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Abstract 

A microwave-afterglow mass-spectraneter apparatus has been used to 

determine the dependence on electron temperature Te of the recanbination 
+ coefficients an of the d1mer and tr:1mer ions of the ser~.es CO • (OO)n' We 

find al = (1.3 ! 0.3) x 10-6 [Te(K)/300J-O.34 and a2 = (1.9 ± 0.4) x 10-6 

[TeCK)/300]-O.33 cm3/sec. '!hese dependences on Te are quite different from 

those obtained previously for polar-cluster ions of the hydronium and anmon1mn 

series but are similar to that for simple diatomic ions. 
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I. Introduction 

'!be capture of electrons by ions of the carbon l\1)noxide series, 

00+ • (CO) n' where n ::: 0, 1 J 2 J ••• is of interest for several reasons. 

'lllese ions nsy be important 111 ionized media where CO or CO2 are arrDng the 

neutral constituents, as in some laser plasmas or in the ionospheres of 

certa:in planetary atll1C1spheres. Thus, determinations of the electron-ion 

recombination coefficients for the appropriate ions provide needed inputs 

to lOOdel calculations of the behavior of these plasmas. r.bre fur¥:1anentally, 

previous studiesl - 3 have shown that recombination coefficients for ions to 

which strongly polar !lX>lecules are clustered exhibit a very different 

variation with electron temperature than that observed for dissociative 

recombination of unclustered l\1)lecular ions 4• 'llle present study e:diends 

the cluster-ion work by eX8udning recombination of ions cl\h~tered with 

weakly polar toolecules, 1. e., the d1mer and. tr:1mer ions, CO + • ro and 

+ CO • (00)2' where the recombination reaction is JOOst probably 

+ - I I I CO • (CO) + e ~ CO • (CO) ... C + 0 + n(CO) n n 
. , (1) 

the asterisks indicate that the products !MY be electronically excited. 

II. Me.thad of Measurement and Data Ana;tYsiS 

The microwave-afterglow mass-spectrometer apparatus 1s the same as 

that used previously in a study of the polar-cluster lons3 and has been 

described in some detai15• A microwave discharge lasting typically 0.1 ms 

and repeated at a lO-Hz rate is generated :in 5-20 Torr of neon containw 

an admixture of 8 few tenths percent of carbon rronoxide. '!be "microwave­

averaged" electron density n during the af'terr).ow is obtained from 
!lW 

measurements of the resonant- frequency shift of the high-Q 'lMolO cavity 

rrode1 
J while steady elcctl'On heat1ne 1s achieved by application of 

microwave pcwter via a 10\,/-Q ('" 10) 'rElll cavity rrxxie. The time histoPies 
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of the various afterglow ions are determined by sampling the ions which 

diffuse to the cavity wall and effuse through a small orifice into a 

differentially pumped quadrupole mass filter. 

'Dle principal steps in the formation of the ions of interest are 

thought to be: (a) electron-1 rpac4; excitation of neon to a metastable 

state Nem, (b) Penning ioni ... d.tion of CO molecules via 

Nem + CO + Ne + a/ + e- (2) 

am (c) clustering and breakup reactions, 

a/ + CO + Ne ~ 00+'00 + Ne (3) 

and 

+ - + ( ) CO ·CO + CO + Ne - CO • 00 2 + Ne • (4) 

'!be relative abundance of ions in the afterglow is controlled by varying 

the gas temperature fran '" 250 to 300 K and the partial pressure of CO 

from '" 20 to 100 rriI'orr, thereby affecting the equilibria of reactions 3 

3 

and 4. + (Under the conditions of the present reasurements the CO ion was 

never a significant ion throughout the afterglow, so that its recombination 

coefficient was not determined.) 

Under the conditions obtaining in the present study, that is, the 

ions present in significant concentrations decay together during the 

afterglow, it has been shown3 that the electron continuity equation can be 

written as 

• 
(5) 

where Qeff' the effective r~combination coefficient, is given by 

Q
eff 

= E Q
j 

f
j

, in wtlich the fj are the fractional concentrations (essentially 

time-independent) of' each at't(!rglow ion and Da is the amblpolar diffusion 
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coefficient appropriate to a mixture of positive iOO85, whose separate 

Da values are est1IMted from the Langevtn (polarization) IOObllities 7 of 

ions moving in neon. Usually only two ionic species are present in 

significant concentrations during the afterglow (e.g., the d1nm' and 

trimer ions); therefore Cleff may be written as 

(6) 

with Cll the d1mer and Cl2 the trimer ion recombination coefficient. 

