NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE
Electron-temperature dependence of dissociative recombination of electrons with CO⁺(CO)ₙ-series ions

Marlin Whitaker, Manfred A. Biondi and Rainer Johnsen
Department of Physics and Astronomy, University of Pittsburgh
Pittsburgh, PA 15260

Abstract

A microwave-afterglow mass-spectrometer apparatus has been used to determine the dependence on electron temperature Tₑ of the recombination coefficients αₙ of the dimer and trimer ions of the series CO⁺(CO)ₙ. We find α₁ = (1.3 ± 0.3) x 10⁻⁶ [Tₑ(K)/300]⁻⁰.₃₄ and α₂ = (1.9 ± 0.4) x 10⁻⁶ [Tₑ(K)/300]⁻⁰.₃₃ cm³/sec. These dependences on Tₑ are quite different from those obtained previously for polar-cluster ions of the hydronium and ammonium series but are similar to that for simple diatomic ions.
I. **Introduction**

The capture of electrons by ions of the carbon monoxide series, \(\text{CO}^+(\text{CO})_n \), where \(n = 0, 1, 2, \ldots \) is of interest for several reasons. These ions may be important in ionized media where CO or CO\(_2\) are among the neutral constituents, as in some laser plasmas or in the ionospheres of certain planetary atmospheres. Thus, determinations of the electron-ion recombination coefficients for the appropriate ions provide needed inputs to model calculations of the behavior of these plasmas. More fundamentally, previous studies\(^1-3\) have shown that recombination coefficients for ions to which strongly polar molecules are clustered exhibit a very different variation with electron temperature than that observed for dissociative recombination of unclustered molecular ions\(^4\). The present study extends the cluster-ion work by examining recombination of ions clustered with weakly polar molecules, i.e., the dimer and trimer ions, \(\text{CO}^+\cdot\text{CO} \) and \(\text{CO}^+\cdot(\text{CO})_2 \), where the recombination reaction is most probably

\[
\text{CO}^+\cdot(\text{CO})_n + e^- \rightarrow \text{CO}^\#\cdot(\text{CO})_n + c^\# + O^\# + n(\text{CO}) ; \tag{1}
\]

the asterisks indicate that the products may be electronically excited.

II. **Method of Measurement and Data Analysis**

The microwave-afterglow mass-spectrometer apparatus is the same as that used previously in a study of the polar-cluster ions\(^3\) and has been described in some detail\(^5\). A microwave discharge lasting typically 0.1 ms and repeated at a 10-Hz rate is generated in 5-20 Torr of neon containing an admixture of a few tenths percent of carbon monoxide. The "microwave-averaged" electron density \(\bar{n}_{\text{MW}} \) during the afterglow is obtained from measurements of the resonant-frequency shift of the high-Q TM\(_{010}\) cavity mode\(^1\), while steady electron heating is achieved by application of microwave power via a low-Q \((\sim 10) \) TE\(_{111}\) cavity mode. The time histories
of the various afterglow ions are determined by sampling the ions which diffuse to the cavity wall and effuse through a small orifice into a differentially pumped quadrupole mass filter.

The principal steps in the formation of the ions of interest are thought to be: (a) electron-impact excitation of neon to a metastable state Ne\(^m\), (b) Penning ionization of CO molecules via

\[
\text{Ne}^m + \text{CO} + \text{Ne} + \text{CO}^+ + e^-
\]

and (c) clustering and breakup reactions,

\[
\text{CO}^+ + \text{CO} + \text{Ne} \rightleftharpoons \text{CO}^+\cdot\text{CO} + \text{Ne}
\]

and

\[
\text{CO}^+\cdot\text{CO} + \text{CO} + \text{Ne} \rightleftharpoons \text{CO}^+\cdot(\text{CO})_2 + \text{Ne}
\]

The relative abundance of ions in the afterglow is controlled by varying the gas temperature from \(~\sim 250\) to \(300\) K and the partial pressure of CO from \(~\sim 20\) to \(100\) mTorr, thereby affecting the equilibria of reactions 3 and 4. (Under the conditions of the present measurements the CO\(^+\) ion was never a significant ion throughout the afterglow, so that its recombination coefficient was not determined.)

