i f t  c o e f f i c i e n t  s lope  (constant)  
La 

I 

c a : zero l i f t  angle-of-attack, f o r  no f l a p s  (cons tan t )  I 
2 

& 1 

1 
-- ---- -- .-- - - - . - - * - _  .- - - - . ----- 

. - 
ics;ae, . .L. . - ,  - " , I. , ,,.. ,. > --a. - ,. -" ..-%~-.~<.-d\-,z~- L A Y  -l%.l_i - -- I I 
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and where t h e  f l a p  con t r ibu t ion  is  assumed t o  be propor t iona l  t o  
f l a p  s e t t i n g :  

where 

c r  : maximum l i f t  con t r ibu t ion  from f l a p s  (constant)  

max 

bf : maximum f l a p  s e t t i n g  (constant)  

Spec i f i c  l i f t  c o e f f i c i e n t  parameter values  assumed f o r  t h e  c u r r e n t  
727 s tudy a r e  summarized i n  t a b l e  C.1, 

The drag c o e f f i c i e n t  is assumed t o  be quadra t i c  i n  angle-of- 
a t t a c k  with t h e  f l a p s  and gear con t r ibu t ing  i n  an  a d d i t i v e ' f a s h i o n :  

where 

C : p a r a s i t e  drag (cons tan t )  
Do 

nf : drag e f f i c i ency  f a c t o r  (constant)  

and where t h e  f l a p  con t r ibu t ion  is  assumed t o  be proport ional  t o  

f l a p  s e t t i n g :  
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Table C . 1 :  L i f t  Coefficient Parameter Values 

Parameter Value Dimens ion 

m 4658 s lug 

-0.175 rad 

-10.0 { deg 

1.0 -- 

Table C .2 : Drag Coeff ic ient  Parama ter Values 

Parameter Value Dimension 
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where 

The gear  con t r ibu t ion  is assumed to  have t h e  following form: 

0 when 6 9 = up 

down 

where 

cFX : maximum drag con t r ibu t ion  from gear  (constant)  
9 

Decompositior. of S t a t e s  and Controls  

Bol t  Beranek and Newman I ~ c .  

! , 
i 

_ ._. _ - -  . - 

eaX: maxim,, drag con t r ibu t ion  from f l a p s  (constant)  , 

Note t h a t  t h e  drag c o e f f i c i e n t  express ion (C.lO) assumes, f o r  
s imp l io i ty ,  t h a t  t h e  e f f i c i e n c y  f a c t o r  nf is independent of f l a p  
s e t t i n g .  

S p e c i f i c  drag coef f ic ie r l t  parameter values  assumed f o r  t h e  
c u r r e n t  s tudy are s-arized i n  Table C.2. 

Equation sets iC .  2) through (C. 12) de f ine  t h e  veh ic l e ' s  

state ou tpu t  response t o  a s p e c i f i e d  set of c o n t r o l  inputs .  I n  

o rde r  t o  "solve" t h i s  non-linear, time-varying s e t  of equat ions ,  w e  
make t h e  following set o f  assumptions: 
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1. Flap and gear se t t ings ,  although "inputs" t o  the  system, 
a r e  not  considered ava i l ab le  f o r  continuous cont ro l  o f  t h e  
system. Rather, they are t r e a t e d  a s  d i s c r e t e  mode configura- 

t i o n  variables ,  which are procedurally daf ined, and which 
undergo s t e p  changes i n  t h e i r  associated se t t ings .  

2. Thrust, angle-of-attack, and bank are taken as t h e  
avai lable  control  inputs,  and a r e  assumed representable by 
a constant plus a small perturbation: 

where the C subscr ip t  ind ica tes  a constant and t h e  6 (  ) 

indica tes  a perturbat ion quant i ty .  

3. The vehicle  s t a t e s  a r e  assumed representable by a "nominal" 1 
value plus a small perturbation, according to:* i 

I 
4 

v = vN+6v (C .14a) 1 

(C .14b) 11 = $,+W 

(C. 14d) I 

(C. 14f )  

*This notat ion d i f f e r s  s l i g h t l y  from t h a t  i n  Chapter 3 but  
the  correspondence is evident. 
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4. The nominal ve loc i ty ,  heading, and f l i g h t  pa th  angle  
a r e  chosen t o  be t h e  sum of s p e c i f i e d  cons tan t  p l u s  rate 

+ terms*: 

(C. 15a) 

(C. 1515) 
(C. 15c) 

and t h e  nominal a l t i t u d e  is chosen t o  have an a d d i t i o n a l  (as 
y e t  unspecified) cons tan t  acce l e ra t i on  term*: 

( C .  15f 1 

Expressions f o r  the nominal x and y pos i t i ons  w i l l  be der ived 
later i n  s e c t i o n  C.5. I 
The r a t i onab  fcr theseassumptions  and choice of  nominals 

w i l l  become ev iden t  i n  our d i scuss ion  l c . t e r  i n  s e c t i o n  C.6. For 
now, however, we  w i l l  u se  t hese  equat ion sets t o  decompose t h e  
earlier non-linear dynamic equat ions  i n t o  two s impler ,  and ana ly t i -  
c a l l y  t r a c t a b l e  sets: a "nominal" equi l ibr ium set and a l i n e a r  
pe r tu rba t ion  set. W e  begin by decomposing t h e  lift and drag 

forces .  

