
/_,ddRd£-/52./_/d2

3 1176 00160 1864 :

NASA-CR- 152402
NASA CONTRACTOR REPORT 152402 19800024811

Large Deployable Reflector (LDR)

W. H. Alff _¢LJ,:_ -... ..LJ: _:.i.. i ._.::
L. W. Bandermann

M. K. Bartosewcz .. ........................... k[_[}}!_t_il _0PYR. H. Pohle

;:_r,,_, 1£82

ILP,_GLEY RESEARCM{;.ENTER
LI_RP,Ry, NASA

HAMPTON, VIRGINIA

CONTRACT NAS2_0427
July 1980

 ASA





NASA CONTRACTOR REPORT 152402

Large Deployable Reflector (LCR)

W. H. Alff
L. W. Bandermann
M. K. Bartosewcz

Lockheed Missiles & Space Company, Inc.
Palo Alto, California 94304

Prepared for
Ames Research Center
under Contract NAS2-I0427

N/kSA
Nahonal Aeronautics and

SDa('()Adminislrahon

AmesResearchCenter
Mollell Field.California 94035





FOREWORD

This report is submitted by Lockheed Missiles & Space Company, Inc.

(LMSC), to the National Aeronautics and Space Administration (NASA),

Ames Research Center, in fulfillment of contract NAS2-I0427.

The support by and cooperation with scientific and technical staff

at LMSC is acknowledged. Many helpful discussions with the study

monitors and other scientific staff at NASA Ames and Jet Propulsion

Laboratory (JPL) are greatly appreciated by the study team. We also

owe a special thanks to Cal Tech for a demonstration and discussion

of their 10-millimeter antenna construction facilities and to General

Research Corporation (GRC) for their electrostatic membrane mirror

concept (ECMM). We also thank Kodak Company for freely contributing

a paper on lightweight glass mirror technology (Appendix D). A final

briefing on the effects of shielding the primary mirror of a large

deployable reflector telescope is included as Appendix E.

W. H. Alff (Study Leader)

L. W. Bandermann

M. K. Bartosewcz

R. H. Pohle

iii





ABSTRACT

The results of a technology study are presented for a

large, ambient temperature, orbiting astronomical re-

flecting telescope, which is diffraction-limited at 30_m.

The reflector (LDR) is deployed with one Shuttle load

into a ten-year lifetime orbit in the early 1990s. A

.I0- to 30-m diameter reflector was determined to be

feasible with the mirror fabrication and control technol-

ogy which is now in development.
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Section 1

INTRODUCTION AND SUMMARY

1.1 SCIENCE BACKGROUND

From about 30- pm to l-ram wavelength, the earth's atmosphere is nearly opaque

even from high-altitude observatories, yet this spectral region contains continuum

and atomic and molecular line radiation from many important astronomical sources.

Study of this radiation would yield vital information about star formation, galactic

structure and evolution, extragalactic sources, the cosmic background, comets,

and planetary atmospheres.

In addition to being nearly opaque, the earth's atmosphere is turbulent and limits

the degree of spatial resolution of astronomical sources from the ground. A large

ambient temperature telescope in an earth orbit could make important astronomical

sources accessible with greater resolution than is possible from the ground even

with next-generation ground telescopes. Such a telescope would also complement

and in several aspects surpass the capabilities of several orbiting telescopes now

in design or under construction.

1.2 STUDY OBJECTIVES AND APPROACH

This report outlines results of a 6-month study of the feasibility and cost of a

i0- to 30 m-diameter ambient temperature, infrared-to-submillimeter orbiting

astronomical telescope.

The telescope, called the Large Deployable Reflector (LDR), is Shuttle-deployed,

free-flying, and has a 10-year mission. It is diffraction-limited at X=30 _m. Its

detailed specifications are listed in Table 1-1.
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T able 1-1

LDR SPECIFICATIONS

DEPLOYMENT PERFORMANCE

(I) Single Shuttle Load (1) 10-m minimum diameter ambient primary

(2) 1990+ Launch, 1985+ Technology (2) 10%total emissivity

(3) Automatic or man-assist deployment (3) Diffraction-limited operation required at X = 30/_m,

(4) Low Earth Orbit desired at 2/_m

(4) Field-of-view 30_or 10x beamwidth, whichever is
(5) 10-yr operational life (1- to 2-yr

refurbishing) larger
I
_o (5) Secondary chopping (field-of-view) at 10 Hz

(6) 180-deg slew in 5 to 10 min

(7) Pointing stability 1/10 beamwidth

(8) Stray light below zodiacal light at 60° solar elongation,

or below telescope emission (whichever is larger)



Key objectives of the study were:

(1) Identify critical design issues and find promising design

approaches to those issues

(2) Assess the state-of-the-art of the critical technologies which

support these design approaches

(3) Determine significant breakpoints of the system performance cost

and risk, as a function of systems design, aperture size, and

operating wavelength

(4) Identify one or more systems concepts which can serve as the

basis for further studies

The objectives were achieved by the following approach-

(1) Basic system constraints were determined from specified require-

ments for size, delivery, life, and performance (Section 2)

(2) Critical design options were identified and evaluated in the areas

of mirror technology (Section 3), optical layout (Section 4), figure

control (Section 5), and materials and fabrication (Section 6)

(3) Relationships between performance, technology level, and cost

were derived for these design options (Section 7)

• 1.3 STUDY RESULTS

A 10- to 30-m-diameter, ambient temperature, orbiting telescope which is back-

ground- and diffraction-limited at 30/_m, is feasible within the stated time frame.

A 10-m system is feasible with current mirror technology, while a 30-m system

requires technology still in development.

Two conceptual designs satisfying all LDR requirements have been identified which

are summarized in Table 1-2 (second and third columns). Both have a segmented

primary mirror, and the mirror segments are aligned on a graphite-magnesium

support truss. The smaller of the two concepts is 10 to 12 m in diameter, and

self-deployable, while for the larger, 15 to 30 m in diameter, the mirror segments

are assembled on the previously deployed support structure.
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T able i- 2

LDR BASELINE CONCEPTS

Diameter (m) 10 to 12 10 to 12 15 to 30

f/No. 0.5 0.5 0.5

Deployment Self-deployed Self-deployed Assembled
Passive or active Passive Active Active

Segments AI hexel ULE Be (solid), or
(4-m diameter) ULE (light-weight)

Support structure Gr/Mg Gr/Mg Gr/Mg

Segment Star (Telescope) Star, Edge Sensing Star, Trilateration
Alignment

Operational _ _m) 500 30 30

Cost ($M) 250 250 500

Both systems use active alignment of the mirror segments to be diffraction-limited

at 30 _m. Neither requires a sunshade for background-limited operation, but may

require one for thermal control of the primary. The point deserves further study.

Active control of the segment shape (in addition to position) is not required. A

totally passive LDR would be self-deployed (10- to 12-m diameter) and diffraction

limited at 500 pm at best. Although this concept does not satisfy all LDR require-

ments (Table 1-1), it is listed in Table 1-2 (Column 1) as an alternative concept

representing a near-millimeter version of an LDR. It may be further studied if

a near-millimeter rather than a near-infrared large, orbiting, astronomical tele-

cope is seriously considered in the future.

Significant cost breakpoints, as a function of either operating wavelength or

primary mirror diameter, probably do not exist. Satellite cost of a 10-m LDR is

approximately $250 M, of a 30-m LDR $500 M, excluding Shuttle, special facilities,

and focal plane costs.
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Seetion 2

BASIC CONSIDERATIONS

2.1 SUMMARY

Constraints on delivery and deployment of the LDR are evaluated. For a 10-year

orbit lifetime, the required orbit altitude is 700 kin. The systems weight budget

is discussed. The budget allows for a 10-m-diameter mirror, a maximum areal

density (reflector mass/area), corresponding to Space Telescope technology

(~ 180 kg/m2), whereas a 30-m-diameter mirror allows 25 kg/m 2, thereby requiring

a very advanced mirror teehnology. Radiation from the primary mirror is the

major background of LDR, and therefore a sunshade or telescope baffle tube is

not needed except for eontrol of temperature gradients of the mirror.

2.2 ORBIT AND DEPLOYMENT

The LDR requirements for delivery, deployment, and lifetime are basic system

constraints, affecting the ehoiees for size, weight, and orbital altitude. These

three parameters are interdependent and can be optimized in an iterative process.

For example, the minimum altitude of a 10-year life orbit depends on the system's

ballistic eoeffieient and, therefore, on the total mass and area, speeifieally on

m/A. The maximum on-orbit mass depends on the Shuttle capacity and on the

fuel requirements to boost the satellite from a Shuttle handoff to its orbit. The

fuel requirements in turn depend on the satellite mass.

As with the Space Teleseope, a circular, low inclination (28.5 deg) orbit is

assumed, giving maximum Shuttle payload capability. We assume a 1990 launeh,

and recognize two possible scenarios. In the first, the orbit has a 10-year life.

In the seeond, the initial altitude is sufficient for only a 2- to 3-year life, but

the satellite is reboosted, at 2-year intervals, at a time when the spacecraft and

teleseope are refurbished. The seeond scenario would permit an only slightly
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lower initial altitude orbital altitude (Fig. 2-1). We therefore did not investigate

this scenario in more detail. For a 10-year lifetime, the orbital altitude is about

700 kin.

Direct insertion by the Shuttle into a 700-kin orbit is uneconomical and involves

a large payload weight penalty (Fig. 2-2). Therefore, the satellite will be

boosted by a small engine from 200-nmi Shuttle handoff. The required propulsion

mass (fuel and engine) is about 3500 kg. This leaves a LDR payload of 25,000 kg.

2.3 WEIGHT, VOLUME, AND MIRROR TECHNOLOGY

The payload constraint of the LDR sets an upper limit to the ratio mass/area

and thereby constrains the required mirror teehnology, a strong function of

m/A.

LDR has tasks similar to the Space Telescope, A weight budget for the space-

craft, sealed from ST, is given in Table 2-1: the total mass is about 3000 kg.

not including instruments. Since LDR will presumably be a multipurpose facility

like ST, the instrument package weight will be similar (~1500 kg). Substraeting

4500 kg from a 25,000-kg maximum payload, we obtain a maximum reflector weight

of 20,500 kg, which is the sum of that of a support structure and of the dish

itself. Anticipating results of the study, we assume the reflective surface to be

segmented (hexagonal segments of glass or beryllium) and supported by a com-

posites structure (in fact, graphite/magnesium).

The weight of that support strueture is 15%to 25%of the dish, depending on

reflector size (the pereentage increasing with reflector diameter). With these

considerations, we can now ealeulate the maximum areal density of the segments;

the results are shown in Fig. 2-3 for various diameters of the primary mirror.

The figure illustrates a strong dependence of areal density, and thereby of the

required mirror technology, on mirror diameter. A "small" LDR (10- to 12-m

diameter) can be built with proven technology, because the areal density can be

similiar to that for ST (180 kg/m2). However, a "large" (25- to 30-m diameter)
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Table 2-2 LDR SPACECRAFT WEIGHT LDR requires mirror technology

(kg) quite advanced from ST and, in

fact, also from currently develop-
Electrical Power (incl. solar panels) 6q0 ed lightweight glass mirror
Communications Data Management 203 technology represented by the
Guidance, Navigation 61 FRIT technology. The required
Pointing Control 500

m/A=25 kg/m 2 is near the value

Thermal Control 200 for the Cal Tech millimeter ground
Structure 1261

telescope (15 kg/m2).
Total 2875

The width of the Shuttle bay restricts the maximum diameter of the mirror

segments to about 4 m. The maximum allowed segment thickness depends on

the total mirror diameter. A possible scenario is illustrated in Fig. 2-4 for a

20-m telescope, assuming 10 m of Shuttle payload are allowed for the segments.

The required segment thickness is 26 cm (Fig. 2-5), and the total aspect ratio

of the LDR mirror (diameter/thickness) is 77. The ratio is much larger than

for the Space Telescope, 8 representing current mirror technology.

2.4 SUN SHIELD

A sun shield or baffle can reduce low stray light on the focal plane and provide

temperature uniformity over the primary mirror. We have not studied the

latter but have investigated the former by estimating the background noise

from principal sources in the sky and from the telescope itself. Details are

given in Appendix A. The various contributions to the noise-equivalent power

(NEP) on a diffraction-limited detector are shown in Fig. 2-6. We estimate

that the primary mirror temperature will be approximately 200 K, and the

total emissivity 0.06. A 10% spectral bandwidth is assumed. The sky noise

(infrared zodiacal light, diffuse galactic light, and cosmic 3 K background)

is far less than that of the optics, sun illumination at 60 deg, and the earth

albedo and earth shine. Thermal emission by the optics dominates for wave-

lengths greater than 10 _m. Since the LDR operates primarily above 30 /_m, we
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conclude that a sun shield is not necessary for the purpose of achieving

minimum background. NDnetheless, it may be necessary for thermal control

of the mirror; i.e., thermal uniformity over the mirror surface required for

chopping over the FOV, and minimum gradients across and through the mirror

for minimum thermal distortion. Additional analysis is required.
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Section 3

REFLECTOR CONCEPTS

3.1 SUMMARY

Section 2 showed that a large primary mirror for LDR must be lightweight and

thin. It must also be deployed automatically or semiautomatieaUy. In this

section we evaluate the potential of various eurrent candidate concepts of such

reflectors for their applicability to LDR. Among current design concepts of

large, deployable, lightweight space reflectors, only those are viable for LDR

which have a segmented primary using rigid reflector panels whieh are aligned

in real time. Self-deployable (unfolding) eoneepts have a maximum mirror

diameter of 10 to 12 m, assembled concepts (segments placed on separate

structure) of about 30 m.

