

N O T I C E

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT

CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH

INFORMATION AS POSSIBLE

REPRO COPY	 -
RF Project 762012/712655

Tecluiical Report

the
QhIQ
State
university

research- foundation
1314 Kinnear road

colun*us, ohio
(NASA -CR-163556) COMPUTEL COORDINATION OF 	 N80-33J93	 43212
LlLIB MOTIOIJ FOR A THREE-LEGGED WALK114G ROBOT
(Ohio State Univ., Columbus.)	 108 P
HC A 06/MF A01	 CSCL 05H Q.1	 Uaclas

A/54 26721

COMPUTER COORDINATION OF LIVID MOTION
FOR A THREE-LEGGED WALKING ROBOT

Charles A. Klein and Mark R. Patterson
Department of Electrical Engineering

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Langley Research Center
Hampton, Virginia 23665

Grant No. NAG1-30

September, 1980
vc -	 - 1(/!0

Y

o n
R^^EIVED

NASA ST► FDC^

ACCESS	

1

.

ACKNOWLEDGMENTS

The authors would like to acknowledge the help provided

by Charles A. Csuri and other members of the Computer Graphics

Research Group, the Ohio State University, Columbus, Ohio; in

providing computer tim` and fa A lities that made this work

possible.

ii

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS	 i.i

LIST OF TABLES . 	 vi

LIST OF FIGURES	 . 	 v.i

Chapter

1.

2.

INTRODUCTION	 1

1.1. General Background	 1

1.2. Objectives of This Work 2

1.3. Organization	 2

SURVEY OF PREVIOUS WORK	 4

2.1. Introduction	 4

2.2. Previous Work on Manipulator Kinematics 4

2.2.1.	 Cartesian-Coordinate-to-
Joint-Coordinate Conversion 4

2.2.2.	 Homogeneous Transformation
Matrices	 7

2.3. Previous Work on Walking Robots 10

2.3.1.	 Legged Vehicle Control 11

2. 1 .2.	 Gait Selection and Foot Placement 12

2.4 Summary	 14

iii

TABLE OF CONTENTS (Cont'd.)

Page

3.	 PROBLEM FORPfULATION 		 15

3.1. Introduction		 15

3.2. Robot Description		 16

3.2.1.	 Body Model		 16

3.2.2.	 Arm Model		 20

3.3. Control	 System		 27

3.4. Summary		 31

4.	 ARM KINEMATICS ALGORITHMS		 32

4.1. Introduction		 32

4.2. Jacobian Solution		 33

4.2.1.	 Arm Decomposition Approach 	 .	 . .	 34

4.2.2.	 Jacobian Singul 	 -ities		 39

4.2.2.1.	 Singularities of J1 .	 40

4.2.2.2.	 Singu l.arit7 of J2 .	 41

4.3. Trajectory Calculation	 43

4.3.1.	 Translational Trajectory 		 46

4.3.2.	 Rotational Trajectory	 50

4.3.3.	 Combination of Trajectories . 	 . .	 52

4.4. Summary		 54

5.	 WALKING ALGORITHMS		 55

5.1. Introduction		 55

5.2. Robot Velocity Command Generation 		 55

iv

TABLE OF CONTENTS (Cont'd.)

Page

	

5,3.	 Free Gait Algorithm	 57

5.3.1.	 Kinematic Margin	 57

5.3.2.	 Foot Lifting and Placing	 59

	5 .4.	 Summary	 63

6.	 RESULTS AND CONCLUSIONS 	 64

	6.1.	 Simulation Result.,		 64

	

6.2.	 Suggestions for Future Work	 68

	APPENDIX: COMPUTER PROGRkMS	 69

	REFERENCES . 	 98

v

H

vi

LIST OF TABLES

Table
	

Page

I. PUMA 600 Manipulator Joint Limits	 20

II. Homogeneous Transformation Matrix Parameters for
PUMA 600 Manipulator Joints 	 24

LIST OF FIGURES

Fi ure	 Page

	1.	 Definition of Eu.,er Angles a, $, Y Which
Specify Orient;;.ti,.i or c.c_rdinate System
(R', Y', i') w_th respect to Coordinate
System (R, i)	 9

	

[.	 Definitions of Terrain-Fixed and Vehicle-
Fixed Coordinate Systems 17

3. Definitions of PUMA 600 Manipulator Link
Coordinate Systems and Designations of Points
on Manipulator: 0 = base, N = "neck,"
S = "shoulder," E _ "elbow," W = "wrist,"
H = "hand" 	 21

4. Definitions of General Link Coordinate
Systems and Parameters Describing Relation-
ships between Coordinate Systems 22

5. Configurations of Coordinate Systems (R3,

2-3, 1
3) and (yam , z) for Jacobian Matrix

Singularity of sin 05 = 0 Showing Realizable

Component of Desired Velocity 42

6. Typical Arm Path Showing How a Point-to-Point
Specification is Modified for a Near-Minimum-
Time Trajectory	 44

7. Flow Chart of Arm Trajectory Optimization
Algorithm	 45

8. Definition of Arm Translational Trajectory
Variables	 46

9. Flow Chart of Free Gait Algorithm 58

10. Arm Extension Limits for Vehicle at a Fixed

Height on Cylinder
(a) Tangential Limits, (b) Axial Limits 	 60

vii

LIST OF FIGURES (cont'd.)

Figure	 Page

11. Actual and Programmed Reachable Areas for
Arm of Vehicle on Cylinder , 60

12. Kinematic Margin Definition Showing Distance
Arm Base Can Travel at Present Velocity be-
fore Arm Reaches Limit 61

13. Typical Arm Handhold-to-Handhold Trajectory	 62

14. Simulation Display of Vehicle with All
TI -ee Arms Grasping Handholds 65

15. Simulation Display of Vehicle with Arm at
Lower Left Moving to New Handhold 66

viii

Chapter 1

INTRODUCTION

1.1. General Background.

It is obvious that in nature animals use quite a different

method of locomotion over land than do vehicles designed by man.

Animals, including man, use independent limbs to walk over

solid surfaces, but man-made vehicles almost exclusively use

wheels. Each of these approaches has its advantages. Wheeled

vehicles on hard surfaces allow very fast and efficient move-

ment of heavy loads. Legs, on the other hand, usually move more

slowly but do not require hard, smooth surfaces.

Although wheeled vehicles have been in use for centuries,

only relatively recently has much research been conducted on

the use of legs for man-made vehicles. This is due to the fact

that the coordination of limb motions to produce locomotion of

a legged vehicle is a very complex process. Advances in the

speed and capabilities of digital computers have finally allowed

this burden to be removed from a human controller, making arti-

ficial legged locomotion a practicable goal. Vehicles such as

the Mars Rover [1] which use leg ged vehicle concepts are now

being considered for use in terrain too rough for wheeled

d

1

I

vehicles.

1.2. Objectives of this Work.

It has also been observed that multi-armed vehicles with

grasping hands could walk over structures even in the absence

of gravity [2]. Since serious consideration is being given to

the construction of large structures in space [3], the problem

of coordinating the limb motion of a vehicle which could perform

assembly and maintenance operations on those structures is of

practical as well as theoretical interest. That problem is the

subject of this work.

1.3. Organization.

The remainder of this work is divided into five parts,

Chapters 2 through 6. Chapter 2 reviews earlier research which

is relevant to this work. This includes the previous work on

manipulator kinematics and that on walking robots.

Chapter 3 is a statement of the problem which this work

addresses. The robot itself is described and some introductory

material is presented on the coordinate systems used. The

basic control scheme which is implemented is also discussed in

this chapter.

Chapter 4 addresses the problem of the control of the

individual arms. Arm velocities are generally described in

Cartesian coordinates, so the first section of the chapter

2

discusses the cor_version from Cartesian velocLL'es to joint

velocities using the Jacobian matrix. The second section of

the chapter describes the calcuiation of a trajectory for an

arm given a sequence of points through which it is to pass.

Chapter 5 is a discussion of the free gai. algorithm

which controls the lifting and placing of legs for the robot.

The first section describes the generation of commanded velo-

cities for the robot, and the second section discusses the

implementation of those velocities by the algorithm.

Chapter 6 summarizes the results of the simulation. It

also gives suggestions f -r further work in the area of robot

legged locomotion.

3

Chapter 2

SURVEY OF PREVIOUS WORK

2.1. Introduction.

The coordination of the limbs of a walking robot which

uses manipulatoro as its legs (arms) can be decomposed into

two tasks. The first task is the control of the individual

manipulators' movements, and the second is the coordination of

the manipulators to produce walking. Previous work in both

these areas is reviewed in this chapter.

2.2. Previous Work on Manipulator Kinematics.

2.2.1. Cartesian-Coordinate-to-Joint-Coordinate Conversion

In the control of a manipulator, it is desirable to be able

to give commands to the manipulator in Cartesian coordinates,

since that is the system in which h-mans are most accustomed to

working. The manipulator's motors operate in joint coordinates,

though, so a method must be found for converting from one system

to the other. There are two basic approaches to this problem:

physical acid mathematical.

The physical approach uses the manipulator itself or a

replica of it to record motion directly in joint coordinates.

4

A copy of the manipulator is used in master-slave control, in

which the replic often smaller, of the arm is moved by a human

operator. The taplica has potentiometers on the joints whose

values are used to obtain commands for the manipulator's motors.

Another physical approach, sometimes referred to as "training,"

involves moving the manipulator itself tnrough its desired tra-

jectory, measuring and recording intermediate positions along

the way in joint coordinates. These data, along with timing

information, constitute a command sequence. This method is

often applied when a manipulator is used in a situation such

as an assembly line in which the same sequence of motions is

repeated over and over [4].

Neither of the above physical approaches is satisfactory

for legged locomotion. Master-slave control does not work well

because a human being cannot effectively control the number of

legs required for locomotion except at very slow speeds [5].

Training is not applicable since the trajectory which a leg must

follow will vary as the terrain and/or the operator's commands

change.

Thus for legged locomotion a mathematical approach is

needed to convert the commands from Cartesian coordinates to

joint coordinates. Although this could be done for commands

given as positions and orientations, most manipulators have

several sets of joint coordinates which will result in the

i

5

ax.

J ij = a ej (2-2)

same end effector position and orientation [6]. A better

approach is that of Resolved Motion Rate Control [7], in which

velocity commands are used. For instance, with a six-degree-of

freedom arm, if 6 is a vector consisting of all six joint velo-

cities and x is a vector consisting of the translational velo-

cities along and the rotational velocities about the x, y, and

z axes,

x = J e	 (2-1)

wl.^_re J is the Jacobian matrix of derivatives of the Cartesian

coordinate values (x) with respect to the joint angles (e):

Joint velocities can then be found from the rectilinear velo-

cities using the inverse Jacobian matrix:

J-
1
 x
	

(2-3)

The advantage of using velocities rather than positions

is that for a six-degree-of-freedom arm, there is one and only

one set of joint velocities that will produce a given trans-

lational and rotational velocity of the end effector, except in

those configurations in which the Jacobian matrix is singular.

At a singularity of the Jacobian, velocity in at least one

direction is impossible, and velocities in other directions may

be obtainable with an infinite number of combinations of joint

6

e =

T

velocities. Some work has been done on the general problem of

finding which configurations will result in Jacobian singulari-

ties for a particular arm [8]. For arms with more than six

degrees of Freedom, there are generally an infinite number of

ways to attain a given velocity, and the extra degrees of free-

dom can be used to optimize some criterion (e.g., to minimize

the sum of the joint velocities) [9, 101.

Another possible approach to the problem of determining

the joint velocities is that of full or partial table look-up.

Although in this work only kinematics are considered, in an

actual implementation the torques required to produce a set of

joint velocities would also have to be determined, and it is

possible that the two problems could be combined. If that could

be done, one of the published methods for torque solution by

table look-up could be used. Possible approaches would be the

full table look-up of Albus's "Cerebellar Model Articulation

Controller," or CMAC [11], or the partial look-ups suggested by

Horn and Raibert [12, 13].

2.2.2. Homogeneous Transformation Matrices.

It will be seen later that it is desirable to be able to

express the position and orientation of one part of the robot

with respect to another. A compact way of doing this which will

be used in this work is the homogeneous transformation matrix,

which was introduced by Denavit and Hartenberg [14] and has

7

been applied more specifically to manipulators by Pieper [15]

and Paul [161.

A homogeneous transformation matrix is a 4x4 matrix of

the form shown in Equation (2-4).

	

CRS	 121
A	 (2-4)

0	 0	 0	 1

It describes the position and orientation of one coordinate

system (say (x', y', z')) with respect to another (x, ^, z).

Orientation information is carried in the upper left 3x3 sub-

matrix, R, which is a rotation matrix whose columns are the

unit vectors x', Z, and z' expressed in (x, Y, z) coordinates.

Position information is in the upper right 3x1 submatrix, p,

which is a vector that gives the position of the origin of

z') in (x, y, z) coordinates. The last row consists

of three zeros and a one.

As mentio7	 above, the 3x3 rotation submatrix of the

homogeneous transformation matrix contains relative orientation

information for coordinate systems (x', y', 2') and (x, ^, z).

Another method of expressing the orientation relationship be-

tween two coordinate systems which will also be used in this

work is that of the three Euler angles a, R, and Y shown in

Figure 1. The transformation of system (x`,', ?') into

system (x,	 z) is accomplished by a rotation of -y about z',

8

Y

Figure 1. Definition of Euler Angles a, a, y Which Specify
Orientation of Coordinate System (x',', z')
with respect to Coordinate System (x,	 2)

a rotation of -a about ^', and a rotation of -a about z', in

that order. The rotation matrix R can then be expressed in

terms of these Euler angles as [6]

cosacos6.cosy-sinasiny -..osacosssiny-sinacosy cosasins

R- sinacosacosy+cosasiny -sinacosssiny+cosacosy sinasins (2-5)

-sinacosy	 sinssiny	 cosR

Then, if r' is a direction vector in system (x', ^', z'), the

same direction vector r in system (x, Y, z) is

r = R r'
	

(2-6)

9

j

,

'i

i

If the position of the origin of (R', ^', z') in coordi-

nate system (R, Y, z) is P', the homogeneous transformation

matrix A describing the position and orientation of system

(R', ^', z") with respect to system (R, Y, 2) is then

pe

Y

A =	 D1	 Py

Pez

0	 0	 0	 1

Then if (r I , ry, rZ) are the coordinates of a point in system

("s', y. ; z') and (rx , ry , r z) are the coordinates of that point

in system (R, ^, z)

r	 r'
x	 x

	

ry = A rY	 (2-8)

r	 r'
z	 z

1	 1

2.3. Previous Work on Walking Robots.

In the past two decades, research has begun on walking

robots in hope that their advantages can eventually be used for

efficient transportation over terrain unsuitable for wheeled

vehicles. A summary of this research has been presented by

McGhee [17], and the next section presents those portions of

that summary which are relevant to the present work. The final

(2-7)

10

section of this chapter discusses the problems of gait selection

and foot placement for a walking robot.

2.3.1. Legged Vehicle Control.

Three different approaches have been considered for the

control of legged locomotion systems. These approaches are

finite-state control, model reference control, and algorithmic

control, each of which is discussed in the following paragraphs.

In 1961, Tomovic [18] noted that some modes of locomotion

could be characterized by finite-state models. He observed that

locomotion could be characterized by representing each leg as

a two-state device (on the ground or in the air). This concept

was extenddd when Tomovic and McGhee [19] pointed out that at

least four actuator states are needed to obtain a more or less

natural gait. The validity of the finite-state control concept

was confirmed in 1968 when a small quadruped controlled by 16

flip-flops attained stable locomotion at the University of

Southern California [201.

A second approach to control of legged systems is 10model

reference control [211." This approach uses a real-time simu-

lation of vehicle kinematics for the generation of the joint

angles and rates needed for ideal locomotion. These ideal

values are then used as commands to the actuators of the vehicle.

This method has the advantage of being much more flexible than

finite-state control, since the actuator control signals are

11

infinitely variable instead of having a finite number of states,

but the problem of deciding when the vehicle should lift its

legs and when and where it should place them must be solved

before it can be used. This problem is discussed in the next

section.

A variant of model reference control has been suggested

by Vukobratovic [22]. With this approach, called algorithmic

control, a nominal trajectory is obtained from a kinematic model

as with model reference control. With algorithmic control,

though, not all joint angles and rates are derived from the

model. Instead, the model imposes certain overall constraints

on the system to lower the order of its equations. These

lower-order equations are then used with artificial sensor

feedback to produce stable motion. To date, this technique has

been applied only to biped locomotion.

2.3.2. Gait Selection and Foot Placement.

A considerable amount of past work has been devoted to the

leg sequencing problem for the special case of straight-line,

constant-speed locomotion over level terrain. A periodic

solution to this problem iias usually been referred to as a

"gait." Combinatorial studies show that there are a large num-

ber of gaits possible (40,000,000 for a six-legged vehicle [23]),

so optimization is required. In all but one study [24], the opti-

mization criterion used has been one related to the degree of

12

stability of the system under consideration. In most of the

studies the stability criterion used has been the longitudinal

stability margin, the distance the vehicle's center of gravity

would have to be moved forward or backward before the vehicle

toppled over. For vehicles whose legs are evenly spaced in

right-left pairs along a longitudinal motion axis, the gaits

which maximize the longitudinal stability margin are known [251.

Those gaits are known as wave gaits, all of which are character-

ized by a forward wave of stepping actions on each side of the

body with a half-cycle phase shift between the members of each

right-left pair of legs.

More recently, Kugushev and Jaroshevskij [241 have sug-

gested that the approach used in the study of gaits for

straight-line locomotion can be extended to include a more

general case in which nonperiodic leg sequences known as "free

gaits" may be expected. Specifically, they present a partial

problem formulation in which a trajectory is specified in ad-

vance for the center of gravity of a legged system over a given

terrain containing certain regions which are unsuitable for

support. The remainder of the paper is devoted to a completion

of the formalization of this problem and a description of one

heuristic algorithm for its solution.

McGhee and Iswandhi [261 have presented a more complete

formalization of the free gait problem. Central to their

13

approach, which is basically similar to that of Kugushev and

Jaroshevskij, is the concept of kinematic margin. The kinematic

margin for a particular leg and foothold is the distance for

which the vehicle can continue along its present path before

that leg must be lifted from that foothold. McGhee and Iswandhi's

algorithm proceeds by lifting and placing legs so as to maximize

the minimum value of kinematic margin over all supporting legs.

This approach maximizes the distance the vehicle can proceed

forward in its current configuration, thereby increasing the

likelihood that it will be able to find a new configuration with

which to continue.