Under the conditions obtaining in the present study, that is, the ions present in significant concentrations decay together during the afterglow, it has been shown\(^3\) that the electron continuity equation can be written as

\[
\frac{\partial n_e(\vec{r},t)}{\partial t} = -\alpha_{\text{eff}} n_e^2 + D_a v^2 n_e ,
\]

where \(\alpha_{\text{eff}}\), the effective recombination coefficient, is given by

\[
\alpha_{\text{eff}} = \sum a_j f_j\]

in which the \(f_j\) are the fractional concentrations (essentially time-independent) of each afterglow ion and \(D_a\) is the ambipolar diffusion
coefficient appropriate to a mixture of positive ions\(^5\), whose separate
\(D_a\) values are estimated from the Langevin (polarization) mobilities\(^7\) of
ions moving in neon. Usually only two ionic species are present in
significant concentrations during the afterglow (e.g., the dimer and
trimer ions); therefore \(a_{\text{eff}}\) may be written as

\[
a_{\text{eff}} = f_1 a_1 + (1 - f_1) a_2 ,
\]

with \(a_1\) the dimer and \(a_2\) the trimer ion recombination coefficient.

A computer solution\(^8,9\) of Eq. (5) with appropriate values of \(a_{\text{eff}}\)
and \(D_a\) yields the predicted spatial and temporal variation of the electron
density, from which predicted values of \(\bar{n}_{\mu W}(t)\) can be obtained. Since
the measurements of the microwave cavity's resonant frequency shift during
the afterglow directly yield \(\bar{n}_{\mu W}(t)\), the value of \(a_{\text{eff}}\) may be determined
from these measurements by obtaining a best fit to the data of computer-
generated solutions of Eq. (5), using the known values of \(D_a\) and treating
\(a_{\text{eff}}\) as a parameter.

III. Results

The recombination coefficient for the dimer ion, \(\text{CO}^+\cdot\text{CO}\), was inferred
from those data runs in which the dimer was the only ion of significance,
representing greater than 90% of the total ion count. Referring to Fig. 1,
it will be seen that in this example of our measurements the electron
density decay tracks the \(\text{CO}^+\cdot\text{CO}\) wall current decay (the dashed lines are
renormalized \(\bar{n}_{\mu W}\) values) and that the \(\text{CO}^+\) concentration is \(\leq 5\%\) of the dimer
ion concentration during the \(\sim 12\) msec of the afterglow used to determine \(a\).
Fig. 2 shows examples of the measured electron-density decays for several
electron temperatures displayed in the "recombination-decay" form of \(1/\bar{n}_{\mu W}\).
The solid lines are computer solutions of Eq. (5) which provide the best fit to the data. The measured variation with electron temperature for α for the dimer ions is shown in Fig. 3. The different symbols (circles, triangles, squares) indicate separate sequences of runs taken some days apart and suggest that the T_e variation from one run to the next is more reproducible than is the absolute value of α[CO^+·CO] at a given value of T_e. The + symbols indicate the reproducibility of α values determined from several runs all at T_e = 300 K.

In those runs where the trimer ion, CO^+·(CO)_2, was dominant, it was necessary in many cases to correct for the presence of significant fractions of the dimer ion. An example of the tracking of the electron density decay with the decays of the trimer and dimer ions is given in Fig. 4. Electron density decays measured at various electron temperatures for the case where both trimer (at 84%) and dimer (at 16%) ions were present are shown in Fig. 5. The solid lines represent best-fits of the computer solutions of Eq. (5) to the data to obtain α_eff vs. T_e. When the α_eff data were corrected via Eq. (6) for the dimer ion contribution using the appropriate values of α_1, the inferred variation of the trimer ion recombination coefficient α_2 with T_e shown in Fig. 6 was obtained. Again the different symbols represent different runs.