3.2 OVERVIEW

For diffraction-limited performance at wavelength _, the LDR mirrors have a

surface aecuraey of _/20 rms. There are two types of refleetor surfaces.

"Hard" reflectors can maintain the shape by structural strength. Such

refleetors have a large ratio m/A and imply a large mass for the system as a

whole. Reflectors with "soft surfaees" maintain their shape by tension. They

ean have very low areal densities; i.e., low total weight. Beeause of their

packagability and low mass, the soft reflectors appear most attractive for very

large systems. However, none of the present concepts are viable for LDR.

The mesh antennas, although well developed and flight-proven, are inherently

limited to (and indeed intended for) applieations at _>1 ram. The membrane

mlrrors, on the other hand, have the potential to work well at infrared wave-

lengths, but they are insuffieiently developed to be ready in the LDR time

frame.
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Hard reflectors have rigid mirror panels aligned on a rigid support structure.

We define such reflectors as self-deployable if panels and structure unfold

automatically and as a unit; assembled, if the panels must individually be

placed on a previously deployed support structure.

Figure 3-1 shows outstanding examples of the four reflector concepts', mesh and

membrane antennas (soft), and the self-deployed and assembled reflectors (hard).

We shall evaluate each in turn.

3.3 MESH ANTENNA

This type of reflector is represented in Fig. 3-1a by the Lockheed wrap-rib

antenna. It has a finely woven or knitted mesh stretched between and attached

to a large number of ribs of the required parabolic shape. In the stored con-

figuration, the ribs are wrapped around a central hub. They are deployed and

can be refurled in a controlled manner by a power-driven spool. In other

designs, the ribs are folded forward or back rather than wrapped around a

central hub. In current systems, the ribs are made with aluminum, but they

will in the future be made from a thermally superior material such as graphite/

epoxy or a graphlte/metal.

Since the reflector mesh is stretched between the ribs, the reflecting surface

shape is only approximately parabolie. The surface contour accuracy can be

improved by controlling the mesh contour between ribs. For that case, the

mesh fineness sets a limit to the achievable surface accuracy. The minimum

operational wavelength of the mesh antenna is thus determined by the number

of ribs, the mesh quality and type, the accuracy of the rib positions (particularly

of the tips), the hub rigidity, as well as the thermal and dynamical faetors.

Current estimates of the limiting frequency of performance, shown in Fig. 3-2.

suggest that a 10-m-diameter antenna would work at k = 2.2 ram. This value is

above the wavelengths of interest to LDR. We conelude that the mesh coneept

is not viable for LDR.
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100

- 3.4 MEMBRANE REFLECTOR
m

The key elements of an eleetrostatically

eontrolled membrane mirror (ECMM) are

shown in Fig. 3-1b (a General Research

Corporation concept): the reflectin_

10 membrane is shaped to a paraboloid by

•I- electrostatic forces attraeting it to ag
, control surface (which may be soft or

U
Z rigid), under the control of a surface

D contour evaluation system The membrane,a

._ held inside a tension ring, can be fiat or

1.0 concave in its relaxed state. (For low

f/nos., a concave shape may be

required.) The control surfaee contains

a number of electrodes suitably shaped

and held at various potentials, relative

to the front (i.e., reflecting) member.

The electrostatic attraction force on the
I I i i I I I I

30 100 1000 membrane varies rather smoothly over
DIAMETER(m)

the surface because of edge effects.

Fig. 3-2 Limiting Frequency for This contrasts sharply with the point-
Wrap-Rib Reflector like character of the meehanical force

applied by actuators in the hard reflector concept discussed later. The force

tends to shape the membrane naturally to the typically concave reflector shape.

The ECMM has inherent eharacteristics suited for a large space reflector including

low m/A ratio. Its development is still at a stage of demonstrating the concept

feasibility: no flight or ground-proven membrane telescope exists as yet.

There are no apparent fundamental physical difficulties - questions of principle -

but there may be many practical challenges whieh cannot be met within the LDR

time frame. Some of these are: (1) manufacturing high-quality membranes;

(2) operating near the membrane's yield limit or near eleetromechanieal
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instabilities;* (3) operability in the space environment; (4) effective electro-

static shielding to prevent breakdown or large changes in the electrostatic

field by solar wind and cosmic rays; (5) effeet of seams of the membrane (un-

avoidable for large reflectors); and (6) effective thermal and dynamic control.

We therefore think that the membrane mirror is not a viable LDR coneept.

3.5 SELF-DEPLOYABLE REFLECTOR

The example of a segmented self-deploying reflector having "hard" mirror

segments is shown in Fig. 3-1e (TRW Sunflower). This 10-m-diameter concept

has 6 main mirror panels whieh are hinged to a central panel and to 12 other

panels. It has also a support and stiffening ring underneath the dish which

is not shown in the figure. The shape of the panels is computer-designed for

efficient packaging; their structural rigidity is sufficient to withstand Shuttle

launch loads. The panels are spring-deployed against precision-designed stops

for high deployment aecuraey.

All designs are for low f/nos. (f/0.4) sinee they are intended for narrow field-

of-view communieation applieations. The packagability, and therefore the

maximum reflector diameter, increases slightly with increasing f/no., but for

a single ring of panels, the maximum diameter is about 13 m. For larger diameter_

additional rings are required. Advanced Sunflower designs employ up to 3 rings

of refleetor panels, thereby allowing a total diameter of up to 25 m (one Shuttle

load limit). The complexity and, thereby, the risk of failure of the deployment

mechanisms, and the resulting reduced deployment accuracy, make multiring

self-deployable eoneepts noneompetitive with the assembled reflector eoneept

discussed later.

*Work at MIT is exploring this problem.
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The achievable surface accuracy of the TRW Sunflower depends on the manu-

facturing accuracy and provisions for post-fabrication adjustment of the panels.

Presently, the panels are made of thin (1/2 in. for a 10-m dish) aluminum honey-

comb sandwich, and the reflecting surface layer is graphite/epoxy. Such panels

cannot provide the accuracy required for infrared work. This point is sub-

stantiated by TRW's estimates of surface accuracy achievable with present (I)

and advanced (II-IV) Sunflower technology (Fig. 3-3). The technologies repre-

sented are: I, present ; II, improved panel fabrication; III, post-fabrication

panel adjustment; and IV, on-orbit active panel control.

To obtain the figure accuracy required for LDR, the panels must be stiffer and

have a better surface layer. Assuming an inert support structure and perfectly

rigid panels, the accuracy of a self-deployed reflector depends on the achievable

Fig. 3-3 TRW Sunflower Surface
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deployment accuracy. A best engineering estimate is 2.5 _m/contact assuming

lapped, polished contact surfaces free of contaminents. A total of 102 contacts

is estimated for deployment of a 10- to 12-m system. Thus, the rms accuracy

is l_x 2.5 _m = 25 _m.

Assuming no change in that accuracy after deployment, we conclude that a

totally passive deployed telescope (no active panel alignment such as discussed

in other seetions) can work at 500 _m. This number is necessarily "soft," but

it is close to that achieved for the Cal Tech 10-m (assembled) dish (discussed

in the next section). Active alignment, discussed in Section 5, can lower the

minimum wavelength from 500 to 30 _m. Thermal analysis of the support truss

also shows (seetion 5.4) that thermal distortion of the truss by sun-soak-induced

gradients limits a passive reflector to operations near or above 1 ram.

ALMSC conceptual design of a self-deployable LDR is shown in Fig. 3-4, in

stored and deployed configuration. It has a center panel, 4-m in diameter, and

8 panels of quasi-pie shape and 4-m-maximum diameter. Four of the panels are

stored forward, the others behind the spacecraft. The central support truss

column telescopes. The diameter of this reflector is 11.2 m, close to the maximum

diameter of a single-ring, self-deployable reflector stowable in the Shuttle bay.

In summary, a viable, 10 to 12 m, self-deployable LDR has

• A thermally and dynamically inert mirror support structure (e.g.,

made of graphite/magnesium, of. Section 5 and 6)

• Stiff reflector panels (e.g., lightweight glass, ef. Section 6)

• An active panel alignment system (of. Section 5) for operations

to 30 pro. A passive system could only work to ~ 500 _m

3.6 ASSEMBLED REFLECTOR

The maximum possible diameter of a self-deployable reflector is limited due to

inefficient packaging: clearly there is much unused space in the Shuttle between

the refleetor panels. For more efficient packaging, the panels are stacked p&rallel
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to each other. This, however, requires that the panels should have a similar

size and shape. The preferred shape is hexagonal, which allows effieient use

of mirror materials and of storage volume.

The concept of a ground-based reflector using hexagonal segments on a preeison

support structure has been spendidly realized by Prof. Leighton and his collabora-

tors at Cal Teeh. The fL0.4, 10-m-diameter dish (three have been built thus far)

has 84 hexagonal A1 Hexeel Honeycomb panels, 1.1 m in diameter and 3-in. thick.

The eoneept is shown in Fig. 3-1d. The reflecting surface is l-mm-thiek

aluminum skin epoxied to the segment. The total weight of the dish is 4735 kg,

and the areal density of a segment is 15 kg/m 2.

The parabolic surface of the refleetor is shaped as a unit, using a high-speed

rotating cutting blade, with all panels in plaee on the steel-tube support truss.

A close-up of the precision panel support system is shown in Fig. 3-5. Leighton's

eareful design of the system, and ingenious fabrication and surfaee measurement

techniques, have resulted in a measured figure aceuraey of less than 25-_m rms.

This accuracy is reproduced even after disassembling, transporting, and re-

assembling the teleseope. Leighton hopes eventually to achieve a surface accuracy

of 2.5-_m rms; this would make a reflector workable at X= 50 _m.

We doubt that this goal can be attained also for a space reflector, if similar com-

ponent_ and materials are used. Two major challenges will arise from (1) testing

the dish in a 1-g environment while it is intended for a 0-g environment; and

(2) automatie or semiautomatic deployment from the Shuttle. The thermal environ-

ment of an earth orbit suggests a thermally more favorable material, such as low-

expansion glass or ceramies, or beryllium for the panels rather than aluminum;

and a composite, Gr/metal, rather than steel for the truss. The change of

materials eould have a major impaet on fabrieation, assembly, and testing proeed-

ures. The Leighton dish eould be self-deployed or assembled. In faet, Leighton

has suggested deployment without a substantial structural support structure. In

all probability, a support truss will be required for greater thermal and dynamical

stability of the system. The problem is addressed in Seetion 5.
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A feasible concept of a Leighton-type reflector will thus have li_htweiffhted,

low-expansion glass or solid beryllium panels on a metal-matrix support truss.

The maximum refleetor diameter is about 30 m. This value gives a maximum

areal density of a reflector segment (allowed by the shuttle payload weight

limits) of 25 kg/m 2, which is judged to be a near practical lower limit attainable

in the LDR time frame. Storage in the Shuttle bay and deployment of such a

reflector are shown in Fig. 3-6. The exact value of the reflector diameter can

be chosen more precisely on the basis of efficient uses of mirror material as well

as Shuttle payload bay. For example, the reflector panels at the rim of the dish,

which are fractions of hexagons, ean be placed together, and the total stack

length can thereby be minimized. Figure 3-7 shows the resulting relationship

between mirror thickness and stack length for several values of the total dia-

meter, D.

As shown in Fig. 3-6, placing the mirror segments on the (previously deployed)

support truss is done using the Remote Manipulating system (RMS) of the Shuttle.

The mirror support truss is held in plaee rigidly during the mirror assembly.

Any relative motion between the telescope structure and the Shuttle must be

avoided, because physical contact could damage flight-sensitive surfaces or

thermal protection layers of the Shuttle.

3.7 CONCLUSION

Viable LDR reflector concepts have a segmented, actively aligned, hard mirror

on a support truss. Self-deployable reflectors are limited from 10 to 12 m

diameter, those requiring assembly to about 30 m. Two active LDR concepts

are summarized in Table 1-2; both use active panel alignment systems but are

different in terms of either performanee, material, design, and use, and there-

fore also in terms of cost and risk. Details of the reasoning for justifying the

choices of materials and designs are given in Sections 4 through 6.
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Section 4

OPTICAL CONFIGURATION

4.1 SUMMARY

The preferred configuration of LDR is a two-mirror Cassegrain with a f/0.5

parabolic primary mirror. Such a system satisfies the optical requirements.

Other systems are either unnecessarily complex or do not meet these requirements.

The section outlines the analyses and tradeoffs leading to these conclusions.

4.2 SELECTION OF TWO-MIRROR CONFIGURATION

The LDR field-of-view requirements (Table 1-1) can be satisfied by the easily

deployed two-mirror parabolic Cassegrain configuration. Telescopes of three or

more mirrors can utilize spherical primaries but are less desirable because of

packing inefficiencies, alignment problems, multiple elements, and structural

complexity. If there were an overriding cost or fabrication advantage in the

use of a spherical primary, the complexity inherent in three-mirror systems

might be acceptable. In the infrared, however, no such advantages are

apparent. With close attention paid to grinding metrology, mirror surface figure

errors equivalent to 0.6-_m wavefront error (WFE) may be achieved in grinding,

after which the mirror can be polished "to remove the gray." Therefore, for

telescope diffraction-limited operation at X = 30 _m, mirror fabrication tolerances

are sufficiently relaxed so that the parabolic figure can be achieved in grinding.

