NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT
CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH
INFORMATION AS POSSIBLE

AR P, - RF Project 762012/712655

- REPRO COPY Technical Report

the
- ohio |
- state |
university

research foundation

1314 kinnear road
columbus, ohio

(NASA-CER-163566) COMPUTEL COURDLNATION OF N80~-33093 43212
L14B MOTLION FOR A THREE-LEGGED WALKING ROBOT
(Ohio State Uuiv., Columbus.) 108 p
HC AUG/MF AO1 CSCL 05H g3 Unclas
M54 28721

COMPUTER COORDINATION OF LIMB MOTION
FOR A THREE~-LEGGED WALKING ROBOT

- & T T AT

A= e

| P S T L I T T T I T

Ransl

foumy Dl Neessk

o T TR T e

BT SR VN

Charles A. Klein and Mark R. Patterson
Department of Electrical Engineering

2oLt s

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Langley Research Center
Hampton, Virginia 23665

D o i o

L |

Grant No. NAGL-30

K
-

September, 1980

e

it Al St G St - T T

ACKNOWLEDGMENTS

The authors would like to acknowledge the help provided
by Charles A. Csuri and other members of the Computer Graphics
Research Group, the Ohio State University, Columbus, Ohio; in
providing computer time and facilities that made this work

possible.

ii

o w i

T PR

R

e

TABLE OF CONTENTS

Page
ACKNOWLEDGEMENTS ii
LIST OF TABLES . . . ¢« + « « « . . . < v
LIST OF FIGURES vii
Chapter
1. INTRODUCTION . o e o . 1
1.1. General Background P v e e e e e e 1
1.2, Objectives of This Work . . . 2
1.3. Organization . . e e e . 2
2. SURVEY OF PREVIOUS WORK .. . 4
2.1. Introduction e e e e s e s e e e 4
2.2. Previous Work on Manipulator Kinematics . 4
2.2.1. Cartesian-Coordinate-to-
Joint-Coordinate Comversion . . 4

2.2.2, Homogeneous Transformation

Matrices . o e e e e e e e e 7
2.3. Previous Work on Walking Robots . 10

2.3.1. Legged Vehicle Control 11

2,2.2. Gait Selection and Foot Placement 12
2.4 summary . . e .

.. 14

iii

A S e

j
|

TABLE OF CONTENTS (Cont'd.)
” 3. PROBLEM FORMULATION . « . « & + « « .
f 3.1. Introduction . . « 4 « « o o
; 3.2. Robot Description
3

‘ 3.2.1. Body Model
3.2.2. Arm Model .

3.3. Contrel System

3.4. Summary ¢ . . .

4, ARM KINEMATICS ALGORITHMS . . .

4.1. Introduction

4.2, Jacobian Solution . . .

4.2.2. Jacobian Singul

4.3. Trajectory Calculation .

4$.2.1. Arm Decomposition

sities

Approach

-

4.3.2. Rotational Trajectory . .

T
[4.3.1. Translational Trajectory
l 4,3.3. Combination of Trajectories .

4.4, Summary . . . 4 0 e . o
b7 5. WALKING ALGORITHMS

" 5.1. Introduction

iv

5.2, Robot Velocity Command Generation

4.2.2.1. Singularities of J

4.2.2.2, Singularity of J

16
20
27
31
32
32
33
34
39
40
41
43
46
50
52
54
35
55

35

PR T . S

AT S DT T T S S LT T

| T R T R e S S R T

- e

T TeE T

]
|
f
|

¥ shianimiannetthd : st b A L e s R

TABLE OF CONTENTS (Cont'd.)

5.3. Free Gait Algorithm
5.3.1. Kinematic Margin .
5.3.2. Foot Lifting and Placing .
5.4, SUMMATY & + « « « + s o o o o o o @
6. RESULTS AND CONCLUSIONS . . . + ¢ o « « &
6.1. Simulation Result. .,
6.2. Suggestions for Future Work .
APPENDIX: COMPUTER PROGRAMS

REFERENCES

59
63
64
64
68
69

98

L

T T

Rt et

AR AN SERN s

Table

II.

el il Y

LIST OF TABLES
Page
PUMA 600 Manipulator Joint Limits« . . 20
Homogeneous Transformation Matrix Parameters for
PUMA 600 Manipulator Joints . . « o« « ¢ o « o o 24

vi

S P T TR L L T N

Figure

1.

LIST OF FIGURES

Definition of Eu.cr Angles a, B, y Which
Specify Orientatica or tc.rdinate System

R', §', 2') with respect to Coordinate
System (X, ¥, 2) + « ¢« ¢« v 4 0 0 o 0 0 e e e

Definitions of Terrain~Fixed and Vehicle-
Fixed Cocrdinate Systems . « « « « o ¢ o o o+ &

Definitions of PUMA 600 Manipulator Link
Coordinate Systems and Designations of Points

on Manipulator: 0 = base, N = "neck,"”
S = "shoulder," E = "elbow," W = "wrist,"
H="Thand" . . ¢« ¢ v ¢« & ¢« ¢ ¢« ¢ ¢« o o o o« s

Definitions of General Link Coordinate
Systems and Parameters Describing Relation-
ships between Coordinate Systems « « .

Configurations of Coordinate Systems (33,

23, 33) and (54, 94 54) for Jacobian Matrix
Singularity of sin 65 = 0 Showing Realizable
Component of Desired Velocity . « . « « « .« .
Typical Arm Path Showing How a Point-to-Point

Specification is Modified for a Near-Minimum-
Time Trajectory . « ¢ o o« ¢ o o o o« o »

Flow Chart of Arm Trajectory Optimization
Algorithm . . . ¢ ¢« ¢« ¢« ¢« ¢« o ¢ o o

Definition of Arm Translational Trajectory
Variables

Flow Chart of Free Gait Algorithm
Arm Extension Limits for Vehicle at a Fixed

Height on Cylinder
(a) Tangential Limits, (b) Axial Limits .

vii

17

21

22

42

44

45

46

58

e b K il ot e

T U STl

o S R e,

L ik R LA A A

-5

Figure
11.

12.

13.

1l4.

15.

LIST OF FIGURES (cont'd.)

Actual and Programmed Reachable Areas for
Arm of Vehicle on Cylinder

Kinematic Margin Definition Showing Distance
Arm Base Can Travel at Present Velocity be-

fore Arm Reaches Limit . . « « « & &+ o « &

Typical Arm Handhold-to-Handhold Trajectory

Simulation Display of Vehicle with All
Three Arms Graspiung Handholds

Simulation Display of Vehicle with Arm at
Lower Left Movinrg to New Handhold

viii

61

62

65

66

o p—

i e

R e e ————

Chapter 1
INTRODUCTION

1.1. General Background.

It is obvious that in nature animals use quite a different
method of locomotion over land than do vehicles designed by man.
Animals, including man, use independent limts to walk over
sclid surfaces, but man-made vehicles almost exclusively use
wheels. Each of these approaches has its advantages. Wheeled
vehicles on hard surfaces allow very fast and efficient move-~
ment of heavy loads. Legs, on the other hand, usually move more
slowly but do not require hard, smocth surfaces.

Although wheeled vehicles have been in use for centuries,
only relatively recently has much research been conducted on
the use of legs for man-made vehicles. This is due to the fact

that the coordination of limb motions to nroduce locomotion of
a legged vehicle is a very complex process. Advances in the
speed and capabilities of digital computers have finally allowed
this burden to be removed from a human contioller, making arti-
ficial legged locomotion a practicable goal. Vehicles such as
the Mars Rover [1l] which use legged vehicle concepts are now

being considered for use in terrain too rough for wheeled

.
e

—_——

vehicles.

1.2. Objectives of this Work.

It has also been observed that multi-armed vehicles with
grasping hands could walk over structures even in the absence
of gravity [2]. Since serious consideration is being given to
the construction of large structures in space [3], the problem
of coordinating the limb motion of a vehicle which could perform
assembly and maintenance operations on those structures is of

practical as well as theoretical interest. That problem is the

subject of this work.

1.3. Organization.

The remainder of this work is divided into five parts,
Chapters 2 through 6. Chapter 2 reviews earlier research which
is relevant to this work. This includes the previous work on
manipulator kinematics and that om walking robots.

Chapter 3 is a statement of the problem which this work
addresses. The robot itself is described and some introductory
material is presented on the coordinate systems used. The
basic control scheme which is implemented is also discussed in
this chapter.

Chapter 4 addresses the problem of the control of the
individual arms. Arm velocities are generally described in

Cartesian coordinates, so the first section of the chapter

il

gy R TR T TR RSTTTNGTNSNT TR T m T R RRET TRTE eedE T T T TTT —m R T T—

discusses the conversion from Cartesian veiccliies to joint
velocities using the Jacobian matrix. The seccnd section of
the chapter describes the calculation of a trajectory for an
arm given a sequence of points through which it is to pass.

Chapter 5 is a discussion of the free gai. algorithm
which controls the lifting and placing of legs for the robot.
The first section describes the generation of commanded velo-
cities for the robot, and the second section discusses the
implementation of those velocities by the algorithm.

Chapter 6 summarizes the results of the simulation. It
also gives suggestions f-r furcher work in the area of robot

legged locomotion.

I A T O P S

i b,

ST = =0 T

Chapter 2
SURVEY OF PREVIOUS WORK

2.1. Introduction.

The coordination of the limbs of a walking robot which
uses manipulatory as its legs (arms) can be decomposed into
two tasks. The first task i1s the control of the individual
manipulators’' movements, and the second is the coordinacion of
the manipulators to produce walking. Previous work im both

these areas is reviewed in this chapter.

2.2. Previous Work on Manipulator Kinematics.

2.2.1. Cartesian~Coordinate-to-~-Joint-Coordinate Conversion

In the control of a manipulator, it is desirable to be able
to give commands to the manipulator in Cartesiam coordinates,
since that is the system in which hrmans are most accustomed to
working.

The manipulator's motors operate in joint coordinates,

though, so a method must be found for converting from one system

to the other. There are two basic approaches to this problem:

physical and mathematical.

The physical approach uses the manipulator itself or a

replica of it to record motion directly in joint coordinates.

e ekt e T b

B R AU TPV -SRI, o, | PN

A copy of the manipulator is used in master-slave control, in
which the replic~ often smaller, of the arm is moved by a human
operator. The replica has potentiometers on the joints whose
values are used to obtain commands for the manipulator's motors.
Another physical approach, sometimes referred to as ''training,"
involves moving the manipulator itself tnrough its desired tra-
jectory, measuring and recording intermediate positions alung
the way in joint coordinates. These data, along with timing
information, constitute a command sequence. This method is
often applied when a manipulator is used in a situation such

as an assembly line in which the same sequence of motions is
repeated over and over [4].

Neither of the above physical approaches is satisfactory
for legged locomotion. Master-slave control does not work well
because a human being cannot effectively control the number of
legs required for locomotion except at very slow speeds [5].
Training is not applicable since the trajectory which a leg must
follow will vary as the terrain and/or the operator's commands
change.

Thus for iegged locomotion a mathematical approach is
needed to convert the commands from Cartesian coordinates to
joint coordinates. Although this could be done for commands
given as positions and orientations, most manipulators have

several sets of joint coordinates which will result in the

PP SUIPAR L VR ST S-RUN.- PR-NESS

[P IEAEIR Py SRR

reta inid S Sa T

el e e

I - - R R < L e L A

- Y

same end effector position and orientation [6]. A better
approach is that of Resolved Motion Rate Control [7], in which
velocity commands are used. Fdr instance, with a six-degree-of
freedom arm, ifqé is a vector comsisting of all six joint velo-
cities and.é is a vector consisting of the translational velo-
cities along and the rotational velocities about the x, y, and
z axes,

=38 , (2-1)

(]

wi.zre J is the Jacobian matrix of derivatives of the Cartesian

coordinate values (x) with respect to the joint angles (8):

1

Jij = a—e:]— . (2-2)

@
|

Joint velocities can then be found from the rectilinear velo-
cities using the inverse Jacobian matrix:

: 6=J0"x . (2-3)

The advantage of using velocities rather than positions
is that for a six-degree-of-freedom arm, there is one and only
one set of joint velocities that will produce a given trans-
lational and rotational velocity of the end effector, except in
those configurations in which the Jacobian matrix is singular.
At a singularity of the Jacobian, velocity in at least one
direction is impossible, and velocities in other directions may

be obtainable with an infinite number of combinations of joint

SRR

e e T =y .

gt ? ot

velocities. Some work has been done on the general problem of
finding which configurations will result in Jacobian singulari-
ties for a particular arm [8]. For arms with more than six
degrees of .reedom, there are generally an infinite number of
ways to attain a given velocity, and the extra degrees of free-
dom can be used to optimize some criterion (e.g., to minimize
the sum of the joint velocities) [9, 10].

Another possible approach to the problem of determining
the joint velocities is that of full or partial table look-up.
Although in this work only kinematics are considered, in an
actual implementation the torques required to produce a set of
joint velocities would also have to be determined, and it is
possible that the two problems could be combined. If that could
be done, one of the published methods for torque solution by
table look-up could be used. Possible approaches would be the
full table look-up of Albus's "Cerebellar Model Articulation
Controller,'" or CMAC [ll], or the partial look-ups suggested by

Horn and Raibert [12, 13].

2.2.2. Homogeneous Transformation Matrices.

It will be seen later that it is desirable to be able to
express the position and orientation of one part of the robot
with respect to another. A compact way of doing this which will
be used in this work is the homogeneous transformation matrix,

which was introduced by Denavit and Hartenberg [14] and has

BTN I L | DU U T G . L U S T S S S S

B

I

e

been applied more specifically to manipulators by Pieper [15]
and Paul [16].
A homogeneous transformation matrix is a 4x4 matrix of

the form shown in Equation (2-4).

[R] (2]

A= : (2-4)

It describes the position and orientation of one coordinate
system (say (X', §', 2')) with respect to another (%, §, 2).
Orientation information is carried in the upper left 3x3 sub-

matrix, R, which is a rotation matrix whose columns are the

unit vectors X', §', and 2' expressed in (%, §, 2) coordinates.

Position information is in the upper right 3xl submatrix, p,
which is a vector that gives the position of the origin of
&', §', 2'") in (], §, 2) coordinates. The last row consists

of three zeros and a one.

As mentior .¢ above, the 3x3 rotation submatrix of the

homogeneous transformation matrix contains relative orientation

information for coordinate systems (x', $', 2') and (%, ¥, 2).
Another method of expressing the orientation relationship be-
tween two coordinate systems which will also be used in this
work is that of the three Euler angles o, B, and y shown in
Figure 1. The transformation of system (X', §', Z') into

system (%, ¥, 2) is accomplished by a rotation of -y about 2',

LM

B T A

S T TR T B o~ e

T

- T T T T T L e UL T

§%>

Figure 1. Definition of Euler Angles a, B, Y Which Specify
Orientation of Coordinate System (%', §', £
with respect to Coordinate System (%, §, 2)

’

z')

a rotation of -B about §', and a rotation of -o about Z', in

that order. The rotation matrix R can then be expressed in

terms of these Euler angles as [6]

cosacosBeosy~sinasiny -.osacosBsiny-sinccosy cosasinB

-sinBcosy sinBsiny

Then, if r' is a direction vector in system (X',

same direction vector r in system (X, §, 2) is

r=Rr' .

R =|sinacosBcosy+cosasiny -sinacosBsiny+cosocosy sinasinB | (2-5)

cosB

St

A

2'), the

(2-6)

B T T

oo o g o ow

o e e R

If the position of the origin of (R', §', 2') in coordi-
nate system (8, $, 2) is p', the homogeneous transformation
matrix A describing the position and orientation of system

(R', 9', 2') with respect to system (R, §, 2) is then

- -
px
|}
A= [R] Pyl . (2-7)
1
pZ
LO 0 0 1

Then if (ré, r', r;) are the coordinates of a point in system

(', 95 2') and (rx, ry, rz) are the coordinates of that point

in system (&}, 9, 2)

r— by = '-l
r r
X X
1
yl=a|"y| . (2-8)
r r'
Z V4
1 1

2.3. Previous Work on Walking Robots.

In the past two decades, research has begun on walking
robots in hope that their advantages can eventually be used for

efficient transportation over terrain unsuitable for wheeled

vehicles. A summary of this research has been presented by

McGhee [17], and the next section presents those portions of

that summary which are relevant to the present work. The final

10

ik

et ik an sk s b i

A T VR S
e e R i B el I i .

e e o . 2

by et

S s =

—— e -

P

section of this chapter discusses the problems of gait selection

and foot placement for a walking robot.

2.3.1. Legged Vehicle Control.

Three different approaches have been considered for the
control of legged locomotion systems. These approaches are
finite-state control, model reference control, and algorithmic
control, each of which is discussed in the following paragraphs.

In 1961, Tomovic [18] noted that some modes of locomotion
could be characterized by finite-state models. He observed that
locomotion could be characterized by representing each leg as
a two-state device (on the ground or in the air). This concept
was extendzd when Tomovic and McGhee [19] pointed out that at
least four actuator states are needed to obtain a more or less
natural gait. The validity of the finite-state control concept
was confirmed in 1968 when a small quadruped controlled by 16
flip~flops attained stable locomotion at the University of
Southern California [20].

A second approach to control of legged systems is ''model
reference control [21]." This approach uses a real-time simu-
lation of vehicle kinematics for the generation of the joint
angles and rates needed for ideal locomotion. These ideal
values are then used as commands to the actuators of the vehicle.
This mgthod has the advantage of being much more flexible than

finite-state control, since the actuator control signals are

11

il

SRR PR WIUHIUPDFCR RN

P I I VAR LT UY TN e Pyt ERTy SEIr C e S v

infinitely variable instead of having a finite number of states,
but the problem of deciding when the vehicle should 1lift its
legs and when and where it should place them must be solved
before it can be used. This problem 1s discussed in the nexc
section.

A variant of model reference control has been suggested
by Vukobratovic [22]. With this approach, called algorithmic
control, a nominal trajectory is obtained froma kinematic model
as with model reference control. With algorithmic control,
though, not all joint angles and rates are derived from the
model. Instead, the model imposes certain overall constraints
on the system to lower the order of its equatioms. These
lower-order equations are then used with artificial semsor
feedback to produce stable motion. To date, this technique has

been applied only to biped locomotiom.

2.3.2. Gait Selection and Foot Placement.

A considerable amount of past work has been devoted to the
leg sequencing problem for the special case of straight-line,
constant-speed locomotion over level terrain. A periodic
solution to this problem nas usually been referred to as a
"gait." Combinatorial studies show that there are a large num~

ber of gaits possible (40,000,000 for a six-legged vehicle [23]),

so optimization is required. 1In all but one study [24], the opti-

mization criterion used has been one related to the degree of

12

ER

IS

P SN

— ey ——

stability of the system under consideration. In most of the
studies the stability criterion used has been the longitudinal
stabllity margin, the distance the vehicle's center of gravity
would have to be moved forward or backward before the vehicle
toppled over. For vehicles whose legs are evenly spaced in

right-left pairs along a longitudinal motion axis, the gaits

which maximize the longitudinal stability margin are known [25].

Those gaits are known as wave gaits, all of which are character-

ized by a forward wave of stepping actions on each side of the
body with a half-cycle phase shift between the members of each
right-left pair of legs.

More recently, Kugushev and Jaroshevskij [24] have sug-
gested that the approach used in the study of gaits for
straight-line locomotion can be extended to include a more
general case in which nonperiodic leg sequences known as "'free
gaits' may be expected. Specifically, they present a partial
problem formulation in which a trajectory is specified in ad-
vance for the center of gravity of a legged system over a given
terrain containing certain regions which are unsuitable for
support. The remainder of the paper is devoted to a completion
of the formalization of this problem and a description of omne
heuristic algorithm for its solution.