If one fits the data of Figs. 3 and 6 to simple power law variations of the form α ∝ T_e^{-x}, the results of the studies can be represented by the following expressions:

\[\alpha[CO^+·CO] \,(cm^3/sec) = (1.3 \pm 0.3) \times 10^{-6} \, [T_e(K)/300]^{-0.34} \quad (7) \]

and

\[\alpha[CO^+(CO)_2] \,(cm^3/sec) = (1.9 \pm 0.4) \times 10^{-6} \, [T_e(K)/300]^{-0.33} \quad (8) \]

where the stated uncertainties reflect our estimates of the systematic and
random errors associated with the determinations. While the data of Fig. 3 show no systematic deviation from the expression given in Eq. (7), the data of Fig. 6 suggest that initially $\alpha[CO^+\cdot(CO)_2]$ may decrease more slowly with increasing T_e than the expression of Eq. (8) suggests and then, above 1000 K, more rapidly.

IV. Discussion and Conclusions

The present studies of recombination of electrons with the carbon monoxide family of cluster ions indicate a dependence of the recombination coefficient on electron temperature which is quite like that found for unclustered molecular ions. This result is in sharp contrast to the virtually electron-temperature-independent recombination exhibited by the clustered ions of the ammonium2 and hydronium3 series. Thus, the dimer and trimer ions of the CO$^+\cdot(CO)_n$ series exhibit some properties of both unclustered and polar-cluster molecular ions; i.e., they have large coefficients at $T_e \sim 300$ K (somewhat greater than 10^{-6} cm3/sec), as do comparably clustered NH$_4^+\cdot(NH_4)_n$ and H$_3O^+\cdot(H_2O)_n$ series ions; however, the dependence of α on T_e approaches that predicted ($T_e^{-1/2}$) and observed ($\sim T_e^{-0.4}$ to $T_e^{-0.8}$) for the direct dissociative process for simple diatomic ions.4

The substantially larger α values for the dimer and trimer ions compared to that expected1 for the monomer ion CO$^+$ probably result from increased likelihood of electron capture via an inelastic energy loss to the complex during the initial Coulomb collision. If the probability of such inelastic losses varies slowly with electron energy owing to the many closely spaced rotational and vibrational levels in the complex, then the Coulomb cross section's $1/\epsilon$ energy variation (ϵ is the electron energy)
dominates the capture. If, in addition, the stabilization by dissociation of the core (refer to reaction (1)) is highly probable, one then expects a variation of α near $T_e^{-1/2}$. Although this argument makes plausible the CO$^+$.CO$_n$ data, it appears that a similar argument should apply to the hydronium and ammonium series ions. Thus, the observed lack of dependence of α on T_e in the latter cases2,3 is difficult to understand.

Earlier studies$^{11-13}$ of electron-ion recombination in CO discharge - afterglows did not employ mass identification of the recombining ions. Thus, the attribution of a measured recombination loss rate to a particular ionic species is, in our view, rather speculative. Our mass analysis of ions in discharge-afterglows in CO indicate the presence of a mixture of ions, e.g. CO$^+$, CO$^+$.CO and CO$_n$O$^+$, at CO pressures above 0.1 Torr.

Mentzoni and Donohue interpreted the lack of a pressure dependence over the range $0.2 \leq p(\text{CO}) \leq 2$ Torr in their recombination coefficient determinations12 as evidence that CO was the dominant afterglow ion, concluding that $\alpha[\text{CO}^+] = 4 \times 10^{-7}$ cm3/sec at $T_e = 775$ K. In their earlier work11 they found a constant value, $\alpha = 7 \times 10^{-7}$ cm3/sec, even when the electron temperature was decaying to $T_e = 300$ K during the afterglow; however, in their second paper12 they use this value for $T_e = 300$ K and, on the basis of these two T_e values, infer a $T_e^{-0.6}$ dependence for $\alpha[\text{CO}^+]$. While this T_e dependence is reasonable, the absolute value appears to be about a factor 2 too high10, and may result from the presence of dimer or trimer ions along with the CO$^+$ monomer.