[For a 2-_m diffraction-limited telescope, the extra time and cost required to

obtain a parabolic rather than a spherical mirror is appreciable (although exactly

how much more extra effort is required depends on as yet undefined mirror

fabrication techniques).] For the LDR application, the greater complexity of the

three-mirror system relative to the two-mirror telescope makes a two-mirror

system preferable.
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4.3 BASIC PARAMETERS OF THE TWO-MIRROR TELESCOPE

The telescope configuration is shown in Fig. 4-1. The primary mirror has a

diameter D and a focal ratio F. The convex secondary is near the prime focus

and the principal focal plane is at the primary vertex. This focal plane position

simplifies the optical analysis, and small ehanges in the position will not signifi-

cantly affect our conclusions on system performance.

The secondary magnification is

m = F/F T (4.1)

where FT is the telescope focal ratio. The primary-to-secondary separation is

S - m DF (4.2)m+l

The magnification and the diameter of the secondary are related by

D = D/(m+l) (4.3)
S

(the secondary is slightly oversized to avoid vignetting). The choice of m also

affects the focal plane size for a given FOV. An object at angle, _ from the

telescope optical axis is imaged in the focal plane at a distance _FTD = _mFD

from the optical axis. As a starting point, we select m on the basis of minimum

obseuration. For this condition, the secondary mirror diameter equals the focal

plane diameter required by the maximum FOV, 2_ma x . This gives

D
m + 1 - 2O_maxmFD (4.4)
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By SOW specification the half-width of the FOV _ must be 5 Airy disk' ' max '

diameters at the longest working wavelength, _max - 1 mm:

9
= 1.22 x 10-p/D , D in meters. (4.5)

max

This condition gives

m ~ 6.4 _-F, D in meters (4.6)

sincem >>1.

Substitution of values of the primary diameter, D, from 13 to 30 m, and focal

ratios from 0.5 to 2, yield magnification ratios from 14 to 50. Such high ratios

give small secondary mirror diameters. Substitution of Eq. (4.6) into Eq. (4.3)

gives

D s = 0.156 D_/'D_, D in meters, (4.7)

Typeial values of Ds range from 35 cm to 1 m. Larger secondaries are more
difficult to deploy, support, align, and adapt to secondary chopping.

The advantages of a low primary focal ratio (F = 0.5) are apparent. Not only

is the telescope short -implying easier packaging and deployment and a stiffer

strueture- but also the secondary mirror and the focal plane are small. For

F = 0.5 telescopes diffraction limited at 30 _m (as required for LDR), the align-

ment tolerances and optical performance are acceptable. However, for a F = 0.5,

2-/_n telescope, a goal but not requirement for LDR, the alignment tolerances are

difficult to meet with existing sensors and mirror fabrication is more difficult,

although possible; field aberrations are acceptable. Therefore, for a 2-_m

telescope, the choice of the most cost effective primary focal ratio is an issue

requiring further study.
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4.4 FIELD ABERRATIONS OF THE TWO-MIRROR TELESCOPE

Four designs were considered: (1) Ritchey-Chretien; (2) parabolic primary;

(3) tilted aplanat; and (4) spherical primary. Third-order aberration theory

of Bottema and Woodruff* was used to estimate the field aberrations of these

designs, as a function of fundamental telescope parameters, D, F, m, and

_max discussed above. None of the designs have third-order spherical

aberration, but they do exhibit field curvature and distortion.

Field curvature can be removed by a sensor design which conforms to the curved

field. Distortion does not affect point source imagery and can be removed by image

processing. The remaining aberrations are coma and astigmatism. Algebraic

expressions for the corresponding rms wavefront errors as a function of tele-

scope design parameters are given in Table 4-1 and in Appendix B.

Table 4- i

THIRD-ORDER FIELD ABERRATIONS OF VARIOUS TWO-MIRROR TELESCOPES

OPTICALCONFIGURATION

ABERRATIOH RITCHEY CHRE'TIEN PARAE.OLICPRIMARY TILTEDAPL.ANAT SPHERICALPRIMARY

COMA _ms O D _ Im2_l)Da - (m3+2) Da
WAVES) 96 _V_'m2 _, F2 192 _/-8"m2 X F2 192 V_'m 2 X F2

BESTFOCUS AND 2
ASTIGMATISM (2rr,+l)D_ 2 D c_ 2 _m.l.2)Da2 (m2 4)Da :

MIXTURE (rms 32'_'6m X F 16 _ X F 32 _ ), F 64 _ X F
WAVES)

¢z'- Relative look angte of object to primary mirror axis

*Applied Optics, Vol 10, No. 2, 1971, pp. 300-303. See als_o Vol. 11, No. 12,
1972 p. 2965.
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Both the spherical primary and the tilted aplanat fail to provide diffraction

limited performance over entire FOV. By eontrast, the Ritchey-Chr_tien and

parabolic designs actually exceed that requirement. As shown in Fig. 4-2, the

largest wavefront error, 0.8 _m rms, is present at the FOV edge of the F = 0.5,

D = 10-m system. In all eases, the field aberration is easily less that 0.2 _m

over the central 30 s FOV. Finally, the table also shows that the limiting

aberration is astigmatism rather than coma. In other words, at field angles

large enough so that rms wavefront error exceeds that amount defined as

"diffraction limited" (i.e., X/10 rms at th_ minimum working wavelength of 30 _m),

astigmatism is larger than eoma. This fact has two important consequences:

(1) The parabolic primary is better suited to the LDR requirements

than the Ritchey-Chr_tien design. Not only is the astigmatism

slightly lower, but, more importantly, the excellent prime focus

on-axis imagery simplifies mirror testing. It also allows for on-

orbit conversion to a prime focus instrument

(2) Since third-order astigmatism is not a funetion of secondary

magnification for a parabolic primary, telescope performance is

nearly independent of the particular values of F T and D s (which

may be determined by system eonsiderations outside the scope

of this study).

The rms wavefront error at best focus of a parabolic primary is plotted in Fig.

4-2 as a function of field angle. The crosses denote data points obtained with

the optical design program ACCOS-V. Close agreement between Table 4-1 and

results from this program was observed in all eases selected.

In summary: (1) a parabolic primary gives diffraction limited performance over

the entire FOV without undue complexity; (2) a primary foeal ratio of F = 0.5 is

aceeptable for a teleseope working wavelength as low as 30/_m and possibly to

2 _m.
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4.5 SECONDARY MIRROR CHOPPING

Field-of-view scanning by oscillating the secondary mirror ("chopping") is a

requirement for the LDR. We find that chopping at 10 Hz is feasible except at

very short wavelengths (_ < 30 _m) and for large secondary mirror diameters,

where the performance is compromised and alternate scanning methods may be

preferable.

Conceptually, the secondary mirror chopping technique has two possible problems.

First, tilting the secondary mirror misaligns the telescope thereby increasing the

telescope wavefront error. Second, the vibration of the rather large secondary

distorts the primary mirror, the telescope structure, or the secondary itself.

We first address the wavefront error issue.

If the secondary mirror is tilted by an angle /3, then the change in the telescope

look angle is

AS = 2P (4.8)m+l

Telescope misalignment from a secondary mirror tilt by an angle _ about its

vertex introduces a rms wavefront error of

S

¢°c = 96 ,!-8XF 2 (4.9)

waves, where a best-fit wavefront tilt has been removed. Substitution of Eq.

(4.3) and (4.8) into (4.9) (to find the coma introduced from a change in look

angle) yields

DA_
_0 = (4. I0)

c 192 x]-8_F 2
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For _ >100 _m and a scan amplitude of 5 times the Airy disk diameter at the

observation wavelength, Eq. (4.10) yields

= 2.25 x 10-2/F 2, (4.11)C

= 0.09 rms waves i.e. under the long-wavelengthThus, even for F = 0.5, _)c ' '

chopping conditions, the telescope performance is not compromised. For

< 100 _m, the scan amplitude requirement is

As = ±75 _rad (4.12)

which gives at the maximum secondary misalignment,

1.38 x 10-7D/X= (4 13)
_c F 2

Thus at F = 0.5, _= 30_m, D = 30 m, we have _ = 0.55 rms waves. In thisC

case, the scan amplitude is +31 diameters or about 6 times the number of Airy

disk diameters required for X>100 _m. Hence the requirements are not met at

< i00 _m since the SOW-specified scan amplitude is so large that at the wave-

length of observation, misalignment coma is unacceptable if the scan is accomplished

by secondary tilt.

For a tilted aplanat, coma on-axis in the focal plane is zero even if the secondary

mirror is tilted about the vertex. However, Table 4-1 shows that astigmatism is

m/2 times as large as for a parabolic primary, no possibility of prime focus imagery

exists, and the tilted apalanat has a considerable amount of fifth-order aberration.

For these reasons, the system advantage inherent with the parabolic design

should be retained and the SOW specifications be reexamined in the light of its

system impact (i.e., elimination of an otherwise excellent telescope design form).

Change of the specifications might be along the following lines:
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(1) Reduce the scan amplitude to 5 times the Airy disk radius at the

wavelength of observation. The impact of this specification relaxation

on telescope utility is unknown.

(2) Let the secondary mirror oscillate between states of perfect alignment

and misalignment by an angle 2B. If the sensor sees a uniform back-

ground during misalignment, telescope wavefront error will not signifi-

cantly affect sensor accuracy. If the specification cannot be relaxed,

FOV scanning may be accomplished by other methods than secondary

tilt about its vertex, for example:

(a) Reimage the primary mirror on an oscillating scan mirror.

Although this approach requires additional reimaging optics (i.e.,

more optieal elements), it does eliminate entrance pupil motion on

the primary with its inherent scan noise. The beam path moves

slightly across the secondary in this approach. However, since

the secondary mirror is smaller and less exposed (or even cooled),

the scan noise from this source should be relatively low.

(b) Tilt the secondary mirror about the neutral point (which is

located approximately at the secondary focus). This approach

is more difficult to implement and is half as efficient as tilting

about the vertex. However, seeondary mirror tilts about the

neutral point do not introduce third-order coma.

(c) Increase the primary focal ratio from 0.5 to about 1.2. The

telescope structure would be longer and focal plane and secondary

size larger (with a subsequent increase in difficulties of secondary

tilt implementation). However, Eq. (4.13) shows that coma would

be reduced to acceptable levels at _= 30_m. For _= 2_m, the

required focal ratio would be F = 4.6.

The second problem with secondary chopping is the mechanical and structural

distortions due to the vibration of the secondary mirror. These distortions depend

on the size and scan amplitude of the mirror and chopping frequency. Equation

(4.7) provides an estimate of secondary mirror size. An estimate of scan angle,

_, required to achieve FOV change of A_, is provided by Eqs. (4.6) and (4.8)
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which yield

= 3.2 _, D in meters (4.9)

Below 100 m,_c_ = 150_rad (30_). For an LDR ofD = 20m andF = 0.5, a secon-

dary mirror diameter of 50 cm and scan angle of 3 mrad are appropriate. Satis-

faction of such specifications is not a feasibility issue; it can be done. In fact,

50-Hz chopping mirrors are being constructed. LMSC reactionless motors of 60-era

diameter can oscillate over 4 mrad at 10 Hz.

Above 100 _m, Ac_ = 2.44 k/D (10 times beamwidth), for a maximum vertex tilt

change of 25 mrad at k = 1 ram. The implementation difficulties of the eightfold

increase in scan angle have not been determined. Typically, such an increase

can be obtained by relatively modest reduction in scan frequency (from 10 to

5 Hz). A detailed design study would determine whether the 25-mrad, 10-Hz,

chopping specification could be met or whether the scan frequency must be

lowered.

The effects of the vertex tilt changes from a 10-Hz scan on the figure to the

50-era cored Be secondary mirror are shown in Fig. 4-3.

The cycle time of 0.1 s is divided into two periods of acceleration and two periods

of staring. The scan efficiency is the staring interval divided by the total scan

time; scan efficiency increases with mirror acceleration but so does mirror distor-

tion. The scan effieiencies are shown in Fig. 4-3 for various constant torque

drivers. The mirror acceleration unacceptably deforms the figure of the seeondary

mirror at short wavelengths (k < 10_m). The figure shows how the applied torques

must be reduced to keep secondary mirror figure error below X/20 rms, This

reduetion in torque lessens the scan efficiency, as shown by the left-hand-side

of the figure. At wavelengths longer than 100 _m, the FOV throw must increase

from 30 _ (150 _rad) to 10 times the Airy disk diameter.
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Fig. 4-3 Secondary Mirror Chopping

The given torque is insufficient to change the vertex tilt according to Eq. (4.9)

in the allotted time. Therefore, the scan efficiency falls off as shown on the

right-hand side of Fig. 4-3. Since the mirror deformation is small compared to

the wavelength on the right side of the figure, scan efficiency may be restored

simply by providing additonal torque.

To summarize, FOV scanning at 10 Hz seems feasible except that the permissible

wavefront error may be exceeded for very short wavelengths and large diameters.

Rather than let this problem drive the LDR optical configuration away from an

otherwise excellent parabolic design, either the FOV specification chopping should

be reexamined or the FOV scan should be accomplished by other techniques.
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Section 5

ALIGNMENT AND POINTING

5.1 SUMMARY

The alignment tolerances of the LDR are specified and several fundamentally

different approaehes to alignment sensing are outlined and eompared. Structural

and thermal modeling of a 30-m-diameter LDR suggests that pointing performance

is satisfactory and that aetive segment alignment is required to compensate for

thermal distortion. Two sensing eoneepts for pointing stabilization are described.