2.4. Summary.

This chapter has summarized some of the research in the

general areas of manipulator kinematics and walking robots.

Chapter 3 will present the specific problem to be addressed in

this work, and Chapters 4 and 5 will discuss the solution of

that problem.

14

Chapter 3

PROBLEM FORMULATION

3.1. Introduction.

As was mentioned in the first chapter, there are situa-

tions in which a mobile robot with six-degree-of-freedom arms

capable of grasping handholds would be very useful. It is the

purpose of this work to describe an algorithm for controlling

the motion of such a vehicle. In this chapter, the design of

the robot which was used in the simulation is presented, and

the overall control philosophy is explained.

The first section of the chapter is divided into two

parts: The first describes the robot's body and the second

its arms. The second section of the chapter presents the

control scheme that is to be implemented. The basic approach

chosen is that of supervisory control [27], in which a human

operator provides only high-level commands, such as robot

velocity or destination. A control computer then automatically

solves the limb coordination problem to move the vehicle in

response to the operator's commands.

v

y^

3.2. Robot Description.

The robot investigated here consists of a body and three

six-degree-of-freedom arms [28]. Descriptions of the body and

arms are given in the following paragraphs.

3.2.1. Body Model.

Figure 2 is a drawing of the three-armed vehicle. The

body is modelled as an equilateral triangle with an arm attached

to each corner. The next few paragraphs discuss this model and

the coordinate systems used to describe it.

For calculations of "absolute" positions and velocities,

both of the robot and of its arms, a coordinate system which

is fixed relative to the surface on which the robot walks is

required. For this purpose a right-handed coordinate system

(x, ^, z) (circumflexes will indicate unit vectors) is defined.

Since this system is fixed relative to the surface on which the

robot is walking, its definition depends on the robot's in-

tended use. If the robot is to be used on the earth, the

system would be an earth-fixed coordinate system; if it is to

be used in space, it would be a system fixed to the structure

on which it is walking. In this work, the vehicle is assumed

to be operating on a cylinder in space, so the coordinate

system is chosen to be fixed relative to that cylinder (see

Figure 2).

Also shown in Figure 2 is a coordinate system,

(xv , yam , z
v)

, which is fixed to the moving vehicle. Throughout

16

Z	 /

Figure 2. Definitions of Terrain-Fixed and Vehicls-Fixed
Coordinate Systems

17

i

this work, subscripts will be used to indicate the coordinate

system to which a unit vector belongs; the absence of a sub-

script will indicate the fixed coordinate system. Thus
-xv

is

the unit vector in the x direction for the vehicle coordinate

system, and x belongs to the fixed system.

Vectors will be used to describe the position or velocity

of the robot's body or one of its arms with respect to the

cylinder, the body, or another arm. There will be a coordinate

system fixed to each part of the robot (including the body and

each link of each arm) as well as the cylinder, so these vectors

can more conveniently be thought of as describing the position

or velocity of one coordinate system with respect to another.

Subscripts will be used to indicate the system whose location

or motion is being referred to, and superscripts will denote

the coordinate system to which that location or motion is

referred (again, absence of a superscript will indicate the

fixed system). Thus the position and linear velocity of the

origin of the vehicle coordinate system with respect to the

fixed system will be denoted by p v and vV , respectively. The

angular velocity of the vehicle system with respect to the

fixed system will be denoted by a three-element vector w,

whose elements are the angular rotation rates about x, y, and

2. The orientation of the vehicle system with respect to the

fixed system can most concisely be described by three Euler

angles, a , s , and y . There is no standard convention for
v v	 v

18

choosing these angles; the ones used in this work are those

described by Horn and Inoue [6] and shown in Figure 1 (in

Chapter 2).

A vector in vehicle coordinates can be transformed into

fixed coordinates by multiplying by a 3x3 rotation matrix, RV

(in this work, matrices will be denoted by underlined, upper-

case ietters); that is,

r = R ry
	

(3-1)
- -v-

where R
v

is of the form given in Equation (2-4). The coordi-
-

nates of a point in vehicle coordinates can also be transformed

to fixed coordinates by multiplying them by a matrix, in th443

case a 4x4 homogeneous transformation matrix, A v ; thus

r	 p	 rX
X^	 V

X

r 	 [^]	 pv	 rV

y	 v
r
	

p
	 rz
z

L'J	 LO	 0	 0	 1 j Ll

(3-2)

To simplify the equations in this thesis, the above equation

will be written

r = Ary .
	 (3-3)

If the matrix in the equation is a homogeneous transformation

matrix, the vector r is to be understood as a four-element

vector (r x , r y , r
z

, 1) T ; if the matrix is a rotation matrix,

19

as in Equation (3-1), r is the three-element vector (r x , ry,

r) T
z.

3.2.2. Arm Model.

drawing of one of the robot's arms is shown in Figure 3.

The configuration and dimensions of the arm are those of a six-

degree-of-freedom industrial manipulator, the PUMA 600, made

by Unimation, Inc., Danbury, Connecticut. The arm has six

rotational joints, one about each of the z-axes except z6

(numerical subscripts indicate references to link coordinate

systems). The angular displacement of joint i will be denoted

by 6i ; 6 i is zero when joint i is at the center of its travel

and positive when the displacement is in a positive sense with

respect to i 1-1 . In Figure 3 each of the joints is pictured

at the center of its travel; the rotational limits of the

joints are given in Table I.

TABLE I

PUMA 600 Manipulator Joint Limits

Joint Limits

1 ±160°

2 +1.65 °

3 ±135°

4 ±735°

5 ±105°

6 ±270°

1

20

Figure 3. Definitions of PUMA 600 Manipulator Link Coor-
dinate Systems and Designations of Points on Manip-
ulator: 0 = base, N = "neck," S = "shoulder,"
E = "elbow," W = "wrist," H = "hand"

21

Figure 4. Definitions of General Link Coordinate
Systems and Parameters Describing Re-
la:ionships between Coordinate Systems

The arm is made up of seven links (including the base),

with each two successive links connected by a rotary joint.

Associated with each link is a coordinate system which is fixed

with respect to that link (see Figure 4). For link coordinate

system i,
2

is directed along the axis of the joint between

link i and link i+ l, xi is along the common normal between the

two joint axes associated with link i in the direction from

Z.toward i i , and ^ is chosen to complete the right-handed

set [15].

Link coordinate system i can be transformed into link

system i-1 by performing a rotation, two translations,,and a

final rotation as follows (refer to Figure 4):

1. A rotation of -cc i about xi to make z i parallel

to z,
—1-1'

22

I

a

_;	 a

2. A translation of -a i along x i to locate the origin

at the point where the common normal between

z i intersects zi-1'

3. A translation of -s i along z i to bring the origins

into coincidence.

4. A rotation of -8i about i i to bring xi into coinci-

dence withxi-l . (8i may differ from A i since this

method of describing 8i does not necessarily result

in its being equal to zero at the center of joint is

travel, as 8 i was defined to be.)

Each of the above four operations can be described by a 4x4

transformation matrix, and the product of those four matrices

is the homogeneous transformation matrix which describes the

overall transformation from coordinate system i to system i-1;

that is,

i-1
A	 = rot-- 	 [trans,.	 1

[trans^ 	

J
rrot-	 (3-4)

z i ,-8 i L	
zi,-siJ
	

xi ,-a L	xi,-ai

where	 rot r,8 is a rotation of 8 about r

trans
r,s

is a translation of s along r.

If the above multiplications are carried out, Ai
-1
 can also be

expressed in a more useful form as a function of the four joint

parameters as [14]

ff

23

Table II. When those parameters are introduced i

	

cose i	-cosaisinel

	

Ai_1 - sine'	 cosaicosei

0	 sina.
i

0	 0

sinaisine	 aicosei

-sinaicosei	 aisine'

	

Cosa.	 S.

	

i	 1

0	 1

(3-5)

TABLE II

Homogeneous Transformation Matrix Parameters for
PUMA 600 Manipulator Joints

Joint, i ai ai si el

1 900 0 NO 6. + 1800
i

2 00 ES SN e2 +	 900

3 900 0 0 e3 +	 900

4 900 0 WE e4 + 1800

5 900 0 0 e5 + 1800

6 00 0 HW 66

NO = neck-to-base distance = 26 in.

SN = shoulder-to-neck distance = 6 in.

ES = elbow-shoulder distance = 17 in.

WE = wrist-to-elbow distance = 17 in.

HW = hand-to-wrist distance = 6 in.

The four parameters for each joint which determine the

transformation matrices between link systems are given in

24

(3-5), the following six transformation matrices result:

	

-cose 1	0	 -sine1	 0

	

A0 = -sine 1	0	 cosel	 0	 (3-6)—1
0	 1	 0	 NO

0	 0	 0	 1

-sine 	 -cose2	 0	 -ESsine2

Al	 cose2	 -sine 2	 0	 EScose2
—2 =

0	 0	 1	 SN

0	 0	 0	 1

-sine 3 0 cose3 0

A2 =
—3

cose 3 0 sine3 0

0 1 0 0

0 0 0 1

-cose 4 0 -sine4 0

A3 =
—4

-sine 4 0 cose4 0

0 1 0 WE

0 0 0 1

	

-cose 5	0	 -sines	 0

	

A4
 = -sine 5	 0	 cose 5	 0

-5
0	 1	 0	 0

0	 0	 0	 1

(3-7)

(3-8)

(3-9)

(3-10)

25

cos6 6	-sine 6	 0	 0

A5 = sine 	 cose6	 0	 0	 (3-11)
—6

0	 0	 1	 HW

0	 0	 0	 1

The six transformation matrices in Equations (3-6) through

(3-11) can be multiplied together to obtain one overall trans-

formation matrix, A6 , for the whole arm:

Ali -
'1= 2A3A4A5A^	 (3-12)

For simplicity, in the rest of this thesis a vector in the arm

base coordinates will be denoted by the superscript a, and a

vector in the end effector coordinates will be denoted by the

superscript ee. Then

ra = r0	(3-13)

•
ee

= r
6	

(3-14),

and

ra = Aa ree
	

(3-15)
—ee-

Vectors describing the position and orientation of the

end effector will be similar to those used for the vehicle

body. The position and velocity of the origin of the end

effector coordinate system will be denoted by pee and v_ee,

respectively. The orientation of the end effector system can

26

be specified by the three Euler angles aee' See' Yee (where

these are defined as in Figure 1), and the angular velocity

of the system by Wee.

Then the orientation of the end effector system with

respect to the arm base system can be described by the 3x3

rotation matrix Rae which is, again, of the form given in

Equation (2-4). As with the robot system, both position and

orientation information are contained in the homogeneous trans-

formation matrix, in this case AQe , where

a
Pee

X
a

a _	 a Pee	 (3-16)
ee	 -ee	

y

a
Pee

z

0	 0	 0	 1

3.3. Control System.

As was mentioned earlier in this chapter, the control

system described in this work is a supervisory control system

[27] in which the higher-level commands of steering, speed,

etc., are supplied to the control computer by a human operator.

The computer then calculates the arm motions which are required

to implement those commands.

Another method of dividing the control problem into

levels applicable to walking robots has been suggested by

27

Narinyani, et al. [29]. This model divides the problem into

three levels. The upper level is the overall planning of the

route based on the robot's basic capabilities and limitations

(for instance, the size of obstacle it can overcome). The

middle level involves looking ahead for several steps in the

direction of the route fixed by the upper level. This level

then arrives at a corridor of possible paths based on robot

parameters (speed, balance, body height, etc.) and local

terrain features. The lower level involves placing the feet

to move the robot along one of the paths in the corridor

determined by the middle level.

In many cases, it would be useful to consider the lower

level as consisting of two levels: One which determines the

location at which a foot is to be placed, and another which

calculates the trajectory which the foot should follow in

reaching that location. This division seems justified since

in difficult terrain human beings often consider where to place

their feet but they rarely think about the actual path their

feet follow in the air. This fact can be applied to walking

robots if access is allowed to the program between the above

two levels. Then in difficult terrain a human operator could

determine where the robot's feet should be placed and let the

computer determine how to get them there. This mode of oper-

ation would also be useful if one of the robot's legs is to be

as an arm (to manipulate tools, for example), a circumstance

r

28

which might well occur with the robot in this work, since its

legs are industrial manipulators.

If Narinyani's lower level is divided as suggested above,

the functional division of robot control into levels becomes

Level I - overall planning of route based on robot's

basic capabilities and limitations

Level II - determining corridor of paths based on robot

parameters and local terrain features

Level III - choosing locations at which feet are placed

Level IV - calculating foot trajectories

Although in the general robot walking problem Level II is very

important, in this work the terrain is structured enough that

Levels I and II can be combined. There are generally enough

footholds that the robot's flexibility allows it to move along

any path specified for its center of gravity.

The above four levels constitute a model of the general

robot walking problem. For the specific problem addressed in

this work, three modes of operation were chosen:

1. Robot Destination Control.

2. Robot Velocity Control.

3. Arm Control.

In the following paragraphs these three modes are discussed

in terms of the four levels described above.

23

joystick, and its rotational velocity is conti

three dials. In this mode all of the levels :

With Robot Destination Control, the operator enters a

sequence of points (in coordinates based on the grid on the

cylinder), and the computer calculates the trajectory required

for the robot to pass through those points. In this mode, the

computer performs the operations required for part of Levels I

and II and all of Levels III and IV.

With Robot Velocity Control, a three-axis joystick is used.

Two of the axes control the linear velocity of the robot on the

grid, and the other axis controls the rotation rate of the

robot body. In this mode the operator handles Leve-'s I and II

and the computer performs the calculations for Levels III and

IV.

Arm Control can be used in three different way,,. In all

three of those, the robot is stationary, so Levels 1 and II

are not operating. With Arm Handhold Control, the operator

enters a handhold location (in grid coordinates) and the arm

moves to and grasps that handhold. With Arm Destination Con-

trol, a sequence of desired coordinates (positions and orien-

tations) for the arm is entered and the computer calculates the

trajectory required to pass through those points. In these

two modes the computer performs only the operations for Level

IV. Finally, with Arm Velocity Control, the translational

velocity of the end effector is controlled by the three-axis

30

handled by the operator, wita the computer only converting

commands from Cartesian coordinates to joint coordinates.	
ji

3.4. Summary.

In this chapter, some of the necessary background infor-

mation has been given for the problem of control of the three-

armed robot discussed in this work. Models for the body of the

robot and for its arms have been given, and the control system

employed has been outlined. Chapters 4 and 5 will discuss the

solution of the problem formulated in this chapter.

31

Chapter 4

ARM KINEMATICS ALGORITHMS

4.1. Introduction.

The problem of manipulator kinematics can conveniently

be divided into two parts. The first is the conversion of

Cartesian velocity commands to joint velocity commands. As

discussed in Chapter 2, it is usually convenient to derive

manipulator commands in Cartesian coordinates since that is

the system in which human beings are most accustomed to working.

Those commands must then be converted to joint coordinates for

the actuator signals. This problem is the topic of Section 4.2.

Although the Cartesian velocity commands can be provided

at every instant in time by a joystick or similar device, in

many cases the desired path of the manipulator is specified in

the form of a sequence of points through which it is to pass.

Deriving a trajectory (Cartesian velocities as functions of

time) from that sequence of points is the second part of the

manipulator kinematics problem and is discussed in Section 4.3.

32

=?

a
veex

a
veey

a
veez

a
W
eex

a
veey

a
weez

(4-1)

el

62

63

64

85

66

Y ,1'Rnw

4.2. Jacobian Solution.

The most straightforward way of deriving joint velocities

from Cartesian velocities is to use basic Resolved Motion Rate

Control [7]. For a six-degree-of-freedom manipulator th..s in-

volves first calculating the 6x6 Jacobian matrix J, whose ele-

ments are the partial derivatives with respect to the joint

angles of the components of v and w (the translational and

I
rotational velocities of the end effector with respect to she

P
arm base). That is,

Then to derive joint velocities from Cartesian velocities (v aee

and We) the Jacobian must be inverted and multiplied by those

Cartesian velocities:

v
a

B = J-1 --ee	 (4-2)
W
a

-tee

Using this method for a six-degree-of-freedom arm involves in-

verting a 6x6 matrix. This can be done symbolically, which is

33

1
i

1

i

very difficult, or numerically every time the velocities are

calculated, which is computationally expensive. Since neither i

of the above alternatives is desirable, an alternative solution

has been used in this work. For some arm designs, including .j

the one used here, the joint velocity problem can be divided
i

into two p°.rts, each of which requires the inversion of a 3x3

matrix. These two 3x3 matrices can be inverted symbolically,

eliminating the need for numerical inversions at run time. This

approach is discussed more fully in Section 4.2.1.

No matter how the joint velocity problem is solved, there

are some arm configurations (those in which the Jacobian is

singular) in which Cartesian velocities in one or more direc-

tions are impossible. Although mathematically these singulari-

ties are all similar, the physical limitations they place on

the arm may be very different sc they all must be considered

individually. The three singularities of the PUMA 600 arm are

considered in Section 4.2.2.

4.2.1. Arm Decomposition Approach.

In the PUMA 600 arm the last three joint axes intersect

in a point which can be called the "wrist." This allows the

first three and last three joint velocities to be calculated

independently, given the desired translational and rotational

velocity of the end effector. The procedure which is used to

calculate those joint velocities is described in the following

34

0 = A0A1A2 3
P4 1 2 3 Z'-4

(4-4)

paragraphs.

