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1. Introductionroduction

When modeling degradable computing systems by stochastic processes
i

for the purpose of performance and reliability evaluation, the models

employed are typloally Markov processes (see [1], for example) or

models which can be analyzed in terms of imbedded Markov processes

(semi-Markov processes, branching processes, etc.; see [2 ]). However,

to ensure the validity of the Markov assumption, it is usually necessary

to model the structure and behavior of the system at a low level, e.g.,

a level describing the system's structural resources (processing units,

memory units, input buffers (queues), etc.). Performance and reliability

measures, on the other hand, often quantify the system's behavior in

terms of high level, user oriented variables (throughput, response

time, operational status, etc.) which, if viewed as stochastic process-

es, are seldom Markovian. in such cases, an essential part of the

modeling effort is to establish a "connection" between the low and

high levels, so as to resolve the probabilistic nature of the measure

in question.

Historically, in the context of reliability modeling, this con-

nection has taken a form that lies at one of two extremes. At one

extreme, system "success" is defined in terms of the underlying struc-

tural resources (at least so many fault-free processors, at least so

many fault-free memory units, etc.), in which case the connection

between structure (available fault-free resources) and performance

(success or failure) is immediate. At the other extreme, the object

of the modeling effort is the connection, per se, and the resulting

model is typically some form of "event-tree" or "fault-free" (see

[ 3 ] , for example) .

A
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More recently, in efforts to deal simultaneously with issues

of performance and reliability, the general nature of this connection

has been formalized and is referred to as a "capabil ,ty function" [4 1

of the system. In this setting, a "total system" S, comprising a

computing :system and its computational environment, is modeled at a

low level by a stochastic process X S ( the "base model" of S). Then,

relative to a high level variable Y S (the "performance" of S), the

capability function of S is a function y S which translates state

trajectories ( sample paths) of the process X S into corresponding

values of the performance variable Y S . Knowing XS and y S , it is

possible (although not necessarily feasible) to solve for the proba-

bility distribution function of Y S and, hence, determine the

"performability" of S.

In cases where the performance Y S is relatively far removed from

the base model XS , solution procedures can be facilitated by intro-

ducing intermediate models at levels between XS and YS . one use of

such a model hierarchy is a step-by-step formulation of the inverse

of yS , beginning at YS and terminating at the base model X S . If YS

is discrete, the performability of S can then be solved by deter-

mining the probabilities of certain trajectory sets that correspond

(under ys l ) to performance values of YS . (See [4J for details

regarding thi3 method; also see [51 which uses this technique to

evaluate the performability of the SIFT computer.)

Another role that can be played by an intermediate model, and

the one we explore in this report, is to represent the probabilistic

nature of S at a level which is higher than the base model and thus

"closer" to the performance variable. In particular, we consider a

r^
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class of intermediate models which are generally referred tows

"functionals" of a Markov process (see (61, for example). More

precisely, a functional of a Markov process X is a stochastic process

X (not necessarily Markovian) where, relative to a specified real-

valued function f defined in the states of X, if Xt=i then X t=f.(i) for

each time instant t in the utilization period. We first discuss (Section

2) the conditions under which X is itself a Markov process, in which

case X can be viewed as a "lumped" version of X. Since these conditions

are quite severe, we go on to examine solution methods for non-Markovian

functionals (Section 3) where, in particular, we develop a closed-form

solution of performability for the case where performance is identified

with the minimum value of a functional.
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2. Functionals as Intermediate Models

When describing system behavior in user oriented terms, it is

possible, in many cases, to identify various operational "modes" for

the system (including a failure mode) which result in different degrees

of user satisfaction. Moreover, for a given mode of operation, the

extent of,usPr satisfaction can often be quantified as a (real. number)

"rate" at which that operation benefits (or penalizes) the user.

Depending on the application, these rates can have a variety of inter-

pretations relating to the system's productivity, responsiveness, etc.

or, at a higher level, to such things as economic benefit, e.g., the

"worth rate" (measured, say, in dollars/unit time) associated with a

given mode of operation.

Under the above conditions, a user-oriented model can be construc-

ted in a rather natural fashion. As in our introductory remarks

(and following the terminology and notation of [4 ]), let S denote

the total system in question and suppose that we have already deter-

mined a base model XS and a capability function y S (relative to some

specified performance variable Y S ). Suppose further that the base

model process XS is defined relative to a continuous time interval

T (the "utilization period"), that is,

XS = {Xt jtET}
	

(1 )

where the random variables X  take values in a discrete (countable)

state space Q. Thus, without loss of generality, the states of XS

will often be designated by positive integers, viz.

Q = {1,2,3,...}

or, in case Q is finite,

Q = {1,2, ... ,n}.
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Finally, we presume that at the base level, the system model is

Markovian with a time-invariant structure, that is, XS is a

(continuous-time) time-homogeneous Markov process. (Since Q is

discrete, some authors would refer to XS as a Markov "chain"; we

choose to maintain the use of the generic term "process".)

Within this framework, let us now consider the situation discussed

above where, at a higher level, one is able to identify various oper-

ational modes for S, each having an associated operational rate. If,

further, each state of the base model can be classified according to

some mode of operation, then -there is a naturally defined real-valued
function

f s I + it	 ( 2 )

where, for each ieQ, f(i) is the operational rate associated with the

mode containing i. Moreover, if we let Q denote the range of

f (i.e.,	 and, for each variable X t of XS (see ( 1 )) , we

let

Xt = f (Xt )	 ( 3 )

it follows that

Xs = { Xt ( teT}	 ( 4 )

is a stochastic process with state space Q (referred to generally as

a "functional" [ 61 of the underlying Markov process).