McGhee and Iswandhi [26] have presented a more complete

formalization of the free gait problem. Central to their

13

T

i S At o o A S

approach, which is basically similar to that of Kugushev and
Jaroshevskij, is the concept of kinematic margin. The kinematic
margin for a particular leg and foothold is the distance for
which the vehicle can continue along its present path before

that leg must be lifted from that foothold. McGhee and Iswandhi's
algorithm proceeds by lifting and placing legs so as to maximize
the minimum value of kinematic margin over all supporting legs.
This approach maximizes the distance the vehicle can proceed
forward in its current configuration, thereby increasing the
likelihood that it will be able to find a new configuration with

which to continue.

2.4. Summary.

This chapter has summarized some of the research in the
general areas of manipulator kinematics and walking robots.
Chapter 3 will present the specific problem to be addressed in

this work, and Chapters 4 and 5 will discuss the solution of

that problem.

14

[OOSR S SN

P U T TS VO S LS i L

I L T T N YT g

Chapter 3
PROBLEM FORMULATION

3.1. Introduction.

As was mentioned in the first chapter, there are situa-
tions in which a mobile robot with six-degree-of~freedom arms
capable of grasping handholds would be very useful. It is the
purpose of this work to describe an algorithm for controlling
the motion of such a vehicle. In this chapter, the design of
the robot which was used in the simulation is presented, and
the overall control philosophy is explained.

The first section of the chapter is divided into two
parts: The first describes the robot's body and the second
its arms. The second section of the chapter presents the
control scheme that is to be implemented. The basic approach

chosen is that of supervisory control [27], in which a human

operator provides only high-level commands, such as robot

velocity or destination. A control computer then automatically
solves the limb coordination problem to move the vehicle in

response to the operator's commands.

)

At i s e R

AT T T T T AT T e Tae—

..

3.2. Robot Description.

The robot investigated here consists of a body and three
six~-degree-of-freedom arms [28]. Descriptions of the body and

arms are given in the following paragraphs.

3.2.1. Body Model.

Figure 2 is a drawing of the three-armed vehicle. The
body is modelled as an equilateral triangle with an arm attached
to each corner. The next few paragraphs discuss this model and
the coordinate systems used to describe it.

For calculations of "absolute'" positions and velocities,
both of the robot and of its arms, a coordinate system which
is fixed relative to the surface on which the robot walks is
required. For this purpose a right-handed coordinate system
(%, §, 2) (circumflexes will indicate unit vectors) is defined.
Since this system is fixed relative to the surface on which the
robot is walking, its definition depends on the robot's in-
tended use. If the robot is to be used on the earth, the
system would be an earth-fixed coordinate system; if it is to
be used in space, it would be a system fixed to the structure
on which it is walking. In this work, the vehicle is assumed
to be operating on a cylinder in space, so the coordinate
system is chosen to be fixed relative to that cylinder (see
Figure 2).

Also shown in Figure 2 is a coordinate syséem,

(gv, iv’ gv), which is fixed to the moving vehicle. Throughout

16

s et -

Yo

%

B i, ek i 5

S B F MARNEE TEERTOEET el TSR AT (i s e e TR s ey ym s Tee amEnle S v e 4 TAESTEOR SRS SESAA Sy

— JUING —— piStiua T Y TP

17

Definitions of Terrain-Fixed and Vehicle-Fixed

Coordinate Systems

Figure 2.

this work, subscripts will be used to indicate the coordinate
system to which a unit vector belongs; the absence of a sub-

script will indicate the fixed coordinate system. Thus gv is
the unit vector in the x direction for the vehicle coordinate
system, and ¥ belongs to the fixed system.

Vectors will be used to describe the position or velocity
of the robot's body or one of its arms with respect to the
cylinder, the body, or another arm. There will be a coordinate
system fixed to each part of the robot (including the body and
each link of each arm) as well as the cylinder, so these vectors
can more conveniently be thought of as describing the position
or velocity of one coordinate system with respect to another.
Subscripts will be used to indicate the system whose location
or motion is being referred to, and superscripts will denote
the coordinate system to which that location or motion is
referred (again, absence of a superscript will indicate the
fixed system). Thus the position and linear velocity of the
origin of the vehicle coordinate system with respect to the
fixed system will be denoted by 2, and v, respectively. The
angular velocity of the vehicle system with respect to the
fixed system will be denoted by a three-element vector W,

whose elements are the angular rotation rates about %, §, and

2. The orientation of the vehicle system with respect to the

fixed system can most concisely be described by three Euler

angles, Qs ﬁv, and Yo+ There is no standard convention for

18

e L s et s s S ‘
e e e et AAr i e A AL im s

- e — —— T

e e —
—— e

choosing these angles; the ones used in this work are those
described by Horn and Inoue [6] and shown in Figure 1 (in
Chapter 2).

A vector in vehicle coordinates can be transformed into
fixed coordinates by multiplying by a 3x3 rotation matrix, R

(in this work, matrices will be denoted by underlined, upper-

case ietters); that is,

— V —
£-Rr (-1

where gv is of the form given in Equation (2-4). The coordi-
nates of a point in vehicle coordinates can also be transformed
to fixed coordinates by multiplying them by a matrix, in this

case a 4x4 homogeneous transformation matrix, A ; thus

- v]
rl pV Ty
X v
r [R] P Ty

¥ = ' vy V . (3-2)
rz pv T.'Z
V4
L1 | 0 0 0 14 L1

To simplify the equations in this thesis, the above equation

will be written

r=Acrx (3-3)

If the matrix in the equation is a homogeneous transformation
matrix, the vector r is to be understood as a four-element

T I . .
vector (rx, ry, s 1)7; if the matrix is a rotation matrix,

19

e s Men s st

as in Equation (3-1), r is the three-element vector (rx, r

T
rz) .

’

y

3.2.2. Arm Model.

! drawing of one of the robot's arms is shown in Figure 3.

The configuration and dimensions of the arm are those of a six-
degree-of-freedom industrial manipulator, the PUMA 600, made

by Unimation, Inc., Danbury, Connecticut. The arm has six
rotational joints, one about each of the z-axes except 26
(numerical subscripts indicate references to link coordinate
systems). The angular displacement of joint 1 will be denoted
by Gi; Bi is zero when joint i is at the center of its travel
and positive when the displacement is in a positive semse with
respect to 21—1' In Figure 3 each of the joints is pictured

at the center of its travel; *the rotational limits of the

joints are given in Table I.

TABLE I
PUMA 600 Manipulator Joint Limits

Joint Limits

+160°
*165°
+135°
*135°
+105°
*270°

AN U W N

20

A e e it e e e e

B, S

Figure 3.

X
- H
i

£

Definitions of PUMA 600 Manipulator Link Coor-
dinate Systems and Designations of Points on Manip-
ulator: O = base, N = "neck," S = "shoulder,"

E = "elbow," W = "wrist," H = "hand"

21

B

e i it e -l ik o a8 i S

T —

IR Lt

Figure 4. Definitions of General Link Coordinate
Systems and Parameters Describing Re-
lationships between Coordinate Systems

The arm ié made up of seven links (including the base),
with each two successive links connected by a rotary joint.
Associated with each link is a coordinate system which is fixed
with respect to that link (see Figure 4). For link coordinate
system 1, éi is directed along the axis of the joint between
link i and 1link i+1, 31 is along the common normal between the
two joint axes associated with link i in the direction from
2
set [15].

toward gi’ and ii is chosen to complete the right-handed

Link coordinate system i can be transformed into link
system i-1 by performing a rotation, two translations,. and a

final rotation as follows (refer to Figure 4):

1. A rotation of -ay about 31 to make 31 parallel
to z, ..
—i-1

22

e S A —— Ty
b . e . e

s i e

et ST

2. A translation of -a, along 31 to locate the origin
at the point where the common normal between 21-1 and
z intersects Zio1e

3. A translation of -8, along 21 to bring the origins

into coincidence.
4. A rotatiom of -0 about £, to bring % into coinci-

dence with (8; may differ from ei since this

By
method of describing 8; does not necessarily result
in its being equal to zero at the center of joint i's
travel, as ei was defined to be.)

Each of the above four operations can be described by a 4x4

transformation matrix, and the product of those four matrices]

is the homogeneous transformation matrix which describes the

overall transformation from coordinate system i to system i-1;

that is,

éi_l = rota —6'] [trans% -] [transA -a]!:rot% -](3—4)
23079 | Zio78 Xyo7ay 70y

where rot_ o is a rotation of O about r
?

transr s is a translation of s along r.
el

c1a X . i-
If the above multiplications are carried out, éi 1 can also be
expressed in a more useful form as a function of the four joint

parameters as [14]

23

R VT T T

e L

.

hac? of

(3-5)

-cosef

i

. 1

i-1 - SInei
0

1 L l-
- a . . 6
cos is:.nei 31naisin 1 aicosei
cosC., cosf’ -sin0, cosb! a_sing!
i i i i i i
sinQ cosC, S,
i i i
0 0 1 B
TABLE II

Homogeneous Transformation Matrix Parameters for

PUMA 600 Manipulator Joints

1

Joint, 1 ai a; si ei

1 90° 0 NO Si + 180°

2 0° ES SN 92 + 90°

3 90° 0 0 63 + 90°

4 90° 0 WE 94 + 180°

5 90° 0 0 65 + 180°

° 6

6 0 0 HW 6

NO = neck-to-base distance = 26 in.

SN = shoulder-to-neck distance = 6 in.

ES = elbow-shoulder distance = 17 in.

WE = wrist-to-elbow distance = 17 in.

HW = hand-to-wrist distance = 6 in.

The four parameters for each joint which determine the

transformation matrices between link systems are given in

Table II. When those parameters are introduced into Equation

24

S T P T I T I

I

?
g
1%
it
i

(3-5), the following six transformation matrices result:

|3
N

Fai8

-cosel

- 6
sin 1

0

-cosB

—sine2

-sin@l
cosGl
0

0

cosb

sine3

-sine4

cose4

-sine5

cosf

25

0

NO

-ESsinG2
EScosG2
SN

1

(3-6)

(3-7)

(3-8)

(3-9)

(3-10)

R L T T L I, N T A e N L L e J

e

hl‘ P T T S

cose6 —51n66 0 OT
5 _ | sin® cosf 0 0
é6 = 6 6 (3-11)
0 0 1 HW
L 0 0 0 1]

The six transformation matrices in Equations (3-6) through
(3~11) can be multiplied together to obtain one overall trans-

formation matrix, ég, for the whole arm:
A% = A0ata203 %0 (3-12)
_6

For simplicity, in the rest of this thesis a vector in the arm
base coordinates will be denoted by the superscript a, and a

vector in the end effector coordinates will be denoted by the

superscript ee. Then

a 0

r =r ’ (3-13)

E?e - Eé , (3-14)
and

r? = A% %% (3-15)

L Bael

Vectors describing the position and orientation of the
end effector will be similar to those used for the vehicle
body. The position and velocity of the origin of the end
effector coordinate system will be denoted by Pee and Voo’

respectively. The orientation of the end effector system can

26

iy e A el L SeAT. v al e

e i e b e 4]

s « 7 A S S A A bt a [S R v
j ‘

DT R o T, T

be specified by the three Euler angles aee’ B Yee (where

ee

these are defined as in Figure 1), and the angular velocity
of the system by Qee'

Then the orientation of the end effector system with

' respect to the arm base system can be described by the 3x3
rotation matrix g:e which is, again, of the form given in

Equation (2-4). As with the robot system, both position and

I T

orientation information are contained in the homogeneous trans-

. . . . a
formation matrix, in this case éee’ where

E
i :
f

ee
x |
a a a 3
A? = [R] Pee) (3-16) ,3
| —ee —ee y
i a
’ Poe
Z
| o 0 o 1

? 3.3. Control System.

As was mentioned earlier in this chapter, the control
system described in this work is a supervisory control system
[27] in which the higher-level commands of steering, speed,
etc., are supplied to the control computer by a human operator.
The computer then calculates the arm motions which are required]
to implement those commands.

Another method of dividing the control problem into

levels applicable to walking robots has been suggested by

27

- e —

T T Tw——

D -~ e~ e

Narinyani, et al. [29]. This model divides the problem into
three levels. The upper level is the overall planning of the
route based on the robot's basic capabilities and limitations
(for instance, the size of obstacle it can overcome). The
middle level involves looking ahead for several steps in the
direction of the route fixed by the upper level. This level
then arrives at a corridor of possible paths based on robot
parameters (speed, balance, body height, etc.) and local
terrain features. The lower level involves placing the feet
to move the robot along one of the paths in the corridor
determined by the middle level.

In many cases, it would be useful to consider the lower
level as consisting of two levels: One which determines the
location at which a foot is to be placed, and another which
calculates the trajectory which the foot should follow in
reaching that location. This division seems justified since
in difficult terrain human beings often consider where to place
their feet but they rarely think about the actual path their
feet follow in the air. This fact can be applied to walking
robots if access is allowed to the proéram between the above
two levels. Then in difficult terrain a human operator could
determine where the robot's feet should be placed and let the
computer determine how to get them there. This mode of oper-
ation would also be useful if one of the robot's legs is to be

as an arm (to manipulate tools, for example), a circumstance

28

ool

Ty

which might well occur with the robot in this work, since its
legs are industrial manipulators.
If Narinyani's lower level is divided as suggested above,

the functional division of robot control into levels becomes

Level I - overall planning of route based on robot's
basic capabilities and limitations

Level II - determining corridor of paths based on robot
parameters and local terrain features

Level III

choosing locations at which feet are placed

Level IV

calculating foot trajectories

Although in the general robot walking problem Level II is very
important, in this work the terrain is structured enough that
Levels I and II can be combined. There are generally enough
footholds that the robot's flexibility allows it to move along
any path specified for its center of gravity.

The above four levels constitute a model of the general
robot walking problem. For the specific problem addressed in

this work, three modes of operation were chosen:

1. Robot Destination Control.
2. Robot Velocity Control.

3. Arm Control.

In the following paragraphs these three modes are discussed

in terms of the four levels described above.

29

PR, N

Ly g

ST L SR TTWE, g

S T T o = T

s TR edT

ST EEREE

g =

LS
‘Y
v

A A

With Robot Destination Control, the operator enters a
sequence of points (in coordinates based on the grid on the
cylinder), and the computer calculates the trajectory required
for the robot to pass through those points. In this mode, the
computer performs the operations required for part of Levels I

and II and all of Levels III and IV.

With Robot Velocity Control, a three-axis joystick is used.

Two of the axes control the linear velocity of the robot on the
grid, and the other axis controls the rotation rate of the
robot body. In this mode the operator handles Levels I and II
and the computer performs the calculations for Levels III and
Iv.

Arm Control can be used in three different way.. In all
three of those, the robot is stationary, so Levels 1 and II
are not operating. With Arm Handhold Control, the operator
enters a handhold location (in grid coordinates) and the arm
moves to and grasps that handhold. With Arm Destination Con-
trol, a sequence of desired coordinates (positions and orien-
tations) for the arm is entered and the computer calculates the

trajectory required to pass through those points. In these

two modes the computer performs only the operations for Level

IV. Finally, with Arm Velocity Control, the translational
velocity of the end effector is controlled by the three-axis
joystick, and its rotational velocity is controlled by a set of

three dials. 1In this mode all of the levels listed above are

30

P T T A e S

e e

g e TG

handled by the operator, witna the computer only converting

commands from Cartesiam coordinates to joint coordinates.

3.4. Summary.

In this chapter, some of the necessary background infor-

mation has been given for the problem of control of the three-

armed robot discussed in this work. Models for the body of the

robot and for its arms have been given, and the control system

employed has been outlined. Chapters 4 and 5 will discuss the

solution of the problem formulated in this chapter.

31

. A i R

D -

-———— —— =

Chapter 4
ARM KINEMATICS ALGORITHMS

4.1. Introduction.
The problem of manipulator kinematics can conveniently
be divided into two parts. The first is the conversion of
Cartesian velocity commands to joint velocity commands. As
discussed in Chapter 2, it is usually convenient to derive
manipulator commands in Cartesian coordinates since that is
the system in which human beings are most accustomed to working.
Those commands must then be converted to joint coordinates for
the actuator signals. This problem is the topic of Sectiom 4.2.
Although the Cartesian velocity commands can be provided
at every iastant in time by a joystick or similar device, in
many cases the desired path of the manipulator is specified in
the form of a sequence of points through which it is to pass.
Deriving a trajectory (Cartesian velocities as functions ot
time) from that sequence of points is the sevond part of the

manipulator kinematics problem and is discussed in Section 4.3.

32

-

e e —
- —

TR e ———— e e "

4,2, Jacobian Solutionm.

The most straightforward way of deriving joint velocities
from Cartesian velocities is to use basic Resolved Motion Rate
Control [7]. TFor a six-degree—of-freedom manipulator this in-
volves first calculating the 6x6 Jacobian matrix J, whose ele-
ments are the partial derivatives with respect to the joint

a a .
angles of the components of v and w_ (the translational and
—ee —ee

rotational velocities of the end effector with respect to che

arm base). That is,

- - - -
a .
Veex el
a .
veey e2
a .
veez e3
=] . (4-1)
a =2 1.
w 8
eey 4
a .
weey e5
a -
0‘)eez Le6

. . s . P a
Then to derive joint velocities from Cartesian velocities (zee

and Qze) the Jacobian must be inverted and multiplied by those

Cartesian velocities:

v
b=gt 2 (4-2)

= a
Using this method for a six—-degree-—of-freedom arm involves in-

verting a 6x6 matrix. This can be done symbolically, which is

33

b el e e

e i el T o

0 Ao o Lk e i .

indd

B Al

eI O S O A et Sl ™2 i

very difficult, or numerically every time the velocities are

calculated, which is computationally expensive. Since neither

of the above alternatives is desirable, an altermative solution

has been used in this work. For some arm designs, including

the one used here, the joint velocity problem can be . divided

into two p-rts, each of which requires the inversion of a 3x3

matrix. These two 3x3 matrices can be inverted symbolically,

eliminating the need for numerical inversions at run time. This

approach is discussed more fully in Section 4.2.1.

No matter how the joint velocity problem is solved, there
are some arm configurations (those in which the Jacobian is

singular) in which Cartesian velocities in one or more direc-

tions are impossible. Although mathematically these singulari-

ties are all similar, the physical limitations they place on
the arm may be very different sc¢ they all must be considered

individually. The three singularities of the PUMA 600 arm are

considered in Section 4.2.2.

4,2,1. Arm Decomposition Approach.

In the PUMA 600 arm the last three joint axes intersect

in a point which can be called the "wrist."” This allows the

first three and last three joint velocities to be calculated
independently, given the desired tramslational and rotational

velocity of the end effector. The procedure which is used to

calculate those joint velocities is described in the following

34

=

P it e S e

e mant dff Tgan v #y

R

—_———

paragraphs.