C.4 Decomposition o f  L i f t  and Draq 

C. 4 . 1  Dynamic Pressure  Expression 

Dynamic pressure  v a r i a t i o n s  are due t o  both v a r i a t i o n s  i n  
dens i ty  and ve loc i ty .  The dens i ty  v a r i a t i o n  is  obtained by 

* The subsc r ip t  c denotes a cons tan t  value.  
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s u b s t i t u t i n g  (C.15f) i n t o  (C. 5)  to y ie ld :  

(C. 16)  

The f i r s t  exponential  term is a cons tan t ,  s o  de f ine  

pc - p0e -hc/ho (C. l?a) 

The second exponential  t e r m  can be approximated by an expansion. 
The l a r g e s t  constant-sa te  a l ? i t u d e  change occurr inq i n  t h e  t r a j e c t o r y  
is 6500 f t  (see Table 4 of Chapter 2 ) ,  s o  t h a t ,  w i t h ( ~ . 6 b ) ,  

which suggests  t h a t  a second-order expansion provides an adequate 
approxima t ion :  

(C. 17b) 

The t h i r d  exponential  term can also be approximated by an expansion. 
The l a r g e s t  v e r t i c a l  acce l e ra t i ons  occur during a f l a r e  t o  a new 
f l i g h t  path angle. If  w e  assume a maximum 1000 f t  drop dur ing such 
a f l a r e ,  and conservat ively  a t t r i b u t e  a l l  of  t h e  drop t o  t h e  v e r t i c a l  
accz l e ra t i on ,  then 

s o  t h a t  
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F ina l ly ,  s i n c e  t h e  a l t i t u d e  per turba t ion  i s  by d e f i n i t i o n  small, 

(C. 17d) 

S u b s t i t u t i n g  (C.17) i n t o  (C.16), and dropping cross-product  term 
involving smal l  q u a n t i t i e s ,  w e  o b t a i n  t h e  following express ion 
for dens i ty  : 

The ve loc i ty  con t r ibu t ion  t o  dynamic pressure  is obtained by 
use of (C. 14a) and (c. l5a)  : 

From Table 4 of  Chapter 2,  it can be seen t h a t  t h e  r a t i o  of  v e l o c i t y  
change (Get) t o  s t a r t i n g  ve loc i ty  (vc) is g r e a t e s t  f o r  t h e  20 k t  
dece le ra t ion  s t a r t i n g  a t  190 k t s .  Thus, 

I +/vc 15 0.11 
max 

Since t h e  v e l o c i t y  per tu rba t ion  is by d e f i n i t i o n  small, w e  can then 
expand (C. 19) to ob ta in  

(C. 20) 

where w e  have dropped t h e  second-order pe r tu rba t ion  term and t h e  
croas-product involving t h e  ve loc i ty  per tu rba t ion  and t h e  l l s m a l l "  

term (Gct/vC) . 
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The dynamic pressure expression can now be found by subs t i tu t ing  
(C. 18) and (c. 20) i n t o  C . 4 )  , and dropping second-order per turbat ion 
terms, cross-product terms involving a par turbat ion quant i ty  and 
a "small" time-dependent term, and cross-product terms involving two 
"ra te*  terms* (e.g., Gck,) . The r e s u l t i n g  expression is given by: 

where 

- 1 2 
qc = Z PCV, (C. 22) 

and 

Note t h a t  is expressed as t h e  sum of a constant,  a time-varying 
. .. 

t e r m ,  and a term composed of s t a t e  'perturbatgons-. 

1 

C.4.2 L i f t  and Drag Expressions 

L i f t  and drag va r i a t ions  a r e  due t o  va r i a t ions  i n  t h e i r  
respect ive coeff ic ients ,  and t o  var ia t ions  i n  the dynamic pressure. 
The coe f f i c i en t  var ia t ions  a r e  obtained by subs t i tu t ing  (C.13b) 
i n t o  (C.8) and (C.10)  t o  yield:  

.. 
Neglecting the  product of two " ra ten  term is i u s t i f i e d  on the  

bas is  of maneuver se lec t ion  discussed l a t e -  i n  sec t ion  C.6, where, if 
one r a t e  (e.g., v is non-zero, then a l l  ochers must be non-zero s o  
Lhat a l l  such lgcr&s products" must be zero. 
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where t h e  second-order term i n  6a has been dropped from t h e  drag 
expression.  Assuming t h a t  t h e  f l a p  and gear  s e t t i n g s  remain 

cons tan t ,  then CL , CD , and CD remain cons tan ts ,  by (C.9): (C *ll) , 
and (C. 12) . I f  r b  def f  ne t h e  f811a*ing cons tan t  c o e f f i c i e n t s ,  then 