Except in the special case where f is 1-1 (i.e., different states

correspond to diffferent modes of operation), the derived process XS

represents a simpler, higher level view of the system S. However, to

qualify XS as an "intermediate" model, we must a?,so require that XS

be compatible with the performance variable YS to the extent that YS

can be solved in terms of XS. More precisely, letting k denote the

f
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translation of trajectories of XS to trajectories of Xs (i.e.,

K(u)=—u where u(t)=f(u(t)), for all tsT), there must exist a capability

function VS for XS such that

YS • K = Ys	 ( 5

(where - denotes functional composition, first applying K). Although

the above condition appears somewhat formidable, it says simply that

the higher level model XS must remain detailed enough to permit solution

of the system's performability. Moreover, this condition can be

typically satiated in practice if the definition of performance

(i.e., YS ) is taken into account when identifying the various modes

of operation and assigning rates -to these modes.

If f, as defined in ( 2), satisfies condition ( 5 ) then we

refer to f as an operational structure of S ands since states inherit,

the rates assigned to modes, the value f(j) is referred to as the

operational rate of i (or, when context permits, simply the "rate of

i"). Likewise, the corresponding functional X S is referred to as an

operational model of S or, alternatively, a model of S at the

operational Level..

In reliability modeling where, at the operational
level, a system is typically viewed as either "operating" or "not

operating", the concept of an operational structure reduces to the

v

	

	familiar notion of a "structure function" [ 31. Technically, a

function fe Q+ Ht is a structure function if Q has binary coordinates,
i.e., Q=(0,1}m, and f(i) is 1 or 0 according	 as S is operating or

not operating in state i	 More recently, operational structures have

been employed (at least implicitly) in the context of performance-

reliability modeling where the operational rates are referred to as

computational "capacities" [ 7],[$]	 Although capacity (which typically

n
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, refers to the maximum rate at which a computer can "supply" computations)

is a legitimate interpretation of "operational rate'", it should be

emphasized that, in general, such rates can represent an interaction of

supply (by the computer) and demand (,from the environment); this follows

from the fact that, as generally conceived, a state i of the base model

represents a particular status of both the computer and its environment;

hence, both supply and demand can be accounted for when translating i,,

via f, to its corresponding operational rate f(i).

In various special forms, then, the concept of an operational.

structure is no stranger to performance and reliability modelJng. on

the other hand, the general nature of the associated "functional" XS,

how it relates to the base model, how it can be exploited in solution

procedures, etc., appear to be subjects that deserve further investi-

gation.

To begin, let us suppose that S is modeled by (X S ,YS ) and f:Q+ M

is the operational structure of S. Then, to the extent that it is

feasible, we would like to determine the probabilistic nature of the

operational model, that is, the functional (see [6],[ 91)

XS = (f (Xt ) teT}

of the Markov process XS . The first questions which arise

in this	 regard are whether XS is, itself,	 a Markov process and,

if so, whether it is time-homogeneous. Note that, since these questions

do not involve the actual values of f, XS may be regarded here as a

"lumped" [10] version of X S , where states i and j are in the same lump

if and only if f(i)=f(j). (In other words, lumps coincide with the

operational "modes" of S.) Moreover, these questions are obviously

independent of our interpretations of X S and XS and hence, in the



-8-

development that follows, we can drop the spmcific reference to S.

Let us suppose, then, that X is a time-homogeneous Markov process

with state space Q .and, given a function f:Q+ Bt, let X denote the

corresponding .functional or, what is the same, the lumped process

induced by f. If f is 1-1 then X is obviously both Markovian and

time-homogeneous since, in this case, the lumping is trivial. If f

is properly a many -to-one function the answers are no l onger obvious

and, indeed, the questions need further clarification.

In the latter regard, let us restrict our attention to ,finite-state

	processes	 X which are "regular" in the sense that their transition

probabilities are uniquely determined by a "generator matrix" or,

equivalently, a "state - trans:; ,t,,Lcn- • rate" diagram. More precisely,

let X be a Markov process with state space Q-(l,?,.,.,nj and, for i#J,

let Xi, 
denote the transition rate from state i to state j. Then the

generator matrix of X is the nxn matrix

A = [ail]

where

	

aid 3	 (6)

- ^ A	 if	 i-j.
k#i ik

if, further, we let P(t) denote the "transition function" of X (we

presume here that to [0,-) ) , i.e. ,

P(t) = tpi^ (t)]

where

P ik (t) = Pr [Xt= 7 I X 0 =i]  i

then A uniquely determines P(t) by the well known equation
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P fit) . eAt.

Hence A (or P(t)) together with an initial distribution

p w ( pl -' ` pnl t pi . PrEXO=il

are enough to completely specify the process X.

in the above setting, our original inquiry thus reduces to the

question:

Ql) Given A t p and f, is X Markovian?

In many applications, however, one wants the freedom to alter the initial

distribution p without losing the Markov property. In this case we area

asking:

Q2) Given A and f, is X Markovian for arbitrary p?

Finally, we can raise our sights even higher and ask:

Q3) Given A and f, is X Markovian for arbitrary p and, more-

over, is the transition function of X independent of P?

Adopting the terminology of [10) (which investigates the discrete-time

versions of Q1 and Q3 ),if the answer to Q1 is "yes" then 	 the

process XS specified by A and p is "weakly lumpable" with respect to

f. A "yes" answer to Q2 is stronger but, generally, these Markov

processes will not be time-homogeneous. If the answer to Q3 is "yes"

then, for all initial distributions p, the Markov processes X have the

same transition function and, by the homogeneity of X, it follows that

this function is invariant under time shifts, i.e., the processes are

time-homogeneous. In this case we say that the processes X specified by A

are "strongly lumpable" with respect to f.