5.2 REQUIREMENTS

Alignment of a telescope having a segmented primary requires that:

(1) Each primary mirror segment is correctly positioned to match the figure

of the ideal large parabolic mirror

(2) The secondary mirror is correctly positioned on the optical axis of the

best fit to the parabola formed by the segments

Each primary segment has six types of possible misalignment, shown in Fig. 5-1.

They are: piston error, defined to be misalignment along the normal of the mirror

segment eenter; in-plane displacement, the motion of the segment perpendieular

to its center normal either in or perpendicular to the plane of incidence of the

light on the segment; out-of-plane tilt, the rotation of the mirror about either one

of the two above defined axes of lateral motion; and in-plane rotation about the

segment normal.

The secondary mirror has only five misalignment sourees since rotation about its

optical axis does not introduce wavefront error. They are- longitudonal position-

ing error (despaee) ; lateral positioning error (decenter) in two axes; and vertex

tilt about two axes (Fig. 5-1).
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Table 5-1 gives estimates of telescope system rms wavefront error (best tilt

removed) for a given rms misalignment. One type of misalignment may largely

compensate for another; for example, secondary decenter and tilt which corres-

pond to rotation about a point near the prime focus produce no third-order mis-

alignment coma, an otherwise limiting aberration. Similarly, segment decenter

and tilt which correspond to rotation about a point near the center of curvature

will produce no segment wavefront tilt error.

The fact that segment decenter may be compensated for by tilt has important

implications :

C1) Exact lateral positioning of the primary segments is not important (so

long as they do not touch each other) since tilt actuation can compen-

sate for lateral position error

(2) Alignment sensors (capacitive sensors, for example) which do not

respond to rotation about the segment's respective centers of eurvature

are suitable for primary mirror alignment if they measure only mirror

phasing

(3) Alignment sensors (such as the trilateration concept described below)

which do require a measurement of segment rotation about their re-

spective centers of curvature to determine segment phasing, must

aceurately measure segment decentration

5.3 ALIGNMENT TECHNIQUES

The various techniques of telescope alignment sensing are listed in Table 5-2 and

are illustrated by Fig. 5-2. Segment alignment using a stellar wavefront is not

included. Although this is an important technique for initial telescope alignment

and calibration during observation, it must be suPplemented by a totally onboard

technique since a star of sufficient brightness need not be near the observation

point.
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T able 5-1

TELESCOPE ALIGNMENT PARAMETERS

rms WAVES WFE PARAMETER VALUE
ALIGNMENT PARAMETER ABERRATION EXPRESSION FOR 1/100 WAVES rms*

AS
S AXIAL MOTION AS FOCUS 2.08 gm
E 16 _-3 X F 2
C
O DECENTER 6 IMAGE SHIFT; 6196 ,J8 X F3 10.2 gm
N COMA
D

A VERTEX TILT /3 IMAGE SHIFT; D/3 41 grad
R COMA
y 96 _J-82tF2 (m + I)

PISTON ERROR P WAVEFRONT 2P
SEGMENT -- 0.15 gm
PHASE X

4_

p OUT-OF-PLANE WAVEFRONT d_ 0.13 grad
R SEGMENT TILT _ SEGMENT ,jr_k
I TILT**
M dc
A IN-PLANE SEGMENT WAVEFRONT 2.6 gm
R DISPLACEMENT € SEGMENT 2 _-3 DF X
y TILT**

IN-PLANE SEGMENT WAVEFRONT 2 d 2 12.6 grad
ROTATION 7 ERROR x 7'
(PARABOLA) -,i-36 (x 2 + R2)3/2X

*This column is the evaluation of the parameters with the formulae in the preceding column set equal to
1/100 waves rms. Example parameters used in this evaluation are X=30 gm, D=20 m, F=0.5, R=
2FD = 20 m x=10 m (location of segment) and segment diameter 4 m. It is intended to provide a
feeling for the tolerances involved. All primary segments are assumed to be randomly misaligned in
selected parameters.

**Combinations of segment tilt and displacement corresponding to rotation of segment about the center
of curvature have second-order effect on wavefront error.



Table 5-2

TELESCOPE ALIGNMENT SENSING TECHNIQUES

SENSOR SENSOR SENSOR ADDITIONAL
SYSTEM ADVANTAGES PROBLEMS

CONCEPT TYPE LOCATION REQUIREMENTS

SEGMENT-TO.- CAPACITIVE AT TIPS OF SENSORS • NO ADDITIONAL • NOT ABSOLUTE
L SEGMENT SENSORS HEXAGON BUILT INTO SCATTEREDLIGHT SYSTEM
O EDGE PRIMARY SEGMENTS • SIMPLESENSORS • SEGMENT INSERTION
C SENSING • REQUIRESTELESCOPE
A ALIGNMENT SYSTEM
L • ERRORPROPAGATION

• DEPENDSON
SEGMENT RIGIDITY

CENTEROF INTERFEROMETRIC PRIMARY MIRROR SENSOR SUPPORT • MOST ACOJRATE • NOT ABSOLUTE
CURVATURE OR RANGE CENTEROF STRUCTUREDOUBLES • ONLY OUT-OF- SYSTEM

i¢_ TEST MEASUREMENT CURVATURE TELESCOPELENGTH PLANE SEGMENT • LONG SENSOR
r,.n ALIGNMENT SUPPORT

ERRORNEED BE • SCATTEREDLIGHT
R DETECTED
E
M SEGMENT INTERFEROMETRY ON SECONDARY RETROREFLECTORS • ABSOLUTE • SCATTEREDLIGHT
O ALIGNMENT OR RANGE OR PRIMARY ON PRIMARY SYSTEM • RETROSON PRIMARY
T FROM PRIME MEASUREMENT (WITH -REFLECTORSON • USED FOR • REDUCEDSENSITIVITY
E FOCUS LATERALPOSITION REFLECTORS) SECONDARY POINTING FOR GIVEN SENSOR

SENSOR PERIMETER

SEGMENT RANGE AND (1) CENTEROF THIN MIRROR • ABSOLUTESYSTEM • COMPLEX
ALIGNMENT LATERAL POSITION PRIMARY SUPPORTSTRUCTURE • USED FOR • MEASUREMENT
FROM BEHIND SENSOR (2) BEHIND SENSOR BEHIND POINTING REQUIRESSEVERAL
THE PRIMARY EACH EACH SEGMENT SENSORS

SEGMENT



EDGE
SEGMENT SENSORS

ACTUATORS --_ _-- RETROREFLECTORS
DISTANCE

_" \ SENSORS
\\ / LASER FIGURE SENSOR
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f MIRROR t 1 1

"_ SEGMENTED
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!NPUTS _ ""-

Fig. 5-2 LDR Alignment Measurement Concepts

Local alignment sensing techniques determine a segment's positon relative to its

neighbors. By themselves, they determine the primary figure only and require

an auxiliary system for primary-to-secondary alignment. An example of this

type of sensor is segment-to-segment edge sensing done with capacitive edge

sensors or equivalent edge monitoring interferometers. Since the wsvefront is

affected only by mirror misalignment normal to the mirror surface, out of plane

surface continuity guarantees primary mirror figure if the figure of each individual

segment is correct. As noted previously, in-plane segment position error has

only a seeond-order effect if no surface discontinuities exists.

Remote alignment sensing techniques determine the segment's position relative to

a central reference eoordinate system - independently of the position of the

neighboring segments, which may be in error. Furthermore, since the position of

each segment and of the secondary mirror is known in the single reference coordi-

nate system, the telescope look angle relative to the reference coordinate system
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may also be deduced. If the orientation of this reference coordinate system

relative to the stars is measured, it is possible to accurately point the telescope
Q

without use of a guide star in the telescope FOV.

Currently, the most promising remote telescope alignment concept is segment

alignment from the vicinity of the prime focus, using a length measuring sensor

whose source points are on the secondary mirror support structure. The concept

(shown in Fig. 5-3) measures the range from three points near the secondary to

at least three retroreflectors on each primary mirror segment. This is sufficient

to determine the positions of each segment in the reference coordinate system.

Center-of-curvature test and segment alignment from behind the primary are

inferior sensing concepts. Center of curvature tests require a long supporting

structure. The ensuing problems of deployment and effects on the telescope

structure should be addressed only if other methods fail. Segment alignment from

behind the primary employs a large number of separate and complex sensor pack-

ages. It appears too complex to compete with other options.

• TRILATERATIONMEASUREMENT

DEFINESMIRRORSURFACESIN REFEREI',CE
_z COORDINATE

REFERENCECOORDINATE SYSTEM STAR "_ [_ J_J v x AXIS

• STAR SENSOR DEFINES ORIENTATION SENSOR

OF REFERENCECOORDINATE SYSTEM

• ACCURATEPOINTING _ _::_:::?q_....,,...._ REFLECTORS(3)

• GLOBA _._ SENIsoR

. \ A . jRANGE MEASUREMENT

_""_ SYSTEMWAVEFRONTS (3)

SIDE VIEW f RETRO
t

_ "_ PRIMARY

I 1 RANGE SEGMENTSFRONT VIEW

Fig. 5-3 Pointing and Alignment of Large Deployable Telescope
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Comparing edge sensing and remote sensing, we recognize that both systems

must be periodically calibrated using a bright star. However, the two methods

are affected by time-varying figure errors in different ways.

In edge alignment, actuators maintain a set of sensor readings to values obtained

,during calibration. Since there is no absolute reference position, the error

associated with misalignment and distortion of a single segment propagates to

other segments. In additon, since edge sensing addresses primary figure only,

the orientation of the primary mirror itself (required for primary-secondary

alignment) is unknown and must be determined by a separate system.

Remote alignment, by contrast, maintains the alignment of each segment relative to

an ideal coordinate system whose axis is known and can be used for primary-

secondary alignment and telescope pointing.

Edge sensing as proposed for a 10-m ground-based telescope, uses capacitive

sensors mounted on the segment edges (Ref. 1). These sensors sense out-of-

plane motion of the segments. As applied to LDR, the first ring of hexagonal

segments is aligned to the central reference segment, the second ring to the first

ring, and so on. Since succeeding rings are aligned to an increasingly imperfect

reference, the rms figure error increases with ring number or, equivalently, with

mirror type. (Mirrors of different types have different figures.) The increase

of mirror figure error with increasing number of types is shown on the left side

of Fig. 5-4 (Fig. 10 of the reference). For example, a capacitive sensor error of

0.05 _m propagates so that with five mirror types the rms surface error of the

outer mirror segment is 0.38 _m. The right-hand side of Fig. 5-4 shows the rms

surface error over the entire mirror as a function of primary diameter (a 4-m

segment diameter is assumed throughout).

The degradation factor, T, is the rms surface error of the complete mirror

divided by the sensor error. For a total mirror diameter of 25 m, the degradation

factor is T= 6: the mirror surface error is six times the sensor error. The

consequence of this error propagation is shown by Fig. 5-5. Since the edge

sensor is attached to the mirror, which itself may be deformed, mirror figure
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Fig. 5-4 Error Propagation in Edge Sensing
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deviation from the ideal or the calibrated, 7, is averaged with the sensor error,

6, to yield an equivalent sensor error. The latter is then degraded by the

factor T to yield an estimate of the primary surface figure.

The trilateration system, because of sensor geometry discussed in Appendix C,

measures the phase error of the segment retroreflector six times less accurately

than the distance measurement error inherent in the sensor. This sensed phase

error is averaged with the mirror figure variation, 7, as for the eapacitive sens-

ing system. However, since the error is measured relative to an absolute coordi-

nate system, the degradation factor is unity. We therefore conclude that if the

sensor error is smaller than the mirror figure error (likely to be true for the LDR

but not necessarily for a ground-based telescope), the remote sensing system is

superior to the local system, unless 7 = 1 for the edge sensing system. But

= 1 occurs only for a single ring of segments about a central mirror segment.

Therefore, a mirror which has more than one ring should be aligned by trilatera-

tion if the sensor error, 6, is small compared to the mirror figure variation with

time.

The sensor accuracy, 6 , of both the capacitive sensor system ( 6 = 0.05 _m; see

reference cited) and the range sensor system (Absolute Distanee Interferometer,

which can sense ranges to an accuracy of 6 = 0.025 _m, Ref. 2) are much smaller

than the unknown time varying figure errors of the mirror. (In LDR, 6 is likely

to approach _/10 rms because of the weight and thickness eonstraints on the

segments.) Therefore, the effect of the degradation factor is an extremely

important consideration in the accuracy of the alignment sensor system. A tele-

scope designed to work at 30 _m will be constructed with segments whose stability

is equal to, say, 0.5- to 1- #m rms (an allowance for other error sources must be

made). A 25-m LDR aligned by capacitive sensing would have T = 6, implying

that each segment should be made six times more stable than would otherwise be

required. Since thermal stability is likely to be the driving factor in the design

of the mirror segments, such a stability requirement would impact the weight and

thickness of the segments. These concerns may be summarized as follows:
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(1) As the LDR telescope diameter increases, mirror segments are con-

strained by Shuttle requirements to become lighter and thinner, and

the number of segments increases.

(2) The stability of mirror segments is the driving issue in mirror design

and will probably limit the diffraction-limited wavelength of the LDR.

(3) Any more stringent requirements on segment stability, such as that

resulting from capacitive sensing alignment, should be avoided since

they will probably limit the maximum LDR diameter.