(C. 25a) 1 
4 

(C. 25b) i 
i 

and assume t h a t  both are non-zero, 'than (C. 24) becomes i 
i 

(C. 26b) 

The l i f t  and drag express ions  can now be found by s u b s t i t u t i n g  
(C. 21)  and (C. 26) i n t o  (C. 3) , and dropping second-order perturba- 
t i o n  terms, and cross-product terms involving a pe r tu rba t ion  and 
t h e  'smallw quan t i t y  X ( t ) .  The r e s u l t i n g  app rox iwt ions  are 
given by : 

I 

(C. 27a) 

where 

(C. 28a) 

(C. 28b) 
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Note t h a t  both l i f t  and d r a ~  are expressed as the sum of a cons tan t ,  

a time-varying term, and a term composed o f  s t a te  and c o n t r o l  

per tu rba t ions .  

Decomposition o f  Equations of  Motion 

W e  now proceed t o  decompose t h e  non-linear equat ion set 
def ined by (C.2), using t h e  c o n t r o l  v a r i a b l e  express ions  o f  (C.13), 

t h e  state va r i ab l e  represen ta t ions  o f  (C.14) and (C.lS), and t h e  l i f t  

and drag relations of  (C.27). 

The ve loc i ty  equat ion of  (C. 2a) is  expanded by use of (C.13), 

(C.14), (C.lS), and (Ce27b), t o  y i e l d ,  a f t e r  rearrangement, t h e  

following expresoion: 
L 
I 

where, f o r  convenience, w e  have def ined 
. I 

Note t h a t  t h e  RHS of (C. 29) is composed of  time-functions and 4 
per turba t ion  q u a n t i t i e s .  I f  w e  consider  t h e  s p e c i a l  c a s e  where t h e  ! 1 
p e r tu rba t ion  q u a n t i t i e s  a r e  zero a t  t=0,  then,  from (C.231, t h e  

RHS must he zero. But t h e  LHS is a constant .  Thus, both s i d e s  
li 

must be zero f o r  a l l  time: ? 1 j 
3 
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where, f o r  convenience, w e  have defined 

3 

(C.  33a) 

i 
Note t h a t  we now have an nequilibriumw solu t ion  f o r  the  o r i g i n a l  : 

i veloc i ty  equation of (C.2a). and an associated f i r s t -order  
per turbat ion re la t ion .  i 

! 

The heading equation of (C.2b) can be expanded by use of 
(C.13) , (C. 1 4 )  , (C.15). and (C.27a). Terms involving the  cross- 

i 
product of a "smalln time function (e.g., ;,t/vc) and a porturba- 
t ion  a re  dropped, as a r e  term involving the  cross  products of two . 
" ra ten  terms* (e.g.. vC'bc). After  neglecting second-order 
per turbat ion products, using small angle approximations, and 
rearranging, the  Eollowing expression is obtained: 

where, f o r  convenience, we have defined 

a ,  - 4 sc (C. 33b) 
La 

'See sect ion C.6 for j u s t i f i c a t i o n  of t h i s  l a s t  s impl i f ica t ion .  
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By t h e  same argument as before,  both s i d e s  of (C. 34) must be zero, 
so t h a t  t h e  following "equilibrium" and per turba t ion  r e l a t i o n s  

result t 

where, f o r  convenience, w e  have def ined 

(C. 33b) 

The f l i g h t  path equat ion of (C.2c) can be expanded by use 

of (C.13). ( C . 1 4 ) ,  (C.15). and (C.27a). Following the  same type 

of s imp l i f i ca t ion  and decomposition used f o r  t he  heading equat ion,  

w e  ob t a in  Lbe following "equil ibir iumtt  and per turba t ion  relations: 

(C. 3 l c )  
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where, f o r  convenience, w e  have defined 

(C. 336) 

The ground t rack  equations (C. 28) and (C. 2e) , specifying x 
and y vehicle  posi t ton,  can be expanded by use of (C.14) and (C,15), 
s implif ied by using small angle approximations and neglecting 
second-order per turbat ion terms, and rearranged to  y i e l d  t h e  
following expressions: 

- (vC+;,t) s i n  (1l,+6~t) WJ 

+ (vC+;,t) cos (%++,t) 8q (C. 35b) 

W e  can now specify t h e  nominal (x,y) pos i t ion  by requir ing t h e  LHS 

of the  above equations t o  be zero, so  t h a t  

(t) = (vc+ir,t) cos (qc+$ct) (C. 36a) 

iN(t) = (vC+Gct) s i n  ( $ c + h t *  (C .36b) 

b 

To solve these equations, w e  must specify vc and $c. W e  defer  
t h i s  spec i f ica t ion  and subsequent so lu t ion  f o r  (%, yN) u n t i i  t he  
next section, where w e  place cons t ra in ts  on t h e  choice of GC ?.nd 

&c 
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Since the s a t i ~ f a u t i o n  of (C. 36) implies t h a t  the RHS of (C.35) 

w i l l  be 2 ~ 0 ,  it follows t h a t  the perturbat ion r e l a t i o n s  are 
given by: 

6; = + cos ($,++,t)d~ - (vC&,t). s i n  ($,GCt)61) (C. 32d) 

6; = s i n  ($ c ++ c t ) 6 v  + ( ~ ~ + b ~ t ) ~ 0 ~ ( $ ~ + $ , t ) 6 $  (C. 32e) 

Note that, i n  general, t h e  coe f f i c i en t s  are the-varying.  