.Addressing first the question of weak lumpability (01), if X is

to be a Markov process, we must insure it has the "memoryless" property,

that is, any sequence of past observations of X provides the same

11
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information as the last o f those observations. To formalize this

requ'rement, if 01t l <t2 <' . " .^tk is a sequence of observation times

and gieQ=f (Q) is the state of X observed at time t i , for each under-

lying state J e (l., . * . , n) , let

M i (tl ,..,. Otk;gl,...,gk) = Pr(XtkW.jIXt1Xgl,,..,Xtk=ak)

then the lxn matrix

M(ti,...,tnsgi,...,gy) = CM S (; } l

is the probability distribution of the states of X at time tk , as

conditioned by these observations of X. in particular, since

Xtk=gk , it follows that M j (; } is nonzero only if f (3) =qk P where

{M i ( ; ) I f (3) -qk} gives the probability distribution of states inside

the lump f- l (gk)

So as to translate distributions of X back up into distributions

of X, let us suppose further that X has m states (min) and, relative

to some specified ordering of the lumps, let Q 21 denote the .1th lump,

i.e., the collection of sets

is the partition of Q induced by f. Accordingly, if Tr= [vI7T2 . ' • Irn I is

a probability distribution over the states of X, we let tt denote the

corresponding distribution that is,

F - [;l 72 ... :WM)

where

7T	 7T

iEQ7

in terms of the above notation, weak lumability can then be character-

ized as follows.
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Theorem 1: Let X be a time-homogeneous Markov process with transition

function P an- fixed initial state probability distribution. Let

X he a functional of X and, for sET, define

A S - {M(tl,...,tk;glr...,gk )It k-sl.

Then X is a Markov process if and only if, for all s, t€T such that

sst and for all Tt, 7.' eOs , tt-F ` implies _rP(t -s) =71P( t .. $) .

The proof of Theorem 1 is essentially a generalized form of the

argument used to prove its disckete-time analog (see (10], pp. 133-134,

Theorem 6.4.1). To illustrate its application, let us suppose that

the system in question is a multicomputer comprised of three identical

computer modules. Suppose further that modules fail independently and

that each fails permanently with a constant ,failure rate X. Then we can

take the base model X to be the Markov process depicted by the state-

transition-rate diagram of Figure 1.

3a

2A

T a

Figure 1

As for operational rates, let us assume they are normalized so that,

at full capacity, the rate is 1 and with the loss of one or two modules,

the rate is .5; loss of a third module results in total failure.
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I

Accordingly, the operational structure in this case is the function

i	 f (i)

1	 1

2	 .5

3	 .5

4	 0

and hence the functional X takes values in the state set 5={1,.5, 0 }.
on taking the inverse of f, these states correspond as follows to

lumps of Q:

1++{1}

.5 ++ (20)

0	 { 4).

If we now examine the probabilistic nature of X, we find that the

conditional probability Pr[X t=013 s=.5] depends on the time that X

enters state .5 from state 1 if the latter event is possible (i.e.,

if the probability of initially being in state 1 is non-zero). Thus,

for example, if X is initially in state 1 with probability I t i.e.,

P=[1 0 0 0] is the initial state probability distribution, then we

:lave such a dependence (on the past history of X) and therefore X is

not a Markov process. On the other hand, let us suppose the initial

distribution is P=[0 0 1 01, which is not a likely choice from a

functional point of view but it serves to illustrate the role of p.

In this case A s (as defined in the statement of Theorem 1) is the

same for any time s in T, i.e., it is the set

As = { CO 0 1 01 , [0 0 0 11 } .

Accordingly, the conditions of Theorem l are vacuously satisfied and,

therefore, X is a Markov process for this choice of p. Moreover, it

0



-13-

should be obvious that X, in this case, is time-homogeneous. Other

distributions, such as g-[0 1 0 01 can be shown to result in Markov

processes which are not time-homogeneous.

Turning our attention now to the seec^jnd question ( see 02 above),

the answer, in a slightly more specialized form, can be found in the

existing literature (see [11], p. 1113-1114, Theorem 4). Stating the

desired form of this result in terms of the notation defined above,

we have:

Theorem	 Let X be a time-homogeneous Markov process with generator

matrix A=[a ij ) and let X be a functional of X determined by f. Then

X is a Markov process, whatever the initial distribution of X, if and

only if for each q65 taken separately either

( i) For all i, j EQ such that f(i)#q  and f(j)=q,

a..=0
13

or

(ii) For all rE4 such that r#q, the sum

a 7i'
f (j)=r

is the same for all iEQ such that f(i)=q.

Although the conditions of Theorem 2 guarantee that X is a Markov

process relative to any initial distribution p for X, it should be

noted that the specific nature of X (as specified by its transition

function) will generally depend on p. Moreover, the process X need

not be time-homogeneous.

To illustrate Theorem 2 and the above observations, let us again

consider the Markov process X having the state-transition-rate diagram

-A
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given by Figure 1. Then, by (6), the generator matrix of X is the

4x4 matrix

A =

-3X 3X 0 0

0 -7,k 2X 0

0 U -a X

0 0 0 0

Suppose, however, that the operational sturct'ure in this case is one

that corresponds to triplication with voting (TMR), i.e., the function

i	 f (i)

1	 1

2	 1

3	 0

4	 0

Then Q={1,Or and, applying Theorem 2, we see that state I (i.e., lump

{1,2)) satisfies condition (i) and state 0 (i.e., lump {3,41) satisfies

condition (ii). Hence, the functional X is a Markov process. To

determine the probabilistic nature of X, let us rename state 0 (in Q)

as state 2 (permitting the use of standard matrix notation) and let
P(s,t) denote the transition function of X, i.e.,

P (s,t) = [pij (3,t) l	 (s<_t)

where

pij (s, t) = Pr [ Xt=j Xs=i] .