The first step is to calculate the tramslational velocity
of the wrist, which is located at the origin of coordinate sys-
tem (34’ 24, 24). That velocity depends only on the firs£
three joint velocities, so if it is known, those joint veloci-
ties can be determined. Since the end effector and wrist are
connected by a rigid link, the wrist's translational velecity
(22) can be shown to be the sum of the end effector trans-
lational velocity (32) and the cross product of the end effector
rotational velocity (92) and a 'vectér from the end effector to

the wrist (22-22); that is,

v, " v +ug X (2g-Rg) - 4=
Then to calculate the first three joint velocities, the
Jacobian matrix must be found whose elements are the partial
derivatives of the components of the wrist position, 22, with
respect to the first three joint angles. The easiest way to
calculate that Jacobian is to calculate 32 and then make the

required partial differentiations; thus

P, = Ama o, - (4=4)

35

e

M - "
0

p4x 0
0

p 0
by 0,1,2
Y =
) 41804,

942 WE
1 1

k- -J - -

1

; where si = sinei

Then the Jacobian is

cls23WE + cls2ES - sl1lSN
sls23WE + sl1ls2ES + clSN

c23WE + c2ES + NO

s23 = sin(62+83)

cli = cosei

B T
0 0 0
3p,v 3p4 3p4
p X X
r 58, 58, 38,
|
; 0 0 0
I, = | %P P, 9,
-1 y y
38, 38, 58,
0 0 0
| P, p, 9,
zZ Zz r4
36 36 36
* ! 2 3
36

c23 = cos(82+

(4-5)

(4-6)

(4-7)

e

L I T

PR P e N S RPN RE. o o oo sl ol Ty T fian. Shi ol v - RS-y st NS AdC A CEE S e i A A AR A e A -t
B R ! - - S "

RO 1 s

-51s23WE-s1ls2ES-c1SN ¢lc23WE+clc2ES clc23WE
= cls23WE+cls2ES-s1SN s1lc23WE+s1lc2ES slc23WE|. (4-8)

0 -523WE-s2ES -3523WE

and if the Jacobian is not singular the inverse Jacobian is

(since for this arm WE = ES)

~-s1s3ES cls3ES 0
_ cl1s23(s2+s23)ES s1s23(s2+s23)ES
ill = TjLT- -s1s23SN +cls23SN c23(s2+s23)ES
| =1
-cl(s2+s23)2ES -s1(s2+s23) 2ES ~c2(s2+s23)ES
} +s1(s2+s23) SN ~cl(s2+s23)8N -c23(s2+s23)ES
| (4-9)
|
g where lgil = (s2+s23)s3ES?.
E The first three joint velocities can then be calculated
} as = - r~
| 3 0]
, 1 4
‘ X
6. | = a71 |0 (4-10)
7 2 SO A
y
6 v0
_3A _42_‘

The possible singularities of gi (s24s23 = 0 and s3 = 0) are
discussed in Section 4.2.2.1.

| Now that the first three joint velocities are known, the
last three joint velociites can be calculated from the end
effector rotat .nal velocity. This can be done by calculating

the rotational velocity which must be provided by the last three

37

. » andan - g s R oL RN G ST T NP SRR . L. e e R I
. L e P e T T ST ST L P TN S Y L R L) .

P T T e 1}

joints (Qg), which is equal to the desired end effector rotation-

al velo«ity (92) minus the rotational contribution of the first

three joints (92)’ all transformed into coordinate system (23,

~

23, EB); rhat is,

-1 .-1 -1

3.2 7% 0
Wg =Ry By Ry lug-
- L -
wg clec23 slc23
X
wg - -sl cl
y
wg c1s23 sls23
L YA

9(35

- g

~523

c23

-l

wO
6

wO
6

wO
6

X

2

+ (82+e3)sl
+ (62+63)c1

_61

oy

(4-11)

(4-12)

Thus to calculate the last three joint velocities, the

Jacobian matrix must be found whose elements are the partial

derivatives of the components of the end effector orientation

with respect to the last three joint angles.

The columns of

that Jacobian are simply the vectors describing the last three

joint axes in coordinate system (gs, 23, 23); thus

‘- 0 -sé c4s5

52 = 0 ch
1

s4s5

c5

and if the Jacobian is not singular the inverse Jacobian is

38

e

L

2F R

e o0 oy

P

SRR A A

cbeS s4s5 -s5
-1 1
52 =53 5485 ~-c4s5 0 . (4-14)
~-c4 -s4 0

The last three joint velocities can then be calculated as

5 [
4 6y

. 1] 3

6. =07t w) (4~15)
5|7 =2 | Y%y

: 3

8 W

L 6- L 6z_

The possible singularity of JQ (s5 = 0)is discussed in Section

4.2.2.2.

4.2.2, Jacobian Singularities.

Both the Jacobians discussed above can be singular (have
a determinant equal to zero). Under those conditions the joint
velocities cannot be calculated using the inverse Jacobian since
it does not exist. There are two ways of dealing with this
problem: Another method can be used to calculate the joint
velocities under those conditions or artificial limits on the
joints can be imposed to mzke those conditions impossible. The

latter approach is adopted for the singularities of J.. and the

l!‘

former is used to the singularity of gé. Those approaches are

discussed in the following two sectioms.

39

o ma s e e tE

R S I L

R A T i e T TRy T TR e

P L PR R e e T T IR R Py

-~ = =

——————

4,2.2.1. Singularities of J-

The Jacobian matrix 21 is singular when s3 = 0 or s2+s23

1]

0. The condition s3 = 0 occurs when the arm is fully extended
(i.e., when the elbow jecint is straight). At this point the
wrist cannot move farther away from the shoulder, nor can it
move directly towards the shoulder; thus any velocity command
which includes components in those directions will be unattain-
able. This condition was eliminated by imposing an artificial
joint limit of 63_f-l°. This limit does not allow the arm to
be fully extended, but since it can be almost fully extended,
the radius of the reachable space is only decreased by about
0.01 in. The artificial limit also makes some otherwise
reachable points near the arm base unreachable but for walking
those points are unimportant. If one of the arms were being
used for something other than walking (e.g., manipulating a
tool), the limit could be overridden and the approach outlined
in Section 4.2.2.2. could be used.

The approach used for the singularity of s2+s23 = 0 is
similar. At this point the wrist is directly under the shoulder
and cannot move either toward or away from the base-neck axis.
This condition was eliminated by imposing the limit 92 2_‘63/2
+ 1°. This limit increases the minimum radius for the arm by
only 0.03 in.” It also makes an area underneath the robot un-

reachable, but for walking that area should be avoided anyway.

40

TR AT AT

s e o

—————y———

At any rate, if it were necessary to reach that area, the limit

could be overridden and the approach in the next section used.

4.2.2.2 Singularity of JQ’

The Jacobian matrix J, is singular when s5 = 0. This
singularity cannot be handled as the two in the previous
section were because it can occur at many positions and
orientations in the reachable area, not just at its edges.
Thus elimination of this singularity would place severe re-
strictions on the motion of the arm, and a methcd must be
found to solve for the joint velocities when s5 = 0.

When s5 = 0, 65 = 0° and the axes for 84 and 66 are the

same. Any change in 64 or 66 will affect only wg (see Equation
z

(4-12)), so either é4 or éﬁ can be chosen arbitrarily so long

as the other is chosen so their sum is wg . Thus let é6 remain
z
constant; then
66 =0 (4-16)
and
§ = wd -6 (4=17)
4 62 6 °

Then to determine éS note that the configuration is as
shown in Figure 5. Any change in 65 can cause a rotation only
is the direction of 24. Thus the only portion of the desired
rotational velocity (whose componenfs are ng and wgy) which

can be implemented is the projection of that velocity on 24;

w3 s e R ST 2 S SV R S 2 AR

P PP IR PO I

e ey mw————RT T TTETYY -

Desired Rotational Velocity

32
)
o
s
Y
I
6
x
Realizabie Rotational Yelocity 8
) 4
2_33 24 2‘5
) x
‘ ~
r Figure 3. Configurations of Coordinate Systems (X,, 23’ 23)
and (&, 94, z4) for Jacobian Matrix Singularity
of sin 85 = 0 Showing Realizable Component of De~
sired Velocity.
that is,

;o 3 3)
Y b = -sh xw) +chxuw . (4-18)
X y

Equations (4-16), (4-17), and (4-18) are used when ga is
singular to implement as much of 92 as possible; as soon as the

arm is in a configuration in which 12 is not singular the joint

velocity calculation method described in Sectiom 4.2.1. is again

used. As mentioned earlier, the approach described here could

also be applied to the singularities of gi if desired.

42

e e smdh e e e

-~

—_—— -

4.3, Trajectory Calculation.

The problem of calculating a time—optimal trajectory for
a robot arm to follow in passing through a sequence of points
is an important one for this work. For reliability purposes,
the robot will have two arms grasping handholds at all times,
so only one arm can be moving in the air., This means that on
the average the time it takes the robot to move one unit can be
no less than three times the time it takes an arm in the air to
travel the same unit with respect to the ground. An increase
in the average velocity of the arm with respect to the ground
will be reflected by three times that increase in the robot's
velocity, so the degree of time optimality of the arms' tra-
jectories will determine how close the robot's maximum velocity
approaches its theoretical limit.

Some work has been done in the area of arm trajectory
time optimization by Luh and Walker [30]. They consider
translational motion only in which the end effector path is
made up of straight line segments connected by smooth arcs. The
arcs are 'rounding' of the corners from an exactly point~-to-
point path, and are subject to a maximum error comnstraint which
is related to the length of the path segments which form the
corners. The path is not actually a minimum-time trajectory
because a restriction of comstant velocity is used in the

straight segments between the connecting arcs.

43

T e P =g T e

Maximum Deviation

/from Point-to-Point Path

T

Transiational and Rotational Velocities Translational Velocity Only

Figure 6. Typical Arm Path Showing How a Point-to-Point
Specification is Modified for a Near-Minimum-
Time Trajectory.
The approach used here considers both translational and
rotational velocities. The translational path is similar to
that of Luh and Walker in that it is composed of straight seg-
ments connected by arcs (see Figure 6), but the error constraint
is absolute rather than a function of the segment lengths.
Another difference from the previous work is that acceleratioms
and decelerations are permitted in the straight segments, but
constant acceleration is specified in the transition arcs, making
them parabolic arcs. Since most of a path is usually straight
segments, this approach allows the arm to travel faster in those
segments, slowing down only to "turn the cormers." The algorithm
also assumes zero rotational velocity in the transition (see

Figure 6), but since the desired tramnslational displacement of

44

it atis ettt A
e T e T YT
- R =

CALCULATE MAX!IMUM
TRANSITION DISTANCES
1
CALCULATE MAXIMUM
TRANSITION VELOCITIES

]

CALCULATE REQUIRED
TRANSLAT!ONAL ACCELERATIONS

RECALCULATE
TRANSITION

IS ANY

TRANSLATIONAL ACCELERATION

GREATER THAN MAXIMUM

ACCELERATION
?

NO*

CALCULATE MINIMUM
TRANSLATIONAL TIMES
1
CALCULATE
ROTATION MATRIX
1
CALCULATE
VECTOR AND ANGLE
OF ROTATION
!

CALCULATE MIN!MUM
ROTATIONAL TIMES

MINIMUM ROTATIONAL TIME
GREATER THAN THE CORRESPONDING
MINIMUM TRANSLATIONAL TIME

CALCULATE MAXIMUM
TRANSLATIONAL TIMES

MIN{MUM ROTATIONAL TIME
GREATER THAN THE CORRESPONDING
AXIMUM TRANSLATIONAL TIME

O1ISTANCES

YES RECALCULATE
] TRANSITION
VELOCITIES

YES

CALCULATE
TRANSITION TIMES
AND ACCELERATIONS

CALCULATE
TRANSLATIONAL TIMES
AND ACCELERATIONS

CALCULATE
ROTATIONAL TIMES
AND ACCELERATIONS

Figure 7.

¥

45

Flow Chart of Arm Trajectory Optimization Algorithm

>

[P S > SEPUS S

el

st i e

i e e it e A

—_ == T

-~ ——

i ____—___________~_(By
d
;’_--j‘zi I‘#{-—\d; ¢
s P try

R T “=

H . \\
1
‘dfr
[
\
\
Segment | T jS/’
ransition v
—'friz

Transition i-1

Figure 8. Definition of Arm Translational Trajectory Variables

an arm is usually relatively greater than the rotational dis-
placement, this will not often slow down the arm. A flow chart
of the algorithm is shown in Figure 7 and it is discussed in

detail in the following paragraphs.

4.3.1. Translational Trajectory.

Figure 8 shows a segment of the translational trajectory
with some of the terms which will be used below defined. The
figure shows segment i of the trajectory along with transitions
i-1 and i at the ends of that segment. The angle made at the
corner of tramsition i is Bi. The distance from that corner
to the point where the actual path breaks away from an exact
point-to-point path is dtr . The total length of segment 1 is

i
di’ and that length minus the two tramsition distances is di.

46

At A R e s D

e et o e i e M Tam il

——

T
RREERNESSEIESESAS 4

instantaneous change of direction at the intersection.

The velocity on entrance to transition i is v and the velo-

Ti1

city on exit from that tramsition if v . The magnitude of

Yi2

both those velocities is v . The time it takes for the arm to

T
i
pass through transition i will be denoted by Ttr .
i
The first steps in the algorithm are the calculation of the

maximum transition distances and velocities (see Figure 8). The

transition distance is calculated using the general formula

bs = |y (at) + 5 a(an)?] (4-19)

where As is the distance travelled, Y5 is the initial velocity,

a is the acceleration, and At is the time interval; from that

formula it can be calculated that

v -v
—{r —tTr
. _ 1 i2 T3 2 _
Zdtr.Sln(Bi/Z) | ¥er, Ter, T3 T tr, (4-20)
i ! il 71 tr, i

= Ttr.vtr,Sin(Bi/z) (4-21)

i 74

Ttr. tri
dtri == . (4-22)

Since a constant acceleration is specified over the entire
transition, the time taken to make the transition can be shown

to be the same as if the arm followed the segment paths with an

For the

transition distance to be-maximum the difference in those two

47

Y s o MOAGAYT AT
L P SRR R Ll et

b ikt el

il
O PR

e e

=

R

- T—y

X

paths at the midpoint of the twransition should be equal to the

maximum allowable error; thus

v -v
—tr,, —tr
1 i2 il 2
€ =|v (T /2) +=| ————=1 (7T /12)7 - v (T /2)
max —tril tri 2 Ttri tri —tril tri
(4-23)
Ttrivtrjcos(Bi/Z)
= 7 (4-24)
Then
4e
= — max (4-25)

d
tri V2(1+cosBi)

but for simplicity later it is convenient to assume that the
transition distance is less than one-half the segment lewgths

on either side of the tramsition, so

d, d 4e
4, =min|, 12+1 , max . (4-26)
i /2(1+cosBi)

The maximum transition velocity can be calculated from

v -v v
—tr. . tr.
d - r12 —trll i

(4-27)

tr, 2a
i max

to be

2d a
tr. max
i

— . (4-28)
/2(l+cosBi)

v
tr

The next step is calculation of the segment acceleratioms
that the transition distances and velocities require. For seg-

ment i the required acceleratiom is

48

R L R EE T YUV L WS PN

LN i T T

i, A e sz Gidet

T T TR T s T

—— -~ T

—————

e

Ve e DL T e S AL

2

Ver Ver
. i i-1 . (46-29)
i 2(d;=d__=d_)
1 “Fia1

a

If any of the segment accelerations is greater than the maximum
acceleration allowed, the transition distances and velocities
must be recalculated. This is done by lowering the higher of
the two velocities to the value which requires the maximum
acceleration. The equations below are simplified if, for
segment i which has a required accleration greater than the
maximum, the transition with the higher of the two velocities

is designated "hi" and the one with the lower is designated

"lo"; then
2 2
v -v = 2a (d,-d -d) (4-30)
t:rhi trlo max 1 trhi trlo
v2 +2a (d,-d)
trl max 1 trlo
v, = Q . (4-31)
Thi 1+ v2(1+cosByy)

The transition distance can then be calculated as

2 JSitiTeosE Y
vtrhi 2(1+cothi)
dt:r = 2a . (4-32)
hi max

The final step in the translational portion of the al-
gorithm is calculation of the minimum translational times for
the segments. These times will later be compared with ro-

tational times to determine 1f either needs to be adjusted to

49

N LR s

oo T T w0 e T e

DA e e A R

synchronize the translational and rotational motions. The first
step in the calculation of the translational times is calcula-

tion of the highest velocity reached in the segment as

2 2
Ver, . Ver
v = min\v___,}/a d! ~——ht lo + v2 (4-33)
hi max max i 2a tr, .
i max hi
The time can then be calculated as
2v2 —v2 —v2
' hii trhi trlo
2v -v -v d, -
hii trhi trlo i zamax
T = + (4-34)
trans a \
i max max

4.3.2. Rotational Trajectory.

The object of the rotational portion of the algorithm is
to determine for each segment a unit vector T and an angle ¢
such that a rotation of ¢ about T makes the desired rotational
change over that segment. The first step in this procedure is

5,0
calculation of a rotation matrix e for segment 1 which
describes the rotational motion for that segment. That matrix

can be calculated from the rotation matrices of the two end-

points of the segment as

S S

5,0 11 12 113
e = |s, s, s, (4-35)

121 122 123

S S,]
i3 i3 133
-1
= RR) (4~36)
50

e P PIRE i ' J RIS £ s N T S

e i e

T P T T

T

s gD i A R

L

———————

The vector and angle of rotation can then be derived from

Euler's theorem [31], which states

S.¢
-1 =i
RiRT; =e (4-37)
— Fa Y T —
= Icos ¢+_1;i§i(l coso) +_S_isin¢ (4-38)
0 —riz ?iy
where §i = fiz 0 -rix
-7 £ 0
iy iy
From -Si -5, T
32 23
a 1
£.sing, = S 1|s - s (4-39)
1 1 2 113 131
s, -8
I i

it can be seen that (since Ei is a unit vector)

1/2
sinq;ia%-[(si -5,)2+(s. =S,)2~l-(si -8y)2]
32 *23 13 31 21 12
(4-40)
Then
s -s, |
13 iy
1
£, ==1s. - s, /sing (4~41)
— 2 i35 131 i
S - 8
Iy i
L _
Also, a a2 2
Sy TRy Sy TRy Sy Thy
cosd. = 11 X _ 22 7y _ 33 z (4-42)
142 1-¢2 1-22
i i i
X v z

51

R

e

S0 ¢i can be calculated as

-1 sind)i
¢i = tan <cos¢i . (4-43)

The minimum rotational time can then be calculated as

. (4-b4)

4.3.3. Combination of Trajectories.

Now the minimum translational and rotational times for all
the segments are known and the times must be reconciled to syn~-
chronize the translational and rotational motions. If the
rotational time is less than the translational time, this can

be accomplished easily because the rotation can be slowed down

by using

Trot 2
O=a <;—-———-) R (4-45)

trans

If the rotational time is greater than the translational
time, the problem is not so simple because the translational
velocity is not zero at the ends of the segmert. The first step
is to determine 1f, with the present transition distances and
velocities, the translational motion can be slowed enough to
take as long as the rotational motiomn. This can be checked by
first calculating the lowest velocity which can be attained

in the segment as

52

- PRI 2 2 - -
N .
e a2 Tae e e i A SRR T SR INGEAT L VL s e e e

e T =Ss T e

v2 —v2
tr tr
2 ' hi lo
V1o, max {0, Ver, ~ %nax di" 2a (4-46)
i lo max

If Yio is zero, the translational motion can be slowed down as

much as necessary; if not, the maximum translational time must
be calculated as

. trhi trl0 loi

Ttrans. a : (4=47)
1 max

If that time is less than the rotational time, one or both of

the transition velocities must be reduced. In the program im-

plemented they are reduced to the point where the arm velocity

can be reduced to zero; this is not necessarily a minimum—time

solution but it is time-consuming to obtain the minimum-time
solution and this situation arises seldom so it should not
significantly affect the effectiveness of the algorithm.