The a l t i t u d e  equation of (C.2f) can be expanded by uae of 
(C. 14 )  and (C.15). Using the same s impl i f ica t ions  used i n  t h e  

- - - 
heading equation der iva t ion  . -- ,. -we ob ta in ,  a f t ~  r@arrqg--nt, the - - -  
following relat ion:  

.. 
hc-vcY c = (-hc+v +GCyc) t -6k+vC6y +yc6v 

C C 

I 

Using t h e  same arguments as before,  both sides of  t h e  equation 
must be zero, so t h a t  

(C. 31f 1 .. 
I f  we are f r e e  t o  specify t h e  acce lera t ion  term h,, we can choose it 
so t h a t  the time function i n  t h e  RHS is zero: 

With t h e  RHS of (C.37) zero, t h i s  implies t h a t  
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This completes the decamgorsitien o f  the veh ic l e  equat ions  
def ined i n  (C.2). To summarise, w e  have def ined  the states and 
c o n t m l s  i n  terms o f  nominal and pe r tu rba t ion  v a r i a b l e s  (via 
(C. 13) and (C.14) 1 , def ined the nominal variables i n  terms o f  
s p e c i f i e d  maneuver rates ( V i a  (C .15) and (C. 36) ) , determined t h e  
nequil ibriumn conditionar which g ive  rise to  these  maneuver rates 
(v i a  (C.31)), and def ined  t h e  per turba t ion  r e l a t i o n s  a s soc i a t ed  wi th  
each state va r i ab l e  ( v i a  (C. 32) ) . 
C.6 Def in i t ion  of Nominal Tra jec tory  Segments 

Before proceeding wi th  the equation development, it is convenient,  
a t  t h i s  po in t ,  to int roduce t h e  no t ion  of nominal t r a j e c t o r y  
'I segments' and their assoc ia ted  "maneuverst' . 

We assume t h a t  t h e  veh ic l e  is  constra ined t o  a small set of 
"maneuvers", r ep re sen ta t ive  o f  t h e  type of maneuvers t y p i c a l l y  
used t o  e f f e c t  an  ILS approach and landing: 

1. S C L  : s t r a i ~ h t  and l e v e l  f l i g h t ,  a t  cons tan t  speed 
2. DECIGL : cons tan t  dece le ra t ion  f l i g h t ,  a t  cons tan t  

heading and f l i g h t  pa th  angle  
3. TURN : cons tan t  rate turning,  a t  cons tan t  speed and 

a l t i t u d e  
4. FLARE : cons tan t  rate o f  change of f l i g h t  pa th  anglo,  

a t  cons tan t  speed and heading 
5. DSCNT cons tan t  s i n k  rate, a t  cons tan t  speed and 

heading 

W e  de f ine  a nominal t r a j e c t o r y  "segment" as t h a t  por t ion  o f  
t h e  t r a j e c t o r y  a s soc i a t ed  wi th  t h e  execut ion of one of t h e  above 
maneuvers. A segment starts when one of the above maneuvers is  
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i n i t i a t e d ,  and ends when a new maneuver is i n i t i a t e d .  The e n t i r e  
t r a j e c t o r y  is thus considered to be generated by a successive 
concatenation of appropriate segments. 

Table C.3 shows how t h e  maneuver rates of  each t r a j e c t o r y  
segment a r e  defined i n  terms of segment type and desired maneuver 
rates. The (constant)  maneuver r a t e s  a r e  iden t i f i ed  with the  
subscr ip t  C, and correspond with t h e  r a t e  terms definirm t h e  
nominal8 o f  (C.15) . The (constant)  desired maneuver ra  . !r are 
i den t i f i ed  with t h e  subscr ip t  d, and a r e  assumed t o  be speci f ied  
by t h e  procedural r u l e s  associated with a given segment. Thus, t o  
def ine maneuver rates f o r  t h e  four s t a t e  var iables  shown, one 
simply spec i f i e s  t h e  segmcnt type and t h e  desired maneuver rate 
f o r  t h a t  segment. 

Table C.3: Specif icat ion of Nominal Maneuver Rates 

S&L 'DECBL. - . TURN FLARE - D S ~ .  

. . 
vc 0 Vd 0 0 0 

$C 0 0 )d 0 0 

0 Yc 0 0 Yd 0 

kc I I O I * l o  1 

* unspecified; see discussion accompanying Table C.4. 



Report No.  4374 Bolt Beranek and Nerwmn Tno. 