Then, relative to an initial distribution 
p=rp 1 p2 p3 P4  for X, if

we let

d = Pi

pl+p2
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it can be shown that the matrix F(sot) has the following entries:

pll(s/t)	 e-2a(t-s )(1+2d(l-a-Xt )) r

(1+2d(1-e	 ))

p12 (5,t) - 1 - pll(s.t),

p2l (s,t) - 0,

P22 (s l t) - "

From the above equations, we see that the transition function P(s,t)

depends on d and, hence, on the initial distribution p-[Pl P2 Pg P41'

Moreover, we observe that X is time-homogeneous (i.e., the values of

P(s,t) depend only on the time difference t-s) just in case d=0. In

other words, by the definition of d, X is time-homogeneous if and only

if pl=0, i.e., there is a zero probability that the underlying process

X is initially in state 1 (all three modules fault-free). However,

with our interpretation of X as a TMR model, this special case is

pathological and hence, in cases of practical interest, X will not be

time-homogeneous.

Finally, turning to the question of strong lumpability (see Q3

above), the answer can be characterized by removing condition (i) of

Theorem 2 and modifying the proof to accommodate this change. More

precisely, we have

Theorem 3: Let X be a time-homogeneous Markov process with generator

matrix A [a ij I and let X be a functional of X determined by f. Then

X is a Markov process, whatever the initial, distribution p of X and

with a transition function that is independent of p, if and only if

for each qEQ the following condition is satisfied:

(7)
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For all r(Q such that r¢q, the sum

a
f (J)-r ^^	 (8)

is the same for all i(Q such that f(i)=q.

To illustrate Theorem 3, suppose X is specified by the generator

matrix

. _

F	 t

A =

-3a X 1 X 0 0 0

0 -2a 0 0 A a 0

0 0 -21 0 a 0 a

0 0 0 -2A 0 a X

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

(9)

and f is the function

q	 f,(q)

z	 1

2	 2

3	 3	 (10)
4	 3

5	 4

6	 4

7	 4

Testing condition ( 8) for states 1 and 2 in Q, we see that it holds

trivially since these states correspond to singleton lumps. As for

state 3EQ ( corresponding to lump {3,4}), with respect to states 1,2EQ

the sums are zero for both i=3 and i=4; with respect to state 4EQ

the sum is 2a for both i=3 and i=4. Thus condition (8) holds for
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state 3. Finally, (8) is likewise satisfied for state 4£Q and we

conclude that X is a Markov process with a transition function that

is independent of p.

In general, if X is strongly lumpable (as characterized by Theorem

3) it is easily shown that X must inherit the time-homogeneity of X.

In other words, a strongly lumped process will always be time-

homogeneous and, accordingly, it can be specified by a constant gen-

erator matrix. More precisely, if Q has m states and we rename

them (if not already so named) with the integers from 1 to m, the

generator matrix A=[aqr ] of X can be constructed directly from A,

where entry aqr (q,4r) is given by the invariant sum of condition (8)

for any i such that f(i)=q. (The diagonal entries 7qr are then

determined by the condition that rows must sum to zero.) Thus, for

the example just  consid#.-, red ( see (9)  and (10)) , the generator matrix

of X is the 4x4 matrix

A =

-31 X 2X 0

0 -2n 0 2a

0 0 -2X 21

0 0 0 0

Reviewing the results of this section, it is clear that a strongly

Pumped process is the most desirable type of operational model. On

the other hand, by Theorem 3, it is evident that such models require

a relatively restricted "match" between the probabilistic nature of

the base model (as specified by A) and the operational structure f.

The conditions of Theorem 2 are somewhat weaker although, when

satisfied, the transition rates of the resulting Markov functional

.
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are generally time-varying and dependent on the initial distribution

of the underlying process. of sign.fican ce here is the fact that even

without strong lumpability one can obtain operational models that are

Markovian and admit to feasible, closed-form analytic solutions (see

Equations (7), for example). What must be employed, in this case, are

solution techniques for arbitrary (discrete-state) Markov processes,

as opposed to more special (and much more familiar) techniques which

apply only to time-homogeneous Markov processes.

Finally, regarding weak lumpability (Theorem 1), the requirement

here is even less restrictive. However, depending on the nature of

A t p and f, it may be very difficult to decide whether the condition

of Theorem 1 is satisfied. Moreover, we currently know of no general

means of solving such models without resorting to detailed computa-

tions at the base model level. The utility of weak lumpability is

also curtailed by the fact that the initial state distribution of the

base model is fixed. This may be satisfactory in certain applic,-tions

but, in many cases, one wishes to examine the influence of different

initial distribmtions. Ire such cases, one must derive a solution for

each of the designated distributions provided, of course, that each

admits to weak lumpability.

Theorems 1-3 thus provide formal support of what we, and others

in the field, have observed through experience: at higher, more

user-oriented levels of abstraction, it is difficult to maintain a

Markovian representation of system behavior. As a consequence, we

should seek means for accommodating operational models (functionals)

that are not Markovian. The latter task is less formidable than it

might appear if we bear in mind that, when evaluating a system S, an

operational model XS plays an intermediate role in support of a
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designated performance variable Y,,. Thus, our knowledge of XS can be

restricted to that required to solve the probability distribution

of YS r i.e.p the performability of S. The latter observation serves

as the guiding principle for the work described in the fullowing

section.
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3. Solution Using Functionals

In this section, we consider the solution of performability

with respect to a generally defined performance variable. This

variable is defined in terms of an arbitrary operational model

which, as discussed in the previous section, is generally non-

Markovian. However, by relating this variable to the underlying

Markov process, it is shown that system performabilitiesg can still

be solved using traditional Markov process methods.