If the minimum rotational time is less than the maximum
translational time but greater than the minimum translational
time, the translational velocity profile is determined by cal-
culating the average velocity which must be maintained over the
segment (excluding the portion in which the arm is accelerated

from the lower tramnsition velocity to the higher tramsition

velocity) as

53

e e i Ko B et i s o L

o

———— —

4.4,

g Ty Ty YT STy e Ay g T R

Summary.

(4-48)

This chapter has described the algorithms which are used

in this work to implement motion of the robot's arms. These

are the groundwork for the procedures which control the robot's

walking, which are discussed in the next chapter.

54

IRCRIPCI T O
Py I P v RN Ly AT

o o S SR S

, Chapter 5
E ' WALKING ALGORITHMS

5.1. Introduction.

The robot discussed in this work walks over the terrain

shown in Figure 2. The surface is a cylinder on which there is

- W

a grid of handholds for the robot's arms to grasp. The pro-

gram allows any of these handholds to be removed to simulate a

hole, trench, or similar obstacle. It is assumed that these

M

obstacles have no height so a leg can pass over them.

The algorithm used to control the robot's walking is
basically similar to that of McGhee and Iswandhi [26]. It is
based on the notion of kinematic margin (defined in Sectiom

5.3.1.); the algorithm seeks to maximize the value of kinematic

.

margin over all the supporting legs so as to maximize the dis-
tance the robot can move before one of the arms reaches the

limit of its joints. The algorithm is described in detail in

A

Section 5.3.2.

5.2, Robot Velocity Command Generationm.
The basic input specification to the free gait algorithm

described in the next section is a robot velocity command

55

o) L R RN A s S R TR T o R et L R e N 3

Tk

- TR

—_———
ey R ————

ERS

e

<A

- ey TR TR

Y

vector. This command consists of three translational components
and three rotational components. Only three of those components,
two translational and one rotational, are specified by the
operator. The other two degrees of freedom are supplied by
requiring the robot to remain at a specified height and tangent
to the cylinder. The height specification supplies a trans-
lational velocity and the tangency requirement supplies two
rotational velocities, so with the three operator-specified
velocities the robot's motion is fully specified.

The operator-specified velocities are the robot's
tangential and axial velocities on the cylinder and the velocity
of rotation of its body. These commands are generated in one
of two ways, depending on the mode of operatiom.

When the system is in Robot Velocity Mode, a three-axis
joystick is used, and velocity commands are read each time the
free gait algorithm is executed. Movement of the joystick
gives the translational components of the robot velocity and
rotation of the joystick about its axis gives the rotational
component,

When the system is in Robot Destination Mode, the velo-
city commands are computed from a stored trajectory. This
trajectory is calculated from a sequence of robot positions and
orientations entered on entry into Destination Mode. The pro-
gram first calculates the minimum translational and rotational

times between each pair of points and determines which of those

56

I L N - e T

i i rnbmb s ekl

T

L

A

A R A TR TN ST

two times is greater. The greater of the times 1is used to
compute the translational and rotational velocities required

to move between those points in that time. Those velocities
are then stored and constitute the trajectory for that sequence

of points.

5.3. Free Gait Algorithm.

A flow chart of the walking algorithm is shown in Figure
9. As mentioned above, the key concept of the free gait
algorithm is that of kinematic margin. That concept is defined
in Section 5.3.1., and its use in the algorithm is described in

Section 5.3.2.

5.3.1. Kinematic Margin.

The kinematic margin of an arm grasping a handhold is
defined as the distance the base of that arm could travel in
the direction of its current velocity before a joint of that
arm reached the limit of its travel. The sma.lest kinematic
margin of the three arms is thus the distance the robot could
travel in its current direction before it had to stop because
of arm limits. The algorithm seeks to maximize the value of
this smallest margin because that will maximize the distance
the robot can travel in its current configuration, thus maxi-
mizing the chance tﬁat it will be able to find another con-

figuration in which to continue.

57

T B P TLT I Lhcr-T R ey N - ..

T T S TP I ST

Y T e Y

com = —

WL e N -

.

IS
YES AN aRM HO

IS
THAT ARM
AT ITS TERMINAL
RAJECTORY POINT

CALCULATE
TIME ELAPSED
SINCE LIFTING

_OF ARM

MOVE ARM
ACCORDING TO
STORED TRAJECTORY

YES

‘\\Lt\:ii/fjjy/f
?
}

GRASP HANOHOLD |

DETERMINE ALL
REACHABLE HANDHOLDS
FOR ARM WITH SMALLEST
KINEMATIC MARGIN

DOES ANY
OF THOSE HANOHOLDS

N0

CALCULATE
KINEMATIC MARGIN
FOR ALL ARMS

IS
SMALLEST
KINEMATIC MARGIN
LESS THAN THRESHOLD

MARGIN
?

NO

HAVE A LARGER KINEMATIC MARGIN

THAN THE ARM'S CURRENT

MARGIN
?

YES

CALCULATE TRAJECTORY
TO HANDHOLD WiTH
LARGEST KINEMATIC MARGIN

MOVE

SUPPORT ING

Figure 9.

ARMS

58

Flow Chart of Free Gait Algorithm

I N I L Y

st

——— Ty

-————y———

s o e T T TN T T T e e Te e R

el e

The most accurate method of calculating kinematic margin

would be to use knowledge of the three-dimensional reachable
space of the arm. The boundaries of that space are not easily
described, though, so two-dimensional limits are used in this
work. Figure 10 shows the limits of the arm's reach in both
the tangential and axial directions on the cylinder. These
limits can be used to determine the approximate shape of the i
reachable area of the cylinder, which is shown in Figure 11.

This area is not easily described, so an inscribed circle .*i
centered at the base of the arm is used in the program to cal- 3
culate kinematic margin.

The calculations for kinematic margin assume that the base

of the arm will continue at its present velocity indefinitely.

The kinematic margin is then the length of a vector in a direc- |
tion opposite to the arm base velocity from the current handhold
to an intersection with the boundary of the reachable area (see %
Figure 12). The next section describes the use of the kinematic

margin in the free gait algorithm.

5.3.2. Foot Lifting and Placing.

The first step performed by the algorithm is a check to
see if one of the arms is moving from one handhold to another.
If one is, the algorithm calculates the time elapsed since the
arm was lifted. This elapsed time is used to determine from the

stored trajectory of the arm its desired velocity, vy and

59

T T e TR e e e T e SRR e e TR e

;
s
:

N /

Robot Body Robot Body

"Shoulder"

"Shoulder™.

"Wrist" "Weist! "Wrist"

"Wrist"

- p— - e an - e > - - s e w w s e = e

-——
—_———
-
-

i
!———27.5 In.——l—— 27.5 ‘ir\.——l

(a) (b) Cylinder Surface

Cylinder Surface

Figure 10. Arm Extension Limits for Vehicle at a
Fixed Height (52 in.) on Cylinder.
‘(a) Tangential Limits, (b) Axial Limits.

+ + + + + + + + +
+
Handholds ‘/’,;;* Actual Limit
\+
Programmed Limit
+
+
+
+ Robot Body

Figure 11. Actual and Programmed Reachable Areas for
Arm of Vehicle on Cylinder

60

T R N T T P S, S PR | 1

T % TR

Reachable Area
N,

Kinematic
Margin

~—__Arm Base
Velocity

Handhoid

Figure 12. Kinematic Margin Definition Showing Distance Arm
Base Can Travel at Present Velocity before Arm
Reaches Limit

desired position, Py- That velocity and position information
is then used with the current actual position, P> to calculate

a velocity command, Xc’ for the arm, as
v.o= vyt (pg-p)/ot (5-1)

where At is the time interval between successive executions of
the free gait algorithm. Thus the command is the sum of the
desired velocity and a correction velocity intended to correct
the position error in the time interval At. The comnand is then
executed and a check is made to see if the arm is at the ter-
minal point of its trajectory. If not, the algorithm moves on

to calculate velocity commands for the supporting arms; if so

61

A
-
o A._ﬂ.m-._.&-m-mmm‘J

SR

e o e AR

Bl

Path of End Effector

Handhold . l Hanghold
Cylinder Surtface

Figure 13. Typical Arm Handhold-to-Handhold Trajectory

the arm is sent a command to grasp the handhold.

If all of the arms are grasping handholds, the algorithm
calculates the kinematic margin for each of the arms. The
algorithm then checks to see if the minimum kinematic margin
over the three arms is less than some operator-determined
threshold value. A threshold is used to prevent the arms from
lifting and setting down more often than necessary, which would
consume more energy than required. If the minimum kinematic
margin is larger than the threshold, the algorithm moves on to
calculate velocity commands for the supporting arms; if the
minimum kinematic margin is smaller than the threshold, the
algorithm determines which of the reachable handholds for the
arm with the minimum margin has the greatest kinematic margin.
It then calculates (as described in Section 4.3.) a trajectory
(as shown in Figure 13) for the arm to reach that handhold and

lifts the arm.

The final step in the free gait algorithm is calculation of

the velocity commands for the supporting arms, which are simply

62

BRI - e

S T T R

S

O REAPER At i R PP R T -

the opposites (in the vector sense) of the desired arm base
velocities, which are determined by the desired robot velocity.
The algorithm terminates when a stop command is received (for
Robot Velocity Mode) or the terminal position is reached (for
Robot Destination Mode). Control is then returned to a super-

visory program.

5.4. Summary.

This chapter has described the operation of the algorithms
used to contrnl the robot's locomotion. The next chapter dis-~
cusses the performance of the simulation which uses those al-

gorithms.

63

I e g DTER e e ATARY,

ol

R B T T T T T T e e e

Chapter 6
RESULTS AND CONCLUSIONS

6.1. Simulation Results.

The algorithms described in Chapters 4 and 5 have been
implemented on a PDP 11/45 minicomputer with a Vector General
graphics display. All of the routines are writtem in Fortran
except for a few matrix manipulation subroutines, which are
written in assembly language. Two photographs of the display
which were taken during program execution are reproduced in
Figures 14 and 15.

The approximate maximum speeds for the robot with respect
to the cylinder are 3 in/sec for translational motion and 0.05
rad/sec for rotational motion. The rotational speed seems slow,
but at that speed the end of the arm at full extension is moving
3 in/sec just as with translational motion. The speed is
limited to 3 in/sec because at higher speeds the robot's arms
cannot maintain positions close cnough to the handholds to grasp
them. This occurs because the simulation requires that the end

of the arm be no more than one inch from a handhold when it

grasps it. When the arm's base is moving rapidly with respect

64

——"

i e e

D AEEEEEE. AEEN s

Simulation Display of Vehicle with
All Three Arms Grasping Handholds

Figure 14.

65

“

- 7 \‘\\\‘\‘\\\\\\,‘\\‘
L[“““““““““H“EIR!lSIBIEl!l!‘!‘ﬂlﬂlﬂlﬂ‘ﬂ‘n‘ﬁ‘ﬁ‘.
/7772722222222 2720 LLLLLLLL/
[TTTTTTT T T 7T I I I I T 77)

AR AR VLV VA VLV VLV VLV
AR LA LV LV VL
A N AL L LN

AN L L ETTETEERREEN

et R O RN
AN RRRRRRRLLEESSSSSSSSSSERY

e LSS S S SSESSSSSSSESRY
AN NS S S SSSSSSSSSSSS SN

Simulation Display of Vehicle with Arm

Figure 15.

at Lower Left Moving to New Handhold

66

I ol

to the cylinder, the end effector cannot meet the positional
tolerance, so the arm cannot grasp the handhold.

For whatever maximum speed of operation is chosen, rapid
changes in robot velocity create situations in which already-
selected handholds are no longer practical, or even reachable.
This occurs because, since handholds are chosen based on the
current arm base velocities, rapid changes in those velocities
make the original choices undesirable. This does not create a
serious problem except in those cases in which the originally
chosen handholds are unreachable after the change in velocity.
To deal with this problem, an additional step was added to the
free gait algorithm. The added step computes the difference
between the time elapsed since the arm was lifted and the ex-
pected time for the current arm trajectory which was calculated
by the trajectory algorithm. If that difference is more than
one second, a new handhold is chosen based on the new arm base
velocity. Thus the additional step allows the program to ''re-
consider" its choices based on changing commands from the
operator.

As mentioned in Chapter 3, handholds can be removed from
the terrain to simulate obstaclies of zero height such as holes
or trenches. The robot has successfully crossed trenches as
wide as four-fifths of the diameter of an arm's reachable area.:
This shows that handholds on the terrain do not have to be

placed closely together for the robot to be able to move over

67

e e prm gt e T EOTAB g NG DT EY e AL . - -

o

dla

—_—————y

the surface, so long as the robot has an accurate internal model

of where the available handholds are.

6.2. Suggestions for Future Work.

The major weakness of this work is that many of the cal-
culations (that of kinematic margin, for instance) are made by
taking advantage of the fact that the terrain is a cylinder.

An improvement could be made by using the same basic approach
but using methods of calculations which are applicable for more
general terrains. This would seem to require use of the
"reachable volume'" of the arm rather than the artificial
"reachable area'" approach.

Another improvement could be made in the arms themselves.
As discussed in Sectiomn 4.2.2., when one or both of the Jacobian
matrices for the arms are singular, some velocities are unattain-
able, which could be a serio.'s problem at times. Use of arms
with more than six degrees of freedom would allow Jacobian matrix
singularities to be avoided entirely.

At any rate, the robot's success inwalking over both ter-
rain with regularly spaced handholds and terrain with obstacles
seems to confirm the validity of the basic approach used. Al-
though improvements could be made in the robot's speed and in
applying the approach used here to more general terrain, this
work shows that a robot similar to the one described may be a

practical possibility in the not-too~distant future.

68

[PR P N T R i = L S S T B

T R R e R RTI T Sare

s

T T T T T T e

APPENDIX: COMPUTER PROGRAMS

The following pages contain the computer programs
which were used to implement the algorithms described in
Chapters 4 and 5. Other programs used in the simulation

are not included due to space limitatioms.

69

e S ReaT e b e SN R e e RAE R - e e

e

c

INTEGER CYL(259924)» TRANSC(12) sARMIARMDTS (49 3) +FROB(3)»FARM(3+3)

REAL TH(S23) 2 THV(E»3)»CTH(71 3) ¢ STH(713) v JOINTS(39893)+ENL(3r4+3)
+ ROBMAT(394) IREMAT(3,4) RADIALIAXIALIHEIGHT s RURVEL (&) sRVELC(6)»
+ TIME»TIMINCHVELC(3)»TAG)AXOsGAOITACA) s AX(4)yGACA)PELTIM(A))

+ RTAVEL(4) ,RAXVEL(4),RGAVEL (4) s INSEGT»RELTIM

OIMENSION IDISF(3,10)»EULER(3)»TRMAT(3+4) VECT1(3)VECT2(3)

DATA IBEGINS IDEST»IVELOC)IACTRLYIEXIT/ "B’ s 1"y 'V’ y A’y 'E’/
OATA LTCLRILTZ,LT14»FI/0s 000400, °000002,3.141592465/

Cxxax
c
C THIS IS THE MAIN ROROT CUNTROL FROGRAM.
c
[M.R+ FATTERSON
c
CXxxx
c
+ JSTN(3)sNUMSEGrAFLALI(I)
o
COMMON CYL
COMMON /ARMS/ARMSTS
COMMON /LISF/FRORFARM
c
c
[»
CAaLL VGINI
c

WRITE(S5,100)

100 FORMAT(///’$THE VG HAS HEEN INITIALIZEL.

10 READ(S,»101) IREFLY

101 FORMAT(AL)

IF(IREFLY.NE.IREGIN)

c

Cx SET VUG TRANSFGRMATION MATRIX ANL

c
CALL VGSEN(3)

CALL VGSEN(1)
CALL VGSEN(7,0)
o1 I=1,12
TRANS(I)=0
1 CONTINUE
WRITE(S,»200)

200 FORMAT(//’/$ENTER L[ISFLAY ANGLE

READ(S,201) THETA
201 FORHAT(F8.3)

THETA=THETAXF1/180.

TRANS(1)=32767

TRANS(5)=32747%COS(THETA)
TRANS(4)=32767XSIN(THETA)

GUTO 10

TRANS(8)=32767%(-SIN(THETA))

TRANS(9)=32767%COS{THETA)

TRANS(12)=16384

CALL WRCOM(4,12, TRANS)

CALL VGSEN(4)

70

(IN DEGREES):

ENTER

O1SPLAY CYLINDER.

‘)

IS

TU BEGIN:

‘)

CALL SETHLD

% SET JOINT ANGLES AND Akm STATES TO THEIR INITIAL VAILUES.

006

DO 2 ARM=1,3
TH(1ARM) =0 . %F1/180.
TH(2,ARM) 290, xFI/ 180,
TH(3+:ARM)=-BL.XF1/180,
TH(4sARM)=0.XF1/180.
TH(S»ARM)==-5.%FI1/180,
TH(4sARM)=0.%F1/180,
THV (&1 ARM) =0,
ARMSTS(1,ARM)=0

2 CONTINUE

Cx SET ROHOT MATRIX.

WRITE(S,»300)
300 FORMAT(///’ ENTER CENTER COORDINATES (IM FOINTS RADIAL ANLD 7,

+ ‘AXIAL) AND HEIGHT OF‘/’¢ ROEROT ERUDY:)
READ(S»301) RADIALAXIALIHEIGHT
301 FORMAT(3F11.4)
ANGLE=25.+5.xRAUIAL
EULER(1)=-ANGLE
EULER(2)=90.
EULER(3)=0.
CALL MATEUL(ROBMAT(1»1)EULER)
ROEAAT(1,4)=(100.+HEIGHT) ¥COS((1B0 . ~ANGLE)xFI1/180.)

ROBMAT(2,4)=(100.+HEIGHT)XSIN((180.~-ANGLE)xFI/180.)
ROBMAT(3,4)=-2 . 2SxAXIAL

Cx DISPLAY ROBOT EODY.

DO 3 ARM=1.,3
CALL TRIG(TH(1,ARM)»CTH(1,»ARM) »STH(1+ARR))
CALL FOSIT(CTH(1,ARM) »STH(1sARM) » JOINTS(1s1+ARM) »ENDIC1,1,AKN))
CALL TRANSH(OrARM,» TRMAT)
CALL MM3431(4,TRMAT,VECT1,JUINTS(1,15ARM))
CALL MM3431(4,ROBMATS,VECT2,VECTI)
IDISP(1,ARM)=VECT2(1)x100.+8192,
IDISF(2,ARM)=VECT2(2)x100.+8192.,
IDISF(3+,ARM)=VECT2(3)%x100,+8192.
3 CONTINUE
IDISF(1,4)=I0ISF(1,1)
IDISP(2:,4)=IDISF(251)
IDISP(3+,4)=IDISF(3s1)
CALL WRCOM(&4,12,10ISP)
DO 4 I=1,3
CALL RDCOM(39»1,FROR(I))
CALL VGSEN(9r4,1)
4 CONTINUE

Cx DISPLAY ARMS.