Table C.4 de f ines  t h e  r e s u l t i n g  time h i s t o r i e s  f o r  t h e  s i x  
nominal states, f o r  each of t h e  'five segments. The t a b l e  presume8 
t h a t  t h e  time o r i g i n  is co inc iden t  wi th  the star t  of  a segment; 
each state va r i ab l e  a t  t h a t  time is designated by a s u b s c r i p t  c 
(e.g., v,=vN(t-0)). Nominal v a r i a b l e s  which remain a t  t h e i r  
i n i t i a l  values  are shown e x p l i c i t l y  i n  t h e  tablei those  which 
r e q u i r e  an equat ion f o r  t h e i r  d e f i n i t i o n  have an equat ion number 
e n t r y  r e f e r r i n g  to the set o f  accompanying equations.  

! 

I n  e f f e c t ,  table C.4 provides an a n a l y t i c  integrztt ion of 
the naminal equat ions  of motion, for each of the specialized 

i 
i 

maneuvers under considerat ion.  The basis f o r  t h e  eripreasiOns - 

shown is given b r i e f l y  below. I 

I 

The nominal ve loc i ty  vN s t a y s  a t  its i n i t i a l  value  vc, un less  
t h e  segment is QECEL. I n  t h a t  case vN is given by (C.15a). i ! 

The nominal heading ON s t a y s  a t  i ts  i n i t i a l  value  Oc, un less  4 
t h e  segment is  TURN. I n  that case $N is  given by (C.15b). t 1 

4 

The nominal i l i g h t  path  angle  YN is zero dur ing t h e  S&L 4 I <  

! i 
and TURN segments, and s t a y s  a t  its i n i t i a l  value  Yc dur ing a 1 :  
DECEL segment. During a FLARE segment, YN is given by (C. 15c).  i . 
During a DSCN? segment, t he  climb rate h, is  spec i f i ed ,  and t h e  I .  I 

nominal ve loc i ty  vN equals  vc. The nominal f l i g h t  path  angle  is i . 
5 

thus  found from (C.31f). 'i ' 

j 1 

The r a t e  of change of nominal ground t r ack  pos i t i on  is  given 
f 
d 

by (C. 36) . During the  S&L, FLARE, and DSCNT seqments, t h e  veh ic l e  f . 3 
is  n e i t h e r  tu rn ing  nor acce l e ra t i ng ,  s o  t h a t  ic and Oc are zero,  4 

8 
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Table C. 4 1 Nominal Trajectory  variable^ 

FLARE ~~T 

(T4c) (T4a) 

i 
xN = X, + (v,co~+,) t i 

= yc + singc[vc + Gct/21t 

(TSc)  

C- 2 1 
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and (C.36) in teg ra tes  to (T4a) of t h e  table .  ~ u r i n g  t h e  t- D&CIEX, - 
segemnt, qC is gem, so t h a t  (C. 36) i n t eg ra tes  to (T4b) . ~ i k . r L s e ,  

during t h e  TURN segment, v, is nero, so that (C. 36) i n t e g r a t e s  

to (T4u). 

The nominal a l t i t u d e  % is given by (C.15f): 

where, f rm(C.3l f )  and (C.38), 

(C. 1553 

(C. 31f) 

0. 

During the S&L and TURN segments, both & and hc are zero, so_t.hat 

% s t a y s  a t  its i n i t i a l  value hc. During theDE&i~ segment, hc 

is  given by vcYc, so, with (C.15f) , (T5a) of t h e  t a b l e  follows 

d i rec t ly .  Likewise, during the  FLARE segment, 6, is given by 

vc Yc ' so,  with (C. 1 5 f ) ,  (T5b) follows d i rec t ly .  F ina l ly ,  during .. 
the  DSCNTsegment, both vc and Y, a r e  zero, so t h a t  hc is zero, 

and (C. 15f) implies (T5c) . 
C.7 Solut ion f o r  Nominal Controls 

With t h e  nominal maneuvers now defined, w e  may proceed to  
solve f o r  the nominal cont ro l  values ( t h r u s t ,  angle-of-attack, and 

bank) required t o  s a t i s f y  t h e  " e q ~ i l i b i r i u m ' ~  conditions defined 

e a r l i e r  and summarized i n  (C. 31). 
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For convenient referenerr, w e  rastate those conditions: 

(C. 31a) 

(C. 31b) 

(C. 3 lc )  

To solve f o r  t h e  required bank angle, w e  note t h a t  i f  the 

segment is a TURN, then +c must be zero (recall Table C. 3) . From 

(C. 31b) and (C. 31c) , it then follows t h a t  

(C. 39) 

I f  t h e  segment is not a TURN, then tc must be zero (again, from 
Table C.3). Assuming non-zero l i f t ,  (C. 31b) then implies t h a t  

@c is  zero. Consequently, (C.39) above appl ies  whether or no t  
t h e  segment is  a TURN; i.e., f o r  a l l  segments. 