The first step is to calculate the translational velocity

of the wrist, which is located at the origin of coordinate sys-

tem (14 , y4 , "4). That velocity depends only on the first

three joint velocities, so if it is known, those joint veloci-

ties can be determined. Since the end effector and wrist are

connected by a rigid link, the wrist ' s translational velocity

(y
0
) can be shown to be the sum of the end effector trans-

lational velocity (v.6) and the cross product of the end effector

rotational velocity (w^) and a vector from the ens: effector to

the wrist (p4 - p6); that is,

Y4 v
6

+ 4
x (p-4 .p6)
	

(4-3)

Then to calculate the first three joint velocities, the

Jacobian matrix must be found whose elements are the partial

derivatives of the components of the wrist position, per, with

respect to the first three joint angles. The easiest way to

calculate that Jacobian is to calculateP
4
 and then make the

required partial differentiations; thus

35

I	

0	 0
p4x

	

p
0	

0 1 2 0
4y

a
^'1A2A3

	0 	
WE

p4 z

	

1	 1

cls23WE + cls2ES — s1SN

sls23WE + sls2ES + c1SN
a

c23WE + c2ES + NO

1

(4-5)

(4-6)

where	 si = sine i 	ci = cosei

s23 = sin(e 2+e 3)	 c23 = cos(6 2+e 3)

Then the Jacobian is

ap0ap4	
ap0

J1 =I

ae1

x

ae2

Y

ae3

ap4 ap4ap4
_.Y
ae 1
v
ae2

—Y
a e 3

ap4 ap4ap4z
ae 1

z
ae2

z

38

(4-7)

36

-sls23WE-sls2ES-c1SN cic23WE+cic2ES cic23WE

cls23WE+cls2ES-s1SN slc23WE+slc2ES
	

slc23WE . (4-8)

0
	

-s23WE-s2ES	 -s23WE

and if the Jacobian is not singular the inverse Jacobian is

(since for this arm WE = ES)

-sls3ES

cls23(s2+s23)ES
J-1 = 1	 -sls23SN

-cl (s2+s2 3) 2 ES
+sl(s2+s23)SN

cls3ES

sls23(s2+s23)ES
+cls23SN

-sl(s2+s23)2ES
-cl(s2+s23)S'N

0

c23(s2+s23)ES

-c2(s2+s23)ES
-c23(s2+s23)ES

(4-9)

where 111 1 = (s2+s23)s3ES2.

The first three joint velocities can then be calculated

as

061	
v4x

6 2 =
 111 v0	 (4-10)

y

6	
v3J	 L

The possible singularities of J 1 (s2+s23 = 0 and s3 = 0) are

discussed in Section 4.2.2.1.

Now that the first three joint velocities are known, the

last three joint velociites can be calculated from the end

effector rotat final velocity. This can be done by calculating

the rotational velocity which must be provided by the last three

37

joints (4), which is equal to the desired end effector rotation-

al velocity (4) minus the rotational contribution of the first

three joints (w0), all transformed into coordinate system (x3,

Y3 , z 3) ; that is,

-1 -1 -1
w^ = R3 R2 R^ (w6 - w3)	 (4-11)

w6	 cic23 slc23 -s23 w6+	 (A2+A3)sl
x	 x

w6	 -	 -sl	 cl	 0	 w6 +(A2+A3)cl	 (4-12)
y	 y

w6	 cls23 sls23 c23	 w6	 Al

z	 z

Thus to calculate the last three joint velocities, the

Jacobian matrix must be found whose elements are the partial

derivatives of the components of the end effector orientation

with respect to the last three joint angles. The columns of

that Jacobian are simply the vectors describing the last three

joint axes in coordinate system (x 3 , Y3 , i 3); thus

0	 -s4	 c4s5

J2 = 0	 c4	 s4s5

1	 0	 c5

and if the Jacobian is not singular the inverse Jacobian is

38

	

c4c5	 s4s5	 -s5

	

121	
-s5

s4s5	 -c4s5	 0

	

-c4	 -s4	 0

The last three joint velocities can then be calculated as

3
	84	 W 6

-1	 3
A5 = J2 W 6

3

	

A6	 '6z

(4-14)

(4-15)

The possible singularity of 12 (s5 = 0)is discussed in Section

4.2.2.2.

4.2.2. Jacobian Singularities.

Both the Jacobians discussed above can be singular (have

a determinant equal to zero). Under those conditions the joint

velocities cannot be calculated using the inverse Jacobian since

it does not exist. There are two ways of dealing with this

problem: Another method can be used to calculate the joint

velocities under those conditions or artificial limits on the

joints can be imposed to make those conditions impossible. The

latter approach is adopted for the singularities of J 1 . and the

former is used to the singularity of J 2 . Those approaches are

discussed in the following two sections.

39

4.2.2.1. Singularities of Jl.

The Jacobian matrix
L

is singular when s3 = 0 or s2+s23 =

0. The condition s3 = 0 occurs when the arm is fully extended

(i.e., when the elbow joint is straight). At this point the

wrist cannot move farther away from the shoulder, nor can it

move directly towards the shoulder; thus any velocity command

which includes components in those directions will be unattain-

able. This condition was eliminated by imposing an artificial

joint limit of 6 3 < -1°. This limit does not allow the arm to

be fully extended,but since it can be almost fully extended,

the radius of the reachable space is only decreased by about

0.01 in. The artificial limit also makes some otherwise

reachable points near the arm base unreachable but for walking

those points are unimportant. If one of the arms were being

used for something other than walking (e.g., manipulating a

tool), the limit could be overridden and the approach outlined

in Section 4.2.2.2. could be used.

The approach used for the singularity of s2+s23 = 0 is

similar. At this point the wrist is directly under the shoulder

and cannot move either toward or away from the base-neck axis.

This condition was eliminated by imposing the limit A 2 > -63/2

+ 1°. This limit increases the minimum radius for the arm by

only 0.03 in.' It also makes an area underneath the robot un-

reachable, but for walking that area should be avoided anyway.

v

1

40

At any rate, if it were necessary to reach that area, the limit

could be overridden and the approach in the next section used.

4.2.2.2 Singularity of J2.

The Jacobian matrix J2 is singular when s5 = 0. This

singularity cannot be handled as the two in the previous

section were because it can occur at many positions and

orientations in the reachable area, not just at its edges.

Thus elimination of this singularity would place severe re-

strictions on the motion of the arm, and a method must be

found to solve for the joint velocities when s5 = 0.

When s5 = 0, e5 = 0° and the axes for 64 and e6 are the

same. Any change in A 4 or e6 will affect only w6 (s ee Equation
z

(4-12)), so either e4 or 66 can be chosen arbitrarily so long

as the other is chosen so their sum is w6 . Thus let e6 remain
z

constant; then

e6 = 0	 (4-16)

and

e4 = w6 -e6	 (4-17)
z

Then to determine 6 5 note that the configuration is as

shown in Figure 5. Any change in e5 can cause a rotation only

	

is the direction of	 Thus the only portion of the desired

rotational velocity (whose components are w 6 and w6) which
x	 y

can be implemented is the projection of that velocity on 14;

41

Rea IizabI

Desired Rotational Velocity

i4

Figure S. Configurations of Coordinate Systems
(X3' ^3' z3)

and (^ A a 4) for Jacobian Matrix Singularity
of sin e5 = 0 Showing Realizable Component of De-
sired Velocity.

that is,

A5 = -s4 x w6+ 	 c4 x w6	 (4-18)
X	 y

Equations (4-16), (4-17), and (4-18) are used when J 2 is

singular to implement as much ofw
6

as possible; as soon as the

arm is in a configuration in which J2 is not singular the joint

velocity calculation method described in Section 4.2.1. is again

used. As mentioned earlier, the approach described here could

also be applied to the singularities of Jl if desired.

42

P

4.3. Trajectory Calculation.

The problem of calculating a time-optimal trajectory for

a robot arm to follow in passing through a sequence of points

is an important one for this work. For reliability purposes,

the robot will have two arms grasping handholds at all times,

so only one arm can be moving in the air. This means that on

the average the time it takes the robot to move one unit can be

no less than three times the time it takes an arm in the air to

travel the same unit with respect to the ground. An increase

in the average velocity of the arm with respect to the ground

will be reflected by three times that increase in the robot's

velocity, so the degree of time optimality of the arms' tra-

jectories will determine how close the robot's maximum velocity

approaches its theoretical limit.

Some work has been done in the area of arm trajectory

time optimization by Luh and Walker [30]. They consider

translational motion only in which the end effector path is

made up of straight line segments connected by smooth arcs. The

arcs are "rounding" of the corners from an exactly point-to-

point path, and are subject to a maximum error constraint which

is related to the length of the path segments which form the

corners. The path is not actually a minimum-time trajectory

because a restriction of constant' velocity is used in. the

straight segments between the connecting arcs.

a

43

Translational and Rotational Velocities 	 Translational Velocity Only

Figure 6. Typical Arm Path Showing How a Point-to-Point
Specification is Modified for a Near-Minimum-
Time Trajectory.

The approach used here considers both translational and

rotational velocities. The translational path is similar to

that of Luh and Walker in that it is composed of straight seg-

ments connected by arcs (see Figure 6), but the error constraint

is absolute rather than a function of the segment lengths.

Another difference from the previous work is that accelerations

and decelerations are permitted in the straight segments, but

constant acceleration is specified in the transition arcs, making

them parabolic arcs. Since most of a path is usually straight

segments, this approach allows the arm to travel faster in those

segments, slowing down only to "turn the corners." The algorithm

also assumes zero rotational velocity in the transition (see

Figure 6), but since the desired translational displzcement of

I

44

i

A

A

START

CALCULATE MAXIMUM
TRANSITION DISTANCES

CALCULATE MAXIMUM
TRANSITION VELOCITIES

CALCULATE REQUIRED
TRANSLATIONAL ACCELERATIONS

IS ANYYES
NSLATIONAL ACCELERATION
GREATER THAN MAXIMUM

ACCELERATION

r,o

CALCULATE MINIMUM

TRANSLATIONAL TIMES

CALCULATE

ROTATION MATRIX

CALCULATE

VECTOR AND ANGLE
L OF ROTATION

F

ALCULATE MINIMUM
ROTATIONAL TIMES

RECALCULATE
TRANSITION
DISTANCES

RECALCULATE
TRANSITION
VELOCITIES

IS ANY
KGR,EAIMUM ROTATIONAL TIME

 THAN THE CORRESPONDING
UM TRANSLATIONAL TIME

CALCULATE MAXIMUM
TRANSLATIONAL TIMES

IS ANY
MINIMUM ROTATIONAL TIME 	 YES

GREATEk THAN THE CORRESPONDING
^1AXIMLIM TRANSLATIONAL TIME

1

CALCULATE	 CALCULATE	 CALCULATE

TRANSITION TIMES	 TRANSLATIONAL TIMES I ROTATIONAL TIMES

AND ACCELERATIONS	 AND ACCELERATIONS	 AND ACCELERATIONS

STOP

Figure 7. Flow Chart of Arm Trajectory Optimization Algorithm

45

BI - I

i	 d i	 Pt
\ (I^

^

^

	

	
tri- I	 d',J.-	 ---	 --dtri

Vrh r I I	 9\"`
`dtr1

Segment i

Transition I	
Xtr

i2

-ion i-I

Figure 8. Definition of Arm Translational Trajectory Variables

an arm is usually relatively greater than the rotational dis-

placement, this will not often slow down the arm. A flow chart

of the algorithm is shown in Figure 7 and it is discussed in

detail in the following paragraphs.

4.3.1. -ranslational Trajectory.

Figure 8 shows a segment of the translational trajectory

with some of the terms which will be used below defined. The

figure shows segment i of the trajectory along with transitions

i-1 and i at the ends of that segment. The angle made at the

corner of transition i is s
i

. The distance from that corner

to the point where the actual path breaks away from an exact

point-to-point path is d tr . The total length of segment i is
i

d i , and that length minus the two transition distances is di.

d.

46

1

`y

d

i

The velocity on entrance to transition i is v_tr and the velo-
it

city on exit from that transition if v 	 . The magnitude of
^tr12

both those velocities is v tr	 The time it takes for the arm toi
pass through transition i will be denoted by T 	 .

tri

The first steps in the algorithm are the calculation of the
}

maximum transition distances and velocities (see Figure 8). The

transition distance is calculated using the general formula

As = Ivo (Ot) + 2 a(At) 2 1
	

(4-19)

where As is the distance travelled, v-0 is the initial velocity,

a is the acceleration, and At is the time interval; from that

formula it can be calculated that

1(2Ltr i2 aril 2
2dtrlsin(^3i/2) =

vtrilT tr
i+

 21 	Ttri	
(4-20)

 1

- T tr. v tr. sin O i /2)	 (4-21)
1 1

T tr. vtr.

dtr.	 2 1	
(4-22)

1

Since a constant acceleration is specified over the entire

transition, the time taken to make the transition can be shown

to be the same as if the arm followed the segment paths with an

instantaneous change of direction at the intersection. For the

transition distance to be-maximum the difference in those two

47

0

paths at the midpoint of the transition should be equal to the

maximum allowable error; thus

—vtr -vtr

emax	
v_tril(Ttrl/2) +2	 Ttr it (Ttr1/2)2 - °tril(Ttrl/2)

i

(4-23)

T tr. v tr. cos(si/2)
1	 1	 (4-24)

4

Then
4cd=	 max	 (4-25)

	

tri	 (1+cossi)

but for simplicity later it is convenient to assume that the

transition distance is less than one-half the segment le:,gths

on either side of the transition, so

d	
di di+l	 4^max	 (4-26)

tr.
_ = min 2	 2

	

1	 2(1+cosRi)	
•

The maximum transition velocity can be calculated from

I-vtr i2 qtr . 'vtr

	

dtr.	 a	
it	 i	 (4-27)

	

1	 max

to be	

CV2(1+cos6

:a:x

v	 = 	 (4-28)

	

tri	
i)

The next step is calculation of the segment accelerations

that the transition distances and velocities require. For seg-

ment i the required acceleration is

48

1

2	 2
v -v
tri tri-1

a a 2(di-dtr-dtr	

)

i	 i-1

(4-29)

If any of the segment accelerations is greater than the maximum

acceleration allowed, the transition distances and velocities

must be recalculated. This is done by lowering the higher of

the two velocities to the value which requires the maximum

acceleration. The equations below are simplified if, for

segment i which has a required accleration greater than the

maximum, the transition with the higher of the two velocities

is designated "hi" and the one with the lower is designated

"lo"; then

vtrhi-vtrlo

	
2a	 (d i-d trhi-d	 (4-30)trlo)

C
amax(di-dtr)

v	 = 	 to	 (4-31)
tr

hi 	 2 (1+cos6hi)

The transition distance can then be calculated as

vtr ^
2(l+cosshi)

d.	
hi	

-	 (4-32)

trhi	 2a max

The final step in the translational portion of the al-

gorithm is calculation of the minimum translational times for

the segments. These times will later be compared with ro-

tational times to determine it either needs to be adjusted to

49

y

synchronize the translational and rotational motions. The first

step in the calculation of the translational times is calcula-

tion of the highest velocity reached in the segment as

v2 -v2

vhii min
vmax' amax di - tr2amaxr

lo

 + vtrhl	
(4-33)

The time can then be calculated as

2	 2	 2
2vhi i-v

trhi vtrl
o

T	 2vhii-
vtrhi

-vtrlo + d i -	
2a max

(4-34)
transi

3	 amax	 vmax

4.3.2. Rotational Trajectory.

The object of the rotational_ portion of the algorithm is

to determine for each segment a unit vector r and an angle

such that a rotation of $ about r makes the desired rotational

change over that segment. The first step in this procedure is
S ^

calculation of a rotation matrix e
i for segment i which

describes the rotational motion for that segment. That matrix

can be calculated from the rotation matrices of the two end-

points of the segment as

S
i^

sill si12 s113

e	 = S.
121

S.
122

S.
123

(4-35)

si31
S.

si33

= R.Ri1 1 (4-36)

50

 --

1

The vector and angle of rotation can then be derived from

Euler's theorem [31], which states

	

-1	 Sid
R1Ri-1 = e
	 (4-37)

I cos ^ +r im (1-cosh) +S isino	 (4-38)

0	
-ri	 riz	 y

where S3 = Qi	0	 -ri
z	 x

-ri	ri	 0
y	 x

From

si 32 	 s123

r isino l = 2 si	 - s i	 (4-39)
13	 31

121	 112

it can be seen that (since r is a unit vector)

I'32
sin^ 	 2(s-si)2+(si-si)2+(sis12

 23	 13	 31	 21	 12

(4-40)
Then

i32	 123

-rte = 2 s
i - s i	 /sink	 (4-41)
13	 31

si21 - si..2

Also,	
-r?	 s, -r2

coso.	

s	 -r	 s

= ill ix = 122 1y = 133
iz	

(4-42)

	

1	
1-ri 	1-ri 	1- ^r

x	 y	 z

1

1

51

i
1

so ^ can be calculated as

-1
(sino, ^

^ i tan	 cosoi
(4-43)

The minimum rotational time can then be calculated as

_F%axTrot. - 2
i

	 (4-44)

4.3.3. Combination of Trajectories.

Now the minimum translational and rotational times for all

the segments are known and the times must be reconciled to syn-

chronize the translational and rotational motions. If the

rotational time is less than the translational time, this can

be accomplished easily because the rotation can be slowed down

by using

_	 Trot	
2	

(4-45)
w - wmax Ttrans

If the rotational time is greater than the translational

time, the problem is not so simple because the translational

velocity is not zero at the ends of the segment. The first step

is to determine if, with the present transition distances and

velocities, the translational motion can be slowed enough to

take as long as the rotational motion. This can be checked by

first calculating the lowest velocity which can be attained

in the segment as

52

v2 -v2

v	 rma0, v2 -a	 d'-tr
	 tr
hi	 to	

(4-46)
lo i trio max i	 2a max

If vlo is zero, the translational motion can be slowed down as

much as necessary; if not, the maximum translational time must

be calculated as

T'	 vtrhi+vtr
lo
-2vlo1

trans. =	 a
i	 max

(4-47)

If that time is less than the rotational time, one or both of

the transition velocities must be reduced. In the program im-

plemented they are reduced to the point where the arm velocity

can be reduced to zero; this is not necessarily a minimum-time

solution but it is time-consuming to obtain the minimum-time

solution and this situation arises seldom so it should not

significantly affect the effectiveness of the algorithm.

If the minimum rotational time is less than the maximum

translational time but greater than the minimum translational

time, the translational velocity profile is determined by cal-

culating the average velocity which must be maintained over the

segment (excluding the portion in which the arm is accelerated

from the lower transition velocity to the higher transition

velocity) as

53

R

2	 2

d'- vtrhi-"trio
i	 2a

max
v	 =
avei	 vtr -vtr

T	 -	 hi	 to

	

rot.
	 amax

i

(4-48)

{

4.4. Summary.

This chapter has described the algorithms which are used

in this work to implement motion of the robot's arms. These

are the groundwork for the procedures which control the robot's

walking, which are discussed in the next chapter.

54

Chapter 5

WALKING ALGORITHMS

5.1. Introduction.

The robot discussed in this work walks over the terrain

shown in Figure 2. The surface is a cylinder on which there is

a grid of handholds for the robot's arms to grasp. The pro-

gram allows any of these handholds to be removed to simulate a

hole, trench ; or similar obstacle. It is assumed that these

obstacles have no height so a leg can pass over them.

The algorithm used to control the robot's walking is

basically similar to that of McGhee and Iswandhi [26]. It is

based on the notion of kinematic margin (defined in Section

5.3.1.); the algorithm seeks to maximize the value of kinematic

margin over all the supporting legs so as to maximize the dis-

tance the robot can move before one of the arms reaches the

limit of its joints. The algorithm is described in detail in

Section 5.3.2.