DO S ARM=1+3

R

CALL TRANSM(OsARM TRMAT)
ng 6 I1=1,8
CALL MM3431(4+TRMATPVECTL»JOINTS(1,I,AKM))
! CALL MM3431(4,ROEBMATIVECT2,VECT1)
IDISF(1,I)=VECT2¢(1)%X100.+81%2.
IDISF(2,I)=VECT2(2)%x100.+8192.
IDISF(3,1)3VECT2(3)%100.+8192,
é CONTINUE
IODISP(1:,9)=IDISF(1,64)
IDISP(2:9)=L(DISF(2+6)
IDISP(3+9)=10ISF(3+6)
IDISP(1:10)=IDISF(1+7)
IDISP(2,10)=I0ISF(2,7)
IDISP(3+10)=IDISF(3,7)
CALL WRCOM(64,30»IDISP)
0o 7 I1=1,3
b CALL RDCOM(39»1»FARMCARM» 1))
' CALL VGSEN(9+10:1)
7 CONTINUE
S CONTINUE

20 CALL SETDWN(TH»THVICTH»STHy JOINTS,ENDsRUBMAL »HEIGHT)
00 8 ARM=1,3
00 9 J=i+,6
THV(J»ARM) =0,
? CONT INUE
8 CONTINUE
CALL MOVROB(THsTHU»CTHsSTHr JOINTS,ENDROBMAT» TIMINC» AFLAG)
WRITE(S»400)
400 FORMAT(///7’ ENTER “‘D’‘ FOR DESTINATION MODE, ‘‘V’’ FOR VELOCITY’,
+ * MOUDEs, ‘“‘A‘’ FOR ARM’/‘$CNONTROL MUDE, OR ‘‘E’’ TO EXIT:)
30 READ(S,401) IREFLY
401 FOURMAT(AL)
IF(IREPLY.EQ.IDIEST) GOTO 80
IF(IREFLY.EQ.IVELOC) GUTO S0¢
' IF(IREFPLY.EQ.IACTRL) GOTO 40
IF(IREPLY .NE.IEXIT) GOUTO 30
! CALL VGSEN{(14)

- T s=sE T B

| STOP
} c
‘ c
c 203K 20K K KK K 3K K KK KK KK KX KKK K
> X X
c X ARM CONTROL MODE x
f c x b 4
3 c EXXXEKXKXXLKXXKKKXXKK KKK
) c
| c _
) 40 CALL ARMCTL(THyTHV,CTHySTHy JOINTS»END»ROEMAT)
! GOTO 20
b c
c .
c XXXXXKEXXEXXXKXKXKX XXX
c X x
c X VELOCITY MODE x

i e e s

- ——

x X
KEAKEEKEKEKEKKXX KKK KX

o000 o

50 TIME=-0.1
40 CALL ROCOM(17+1sLIGHT)
CALL WRCOM(17:,1,LTCLR)
IFCLIGHT.EQ.LT?) GOTO 20
TIMINC=0.1
TIME=TINE+TIMINC
DO 11 ARM=1,3
IF (ARMSTS(1,ARM) .ER.1) GOTO 70
11 CONTINUE

Cx CALCULATE ROEOT FOSITION AND VELOQCITY,.

70 CALL ROEBST(ARMsTH(1,ARM) » THU(1»ARM)»CTH(1sARM) »STH(L1»ARM) »
+ JOINTS(1>1,ARM)»ENDC(1»1»ARM) »F.OEMAT »RUBVEL)
c
Cx CALCULATE COMMANDED ROBUT VELOCITIES.
c

CALL ROCOM(18»3»JSTK)

VELC(1)=FLOAT(ISIGN(IDIMC(IABS(JISIK(1)+1)s 640)»J6TR(1)J)1 /16000,
VELC(2)=FLOAT(ISIGNC(IDIM(IARS(JSTK(2)+1)» 440),JSTK(2)))/16000.

VELC(3)=FLOAT(ISIGN(IDIM(IARS(JSTR(3)+1),1280)»JSTK(3)))/640000.
CALL RVEL (ROEBMATsROEBVEL»HEIGHT» TIMINCVELC,RVELC)

CALL INVM34(IREMAT»ROBMAT)

CALL ARMS(TH» THV»CTH»STHs» JUINTS»END»ROEMAI'»HEIGHT » IREMAT »RVELC
+ TIHE,TIMINC)

CALL MOVROK(TH:» THU»CTH»STHy JOINTS,ENDsROUBHAT » TIMINC» AFLAG)

IF(MAXOCAFLAG(1)»AFLAG(2)»AFLAG(3)).NE.O) GOTO 220
GOTO &0

(22222222222 02222020 ¢ 2]
X X
x DESTINATION MODE X
X X

KKKERKEKKXKKKKKKXXKKKK

X READ SEQUENCE OF POILNTS.

0Oo0OOOO00O0O00O0n

80 DO 12 ARHM=1s3
IF(ARMSTS(1,AKM) ,EQ.1) GOTG 90
12 CONTINUE
90 CALL ROBST(ARM»TH(11ARM) » THVC(1)ARM) »CTH(11ARM) ySTH(1»AKM)»
+ JOINTS(1+,1,ARM)sENDC1»15ARM) sROEMAT s ROBVEL)

TAO=((PI-ATAN2(ROBMAT(2,4) »ROEMAT(1,4)))%x180./FI~25,)/5.
AXO=ROBMAT(3+4)/-9.25

CALL EULMAT(EULER»RORMAT)
GAO=EULER(3)
WRITE(S»S500) TA0»AXO0»GAO

S00 FURMAT(///’ THE ROROT IS NOW AT “»3F11.4)

73

PENTUTT NI N g - e N A T

A R T o)

SREESIE S

Tx sema

RO

T a—

T g T e — - a

WRITE(S,»600)
600 FORMAT(///‘$eNTER THE NUMBER OF SEUGMENTS: ‘)
READ(S,»601) NUMSEG
601 FORMAT(I3)
IF (NUMSEG.EC.1) GOTO 110
DO 13 I=1,NUMSEG-1
WRITE(S5,700) I
700 FORMAT(//’$ENTER FOINT ‘I
READ(S»701) TACI)1AX(I)»GA
701 FORMAT(3F11.4)
13 CONTINUE
110 WRITE(S+800)
800 FURMAT(//’$ENTER TERMINAL FOINT! ‘)
READ (S»801) TA(NUMSEG)»AX(NUMSEG)»GA(NUMSEG)
801 FORMAT(3F11.4)
c
g* CALCULATE SEGMENT TIMES AND ACCELERATIONS. '

TIMEL1=ABS(TA(1)-TA0)/.25

TIME2=ABS(AX(1)-AX0)/.25

TIME3=ARS(GA(1)~GAO) /1.,

ELTIM(1)=AMAX1(TIME1,»TIME2, TIMED)

RTAVEL (1)=(TA(1)~-TAO) /ELTIM(L1)

RAXVEL (1)=(axX(1)-AX0)}/ELTIM(L)

RGAVEL (1)=(GA(1)-6A0)/ELTIM(L)

IF(NUMSEG.EQ.1) GOT0 120

00 14 ISEG=2»NUMSEG
TIME1=ABS(TA(ISEG)~-TA(ISEG-1))/.25
TIME2=ABS(AX(ISEG)-AX(ISEG-1))/.25
TIME3I=ARS(GA(ISEG)-GA(ISEG-1))/1.,
ELTIM(ISEG)=ELTIM(ISEG-1)+AMAX1(TIMEL, TIMED)» TIMED)
RTAVEL (ISEG)=(TA(ISEG)-TA(ISEG~-1))/(ELTIM(ISEG)-ELTIM(ISEG-1))
RAXVEL(ISEG)=(AX(ISEG)-AX(ISEG~1))/(ELTIM(ISEG)-ELTIM({SEG-1)) 1
RGAVEL (ISEG)=(GA(ISEG)-GA(ISEG-1))/(ELTIM(ISEG)~ELTIM(ISEG-1))

14 CONTINUE

I

c
c
120 TIME=-0.1 :
130 CALL RDCOM(17,1,LIGHT) 1
CALL WRCOM(17s1,LTCLR)
IF(LIGHT.EQ.LT?) GOTO 20
TIMINC=0.1
TIME=TIME+TIMINC

c
Cx CALCULATE ROEKQT FOSITION.

c
00 1S ARM=1,3
IF (ARMSTS(1s,ARM) .EG.1) GOTO 140

15 CONTINUE
140 CALL ROBST(ARMsTH(1,ARM) s THV(1,ARM) »CTH(1,ARM) rSTH(1»ARM) »
+ JOINTS(1s1,ARM)9END(1s1sARM) »ROBMAT »RUBVEL)
TAA= ((FI-ATAN2(ROBMAT(2,4) yROEMAT(1,4)))%180./F1~25.)/5.
AXA=ROBMAT(3:,4)/-9.25
CALL EULMAT(EULER»ROEMAI)
GAA=EULER(3)

74

ELI L Teen AR e sy e

-—— g

c
Cx CALCULATE COMMANDED ROEOT VELOCITIES.
c

INSEGT=0.

ISEG=1i

150 IF(TIME.LT.ELTIMC(ISEG)) GOTO 160
IF(ISEG.EQ.NUMSEG) GOTO 190
INSEGT=ELTIMN(ISEG)
ISEG=ISEG+!
GOTO 150

160 RELTIM=TIME-INSEGT

IF(ISEG.EG.1) GO0 170
TAD=TA(ISEG-1)+RTAVEL(ISEG)XRELTIM
AXO=AX(ISEG-1)+RAXVEL(ISEG)XRELTIM
GAl=GA(ISEG-1)+RGAVEL(ISEG) XRELTIM
GOTO 180

170 TAU=TAO+RTAVEL (1) XRELTIM

AXD=AXO+RAXVEL (1) XRELTIHM
GAN=GAO+RGAVEL (1)XRELTIN

180 VELC(1)=RTAVEL(ISEG)+{(1./TIMINC)X(TAL-TAA)
VELC(2)=RAXVEL(ISEG)+(1./TIMINC) X (AX[~AXA)
VELC(3)=(RGAVEL(ISEG>+(1./TIMINC)X(GAL~GAA))IXFI/180.,
GOTO 210)

190 VELC(1)=(1./TIMINC)X(TA(NUMSEG)~TAA)
VELC(2)=(1./TIMINC)X(AX(NUHSEG)-AXA)
VELC(3)=(1./TIMINC)*(GA(NUMSEG)-GAAIXFI/180.,
IF((ABS(VELC(1)).6G7+.1.),0R.(ABS(VELC(2)).6T.1).0R,

+ (ABS(VELC(3)),G6T.1.,)) GQTO0 210
WRITE(S»,»?00)
?00 FORMAT(//7‘ TERMINAL FOSITION REACHED.’)
GOTO 20

210 CALL RVEL(ROBMAT +ROBVEL HEIGHT» TIMINC,VELC »RVELC)
c

Cx MOVE ROBOT,

CALL INUM34(IREMAT,ROEBMAT)

CALL ARMS(TH»THVyCTH»STH» JJINTS»ENIYRUBMAT»HEIGHT » IREMAT»RVELC
+ TIME»TIMINC)

CALL MUOVROB(TH»THV»CTHsSTHy JOINTS»ENDsROBMAT » TIMINC »AFLAG)

IF (MAXO(AFLAG(1) »AFLAG(2)»AFLAG(3)).NE.O) GOTO 220

GOTO 130

220 [0 16 ARM=1,3
IF(AFLAG(ARM) .EQ.0) GOTO 16
WRITE(S,»1100) AFLAG(ARM)»ARM

1100 FORMAT(///7¢ JUINT’»12,’ OF ARM‘,I2,’ IS OUT OF LIMITS.’)
GOTO 20

16 CONTINUE
c
END

75

B e WRSATR e e

h it it 2 e e BN e ;A,—J

T et e b i e ™

T

PSRRI

- b R B —r -y oy R L e S et A o -

AXKX
THIS SUBROUTINE CONTROLS THE ARMS’ MUTIONS WHEN THE RUBOT IS WALKING.
M.R+ PATTERSON

XXXX

O0O00000000

SUBROUTINE ARMS(THsyTHU»CTH»STHr JOINTSYENDYROEMA I »HEIGHT » IREBMAT
+ RVELC»TIME,TIMINC)

INTEGER ARMi»ARMSTS(4+3) » TSEGCT»RSEGCT » TERFLGyHOHLD(2) »
+ HIHLDS(2,48) » NUMSEG

REAL TH(493) 9 THY(693)»CTH(?13)»STH(723) s JUINTS(3+8,3)yENLI(3+4,3),
¥ ROERMAT(374) rHEIGHT» IREMAT(3+4) »RVELC(S) »TIMETIMINC»INTIME
+ ELTIME»EXTEND(3»4) ELTTIM(3S)»TACC(3936) s INTVEL(3136)
+ INT#0S(3s36) rELRTIM(12),RACC(12)» INRFOS(?r12)yROTVEC(3212)
+ TERPOS(3+4)rEXTVEL (L) 1EXISEGsFOINTS(3r426)»VEL(S)

DIMENSION TRMAT(3+,4),0TRMAT(3,4)

COMMON /ARMS/ARMS1S

COMMON /FPATH/INTIME »TSEGCT»ELTTIMsTACC» INTVEL » INTFOSRSEGCT
+ ELRTIMIRACC,» INRFOSROTVEC, TERFOS

X FIND ARM IN AIR.

O0Ou0n

00 1 ARM=1,3
IF(ARMSTS(1,ARM)EU.0) GOTO 10
1 CONTINUE
GOTO 30

Cx ARM IS IN TRANSFER FHASE.

10 ELTIME=STIME-INTIME
F1.AG=0.
IF((ELTIME-ELTTIM(TSEGCT)) . L.T+1,) GOTO 20
FLAG=1,
GOTO 40
20 CALL TRANSM(OrARM» TRMAT)
CALL MM3434(0OTRHAT »RUBHAT» TRMAT)
CALL MM3434(EXTEND»QTRMAT,ENUC1s1+1ARM))
CALL VELCOM(EXTEND TSEGCT»ELTTIM,»TACC) INTVEL» INTFOS»RSEGCT>
+ ELRTIM»RACCs INRFOSYROTVEC» TERFOS,ELTIME» TIMINC,EXTVEL » TERFLG)
IF(TERFLG.EQ.0) GOTO 40

ARMSTS(1,ARM) =1
c

Cx ALL ARMS ARE SUFFORTING.
c
30 EXSGHMN=99.
D0 2 ARM=1,3
CALL EXIST(ARMyROBMAT,HEIGHT,RVELC)ARMSTS(2rARM) EXISEG)
IF(EXISEG.GE.EXSGMN) GUTO 2
EXSGMN=EXISEG

76

o r

SRVESIN P

i .

g
C N |

e

4

R S

oo

L

DA N« e

S e T TR T RS T TR T—— TR

.

MESARM=ARM
2 CONT INUE
IF(EXSGMN.GT.1.) GOTO 70
ARMaMESARM

c
Cx CALCULATE NEW TRAJECTORY.
c

40 CALL TRANSM(OsARM»TRMAT)
CALL MM3434(0OTRMAT,»ROBMAI »TRNAT)
CALL MM3434(EXTENIOTRMAT»ENDC(1y1sARM))
CALL HDHOLD(ARM/EXTEND)ROBMAT»HEIGHT +HIHLDS » NOHHS)
IF (NOHHS.EQ.0) GOTO 70
EXSGMX=-1,
DO 3 I=1,NOHHS
CALL EXIST(ARMsROEMAY HEIGHT »RVELCHIHLDS (1, 1) EXISHG)
IF(EXISEG.LE.EXSGHX) GOTO 3
EXSGMX=EXISEG
MXESHH=1
3 CONTINUE
IF(FLAG.EQ.1.,) GOTO S50
IF(EXSGMX.LE.EXSGMN) GUTO 70
SO HOHLID(13)}=HDOHLDS (1 sMXESHH)
HOHLD(2) =HOHLDS (27 MXESHH)

CALL HHDFTH(ARM»OTRMAT,HOHLD»FOINTS»NUMSEG)
00 4 I=1,4
DO S5 J=1»3
TERFOS(J» 1)=FOINTS(Js I, NUMSEG)
S CONTINUE
4 CONTINUE

CALL ARMPTH(EXTEND,NUMSEGsPOINTS» TSEGCT,ELTTIM» TALC» INTVEL » INTFOS

+ RSEGCT»ELRTIM,RACC, INRFPOS,»ROTVEC)

ARMSTS(1,ARM)=0

INTIME=TIME
GOTO 70

Cx HOVE TRANSFER FHASE ARM.

40 CALL AVEL(ARMs»ROEMAT» IREMAT»RVELC,EXTVEL,VEL)
CALL SOLVE(TH(1,ARM) s YHV(1sARM) yCTH(1//ARM) ySTHC(L1,ARM) »
+ JOINTS(1y1,ARM)END(1»12ARM)»VEL)
c
Cx MOVE SUFFORT FHASE ARMS.
c

70 DO 6 ARM=1,3
IF (ARMSTS(1,ARM) .NE. 1) GOTO 4
CALL HLIDFOSC(ARMI»ENDC(1y1+ARM) »ROBMAT TIMINC,EXTVEL)
CALL AVEL(ARM»ROBMAT» IREMATIRVELCEXTVEL»VEL)
CALL SOLVE(TH(1,ARM) » THV(1yARM) »CTH(1+»ARM) »STH(1,ARM) »
+ JOINTSC(1,1,ARM) PENDCLs 12 ARM) yVEL)

é CONTINUE

RETURN
END

77

T S R S I PRy X] PR

klé' RO YRS S

R Y T T S

ot o als gt R . W

T I T P IR T TV S P

T

R R T I

.

= ——

_——-———

OO0 0000a0n

(g}

o

x

0000

Cx
c

XXXXK

THIS SUEBROUTINE RETURNS A LIST OF REACHABLE HANNHUOLLS FOR A

GIVEN ARM.

M.R. PATTERSON

XXXKX

SUBROUTTINE HDHOLD(ARM»EXTENL »ROHMAT yHEIGHT » HUHLDS » NOHHS)

INTEGER ARMs»HIHLDS(2,48) s NUHHS »CYL(2T924) »ARMSTSE(4,3)

REAL EXTEND(314) yROEMAT(3+14) yHEIGHT +NUsSNYES»HW» TRMII(P»3)
+ TRM31(356)

DIMENSION XYZ(3)s»TA(2) s TACHH(2) »TAHH(2) y TAROR(2)

COMMON CYL
COMMON /ARMS/ARMSTS

COMMON /ARMFPAR/NUrPSNIESs»HW
COMMON /TRMATS/TRM33sTRM31

DATA PI/3.14159265/

CALCULATE ARM BASE COORDINATES IN (T,A).

CALL MHM3431(4,ROBMAYT»XYZ,TRM31(1sARM))
CALL TACALC(RUBMAT»XYZ»TA)

CALL TACALC(RUEMATEXTEND(1,4) 9 TACHH)
UDETERMINE HAND'HOLD LIST.