A cClTlputer solution8 ,9 of Eq. (5) with appropriate values of Cleft 

and Da yields the predicted spatial and temporal variation of the electron 

density, from which predicted values of n
l1W 

(t) can be obtained. Since 

the meas~nts of the microwave cavity's resonant frequency shift during 

the afterglow directly yield n
llW 

(t), the value of Clerr may be determined 

from these measurements by obtaining a best fit to the data of conputer­

genel'ated solutions of Eq. (5), using the knO\m values of Da and treat:lng 

Cleff as a parameter. 

III. Results 

+ The reccmbination coefficient for the d1mer ion, CO ·CO, was inferred 

from those data runs in which the d1mer was the only ion of significance, 

representing greater than 90% of the total ion count. Referring to Fig. 1, 

it will be seen that in this exarrple of our measurements the electron 

density decay tracks the CO + • CO wall current decay (the dashed lines ~ 
- + < renormallzed n

llW 
values) and that the CO concentration is - 5% of the d1mer 

ion concentration during the '" 12 msec of the afterglow used. to determine Cl. 

Fig. 2 shows examples of the ~asured electron-density decays for several 

electron temperatures displayed in the "recombination-decay" fonn of 1/ n
llW 
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!!. t. '!be solid lines are corrputer solutions of Eq. (5) which provide 

the best fit to the data. ''Dle neasured variation with electron terrp!rature 

for a for the diner ions is shown in Fig. 3. '!be different symbols (circles, 

triangles, squares) indicate separate sequences of runs taken sane days 

apart am suggest that the Te variation f'ran one run to the next is rrm'E: 

reproducible than is the absolute value of 0.(00+ -CO) at a given value of 

Te' '!be + symbols indicate the reproducibility of a values detenn1ned 

fran several runs all at Te = 300 K. 

+ In those runs where the trimer ion, CO '(00)2' was dominant, it 

was necessary in many cases to correct for the presence of s1gnif1cant 

fractions of the dimer ion. An exant>le of the tracking of the electron 

density decay with the decays of the trinm' and. d1rner ions is given in 

Fig. ,.. Electron denslty decays measured at various electron temperatures 

for the case where both trimer (at 84%) and dimer (at 16%) ions were 

present are sho\\'ll in Fig. 5. 'lbe solid lines represent best-fits of the 

computer solutions of Eq. (5) to the data to obtain aeff vs. Teo When 

the Cleff data were corrected via Eq. (6) for the dlrner lon contribution 

using the appropriate values of 0.1 ' the inferred variation of the trimer 

ion recombination coefficknt 0.2 with Te shown in Fig. 6 was obtained. 

Again the different symbols represent different runs. 

If one fits the data of Figs. 3 and 6 to simple power law variations 

of the form a '" Te -x, the results of the studies can be represented by the 

following expressions: • 

where the stated uncertainties reflect our estimates of the systematic and 
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random errors associated With the detenn1nations. While the data of Fig. 3 

show no systenatic deviation fran the expression given in Eq. (7). the data 

of Fig. 6 suggest that initially a[CO+. (CO)2] may decrease nr::>re slowly with 

increasing Te than the expression of Eq. (8) suggests am then, above 1000 K, 

nr::>re rapidly. 
.. 

rI. Discussion and Conclusions 

'lhe present studies of recombination of electrons with the carbon 

DDnoxide f'amily of cluster iO!'lS 1ndicate a dependence of the recanbmation 

coefficient on electron tenperature which is quite like that found for 

lmclustered IOOlec.u1Ar ions. '1h1s result" 1s in sharp contrast to the 

virtually electron-tenpera.ture-independent recombination exhibitP.d by the 

clustered ions of the anmmium2 and hydronium3 series. 'Ihus. the d1mer 

+ and trimer ions of the CO • (CO)n series exhibit some properties of both 

unclustered and po1ar-cluster roolecular ions; i. e., they have large 

coefficients at Te "" 300 K (sonewhat greater than 10-6 cm3/sp'c), as do 

+ + carpara.bly clustered NH4 • (NH4)n and H30 • (~O)n series ions; however, 

the dependence of a on Te approaches that predicted (Te -112) am 
obs",rved ("" T -0.4 to T -0.8) for the direct dissociative process for e e 
s1nple diatanic ions". 