5.2. Robot Velocity Command Generation.

The basic input specification to the free gait algorithm

described in the next section is a robot velocity command

55

vector. This command consists of three translational components

and three rotational components. Only three of those components,

two translational and one rotational, are specified by the

operator. The other two degrees of freedom are supplied by

requiring the robot to remain at a specified height and tangent

to the cylinder. The height specification supplies a trans-

lational velocity and the tangency requirement supplies two

rotational velocities, so with the three operator-specified

velocities the robot's motion is fully specified.

The operator-specified velocities are the robot's

tangential and axial velocities on the cylinder and the velocity

of rotation of its body. These commands are generated in one

of two ways, depending on the mode of operation.

When the system is in Robot Velocity Mode, a three-axis

joystick is used, and velocity commands are read each time the

free gait algorithm is executed. Movement of the joystick

gives the translational components of the robot velocity and

rotation of the joystick about its axis gives the rotational

component.

When the system is in Robot Destination Mode, the velo-

city commands are computed from a stored trajectory. This

trajectory is calculated from a sequence of robot positions and

orientations entered on entry into Destination Mode. The pro-

gram first calculates the minimum translational and rotational

times between each pair of points and determines which of those

7

56

two times is greater. The greater of the times is used to

compute the translational and rotational velocities required

to move between those points in that time. Those velocities

are then stored and constitute the trajectory for that sequence

of points.

5.3. Free Gait Algorithm.

A flow chart of the walking algorithm is shown in Figure

9.	 As mentioned above, the key concept of the free gait

algorithm is that of kinematic margin. That concept is defined

in Section 5.3.1., and its use in the algorithm is described in

Section 5.3.2.

5.3.1. Kinematic Margin.

The kinematic margin of an arm grasping a handhold is

defined as the distance the base of that arm could travel in

the direction of its current velocity before a joint of that

arm reached the limit of its travel. The sma.'.lest kinematic

margin of the three arms is thus the distance the robot could

travel in its current direction before it had to stop because

of arm limits. The algorithm seeks to maximize the value of

this smallest margin because that will maximize the distance

the robot can travel in its current configuration, thus maxi-

mizing the chance that it will be able to find another con-

figuration in which to continue.

57

.3 	 .,.: -may .	r.'.'i.ys..•^....	

-	
..

START

0

IS
THAT ARM	 YES

AT ITS TERMINAL
[RAJECTORY POINT
^ 3

IS
YES	 AN A 4	 NO

IN THE AIR

I GRASP HANDHOLD I
CALCULATE

KINEMATIC MARGIN
FOR ALL ARMS

NO

CALCULATE.
TIME ELAPSED
SINCE LIFTING

OF ARM

MOVE ARM
ACCORDING TO

STORED TRAJECTORY

IS

DETERMINE ALL	 SMALLEST

	

REACHABLE HANDHOLDS	 YES	 KINEMATIC MARGIN

	

FOR ARM WITH SMALLEST	 LESS THAN THRESHOLD

KINEMATIC MARGIN	 MARGIN

NO

	

i

ANY
ANDHOLDS	 v0
NEMATIC MARGIN
'S CURRENT
IN

YES

CALCULATE TRAJECTORY
TO HANDHOLD WITH

LARGEST KINEMATIC MARGIN

1-
ARM

j
MOVE

SUPPORTING
ARMS

NO
OR

INAL POSITI

YES

STOP

Figure 9. Flow Chart of Free Gait Algorithm

58

The most accurate method of calculating kinematic margin

would be to use knowledge of the three-dimensional reachable

space of the arm. The boundaries of that space are not easily

described, though, so two-dimensional limits are used in this

work. Figure 10 shows the limits of the arm's reach in both

the tangential and axial directions on the cylinder. These

limits can be used to determine the approximate shape of the

reachable area of the cylinder, which is shown in Figure 11.

This area is not easily described, so an inscribed circle

centered at the base of the arm is used in the program to cal-

culate kinematic margin.

The calculations for kinematic margin assume that the base

of the arm will continue at its present velocity indefinitely.

The kinematic margin is then the length of a vector in a direc-

tion opposite to the arm base velocity from the current handhold

to an intersection with the boundary of the reachable area (see

Figure 12). The next section describes the use of the kinematic

margin in the free gait algorithm.

5.3.2. Foot Lifting and Placing.

The first step performed by the algorithm is a check to

see if one of the arms is moving from one handhold to another.

If one is, the algorithm calculates the time elapsed since the

arm was lifted.. This elapsed time is used to determine from the

stored trajectory of the arm its desired velocity, v_d , and

59

+ + + + + + + +

Handholds Actual	 Limi

Programmed

+ + + ^---- + +

+ + Robot Body + +

Figure 11. Actual and Programmed Reachable Areas for
Arm of Vehicle on Cylinder

IG! .

S^

Robot Body
	

Robot Body

"ShouIde

k17.5	

"Wrist"

27.8 in.

Cylinder Surface 	 (a)

"Shoulder"

	

"Wrlst"	
"Wrist"

i

27.5 I n .	 27.5 in. ---^-I

	

(b)
	 Cylinder Surface

Figure 10. Arm Extension Limits for Vehicle at a
Fixed Height (52 in.) on Cylinder.
.(a) Tangential Limits, (b) Axial Limits.

60

Figure 12. Kinematic Margin Definition Showing Distance Arm
Base Can Travel at Present Velocity before Arm
Reaches Limit

desired position, pd . That velocity and position information

is then used with the current actual position, pa , to calculate

a velocity command, v , for the arm, as
--c

_vn = -°d + (Pd - Pa) /At
	

(5-1)

where At is the time interval between successive executions of

the free gait algorithm. Thus the command is the sum of the

desired velocity and a correction velocity intended to correct

the position error in the time interval At. The command is then

executed and a check is made to see if the arm is at the ter-

minal point of its trajectory. If not, the algorithm moves on

to calculate velocity commands for the supporting arms; if so

61

Path of End Effector

Handhold	 I	 Handhold
Cylinder Surface

Figure 13, Typical Arm Handhold-to-Handhold Trajectory

the arm is sent a command to grasp the handhold.

If all of the arms are grasping handholds, the algorithm

calculates the kinematic margin for each of the arms. The

algorithm then checks to see if the minimum kinematic margin

over the three arms is less than some operator-determined

threshold value. A threshold is used to prevent the arms from

lifting and setting down more often than necessary, which would

consume more energy than required. If the minimum kinematic

margin is larger than the threshold, the algorithm moves on to

calculate velocity commands for the supporting arms; if the

minimum kinematic margin is smaller than the threshold, the

algorithm determines which of the reachable handholds for the

arm with the minimum margin has the greatest kinematic margin.

It then calculates (as described in Section 4.3.) a trajectory

(as shown in Figure 13) for the arm to reach that handhold and

lifts the arm.

The final step in the free gait algorithm is calculation of

the velocity commands for the supporting arms, which are simply

62

the opposites (in the vector sense) of the desired arm base

velocities, which are determined by the desired robot velocity.

The algorithm terminates when a stop command is received (for

Robot Velocity Mode) or the terminal position is reached (for

Robot Destination Mode). Control is then returned to a super-

visory program.

5.4. Summary.

This chapter has described the operation of the algorithms

used to control the robot's locomotion. The next chapter dis-

cusses the performance of the simulation which uses those al-

gorithms.

63

a
Y

Chapter 6

RESULTS AND CONCLUSIONS

6.1. Simulation Results.

The algorithms described in Chapters 4 and 5 have been

implemented on a PDP 11/45 minicomputer with a Vector General

graphics display. All of the routines are written in Fortran

except for a few matrix manipulation subroutines, which are

written in assembly language. Two photographs of the display

which were taken during program execution are reproduced in

Figures 14 and 15.

The approximate maximum speeds for the robot with respect

to the cylinder are 3 in/sec for translational motion and 0.05

rad/sec for rotational motion. The rotational speed seems slow,

but at that speed the end of the arm at full extension is moving

3 in/sec just as with translational motion. The speed is

limited to 3 in/sec because at higher speeds the robot's arms

cannot maintain positions close enough to the handholds to grasp

them. This occurs because the simulation requires that the end

of the arm be no more than one inch from a handhold when it

grasps it. When the arm's base is moving rapidly with respect

64

Figure 14. Simulation Display of Vehicle with
All Three Arms Grasping Handholds

65 r;Pr
^ ^ j., , ^L P1GE I,S

i0o	 nojoOOMMMUM

	

'00000	 it

io

io
IFA

	

WOO	 *A

	

too	 a

00 mumONOMOMMINIWOMMUM

Figure 15. Simulation Display of Vehicle with Arm
at Lower Left hJoving to New Handhold

i1

66

to the cylinder, the end effector cannot meet the positional

tolerance, so the arm cannot grasp the handhold.

For whatever maximum speed of operation is chosen, rapid

changes in robot velocity create situations in which already-

selected handholds are no longer practical, or even reachable.

This occurs because, since handholds are chosen based on the

current arm base velocities, rapid changes in those velocities

make the original choices undesirable. This does not create a

serious problem except in those cases in which the originally

chosen handholds are unreachable after the change in velocity.

To deal with this problem, an additional step was added to the

free gait algorithm. The added step computes the difference

between the time elapsed since the arm was lifted and the ex-

pected time for the current arm trajectory which was calculated

by the trajectory algorithm. If that difference is more than

one second, a new handhold is chosen based on the new arm base

velocity. Thus the additional step allows the program to "re-

consider" its choices based on changing commands from the

operator.

As mentioned in Chapter 3, handholds can be removed from

the terrain to simulate obstacles of zero height such as holes

or trenches. The robot has successfully crossed trenches as

wide as four-fifths of the diameter of an arm's reachable area.

:his shows that handholds on the terrain do not have to be

placed closely together for the robot to be able to move over

((9

i

{

67

the surface, so long as the robot has an accurate internal model

of where the available handholds are.

6.2. Suggestions for Future Work.

The major weakness of this work is that many of the cal-

culations (that of kinematic margin, for instance) are made by

taking advantage of the fact that the terrain is a cylinder.

An improvement could be made by using the same basic approach

but using methods of calculations which are applicable for more

general terrains. This would seem to require use of the

"reachable volume" of the arm rather than the artificial

"reachable area" approach.

Another improvement could be made in the arms themselves.

As discussed in Section 4.2.2., when one or both of the Jacobian

matrices for the arms are singular, some velocities are unattain-

able, which could be a serio. , s problem at times. Use of arms

with more than six degrees of freedom would allow Jacobian matrix

singularities to be avoided entirely.

At any rate, the robot's success in walking over both ter-

rain with regularly spaced handholds and terrain with obstacles

seems to confirm the validity of the basic approach used. Al-

though improvements could be made in the robot's speed and in

applying the approach used here to more general terrain, this

work shows that a robot similar to the one described may be a

practical possibility in the not-too-distant future.

t	 I

68

t

APPENDIX: COMPUTER PROGRAMS

The following pages contain the computer programs

which were used to implement the algorithms described in

Chapters 4 and S. Other programs used in the simulation

are not included due to space limitations.

69

L'

C
C THIS IS THE MAIN ROBOT CONTROL PROGRAM.

C
C M.R. PATTERSON
C
C****
C

INTEGER CYL(2Jr24)rTRANS(12)rARM.AhMDIS(4r3)07RUB(3)rFAKM(3r3)r
+ JSTK(3)rNUMSEGrAFLAU(3)
REAL TH(6r3)rTHV(6r3)rCTH(7r3)rSTH(7r3)rJOIN1S(3r8r3)rEND(3r4r3)r
+ ROBMAT(3r4)rIRBMAT(3r4)r RAIiIALrAXIALrHEIGHTrRUBVEL(6)rRVELC(6)r
+	 TIMErTIMINCrVELC(3)rTAOrAXOrGAOrTA(4)rAX(4)rGA(4)rELTIM(4)9
+ RTAVEL(4)rRAXVEL(4)rRGAVEL(4)rINSEUTrRELTIM
DIMENSION IDISF'(3r10)rEULER(3)rTRMAT(3r4)rVECT1(3)rVECT2(3)

C
COMMON CYL
COMMON /ARMS/ARMSTS
COMMON /DISP/FROBrFARM

C
DATA ISEGINrIDtSTrIVELOCrIACTRLrIEXIT /' B'•';,`r'V'r ' A'r'E'/
DATA LTCLRrLT7rLT14rF'I/0r'000400r'000002r3„141:^9265/

C
C

CALL VGINI
C

WRITE(5r100)
100 FORMAT(///'s THE VG HAS BEEN INITIALIZED. ENTER "B" TU BEGIN: ')
10 READ(5r101) IREPLY
101 FORMAT(A1)

IF(IREPLY.NE .IBEGIN) GUTO 10
C
C* SET VG TRANSFORMATION MATRIX AND DISPLAY CYLINDER.
C

CALL VGSEN(3)

CALL VGSEN(1)

CALL VGSEN(7r0)
DO 1 I=1x12

TRANS(I)=0
1	 CONTINUE

WRITE(59200)
200 FORMAT(//'$ENTER DISPLAY ANGLE (IN DEGREES): ')

READ(5r201) THETA
201 FORMAT(F8.3)

THETA=THETA*F'I/180.
TRANS(1)=32767
TRANS(5)=32767*COS(THETA)
TRANS(6)=32767*SIN(THETA)

TRANS(8)=32767*(—SIN(THETA))
TRANS(9)=32767*COS(THETA)
TRANS(12)-16384
CALL WRCOM(4r12rTRANS)
CALL VGSEN(4)

C

7 0	 .^

CALL SETHLD
L'
C* SET JOINT ANGLES AND ANM SPATES TO THEIR INITIAL VALUES.
C

DO 2 ARM=lr3
TH(1rARM)-0.0'I/180.
TH(2r ARM) =90.XPI/180.
TH(3rARM)--85.*PI/180.
TH(4rARM)=0.*PI/180.
TH(59ARM)--5.*PI/180.
TH(6rARM)-0.*PI/180.
THV(6rARM)=0.
ARMSTS(1rARM)=0

2	 CONTINUE
C
C* SET ROBOT MATRIX.
C

WRITE(5r300)
300 FORMAT(///' ENTER CENTER COORDINATES (IN POINTS RADIAL AND 'r

+ 'AXIAL) AND HEIGHT OF''/'$ ROBOT BURY: ')
READ(5r301) RADIALrAXIALrHEIGHT

301 FORMAT(3F11.4)
ANGLE=25.+5.*RADIAL
EULER(1)=-ANGLE
EULER(2)=90.
EULER(3)=0.
CALL MATEUL(ROBMAT(lrl)rEULER)
ROPtiAT(lr4)=(100.+HEIGHT)*COS((180.-ANGLE)*F'I/180.)
ROBMAT(2r4)=(100.+HEIGHT)*SIN((180.-ANGLE)*F'I/180.)
RO9MAT(3r4)=--9.25*AXIAL

C
C* DISPLAY ROBOT BODY.
C

DO 3 ARM=1r3
CALL TRIG(TH(1rARM)rCTH(1rARM)rSTH(1.ARM))
CALL F'OSIT(CTH(1rARM)rSTH(lPARM)rJOINTS(lrl?ARM)rENII(1r1rANM))
CALL TRANSM(OrARM.TRMAT)
CALL MM3431(4rTRMATrVECT1rJUINTS(1r1rARM))
CALL MM3431(4rROBMATrVECT2tVECT1)
IDISP(1rARM)=VECT2(1)*100.+8192.
IDISP(2rARM)=VECT2(2)*100.+8192.
IDISF'(3rARM)=VECT2(3)*100.+8192.

3	 CONTINUE
IDISP(1r4)=IDISP(1r1)
IDISP(2r4)=IIlISP(2r1)
IDISP(3r4)=IDISP(3rl)
CALL WRCOM(64r12rIDISP)
DO 4 I=1r3
CALL RDC0M(39r1rFROB(I))
CALL VGSEN(994r1)

4	 CONTINUE
C
C* DISPLAY ARMS.
C

DO 5 ARM-1r3

71

CALL TRANSM(OrARMrTRMAT)

DO 6 1=1r8
CALL MM3431(4rTRMATrVECTIrJOINTS(lrlrAI(M))
CALL MM3431(4rR09MATrVECT2rVECT1)
IDISF•(I+I)-VECT2 (1)*100.+8192.
IDISP (2rI)=VECT2 (2)*100.+8192.
IDISP (3rI)-VECT2 (3)*100.+8192.