CENDST=SQRT((100, +HEIGHT-NO) *¥Xx2+TRMI1 (1, 1) %~}
ANGLE=ATAN(TRM31(1,1)/(100.+HEIGHT-NO))

CRANGL=((100, +HW) X*2+CENDSTXX2- (2. XES)XX2) / (2, XLENDSTX (100, +HW))
RANGLE=ATAN(SQRT (1., -CRANGLXX2)/CRANGL)
STANGL=TRM31(1,1)/(100.+HW)
TANGLE=ATAN(STANGL/SURT(1.-STANGLXxx%2))
RADBIUS=(ANGLE+RANGLE-TANGLE) X (100, +HW)/?.25

INDEX=1

DO 1 I=1,235

DO 2 J=1,24
IF(CYL(IsJ).NE.1) GOTO 2

IF(CARMSTS(2/ARM) JEQI) +ANL, (ARMSTS(3,ARM) .EU.J)) GUTO 2
TAHH(1)=FLOAT(I)

TAHH(2)=FLOAT(J)

IF(ABS(TAHH(1)=TA(1)).GT.RALUI 3) (OO Z
IF(ABS(TAHH(2)-TA(2)).GT.,RADl JS) GUTO 2
HHRAD2=(TAHH(1)~TAC1)) xX2+(TAHH(2)-TA(2)) xXx2
HHRAD=SQRT (HHRAL2)

IF(HHRAD.GT.RADIUS) GUTO 2

IF(HHRADLLT. (SN+2.)/9.235) GUTO 2

CALL TACALC(RUBMAT,RUEBMAT(1,4),TAROR)

78

| ODRB=SURT((TA(1)-TAROEB(1))XX2+(TA(2)-TAROB(2))X%X2)
DHH=HHRAL
' DTPROD=(TAC1)~TARCE(1))X (TAHH(1)-TA(1))+
E + (TA(2)-TAROB(2))X (TAHH(2)~-TA(2))
IF((BIYFROD/DRE/DHH) JLT.-0.707) GOTO 2
] A12=(TAHH(1)-TACHH(1))X*2+(TAHH(2)-TACHH(2)) xXx2
B12=(TACHH(1)-TA(1)) xx2+(TACHH(2)-TA(2)) xx2
C12=HHRAD2
A1=SART(ALD)
B1=SQRT(B12)
C1=HHRAD
] COSB=(R12-C12-A12)/(-2.%A1%C1)
! COSC=(C12-A12-B12)/(-2.XA1XK1)
IFC(COSR.GT.04).AND. (COSC.GY.0.)) GUTO 0
IF(C1.LT.(SN$+2,)/9.25) GUTO 2
GOTO 20
10 DIST=C1XxSQRT(1.,-COSBXxx2)
IF(DIST.LT.(SN+2,)/9.25) GUTO 2
20 A22=A12
B22=(TACHH(1)-TAROB(1))X*2+(TACHH(Z)-TAROE(2)) x%2
C22=(TAHH(1)~-TAROEB(1)) x*2+(TAHH(2)-TAROR(2)) Xx*2
A2=A1
B2=SQRT (B2
C2=SQRT(C22)
COSB=(B22-C22-A22) /(-2 XA2XC2)
COSC=(C22-A22-B22)/(-2.XAZXB2)
IFC(COSEKH.GT.0.) . AND, (COSC.GT.0.)) GOTO 30
IF(C2., LT (TRM31(1,1)-SN-2,)/9.25) GUTO 2
GOTO 40
30 DIST=C2%SQRT(1,-COCBX%X2)
IF(DIST.LT.(TRM31(1,1)-SN-2.,)/9.2%) GUYO 2

N T

T S S T T A s

40 HDHLDS (1, INDEX) =1 4
HDHLDS(2, INDEX) =J :
INDEX=INDEX+1 :

CONTINUE

CONTINUE

D e — e

- N

NOHHS=INDEX-1

|

RETURN

END
x
!
-
l
i
]

79 i

- o e B D R O N et R it P N S o e Y . - . ~ o . j

—————

C
Cxxxx
c

TH1S SUBROUTINE CALCULATES THE EXISTENCE SEGMENT FOR A GIVEN
HANDHOLD AND ARM.

M.R. PATTERSON

JXXXX

SUBROUTINE EXIST(ARM,RUBMAT»HEIGHT »RVELC /HNDHLYYEXISEG)

0 anoccoaonc

INTEGER ARMyHNIHLL(2)

REAL ROBMAV(3+4),HEIGHT»RVELC(&) PEXISEG/NUsSNrES»HW» TRM33(913)
+ TRM31(3,6)

DIMENSION XYZ(3)XYZO(I+2) s TACR) 1 TAUL222) 9 XYZV(3) »TAV(2)»
+ UXY0(2:2) s TAHH(2) s UXYHH(2) s VECT (3)

COMMON /ARMPAR/NQ»SNIESHUW
COHMON /TRMAIS/TRM33,»TRM31

DATA PI/3.14159263/

3

CALCULATE ARM BAéE POSITIONS IN (T:R).

oo o

CALL MM3431(4»RUEBMAT»XYZ» TRMI1(1,ARM))
INDEX=1
Do 1 1=1,3

IF(I.EQ.ARM) GOTO 1

CALL MMI431(4,ROBMAT»XYZOC(1,INDEX)»TRM3I1(1,1))
INDEX=2

1 CONTINUE

TH=ATAN2(XYZ(2)»XYZ(1))
CALL TACALC(RUBMATIXYZ,TA)

CALL TACALC(RUBMAT»XYZOC1,1)+,TAQ(1,1))
CALL TACALC(ROBMAT»XYZOC1,2),TAOQCL1,2))

aoco
%

CALCULATE ARM BASE VELOCITY IN (T»A).

CALL MM3431(3,ROEBMAY»VECT»TRM31(1/ARM))

. XYZV(1)=RVELC(S)XVECT(3)~-RVELC(S8)XVECT(2)+RVELC(1)
XYZVU(2)=RVELC(S)XVECT(1)~-RVELC(4)XVECT(3)+KRVELL(2)
XYZV(3)=RVELC(4)XVETT(2)-RVELC(S)*VECT(1)+RVELL(3)

TAV(1)=(SIN(TH)XXYZV(1)-COS(TH)XXYZV(2))/9.25
TAV(2)=-XYZV(3)/9.25

Cx CONVERT POINTS TU (UX»VY),
PHI=ATAN2(TAV(2),TAV(1))

DO 2 I=1,2

UXYO(1,I)=SINC(PHI)X(TAOC1»I)=TA(1))-CUS(PH1)X(TAO(2,I)-TA(2))
IF(UXYO(1,1).EQ.0.) UXYO(1,I)=1,0E-8

VaY0(2s 1) =COSCFHRIDX(TAUCL» I -TACL)) +SINCPHIDX(TAUK2, 1) ~TAL2))

80

IR e TSN v e . - -

o TG,

EJ.*_L;JMCTZ;:‘.LADMI_MMIM;._;J s T

s

B :
| gt ey

E————

2 CONTINUE

TAHR (1) =FLOATV(HNDHLDC1))
TAHH(2)sFLOAT (HNDHLD(2))

UXYHH(1)=SINC(FHI)X(TAHH(1)-TA(1))-CUS(FHI)X(TAHH(2)~TA(2))
UXYHH(2)=COS(FHI)X(TAHH(1)-TAC1))+SIN(FHI)X(TAHH(2)-TA(2))

c
Cx CALCULATE THE FOUR ARM LIMITS.
c

YLIMI=UXYHH(1)/VUXYO(1,1)%XVUXYD(2,1)
IFCCOUXYHH(L) XUXYOC(1 1)) LT404) 0OR (UXYHH(2) JLT.YLIML1)) YLIM1=-99.

YLIM2=UXYHH(1)/7VXYO(1,2)%VXYD(2,2)
IFCCCUXYHHOLIXUXYO(122)) WLY004) 4 0RW (UXYHH(2) JLT.YLIM2)) YLIM2=-99.

RAD1=(SN+2.)/9.29

IF (ABS (UXYHH(1)).GT.RAlL) GOTO 10
YLIM3=SQRT(RADN1XX2-VXYHH(1)X%%2)
IFCCARS(VUXYHH(1)) +GTRADL) ,ORW (UXYHH(2) ,LT.04)) YLIM3I=-99,

CENDST=SQRT((100.+HEIGHT~NU)XX2+TRM31(1,1)%X%X2)
ANGLE=ATAN(TRM31(1,1)/(100.+HEIGHT-NO))

CRANGL=((100, +HW) xX2+CENDISTXX2- (2, XES) X%2) /(2 XCENDSTX (100, +HW))
RANGLE=ATAN(SQRT (1.,-CRANGLXX2)/CRANGL)
STANGL=TRM31(1,1)/¢100.,+HW)
TANGLE=ATAN(STANGL/SQRT(1,-STANGLXX2))

RANZ= (ANGLE+RANGLE-TANGLE)X(100.+HW)/9.25

YLIMA=-SOURT (RADZX%Xk2-UXYHH(1)%*X%2)

Cx CALCULATE EXISTENCE SEGMENT.

c
c
10
c
c
c
n
(

EXISEG=VUXYHH(2) ~-AMAX1 (YLIM1,YLIM2,YLIM3YLIMS)

RETURN
END
81
l(;[, ,
Noy- 1
v} 2/
Q (.{;|§?7 AQ
if *1/75

R

i i s

—a—

i

XAXXK

X***

o c'cnnnr:nrznc

o

a0 3

(o]

THIS SURBRUUTINE CALCULATES THE FUOINTS THRUUGH WHICH AN ARM CAN
PASS FUR A TRAJELUTURY WHIXCH WILL TAKE IT 10 THE GIVEN HANLKULD.

M.R. FAITERSON

SUBROUTINE HHOPTHC(ARM» OTRMAT) HNDHLLD» POINTS s NUMSEG)

INTEGER ARM/AKMSTS (493) sHNDHLD(2) f NUMSEG
REAL UTRMAT(3+4)sFPOINTS(314+6)
DIMENSION EULER(3)

COMMON /ARMS/ARMSTS

DATA PI/3.14159265/

INDEX=1

IF(ARMSTS(1,ARM) .NE.1) GOT0 10
ANGLE=25. 435 . XARMSYS (2 ARM)
POINTS(1,4yINLEX)=103.XC05((180, -ANGLE)XF1/180.)

POINTS(2,4,INDEX)=103.,XSINC(180.-ANGLE)XFY/180,)
POINTS(314 INDEX)=~-9 . ZSXARMSTS (31 ARM)
EULER(1)=-ANGLE

EULER(2)=90,

EULER(3)=0.
CALL MATEUL (FOINTS(1,1,INDEX),EULER)

INDEX=INDEX+1

10 ANGLE=23.,+3,XHNDHLD(1)

POINTSC(1,4+INDEX)=>103,xCOSC(180.-ANLGLE)XFI/180.)
POINTS(2+4» INDEX) =103 XSINC(180.-ANCLEYXFI/180.)
POINTS(3+»4» INDEX)=~9,25XHNUHLD(2)
EULER(1)=~ANGLE

EULER(2)=90.

EULER(3)=0.
CALL MATEUL(FPOINTS(1s1+INDEX)»EULER)

INDEX=INDEX$1

POINTS(1s4s INDEX)=100.XCOS((180.~ANGLE)XxFI/180.)
POINTS(2,4,INDEX)=100, !bIN((IBO.-ANBLE)*Pl/IBO)
FOINTS(3+4, INDEX)=-9, 2S5XHNDHLD(2)
EULER(1)=-ANGLE

EULER(2)=90.

EULER(3)=0.
CALL MATEUL(FOINTS(1rs1,INDEX)EULER)

ARMSTS (2, ARMI=HNDHLU(1)

ARMSTS (3rARM) =HNDHLLI(2)
ARASTS(4,ARM)=0

L R

f

A ke - ag

e T S

-

NUMSEG=INDEX

RETURN
END

L aamesn

ST T R R T e e TR TR SR TR A LY

N

83

v

e i — e .

SRR

c
CXAXX

c

€ THIS SUBROUTINE CALCULATES THE T1MES AND ACCELERATIDNS REQUIRED TO
c MOVE AN ARM THROUGH A GIVEN PATH. THE TIMES AND ACCELERATIONS
c ARE CALCULATED SUBJECT TO MAXIMUM ACCELERATLON AND VELOCITY

c CONSTRAINTS.,

c

C M.R. PATTERSON

c

CXXXX .

c

SUBROUTINE ARMFTH(END)NUMSEG,POINTSy TSEGCT,ELTTIM» TACC» INTVEL,
+ INTPOSYRSEGECT»ELRTIM,RACC INRFOS,ROTVEC)

INTEGER NUMSEG»TSEGCT»RSEGCT
REAL END(3+4) »FPOINTS(3+496) »ELTTIM(34) yTACC(3+36)» INTVEL(3+36)

+ INTFOS(3s36)ELRTIM(12)yRACC(12) s INRFOS(?+12))ROTVEC(3,12)
+ TRVEL(7),TRTIME(7) s TROIST(7)sUSX(6) USY () 1USL(E) s TSEGTM(615)
+ TSEBGAC(6+5)+RSEGAC(S) yRVEC(I14)» TRTHINCS) »ROTMINC(S) » ERRMAX
+ MAXTRV»MAXTRA» MAXROV» MAXROA

DIMENSION SX(6)1SY(6)58Z(4)+DSEG(S)1UNACC(7),COSK(7)» TRUMAX(7)
+ SQTRV(7)sREQSGA(S) » CHANGE (6) y DINSEG(4)y DHATCH(6) » SGUMX2(4) »
+ SEGVMX(8)ROTMAY(3»3)yROTDIF(3) 1 FPHL(4)»ROTSUM(I)

K TIRA

COMMON /PTHFAR/ERRMAX»MAXTRV»MAXTRA» MAXROV rHAXROA
i

NUMTR=aNUMSEG+1
X CALCULATE SEGMENT VECTORS AND UNIT VECTORS.

OO0 060 O

SX(1)=POINTS(1,4»1)~-ENDC(1:s4)
SY(1)=FPOINTS(2s4»1)-END(Zy4)
SZ(1)=POINTS(3+4y1)~END(314)
IF (NUMSEG.LT.2) GOTO 10
DO 1 I=2,NUMSEG E
SX(I)=POINTS(1+4sI1)-FOINTS(1s4+1-1) q
SY(I)=FOINTS(2,4,1)~-POINTS(214,1-1) E
SZ(I)=POINTS(3,4,1)-POINTS(3,4r1I-1) .
1 CONTINUE i

10 [0 2 I=1,NUHSEG
DSEG(I)=SART(SX(I}XX2+SY(I)XX2+SZ(1)%x*x2)

IF(DSEG(I).GE.1.0E-6) GOTO 20
DSEG(I)=0,
UsSX{15)=0,.
uUsy(13)=0,
UsSZ(13=0.
GOTO 2

20 USX(I)=8X(1)/0DSEG(I)
USY(I)=8Y(1)/0USEG(I)
USZ(1)=8Z(I1)/USEG(I) ;
2 CONTINUE

PO

84

i

aa

R 2

Cx CALCULATE TRANSITION FARAMETERS.

c
UNACC(1)=2.,
UNACC (NUMTR)=2,
IF((NUMTR~1).LT.2) GOTO 30
DO 3 I=2,NUMTR-1
COSH(I)==~(USX(I)XUSX(I-1)+USY(I)XUSY(I-~1)+USZ(I)%USZ(I-1))
UNACC(I)=SQRT(2.,%x(1.+COSE(I)))
3 CONTINUE
c
Cx CALCULATE MAXIMUM TRANSITION DISTANCES.
c
30 TROIST(1)=0,
TROLIST (NUMTR) =0,
IFC(NUMTR=-1).,LT.2) GOrQ 4¢ -
00 4 I=2,NUMTR-1
TROMAX(I)=4.XERRMAX/UNACC(I)
TROISTC(I)=AMIN1(DSEG(I-1)/2.0SEG(I) /2. TRIMAX(I))
4 CONTINUE
c

Cx CALCULATE SQUARES OF MAXIMUM TRANSITIOUN VELOCITIES.

40 DO 5 I=1,NUMTR
. SATRV(II=2.XTRODIST(I)XMAXTRAZ/UNACC(I)
S CONTINUE

Cx CALCULATE REQUIRED SEGMENT ACCELERATIONS.

SO0 [0 6 I=1,NUMSEG
LJFO(DSEG(I)=TROIST(I+1)-TROISI(I)) . NE.Q.) GOTO 70
IF((SQTRV(I+1)-SQTRV(I)).NE.O.) GUTO &0
REQSGA(I)=0.

GOTO 80
60 REQSGA(I)=1,0E+4
GOTC 80
70 REQSGA(I)=ABS((SQRTRV(I+1)=SQTRV(I)) /(2. X(DSEG(I)~

+ TROIST(I+1)=-TRDIST(I})))
80 IF(I.NE.1) GOTO 90
SEGAMX=REQSGA(I)
INSAMX=I
?0 IF(REQSGA(I) .LE,SEGAMX) GOTO 6
SEGAMX=REUSGA(I)
INSAMX=T]
é CONTINUE

Cx IF GREATEST SEGMENT ACCELERATION IS GREATER THAN HAXIMUM ALLOWABLE
Cx ACCELERATION, RECALCULATE TRANSITION VELOCITIES /NI DISTANCES.

IF((SEGAMX~-MAXTRA).,LE.1,0€E-4) GUTO 130
IF(SAQTRV(INSAMX).GT.SQTRV(INSAMX+1)) GOTOQ 110
ILO=INSAMX
IHI=INSAMX+1
GOTO 120
116 IHI=INSAMX
ILO=INSAMX+1

35

I T U R e

T REE S L

— . —————

—— ——

120 SATRV(IHI)=(SATRV(ILO) +2. xMAXTRAX(DSEG (INSAMX)~TRIIST(ILD)Y))/
+ (1.+UNACC(IHI))
TRDIST(IHI)=SQTRV(IHI)XUNACC(IHL1)/(2.%XMAXTRA)
GOTO SO
c
Cx CALCULATE TRANSITION VELOCITIES ANND TIMES.
c
130 TRVEL(I)=0,
TRVEL (NUMTR)=0.,
IF((NUMTR-1).LT.2) GOTO 130
D0 7 I=2,NUMTR-1
TRVEL(I)=SQRT(SQTRV(I))
IF(TRVEL(I).NE.O,) GO10 140
TRTIME(I)=0.
GOT0 7
140 TRTIME(I)=2.%¥TRDIST(I)/TRVEL(I)

7 CONTINUE
C .

Cx CALCULATE MINIMUM SEGMENT TIMES.
c

150 DO 8 I=1:NUMSEG
IF(SATRV(I) . GT.SQTRV(I+1)) GOTO 140
CHANGE (1) =1 .
IF(SATRVCII JEU.SQTRV(I+1)) CHANGE(I)=0,
IL0al
IHI=I+1
GOTO 170
160 CHANGE(I)=~1,
IHI=I
ILO=I+1
170 DINSEG(I)=DSEG(I)=-TRDIST(I)-TRDIST(I+1)
DMATCH(I)S(SQTRV(IHID-SQYRVCILOY)/ (2. XxMAXTRA)
SGUMX2(I)=MAXTRAX(DINSEG(I)-OMATCH(I))+SQTRV(IHI)
SEGUMX(I)=SQRT(SGVMX2(I))
IF (SEGVMX(I) . LE.MAXTRYV) GOTO 180
SEGUMX (I)=MAXTRV
SGVHX2 (1) =SEGUMX (1) XX2
DFPEAK=DINSEG(I)~-IMATCH(I)=-(SGUMX2(I)~SQTRV(IHI))/MAXTRA
TRTMIN(I)=(2,¥SEGVMX(I)~TRVEL (IHI)=TRVEL(ILO))/MHAXTRA+
+ IPEAK/SEGYMX (1)
GOTO 8
180 TRTHINCI)=(2, XSEGUMX (I)~TRVEL (IHI)-TRVEL (ILB))/MAXTRA
8 CONTINUE

Cx CALCULATE ROTATIONAL MATRIX AND ANGLE ANDI UNIT VECTOR OF ROTATION.
[

CALL MT3333(ROTMAT(1s1)»POINTS(1s191),ENDC1,1))
00 ? I=1»NUMSEG
IF(I.EQ.1) GOTD 190

CALL MT33I33(ROTMAT(1,1)sPOINTS(1+1+1)sFOINTS(1r1,1I~1))
190 ROTOIF(1)=(ROTMAT(3,2)-ROTHAT(2,3))/2.,
ROTDIF(2)=(ROTMAT(1,3)~-ROTHAT(3,1))/2,
ROTDIF(3)=(ROTHAT(2,1)~ROTMAT(1+2)) /2.,
SINFPHI=SQRT(ROTDIF(1)X%2+ROTDIF(2)xX2+RATIIF (3) xXx2)
COSPHI=(ROTMAT(1,1)+ROTHMAT(2,2)+ROTHAT .3:3)-1.,)/2.