3.1 Performance Variable

The performance variable we consider is motivated by needs

which arise when performance is "recoverable" at the operational

level. More precisely, let us say that an operational method

X = {Xs Is E (O,t]}is recoverable if there is at least one opera-

tional rate q and time u,v (0 < u < v < t) such that

Pr [Rv > q I X  - q] > 0.

In other words, it is possible for the operational rate to recover

from q to a value higher than q. If this is the case then, clearly,

the operational rate at the end of utilization (i.e., the value

Xt) will generally not convey the "worst case" rate experienced

during [O f t,;]. (On the other hand, if X is not recoverable, one

can easily show that X  is the worst case rate.)

Motivated by the above considerations, let us suppose that

X - (Xs 1 0 < s < t}

is a finite-;Mate Markov process and, relative to an operational

structure f,

_ (f (Xs )	 0 < s < t}

is the operational model (functional) . Then a performance variable 'Yt,

0
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indicating the minimum operational rate during (0,t], can be

defined on X as follows:

Yt - min (f (XS ) l 0 < s < t)	 (11)

Figure 2 depicts the value of Yt for a representative sample path

of the functional X. If R is not recoverable, than Y t is simply

the operational rate at time t. In this case, solving perorm-

ability (relative to Y t) is tantament to solving the transition

function of R. On the other hand, if X is recoverable, the

solution process becomes more involved, as we discuss in the

section that follows.

3.2 Performability Solution

As defined above, we note first that Y t is a discrete perfor-

mance variable since the base model X has a Finite number of

states and, hence, there is a finite number of operational rates.

Therefore the performability p S of S (see [4], definition la)	 is

simply the probability distribution of Yt , i.e.,

PS (q) = PrCY t = q).	 (12)

Accordingly, if we are able to solve the conditional probabilities

g ig (t) = Pr[Y t = q I X0 	i]

where isQ , qeQ , 0 < t < 	 then p,,. is obtained by the well-

known formula

PS ( q) _	 z g iq ( t ) Pr [XO	 ]
ieQ

Note that, in the case where t = 0, the minimum operational rate

is just the operational rate associated with the initial state;

in short

1
	

if f (i) = q
gig(0)	

0
	

otherwise
	 (13)

C
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operational
rates

y  q

t time

Figure 2

A sample path of an operational model and its corresponding
minimum operational rate Yt.
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To relate the conditional probabilities g ig (t) to the generator

matrix A of the underlying Markovian base model X (see (6)), we

first introduve the random variable

pi a min (s is > O f Xs # i and X0 = J)

called the first exit time from state i (also called the first

solourn time in i). Then, using the "strong Markov property" at

Pi (a detailed discussion of the strong Markov property can be

found in (61, pp. 168-177), we are able to represent gig (t) in

terms of recurrence relations involving the coefficients aij

of the generator matrix.

Theorem 4	 Let X be a Markov process with an operational structure

f :Q +]R then, fra y each ieQ , qeQ and 0 < t <

	t 	 -ai^a

f ( j
I)> JQ (1-6 ij ) aij a	 gjq(t-a)da
q

1	 if f (i) > q

-aiit	 ft	
-aiiagig( t )	 e	 + Z	 I	 J (1-6ij) 

aij a
	 g'r(t-a)da

r?'q f(7) >r 0

if f (i) - q	 (14)

0	 otherwise.

Proof: We first write

gig (t) =t Pr [Y = q , Pi > t I XO = i) + Pr[Yt = q , Ai < t I X0 = i] .

C15)

Since f(i) < q implies g ig (t) = 0, we need to consider (15) only for

two cases: f (i) > q and f (i) = q.

,A
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Case 1: f (i) > q.

If the first state transition from state i occurs after t

(.e. pi > t) , then

Y  =min (f ( Xs )) 0 < s <t) =f(i)  # q.

It follows that

Pr ( Yt = qr pi > t ( X.0 = il = 0 .	 (16)

on the other hand, if the event ( p i c t) occurs, then i, must

be the case that the first state transition occurs at time p i to

some state j and the minimum operational rate occurs at a time
between p i and t. 'then the strong Markov property at p i gives

Pr [Yt . q (
 Xp 

i = j t X0 = i J = Pr [ Yt_p i= q ( X0 ' j 1 •

Hence, applying the above equation,

Pr CYt a q# p
i i  t i X0 = i

t
= J Pr rYt = q, p i = a XO = i 1 da

0

f0 t

I Pr(Yt^= q ( X0 = j ] Pr[ a	 j,pi = aj x0 = i] da
je Q

Now, since

Pr LY t^ = q ( X0 = l]	 gjq(t-a)

and
_aiia

Pr(X, = if A i 
= aIX0	

t) = (1 - a ij ) aij e	 ,

the above equality becomes

Pr [Yt = q, pi < t I X 0	 i]

rc
	 -a „a

3 3 
(1	 d i j) 

aije 11 gjq (
t-a) da.	 (17)

jE4 0

Accordingly, replacing the right side of (15) by (16) and (17)

and noticing that gjq (t -a) = 0 when f (j) < q, we have

r_
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gig (t) - 
fij)?q

t 	 -aii a
 fO (1 - 6ij ) e ij e 	 gjq(t-a)da

,

Case 21 f (i) = q.