Center13 studied electron loss by recombination in high pressure afterglows ($100 \leq p(\text{CO}) \leq 700$ Torr) where cluster ions were almost certainly present (as he noted). His values of "α" for the unknown ionic mixture are comparable to our values for the dimer or trimer ions at $T_e \approx 1000$ K but decrease much more rapidly with increasing T_e, differing from our results.
by a factor ~ 3 at $T_e \sim 5000$ K. In our view, this discrepancy points out the difficulty of making quantitative determinations of recombination coefficients for specified ions in molecular gases in the absence of ionic mass identification.

Acknowledgment: This research was supported, in part, by the NASA Planetary Atmospheres Program under Grant No. NGL-39-011-137 and the U. S. Army Research Office/DNA under Grant DAAG-29-80-C-0075.
References

Figure Captions

Fig. 1 Comparative decays of volume electron density \(\bar{n}_{\text{ew}} \) and ion wall currents during the afterglow. The dashed lines represent renormalized values of \(\bar{n}_{\text{ew}} \).

Fig. 2 \(1/\bar{n}_{\text{ew}} \) vs time "recombination decay" plots for various electron temperatures under the same conditions as Fig. 1. The solid lines represent best-fit computer solutions of Eq. (5) to the data. The zero times for the different \(T_e \) runs are displaced for clarity.

Fig. 3 Variation with electron temperature of the dimer ion recombination coefficient with \(T_+ = T_n = 300 \) K. Each type of symbol indicates a run taken with a given gas filling on a given day. The dashed line represents a \(T_e^{0.34} \) power law dependence for \(a_1 \).

Fig. 4 Comparative decays of \(\bar{n}_{\text{ew}} \) and ion wall currents in an afterglow in which trimer and dimer ions are the principal positive ions.

Fig. 5 \(1/\bar{n}_{\text{ew}} \) vs time curves for the same conditions as Fig. 4. The solid lines are best-fit computer solutions of Eq.(5) to the data. The zero times of successive runs are displaced for clarity.

Fig. 6 Variation of the trimer ion recombination coefficient with \(T_e \) for \(T_+ = T_n = 250 \) K. While the dashed line represents a power-law variation of the form \(a_2 \sim T_e^{-0.33} \), the dotted line may better represent the actual variation.
$T_e = T_+ = T_n = 300 \text{K}$

$\rho_{\text{CO}} = 25 \text{mTorr}$

$\rho_{\text{Ne}} = 15 \text{Torr}$

Fig. 1
CO^+ - CO

\[T_+ = T_n = 300 \text{K} \]
\[P_{\text{CO}} = 25\text{mTorr} \]
\[P_{\text{Ne}} = 15\text{Torr} \]

Fig. 2

\(1/\bar{n}_{\mu W} \left(10^{-9}\text{cm}^3 \right) \)

\[T_e = 300K \]
\[1525K \]
\[2830K \]
\[4415K \]

afterglow time (ms)
Fig. 4

ion counts (abs.)

\[\frac{n_{\mu w}}{n_{\mu w}} \text{ (rel.)} \]

\[\text{CO}^+ \cdot \text{(CO)}_2 \]

\[\text{CO}^+ \cdot \text{CO} \]

\[p_{\text{CO}} = 93 \text{ mTorr} \quad T_+ = T_n = 250K \]

\[p_{\text{Ne}} = 15 \text{ Torr} \quad T_e = 2520K \]

\[f_1 = 0.16, \quad f_2 = 0.84 \]

afterglow time (ms)
Fig. 5

\[\frac{1}{n_{\mu w}} \left(10^{-9} \text{ cm}^3 \right) \]

\[\text{CO}^+ \cdot (\text{CO})_n \]

\[f_1 = 0.16 \]
\[f_2 = 0.84 \]

\[T_e = 250K \]
\[550K \]
\[980K \]
\[2240K \]
\[4280K \]

\[T_+ = T_n = 250K \]

\[p_{\text{CO}} = 93 \text{ mTorr} \]

\[p_{\text{Ne}} = 15 \text{ Torr} \]