To solve f o r  t h e  required angle-of-attack, w e  note from 

(C. 31a) t h a t  

T~ = D, + mg(GC/g + yC) 
(C.40) 

s o  t h a t  

LC+TcaC = (LC+DCaC) + mg(aCGC/g + acyc) 

Subs t i tu t ion  i n t o  (C. 31c) y ie lds  

C-23 
I 
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But with bc on the order  of l k t / w c ,  and ac on t h e  order  of 1 deg, 

and with y c  on t h e  order  of 1 deg, 

I so t h a t  the  l a s t  t w o  terms of t h e  RHS of  02.41) a r e  e f fec t ive ly  3 
1 

second-order "smalln terms, which can be dropped. Expansion of : 

I 1 t h e  LHS, v i a  (C. 25) and (C. 28) ,  and rearrangement, then y ie lds  t h e  i 
! 

following cubic i n  ac: 

where t h e  constant coe f f i c i en t s  a r e  given by: 

(C. 43a) I 

i 

I 
mq 

c = tcLf - c%aZ (1 + v C i c / g ) ~ / ( n  c2 f %  
(C. 4 3c) 

ijcsc0s4 

and where cc is given by (C.17a) and (C.22). 
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With the angle-of-attaak thus speaif ied,  the aor rwpondhg  
t h r u s t  level is speci f ied  by (C.40) above, where Da is  defined by 

C 2 ) ,  (C.28), and the value of  a,. 

I t  is appropriate  to  note  t h a t  although (C.39), (C.40), an8 
(C.42) def ine t h e  appropriate constant cont ro ls  f o r  each o f  the 
t r a j ec to ry  segments of  i n t e r e s t ,  they are " t r i m n  controls ,  i n  the 
conientional sense, only f o r  t h e  SLL, TURN, and ... . segments. 
For t h e  DECEL and FLARE segments, they are more appropriately 

labe l led  "maneuver t r i m n  controls. 

C.8 Perturbation Equations 

With t h e  nominal t r a j ec to ry  var iables  and t h e i r  associated 
" t r i m a a  cont ro ls  naw defined, w e  may conveniently summarize the 
perturbat ion equations derived earlier. 

I f  w e  def ine the perturbat ion s t a t e  and cont ro l  vectors  a s  
follows, 

then (C. 32) may be r ewr i t t en  as 

The state and cont ro l  matrices are given byt 

(C. 44a) 

(C .44b) 
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where 062, 022, M d  Oj3 arp (6x21, (2x2) , and (3x3) zero matrices, 
and 

c o ~ ( % + $ ~ t )  - ( ~ ~ + ; ~ t ) s i n ( ~ + $ ~ t )  

.22 = [ s i n (  %+&t)  (vC+Gct) cos ( tJc+Vct) I 
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The constant  cont ro ls  appearing i n  the above matrices (TC,Uc,$,) 
are defined by t h e  appropriate equations of t h e  previous rection. 
The l i f t  and drag term6 LC,De are defined by (C.22), (C.25) and 

(C.28); t h e i r  correepoading sensitivities (Lc,dc) are defined by 
(C -22) and (C.30). The time-driven perturbat ion input  o f  (C.45) 
is obtained from (C. 33) and is given by: 

d 

where X (t) is defined by (C.23). I t  should be noted tlrat the second 
component o f  t h e  1 vector is shcrwn as zero, r a tbe r  than t h e  general  

f (t) expression giver4 by (C. 33b) . '.%is is j u s t i f i e d  on t h e  rlr 
fol1owi-g basis.  I f  t h e  vehicle  is on a TURN segment, then Table 

C.3 and (C.23) requi re  that X (t) be zero, so t h a t  f (t) is zero. 9 
I f  t h e  vehicle is not on a TURN s-t, then t h e  bank angle i8 zero, 
so t h a t  again (C.33b) requires  f (t) to be zero. Thus, f * ( t )  rlr 
is zero f o r  a l l  segments considerad. 

Three points  should be made regarding the  s t a t e  equation 

of (C.45). F i r s t ,  t he  ordering of the components of t h e  s t a t e  
and cont ro l  vectors  is arbitrary; the p a r t i c u l a r  ordering of t h e  

s t a t e  vector given by (C.44a), with bh preceeding bx and by, was 

chosen to emphasize the f a c t  t h a t  bx and by have no dr iving e f f e c t s  
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on the state (am demonstrated by t h e  OS2 matrix of (C.40). The 
eecond poiat  c*neemr t h e  t inwinvar iance .  and Bj3 a r e  
t h e i n v a r i a n t ,  whdreas A2* is time-invariant only when the 
vehicle  is not i n  a TURN segment. Thus, B is always t h e - i n v a r i a n t ,  
and A is likewise whenever a TURN is not being executed. Final ly ,  
t h e  per turbat ion input i only dr ives  t h e  speed and f l i g h t  path 
angle States, and is d i r e c t l y  a t t r i b u t a b l e  t o  var ia t ions  i n  
dynamic pressure with changes i n  thmo variables .  



Our model of external visual cue processing i s  based on 
' the notion that the pi&ot ut i l iaee  geapeative g w t r i c  cuqs 

, t 

' for interring chmgta. ia tnh~clcr *tats. SNB w pt t ~ s  t+*,-+ , ,; ,- cq 4 - -  .. 