Since the sojourn times of a Markov process are exponentially

distributed, we have

Pr [Yt = q , pi > t (X0 Ix iJ
= Pr [ Yt	 q 1 pi > t, X	 i ] Pr [ pi > t X	 i ]

-aiit	
-aiit0
	 0

1 . e . = e (18)

If the event (pi < t j occurs, then it must be the case that the

first state transition occurs at time p i to state j and

min {f ( Xs ) ( pi < s < t} = r for some r > q. Accordingly, applying

the strong Markov property at p i and repeating the arguments for

case 1, we have

Pr(Yt	 qr pi < tIXO ° it

=
 E	 rt

	 -a a
(1 - 6i j)ai je 11 gjr (t-a)da .	 (19)

r >q j eQ 0

Replacing the right side of (15) by (18) and (19), we finally

have, for the case that f (i) = q,
-a..t	 t	 -a. ,a

	

t	 e 11 
+ r >q f	 >r fm 	 l^

(1 - 6i,)a, .e 11 g,
7r

 (t-a)da

	

)	 (])

To solve equation (14), we first note that the integrals on

the rights side can be expressed as the convolutions of the functions
-a..t

gjr (t) and Wij (t) _ (1 - aij)aije it , i.e.,
t

Wij * gjr (t) _ 
0

Wij (a) gjr(t-a)da

Then, since Wij * 93r(t) = qjr * Wij (t), the derivative of the

convolution W ij * gjr (t) can be expressed as
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[Wij * gjr(t)]

H [gjr* W j (t) ]

d	 t	 aii(t-a)
_	 C f (1 - d ij )aij e	 gjr(a)clal

0

t	
- 
aii(t-a)

( -aii ) f (1 - Sij)aije	 gjr (a)da
0

+ (1 - 6ij)aijgjr(t)

= (-aii ) [ gjr* Wij (t) ] + (1 - d ij ) aijgjr(t)

( . -aii ) [Wij * gjr ( t ) ] + (1 - S ij )aij gjr (t) .

Thus, taking derivative term by term and letting f(i) a q,

dt gig (t) - f(j)>q dt
[Wij

* gjq(t)l

(-aii ) [ I	 Wij * gjq (t) l
f (j)?q

+

	

	 I	 [(1 - 6ij)aijgjq(t)]
f (j) ?q

(-a ii)giq (t) +

	

	 1	 C (1 - S i j
J
) aij gjq (t) l

f (j) >g 

a..g. (t) +	 E	 a..g. (t)
11 1q	

f (j) Tq 1J Jq
j #1

f aijgJq(t) .(j)>q
(20)
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Similarly, when f(i) w q,
-a..t

d. gig (t)	 (-aii)e ii +	 dt[Wij *gjr(t) )
r>_q f(J)>r

• (-aii)e aiit + ( -aii ) [ 1	 1	 Wij * gjr(t)]
r^q f (j) >r

	

+ I	 I	 ((1 - aij)aijgjr(t)]
r>q f(j)>r

-a..t	 -a t
,_ (-aii ) a ii + (-a ii)[giq (t) - e ii ]

+ I	 E	 [(1 - 8ij)aijgjr(t)1
r>q f(j)>r

(-a..)g. (t) +	 [(1 - 6
r>q.f(j)>r	

..)a• g	 (t)1ii a.q	 17 i 7 7r

I	 I	 ai jgjr(t) .	 (21)
r>q f(j)>r

Accordingly, combining (20) and (21), we obtain the following

expression for the derivative of gig(t)

Corollary: Let X be a Markov process with operational structure

f:Q -+ R then, for all ieQ, qeQ and 0 < t < -,

E	 aijgjq(t)	 if f (i) > q
f(j)>a

dt gig(t)

	

a.	 ifif f (i) = q	 (22)
r>q f(j)>r

	0 	 otherwise.

The equation (22) is, in fact, a system of linear differential

equations with n;m variables g ig (t) where ieQ and qeQ. Hence, by

solving for gig(t) in terms of the coefficients a ij and time t,
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the probability distribution of the random variable Y  can be

expressed as, for each qei`,

Pr [Yt	q] -_- 	 giq (t) Pr [X0
ieQ

3.3 Taboo Probability Functions

An alternative approach to derive expressions for the prob-

ability distribution of the random variable Y  is to use the notion

of "transition probability with taboo states" defined as

Hpi j( t) = Pr[XsXH, 0 < s < t; Xt = j { X0 = i]	 (23)

where i,jeQ, HCQ and t>0. In words, Hpij (t) is the probability,

starting from state i, of entering the state j at time t under

the restriction that none of the states in the set H is entered

during the period [O,t]. The set H is called the taboo set and

Hpij(t) is called the transition probability from i to j in time

t under the taboo set H.

The analytic and probabilistic properties of taboo probability

functions have been studied extensively and a detailed account

is contained in [6]. (Note that the taboo transition probability

defined above is the simplified form described in [6] on page

191.) To represent Hpij (t) in terms of transition rates of the

underlying Markov process, one can simply solve the transition

function of the transformed Markov process obtained from the

original underlying process by making states in H absorbing state

(i.e., by deleting all the transitions from each state in H to

other states in the state transition diagram of the original process).

More rigorously, following arguments similar to the proofs of
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Theorem 4 and its corollary, we can establish the validity of the

above transformation method by the following Kolmogorov's

differential equation:

Theorem 5: 'Let X - {Xt j teT} be a continuous time finite state

Markov process then, for all i,jeQ and t>O,

(t)	 if i^ H
keQ aik H

p kj

d3t Hpij	 (24)( t) z

0	 otherwise.

To establish the relationship between the random variable

Y  and the taboo probabilities, we note that the complemented

probability distribution function of Y  can be expressed as

Pr [Yt ? q l

- Pr[min {f ( Xs ) 0 << s < t} > q]

= Pr [f ( Xs ) > q, 0 < s < t]

= Pr [ Xs^ {k 3 f (k) < q } , 0 < s < t] .