Reference to Table 5-2 shows that, exclusive of the issue just discussed, either

capacitive sensing or trilateration has sufficient sensor accuracies to satisfy

alignment requirements of a 30- _m telescope. The issue is one of convenient

implementation. For a 2- _m telescope, however, sensing of mirror segment piston

error would approach the limits of sensor technology.

One practical difficulty in the edge-sensing teehnque is that the sensors them-

selves must be deployed and aligned after the segments have been attached to the

support truss. In trilateration, on the other hand, the segment reference points

are permanently placed on the mirror. Their position may be sensed as soon as

the remote sensor system is deployed.

The practical difficulty of trilateration is sensor complexity: a praetieal system

requires a sufficiently compact and reliable sensor system which satisfies the

system requirements of nearly simultaneous measurement of all reference points

on the primary. LMSC has demonstrated several sensor concepts which have the

required accuracy. The compactness and reliability issues await construction of

a brassboard for their resolution.

5.4 STRUCTURAL RESPONSE TO INERTIAL AND THERMAL STRESS

To assess the behavior of the LDR under inertial and thermal stresses, a computer

model of a D = 30 m, F = 0.5 telescope (the most stressing system) was constructed.

The back structure supporting the mirror segments was assumed to be a tetrahedral

truss with 3.46-m joint spacing (nodes at three of the corners of each 4-m segment),
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the depth of the truss being 3 m. The truss legs were constructed of graphite/

magnesium tubes. The weightbudget of this telescope is given in Table 5-3.

Table 5- 3

WEIGHT BUDGET FOR A 30-m LDR TELESCOPE

Backstructure 1470 kg

Secondary Tripod 90

Secondary and Associated Equipment 50

Primary Mirror 14140

Equipment Section 2400

Tripod Support Truss 3500

21650 kg

Fig. 5-6 shows a computer-generated picture of the telescope. The equipment

section lies at the node behind the primary center. The purpose of the truss

structure behind the primary mirror tetrahedral truss is both to support the

equipment section and to add stiffness to the secondary mirror support truss.

The primary mirror was considered dead weight, not contributing to structural

stiffness. The calculated structural resonant frequency is ~ 2 Hz. This rela-

tively stiff structure easily satisfies the LDR slewing and pointing requirements

from a structural viewpoint. The major structural uncertainties relate not to

slewing and its associated vibrations, but to the constant vibration of the

attitude control systems and the secondary mirror oscillations. A practical

problem is that these vibrations, even though well isolated, could excite LDR

structural resonances. A detailed modeling of these problems was not attempted

in this study. However, some observations can be made.

A fixed vibration such as that produced by control moment gyros can be isolated

from the structure far better than can the variable frequency vibrations of

reaction wheels. Although reaction wheels are less expensive and are used in

the Space Telescope, the relatively large size of the LDR and its susceptibility

to vibrations argue for the fixed frequency vibration of the CMGs. This trade
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STRUCTURE:

• GRAPHITE/MAG.

• TUBULAR2 TO 90D

• WEIGHT: 21,650kg

INCL. MIRROR

RES. FREQUENCY 2 TO 3 Hz

Fig. 5-6 30-m Diameter Tetrahedral Mirror Support Structure

and the effect of secondary chopping on the telescope structure should be

addressed in further studies. It is our opinion that these two issues do not

represent insurmountable problems.

A second purpose of the calculations was to estimate the thermal deformation by

solar illumination of the primary mirror support truss and to determine whether

real-time segment alignment is actually necessary. We found that a uniform

temperature gradient of 20 °F across the truss depth would distort the mirror

figure by 150- _m rms from a best-fit parabola of arbitrary tilt and vertex

curvature unless the distortion was corrected by active segment alignment.

(The same gradient plus an edge-to-edge gradient of 140 °F gave an rms surface

distortion of 230 /_m.) A gradient of 20 °F is probably attainable with good

strut insulation and shielding. Clearly, operations at Wavelengths below 1 mm

require active segment alignment, or a sun shield. The selection of graphite
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magnesium struts in this model is dictated by its excellent thermal stability.

Aluminum struts are 100 times less stable and perform 100 times worse in the

modeling. Graphite/epoxy is not quite as thermally stable; it also exhibits slow

creep. Struts made of Gr/Mg will be available in the LDR time frame.

It is worthwhile to investigate real-time figure control of the segments. The

figure actuators could be driven by error signals from a thermal model of the

mirror segments with input data from thermal sensors in the mirror segments.

While useful only for low-frequency error control such as segment curvature

variations, the sytem might allow the use of very inexpensive segments, e.g.,

aluminum honeycomb (Ref. 3).

5.5 TELESCOPE POINTING

The telescope pointing commands could be derived by Space Telescope techniques,

namely using a moderate accuracy control system to acquire guide stars near

the desired observation point. The guide stars would then be used as a refer-

ence for telescope pointing stability.

On average, one 15th-magnitude star (or brighter) would be in the _ 3 rain FOV

of the telescope. Since the LDR is diffraction limited at 30 _m, most of the

energy of the star would be on the Airy disk calculated for X = 30 #m. For

a 10- to 30-m-diameter telescope, this Airy disk is 1.5 to 0.5 _'. The pointing

requirement will be satisfied if the stellar image in the LDR focal plane can be

centroided to 1/25 of its 2.44 X/D diameter - a requirement which is easily met.

Secondary chopping will move the guide star along with the rest of the FOV

and complicate the pointing stability sensing. However, this should not affect

the pointing feasibility as the extremes of guide star motion may be sensed and

the pointing stability requirement in this situation can probabily be relaxed.

We noted earlier that secondary mirror tilt could be used to vary telescope look

angles by +_5 beam widths with acceptable aberrations. Secondary mirror tilt
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(or decenter) can therefore be used to compensate for small errors in pointing

of the telescope axis; it is not necessary to point the entire telescope structure

to accuracies and stabilities of 0.1 times the half-power beam width.

An alternative to pointing by guide stars exists. A small auxiliary telescope

mounted behind the secondary (whose focal plane is precisely referenced to the

alignment reference plane defined in the trilateration concept) could be used

for precison pointing. Use of the alignment reference plane for precision

pointing would require an increase of ~ 2 orders of magnitude in precison over

that required for telescope alignment from wavefront error considerations. The

trilateration technique could satisfy that requirement.

The 0.5-m-diameter auxiliary telescope would have a much wider FOV than the

LDR itself and would therefore be able to use brighter guide stars. The

telescope would be accurate at visible wavelengths so that the increase in Airy

disk size due to the relatively small aperture would be offset by the decrease

of disk size due to shorter wavelengths. Secondary chopping would, of course,

not affect the guide star tracking.

5.6 CONCLUSIONS

Alignment tolerances of the LDR working at 30 _m can easily be met by existing

sensors and control systems. A 2- _m LDR would require accuracies approach-

ing the sensor limits. Trilateration (rather than edge sensing) for segment

phasing is better suited to LDR diameters above 12 m.

Resonant frequencies of 2 Hz in a 30-m LDR structure ensure satisfaction of the

modest pointing requirements. Isolation of the structure from broadband

vibration sources (the attitude control system or secondary mirror oscillation)

will prove to be a difficult but probably tractable problem.

Thermal stability of the graphite/magnesium primary mirror back structure is

not sufficient to eliminate the requirement for active segment alignment. Thermal
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stability requirements of the individual mirror segments may be reduced by use

of a limited number of figure control actuators (segment figure control). This

technique may allow the use of aluminum segments. The sensing and control

problems for telescope pointing are easily solved.
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Section 6

MATERIALS

6.1 SUMMARY

Promising LDR primary mirror designs involve either solid beryllium or light-

weight glass mirror segments supported on a graphite/magnesium structure.

Aluminum segments (lightweight) can be used for near-ram wavelength observa-

tions. FRIT technology seems most promising for glass segments. Vacuum

deposition for fabrication of solid Be segments requires extensive development.

6.2 REQUIREMENTS

It was established that the LDR primary mirror is likely to consist of rigid seg-

ments aligned on a support structure with a sensing-actuating control loop.

Such a mirror has the generic structure shown in Fig. 6-1. As implied in this

figure, the segment itself may have a complex structure consisting of solid face

and back plates, separated by lightweight or solid sandwich material. The core

material may or may not be the same as that of the plates. It is the purpose of

this section to outline arguments for the choice of suitable materials and designs

for the mirror segments and the support structure.

A major requirement for the primary LDR mirror is, in addition to low areal

density (reflector mass/area ratio, m/A) and thinness (of. Section 2), that its

performance on-orbit, and certainly its structural integrity during launch, not

be compromised. Important thermal and inertial stresses (loads) occur during

the fabrication, handling, testing, assembling, launching, and in orbit. We

distinguish between constant (de) and time-varying (ae) loads. Some of these

are listed in Table 6-1. We shall consider for detail study here only the dc loads

listed in Table 6-1, in terms of basic constraints these make on material choices.
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Table 6-1

MIRROR LOADS

Constant loads (dc) Varying loads (ac)

Thermal Sun soak (60° Partial illumination
incidence at 5% (Orbital variation
absorption) of illumination )

Dynamical Average launch Launch acoustics
acceleration (4 g) (180 dB)

Testing and han-
dling ; deploying

Polishing

The ac loads are no less important than the de loads, but cannot receive adequate

treatment within the confines of this study. Their effect can also be minimized

by proper design methods.

In the absence of a detailed mirror design - which must await further LDR concept

development - we base our selection of suitable materials on general arguments

about the desirable physical properties of such materials. These are. low

density, p , high thermal conductivity, k, low linear expansion coefficient, _,

high modulus, E, and high mieroyield strength, _. Experience shows that for

constant thermal and inertial loads, the compound ratios _/k, E/p , and E/p 3 are

useful quality parameters for selecting materials. Their meaning is given in
Table 6-2.

Table 6- 2

MERIT PARAMETERS

Parameter Maximizing the parameter minimizes the

_/k thermal bending, for a constant given thermal flux

Elp inertial bending, for a constant segment diameter

E/p 3 inertial bending, for a constant segment weight

probability of fracture or permanent distortion
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For our purpose, the parameter E/p 3 is more useful than E/p. This is because

size and areal density of LDR mirror segments, and thereby the weight, are

initial design parameters. They are determined by the Shuttle payload (mass

and volume) limitations. This was discussed in Section 2. In effect, we want

to determine which materials and designs for a fixed segment diameter of 4 m

and fixed areal density respond least to the thermal and inertial de loads in

Table 6-1.

The merit parameters in Table 6-2 are derived from a simple model of the re-

sponse of a mirror segment (assumed to be solid, for simplicity) to constant

loads. In this model a segment is assumed to be circular and thin (large ratio

diameter/thickness). If the diameter of the segment is d, total thickness h, then

the maximum sag under constant acceleration parallel to the surface normal is

wi = Ci(d41h 2) (piE) (6.1)

where the constant Ci depends on the segment support geometry. The segment
mass is

m = (_/4) pd2h = Ahp (6.2)

where A is the plate area. Hence

w. = constant (A4/m 2) (p3/E) (6.3)1

Thus among segments with the same mass and area, and therefore same diameter

and areal density, those with the largest value of E/p 3 will bend least.

The thermal bending of the same segment under a constant heat load (steady

sun soak) q, is

w t = C t qd 2 (s/k) (6.4)
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Hence those segments which have the highest value of k/a will bend least.

Table 6-3 lists various materials in the order of decreasing value of the corn-

/p3) 1/2pound merit parameter (k/a) (E . This parameter is the single most

appropriate quality parameter on which we can base our material selection. (The

square root in the parameter is for eonvenienee of units.) In the table we have

distinguished between support structure materials and segment materials. The

first cannot be used for plate construction, i.e., manufaetured with the

neeessary surface quality, while the latter can. The table also gives values of

other quality parameters. Figure 6-2 has the same materials marked in a diagram

of (k/a) versus E_-_p 3. Both table and figure clearly show that the metal-matrix

materials are superior struetural materials, and among these, graphite/magnesium

is outstanding. BeO, Be, and the low expansion glasses/eeramies (in the follow-

ing simply elassified as glasses) are superior segment materials.

30.0 L_ Gr/_U
20.0 - Gr/Ep SELECTED

[] Gr/AI
10.0 - Gr/C 0

0 MIRRORMATERIAL

SELECTEDMIRROR ITISUPPORTh_TERIAL
1.0 MATERIALS

K [I05 call

_"Lc--c"m'_'-J nvaOr SIC

0.1
FUSEDSILICA

O

GLASSCARBON
Q

o.o,'t'I'I'I'L'I'I 'l I I I0.25 0.75 1.25 1.75 2.25 2.75 3.25 3.75
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

[ 103N1/2cm7h1[ g m3/2 ]

Fig. 6-2 Comparison of Candidate Materials (300 ° K)
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T able 6- 3

MATERIAL FIGURES OF MERIT

Material k/c_ EIp Ek/_p (E/p3) 1/2 (k/c_) (E/p 3) 1/2

A. Segment Materials

Beryllium-Oxide 1.05 12.1 1.27 1.2 1.26

ULE 1.03 3.1 0.31 0.79 0.814

Cer-Vit 1.03 3,7 0.31 0.79 0.814

Beryllium 0. 303 0.5 0.45 2.09 0.633

Silicon Carbide 0.45 13 0.59 1.17 0. 526

Aluminum 0.22 2.6 0. 058 0.59 0.13

Copper 0.56 1.24 0.07 0.125 0.07

Invar 0.3 1.8 0.054 0.167 0.05

Fused Silica 0. 059 3.36 0.0196 0. 833 0. 048

Glassy Carbon 0.033 2.3 0.0076 1.0 0.033

B. Support Structure Materials*

Graphite/Magnesium 30.3 18.57 56 5.56 168.5

Graphite/epoxy 25 12 30 2.11 52.75

Graphite/AI I 0.1 14.3 I 4.44 2.70 27.3

Gra ph ite I Carbon 13.2 3.23 4.28 I. 0 13.2

kl_ in 105 callcm.s; Elp in 1011 cm21s2; Ekl_p in 1014 calls; (Elp3) I12 in 103 N I12 cm 712 gm -312

*Along direction of fibres.