86

——— = = w g e

Y

230

9
c

FHICI)=ATAN2(SINFHICOSFH])
IF(SINFHI.LT.1,0E-6) GOTO 210

RVEC(1»I)=ROTDIF(1)/SINFHI
RVEC(2,I1)=ROTDIF(2)/SINFHI
RVEC(3,»I1)=ROTUIF(3)/SINFHI
GOTo 9

IF(COSFHI.LT.0.9999) GUTO 220

FHI(I)=0,
RVEC(1,1)=0,
RVEC(2,1)=0.
RVEC(3,1)=0.
GOTo ?

ROTSUM(1)=(ROTMAT(3,2)+ROTMAT(2:3))/2.
ROTSUM(2)=(ROTMAT(1,3)+ROTMAT(3,1)) /2,
ROTSUM(3)=(ROTMAT (2, 1)+ROTMAT(1,2))/2,
IF((AMS(ROTSUM(C1)) ., LTs1.0E~6) +AND. (ABS(ROTSUM(2)).LT.1.0E-6))

GOTO 230

ALFHA=ATANZ(ROTSUM(1) »ROTSUM(2))

COS2B=ROTMAT(3+3)

IF(ABS(SINCALFHA)) GT.1,0E-6) SIN2E=ROTSUM(1)/SIN(ALFHA)
IF(ARS(COS(ALFHA)) «GT.1.,0E-6) SINIR=ROTSUM(2)/COS(ALFHA)

BETA=ATAN2(SIN2E,COS2K) /2.,
RVEC(1yI)=COSCALFPHA)XSIN(RETA)
RVEC(2,I)=SINCALFHA)XSIN(RETA)
RVEC(3,1)=COS(RETA)

GOTD 9

IF(ROTMAT(3»3) .LT.-0.9999) GOTO 240

RVEC(1,1)=0.
RVEC(2,1)=0.
RVEC(3,1)=1,
GOTO 9

COS2A=ROTMAT(1,1)
SIN2A=ROTSUM(3)
ALFHASATAN2(SIN2AYCOS2A) /2,
RVEC(1»1)=COS(ALFHA)
RVEC(2»y I)=SIN(ALFHA)
RVEC(3,1)=0.

CONTINUE

Ckx CALCULATE MIMIMUM ROTATIONAL TIMES.

c

11
c

D0 11 I=1,NUMSEG
ROTMINCI)I=2.XSQRT(PHI(I1)/MAXROA)
CONTINUE

Cx TEST FOR SUFFICIENT TIME FOR RUTATION.

TSFLMX=0.

ITSFMX=0

DO 12 I=1,NUMSEG
IF(ROTHINC(I).LE.TRTMINCI)) GOTO 12

TTVLO2=AMIN1 (SQTRV(I)»SQTRV(I+1))
TRUMN2=TTULO2-MAXTRAX(DINSEG(I)~DMATCH(I))
IF(TRVMN2.LE.0,) GOTO 12

TRTMAX=(TRVEL (I+1)+TRVEL(I)-2.%SART(TRVHN2)) /MAXTRA

87

T mae A g e T T A W e e UG ey

Ty

IF((ROTMIN(I)-TRTMAX) .LE.TSFLMX) GOTO 12
TSFLMX=ROTMIN(I)-TRTMAX
ITSFMX=1
12 CONTINUE
c
Cx IF THERE IS A ROTATIONAL TIME SHORTFALL: RECALCULATE TRANSITION
Cx VEILOCITIES AND' DISTANCES.
[»
IF(ITSFMX.EQ.0) GOTO 280
IF (CHANGE (ITSFHMX) ,EQ.~1.) GOTQ 250
ILO=ITSFHX
IHI=ITSFMX+1
GOTO 240
250 IHI=ITSFMX
1L0=ITSFHX+1
260 IF((SQTRV(ILO)/MAXTRA) .GT.(DSEG(ITSFMX)~2. XTRIST(ILDO)))
+ GOTO 220
SATRV(THI)=(2, XMAXTRAX (IISEG(ITSFHX)-TROIST(ILO))~SQATRV(ILD))/
+ (1.+UNACC(IHI))
TROISTC(IHI)=SATRV(IHI) XUNACC(IHI)/ (2. XMAXTRA)
60T0 SO
270 SQTRV(IHI) =MAXTRAXDSEG(ITSFHX) /(1. +UNACC(THI)+UNACL(ILO))
SATRV(ILO)=SATRV(IKI)
TROIST(IHI)=SQTRY(IHI)KUNACC(INI)/ (2, XHAXTRA)
TRDIST(ILO)=SATRV(ILO)XUNACC(ILO) /(2. XMAXTRA)
GaTO SO
c
£X CALCULATE SEGMENT TIMES AND ACCELERATIONS.

c
280 00 13 1=1,NUMSES
TSEGTM(I»1)=0,
TSEGTHM(I»2)=0,
TSEGTM(1+3)=0.
TSEGTHM(I,4)=0,
TSEGTM(1,5)=0,
TSEGAC(Ir1)=CHANGE (I)XMAXTRA
TSEGAC(I»3)=0,’
TSEGAC(I,5)=CHANSE (I)XMAXTRA
IF(CHANGE(I).EQ.,~1.,) GOUTO 290
ILo=1I
IHI=I+41
GOTO 310
290 IHI=1
ILO=I+1
210 TMATCH=(TRVEL(IHI)-TRVEL(ILO))/MAXTRA
IF(ROTMINCI) .GT.TRTHMINCI)) GOUTO 320
IF(CHANGE(I) EQ., 1.) TSEGTM(I»1)=TMATCH
IF(CHANGE(I).EQ.-1,) TSEGTM(I»S)=TMATCH
TSEGTM(Is2)=(SEGVMX(1)~-TRVEL(IHI))/HAXTRA
TSEGAC(I,2)=MAXTRA .
TSEGTM(I»4)=TSEGTM(I2)
TSEGAC(I,4)=-TSEGAC(I1,2)
TREM=TRTMIN(I)-TSEGTM(I»1)~VSEGIM(I +2)-TSEGTM(I,4)~TSEGTM(I,S)
IF(TREMJ.GE.1.0E~6) TSEGTM(I,3)=TREM
RSEGAC(I)=(ROTMIN(I)/TRTMIN(I))XxX2XMAXROA °

88

R IR i e A S - —

- R ol

- — = -y

b

330

340

360

370
13

G60TO 13

TRVAVE=(DINSEG(I)~DMATCH(I))/ (ROTHINCI)-THATCH)
IF(TRVAVE .LE. ((MAXTRV+TRVEL (IHI))/2.)) GOTO 330

IF(CHANGE(I).EQ. 1.) TSEGTM(I»1)=THATCH
IF(CHANGE(I).EQe=1,) TSEGTM(I»S)=TMATCH
T234=ROTMIN(I)~TMATCH
TSEGTM(I»2)=T234X(TRVAVE~MAXTRV)/(TRVEL(IHI)~-MAXTRV)
TSEGAC(I»2)=(MAXTRVU-TRVEL(IHI))/TSEGTM(I»2)
TSEGTM(I»4)=TSEGTM(I»2)

TSEGAC(I,4)=-TSEGAC(I,2)
TSEGTM(I»3)=T234~-TSEGTH(I»2)-TSEGTM(I,4)

GOTO 370

IF(TRVAVE,.LE.TRVEL(IHI)) GOTO 340

IF(CHANGE(I).EQ. 1,) TSEGTM(Iy1)=TMATCH
IF(CHANGE(I).EQ.~1,) TSEGTM(I»S)=THATCH

TSEGTM(I»2)=(ROTMINCI)-THATCH) /2.,
TSEGAC(I2)=2.,X(TRVAVE~-TRVEL(IHI))/TSEGTM(I»2)
TSEGTM(I»4)=TSEGTM(I»2)
TSEGAC(I»4)=-TSEGAC(I,2)

GOTO 370

IF(TRVAVE(LT.TRVEL(ILD)) GOTO 350

TSEGTM(I»1)=AKS(TRVAVE~TRVEL (I))/MAXTRA
TSEGTM(¢(I»3)=ROTMINCI)-TMATCH
TSEGTM(I»3)=ARS(TRVAVE~TRVEL (I+1))/MAXTRA
GOTO 370

IF(TRVAVE.LT.(TRVEL(ILO)/2.)) GOTO 360

IF(CHANGE(I).EQs 1.) TSEGTM(I»S)=TMATCH
IF(CHANGE(I) EQ.~1.) TSEGTM(I»1)=TMATCH
TSEGTM(I»2)=(ROTMINCI)-TMATCH) /2,
TSEGAC(I»2)=-2. X (TRVEL(ILO)-TRVAVE)/TSEGTM(I,»2)
TSEGTM(I»4)=TSEGTM(I»2) '
TSEGAC(I,4)=-TSEGAC(I»2

GOTo 370 .

IF(CHANGE(I) . .&EQ. 1.) TSEGTHM(I,»S)=TMATCH
IF(CHANGE(I) .EQ.~-1.,) TSEGTM(I»1)=TMATCH
T234=ROTMIN(I)-TMATCH
TSEGTM(I,2)=T234%XTRVAVE/TRVEL (ILQ)
TSEGAC(I»2)=-TRVEL(ILO)/TSEGTML I, 2)
TSEGTM(I,4)=TSEGTM(I»2)
TSEGAC(I24)=-TSEGAC(I 2}
TSEGTM(I»3)=T234-TSEGTHM(I»2)~-TSEGTHM(I,4)
RSEGAC(I)=HAXROA

CONTIN'JE

c
Cx SET UP FATH TRAJECTORY.

c

+

CALL SETFTH(END,NUMSEG»POINTS, TSEGCT»ELTTIM, TACC» INTVEL

INTPOS'RSEGCTELRTIM»RACC» INRFOS)ROTVEC» TRVEL» TRTINME, TRIIST,

+ USXsUSY,USZ,;TSEGTM» TSEGAC,RSEGAC)RVEC» TRTMINIROTMIN)
RETURN

END

89

s
et e ik i Y AR e s AL J

e R ok G B S i 5 i

c
CXXXX
c

C THIS SUBROUTINE SETS UF THE DATA FOR AN ARM TRAJECTORY, INCLUDING
c TIMES» ACCELERATIONS, VELOCITIES,» AND FOSITIONS.
c

C M.R. PATTERSOM

C
Cxxxx
[»
SUBRQUTINE SETPTH(ENT, NUMSEG,FOINTS)TSEGCTELTTIM» TALC» INTVEL,
+ INTFOS»RSEGCT,LLRTIMs)RACCy INRFOS,ROTVEC, TRVEL» TRTIME, TROIST,

+ USX,»USYs»USZ»TSEGTM» TSEGAC+RSEGAC)RVEC, TRTMIN,ROTHIN)

INTEGER NUMSEG TSEGCT:RSEGCT

REAL END(3»4)»POINTS(39416)ELTTIM(3L) » TACC(312346) 3 INTVEL(3+36)
+ INTFOS(3+36)sELRTIM(12),RACC(12)yINRPOS(?2+12),ROTVEC(3+»12)»
+ TRVEL(Z)»TRTIME(Z) s TRIIST(7)1USX(6)1USY(S)1USZ(SL) 1 TSEGTM(615)
+ TSEGAG(695)yRSEGAC(E) yRVEL(Ir4)» TRTMINCS) yROTHINCS)

X SET UP TRANSLATIONAL PATH.

OGAOO

ITSEG=1
ELTTINC(ITSEG)=0.
TACC(1s11SEGY=0,
TACC(2»ITSEG)=0.
TACC(3»ITSEG) =0,
INTVEL(1,ITSEG)=0.
INTVEL(2yITSEG)=0.
INTVEL(3»ITSEG)=0.
INTFPOS(1, ITSER)=ENN(1,4)
INTPOS(2yITSEG)=END(2,4)
INTFOS(3» ITSEG)=END(3s4)
ITSEG=ITSEG+1
D0 1 I=1,)NUMSEG
IF(I.EQ.1) GOTO 30
IF(TRTIME(I).GE.1.CE-6) GOTO 10
ELTTIMCITSEG)=ELTTIM(ITSEG-1)
TACC(1,ITSEG)=0.
TACC{2+ITSEG)=0.
TACCI 3, 1T7SEG)=0.
GOTO 20
10 ELTTIMCITSEG)=ELTTIM(ITSEG-1)+TRTIME(I)
TACC(1» ITSEG)=(TRVEL(I)/TRTIME(I) %X (USX(I)-USX(I~-1))
TACC(2y ITSEG)=(TRVEL(I)/TRTIME(I))X(USY(I)=-USY(I~-1))
TACC(3» ITSEG)=(TRVEL(I)/TRTIME(I))X(USZ(I)-USZ(I~-1))
20 INTVEL(1ITSEG)=TRVEL(I)XUSX(I-1)
INTVEL(2,ITSEG)=TRVEL(I)XUSY(I-1)
INTVEL (3, ITSEG)=TRVEL(I)XUSZ(I-1)
INTPOS(1, 1TSEG)=FOINTS(1/,4,I-1)-TROIST(I)XUSX(I~1)
INTPOS(2) ITSEG)=FOINTS(2,4,I-1)-TRDIST(I)XUSY(I-1)
INTPOS(3,ITSEG)=FOINTS(3+4,1~-1)-TROIST(T)IXUSZ(I-1)
ITSEG=ITSEG+1
30 DO 2 J=1,S

90

- . - -

Gﬂﬂﬁ ——

B N T T

s i v s

c
Cx
c

1

IF(TSEGTM(I»J).EQ.0.) GOTO 2
ELTIME=ELTTIM(ITSEG-1)~ELTTINCITSEG-2)
IF(ITSEG.EQ.2) ELTIME=O,
ELTTIMCITSEG)=ELTTIM(ITSEG-1)+TSEGTM(I,J)

TACC(1, ITSEG)=YSEGAC(I,»J)%xUSX(I)

TACC(2,ITSEG)=TSEGAC(I»JIXUSY(I)

TACC(I,ITSEG)=TSEGAC(I»J)*USZ(I)

INTVEL(1»ITSEG)=INTVEL(1/)ITSEG-1)+TACC(1»ITSEG~1)xXx
ELTIME

INTYEL (2, ITSEG)=INTVEL(2,ITSEG-1)+TACC(2,ITSEG-1)x%
ELTIME

INTVEL(3»ITSEG)=INTVEL(3»ITSEG~-1)+TACC(3»ITSEG-1)x

ELTIHKE

INTPOS(1,ITSEG)=INTFOS(1, ITSEG-1)+INTVEL(1,»ITSEG-1)%X

ELTIME+TACC(1, I "SEG-1)XELTIMEXX2/2.,

INTFPOS(2,ITSEG)=INTFOS(2, ITSEG~1)+INTVEL(2,ITSEG~-1)X

ELTIME+TACC(2,ITSEG~1)XELTINEXX2/2,

INTPOS(3» ITSEG)=1INTFOS(3»ITSEG-1)+INTVEL(3,»ITSEG-1)X

ELTIME+TACC(3,ITSEG-1)XELTIMEXX2/2,

ITSEG=ITSEG+1
CONTINUE

CONTINUE

TSEGCT=ITSEG-1

SET UP ROTATIONAL PATH.

40

IRSEG=1

ELRTIM(IRSEG)=0.,

RACC(IRSEG)=0.

INRPOS (1, IRSEG)=END{1,1)

INRPQS (2, IRSEG)=END(2,1)

INRFOS(3s» IRSEG)=END(3s1)

INRFOS (4, IRSEG)=END(1,2)

INRFOS(S,» IRSEG)=ENDI(2,2)

INRFOS (65 IRSEG)=ENI(3,»2)

INRFPOS(7, IRSEG)=END(1/,3)

INRPQS(8y IRSEG)=END(2,3)

INRFOS(?y IRSEG)=END(3,3)

IRSEG=IRSEG+1

00 3 I=1,NUMSEG

IF(I.EQ.1) GOTO 40

ELRTIM(IRSEG)=ELRTIM(IRSEG~1)+TRTIME(I)
RACC(IRSEG)=0.
INRFOS(1/,IRSEG)=FOINTS(1r151-1)
INRFOS (2, IRSEG)=FOINTS(291,1I-1)
INRFOS (3 IRSEG)=FOINTS(3»1,I-1)
INRPOS(4y IRSEG)=FOINTS(1s2y1~1)
INRPOS(S» IRSEG)=POINTS(?-2,1I~1)
INRFOS(69 IRSEG)=FOINTS((3929 I~1)
INRFOS(7» IRSEG)=FOINTS(* J»I-1)
INRFOS(Bys IRSEC)=FOINTS(2:3v1-1)
INRPOS (9 IRSEG)=FOINTS(3,»3»1-1)
IRSeG=IRSEG+1

ELRTIM(IRSEG)=ELRTIM(IRSEG-1)+AMAX1 (ROTMINCI)» TRTMINCI))

91

PP

Y ———— T T Ty

3

AT T T e

RACC(IRSEG)=RSEGAL(I)
ROTVEC(1,IRSEG)=RVEL(L1,I)
FROTVEC(2, IRSEG)=KRVEC(2,1I)
ROTVEC(3+IRSEG)=RVEC(3: 1)
DO 4 J=1,9
. .XPOS(Jr IRSEG) =INRFOS(JrIRSEG-1)
CONTINUE
IRSEG=IRSEG+1

CONTINUE

RSEGCT=IRSEG-1

RETURN

END

92

et

r———

RS eV TS T e o R AR, 4

[N

et

e weamase

- —oe—

CXXRX

c
THIS SUEROUTINE CAI.CULATES THE CUMMANDED AKM VELOCLTY FROM THE
TRAJECTORY D[ATA,

c

c

C

€C M.R., PATTERSON
C

Cxxxx

c

SUBROUTINE VELCOMCEXTEND TSEGCM»ELTTIM» TACC» INTVEL» INTPOSsRSEGCT»
+ ELRTIM,RACC, INRFOS,ROTVEC, TERFOSPELTINME, TIMNINCyVEL,» TERFLG)

INTEGER TSEGCT+RSEGCT,TERFLG
REAL EXTEND(3v4)+ELTTIMI3IS)» TACC(3+38) » INTVEL(I»38)r INTFOS(3+36)

+ ELRYIM(12),RACC(12)y INRPOS(?+12)ROTVEC(3+12)» TERFOS(3r4)
+ ELTIME»TIMINC)VEL(&)»TTRERR, TTRVEL) TROERR» TROVEL
DIMENSION VELD(S) »FPOSO(3»4) ROTHAT(3+3) 1ERRORCS)

c
COMMON /TERPAR/TTRERR» VTRVEL, TROERR, TROVEL
c
(o}
Cx CALCULATE TRANSLATIONAL ERROR.
c

RINSGT=0.