That is, Pr[Yt > q] can be regarded as the taboo probability in

time t under the taboo set {k If(k) < q } . Hence if we let the

generator matrix of the transformed process be a nxn dimensional

matrix

Pq = [Yij]
	

(25)

such that for all i, j in Q,

aij	 if ie {k I f(k) > q}

Yi j =

0	 otherwise,

then by Theorem 5, for all i,jeQ and t>O,

t Pr [Yt > q, Xt = j I XO = i] = I
k eQ

Yik Pr [Yt > q , X  = J I XO = k]

(26)

T
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Solving the above system of differential equations, we obtain

Pr(Yt > q) s p (0) ergt jq	 (27)

where p(0) is the initial probability distribution of the underlying

process andIq is a n x 1 matrix

^q	 [ci ]	 (28)

such that

	

1	 if f (i) > q,
c.

	0 	 otherwise.

Finally, since

Pr(Yt = q]	 Pr (Yt > q] - Pr[ Yt > q + 11,

the probability distribution of the random variable Y t can be

expressed as, for all qei,

Pr(Yt = q]	 (29)

= p (0) e r gt	 - p (0) erq+lt
q	 q+1

where p ( 0) is the initial probability distribution of the under-

lying Markov process X.

3.4 Conditional Expected Operational Rate

In contrast with the above approach of regarding the perfor-

mance of a system to be the minimum operational rate experienced

by the system during [O,t], the performance of the system can also

be taken to be the "expected" operational rate of the system during

the period. For instance, when the operational rates of a system

can be associated with the rates of information processed in the

unit time, then the expected operationa ll,, rate can often be inter-

preted as expected throughput rate, expected capacity rate, expected

n
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production rate, etc. The performance variable can be used to

characterize the overall performance of both non-degradable and

degradable computers (see [2] and [81, for example). However,

in order to analyze the performance of a degradable computer in

detail, we found it is useful to decompose the expected operational

rate into components involving different operational modes of the

system.

More precisely, if we denote the average operational rate of

a system by the random variable

1 tdt	 1t f(Xs )ds	 (30)
0

where [O f t] is the utilization period of the system, then the

expected operational rate of the system can be decomposed according

to the following well-known formula:

E[6 t I  = I_ E [dt 
Yt 	q] Pr [Y t = q]	 ( 31)

q6Q

where Yt is given by (11). In other words, the effect on the system

performance (relative to E[d t]) of an operational mode having an

associated operational rate q can be quantified by taking the

product of the conditional expectation E[dtj Yt = q] and the

probability of occurance of the operational mode Pr[Y t = q].

To solve the conditional expectations E[dt (Yt = q], let

us write P i to represent the conditional probability given X 0 = i

and write E  [8 t jYt = q] instead of E [6 t j Yt = q, XD = i] . Then,

by expanding the conditional expectations, we have, for all qEQ,

E [ a t ( Yt = q]

I E  [dt I Yt = q] Pr [XO = i I Yt	 q ] .	 (32)
iEQ
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Moreovor, ' for all qeQ,

Ei [at I Yt a q]

= f P i [ d t > a lYt - q]da
0

f

00 ^? i [a t> a, Yt = ql

0	 Pi ^
Y
t 

q] da

P i [Yt ? q]	 °°
= 
p Y = q

	
Pi [ a t? a,, Yt > q]da

i t	 fo

P i [y t > q+11
- ---p- -Yt _ ^- f Pi [6 t> alYt > q+l]da

= Pi Y t , T Ei [a t lY t > 4] - pi 
[Yt_3 

q	 Ei [ s t l Yt > q+l] ( 33)

Since P i [Yt = q], P i [Yt > q] and P i [Yt > q+l] are given by (27)

and (29), we only need to solve for Ei[BtlYt > q] and E i [B t lYt > q+l].

Now, because E i is a linear operator, for all qeQ,

Ei[atlYt > q]

{ t
= 

1t J	 E i [f ( Xs ) lY t > g]ds
0

l It 	f ( j ) P i [Xs = j (Y t _> gJds
0 jeQ

1	 1
t

= t P. Y >	 f(j) f[XPis = j ^ Yt _> q]ds	 (34)

Pi [ t - q] IjEQ	 0

To evaluate the integration, note that

Pi[Xs = j , Yt ? q]

= P i [Xs = j; f ( Xa ) > q for all 0 < a < t]

F_.
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P i [f (X ) > q for all s < a < t l X s M J; f (%) > q

for all 0 <4 <S] P i LXr = j; f(Xa) > q

for all 0 < a < s].

Hence, by Markov properties,

PiLXs = jr Yt _> q]

' P i [Xs 
= j ' Ys _> q] P j [Y t-s —> q ] •	 (35)

To simplify the notations, we observe that P i [Y t_s > gland

P i [Xs = j, Ys > q] are the taboo probabilities under the taboo

set (klf(k) < q). Thus, if we let

gpij (t) : taboo transition probability from i to j in time t

under {k l f (k) < q)

and

q D i (t) _
7EQ 

gPij (t)

then by combining (34) and (35)

Ei [a t lYt 2: q]

Wit)	
f( j) (gDj *gPi-i (t) ]q i	 jEQ

where qD j * gp ij (t) is the convolution of q D j (t) and gp ij (t) . Also

by (33) ,

E i (a t lY t = q]

1	 =	 ,1	 f (j) LD* p	 (t) ]t P
i Y t	 g] 

]£4	 g j g ij

1	 1 ^ f(j) [D*q+lp ij (t) ]'	 (36)t^ Pi Yt = q jeQ 	q+1 j

Finally, by (33) and (36), the conditional expected operational

rate of a given value of Y  can be expressed as
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E[dtlyt - 9J

1 P i (0)f (]) ( qo j *qPi j ( t ) ]t Pr [Yt	 qJ i, je4

1	 4	 p (0) f 0) [	 *	 P ( t ) Jt Pr[Y t
 ^ gJi,ae4 i	

q+l j q+1. ij

where p(0) _ [pl (0),. . •pn (0)] is the initial probability distri-

bution vector of the underlying Markov process X.