These, as well as aluminum, are selected for further consideration. Aluminum

is included in this selection, although it is inferior to SiC, because it is a very

inexpensive material, well known in terms of its handling and fabrication char-

acteristics, and was successfully used in the Cal Tech 10-m segmented ground

reflectors.

6.3 SEGMENT CONSTRUCTION

The simplest segment structure is a solid plate, the next simplest being that in

which the same material is used for faeeplate, backplate, and core, with the

plates having the same thickness, t (the total segment thickness being h). To

see which of the selected materials lend themselves to solid rather than sandwich,

or lightweight, eonstruction, we investigated how the deflection under constant

thermal and inertial loads varies with the ratio t/h for a given segment thickness,

h. This ratio is, in effect, a measure of the degree of lightweighting.

The center sag of a thin circular lightweight segment of diameter d, mass m,

plate area A (=_d2/4), when continuously supported around the rim and under

a constant heat load (absorbed heat flux) q, is approximately

_ q d2_ I 1-(m/A)(l/h)I1+6t2/h2+4t3/h311 (6.5)wt 48 k (t/h) 1 + (m/a) (1/ph) -2(t/h)

In Eq. (6.5), _, p , and k refer to the (bulk) material, not to averages over

the segment. For a given material and given areal density, the sag thus depends

on h and on (t/h). Over the respective ranges of h and (t/h) for which the

equation holds -the range is determined by m/A and by the thin plate assump-

tion, which limits t/h to values less than about 0.1 -two properties of wt be-
come apparent: (The trends are typical for all materials studied, but only the

example of ULE at 300 K operating temperature is discussed here). As Fig. 6-3

shows, these properties are:
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Fig. 6-3 Maximum Thermal Deflection of 4-m-Diameter ULE Segment Under
Constant Heat Load 37.5 W/m 2

o For a given segment thickness h, there is an optimum value of (t/h),

for which the deflection w t is a minimum. This means there is a "best"

lightweighting. Physically, this result is due to the fact that whereas

the flexural rigidity decreases with increasing value of (t/h), the

thermally induced bending moment increases, and wt is proportional to

(moment/rigidity). Competition between these trends produces the

minimum.

o For a constant ratio t/h, the deflection is smaller for h. In other words,

solid segments of a given areal density retain their figure under constant

thermal load better than lightweight ones, and thin lightweight ones
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better than thick lightweight ones. In this case, the physical explana-

tion is that increasing the thickness h increases the resistance of the

segment to the heat flow perpendicular to the plates through the core,

and the thermal moment increases faster than the flexural regidity. (No

lateral heat flow is assumed in this model nor heat transfer by radiation;

in future studies this model must be improved.)

Within the limits of the accuracy of the model we therefore conclude that LDR

segments should be, either solid or thin, lightweight. The conclusion plays

into the hands of the requirement that the segments be thin for maximum storage

capability in the Shuttle bay.

The deformation of the same segments during launch increases with decreasing

thickness. The trend is evident from the inertial defleetion under constant

aeceleration

md 2
w t _ (6.6)

Eh 3 (t/h)

which monotonically increases with decreasing value of t. This trend provides

a lower practical limit to the segment thickness. During the acceleration, seg-

ments must not be permanently bent. We set an upper limit to the bending stress

at 10% of the microyield stress. Calculating the required thickness of solid

segments and comparing it with the actual thickness, we find (Table 6-4) that

only beryllium segments can be solid at areal densities as low as 45 and 20 kg/m 2 -

corresponding to a maximum refleetor diameter of 24 and 20 m, respectively. The

implication of this result is that for very large reflectors, materials other than

beryllium must be lightweight.
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Table 6-4

THICKNESS OF 4-m DIAMETER, SOLID MIRROR SEGMENTS

Material Actual thickness (ram) for Required thickness (mm)
areal density (kg/m 2)

45 2O

BeO 16 6.7 30

ULE 20 9.1 60

Be 25 12 12

AI 17 7.4 48

6.4 SEGMENT BASELINE CONCEPTS

We shall derive baseline concepts for LDR mirror segments using the materials

selected earlier. Discussion of more complex segments, for example those using

several diffferent materials, will be taken up in the next section.

The primary mirror must be diffraction-limited at the working wavelength X. This

requires, as a minimum condition, that for worst sun soak the thermal distortion

of a segment, when translated into an rms figure error, be less than X/20. The

distortion depends on operating temperature for many materials. A typical

operating temperature for LDR is assumed to be 200 K, although no detailed cal-

culations were made to establish what temperature may be maintained by passive

means. Past experience with passive systems, though not as large as LDR,

indicates 200 K to be a reasonable value. The segment diameter is 4 m. As

discussed earlier, the distortion given by wt in Eq. (6.5) has a minimum value

as a function of (t/h), for a given value of h, and that minimum decreases with

decreasing value of h (Fig. 6-3). A lower praetieal limit to h is given by the

requirement that the lowest vibration modes of the segment excitable during on-

orbit operations be sufficiently high. Thus, a minimum stiffness is required in

addition to the survivability under the launch aeeeleration, which was diseussed

earlier. Best engineering judgement sets the lowest praetieal value of h to a
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value where the minimum of wt as a function of (t/h) in Fig. 6-5 approaches

within 25% the asymptotic value.

The limiting operational wavelength, k limit, is then calculated from that lowest

value of wt , namely Wlimi t by

10 Wlimit
k - (6.7)

limit ,_

Results of the calculations are given in Table 6-5. Note that for the solid seg-

ments the value of h is, of course, fixed by the m/A ratio. It follows from these

results that only the glasses and Be can operated down to the required wave-

length of 30 pm without on-orbit adjustment of the segment figure. Aluminum

mirrors are limited to operation above about 500 pm. The glasses, with a suitable

composition (TiO content for ULE and CerVit), can in fact operate to below 2 pm

without figure control; 2 pm is a desirable but not a required operational goal

for LDR. BeO performs better than A1 but its potential for large segment fab-

rication is, at this point, rather uncertain, since the physical and handling

characteristics are not well known. Beryllium is expensive as a raw material (12

times that of the glasses), requires facilities for manufacturing large plates and

has problems of uniformity, creep, and crystal line slippage. Properties of the

lightweight glasses are well understood and fabrication methods advanced. New

promising lightweight techniques for the glasses are discussed in the following

section and also in the enclosed essay by Kodak Co. (Appendix D).

In summary, we have three baseline concepts for LDR segments: (1) solid

beryllium, for operations to 30 pm; (2) lightweight glass, also for operations to

30 pro; and (3) lightweight A1 or BeO, for operations down to about 0.5 mm.

6.5 FABRICATION TECHNIQUES

Conventional fabrication of lightweight glass mirrors (Space Telescope technology)

involves fusion welding of a honeycomb core to a faceplate and a backplate and

6-11



FUSION WELDEDFAIRRORJLANK FRIT ..ONDED MIRROR .LANK
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Fig. 6-5 Predicted Mirror Weight/Area for Glass Mirrors
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Table 6-5

PERFORMANCE OF 4-m DIAMETER SEGMENTS

TOTAL MIRROR WAVELENGTH AT WHICH X/20 rms SOLIDILTWT
MATERIAL THICKNESS WAVEFRONT ERROR EXlSTS 4g LAUNCH, 10 x

(cm) FOR THERMAL DEFORMATION YIELD/RUPTURE
(37.5 Wlm 2 ABSORBED FLUX)

(7% TiO) 20 kglm22 10 462 _m ITWT
ULE (300 K) 45 kglm 10 87 _m ITWT

(7% TiO) 20 kglm_ 10 694 pm ITWT
ULE (200 K) 45 kg/m 10 376 pm ITWT

ULE (4.5% TiO) 20 kglm 2 10 =0 (#m ROUGH LIMITED) ITWT
(200 K) 45 kglm z 10 =0 ( #m ROUGH LIMITED) ITWT

CERVIT 20 kglm_ 5 =0 ( /_m ROUGH LIMITED) ITWT
45 kglm 2 =0 ( _m ROUGH LIMITED) SOLID,=

kglm 2FUSED QUARTZ 20 5 664 /_m ITWT
(200 K) 45 kg/m 2 2.1 13 /_m SOLID

20 kg/m 2 1.33 77 /_m SOLIDGLASSY CARBON

(300 K) 45 kg/m 2 3 77 /am SOLID

20 kg/m 2 1.2 6.6 /_m SOLID
Be (300 K) 45 kglm z 2.5 6.6 /Jm SOLID

20 kg/m_ 1.2 0.65 /_m SOLID
Be (200 K) 45 kglm 2.5 0.65 pm SOLID

20 kglm_ 10 329 lure ITWT
Be O (200 K) 45 kglm 10 64 /_m ITWT

CARBONICARBON 20 kglm_ 10 NIA ITWT
45 kglm 3.2 0.68 /Jm SOLID

AI 20 kglm22 5 578 /_m ITWT
45 kg/m 10 462 pm ITWT



then slumping the aggregate over a form to the desired shape. This technique

limits the areal density of a 4-m segment to about 200 kg/m 2, for reasons

discussed in Appendix D. A new fabrieation method, FRIT bonding, uses a

bonding agent to assemble individual parts to the structure (Fig. 6-4). The

bonding agent sets at a temperature considerably lower than those at which the

structure would be thermally deformed. Hence, thinner and more lightweight

mirror segments are possible with this technque than with fusion welding. The

technique is still developing, and it is likely that the areal density of 25 kg/m 2

required for a 30-m diameter LDR will be achieved (of. Appendix D).

Promising fabrication methods for solid mirrors (i.e., also for the face sheets of

lightweight ones) are vapor deposition, slip casting and slumping, and hot press

and sinter. They are illustrated in Fig. 6-6.

Vapor deposition (chemical, physical, and ion) was developed for making thin

films with precision molds but has been adapted to making free-standing (i.e.,

rigid) structures. The deposition rate can be varied, and also the eomposition

of the deposited material, to produce optical quality surfaces without polishing

or grinding. These two processes - polishing and grinding - can consume a large

fraction of the total manufacturing time for mirrors. Current vapor deposition

faeilities, however, are not large enough to handle large (i.e., 4-m-diameter)

segments, and substantial investment in development is required. Vapor

deposition is possible with all three of the preferred LDR segment materials.

Homogeneity is critical. If grain orientation is important, a deposit may be

grown epitaxially. The advantage is precise control of the composition as well

as excellent surface accuracy. A disadvantage is that a high vaccum is required,

the substrate must be maintained at a high temperature, and the deposition rate

is relatively low.

Slip casting and slumping is possible with several materials. LMSC has developed

a slurry technique, in which ground ULE is cast into egg-crated forms, resulting

in a structure with nearly the same thermal properties as ULE. The method
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Fig. 6-6 Fabrication of 4-m Solid Mirrors

provides maximum utilization of the raw material - not possible with conventional

techniques. A possible segment design is shown in Fig. 6-7. The area density

is 24 kg/m 2.

Slumping has been sueeessfuly carried out for solid as well as lightweight seg-

ments made of ULE or fused silica. Continuous cores allow the face sheet to be

polished at a higher pressure than egg-grated eores, with a consequently lower

polishing time. Slumping is a risky process, and in some eases machining the

core to shape rather than slumping may be preferable.

Several promising designs for mirror segments using different materials for plate

and core (and possibly several different materials in the core itself) are in

development at LMSC and elsewhere. As an example, we mention here the con-

cept by General Dynamics Co. (Convair Division). It has a composite base layer

which as a 5-dimension carbon fiber weave impregnated with a resin that is

6-15



ULE \OLAsS/(S_IP-CAST1
/-

FUSEDOR _ /

REACTION-SINTERED 3 mm d 1BOND _ '

I I
SLIP-CAST _-2 mm j
CORE _ 100 mmlJ I

• i

I 3mm .,,, ,_

_-- ULE (FACEPLATE)

Fig. 6-7 LMSC Slip-Cast ULE Mirror Design Concept

carbonized in a furnace. Above it is a l-rail amorphous graphite layer, a l-rail

Si layer, and finally, a ULE face sheet. Current samples are, however, small

(25-era diameter) and suffer still from carbon fiber print-through. The areal

density is 22 kg/m 2 (Fig. 6-8).

6.6 CONCLUSION

Several materials and fabrication methods exist for making segments and mirror

support structures which satisfy the LDR requirements for stiffness and per-

formance. The mirror support structure will be made of graphite/magnesium, and

the segments of either solid beryllium sheets, or of lightweight glass. Aluminum

(Hexcel) mirrors may be adequate for a small (10-m-diameter) passive mirror work-

ing at near-millimeter wavelengths. As a raw material, it is inexpensive and

easily machined. Low-expansion glasses and ceramics are expensive and require
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Fig. 6-8 General Dynamics Lightweight Carbon-Carbon Technology

complex fabrication, handling, and testing procedures. (One difficulty is to

fabricate large, thin face sheets.) Glass mirrors should be lightweighted also.