ITSEG=1
10 IFC(ELTIME.LT.ELTTINCITSEG)) GOTO 20

IF(IVSEG.EQ.TSEGCT) GOTO 30
RINSGT=ELTTIMCITSEG)
ITSEG=ITSEG+1
GOTO 10

20 ELSFGT=ELTIME-RINSGT
VELD(1)=INTVEL(1»ITSEG)+TACC(1,ITSEG) ¥ELSEGT
VELD(2)=INTVEL(2) ITSEG)+TACC(2» ITSEG) XELSEGT
VELI(3)=INTVEL(3»ITSEG)+TACC(3» ITSEG) XELSEGT
FOSD(1,4)=INTFOS(1yITSEG)+INTVEL(1,ITSEG)XELSEUT+

+ TACC(1,ITSEG)XELSELTXXx2/2,
FOSD(2,4)=INTFOS(2,) ITSEG)+INTVEL(2,ITSSG)XELSEGTH
+ TACC(2,»ITSEG)XELSEGTX*2/2.
FOSL(3,4)=INTFOS(3»I1SEG)+INTVEL(3»ITSEG)XELSEGT+
+ TACC(3s+1TSEG)XCLSEGT%X2/2.
ERROR(1)=POSD(1,4)-EXTEND(1s4)
ERROR(2)=F0OSN(2,4)-EXTEND(Z)4)
ERROR(3)=F0OSI(3+4)-EXTEND(3,4)
GOTO 40
30 VELD(1)=0,.
VELD(2)=0.
VELD(3)=0.
ERROR(1)=TERFOS(1+4)-EXTEND(1,4)
ERROR(2)=TERFOS(2,4)-EXTEND(Z,4)
ERROR(3I)=TERFOS(3+4)-EXTEND(3,4)

[

Cx CALCULATE ROTATIONAL ERROR.

c . RPN
e

93

il o B e it MR e i o gen

it

40 RINSGT=0.
IRSEG=1
S0 IF(ELTIME.LT.ELRTIM(IRSEG)) GUTU 40
IF(IRSEG.EQ.RSEGCT) GUTO 0O
RINSGT=ELRTIM(IRSEG)
IRSEG=IRSEG+1
GOTd SO

60 ELSEGT=ELTIHE-RINSSGT
RTINT2=(ELRTIM(IRSEG)-ELRTIM(IRSEG-1))/2,
IFCELSEGT.GT.RTINTZ) GOTO 70

RVELD=RACC(IRSEG)XELSEGT
FHTI=RACC(IRSEG) XELSELGTXX2/2,
GOTO 80
70 RVELD=RACC(IRSEG)ARTINT2-RACC(IRSEG)X(ELSEGT-RTINT2)

FPHI=RACC(IRSEG)XRTINT2x%2/2., +RALC(IRSEG) XRTINT2X(ELSEG(-RTINTZ) -

+ RACC(IRSEG)X(ELSEGI-RTINT2)xX%x2/2,

80 VELD(4)=RVELDIXROTVEC (1, [RSEG)
VELD(S)=RVELIXROTVEC (2, IRSEG)
VELD(4)=RVELDXROTVEC (3, IRSEG)
CPHI=COS(FHI)
SFPHI=SIN(FHI)
R111CP=ROTVEC(1/»IRSES)XROTVEC(1,IRSEG)X(1.-LFHI)
R221CP=ROTVEC(2» IRSEG)XROTVEC (2, IRSES)X (1. -CFKI)
R3IJL1CF=ROTVEC (3 IRSEG) XROTVEC {3y IRSEG) X(1.-CFHI)
R121CP=ROTVEC(1,» IRSEG)*KOTVEC(2,IRSEG)x(1.,~-CFHI)
R131CP=ROIVEC(1, IRSEG)*ROTVEC (3, IRSEG)X(i.~CFHI)
R231CP=ROTVEC(2, IRSEG)XROTVEC(3» IRSEG)*X(1.-CFPHI)
R1SF=ROTVEC (1, IRSEG)XSFHI
R2SP=ROTVEC (2, IRSEG)XSFHI
RISF=ROTVEC(3y IRSEG) XSFHI
ROTMAT(1,1)=R111CF+CPHI
ROTMAT(2+1)=R121CF+R3SF
ROTMAT(3,1)=R131CP-R2SF
ROTMAT(1,2)=R121CP~-R3SP
ROTHAT(2,2)=R221CF+CPHI
ROTHAT(3,2)=R231ICF+R1SF
ROTMAT(1,3)=R131CP+RASF
ROTHMAT(2+,3)=R231CP-R1SP
ROTHAT(3+3)=R331CF+CPHI
CALL MM33I3I3I(FOSD,ROTMAT, INRFOS
CALL ROERRC(EXTEND,»FQSIs ERROR(
GOTO 110

9?0 VELID(4)=0,
VELD(S)=0.
VELD(6)=0.
CALL ROERRC(EXTEND» TERFOS»ERROR(4))

(15 IRSEG))
4))

c
Cx CALCULATE VELOCITY COMMANDS.
c
110 10 1 I=146
VEL(I)=VELDCIY+(1,/TININC)XERROKRCI)
1 CONTINUE
c
Cx CHECK FOR TERMINAL FOSITION.

94

L

l.“ .

5 S

F ARG

) O

EIEEN I

T ae—

R~ s

c

TERFLG=0
IFCELTIME.LT.ELTTIM(TSEGCT)) GUTO 120
TRERR=SQRT(ERROR (1) X*¥2+ERROR(2) XX2+ERROR (3) *%2)
IF(TRERR.GT.TTRERR) GOTO 120
ROERR=SQRT (ERROR (4) *xX2+ERROR(S5) xx2+ERROR(4) XX2)
IF(ROERR.GYT+TROERR) GOTO 120
TRVEL=SQRT(VEL (1)Xx24VEL (2)XX2+VEL (3) Xx%x2)
IF(TRVEL.GT.TTRVEL) GOTO 120
ROVEL=SQRT(VEL(4)x%2+VEL (S) XxX2+VEL (4) x%2)
IF(ROVEL .GT.TROVEL) GUTO 120
TERFLG=1

120 RETURN
END

95

I S AR S P LY 'Y T

Xl el ARk G

N

- a—

C
Cxaxx
c
C THIS SUEBROUTINE CALTULATES THe JUINT VELOCITIES REQUIKED TO
c IMFLEMENT THE GIVEM ENDI ETFECTOR TRANSLATIONAL ANDN RUTATIONAL
c VELOCITIES.,
c
€ M«R¢ PATTERSON
c
Cxxxx
c \
SUBROUTINE SOLVE(TH» THU»CTH»STHr JOINTS»END VEL)
c
REAL TH(8)»THU(S) »CTH(Z) »STH(7) » JOINTS(3,8) »END(I»4)»VEL(6)»
+ NOs'SNYES»HW» JLIM(B) » JULIM(S)
LIMENSION WRVEL(3)»ROTVEL(3)»RINVIC(II)
c
COMMON /7ARMFAR/NG)YSNIES»HUW
COMMON /JINTFAR/JLIMsJVLIN
[>
c

Co=CTH(2)+CTH(?)
SP=STH(2)+STH(7)

c
Cx COMPUTE WRIST VELOCIUY.

WRVEL (1)=VEL(1)+(END(2,IIKVEL (S -END(T s 3)KVEL (J)) XHW
WRVEL (2)=VEL(2)+(END(3+3)XVEL(4)-END(1+3)XVEL(6)) XHUW
WRVEL (3)=VEL(3)+(END(1,3)XVEL (D) -END(2,3)XVEL (4)) XxHW

c
FIRST THREE JOINTS.

Cx COMPUTE INVERSE JACOBIAN FOR
c
S3ES=STH(3)XES
RINVJ(1,1)==-STH(1)%XS3ES
RINVJ(1,2)=CTH(1)%SIES

RINVJ(1+3)=0.
RINVJ(2,1)=JOINTS(1,S)XSTH(7)
RINVJI(2,2)=JOINTS(2,S)XSTH(7)
RINVJ(2¢3)=2(JOINTS(3¢5)~JUINTS(3+4))XS?

$159=8TH(1)%S?
C1S9=CTH(1) %S9

SPES=S9%ES
RINVJI(321)=5159%SN~-L159%XSPES
RINVJI(3»2)=-C1SP%XSN~-S1S9%SPES
RINVJ(I»3)==-(JOINTS(3,5)-NQIXS?

c
Cx COMPUTE FIRST THREE JUINT VELOCITIES.

C

DIV=S9ESXS3IES
1) /0Iv

THVUC(L)=(RINVIC(L) DI RWRVEL (1) +RINVIC(L1 2) XWRVEL (2
2)+RINVI(2s 30 %

THV(2)S(RINVI(2: 1) XWRVEL (1) +RINVI(2 2) XWRVEL (
WRVEL(3)) /D1y

+
THV(3)=(RINVJ(I» 1) XWRVEL (1) +RINVI(I 2) kWRVEL (2)+RINVI(I 3) X

+ WRVEL(3))/D1IV

96

B A,

vt

Cx COMPUTE END EFFECTOR ROTATIONAL VELOCITIES.
c
VEL(4)=VEL(4)+STH(1)X(THV(2)+THV(3))
VEL(S)=VEL(S)-CTH(1)X(THV(2)+THV(3))
VEL(4)=VEL(4)=-THV (1)
ROTVEL (1)=CTH(1)XCTH(?)XVEL (4)+STHC(1)XCTH(Z?)XVEL(S) -
+ STH(7)RVEL(S)
ROTVEL(2)=~STH(1)XVEL(4)+CTH(1)XVEL(S)
ROTVEL(3)=CTH(1)XSTH(7)XVEL(4)+STH(1)XSTH(Z7)XVEL(S) +
+ CTH(7)RVEL(S)

c
Cx COMPUTE LAST THREE JOINT VELOCITIES.,

c
IF(ARS(STH(S)) . .LT.1.0E-2) GOTO 10
THVU(8)=(CTH(4)XKROTVEL(1)+STH(4)XROTVEL(2))/STH(S)
THV(S5)=-STH(4)XxRGTVEL (1)+CTH(4)XxROIVEL(2)
THU(¢4)=ROTVEL(3)-CTH(S)XTHV (&)
GOTO 20
c

Cx COMFUTE LAST THREE JOINT VELOCITIES FOR S3=0.
Cc

10 THY(&)=ROTVEL(3)

THU(S)=~STH(4)XROTVEL (1)+CTH(4)AROTVEL(2)
THV(4)=0.

c .
Cx TEST FOR EXCESSIVE JOINT VELOCITIES.
c

20 RED=1.
IFCABS(THV (1)) 6T JULIM(1)) RED=AMINI(RED JULIMC1) Z/ARS(THV(1)))
IFCARS(THV(2)).GT JVULIM(2)) RED=AMINL(REDY JULIM(2)/ABS(THV(2)))
IFCARS(THV(3)) .Gl JVULIM(3)) RED=AMINLI(RED) JULIM(3)/ABS(THV(3)))
IFCARSC(THV(4)) .61 «JVLIM(4)) REDSAMINI(RED) JVLIM(4)/ABS(THV(4)))
IFCAKS(THV(S)) .G, JVLIM(S)) REU=AMINL (RED)» JVLIM(S)/ABS(THV(S)))

IFC(ABS(THV(4)) GT «JULIM(4)) RRED=AMINI(REDy JULIM(S)/ARBS(THV(46)))
IF(REDJ.EQ.1.) GUTO 30
THV(1)=REDXTHV(1)
THVU(2)=REDXTHU(2)
THV(3)=REIX THVU(3) °
THY(4)=REDXTHV(4)

THU(S)=REDXTHU(S)
THV(4)=aREUXTHV (&)

30 RETURN
END

97

=

I R

e B

R

TR o e

REFERENCES

Paine, G. 'The Automation of Remote Vehicle Contrcls.'
Proc. of 1977 Joint Automatic Control Conference, San

Francisco, CA. June, 1977.

"Robot and Automation Technology Requirements

Heer, E.
Proc. of Ninth Internation-

for Space Industrialization."
al Symposium on Industrial Robots, Washingtomn, D.C.

March, 1979.

Large Srace Systems Technology. NASA Conference Publi-
cation 2035, Scientific and Technical Information Office,

January, 1978.

NASA, Washington, D.C.

Proc. of Ninth International Symposium on Industrial
Robots, Washington, D.C. March, 1979, &
)

"Exploring the Potential of a Quadruped.”
Internaticonal Automotive Engineer-

January, 1969.

Mosher, R.S.
SAE Paper No. 690191.
ing Conference, Detroit, MI.

SN

Horn, B.K.P., and Inoue, H. "Kinematics of the MIT~-AI-
Vicarm Manipulator."” M,I.T. Artificial Intelligence

Laboratory Working Paper 69. May, 1974.

e 2k i

"Resolved Motion Rate Control of Manipu-
IEEE Transactions on Man-
June, 1969.

Whitney, D.E.
lators and Human Protheses.”

Machine Systems, Vol. MMS-10, No. 2.

N

"

Renaud, M. ''Coordinated Comntrol of Robots-Manipulators;
Determination of the Singularities of the Jacobian Matrix."
Proc. of First Yugoslav Symposium on Industrial Robots and

Actificial Intelligence, Dubrovmnik, Yugoslavia. Septem-—

ber, 1979.

el

PR,
IS

Whitney, D.E. "The Mathematics of Coordinated Control of
Prosthetic Arms and Manipulators.'" Journal of Dynamic
Systems, Measurement, and Control, Transactions ASME,
Series G, Vol. 94, No. 4. December, 1972.

% Sy

98

R e A0 JOREETY

tidid i

—— ,,;,¥4;‘A;.g-‘\;“~,f B T

T T T T T T e

10.

11.

12.

13.

14.

15.

l6.

17.

18.

19.

20.

e s e it & e e -

Liégeois, A. "Automatic Supervisory Control of the Con-
figuration and Behavior of Multibody Mechanisms." IEEE
Transactions on Systems, Man, and Cybermetics, Vol. SMC-7,
No. 12. December, 1977.

Albus, J.S. "A New Approach to Manipulator Countrol: The

Cerebellar Model Articulation Controller (CMAC)." Journal

of Dynamic Systems, Measurement, and Control, Transactions
ASME, Series G, Vol. 97, No. 3. September, 1975.

Raibert, M.H. '"A State Space Model for Sensorimotor
Control and Learning." M.I.T. Artificial Intelligence
Memo No. 351. January, 1976.

Horn, B.K.P., and Raibert, M.H. 'Configuration Space
Control." M.I.T. Artificial Intelligence Memo No. 458.
December, 1977.

Denavit, J., and Hartenberg, R.S. '"A Kinematic Notation
for Lower-Pair Mechanisms Based on Matrices.'" Journal of

Applied Mechanics, Trans. ASME, Vol. 22, No. 5. June, 1955.

Peiper, D.L. '"The Kinematics of Manipulators under Com-
puter Control.'" Stanford Artificial Intelligence Labora-
tory Memo AI-72. October, 1968.

Paul, R.C. ''Modeling, Trajectory Calculation, and
Servoing of a Computer Controlled Arm.'" Stanford Arti-
ficial Intelligence Laboratory Memo AIM-177. November,
1972.

McGhee, R.B. '"Control of Legged Locomotion Systems.'
Proc. 1977 Joint Automatic Control Conference, San
Francisco, CA. June, 1977.

Tomovic, R. '"'A General Theoretical Model of Creeping
Displacement.'" Cybernetica, Vol. 4, No. 2. 1961
(English translation.)

Tomovic, R., and McGhee, R.B. "A Finite State Approach
to the Synthesis of Biocengineering Comtrol Systems."
IEEE Transactions on Human Factors in Electronics, Vol.

HFE-7, No. 2. June, 1966.

Frank, A.A. Automatic Control Systems for Legged Loco-
motion Machines. Ph.D. dissertation, University of

Southern California, Los Angeles, CA. May, 1968.

99

Rl -

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

McGhee, R.B., and Pai, A.L. "An Approach to Computer-
Control for Legged Vehicles." Journal of Terramechanics,
Vol. 11, No. 2. March, 1974.

Vukobratovic, M. '"How to Control Artificial Anthropomor-
phic Systems.'" IEEE Transactions on Systems, Man, and
Cybernetics, Vol. SMC-3, No. 5. September, 1973.

Sun, S.S. A Theoretical Study of Gaits for Legged Loco-
motion Systems. Ph.D. dissertation, Ohio State Univer-
sity, Columbus, OH. March, 1974.

Kugushev, E.I., and Jaroshevskij, V.S. ''Problems of
Selecting a Gait for an Integrated Locomocion Robot."
Proc. Fourth International Joint Conference on Artificlial

Intelligence, Tbilisi, Georgian SSR, USSR. September,
1975.

Bessonov, A.P., and Umnov, N.V. "The Analysis of Gaits
in Six Legged Vehicles According to Their Static
Stability." Proc. of Symposium for the Theory and
Practice of Robots and Manipulators, Udine, Italy.
September. 1973.

McGhee, R.B., and Iswandhi, G.I. "Adaptive Loccuotion of
a4 Multilegged Robot over Rough Terrain." IFEE Trans-

actions on Systems, Man, and Cybermetics, Vol. SMC-9,
No. 4. April, 1979.

Ferrell, W.R., and Sheridan, T.B. 'Supervisory Control
of Remote Manipulation.' IEEE Spectrum, V. 4, No. 10.
October, 1967.

Albus, J.S., private communication.

Narinyani, A.5., Pyatkin, V.P, Kim, P.A., and Dementyev,
V.N. '"Walking Robot: A Non~deterministic Model of
Conirol." Proc. Fourth International Joint Conference
on Artificial Intelligence, Tbilisi, Georgian SSR, USSR.
September, 1975.

Luh, J.Y.S., and Walker, M.W. 'Minimum-Time along the Path

for a Mechanical Arm." Proc. of 1977 IEEE Conference on

Decision and Control, New Orleans, LA. December, 1977.

Noble, B. Applied Linear Algebra, Prentice-Hall, 1969.
pp. 420-422,

100

T O PP T SN PP R T SR R SRR

T S AP

	1980024585.pdf
	0021A02.tif
	0021A03.tif
	0021A04.tif
	0021A05.tif
	0021A06.tif
	0021A07.tif
	0021A08.tif
	0021A09.tif
	0021A10.tif
	0021A11.tif
	0021A12.tif
	0021A13.tif
	0021A14.tif
	0021B01.tif
	0021B02.tif
	0021B03.tif
	0021B04.tif
	0021B05.tif
	0021B06.tif
	0021B07.tif
	0021B08.tif
	0021B09.tif
	0021B10.tif
	0021B11.tif
	0021B12.tif
	0021B13.tif
	0021B14.tif
	0021C01.tif
	0021C02.tif
	0021C03.tif
	0021C04.tif
	0021C05.tif
	0021C06.tif
	0021C07.tif
	0021C08.tif
	0021C09.tif
	0021C10.tif
	0021C11.tif
	0021C12.tif
	0021C13.tif
	0021C14.tif
	0021D01.tif
	0021D02.tif
	0021D03.tif
	0021D04.tif
	0021D05.tif
	0021D06.tif
	0021D07.tif
	0021D08.tif
	0021D09.tif
	0021D10.tif
	0021D11.tif
	0021D12.tif
	0021D13.tif
	0021D14.tif
	0021E01.tif
	0021E02.tif
	0021E03.tif
	0021E04.tif
	0021E05.tif
	0021E06.tif
	0021E07.tif
	0021E08.tif
	0021E09.tif
	0021E10.tif
	0021E11.tif
	0021E12.tif
	0021E13.tif
	0021E14.tif
	0021F01.tif
	0021F02.tif
	0021F03.tif
	0021F04.jpg
	0021F05.jpg
	0021F06.tif
	0021F07.tif
	0021F08.tif
	0021F09.tif
	0021F10.tif
	0021F11.tif
	0021F12.tif
	0021F13.tif
	0021F14.tif
	0021G01.tif
	0021G02.tif
	0021G03.tif
	0021G04.tif
	0021G05.tif
	0021G06.tif
	0021G07.tif
	0021G08.tif
	0021G09.tif
	0021G10.tif
	0021G11.tif
	0021G12.tif
	0021G13.tif
	0021G14.tif
	0022A02.tif
	0022A04.tif
	0022A05.tif
	0022A06.tif
	0022A07.tif
	0022A08.tif
	0022A09.tif
	0022A10.tif
	0022A11.tif
	0022A13.tif
	0022A14.tif