6	 CONTINUE
IDISP (1r9)=IDISF•(1P6)
IDISP (2r9)-lDISP(2r6)
IDISP (3r9)=1DISh•(3r6)
IDISP (1r10) = IDISP(lr7)
IDISP (2r10)-IDISP(2r7)
IDISP (3r10)=IIiISP(3r7)
CALL WRCOM(64r30rIDISP)
DO 7 I =lr3

CALL RDCOM(39r1rFARM(ARMrI))
CALL VGSEN(9r10r1)

7	 CONTINUE
5	 CONTINUE

C
20 CALL SETIiWN(THrTHVrCTHrSTHrJOINTSrENUrRUBMAIrHFIGHT)

DO 8 ARM=lr3
DO 9 J=1r6

THV(JrARM)=0.
9	 CONTINUE
8 CONTINUE

CALL MOVRO6(THrTHVrCTH ► STHrJUINTSrENDrRORMAT9TIMINCrAFLAG)
WRITE(5r400)

400 FORMAT(///' ENTER "0" FOR DESTINATION MODE, — V — FOR VELOCITY'.
+ ' MUDEr "A'' FOR ARM'/'$CONTROL MUDEr OR "E" TO EXITS ')

30 READ(59401) IREPLY
401 FURMAT(Al)

IF(IREPLY.EQ.IDEST) GUTO 80
IF(IREPLY.EQ.IVELOC) GUTO 50
IF(IREPLY.EQ.IACTRL) GUTO 40
IF(IREPLY.NE .IEXIT) GOTO 30
CALL VGSEN(16)
STOP

C
C
C	 **********************
C
C	 * ARM CONTRUL MUDE
C
C	 **********************
C
C

40 CALL AkMCTL(THrTHVrCTHrSTHrJUINTSrENIIrRUEMAI')
GOTO 20

C
C
C	 *******************
C
C	 * VELOCITY MODE

72

.	 , •,> - . - -	 -tn. .- _^ ,tip.,--. ._	 --

C
C	 ************«****
C
C

50 TIME=-0.1
60 CALL RDCOM (17PIrLIGHT)

CALL WRCOM(17r1rLTCLR)
IF(LIGHT.EQ.LT7) COTO 20
TIMING=0.1
TIME=TIME+TIMING
DO it ARM=lr3

IF(ARMSTS(1rARM).EQ.1) COTO 70

11	 CONTINUE
C
C* CALCULATE ROBOT POSITION AND VELOCITY.
C

70 CALL ROBST(ARMrTH(17ARM)rTHV(1rARM)rCTH(1rAkM)r^TH(1rAkM)r
+ JOINTS (111rARM)rEND(1r1rARM)rF;OBMATrRUBVEL)

C
C* CALCULATE COMMANDED ROBOT VELOCITIES.
C

CALL RDCOM(18r3rJSTK)
VELC(1) =FLOAT(ISIGN(IDIM(IABS(JS"-K(1)+1)v 640)rJSTK(i)))/16000.
VELC(2) =FLOA1'(ISIGN(IDIM(IABS(JSTK(2)+1)r 640)rJSTK(2)))/16000.
VELC(3)=FLOAT(ISIGN(IIiIM(IABS(JSTK(3)+1)r1280)rJSTK(3)))/640000.
CALL RVEL(ROBMATrROBVELrHEIGHTrT1MINCrVELCrRVELC)

C
CALL INVM34(IRBMATrRObMAT)
CALL ARMS(THrTHVPCTHrSTHrJUINTSrENUrROBMAI'rHEIGHTFIRBMATrRVELCr
+ TIMErTIMINC)
CALL MOVROB(TH.THVrCTHrSTHrJOINTSrENDrRUBMA)'rTIMINCrAFLAG)
IF(MAXO(AFLAG(1)rAFLA0(2)rAFLAG(3)).NE.0) COTO 220
COTO 60

C
C
C	 **********************
C
C	 * DESTINATION MODE
C
C **********************
C
C
C* READ SEQUENCE OF POINTS.
C

80 DO 12 ARM-1r3
IF(ARMSTS(1rAKM).EQ.1) COTO 90

12	 CONTINUE
90 CALL ROBST(ARMrTH(1rARM)rTHV(IPARM)PCTH(IPARM)rSTH(1rAKM)r
+ JOINTS(lrlrAkM)rEND(1r1rAkM)rROBMATPROBVEL)
TAO=((PI-ATAN2(ROBMAT(2r4)rROBMAT(lr4)))*180./PI-25.)/5.
AXO=ROBMAT(3r4)/-9.25
CALL EULMAT(EULERrROBMAT)
GAO-EULER(3)
WRITE(5r500) TAOPAXOrGAO

500 FURMAT(///' THE ROBOT IS NOW AT 'YJF11.4)

I

73

WRITE(Sr600)
600 FORMAT(///'$ENTER THE NUMBER OF SEUMENTS: ')

READ (5r601) NUMSEG
601 FORMAT(I3)

IF(NUMSEG.EG.1) GOTO 110
DO 13 I=1 / NUMSEG-1

WRITE (Sr700) 1
	700	 FORMAT(//'$ENTER POINT 'rllr': ')

READ (5r701) TA(I)rAX(1)rGA(I)

	

701	 FORMAT(3F11.4)

	

13	 CONTINUE
110 WRITE(5+800)
800 FORMAT(//'$ENTER TERMINAL POINT: ')

READ (5r801) TA(NUMSEG)rAX(NUMSEG)rGA(NUMSEG)
801 FORMAT(3F11.4)

C
C* CALCULATE SLOMENT TIMES AND ACCELERATIONS.
C

TIMEI=ABS(TA(1)-TAO)/.25
TIME2=ABS(AX(1)-AXO)/.25
TIME3=ABS(GA(1)-GAO)/1.
ELTIM(1)=AMAX1(TIME1rTIME2rTIME3)
RTAVEL(1)=(TA(1)-TAO)/ELTIM(1)
RAXVEL(1)=(AX(1)-AXO)/ELTIM(1)
RGAVEL(1)-(GA(1)-GA0)/ELTIM(1)
IF(NUMSEG.E0.1) GO'10 120
DO 14 ISEG=2/NUMSEG

TIMEI=AHS (TA(ISEG) -TA(ISEG-1))/.25
TIME2=ABS(AX (ISEG) -AX(ISEG-1))/.35
TIME3 =ABS(GA (ISEG) -GA(ISEG-1))/1.
ELTIM(ISEG)-ELTIM(ISEG-1)+AhAXl(TIME1rTIME-^rTIME3)
RTAVEL(ISEG)=(TA(ISEG)-TA(ISEG-1))/(ELTIM(ISEG)-ELTIM(ISEG-1))
RAXVEL(ISEG)=(AX(ISEG)-AX(ISEG-1))/(ELTIM(ISEG)-ELTIM(ISEG-1))
RGAVEL(ISEG)=(GA(ISEG)-UA(ISEG-1))/(ELTIM(ISEU)-ELTIM(ISEG-1))

	

14	 CONTINUE
C
C

120 TIME=-0.1
130 CALL RDCOM(17.1.LIGHT)

CALL WRCOM(17r1rLTCLR)
IF(LIGHT.EO.LT7) GOTO 20
TIMINC=0.1
TIME=TIME+TIMINC

C
C* CALCULATE ROBOT POSITION.

C
DO 15 ARM=lr3

IF(ARMSTS(lYARM).E:O.l) SOTO 140

	

15	 CONTINUE
140 CALL ROOST (ARM rTH(1r ARM) vTHV(1t ARM) rCTH(IP ARM) rSTH(IPARM)r

+ JOINTS(ItIPARM)rEND(lpltAkM)rROBMATrROBVEL)
TAA=((PI-ATAN2(ROSMAT(2,4)rROBMAT(lr4)))*180./F•1-25.)/5.
AXA=ROBMAT(3v4)/-9.25
CALL EULMAT(EULERrROBMAI)
GAA-EULER(3)

74

C
C* CALCULATE COMMANDED ROBOT VELOCITIES.
C

INSEGT=O.
ISEG-1

150 IF(TIME.LT .ELTIM(ISEG)) GOTO 160
IF(ISEG.EO.NUMSEG) GOTO 190

INSEGT=ELTIM(ISEG)
ISEG=ISEG+1
GOTO 150

160 RELTIM=TIME—INSECT
IF(ISEG.EG.1) GOTO 170

TAD=TA(ISEG-1)+RTAVEL(ISEG)*RELTIM
AXIi=AX(ISEG-1)+RAXVEL(ISEG)*RELTIM
GAD=GA(ISEG-1)+RGAVEL(ISEG)*KELTIM
GOTO 180

	

170	 TAD=TAO+RTAVEL(1)*RELTIM
AXD=AXO+RAXVEL(1)*RELTIM
GAD=GAO+RGAVEL(1)*RELTIM

180 VELC(1)=RTAVEL(ISEG)+(1./TIMINC)*(TAIi—TAA)
VELC(2)=RAXVEL(ISEG)+(1./TIMINC)*(AXIi—AXA)
VELC(3)=(RGAVEL(ISEG)+(1./TIMINC)*(GAIT—GAA))*h'I/180.
GOTO 210

190 VELC(1)=(1./TIMINC)*(TA(NUMSEG)—TAA)
VELC(2)=(1./TIMING)*(AX(NUMSEG)—AXA)
VELC(3)=(1./TIMINC)*(GA(NUMSEG)—GAA)*Pl/l80.
IF((ABS(VELC(1)).G)'.1.).OR.(ABS(VELC(2)).GT.1).OR.

+	 (ABS(VELC(3)).GT.1.)) GOTO 210
WRITE(Sr900)

	

900	 FORMAT(///' TERMINAL POSITION REACHED.')
GOTO 20

210 CALL RVEL(ROBMATrROBVELrHEIGHTrTIMINCrVELCrRVELC)
C
C* MOVE ROBOT.
C

CALL INVM34(IRSMAT.ROBMAT)

CALL ARMS(THrTHVrCTHrSTHr.IUINTSrENOrROBMAI'rHEIGHTrIRBMATrRVELCr
+ TIMErTIMINC)

CALL MUVROB(THrTHVrCTHrSTHr.)OINTSrENIicRUBMAfrTIMINCrAFLAO)
IF(MAXO(AFLAG(1)rAFLAG(2)rAFLAG(3)).NE.0) GOTO 220
COTO 130

C
220 DO 16 ANM=1r3

IF(AFLAG(ARM).E0.0) GO r0 16
WRITE(5r1100) AFLAG(ARM)rARM

	

1100	 FORMAT(///' JOINT'rl2r' OF ARM'PI2r' IS OUT OF LIMITS.')
GOTO 20

	

16	 CONTINUE
C

END

75

C
C****
C
C THIS SUBROUTINE CONTROLS THE ARMS' MUTIONS WHEN THE RUdOT IS WALKING.

C
C M.R. PATTERSON
C
C****
C

SUBROUTINE ARMS(THrTHVrCTHrSfHrJOINTSrENDrROBMAIrHEIGHTrIKBMATr
+ RVELCrTIMErTIMINC)

C
INTEGER ARMrARMSTS(4r3)rTSEGCTrRSEGCTrTERFLGrHLiHLD(2)r

+ HDHLDS(2r48)rNUMSEG
REAL TH(6r3)rTHV(6r3)rCTH(7r3)rSTH(7r3)rJOINTS(3r8r3)rENLl(3r4r3)r

+ ROBhiAT(3,4)rHEIGHTrIRBMAT(3r4)rRVELC(6)rTIMErTIMINC ► INTIMEr
+ ELTEMErEXTEND(3r4)rELTT1M(36)rTACC(3r36)rINTVEL(3r36)9
+ INT'OS(3x36)rELRTIM(12)rRACC(12)rINRPOS(9r12)rROTVEC(3r12)r
+ TF_«POS(3r4)rEXTVEL(6)rEXISEGrF'OINTS(3r4r6)rVEL(6)

DIMENSION TRMAT(3r4)rOTRMAT(3r4)
C

COMMON /ARMS/ARMS'IS
COMMON /F'ATH/INTIMErTSEGCTrELTTIMrTACCrINTVELrINTPOSrRSEGCTr

+ ELRTIMrRACCrINRF'OSrROTVECrTERF'OS
C

C* FIND ARM IN AIR.

C
DO 1 ARM=1r3

IF(ARMSTS(1rARM).EU.0) COTO 10
1	 CONTINUE

COTO 30
C
C* ARM IS IN TRANSFER PHASE.
C

10 ELTIME=TIME-INTIME
FLAG=0.
Ir((ELTIME-ELTTIM(TSEGCT)).(.T.1.) COTO 20

FLAG=1.
COTO 40

20 CALL TRANSM(OrPR'MrTRMAT)
CALL MM3434(OTRriATrRUBMATrTRMAT)
CALL MM3434(EXTENDrOfRMATrEND(1r1rARM))
CALL VELCOM(EXTENE,rTSEGCTrELTTIMrTACCrINTVELrINTF'OSrRSEGCTr

+ ELRTIMrRACCrINRPOSrROTVECrTERPOSrELTIMErTIMINCFEXTVELrTERFLG)
IF(TERFLG.EG.0) COTO 60

ARMSTS(irARM)=1
C
C* ALL ARMS ARE SUPPORTING.
C

30 EXSGMN=99.
DO 2 ARM=lr3

CALL EXIST(ARMrROBMATrHEIGHTrRVELCrARMSTS(2rARM)rEXISEG)
IF(EXISEG.GE.EXSGMN) GUTO 2

EXSGMN-EXISEG

I

76

MESARM=ARM

CONTINUE
IF(EXSGMN.GT .1.) COTO 70
ARM=MESARM

C
C* CALCULATE NEW TRAJEL'TORY.
C

40 CALL TRANSM(OrARMrTRMAT)
CALL MM3434(OTRMATrROHMA)rTRMAT)

CALL MM3434 (EXTEND rO'(RMATrEND(1r1rARM))
CALL HDHOLD(ARMrEXTENDrRODMATrHEIGHTrHIIHLI]SrNOHHS)
IF(NOHHS.EO.0) COTO 70
EXSGMX--1.
DO 3 I=1rNOHHS

CALL EXIST(ARMrROHMAI'rHEIGHTrRVELCrHDHLDS(lIl)rEXIShG)

IF(EXISEG.LE.EXSGMX) COTO 3
EXSGMX=EXISEG
MXESHH=I

3	 CONTINUE
IF(FLAG.EO.1.) COTO 50
IF(EXSGMX.LE.EXSGMN) COTO 70

50 HDHLD(1)=HDHLDS(1rMXESHH)
HDHLD(2)-HDHLDS(2rMXESHH)

C
CALL HHDF'TH(ARMrOTRMATrHDHLDrF'OINTSrNUMSEG)
DO 4 I=lr4
DO 5 J-lr3

TERPOS(JrI)=POINTS(JrIrNUMSEG)
5	 CONTINUE
4	 CONTINUE
CALL ARMFTH(EXTENIirNUMSEGrPOINTSrTSEOCTrELTTIMrTACCrINTVELrINTF'OSr

+ RSEGCTrELRTIMrRACCrINRPOSrROTVEC)
C

ARMSTS(1rARM)=0
INTIME=TIME
COTO 70

C
C* MOVE TRANSFER PHASE ARM.
C	 p

60 CALL AVEL(ARMrROHMATrIROMATrRVELCrEXTVELrVEL)
CALL SOLVE(TH(1rARM) rl'HV(1rARM)rCTH(IPARM)rSfH(1rARM)r
+ JOINTS(lrlIARM)rEND(IrIrARM)rVEL)

C
C* MOVE SUPPORT PHASE ARMS.
C

70 DO 6 ARM=lr3
IF(ARMSTS(1rARM).NE.1) COTO 6
CALL HLDF'OS(ARMrEND(1r1rARM)rROAMATrTIMIN(:rEXTVEL)
C.)LL AVEL(ARMrROPMATrIRBMATrRVELC.EXTVELrVEL)
CALL SOLVE(TH(1rARM) rl'HV(1rARM)rCTH(1rARM)rSfH(1rARM)r

+	 JOINTS(lrlrARM)rENII(1rlrARM)rVEL)
6	 CONTINUE

C
RETURN
END

77

w.^

C
C****
C
C THIS SUBROUTINE RETURNS A LIST OF REACHABLE HANDHOLDS FOR A
C	 GIVEN ARM.
C
C M.R. PATTERSON
C
C****
C

SUBROUTINE HDHOLD (ARM r EXTEND rRUBMATP HEIGHT PHLIHLDSPNOHHS)
C

INTEGER ARM, HIiHLLIS (2 P 48) P NUFIHS P CYL (25 P 2^.) P ARMSTS (4 P 3)
REAL EXTEND(3P4)P ROBMAT(3r4)rNEIGHfPNUPSNPESPHWPTRM33(9P3)r
+ TRM31(3p6)
DIMENSION XYZ(3)PTA(2)rTACHH(2)PTAHH(2)PTAROB(2)

COMMON CYL
COMMON /ARMS/ARMSTS
COMMON /ARMF'AR/NUrSNPESPHW
COMMON /TRMATS/TRM33r1'RM31

DATA PI/3.14159265/

L.
C
C* CALCULATE ARM BASE COORDINATES IN (TPA).
C

CALL MM3431(4rROBMAI'YXYZPTRM31(IyARM))
CALL TACALC(RUBMAfPXYZPTA)
CALL TACALC(RUBMAI'PEX7END(lr4)rTACHH)

C
C* DETERMINE HANDHOLD LIST.
C

CENIiST=SORT((100.+HEIGHT-NO)**2+TRM31(lPl)*..')
ANGLE=ATAN(TRM31(irl)/(100.+HEIGHT-NO))
CRANGL=((100.+HW)**2+CENDST**2-(2.*F.S)**2)/(2.*CENDST*(100.+HW))
RANGLE=ATAN(SURT(1.-CRANGL**2)/CRANUL)
STANGL=7RM31(lrl)/(100.+HW)
TANGLE=ATAN(STANGL/SURT(1.-STANGL**2))
RADIUS=(ANGLE+RANGLE-TANGLE)*(100.+HW)/9.25

C
INDEX=1
DO 1 I-1P25
DO 2 J=1,24

IF(CYL(IrJ).NE.1) GOTO 2
IF((ARMSTS(2rARM)•EU.I).ANLi.(ARMSTS(31ARM).EU.J)) COTO 2
TAHH(1)=FLOAT(I)
TAHH(2)=FLOAT(J)
IF(ABS(TAHH(1)-TA(1)).GT.RALjl .i) UUTO
IFIABS(TAHH(2)-TA(2)).G'f.RAV JS) GUTO 2
HHRA02=(TAHH(1)-TA(l))**2+(iAHH(2)-TA(2))**2
HHRAD=SGRT;HHRAD2)
IF(HHRAD.GT .RADIUS) GOTO 2
IF(HHRA0.LT.(SN+2.)/9.25) GUTO
CALL TACALC(RUBMATPROBMAf(IP4)PTAROB)

C

C

78

CURB=SURT((TA(1)-TAROB(1))**2+(TA(2)-'fAROB(2))**2)
DHH=HHRAD
DTPROD-(TA(1)-TAROB(1))*(TAHH(1)-TA(1))+

+	 (TA(2)-TAROB(2))*(TAHH(2)-TA(2))
IF((DTPROD/DRB/DHH).LT.-0.707) GUTO 2
Al2-(TAHH(1)-TACHH(1))**2+(TAHH(2)-TALHH(2))**2
B12=(TACHH(1)-TA(1))**2+(TACHH(2)-TA(2))**2
C12=HHRAD2
Al=SQRT(Al2)
B1=SQRT(B12)
C1=HHRAD
COSB=(B12-C12-Al2)/(-2.*A1*Cl)
COSC=(C12-Al2-812)/(-2.*Al*BI)
IF((COSB.GT.O.).AND.(COSC,.01'.0.)) UUTO ',0

IF(C1.LT.(SN+2.)/9.25) GUTO 2
COTO 20

	

10	 DIST=C1*SQRT(1.-COSB**2)
IF(DIST.LT.(SN+2.)/9.25) GUTO 2

	

20	 A22=Al2
822-(TACHH(1)-TAROB(1))**2+(TACHH(2)-TAROB(2))**2
C22=(TAHH(1)-TAROB(1))**2+(TAHH(2)-TAFOB(2))**2
A2=A1
92-SQRT(822)
C2-SQRT(C22)
COSH=(B22-C22-A22)/(-2.*A2*C2)
COSC=(C22-A22-922)/(- 2. *A2*112)
IF((COSB.GT .O.).AND.(COSC.GT .O.)) COTO 30