. ot  cue was studied nuit~tai~ed ~p t4$ in  6. a**; iv .. . '-. 

landing study; our model is escl.l lthlly ? dUeEt paet.Lis(l$&a'j 
of his approach. L 

,' < . . 
- i . I  

D.l Perspective Wmtel;ric x ~ 0 . 1 1 i n ~  - .. 
We ass- that the essential featureb of the external visual 

scene can be abstracted by a relatively simple perspective line 

drawing. In particular, for the approach to landing zmzk under 
consideration, we assume that the nominal out-the-window view 

available to the crew can be schematized as shown in Figure D.1. 
Six line elements characterize this visual scene: the horizon (H), 

the far (F) and near (N) runway ends, the left (L) and right (R) 

runway edges, and the runway centerline (C).  

We further assume that the essential cues provided to the 

pilot by a display of this sort consists of changes in line 

elment orientation, length, and displacement. As shown in 

Figure D.2at the line element orientation angle v is assumed to 
be measured with respect to an arbitrary reference contained in 

the viewing plane and fixed to the vehicle; the (positive 

counterclockwise) perturbation in orientation 6v is the pilot's 
corresponding line element orientation cue. Figure D.2b illus- 

, 
trates line length 5 and the corresponding length change cue 6F; 
both are assumed to be expressed in angular units, subtended at 

the pilot's viewing position. Finally, Figure D.2c illustrates 

the line element displacement cue 8n, defined in a direction 

normal to the line element and in the viewing plane; as with line 

length changes, displacements are assumed to be measured in 

subtended angular units. 

D-1 
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Figure D . 2 a :  Line Element Orientation Cue 

'.I.,. 
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Figure D . 2 b :  Line Element Length Cue 

Figure D.2c: Line Element Displacement . Cue 
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Theme cues arise because of changers in  ecene persrpactive,' 
which, in turn, are due to changes in the relative attittide *or 
position of the vehicle with respect to the visual objects (in 

- this case, the runway and horison). To find the functional 

. dependence of these cue8 on vehiele state, we first define a - 

'. vehicle state vector*, consisting of vehicle" dkt&tdh w.'; -"?' . +-. . 

position8 

- .  T , . & = f4;ee$r*'r~',hI tD* 1) 

where (g,0 ,$) are the conventional roll, pitch, &nd yaw vehicle 
attitudsdsangles, h is vehicle altitude above the field , and 
( x 9 , y ' )  is vehicle ground position measured in the glide slope 

. - - .  . 
coordinate refermce system, .. p m .  ~ p ~ ~ & & g : ~ ~  . . -.-- 

where rYmC and ( x ~ ~ , Y ~ ~ )  define the glide slope system, and 
(x,y) is vehicle ground position in the local navigation system. 

With this definition of vehicle state, we can now use the 
basic rules of perspective geometry to derive the functional 

relation between vehicle state and the "attributesn of the ith 

line element in the visual scene: 

*Note that this state vector is not to be confused with the one 
defined in Appendix C and the main text; it is defined here 
solely far the purpose of defining the available visual cues. 
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where - f is a three-dimensional non-linear function which depend8 
on the parameter vector Ei characterizing the ith e l w n t  of the 
object being viewed (8-g., runway length, width, etc.). 

By assuming perturbations in vehicle state bxv - this can be 

linearized to obtain the desired expression for the ith visual 

cue set8 

where fiTN is the appropriately linearized version of - f above. 
This function effectively dictates how visual cues arise because 

of state changes in the vehicle. 

D.2 Definition of Visual Cue Set 

This general aiproach was applied to analyze the visual 

scene sketched in Figure D.1. It was assumed that the vehicle 

is located nominally at some point along the ILS glideslope, 

with zero nominal pitch and roll altitude, and with a nominal 

yaw attitude which coincides with the inbound localizer heading. 

The result of the analysis is summarized in Table D.1, which 

shows, for each line element, how each cue depends on the vehicle 

state perturbations. Terms . appearing . in the table which have 

not yet been introduced are defined in the f~>~lowing paragraphs.* 

The far and near end range parameters. ,kp ,LIq)  are approximated 

by the ground track range to the far and nenr runway end&: 

*Entries indicated with an asterisk correspond to fairly complicated 
expressions, which, as the discussion below points out, have no 
direct relevance to the present analysis. 