By contrast, beryllium mirrors for LDR can be solid. As a raw material,

beryllium is expensive (12 times the cost of the glasses), and although it has

excellent thermal and mechanical properties, it requires substantial facilities

and methods development.
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Section 7

COSTING

7.1 SUMMARY

The cost basis for LDR are algorithms developed at LMSC for systems of

various diameters and operating wavelengths, reasonably confirmed by several

previous point designs. A 10-m-diameter system is estimated to cost $250 M,

excluding Shuttle, special facilities, and operating costs. We find no signifi-

cant breakpoints in the cost as a function of diameter or operating wave-

length.

7.2 COST BASIS AND RESULTS

Preliminary cost estimates for conceptual systems can be developed from several

different bases relating to weight, size, complexity, and previous costing

experience. At a more advanced design stage of LDR, the costing effort must

involve detail costing of the individual components, while for this study esti-

mating the cost from existing, validated algorithms is appropriate. All estimates

are made for one flight unit without focal plane, Shuttle flight and integration,

special facilities, and operating costs.

The algorithms have been developed at LMSC as a function of aperture size, for

visible and near-infrared as well as millimeter and microwave systems. The

majority of these systems are about 1 m in diameter. Anticipated Space Telescope

costs verify the algorithms at 2.4 m diameter. The algorithms are probably

reasonably accurate out to 4-m diameter, where segmentation of the LDR primary

mirror is required. Data for the 4-m optics elements were broken out of the

algorithms and used as a basis of 4-m segment cost for larger apertures. Typical

spacecraft costs were added to the optics cost to yield an all-up cost.
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Unfortunately, no hard data exist for a system operating in the far-IR to sub-ram

wavelength region, which is of primary interest to LDR. We therefore have

interpolated the cost as a function of wavelength between the visible and ram-

wave portions of the spectrum. The result is shown in Fig. 7-1. The approxi-

mate cost as a function of wavelength is shown separately for the telescope

alone and for an entire system, i.e., satellite.

- _ POINT SATELLITE
-..:,. DESIGNS

* SATELLITE
109 -- _ " .

_ _ _ e.e--- 30 m TELESCOPEONLY
- _
Z _
- ST X e-_-lO m _'_._ARp _

_ SATELLITE _30_

ST X _

_,_'108 _m TELESCOPE P _ __- • DEVELOPMENT
- PLUSONE FLIGHT UNIT

- • EXCLUDING SHUTTLE
- DEPLOYMENTCOST

106 --I

- I I I I_I i I llllllJ I I lllllJ I i IL_I _ _ I_
0.0001 0.001 0.01 0.1 1 10

OPERATING WAVELENGTH (mm)

Fig. 7-1 Estimated Cost (1980 Dollars)

These estimates are of course only very approximate. However, LMSC costing of

several previous 30-m-diameter point designs, shown as data points in Fig. 7-1,

agree with the interpolation reasonably well. The eost of an LDR operating to

30 _m can therefore be read off Fig. 7-1 with reasonable confidence. The satellite

cost for a 10-m-diameter system is $250M and for 30-m-diameter it is $500M. Note

that the "cost for a 10-m LDR is not much greater than for the 2.4-m Space

Telescope; that is because the LDR is diffraetion limited at 30/_m, rather than

0.6 _m, and LDR therefore has much less stringent fabrication tolerances than

the ST.
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There are no apparent cost breakpoints as a function of diameter or wavelength.

Naturally, this is a result of the above described costing method. However, it is

also unlikely that such breaks exist, for the following reason: While subsystem

costs may vary among different designs and as a function of size or wavelength,

its effect on the total system cost is probably small.
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Section 8

CONCLUSIONS

8.1 SUMMARY

It is feasible to deploy in the early 1990's a large, ambient temperature, orbiting

astronomical telescope (LDR), with a minimum primary mirror diameter of 10 m

and an operating wavelength of 30 _m. Much of the critical technology for its

fabrication and deployment already exists, but some is in an early, yet vigorous

state of development.

8.2 BASIC STRUCTURE

The requirements for size and for Shuttle delivery determine the level of the

lightweight mirror technology required for LDR, in terms of the maximum re-

flector mass/area ratio. This ratio depends on reflector diameter. A 10-m

reflector requires only Space Telescope technology (m/A _ 200 kg/m2), whereas

for a 30-m telescope, ultralightweight mirror technology is required (m/A _ 25

kg/m2).

Among current lightweight space reflector concepts, only those with rigid seg-

ments on a thermally highly inert support structure show promise for LDR.

Self-deployable reflectors of this type are limited from 10 to 12 m in diameter

because of their inefficient packaging capability. Without active alignment of the

segments, the minimum operating wavelength of such reflectors is near 1 ram.

This limit is due to limits on the accuracy of the initial deployment and subse-

quent reflector shape accuracy under the severest thermal loads of LDR.

A practical limit for the maximum size of a reflector which is deployed by placing

the mirror segments on a previously unfolded support Structure (an assembled

mirror) is near 30 m. This limit is due to the fact that the required maximum
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reflector mass/ratio (areal density) is about 25 kg/m 2, which is presently con-

sidered a lower limit achievable in the LDR time frame. Assembled reflectors can

be much large than self-deployable ones because the mirror segments can be

packaged in the Shuttle with greater volume efficiency.

8.3 OPTICAL FORM AND CONTROL

The preferred optical form of LDR is a two-mirror Cassegrain, with a f/0.5 para-

bolic primary mirror. (For operations down to 2 _m, the f/ratio needs to be re-

examined). Other possible forms are either unnecessarily complex - and thereby

more risky in terms of deployment and control - or they do not satisfy the per-

formance requirements. Field-of-view scanning by secondary mirror chopping

at 10 Hz is feasible, except the performance of LDR may be compromised at wave-

lengths lower than the required 30 _m and for large secondary mirror diameters.

Several techniques exist for alignment, i.e., on-orbit sensing and control of the

positions of the mirror segments on the support structure. Such alignment is

required for diffraction-limited performance at 30_m. Curvature control of the

segments is not required except for aluminum segments at wavelengths below

0.5 mm and for glass or Be segments operating below about 2pro. A wavelength

limit of 2 _m of LDR would be desirable but would stress the capabilities of current

sensors. The point is worth reexamining.

Pointing and slewing requirements of LDR do not stress the state-of-the-art.

The excitation of structural vibrations by control systems (CMGs are preferred

for LDR) and by the secondary mirror oscillation may present difficult but

probably not insurmountable problems in LDR design.

LDR does not require a sun shield to keep the background noise in the focal plane

below that created by the thermal emission of the ambient temperature optics.

However, for the purpose of thermal control, by which the requirements for

the thermal stability of the mirror segments may be lessened, the need of a

sun shield should be reexamined.
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8.4 MATERIALS

A preliminary analysis was conducted of the response of various candidate

materials for LDR mirror segments and support structure (truss), to the thermal

and inertial constant loads. The time-varying loads were not studied and must

be considered in the future. The analysis showed that only lightweight glass

(ULE, CerVit), properly doped, or solid beryllium segments satisfy the perfor-

mance requirements. The preferred material for the mirror support structure is

graphite/magnesium.

Aluminum segments of the type used in the Leighton 10-m, millimeter antennas

are limited to operations above about 0.5 ram. Yet, aluminum is inexpensive and

segment construction is, as the Cal Tech dishes show, well advanced in technique.

Therefore, a passive (no on-orbit segment alignment), 10 to 12-m diameter, self-

deployable LDR operating at near-millimeter wavelengths has been proposed as

a possible LDR baseline concept (Table 1-2). However, the total cost (including

Shuttle, special facilities development, and operational costs) of a 10-m telescope

of this type is probably not substantially lower than a 10-m telescope with better

segments and active alignment. Considering that the science potential of a tele-

scope working to the near-infrared rather than near-millimeter wavelengths is

considerably greater, a passive 10-m aluminum LDR may ultimately be rejected

as a nonviable concept.

Lightweight glass mirror technology now in development, such as the FRIT

technology, promises to satisfy the m/A requirement for a 30-m-diameter LDR.

The alternate technology, using solid beryllium segments made with vacuum

deposition techniques, is yet in early stages of development. To meet the LDR

time frame, substantial advance in terms of facilities and development is needed.

8.5 COST

Paramettric costing of a telescope like LDR is presently only feasible using cost-

ing algorithms which were previously developed for either optical or microwave re-

flectors, and by interpolating between these wavelength regions. Several known
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point designs confirm the reasonable accuracy of such a method. The unit cost

for a 10-m reflector, excluding Shuttle and faeilities development costs, is about

$250M; for a 30-m-diameter reflector, it is about $500M. No significant cost

breakpoints, as function of diameter or minimum operating wavelength, were

determined.

8.6 SYSTEMS BREAKPOINTS

This study offers three distinct LDR baseline concepts which may be considered

in further studies; they are given in Table 1-2. They reflect the existence of

several breakpoints in the conceptual design of LDR.

(1) In terms of the operating wavelength, breaks occur near 1 mm and 2 _m.

A near-ram wavelength telescope requires no active segment alignment

and can even be built with inexpensive aluminum hexel segments.

(However, a thermally inert support strueture is still needed, such as

made of Gr/Mg.) At lower wavelengths, actively aligned glass or

beryllium segments are required. Below about 2 _m, segment fibo_re

control is required in addition to segment alignment. Operation to

2 _m may exceed the accuracy of alignment sensors, but operation to

30 _ m will not.

(2) In terms of maximum reflector diameter that is possible if, as required

for this study, only one Shuttle load is allowed for LDR deployment,

the breakpoints are near 12 m and 30 m, respectively. The first point

represents a change, from self-deployable to assembled reflector con-

cepts. The second represents a lower, probable, limit to the reflector

mass/area ratio achievable in the LDR time frame.

The locations of these breakpoints are, of course, not exact and represent best

engineering judgment.

Our results are summarized in Fig. 8-1 which ranks various LDR concepts in terms

of cost, but without a definite cost scale sinee such a scale cannot be derived at

this time. The bottom line of the results can be expressed as follows: A 10-m
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diameter, self-deployable reflector can be built with present technology. A

30-m-diameter reflector requires technology, some of which is yet in the state of

development but which probably meets the LDR time frame requirements.
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AppendixA

LDR BackgroundLimitedSensitivity

A.l Introduction

LDR sensitivityis limitedby noisein the radiationon the focalplane,
due to variousinternalandexternalsourceswhichmay be insideor outside
the detectorfieldof view (FOV). If thepoweron a detectorfromthisback-

groundis dP(_)in thewavelengthintervald_, thenthe noisepowerper\H/_zis

(W/_F_z) : + ] dP (1)ehu/kT- 1

whereT the temperatureof thenoisesource,_ = c/_ thefrequency,c the speed
of light,h Planckconstantand k Boltzmann'sconstant.For unitopticaleffi-
ciency

2hc2 d_

dP = Apad X"---ff-€ ehv/kT- 1 (2)

where Ap the area of2the primarymirror (= _D2/4),_ the solid angle of the
detector= (2.44_/D), _ the sourceemissivity. For-A),/},<<l(we assume
_},/k = 0.1),

NEP 7.2 X 103/_T I/ (3)

(W/V_z = 1.05 X 10-11 e V_ _e1.44 X 104/_T_1 _3

A.2 Sky Background

Importantbackgroundsourcesare interplanetaryand interstellardust, and
the 3°K background. Atmospheric(continuum)radiationabove a typicalLDR orbit
(600-700km) is negligible. Values of €/_ and T are given in Table A-l for
these sources,and the NEP's for these sourcesare plottedin Fig. A-l. (The
visibleand ir zodiacallight are given for 600 solar elongationin the ecliptic
plane as well as for the eclipticpoles,where the zodiacallight is minimum,
becausethe minimumsolar elongationspecifiedfor LDR by the SOW is 600). Note
that the backgroundNEP is typicallylO-l_ to lO-17 W/Hf_zindependentof D, and,
on average, increaseswith increasingwavelength.
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Table A-I

Diffuse Sky Above Atmosphere

Source Emissivity, _ Temperature, T (K)

Interplanetary dust:

Zodiacal Light + 3.7xi0 -14 (same as Sun)
(visible)

Thermal 1.2xlO-7/X m 300
(ir)

Galacticdust ++ lO/_2 lO-15
_m

Cosmic background l 2.7

+ scattered sun light

++ galactic poles
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A.3 Thermal Emissionfrom LDR Optics and Structure

We considerthe followingimportantsourcesof thermalradiation

- Mirrors at ambienttemperature(primary,secondary,relay)

- Structure(secondarysupport,spider)

- Segmentgaps

- Dust on mirrors

- Filter (detectorcavity)

Their contributionto the instrumentalnoise increaseswith their relative

area, A/Ap, as well as with T and €.

Table A-2

InstrumentBackgroundEmission

A/Ap T _(_)

Mirror(s) 1 150-300 0.02-0.1

Structure 6 t/_D same 0.02-I

Segment gaps 2 w/d same 0.02-I

Dust 10-3 same <I

Filter 1 see text < 1

For the support structure of the secondary mirror we assume a projected area of
3(D/2)t, where t the average width of a truss member; hence A/A_ = (3/2)

D-t/(_D'2/4). For a nominal range t =I0 to 30 cm, A/Ap =.006 to .0_.

For segment gaps, the total area is approximately A = (N/2) _dw, where N
is the number of mirror _eg_ents, d the average diameter, w the gap width.