'!be substantially larger a values for the d1mer and trimer ions 

compared to that expected 10 for the monomer ion CO + probably result f'ran 

increased likelihood of electron capture via an inelastic energy loss to 
• the canp1ex during the initial Coulomb collision. If the probability of 

such inelastic losses varies slowly with electron ene~gy owing to the many 

closely spaced rotational and vibrational levels in the complex, then the 

Coulomb cross section'e. 1/E energy variation (£ is the electron energy) 

, 
J 

i 
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dom:lnates the capture. If, in addition, the stabilization by dissociation 

of the core (refer to reac4;ion (1» is highly probable, one then expects a 

variation or~ a near Te-l/2. Although this argument makes plausible the 
+ CO • (CO)n data, it appears that a s1.'TI11ar argument should apply to the 

hydronill1l and anm:mitm1 series ions. '!hus, the observed lack of dependence 

of a on Te in the latter cases2 ,3 is difficult to understan1. 

Farlier studies 11_13 of electron-ion recatbination in CO discharge -

afterglows did rot ~loy mass identification of the recombining ions. 'lhus, 

the attribution of a meast.n'eCl recombination loss rate to a particular 

ionic species is, in our view, rather speculative. <An- mass analysis of 

ions in discharge-afterglows in 00 indicate the presence of a mixture of 

+ + + ions, e.g. 00 , 00 '00 and CnOm, at CO pressures above 0.1 Torr. 

r·1entzoni and Donohue interpreted the lack of a pressure dependence 
< < over the range 0.2 - P (00) - 2 Torr in their recombination coefficient 

detenninations12 as evidence that CO was the dominant afterglow ion, 

+ concluding that a[CO ] !I! 4 X 10-7 crn3/sec at Te = 775 K. !n their earlier 

workll they found a constant value, a=:7 X 10-7 cm3/sec, even when the 

electron temperature was decaying to Te = 300 K during the afterglow; 

oowever, in their second paper 12 they use this value for Te -= 300 K and, 

on the basis of these two Te values, infer a Te- O.6 dependence for a[oo+]. 

While this Te dependence is reasonable, the absolute value appears to be 

about a factor 2 too h1eh 10 , and may result from the presence of d1mer or 

+ triJoor ions along with the CO rwnomer. • 

Centerl3 studied electron loss by recombination in high pressure 

afterglows (100 oS p(oo) s 700 Torr) where cluster ions w:~re almost certainly 

present (as he noted). His values of "a" for the unknown ionic mixture 

are comparable to our values for the dimer or trimer ions at Te ~ 1000 K 

but decrease rruch rrore rapidly with increasing Te t differing from our results 
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by a factor'" 3 at Te '" 5000 K. In our view, this d1scretWlcy points out 

the difficulty of making quantitative deterrn1nations of recombination 

coefficients for specified ions in mlecular gases in the absence of ionic 

mass identification. 
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Figure captions 

Fig. 1 r.Q11)8r8.t1ve decays of volume elec~~ dens1ty i\.w ard ion wall 

currents during the aftEtrglow. '!be dashed l1nes represent 

renonnal1zed values of I\.W. 
Fig. 2 1/ n

llw 
!!. time "recanb:1nat1on decay" plots tor various electra'l 

Fig. 3 

Fig. 4 

Fig. 5 

Fig. 6 

t~tures under the same con:litions as Fig. 1. '!be solid lines 

represent best-fit c~er solutions of Eq. (5) to the data. 

'!he zero times for the d1f'ferent Te runs are displaced tor clarity. 

Variat10n with electron teJ11'erature of the d1mer 10n recall-

b1nation c~fficient with T+ • Tn III 300 K. Each type of symbol 

1nd1cates a run taken with a given gas ruling on a given day. 

'!be dashed line represents a Te- O.34 power law depeBience for Qr 
Cooparative decays of n

l1W 
and ion wall currents in an afterglow 

in which trimer and d1mer ions are the principal posit1ve ions. 

11 n vs tiIoo curves for the same condit1ons as Fig. 4. The 
lJW -

solid lines are best-fit caqmter solutions of Eq.(5) to the data. 

'!he zero t1.'1leS of f'uccessive runs are displaced for clarity. 

Variation of the trimer 10n recombination coefficient with 

Te for T+ • Tn • 250 K. While the dashed line represents a 

power-law variation of the form (12 '\0 Te-O• 33. the dotted 11ne 

may better represent the actual variation. • 

R5 uS K--·; - S 4 .. ~~_~ - __ 



en .... 
C 
::I 
o 
U 

c 
o .-

2 
10 

I 

)( 

)( 

o 

T = T = T. = 300 K e + n 

)( 

Peo = 25mTorr 

PNe = ISTorr )( 

)( 
x - )/ n,.,.w.( rei. 

)( 
x x x 

• ........... . . 
""6 ..... ../J. ..... 6 I 6 -- ---

• 

o o 
10 O~~~~~~~~~~~~~~~ 

5 10 15 20 

afterg low time (m 5 ) 

Fig. 1 

a -----e= - - **-7-=-- ---2'=:'- = 



rt) 

E 
u 

en 
10 
-
~ 
:s.. 