1 2 1 R: Ripht edge - 6 4 c  [(cos v R b y ' ~ i n 2 v  6hl * 
h~ R 
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where xtF and x W N  are the along-runway locations of the far and ,+ 

near edges. From Appendix B, 

The center-line range parameter LC is a composite range, given by 

The line-of-sight range parameters (pF ,pN)  specify the line- 
of-sight range between the vehicle and the runway corners, and 

are given by: 

where W specifies half the runway width, and, for our study is 

assumed given by 
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The nominal orientation angles arssrociated with the left and 

' B right runway edges are givdn by 

where is the nominal vehicle altitude (note that the subscript 
denotes "nominala and not "nearn). 

l The nominal line segment lengths associated with the'far an4 
near runway ends are given by 

and the nominal center line length is given by 

where the runway length is given by 

L~~ = 10,000 ft 

(D. 9a) 

(Do 9b) 
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D.3 Simplified Visual Cue Set 

With six line segments comprising the external view, and 

a potential of three cues per segment, a potential set of 18 
cues becomes available for inferring vehicle position and 

attitude,* To simplify the analysis, we shall arbitrarily limit 

the number of cues to be considered to six, to correspond with 

the number of states which the pilot is attempting to infur. We 

do this by: 

a) eliminating from consideration redundant cuest 

b) elhlinating from consideration cues which are not 
simple functions of the vehicle state perturbations; 
and 

C) selecting between simila; competing cues on the basis 
of cue sensitivity. 

The discussion in the following paragraphs applies these simplifi- 

cations to the cue set defined in Table D.1. 

From Table D.1, the H, F, and N segments all provide a roll 

cue. Arbitrarily choose the H cue from among this redundant set: 

Only the H segment provides a pitch cue which is unconfounded by 

other vehicle perturbations, so choose itr 

*Table D.l shows 17 such cues, since the line element associated 
with the horizon undergoes no length change. 
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The C, L, and R segments all provide a yaw cue (confounded with 
lateral displacement), but the C segment involves the simplest 

functional dependence. Thus, choose 

All segmente, except for the horiaon, provide a surge cue. The 

L and R segments confound surge with other vehicle perturbations, 
so eliminate them from consideration. The F, N, and C segments 
all provide a surge cue which is unconfounded, so choose the one 

with the highest sensitivity to surge variations. It is a 
direct matter to show that this is the N segment, so choose 

66, - (1 sin $16~' 
PN 

(D. l0d) 

The C, L, and R segments all provide a sway cue (confounded with 

roll), but the C segment involves the simplest functional 

dependence. Thus, choose 

All segments, except for the H and C segments, provide an 

altitude cue. The L and R segmenta do not provide a simple 

functional dependence, so eliminate them from consideration. Of 

the remaining F and N segments, the N segment provides the greatest 

sensitivity to altitude variations, so choose 

an, - -ae - ah/$ (D. lei) 
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D.4 Display Equation 

We may now define a cue, or "displayn vector comprised of 

the above six selected cues: 

To relate this display vector to the state and control variables 

introduced in Chapter3 and Appendix C, we note from (D.2) that 

and recall that 

(D. 12a) 

so that 

68 = 6y + 6a (Do 12b) 

Substitution of (D.12) into (D.10) then yields the following 

display equation for the external visual cues: 

where 6y is defined by (D.11), 6x - and 6u - are defined by (C.44) 

of Appendix C, and C and D are defined as follows: 
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- 0  
- 

0 0 0 0 0 

0 0 -1 0 0 0 

0 -1 0 o (-q in* ~OC) (q OB* IOC) 

C E  0 0 o 0 i (Ginrin*ux: 2 %u0 ) (Dm 15s.; 

0 0 0 O (*in*mc) ( * ~ b c  1 
0 0 -1 -$ 0 0 

L - 

(D. 1Sb) 

The parameters of the C matrix are, in turn, defined by (D.5) 
through (D.9) given earlier. This then defines the form and 

parameters of the display equation associated with the external 

visual scene. 

-. -- .-- .-- - --- My. 
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b.5 Visual Thresholds 

As discussed in the text, all display elements have aerociated 

with than an effective threshold which limits the accuracy of the 

display measurement. Por the visual display vector just defined, 

three thresholds are of interest: rotational (v ) ,  extensional 
(E) , and displacement (q). 

I 
I 

Based on Wewerinkems ( 4 )  earlier psychophysical and model- 

matching work, we assume the rotational threehold to be on the 
order of a degree visual Ire, so that 

dvm = 1 deg (D. l6a) 

The extensional threshold is assumed to be driven by 

discriminability limitations, and, on that basis, we choose it 

in accordance with the Weber-Flechner Law [UJ. Specifically, we 

assume the threshold to he set at a fixed fraction of the total 

nominal line segment length, or 

(D. 16b) 

where the fractional value is chosen to be consistent with an 

earlier analysis of visual cue processing 1121. 

The displacement threshold could be set on the basis of 

maximum human visual activity, which appears to be on the 

order of 1 minute of arc 031. However, we feel that this is 
much too optimistic for a dynamic multi-task situation. A more 

reasonable value is that associated with Wewerinkels ( 4 1  work, 

(D. l6c) 

approximately one-half degree visual arc, so that 

6" - 0.5 deg 

I 

r 

f D-12 
i 
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These threuholds act on each component of the display vector 
defined in (Doll), with a direct correspondence between cue type 
and threuhold type. That is, (D.16.) applies to 6yl and 6y5 of 

1 1 ,  (D.16b) applies to 6y4, and (D.16~) applies to 6y2 ,  dy3, 
and 6y60 
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