IF(C2.LT.(TRH31(1,1)-SN-2.)/9.25) COTO 2
COTO 40

	

30	 DIST=C2*SQRT(1.-CO£B**2)
IF(DIST.LT.(TRH31(lil)-SN-2.)/9.25) GUTO 2

C

	

40	 HDHLDS(lPINDEX)=1
HDHLDS(2,INDEX)-J
INDEX=INDEX+1

2 CONTINUE

	

1	 CONTINUE

NOHHS=INDEX-1
C

RETURN
END

79

i

C
C****
C
C THIS SUBROUTINE CALCULATES THE EXISTENCE SEGMENT FOR A GIVEN
C	 HANDHOLD AND ARM.
C
C M.R. PATTERSON
C
C**** .
C

SUBROUTINE EXIST (ARMPRUBMATrHE1GHTrRVELCPHNDHLI'P EXISEG)
C

INTEGER ARMrHNDHLU(2)
REAL P.OBMAI' (3x4)1IIEIGHTPRVELC (6)rEX1SEGPNUFSNPESPHWoTRM33(9v3)r
+ TRM31(396)
DIMENSION XYZ(3) PXYZO (3r2)rl 'A(2)rl'AU (2p2)PXYZV(3)oTAV(2)r
+ VXYO(2/2)IIAHH(2)/VXYHH(2)9VECT(3)

C
COMMON /ARMPAR/NOPSNiESYHW
COMMON /TRMA(S/TRM33PTRM31

C
DATA PI/3.14159265/

C
C
C* CALCULATE ARM BASE POSITIONS IN (TPA).
C

CALL MM3431(4pRUBMAI'PXYZYTRM31(lPARM))
INDEX-1
DO 1 I=103

IF(I.EQ.ARM) GOTO 1
CALL MM3431(4/RUBMATIXYZO(171NDEX)ITRM31(l.I))
INDEX-2

1	 CONTINUE
C

TH=A7AN2(XYZ(2)?XYZ(1))
CALL TACALC (RUBMA 'frXYZPTA)
CALL TACALC(RUBMATPXYZO (171)PTAO(lrl))
CALL TACALC (ROBMATFXYZO (lr2)PTAU(lr2))

C
C* CALCULATE ARM BASE VELOCITY IN (TPA).
C

CALL MM3431(3vROBMAI'rVECTPTRM31(lPARM))
XYZV(1)=RVELC(5)*VECT(3)—RVELC(6)*VECT(2)+RVELC(1)

^XYZV(2)=RVELC(6)*VECT(I)—RVELC(4)*VECT(3)+kVE'LC(2)

XYZV(3)-RVELC(4)*VE2T(2)—RVELC(5)*Vl^CT(1)+RVELC(3)
TAV(1)=(SIN(TH)*XYZV(1)—COS(TH)*XYZV(2))/9.25
TAV(2)=—XYZV(3)/9.25

C
C* CONVERT POINTS TO (VXPVY).
C

PHI=ATAN2(TAV(2),TAV(1))
DO 2 I=lv2
VXYO(1rI)=SIN(PHI)*(TAO(L I)—TA(1))—CUS(PH1)*(TAO(2,1)—TA(2))
IF(VXYO (1,I).EQ.0.) VXYO(liI)=1.OE—B
V7,YO (2,I) -COS (PHI)* (TAU (1,I)—TA (1))+SIN (PHI)* (TAU (2rI)—lA(2))

80

2	 CONTINUE
TAHh(1)=P'LUA1'(HNDHLD(1))
TAHH(2)=FLOA1(HNhHLD(2))
VXYHH(1)=SIN(PHI)*(TAHH(1)-TA(1))-CUS(PHI)*(TAHH(2)-TA(2))
VXYHH(2)=COS(PHI)*(TAHH(1)-TA(1))+SIN(F'HI)*(TAHH(2)-TA(2))

C
C* CALCULATE THE FUUR ARM LIMITS.
C

YLIMI=VXYHti(1)/VXYO(1rl)*VXYO(2,1)
IF(((VXYHH(1)*VXYO(1,1)).LT.O.).OR.(VXYHH(2), I_T.YLIM1)) YLIM1=-99.

YLIM2=VXYHH(1)/VXYO(lr2)*VXYO(2r2)
IF(((VXYHH(1)*VXYO(1,2)).L1'.0.).OR.(VXYHH(2).LT.YLIM2)) YLIM2=-99.

RAD1=(SN+2.)/9.5
IF(ABS(VXYHK(1)).GT.RAD1) GOTO 10
YLIM3=SGRT(RAD1**2-VXYHH(1)**2)

10 IF((ABS(VXYHH(1)).GT.RAD1).OR.(VXYHH(2).LT.O.)) YLIM3=-99.
C

CENDST=Sl1RT((100.+HEIGHT-NU)**2+TRM31(l,l)**2)
ANGLE=ATAN(TRM31(lr1)/(100.+HEIGHT-NU))

CRANGL=((100.+HW)**2 +CENDST**2-(2.*ES)**2)/(2.*CENDST*(100.+HW))
RANGLE=ATAN(SORT(1.-CRANGL**2)/CRANGL)
STANGL=TRM31(lrl)/(100.+PfW)
TANGLE=ATAN(STANGL/SURT(1.-STANGL**2))
RAD2-(ANGLE+RANGLE-TANGLE)*(100.+HW)/9.25
YLIM4=-SURT(RAD2**2-VXYHH(1)**2)

C
C* CALCULATE EXISTENCE SEGMENT.
C

EXISEG=VXYHH(2)-AMAX1(YLIHIPYLIM2rYLIM3rYLIM4)
C

RETURN
END

C

C

0.01r2

^-	 PIcr rs

81

c
C 1HIS SUBROUTINE UALCULA(ES IHE POINTS THRUUUH WHICH AN ARM CAN
C	 PASS FOR A TRAJECTORY WHICH WILL TAKE IT 1D THE GIVEN HANDHULD.
C
C H.R. PA1TERSON
C

C

	

3	 SUBROUTINE HHDPTH (ARM rO'FRMA,rPHNUHLOtPOINTSrNUMSEG)
C

INTEGER ARMrARMSTS(4r3)rHNDHLD(2)rNUMSEU
REAL U"fRMAT(3r4)rPOINTS(3r4r6)
DIMENSION EULER(3)

C

COMMON /ARMS/AF:MSTS

	

^	 r

LUATA PI/3.14159265/

	

s	 C

C

INDEX=1

	

A	 C
IF(ARMSTS(IPARM).NE.1) 0010 lU
ANGLE=25.+S.*ARMSIS(2rARM)
POINTS (1 r 4 r INLIEX)=103. *C:OS ((180. -ANGLE) *P"I/1130.)
POINTS(2r4rINDEX)=103.*SIN((18U.-ANGLE)*PI/1N0.)
POINTS(3r4rINDEX)=-9.25*ARMSTS(3rARM)
EULER(1)=-ANGLE
EULER(2)=90.
EULER(3)=0.
CALL MATEUL(POINTS(1rItINDEX)rEULER)
INDEX=INDEX+1

C
10 ANGLE=25.+5.*HNDHLD(1)

POINTS(1r4rINDEX)i103.*COS((180.-AN'jLE)*Pr/180.)
POINTS(2r4+INDEX)=103.*SIN((180.-ANGLE)*F•I/1130.)
POINTS(3r4rINDEX)=-9.25*HNUHLD(2)
EULER(1)-ANGLE
EULER(2)=90.
EULER(3)=0.
CALL MA1'EUL(POINTS(lrl ► INDEX)rEULER)
INDEX=INDEX4.1

C
POINTS(1r4rINDEX)=100.*CQS((180.-ANGLE)*F'I/180.)
POINTS(2r4rlNDEX)=100.*SIN((180.-ANGLE)*PI/180.)
POINTS(3r4rINDEX)=-9.25*HNUHLD(2) 	 i
EULER(1)=-ANGLE
EULER(2)=90.
EULER(3)=0.
CALL MA1'EUL(POINTS(1r1rINDEX)rEULER)

c
ARMSTS(2rARM)-HNDHLD(1)
ARMSTS(3rARM)-HNDHLU(2)
ARASTS(4rARM)=0

82

1

RETURN
END

83

C
C****
C
C THIS SUBROUTINE CALCULATES THE TIMES AND ALCELERATIONS REQUIRED TO
C	 MOVE AN ARM THROUGH A GIVEN PATH. THE TIMES AND ACCELERATIONS
C	 ARE CALCULATED SUBJECT TU MAXIMUM ACCELERATION AND VELOCITY
C	 CONSTRAINTS.
C
C M.F. PATTERSON
C
C****
C

SUBROUTINE ARMF'TH(ENI19NUMSEGPPOINTStTSEGCTtELTTIMtTACCtINTVELt
+ INTPOStRSEGCftELRTIMtRACCtINRF'OStROfVEC)

C
INTEGER NUMSEGtTSEGCTtRSEGCT
REAL ENIi(3+4)tPOINTS(3t4t6)tELTTIM(36)tTACC(3t36)tINTVEL(3936)t

+ INTF'OS(3136)tELRTIM(12)tRACC(12)tINFPOS(9tl2)tROTVEC(3t12)t
+ TRVEL(7)tTRTIME(7)tTRDIST(7)tUSX(6)tUSY(6)tUSZ(6)tTSEGTM(615)1
+ TSEGAC(6t5)tRSEGAC(6)tkVEC(3t6)tTRTMIN(6)tROTMIN(6)tERRMAXt
+ MAXTRVtMAXTRAtMAXROVtMAXROA

DIMENSION SX(6)tSY(6)tSL(6)tDSEG(6)tUNACC(7)ICOSB(7)7TRUMAX(7)t
+ SOTRV(7)tREGSGA(6)tCHANGE(6)tDINSEG(6)tDMATCH(6)tSGVMX2(6)t
+ SEGVMX(6)tROfMAI'(3t3)tROTDIF(3)tF'HI(6)tROTSUM(3)

C
COMMON /PTHF'AR/ERRMAXPHAXTRVtMAXTRAPMAXROVtMAXROA

C
C

HUMTR=NUMSEG+l
C
C* CALCULATE SEGMENT VECTORS AND UNIT VECTORS.
C

SX(1)=POINTS(1t4t1)-END(1,4)
SY(1)-F'OINTS(2t4t1)-END(at4)
SZ(1)-POINTS(3t491)-END(3t4)
IF(NUMSEG.LT .2) GOTO 10
DO 1 I=2tNUMSEG

SX(I)=POINTS(lt4tI)-F'OINTS(lt4tI-1)
SY(I)-POINTS(2t4tI)-POINTS(2t4tI-1)
SZ(I)=POINTS(3t4tI)-POINTS(3t4t1-1)

1	 CONTINUE
C

10 DO 2 I=1tNUMSEG
DSEG(I)=SGRT(SX(I)**2+SY(I)**2+SZ(I)**2)
IF(DSEG(I).GE.1.OE-6) SOTO 20

DSEG(I)=0.
USX(I)=0.
USY(I)=0.
USZ(1)=0.
SOTO 2

20	 USX(I)=SX(I)/DSEG(I)
USY(I)=SY(I)/USEG(I)
USZ(I)=SZ(I)/LiSEG(I)

2	 CONTINUE
C

84

C* CALCULATE TRANSITION PARAMETERS.
C

UNACC(1)=2.
UNACC(NUMTR)=2.
IF((NUMTR-1).LT.2) GOTO 30
DO 3 I=2rNUMTR-1

COSH(I)	 (USX(I)*USX(I-1)+USY(I)*USY(I-1)+USZ(I)*USZ(I-1))
UNACC(1)=SQRT(2.*(1.+COSB(I)))

	

3	 CONTINUE
C
C* CALCULATE MAXIMUM TRANSITION DISTANCES.
C

30 TRDIST(1)=0.
TR0IST(NUMTR)=0.
IF((NUMTR-1).LT.2) GOfO 40
DO 4 I=2rNUMTR-1

TROMAX(I)=4.*ERRMAX/UNACC(I)
TRIiIST(I)-AMIN1(DSEU(I-1)/2.rDSEG(I)/2.ITRDMAX(I))

	

4	 CONTINUE
C
C* CALCULATE SQUARES OF MAXIMUM TRANSITION VELOCITIES.
C

40 DO 5 I=1rNUMTR
SQTRV(I)=2.*TRDIST(I)*MAXTRA/UNACC(I)

	

5	 CONTINUE
C
C* CALCULATE REOUIRED SEGMENT ACCELERATIONS.
C

50 DO 6 I=1rNUMSEG
.F((DSEG(I)-TRIiIST(I+1)-TRIiISf(I)).NE.O.) GOTO 70

IF((SQTRV(I+1)-SQTRV(I)).NE.O.) GUTO 60
REOSGA(I)=0.
GOTO 80

	

60	 REQSGA(I)=1.0E+6
GOTO 80

	

70	 REQSGA(I)-AES((SOTRV(I+1)-SOTRV(I))/(2.*(IiSEG(I)-
+	 TRDIST(I+1)-TRDIST(I))))

	

80	 IF(I.NE.1) GOTO 90
SEGAMX=REQSGA(I)
INSAMX=I

	

90	 IF(REQSGA(I).LE.SEGAMX) GOTO 6
SEGAMX=REUSGA(I)
INSAMX=I

	

6	 CONTINUE
C
C* IF GREATEST SEGMENT ACCELERATION IS GREATER THAN MAXIMUM ALLOWABLE
C*	 ACCELERATIONr RECALCULATE TRANSITION VELOCITIES AND DISTANCES.
C

IF((SEGAMX-MAXTRA).LE.1.0E-4) GUTO 130
IF(SOTRV(INSAMX).GT.SQ1'RV(INSAMX+1)) GOTO 110

ILO =INSAMX
IHI= INSAMX +1
GOTO 120

	

lid	 IHI= INSAMX
ILO=INSAMX+1

r J ,'	 ti_aL PA
	 '35
G,

fly

	

120	 SOTRV(IHI)-(SOTRV(ILO)+2.*MAXTRA*(DSEG(INSAMX)-TRDIST(ILO)))/
+	 (1.+UNACC(IHI))

TROIST(IHI)=SQTRV(IHI)*UNACC(IH1)/(2.*MAXTRA)
SOTO 50

C
C* CALCULATE TRANSITION VELOCITIES AND TIMES.
C

130 TRVEL(I)=0.
TRVEL(NUMTR)=0.
IF((NUMTR-1).LT.2) COTO 150
DO 7 I=2rNUMTR-1

TRVEL(I)-SQRT(SQTRV(1))

IF(TRVEL(I).NE.O.) 0010 140
TRTIME(I)=0.
COTO 7

	

140	 TRTIME(I)=2.*TROIST(I)/TRVEL(I)

	

7	 CONTINUE
C
C* CALCULATE MINIMUM SEGMENT TIMES.
C

150 DO 8 I=1,NUMSEG

IF(SOTRV(I).GT.SQTRV(I+1)) COTO 160
CHANGE(I)=1
IF(SOTRV(I).EU.SQTRV(I+1)) CHANGL(I)=0.
ILO-I
IHI=I+1
COTO 170

	

160	 CHANGE(I)=-1.
IHI-I
ILO=I+1

	

170	 DINSEG(I)=DSEG(I)-1RDIST(I)-TRDIST(1+1)
DMATCH(I)=(SQTRV(IHI)-SQ1'RV(ILO))/(2.*MAXTRA)
SGVMX2(1)=MAXTRA*(DINSEG(I)-DMATCH(I))+SQTRV(IHI)
SEGVMX(I)=SQRT(SGVMX2(I))

IF(SEGVMX(I).LE.MAXTRV) SOTO 180
SEGVMX(I)=MAXTRV
SGVMX2(I)=SEGVMX(I)**2
DF'EAK=DINSEG(I)-DMATCH(I)-(SGVMX2(I)-SOTRV(IHI))/MAXTRA
TRTMIN(I)=(2.*SEGVMX(I)-TRVEL(IHI)-TRVEL(ILO))/MAXTRA+

	

+	 DF'EAK/SEGVMX(I)
COTO 8

	

iB0	 TRTMIN(I)-(2.*SEGVMX(I)-TRVEL(IHI)-7KVEL(ILO))/MAXTRA

	

8	 CONTINUE
C
C* CALCULATE ROTATIONAL MATRIX AND ANGLE AND UNIT VECTOR OF ROTATION.
C

CALL MT3333(ROTMAT(1t1)YPOINTS(lpltl)PEND(lrl))
DO 9 I=IPNUMSEG

IF(I.EQ.1) COTO 190
CALL MT3333(ROTMAT(lrl)YPOINTS(1/1/1)/F'OINTS(lplpl-1))

	

190	 ROTDIF(1)=(ROTMAT(3r2)-RO'(MAT(2r3))/2.

ROTDIF(2)=(ROTMAT(1.3)-ROTMAT(3.1))/2.
ROTIiIF(3)=(ROTMAT(2r1)-•ROTMAT(lr2))/2.
SINFHI=SQRT(ROTDIF(1)**2+ROTDIF(2)**2+ROTDIF(3)**2)
COSF'HI-(ROTMAT(171) +ROTMAT(2r2)+ROTMAT.3r3)-1.)/2.

86

F'HI(I)=ATAN2(SINPHIrCOSPH1)

IF(SINPHI.LT.1.OE-6) GOTO 210
RVEC(1.I)-ROTDIF(1)/SINPHI
RVEC(2#1)-ROTDIF(2)/SINF'HI
FVEC(3.I)=ROTDIF(3)/SINRHI
GOTO 9

	

210	 IF(COSFHI.LT.0.9999) GOTO 220
PHI(I)=0.
RVEC(1rI)=0.

RVEC(2rT_)=0.
RVEC(3rI)=0.
GOTO 9

	

220	 ROTSUM(1)=(ROTMAT(3r2)+ROTMAT(2:3))/2.
ROTSUM(2)-(ROTMAT(lr3)+ROTMAT(3.1))/2.
ROTSUM(3)-(ROTMAT(2r1)+ROrMAT(lr2))/2.
IF((AHS(ROTSUM(1)).LT.1.OE-6).AND.(ABS(RUTSUM(2)).LT.1.OE-6))

+	 GOTO 230
ALF'HA=ATAN2(ROTSUM(L).ROTSUM(2))
COS2B=ROTMAT(3.3)
IF(ASS(SIN(ALF'HA)).GT.1.0E-6) SIN2B=ROTSUM(1)/SIN (ALPHA)
IF(ASS(COS(A(.F'HA)).G'f.1.OE-6) SIN2B=ROTSUM(2)/COS(ALPHA)

BETA=ATAN2(SIN2BrCOS2B)/2.
RVEC(1rI)=COS(ALFHA)*SIN(BETA)
RVEC(2rI)=SIN(ALFHA)*SIN(BETA)
RVEC(3rI)=COS(SETA)
GOTO 9

	

230	 IF(ROTMAT(3v3).LT.-0.9999) GOTO 240

RVEC(lrl)=0.
RVEC(2#1)=0.
RVEC(3#I)=1.
GOTO 9

	

240	 COS2A=ROTMAT(lrl)
SIN2A=ROTSUM(3)
ALPHA-ATAN2(SIN2A+COS2A)/2.
RVEC(lr1)=COS(ALF'HA)
RVEC(2,I)-SIN(ALPHA)

RVEC(3rI)=0.