Ie 

" -

15 

10 

5 

T+= Tn= 300K 
Pee = 25mTorr 

p. = 15 Torr 
Ne 

o 5 10 

x 

afterglow !ime (ms) 

Fig. 2 

-- -=' --~~~- -----~ -~--' -~- -- ~--

• 

• 

15 



0 

I 
I , 

0 
, 
'<I I 

I 
I D 

I , 
I 

Q- 1'--ICD 
I 

CJ) 

10 -

, 

o ' I 
I 
'<I 

o ' D I 
I , 

I 
I 

I 
D 

I <I 

,...--. 

ttl ~ 

0 
......., C'f"l . - ~ ~ ~ 

0 I 0 
rt) 

II 

f-C 

II 

.... + 

-



104 

• • • • nlLW (reI.) 
+ •• •• ./ xx~, • • • + x ...... •• •• X ::0... 

10
3 )( :-..... 

X :-..... 
X x' 

)('x .... x .... x x 
+ - -x-.x x 
'+. 

...... x x 
.....-

-. _ x 

• '+ 
CO+· (CO}2~ en '" 

.tl 
+ .... +. .... 

0 + /+ ..... + .... + .... + ..... -
en 2 CO • CO + ..... .,..."':t.. .... 10 +-+-+-+ + 
C 
::s 
0 
u 

Pea = 93mTorr T+=Tn= 250K 
:, C 
I 0 P

Ne 
= 15 Torr Te = 2520K 

! .-
f, = 0.16, f2 = 0.84 

10 ' 68+,....0 0 0 0 
A A 

A 0 oA A A 
AA 0 0 00 

0 AA 0 o 0 

Ao A A Ao A A .......... 96+ 

1
0 5 10 

afterglow time (ms) 

Fig. L1 



15 

Ii) 

E 
u 

en 

'0 - 10 

-
5 

o 

+ 
CO • (CO)n 

o 0 o 0 
• 

5 10 15 
afterglow time (ms) 

Fig. 5 



I .' , .' , .' 
~' 

OJ-
~ :, 

:, 
: I 

o · I 
O· I D 
~I . , 

• • I : , . , 

:0 

: , 
0 • I , 

• , 
• , 
• 
• I 
• I • 

ID' 
, 

• , 
• 
• 
• 
, 

• I · , :, ., 
• +<DID , . 
• 

U) 

10 -

C\J 
,--... 

0 
U 
............ 

+-
0 
U 

~ 

0 
lO 
C\I 

II 
C 

l-
II 

+ t-

~'~~e~ ~ ~~=~~=~~~~~~<".~'~~~ ~-~,-~"~ ~o~~~ ~~'r-, 

rtl 
0 -

N • 

f"'­

'0 -
o -

~ 

......-.. 
~ \0 

.......... . 
~ 

~ 


	1980024679.pdf
	0014A02.TIF
	0014A03.TIF
	0014A04.TIF
	0014A05.TIF
	0014A06.TIF
	0014A07.TIF
	0014A08.TIF
	0014A09.TIF
	0014A10.TIF
	0014A11.TIF
	0014A12.TIF
	0014A13.TIF
	0014A14.TIF
	0014B01.TIF
	0014B02.TIF
	0014B03.TIF
	0015A02.TIF
	0015A03.TIF
	0015A04.TIF
	0015A05.TIF
	0015A06.TIF
	0015A07.TIF

	notice_poor quality MF.pdf
	0001A04.JPG
	0001A04.TIF
	0001A05.JPG
	0001A05.TIF
	0001A06.JPG
	0001A06.TIF
	0001A07.TIF
	0001A08.TIF
	0001A09.TIF
	0001A10.TIF
	0001A11.TIF
	0001A12.TIF
	0001A12a.JPG
	0001A12a.TIF
	0001B02.JPG
	0001B03.TIF
	0001B04.JPG
	0001B04.TIF
	0001B05.JPG
	0001B06.JPG
	0001B07.JPG
	0001B08.JPG
	0001B09.JPG
	0001B10.JPG
	0001B11.JPG
	0001B12.JPG
	0001B12a.JPG
	0001C02.JPG
	0001C03.JPG
	0001C04.JPG
	0001C05.JPG
	0001C06.JPG
	0001C07.JPG
	0001C08.JPG
	0001C09.JPG
	0001C10.JPG
	0001C11.JPG
	0001C12.JPG
	0001C12a.JPG
	0001E02.JPG
	0001E03.JPG
	0001E04.JPG
	0001E05.JPG
	0001E06.JPG