3.5 An Example

The example considered here is essentially a Markov model

of a TMR system where the simplex system has failure rate 1

(see Figure 3). It is assumed that the system has coverge

factor c as well as capability of software error recovery. In

Figure 3 1 each state of the process is denoted by two numbers

separated by a slash: i/q. The integer i represents the number

of operational modules; a prime is appended (i') if the state

denotes a software error recovery state. The number q, specifies

a relative worth of the state, i.e., q is the operational rate

of the state i. The transition rates from each state are noted

on the state diagram. If the utilization period is T = [Oft],

then the system performance is given by

Y  - min {f (Xs ) 10 < s < t).

By examining the state transition graph, it follows

immediately that the generator matrix is

(3a+10 -3 )	 31c	 10-3	 31(1-c)

A	 0	 -21	 0	 21

10 3	0	 -(102+103)	 102

0	 0	 0	 10

F .
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X = 5x10-4

c = 1-10-7

-35

y

Figure 3

Markov model of a TMR system

with software error recovery

t
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Xf we lot

(3.%+1A -3 )	 31c	 10-3	 31(1-c)

	

rl „	 0	 -2a	 0	 2a
0	 0	 0	 0
0	 0	 0	 0

-(3X+1,0-3)	 3ac	 10-3	 3X(1-c)

0	 2X	 0	 2a

	

r0.5"	 103	 0 _(102+103) ,102
0	 0	 0	 0

and r0 = A, then by solving equation (24) the taboo transition

probability functions are given by

1P(t) = Clp ij (t) l

e-0.0025t	 (1_10-7)(e-0.001t_e-0.0025t) 	 0	 0

a 0	 e-0.001t	 0	 0

0	 0	 0	 0

Q	 0	 0	 0 J,

0.5p(t) - t o.5pij (t) a

c  c2 c3 0

0 e- 
0.001t 0 0

C 4 c5 c6 0

0 0 0 0

:here

c  - 0.9999991735 e-0.0015909t_0.0000008265 e-1100.000909t

C
2 
= -2.538498242(e-0.0015909t_e-0.001t)

c 3 = 0.0000009092(e-0.0015909t_e-1100.000909t)

C
4 
= 0.9090915(e-0.0015909t_e-1100.0009091)

C
5 

= -2.307727772(e-0.0015909t_e-0.001t)

C
6 
= 0.0000008265 e-0.0015909t+0.9999991735 e-1100.0009091

.A
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and

OP
 NO M 

P (t) . 
aAtl

cl 	 c2	 c3	 1- (C1+C2+c3)
0	 e-0.0011	 0	 1-e-0.0011.

c 4	 c5	 c6	 1-(c4+c5+c 6)

LO	 0	 0	 1

where ci i= 1,2,...,6 are the same as in O.SP(t).

To determine the probability distribution of the random

variable Yt , notice that equation (29) can be rewritten as

Pr [Yt - q ] = p( 0 ) qP (t) I,q - P (0) q+1P (t) Iq+l'

Assuming that the system initially has all three modules operational.,

i.e.,

P(0) = [1,0,0,0]

then, by (12), the performability of the system relative to the

performance variable Yt can be expressed as

PS (1) - Pr [Y t = 1)

= (1-1,0-7)e- 0.001t + 10-7e-0.0025t

PS (0.5 ) - Pr [Y t = 0.5]

_ 1.538498159 e-0.0015909t + 1.538498342 e- 0.001t

10-7 e-0.0025t

PS ( 0 ) - Pr [Y t = 0]

1 + 1.538498159 e-0.0015909t - 2.58498242 e-0.001t.



W38-

In Figure 4 the performability of the system is represented by

three curves: z, II and III. Curve I is the probability that the

system will operate at operational level 1 throughout the utili-

zation period. The probability is equal to 1 at time 0 and

gradually diminishes to 0 as the length of T goes to infiwity.

Curve II is the probability that the system suffered performance

degradation during the utilization period while remaining operational

throughtout the period. As shown in the figure, the probability

of degraded performance goes from 0 to some positive probability

and decreases to 0 again when t increases. This is due to the fact

that state l is an absorbing state, thus, the system will eventually

end up in failure state. Finally, we note that curve III is the

familiar S-shape function for system failure probability.

To compute the conditional expected throughput rate of the

performance variable Y, we also assume that p(0) - [1,0,010].

Then,

E[6tlyt	 1]

tPr Y =	 Z f (.3) [ ZD1 l*p3j (t) ]t	 ] je4

" 
t Pr Ytt W 1] [ l D3 * lP 33 (t) + 1D2 * 1p 32 (`') ]

- 10-7t e-0.0025t + (1-10 7)t e-0.001t
t Pr [Yt _ ]

- 1.

Similarly, carrying out the computations, we have

E [S t lY t = 0.5]

0
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t Pr LY1, I f(j)[O.SDj*O.5p3j(t)^
t	 7 4

1 f (j) [ D * p	 (t)- t Pr Yt 	.37 j EQ	 1 j 1 3i

t Pr Y -	
(1.538498342 t e- 0.001t
t 

- 1.538497523 t e -0.0015009t + 0.0017755$8 e- 0.0015909t

- 0.0017755848 e-0.001t - 10 -7 e-0.0025t)

and

E[d t lYt = 03

t; Pr Y ---UT f-964.0617977 (1-e- 0.0015909t
t

+ 2538.498242 (1-e-0.001t)

+ 1.538497523 t e-0.0015909t

- 2.538498242 t e-0.001t

- 0.0017755848 e-0.0015909t

+ 0.0017755848 e- 0.001t I.

Accordingly, if we assume that the utilization period of the system

is [O,t] where t = 10 hours, then the performabilty and the

corresponding conditional expected throughput rate are tabulated

in Table 1.

a
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