	

9	 CONTINUE
C
C* CALCULATE MINIMUM ROTATIONAL TIMES.
C

DO 11 I = 1 r NUMSEG
ROTMIN(I)=2.*SQR1'(PHI(I)/MAXTOA)

	

11	 CONTINUE
C
C* TEST FOR SUFFICIENT TIME FOR ROTATION.
C

TSFLMX=O.

ITSFMX=O
DO 12 I=1rNUMSEG

IF(ROTMIN(I).LE.TRTMIN(I)) GOTO 12

TTVL02=AMIN1(SOTRV(I)PSOTRV(I+1))
TRVMN2=TTVL02-MAXTRA*IDINSEG(I)-IIMATCH(I))
IF(TRVMN2.LE.0.) GOTO 12
TRTMAX=(TRVEL(1+1)+TRVEL(I)-2.*SGRT(TRVMN2))/MAXTRA

87

IF((ROTMIN(I)-TRTMAX).LE.TSFLMX) COTO 12

TSFLMX-ROTMIN(I)-TRTMAX
ITSFMX=I

	

12	 CONTINUE

C
C* IF THERE IS A ROTATIONAL TIME SHORTFALL# RECALCULATE TRANSITION
C*	 VEILOCITIES AND DISTANCES.

C
IF(ITSFMX.E0.0) COTO 280

IF(CHANGE(ITSFMX).EO.-1.) COTO 250
ILO=ITSFMX
IHI=ITSFMX+1
COTO 260

	

250	 IHI=ITSFMX
IL0=ITSFMX+1

	

260	 IF((SOTRV(ILO)/MAXTRA).GT.(DSEG(ITSFMX)-2.*TRIIIST(ILO)))
+	 COTO 220

SOTRV(IHI)=(2.*MAXTRA*(IISEG(ITSFMX)-TRDIST(ILO))-SOTRV(ILO))/
+	 (1.+UNACC(IHI))

TROIST(IHI)=SGTRV(IHI)*UNACC(IHI)/(2.*MAXTRA)
COTO 50

	

270	 SOTRV(IHI)=MAXTRA*DSEG(ITSFMX)/(1.+UNACC(IHI)+UNACC(ILO))

SOTRV(ILO)=SOTRV(IH1)
TRDIST(IHI)-SOTRV(IHI)*UNACC(IHI)/(2.*MAXTRA)
TRDIST(ILO)-SOTRV(ILO)*UNACC(ILO)/(2.*MAXTRA)
COTO 50

C

C* CALCULATE SEGMENT TIMES AND ACCELERATIONS.
C

280 DO 13 I=1#NUMSEG

TSEGTM(Irl)=0.
TSEGTM(Ir2)=0.
TSEGTM(I#3)=0.
TSEGTM(I#4)=0.
TSEGTM(Ir5)=0.
TSEGAC(Irl)=CHANGE(I)*MAXTRA
TSEGAC(I#3)=0.'
TSEGAC(I#5)=CHAN3E(I)*MAXTRA
IF(CHANGE(1).EO.-1.) GUTO 290

ILO=I
IHI=I+1
COTO 310

	

290	 IHI-I
ILO=1+1

	

310	 TMATCH-(TRVEL(IHI)-'fRVEL(ILO))/MAXTRA
IF(ROTMIN(I).GT.TRTMIN(I)) COTO 320

IF(CHANGE(1).EO. 1.) TSEGTM(Irl)=TMATCH
IF(CHANGE(I).EO.-1.) TSEGTM(Ir5)=TMATCH
TSEGTM(Ir2)=(SEGVMX(I)-TRVEL(IHI))/MAXTRA
TSEGAC(I#2)=MAXTRA
TSEGTM(Ir4)-TSEGTM(Ir2)
TSEGAC(Ir4)=-TSEGAC(I#2)
TREM='iRTMIN(I)-TSEGTM(Irl)-1'SEG1M(Ir2)-l'SEGTM(Ir4)--TSEGTM(Ir5)
IF(TREM.GE.1.AE-6) TSEGTM(I#3)=TREM
RSEGAC(I)=(ROTMIN(I)/TRTMIN(1))**2*MAXTOA'

88

SOTO 13

	

320	 TRVAVE=(DINSEG(I)-IIMATCH(I))/(ROTMIN(I)-THATCH)
IF(TRVAVE.LE.((MAYTRV+TRVEL(IHI))/2.)) SOTO 330

IF(CHANGE(I).EO. 1.) TSEGTM(Irl)=TMATCH
IF(CHANGE(I).EO.-1.) TSEGTM(I ► 5)=TMATCH
T234=ROTMIN(I)-TMATCH
TSEGTM(I,2)=T234*(TRVAVE-MAXTRV)/(TRVEL(IHI)-MAXTRV)
TSEGAC(Ir2)=(MAXTRV-TRVEL(IHI))/TSEGTM(Ir2)
TSEGTM(Ir4)=TSEGTM(Ir2)

TSEGAC(Ir4)=-TSEGAC(Ir2)
TSEGTM(Ir3)-T234-TSEGTM(Ir2)-TSEGTM(Ir4)
SOTO 370

	

330	 IF(TRVAVE.LE.TRVEL(IHI)) SOTO 340
IF(CHANGE(I).EU. 1.) TSEGTM(Irl)=TMATCH
IF(CHANGE(1).EU.-l.) TSEGTM(Ir5)=TMATCH

TSEGTM(Ir2)=(ROTMIN(I)-TMATCH)/2.
TSEGAC(Ir2)=2.*(TRVAVE-TRVEL(IHI))/TSEGTM(Ir2)
TSEGTM(Ir4)=TSEGTM(Ir2)
TSEGAC(Ir4)=-TSEGAC(Ir2)
SOTO 370

	

340	 IF(TRVAVE.LT .TRVEL(ILO)) SOTO 350
TSEGTM(Irl)=AHS(TRVAVE-TRVEL(I))/MAXTRA
TSEGTM(Ir3)=ROTMIN(I)-TMATCH
TSEGTM(I,S)=AHS(TRVAVE-TRVEL(I+1))/MAXTRA

SOTO 370

	

350	 IF(TRVAVE.LT.(TRVEL(ILO)/2.)) SOTO 360
IF(CHANGE(I).EO. 1.) TSE:GTM(Ir5)='(MATCH
IF(CHANGE(I).EG.-i.) TSEGTM(Irl)=TMATCH
TSEGTM(Ir2)=(ROTMIN(I)-TMATCH)/2.
TSEGAC(Ir2)=-2.*(TRVEL(ILO)-TRVAVE)/TSEGTM(Ir2)
TSEGTM(Ir4)=TSEGTM(Ir2)
TSLGAC(Ir4)=-TSEGAC(Ir2)
SOTO 370

360 IF(CHANGE(I).EG. 1.) TSEGTM(Ir5)=TMATCH
IF(CHANGE(I).EO.-1.) TSEGTM(Irl)=TMATCH
T234=ROTMIN(I)-THATCH
TSEGTM(IP2)=T2:34*TRVAVE/TRVEL(ILO)
TSEGAC(Ir2)=-TRVEL(ILO)/TSEGTMtI•?)
TSEGTM(Ir4)=TSEGTM(192)

TSEGAC(Ir4)=-TSEGAC(Ir2)
TSEGTM(Ir3)=T234-TSEGTM(Ir2)-TSEGTM(Ir4)

	

370	 RSEGAC(I)=MAXTOA

	

13	 CONTINUE
C
C* SET UP PATH TRAJECTORY.
C

CALL SETPTH(ENIiPNUMSEGPPOINTSrTSEGC'frELTTIMPTACCrINTVELP
+ INTPOSPRSEGCTYELRTIMrRACCrINRPOSPRO'fVECiTRVELPTRTIMEPTRDISTY

+ USXrUSYrUSZYTSEGTMrTSEGACrRSEGACPRVECrTRTMINPROTMIN)

RETURN

END

89

C
C****
C
C THIS SUBROUTINE SETS UP THE DATA FOR AN ARM TRAJECTORYr INCLUDING
C	 TIMES9 ACCELERATIONS9 VELOCITIES9 AND POSITIONS.
C
C M.F. PATTERSON
C
C****

C
SUBROUTINE SETPTH(ENDrNUMSEGrF'OINTS9TSEGCTrELTTIMrTACCrINTVELr

+ INTPOS9RSEGCT9CLRTIM9RACC9INRF'OSrROTVECrTRVEL9'IR1'IME9TRDIST9
+ USXrUSYrUSZrTSEGTMrTSEGACrRSEGACrRVEC9TRTM1N9ROTMIN)

C
INTEGER NUMSEG9TSEGCT9RSEGCT
REAL END(394)rPOINTS(39496)•9ELTTIM(36)9TACC(3r36)IINTVEL(3936)9
+ INTPOS(3936)9ELRTIM(12)rRACC(12)r1NRPOS(9912)rROTVEC(3r12)r
+ TRVEL(7)9TRTIME(7)9TRIIIST(7)rUSX(6)rUSY(6)9USZ(6)9TSESTM(695)9
+ TSEGAC(695) rRSEGAC (E)9RVEC'(3r6)9IRTMIN (6)rROTMIN(6)

C
C
L'* SET UP TRANSLATIONAL PATH.
C

ITSEG=1
ELTTTM(ITSEG)=0.
TACC(19I'ISEGl=0.
TACC(29ITSEG)=0.

TACC(3rITSEG)=0.
INTVEL(19ITSEG)=0.
INTVEL (29ITSEG)=0.
INTVEL(3rITSEG)=0.
INTP0S(19ITSEl)=END(194)
INTPOS(2rITSEG) =END(2r4)
INTPOS(3rITSEG) =END(3r4)
ITSEG=ITSEG+1
DO 1 I=1rNUMSEG

IF(I.EQ.1) GOTO 30
IF(TRTIME(I).GE.1.0E-6) GOTO 10

ELT1'IM(ITSEG)=ELT'rIM(ITStG-1)
TACC(1rITSEG)=0.
TACC.29ITSEG)=0.
TACC^3rITSEG)=0.
GOTO 20

10	 ELTTIM(ITSEG)-ELTTIM(ITSEG-1)+TRTIME(I)
TACC(19ITSEG)=(TRVEL(I)/TRTIME(I))*(USX(I)•USX(I-1))
TACC(2rITSEG)=(TRVEL(I)/TRTIME(I))*(USY(I)-USY(I-1))
TACC(39ITSEG)=(TRVEL(I)/TRTIME(I))*(USZ(I)-USZ(I-1))

20	 INTVEL(IPITSEG)=TRVEL(I)*USX(I-1)
INTVEL(2rITSEG)=TRVEL(I)*USY(I-1)
INTVEL(391TSEG)=IRVEL(I)*USZ(I-1)
INTPOS(1.ITSEG)=h'OINTS(1r49I-1)-TRDIST(I)*USX(I-1)
INTPOS(29ITSEG)=NDINTS(2r4+I-1)-TRDIST(I)*USY(I-1)
INTPOS(39I'fSEG)=F'OINTS(3r4rI-1)-TRDI ST(I)*USZ(I-1)
ITSEG=ITSEG+1

30	 DO 2 J=195

90

IF(TSEGTM(IPJ).EQ.O.) GOTO 2
ELTIME=ELTTIM(ITSEG-1)—ELTTIM(ITSEG-2)
IF(ITSEG.EQ.2) ELTIME=O.
ELTTIM(ITSEG)=ELTTIM(ITSEG-1)+TSEGTM(I#J)
TACC(lPITSEG)=1'SEGAC(I?J)*USX(I)
TACC(21ITSEG)-TSEGAC(I#J)*USY(I)
TACC(3rITSE(3)-TSEGAC(IPJ)*USZ(I)
INTVEL(1YITSEG) n INTVEL(loITSEG-1)+TACC(Itl*TSEG-1)*

+	 ELTIME
INTIJEL(2iITSEG)-INTVEL(2rITSEG-1)+TAL'C(2rITSEG-1)*

+	 ELTIME
INTVEL(3rITSEG)=INTVEL(3rITSEG-1)+TACC(3rITSFG-1)*

+	 ELTIME
INTPOS(1rITSEG)-INTF'OS(1rITSEG-1)+INTVEL(1rITSEG-1)*

+	 ELTIME+TACC(1rI'SEG-1)*ELTIME**2/2.
INTPOS(27ITSEG)=INTF'OS(2rITSEG—•1)+INTVEL(2rITSEG-1)*

+	 E'_TIME+TACC(2rITSEG-1)*ELTIME**2/2.
INTPOS(3rITSEG)=1NTF'OS(3rITSEG-1)+INTVEL(3rITSEG-1)*

+	 ELTIME+TACC(3,ITSEG-1)*ELTIME**2/2.
ITSEG=ITSEG+1

2	 CONTINUE
1	 CONTINUE:

TSEGCT=ITSEG-1
C
C* SET UP ROTATIONAL PATH.
C

IRSEG-1
ELRTIM(IRSEG)=0.
RACC(IRSEG)=0.
INRPOS(1rIRSEG)=END(.lrl)
INRPOS(2rIRSEG)=END(2r1)
INRPOS(3rIRSEG)-END(3rl)
INRPOS(4rIRSEG)=ENIi(1.2)
INRPOS(5rIRSEG)=END(2r2)
INRPOS(6vlRSEG)-ENEI(3r2)
INRF'OS(7rIRSEG)=END(Ir3)
INRPOS(8rIRSEG)=END(2r3)
INRF'OS(9rIRSEG)=END(3r3)
IRSEG=IRSEG+1
DO 3 I=1rNUMSEG

IF(I.E0.1) GOTO 40
ELRTIM(IRSEG)=ELRTIM(IRSEG-1)+TRTIME(I)
RACC(IRSEG)=0.
INRF'OS(1rIRSEG)=F'OINTS(1rIrI-1)
INRF'OS(2rIRSEG)=POINTS(2r1rI-1)
INRF'OS(3rIRSEG)=POINTS(3r1rI-1)
INRF'OS(4rIRSEU)=F'OINTS(1r2r1-1)
INRPOS(5rIRSEG)-POINTS('-2rI-1)
INRPOS(6plRSEG)-POINTS(3r2rI-1)
INRF'OS(7rIRSEG) = F'OINTS(' 3PI-1)
INRPOS(SPIRSEC)=F'OINTS(2r3rI-1)
INRPOS(9rIRSEG)=F'OINTS(3r3rI-1)
IRSEG=IRSEG+1

40	 ELRTIM(IRSEG)=ELRTIM(IRSEG-1)+AMAX1(ROI'MIN(I)rTRTMIN(I))

91

RACC(IRSEG)=RSEGAC(I)
ROTVEC (IrIRSEG)=RVEC(lrI)
RJTVEC (2rIRSEG) =KVEC(2rI)
ROTVEC (39IRSEG)-kVEC(3rI)
DO A J=lr9

,^POS (JrIRSEG) = INRF -OS(JrIRSEG-1)
a	 tONTINUE

IRSE U - IRSEG+l
3	 CONTINUE

C
RSEGCT=IRSEG-1

C
RETURN
END

. `f

..r

92

C****
C
C THIS SUBROUTINE CALCULATES THE CUMMANDED ARM VELOCITY FROM THE

C	 TRAJECTORY DATA.
C
C M.F. PATTERSON

C
C****
C

SUBROUTINE VELCOMtEXTEND9TSEGCfrELTTIM9TACCrINTVELrINTF'OSrRSEGCTr
+ ELRTIMrRACCrINRFOS.ROTVECrTERF'OSr ELT IMErTIM INC rVELrTERFLG)

C
INTEGER TSEGCT9RSEGCTrTERFLG
REAL EXTEND(3r4)9ELTTIM(36)9TACC(3936)rINTVEL(3r36)rINTF'OS(3r36)r

+ ELRTIM(12)rRACC(12)rINRPOS(9912)9ROTVEC(3912)9TERF'OS(394)9
+ ELTIMErTIMINCrVEL(6)9TTRERR9TTRVELrTROERR9TROVEL
DIMENSION VELD(6).POSII(3r4) rRO TMAT(393)9ERROR(6)

C
COMMON /TERPAR/TTRERRrTTRVELrTROERRrTROVEL

C
C
C* CALCULATE TkANSLATIONAL ERROR:.
C

RINSGT=0.
ITSEG=1

10 IF(ELTIME.LT .ELTTIM(ITSEG)) GOTO 20

IF(I1'SEG.EO.TSEGCT) GOTO 30
RINSGT=ELTTIM(ITSEG)
ITSEG=ITSEG+1
GOTO 10

C
20 ELSFGT-ELTIME-RINSGT

VELD(1)-INTVEL(IrITSEG)+TACC(19IT.SEG)rELSEGT
VELD(2)-INTVEL(2rITSEG)+TACC(29ITSEG)*ELSEGT
VELIi(3)=INTVEL(3rITSEG)+TACC(3,ITSEG)*t'LSEGT
POSD(194)=INTF'OS(19ITSEG)+INTVEL(lrITSEG)*ELSEUT+

+	 TACC(19ITSEGl*ELSEUT**2/2.
F'OSD(2r 4)-INTF'OS(2rITSEG)+INTVEL(2rITSEG)*ELSEGT+

+	 TACC(2rITSEG)*ELSEGT**2/2.
F'OS11(394)-INTF'OS(39IISEG)+1NTVEL(3rITSEG)*ELSEGT+

+	 TACC(39ITSEG)*LLSEGT**2/2.
ERROR(I)=POSi1(lr4)-EXTENLl(l94)
ERROR(2)-POSD(2r4)-EXTENIi(2r4)
ERROR(3)=POSII(3r4)-EXTEND(394)

GOTO 40
30 VELD(1)=0.

VELD(2)=0.
VELD(3)=0.
ERROR(1)-TERPOS(194)-EXTEIVD(1r4)
ERROR(2)-TERF'OS(2r4)-EXTEND(2r4)
ERROR(3)-TERF'OS(394)-EXTEND(3r4)

C
C*	 CALCULATE ROTATIONAL ERROR.
C	 ('.	 ',	 j , r

^ l f<'
	r^l^	

^!2f I :l	 }	 r

X11)	 •^.

93

5

;1

40 RINSGT=O.
IRSEG=1

50 IF(ELTIME.LF.ELRTIM(IRSEG)) GUTU 60
IF(IRSEG.EO.RSEGCT) GOTO 90
RINSGT-ELRTIM(IRSEG)
IRSEG-IRSEG+1
GOTO 50

60 ELSEGT=ELTIME-RINS^iT

RTINT2=(ELRTIM(IRSEG)-ELRTIM(IRSEG-1))/.
IF(ELSEGI.GT.RTINT") GOTO 70
RVELD=RACC(IRSEG)*ELSEGT

PHI=RACC(IRSEG)*LLSEUT**2/2.
GOTO 80

	70	 RVELD=RACC(IRSEG)*RTINT2-RACC(ISSEG)*(ELSEGT-R1INT2)
PHI = RACC(IRSEG)*RTINT2**2/2.+RALC(IRSEG)*RTIN1'2*(ELSEGf-RTINT2)-

+	 RACC(IRSEG)*(ELaEGf-RT1NT2)**2/2.
80 VELD(4)=RVEI_Ii*ROTVEC(1rIRSEG)

VELD(5)=RVELD*ROTVEC(2rIRSEG)
VELD(6)=RVELD*ROTVEC(3rIRSEG)
CPHI-COS(PHI)
SPHI=SIN(PHI)
R111CP=ROTVEC(lrIRSEG)*ROTVEC(1rIRSkG)*(1.-LF'HI)
R221CP=ROTVEC(2rIRSEG)*ROTVEC(2rIRSEG)*(1.-CF'HI)
R331CF'=ROTVEC(3rIRSEG)*kOl'VEC(3rIRSEG)*(1.-CF'HI)
R121CP=ROTVFC(ltlRSEG)*NOIVEC(2.IRSE:G)*(1.-CF'HI)
R131CP=ROfVEC(IIIRSEG)*kOTVEC(3rIRSE:G)*(i.-LF'HI)
R231CP=ROTVEC(2rIRSLG)*ROTVEC(3rIRSEG)*(1.-LF'HI)
R2SP-ROTVEC(1rIRSEG)*SF'HI
R2SP=ROTVEC(2rIRSEG)*SFIHI
R3SP=ROTVEC(3rIRSEG)*SF'HI
ROTMAT(lrl)-R111CP+CYHI
ROTMAT(2r1)=RI21CF'+R3SP
ROTMAT(3r1)=k131CP-R2SP
ROTMAT(lr2)=Rl 21CP-R3SP
ROTMAT(2r2)-k221CF'+CPHI
ROTMAT(3r2)=k231CP+RISF'
ROTMAT(1r3)=R131CP+R2SP
ROTMAT(2r3)=R231CP-R2SP

ROTMAT(3r3)-R331CF'+CPHI
CALL MM3333(POSDrROTMATrINRPOS(1rIRSEG))
CALL ROERRC(EXTENDFPOSDrERROR(4))
GOTO 110

90 VELD(4)=0.
VELD(5)=0.
VELD(6)=0.
CALL ROERRC(EXTENDrTERF'OSrERROR(4))

C
C* CALCULATE VELOCITY COMMANDS.
C

110 DO 1 I=1r6

VEL(I)=VELD(I`+(1./TIMING)*ERRON(I)

	

I	 CONTINUE
C
C* CHECK FOR TERMINAL POSITION.

94

TERFLG=O
IF(ELTIME.LT .ELTTIM(TSEGCT)) GUTO 120

TRERR=SORT(ERROR(1)**^+ERROR(2)**2+ERROR(3)**2)
IF(TRERR.GT .TTRERR) GOTO 120
ROERR-SORT(ERROR(4)**2+ERROR(S)**2+ERROR(6)**2)
IF(ROERR.(3I'.TROERR) GOTO 120
TRVEL=SORT(VEL(1)**2+VEL(2)**2+VEL(3)**2)
IF(TRVEL.GT .TTRVEL) GOTO 120
ROVEL=SORT(VEL(4)**2+VEL(5)**2+VEL(6)**2)
IF(ROVEL.GT .TROVEL) GUTO 120
TERFLG=1

C
120 RETURN

END

95

r	
_.	

^	 c
C THIS SUBROUTINE CAL('ULnC r.'S Tit JUiNT VELOCITIE—S REUUIkED TO
C	 IMPLEMENT THE GIVEN END E -ECYOR TRANSLATIONAL. AND ROTATIONAL
C	 VELOCITIES.
C

C M r k r PATTERSON
C
C****

	

^	 C	 `
SUBROUTINE SOLVE(THrI'HV+CTHrSTHrJOINTSrENOrVEL)

	

`	 C

	P	 REAL TH(6)rTHV(6)rCTH(7)rSTH(7)rJ0INTS(3r8)rENIi (3r4)rVEL(6)r
+ NOrSNrESrHWrJLIM(8)rJVLIM(6)
DIMENSION WRVEL(3)rROTVEL(3)rRINVJ(3r3)

C
COMMON /ARMF'AR/NGrSN+ESPHW

	E	 COMMON /JNTF'AR/JLIMrJVLIM
C
C

C9=CTH(2)+CTH(7)
S9=STH(2)+STH(7)

C
C* COMPUTE WRIST VELOCI'!Y.

i	 C
WRVEL(1)=VEL(1)+(END(2r3)*VEL(6)— ENIl(3r3)*VEL(:i))*HW
WRVEL(2)=VEL(2)+(END(3r3)*VEL(4)—ENIl(lr3)*VEL(6))*HW
WRVEL(3)=VEL(3)+(END(1,3)*VEL(5)—END(2r3)*VEL(4))*14W

C
C* COMPUTE INVERSE JACOBIAN FOR FIRST THREE JOINTS.
C

S3ES=STH(3)*ES
RINVJ(1r1)=—STH(1)*S3ES
RINVJ(lr2)=CTH(1)*S7ES
RINVJ(103)=0.
RINVJ(2r1)=JOINTS(1r5)*STH(7)
RINVJ(2r2)=JOINTS (2r5)*STH(7)
RINVJ(2 ► 3)-(JOINTS(3r5)—JOINTS(3r4))*S9
S1S9=STH(1)*S9
C1S9=CTH(1)*S9
S9E;S=S9*ES
RINVJ(3rl)=S1S9*SN—C159*S9ES
RINVJ(3r2)=—C1S9*SN—S1S9*S9ES
RINVJ(3r3)=—(JOINTS(3r5)—NO)*S9

C
C* COMPUTE FIRST THREE JOINT VELOCITIES.
C

rslV=S9£S*S3ES
THV(1)=(RINVJ(lrl)*WRVEL(1)+RINVJ(lr2)*WRVEL(2))/DIV
THV(2)=(RINVJ (rl)*WRVEL(1)+RINVJ(2r2)*WRVEL ()+RINV,'(2r3)*

+	 WRVEL(3))/IiIV
THV(3)=(RINVJ(3r1)*WRVEL(1)+RINVJ(3r2)*WRVEL(2)+RINVJ(3r3)*

+	 WRVEL(3))/DIV

C

i

96

C* COMPUTE END EFFECTOR ROTATIONAL VELOCITIES.

C
VEL(4)=VEL(4)+STH(1)*(THV(')+THV(3))
VEL(5)=VEL(5)-C1H(I)*(THV(2)+THV(3))
VEL(6)=VEL(6)-THV(1)
ROTVEL(1)=CTH(1)*CTH(7)*VEL(4)+STH(1)*CTH(7)*VEL(5)-
+ STH(7)*VEL(6)
ROTVEL(2)=-STH(1)*VEL(4)+CTH(1)*VEL(5)
ROTVEL(3)=CTH(I)*STH(7)*VEL(4)+STH(1)*STH(7)*VEL(5)+

+ CTH(7)*VEL(6)
C
C* COMPUTE LAST THREE JOINT VELOCITIES.

C
IF(ABS(STH(5)).LT.I.OE-2)	 GOTO 10
THV(6)-(CTH(4)*ROTVEL(1)+STH(4)*ROTVEL(2))/SrH(5)

THV(5)--STH(4)xRGTVEL(1)+L:TH(4)*ROfVEL(2)
THV(4)=ROI'VEL(3)-CTH(5)*THV(6)
GOTO 20

C
C* COMPUTE LAST THREE JOINT VELOCITIES FOR S5=0.
C

10	 THV(6)=ROTVEL(3)
THV(5)--SIH(4)*ROTVEL(1)+CTH(4)MROTVEL(2)
THV(4)=0.

C
C* TEST FOR EXCESSIVE JOINT VELOCITIES.
C

20 RED-1.
IF(ABS(THV(1)).GT.JVLIM(1)) RE.D=AMIN1(REIi.JVLIM(1)/AEFS(THV(1)))
IF(A8S(THV(2)).GT.JVLIM(2)) RErl-AMIN1(REDrJVLIM(2)/ABS(THV(2)))
IF(AFS(THV(3)).Gf.JVLIM(3)) RED=AMIN1(RED.JVLIM(3)/AES(THV(3)))
IF(ABS(THV(4)).G1.JVLIM(4)) RED-AMIN1(REI[.JVLIM(4)/ABS(THV(4)))
IF(ABS(THV(5)).Gf.JVLIM(5)) RELl=AMIN1(RELirJVLIM(5)/AHS(THV(5)))

IF(ABS(THV(6)).GT.JVLIM(6)) RFLl=AMIN1(RELIFJVLIM(6)/ABS(THV(6)))
IF(RED.E0.1.) GOTO 30
THV(1)=RED*THV(1)
THV(2)=RED*THV(2)
THV(3)=REIi*FHV(3)
THV(4)=REP*THV(4)

THV(5)=RED*THV(5)
THV(6)-REIi*THV(6)

C
30 RETURN

END

yi

r^

97

REFERENCES

i.	 Paine, G. "The Automation of Remote Vehicle Contrals."
Proc. of 1977 Joint Automatic Control Conference, San
Francisco, CA. June, 1977.

2. Heer, E. "Robot and Automation Technology Requirements
for Space Industrialization." Proc. of Ninth Internation-
al Symposium on Industrial Robots, Washington, D.C.
March, 1979.

3. Large Space Systems Technology. NASA Conference Publi-
cation 2035, Scientific and Technical Information Office,
NASA, Washington, D.C. January, 1978.

4. Proc. of Ninth International Symposium on Industrial
Robots, Washington, D.C. March, 1979.

5. Mosher, R.S. "Exploring the Potential of a Quadruped."
SAE Paper No. 690191. International Automotive Engineer-
ing Conference, Detroit, MI. January, 1969.

6. Horn, B.K.P., and Inoue, H. "Kinematics of the MIT-AI-
Vicarm Manipulator." M.I.T. Artifio-ial Intelligence
Laboratory Working Paper 69. May, 1974.

7. Whitney, D.E. "Resolved Motion Rate Control of Manipu-
lators and Human Protheses." IEEE Transactions on Man-
Machine Systems, Vol. MMS-10, No. 2. June, 1969.

8. Renaud, M. "Coordinated Control of Robots-Manipulators;
Determination of the Singularities of the Jacobian Matrix."
Proc. of First Yugoslav Symposium on Industrial Robots and
A,:tificial Intelligence, Dubrovnik, Yugoslavia. Septem-
ber, 1979.

9. Whitney, D.E. "The Mathematics of Coordinated Control of
Prosthetic Arms and Manipulators." Journal of Dynamic_
Systems, Measurement, and Control, Transactions ASME,
Series G, Vol. 94, No. 4. December, 1972.

98

1
{

i
1

10. Liegeois, A. "Automatic Supervisory Control of the Con-
figuration and Behavior of Multibody Mechanisms." IEEE
Transactions on Systems, Man, and Cybernetics, Vol. SMC-7,
No. 12. December, 1977.

11. Albus, J.S. "A New Approach to Manipulator Control: The
Cerebellar Model Articulation Controller (CMAC)." Journal
of Dynamic Systems, Measurement, and Control, Transactions
ASME, Series G, Vol. 97, No. 3. September, 1975.

12. Raibert, M.H. "A State Space Model for Sensorimotor
Control and Learning." M.I.T. Artificial Intelligence
Memo No. 351. January, 1976.

13. Horn, B.K.P., and Raibert, M.H. "Configuration Space
Control." M.I.T. Artificial Intelligence Memo No. 458.
December, 1977.

14. Denavit, J., and Hartenberg, R.S. "A Kinematic Notation
for Lower-Pair Mechanisms Based on Matrices." Journal of
Applied Mechanics, Trans. ASME, Vol. 22, No. 5. June, 1955.

15. Peiper, D.L. "The Kinematics of Manipulators under Com-
puter Control." Stanford Artificial Intelligence Labora-
tory Memo AI-72. October, 1968.

16. Paul, R.C. "Modeling, Trajectory Calculation, and
Servoing of a Computer Controlled Arm." Stanford Arti-
ficial Intelligence Laboratory Memo AIM-177. November,
1972.

17. McGhee, R.B. "Control of Legged Locomotion Systems."
Proc. 1977 Joint Automatic Control Conference, San
Francisco, CA. June, 1977.

18. Tomovic, R. "A General Theoretical Model of Creeping
Displacement." Cybernetica, Vol. 4, No. 2. 1961
(English translation.)

19. Tomovic, R., and McGhee, R.B. "A Finite State Approach
to the Synthesis of Bioengineering Control Systems."
IEEE Transactions on Human Factors in Electronics, Vol.
HFE-7, No. 2. June, 1966.

20. Frank, A.A. Automatic Control Systems for Legged Loco-
motion Machines. Ph.D. dissertation, University of
Southern California, Los Angeles, CA. May, 1968.

99

21. McGhee, R.B., and Pai, A.L. "An Approach to Computer-
Control for Legged Vehicles." Journal of Terramechanics,
Vol. 11, No. 2. March, 1974.

22. Vukobratovic, M. "How to Control Artificial Anthropomor-
phic Systems." IEEE Transaction-- on Systems, Man, and
Cybernetics, Vol. SMC-3, No. 5. September, 1973.

23. Sun, S.S. A Theoretical Study of Gaits for Legged Loco-
motion Systems. Ph.D. dissertation, Ohio State Univer-
sity, Columbus, OH. March, 1974.

24. Kugushev, E.I., and Jaroshevski ,j, V.S. "Problems of
Selecting a Gait for an Integrated Locomocion Robot."
Pror_, Fourth International Joint Conference on Artificial
Intelligence, Tbilisi, Georgian SSR, USSR. September,
1975.

25. Bessonov, A.P., and Umnov, N.V. "The Analysis of Gaits
in Six Legged Vehicles According to Their Static
Stability." Proc. of Symposium for the Theory and
Practice of Robots and Manipulators, Udine, Italy.
September,. 1973.

26. McGhee, R.B., and Iswan_dhi, G.I. "Adaptive Locr-motion of
a Multilegged Robot over Rough Terrain." IEEE Trans-
actions on Systems, Yan, and Cybernetics, Vol. SMC-9,
No. 4. April, 1979.

27. Ferreil., W.R., and Sheridan, T.B. "Supervisory Control
of Remote Manipulation." IEEE Spectrum, V. 4, No. 10.
October, 1967.

28. Albus, J.S., private communication.

29. Narinyani, A.S., Pyatkin, V.P, Kim, P.A., and Dementyev,
V.N. "Walking Robot: A Non-deterministic Model of
Control." Proc. Fourth International Joint Conference
on Artificial Intelligence, Tbilisi, Georgian SSR, USSR.
September, 1975.

30. Luh, J.Y.S., and Walker, M.W.
for a Mechanical Arm." Proc.

"Minimum-Time along the Path
of 1977 IEEE Conference on

Decision and Control, New Orleans, LA. December, 1977.

31.	 Noble, B. Applied Linear Algebra, Prentice-Hall, 1969.
pp. 420-422.

100

	1980024585.pdf
	0021A02.tif
	0021A03.tif
	0021A04.tif
	0021A05.tif
	0021A06.tif
	0021A07.tif
	0021A08.tif
	0021A09.tif
	0021A10.tif
	0021A11.tif
	0021A12.tif
	0021A13.tif
	0021A14.tif
	0021B01.tif
	0021B02.tif
	0021B03.tif
	0021B04.tif
	0021B05.tif
	0021B06.tif
	0021B07.tif
	0021B08.tif
	0021B09.tif
	0021B10.tif
	0021B11.tif
	0021B12.tif
	0021B13.tif
	0021B14.tif
	0021C01.tif
	0021C02.tif
	0021C03.tif
	0021C04.tif
	0021C05.tif
	0021C06.tif
	0021C07.tif
	0021C08.tif
	0021C09.tif
	0021C10.tif
	0021C11.tif
	0021C12.tif
	0021C13.tif
	0021C14.tif
	0021D01.tif
	0021D02.tif
	0021D03.tif
	0021D04.tif
	0021D05.tif
	0021D06.tif
	0021D07.tif
	0021D08.tif
	0021D09.tif
	0021D10.tif
	0021D11.tif
	0021D12.tif
	0021D13.tif
	0021D14.tif
	0021E01.tif
	0021E02.tif
	0021E03.tif
	0021E04.tif
	0021E05.tif
	0021E06.tif
	0021E07.tif
	0021E08.tif
	0021E09.tif
	0021E10.tif
	0021E11.tif
	0021E12.tif
	0021E13.tif
	0021E14.tif
	0021F01.tif
	0021F02.tif
	0021F03.tif
	0021F04.jpg
	0021F05.jpg
	0021F06.tif
	0021F07.tif
	0021F08.tif
	0021F09.tif
	0021F10.tif
	0021F11.tif
	0021F12.tif
	0021F13.tif
	0021F14.tif
	0021G01.tif
	0021G02.tif
	0021G03.tif
	0021G04.tif
	0021G05.tif
	0021G06.tif
	0021G07.tif
	0021G08.tif
	0021G09.tif
	0021G10.tif
	0021G11.tif
	0021G12.tif
	0021G13.tif
	0021G14.tif
	0022A02.tif
	0022A04.tif
	0022A05.tif
	0022A06.tif
	0022A07.tif
	0022A08.tif
	0022A09.tif
	0022A10.tif
	0022A11.tif
	0022A13.tif
	0022A14.tif