Since N = Ap/(_DL/4) = DL/d_, we have A/Ap = 2 w/d.
For dust on mirror surfaces we assume a Class 300 dust distribution, achievable

by assembl_ in a Class I00,000 Clean Room. For that distribution A/An =
f_a2dN(a) ~ 10-3 , where dN(a) is the number of dust particles with radii between

a and (a+da).
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For the above instrumental background sources we assume the same tempera-
tures as the primary mirror, T = 150 - 250 K. Filters are expected to be
cryogenically cooled, some to as low as _He temperatures. A filter radiates
to the detector at all wavelengths with efficiency _I, except in the spectral
range A_. The filter NEP is calculated from Eqs. (I) and (2) by integrating
our all wavelengths (neglecting the transparency of the filter at _), which
gives

NEP 10-15T5/2_ m (4)(W/H_-_z_ 2.2 X

Fig. 2 shows the results of the above calculation for nominal values of
the system paramete_discussed above. Comparison with Fig. 1 shows that in-
strumental thermal emission is much larger than the sky background at all but
the shortest possible operational wavelengths of LDR.

A.4 Stray Light from Sources Near the FOV

Bright star in or near the FOVcan raise the background radiation in the
focal plane (FP) appreciably. The power on the focal plane is:

2hc2 d_

dP = _s ehU/kTs_1 _sA (5)

where T the stellar temperature,_ the solid angle of the stellar disk sub-
tended at the telescope, and A the sarea of instrumental surface scattering or
diffracting the stellar power into the FOVof a detector. The power on the_
detector is AP-Sn (_) • _d where SO(_) the scattering function (units: sr-i),
discussed below for various types of scattering. By comparison on Eq. (2) and
Eq. (5) we see that to calculate the corresponding NEPfrom Eq. (I), we need to
replace _ in Eq. (2) by the quantitY Rs.Se-(_).A/A p.

For small angles 0, the dominant scattering mode is (forward) diffraction -
by the primary aperture and the spider. Minor contributions to the NEPare
made by scattering from mirror roughness (BRDF) and dust. The appropriate
functions are listed in Table A.2. For a solar-type star of magnitude my,

Rs _ 1.3 X 10-(15 + 0"4_ I) (sr -1) (6)
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Table A-3

Scattering Functions (o<<1)

Scattering Surface
Mechanism Se(_) A/Ap

Mirror Diffraction _/Dx3o3 I

Spider (cross) Diffraction D/2xto 2, oxt>>_

Dt/2_ 2, o_t>>_ _ t/D

Dust (Class 300) Diffraction <1.2 X I0-9(_/_) 2 10-3

Mirror (ULE*) Scatter 3 X 10-18 i I

%2 Q2 + 3.8 X I012% 2!

*) Adapted from ITEK 75-9507-i
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Results for D=1Om, t=.Im are shown in Fig. A.] for a .mv(G2V)=Ostar off,axis by
15_'. Spider diffraction is important at _1001_m, and mirror diffraction
at longer wavelengths.

A.5 Sun at 600 Elongation

For a 600 elongationangle,we can treatthesun as a point. The scatter-
ingmechanismis diffusescatteringratherthandiffractionas in Sec.1.4.
Importantscatteringsurfacesare gapsbetweensegments,duston the mirror,
andmirrorroughness(BRDF). For thefirstthreewe assumeLambertianscattering
for the lastwe takeS_(X)as givenin TableA3. The resultsare shownin

Fig.A.4 for a rangeoY valuesof therelativegap area (A/Ap= 2 w/d).

A.6 EarthAlbedoand EarthShine

For scatteringof radiationfroman extendedsourceoutsidethe FOV,like

the earth'slimb,thefunctionSo (X)mustbe summedoverall applicablescatter-ing anglesO:

P

S(X) : ISo(X) cosod_E (7)
Jr
mE

Fororder-of-magnitudeestimatesit is sufficientlyaccurateto replacecoso
by unitysincethemajorcontributionto the NEP comesfromscatteringthrough
smallangles. This givesthe resultsshownin TableA.4 and the NEPsshown
in Fig.A.5. The solidlinesrepresentalbedocontributions;thedottedlines
earthshine.

TableA.4

IntegratedScattering

Surface Mechanism JSQ(x)d_E

Mirror Diffraction 2_/D_20

" BRDF (6_ X lO-18/X2)_#nO

Spider Diffraction X/x3DO

Gaps Scattering 02

Dust Diffraction 1.2 X 10-8_02/X2
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Appendix B

Image Quality of Two-Mirror Telescopes

Summary:

This appendix derives expressions for the third order field aberrations
of coma and astigmatism for the following optical designs:

A) Ritchey Chr_tien
B) Parabolic Primary
C) Tilted Aplanat
D) Spherical Primary

The third order aberrations of the above systems are useful for estimating tele-
scope field of view (FOV) as a function of primary diameter, D, primary focal
ratio, F, and field angle m to determine whether the requirements of the SOW
can be met. These requirements are:

I) Diffraction limited performance (OPD <_/I0 rms) at _ = 2 _m over
the center 30 sec of field.

2) Diffraction limited performance over I0 x the beamwidth (24.4 _/D)
for I00 _m _ S I0 -jmeter.

Implied in the above is that the telescope optics and focal plate must be physi_
cally large enough to provide an unvignetted imaging capability at m : 1.22xlO-_/D
off of the optical axis. The derived expressions lead directly to the selection
of the parabolic primary design for the LDR telescope.

Discussion:

The starting points of this analysis are the expressions for third order
aberrations in reference I.

The telescope principle focal plane is assumed to be located at the vertex
of the primary mirror. This assumption allows considerable simplification of
the algebra without obscuring the general trends. The assumption is conserva-
tive in that an increase in back working distance to accommodate a recessed
focal plane should, if anything, reduce the field aberrations.

According to equations II, 12 of reference I, the total angular aberration
in the focal plane of the telescope is given by
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n = AI p3 cos 0 + A2 _p2(2 + cos 20) + (2A3 + A4). (I)

• _l_2p cos 0 + A5_3

= AI p3 sin e + A2 p2sin 2e + A4 _2psin e . (2)

The aberration coefficients Af _5 are spherical aberration, coma, astigmatism,
sagital curvature and distort%on, respectively. These coefficients depend on
the telescope design. Parameters p and 0 are aperture coordinates of radius
(p = 1 at aperture edge) and angle, respectively. The primary mirror aperture
radius is a; the _ telescope effective focal length is f. Angular coordinates
n (the 0 = 0 direction) and _ represent the deviation from an ideal point image
in the focal plane of parallel rays passing through the telescope aperture at (p,O).
The deviation is given in units of angle in object space.

Angular error in object space can be related to wavefront error at the
telescope input aperture a (p,d) by the relations 2

I C aA sin e aA_ (3)n : _ coso_p p ap

1( eaA + COSe aA) (4)= _- sin _p p _p

where

p2cos2 e + W21p3 cos e (5)A(p,e) = W20p2 + W40p4 + WolPCOSe + W02 . .

The terms in this expression correspond to focus, spherical aberration, tilt,
astigmatism and coma.
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Performingthe indicatedpartialdifferentiation,we can relate the A
and W coefficientsas:

a2A4_2W20 = Sagital defocus (6)2f

= a4A1
W40 _ Spherical aberration (7)

WO2 = a2A3_2 Astigmatism (8)
f

W21 = a3A2_ Coma (9)

WOl = aA5_3 Distortion (10)

Mean curvatureof field (imagedefocusat the image plane as a functionof field
angle) is

a2_2
WO2 + + A4) (lI)T W20 = (A3 2f

Distortion(At) does not degradea point source image but producesa slight
displacementof th_ image in the focal plane.

We can now use Table Ill of referencel to calculatewavefronterror. In
the quoted expressions,the quantitys = +l becauseof the assumptionof a back
workingdistanceof zero. A = 0 for all of these systems (i.e. zero third
order sphericalaberration)_l The quantitym is secondarymagnification;i.e.

m = f/DF (12)

A) RitcheyChr_tienDesign

Coma: A2 = 0

RitcheyChr_tientelescopeshave no third order coma
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Astigmatism:

= _m + s- ½] s = I [m____] (13)A3 = _2s

Hence,

- (2m + i) D _2
W02 = 16mF (14)

(OPDat aperture edge)

The rms wavefront of astigmatism and defocus is 3 eq. 15 divided bye.

(2m + i) D _2 (rms waves) (16)
32_m_F

The effects of curvature of field and distortion are ignored in this
appendix since it is assumed that the image detectors lie on the image
surface of optimum focus and that distortion can be completely removed
by image processing.

B) Parabolic Primary Design

Coma:

1 (17)
A2 : - T

- (41--)D
W21 - 8 m-_2-F-_-- (OPDat aperture edge) (18)

Conversion to rms wavefront error requires a division by 3 to remove the
tilt inherent in the comatic form p3 cos @and a further division by_
to convert from aperture edge error to rms error, yielding

D_
: (rms waves) (19)

96€_'m2_F2

Astigmatism:

= 2s (20)
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Hence,

D_2
- (rmswaves) (21)

IBX_-XF

C) TiltedAplanaticSystem

Coma: (fromP 2967 of Ref l)

1 (m2_1) (fieldaberrationaway.fromthe
A2 = 8 focalplanecenter) (22)

Hence,

W21 = (m_4mZFzl)D_' (OPD at apertureedge) (23)

where,'is the look angleseparationof the object from the off-axis
object lyingat focal plane center.

: (m2 - 1) Do' (rmswaves) (24)
192_r_'m2_F2

Field coma in this systemis m2/2 times that existingin the parabolic
system. In addition,the tiltedaplanattelescopehas significantamounts
of both astigmatismand sphericalaberrationeven in the imagecentered
in the focal plane.

Astigmatism:

Hence,

_, _ 1 (m + 2) D_2W02 16 F (OPD at apertureedge) (26)

where _ is the angle betweenthe primaryopticalaxis and the object
centeredat the focal plane by secondarymirror tilt.

= (m + 2) Dc_2
32_f_-XF (27)
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Therefore,astigmatismis m+2 times that of the ParabolicSystem.
2

D) SphericalPrimarySystem

The aberrationcoefficients,AI...At for sphericalprimarytwo-mirror
telescopesare not calculatedin referencel and must be derivedhere

using Table I. The conditionthat sphericalaberrationAl=O,requires
that,with el= l (a sphere),

m3 m3(m + I)a - : (28)
z 8Y 8

since for s = l, t = y = (m+l)-l•

(Parameterst,y are defined in referencel)

Coma:

1 m2 m3 ¼ 1 IA2 - 4 - _ + m2 4 - 8 (m3 + 2) (29)

I (m3m-_--__ (OPDat aperture edge) (30)W21 = - _

= (m3 + 2) Da (rms waves) (31)
or m 192_m2XF 2

Astigmatism:

1
A3 : + _m r_m2 - 4] (33)

W02 [m2 - 4] D_2 (34)= 32F (OPDat aperture edge)

Hence,

= (m2 - 4) D_2 (nns waves) (35)
64VT _F

These results are summarized in Table 4.1 in the section on Optical
Configuration.

B-6



Reference

I) Third Order Aberrations in Cassegrain-type Telescopes and ComaCor-
rection in Servo-Stabilized Images", M. Bottema & R. A. Woodruff
Applied Optics/Vol. I0, No. 2/February 1971. P300.
(See also Applied Optics, Vol. II, No. 12/December 1972, P2965)

2) "Introduction to Statistical Optics", Edward O'Niell, Addison Wesley
(1963) P50.

3) "The Use of Image Quality Criteria in Designing a Diffraction Limited
Large Space Telescope", William B. Wetherell. Vol. 28 Proceedings
SPIE "Instrumentation in Astronomy" P65.
(See also Applied Optics/Vol. II, No. 12, P2851)

B-7





Appendix C

Alignment System Sensor Modeling Technique

A. Introduction

In this appendix, a technique for converting alignment sensor measure-
ments and alignment system geometry (i.e., sensor type and location) into misa-
lignment parameters is developed. The technique can be implemented by a com-
puter program into a high speed, linear operation converting sensor measurements
into parameters suitable for input to the segment alignment control system. The
technique is applied to two different types of misalignment sensors. In additio
a simple error analysis is performed and is used as a design tool and to provide
insight of measurement error propagation.

This analysis assumes that each segment position, as defined by an attached
reference plane, may be determined by measurement of the location of at least
three points in the reference plane. These points are called reference points.
Physically, they are corner cubes, centroid detectors, scratches in the mirror
surfaces - any device which provides a reference and is fixed in (or near to)
the reference plane. Measurement of the location of each reference plane of
each segment in a commonalignment coordinate system constitutes a segment
alignment measurement since segment misalignment is a segment position error
relative to the other segments.

The mirror segment is assumed to be a rigid body (i.e., it does not bend or
expand). The rigid body assumption may be relaxed at the expense of additional
modeling complexity and additional measurement (reference) points. The assump-
tion that the measurement points are located in a reference plane, as described
above, is an idealization having, for small deviations, a negligible effect on
the alignment model; any deviations in reference point positions from the ideal
may be calibrated during initial measurements.

The problem addressed here is how well can we determine the position and
orientation of the reference plane using measurement data made from realistic
sensors in a specified geometric configuration.

Two basic alignment system types are considered; the Single Axis Concept
and the Trilateration Concept.

B. The Single Axis Alignment Concept

In the Single Axis concept, measurement of a vector from a single align-
ment system source point to each of the three reference points (RP) per segment
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is performed. The measured vector will generally be close to but (because
of misalignment) different from the ideal vector expected from an aligned
system. The vector length from source to each RP is measured by the Optical
Position Sensor (OPS), a two color interferometer. The vector cross range
errors from the ideal is measured by a Lateral Position Sensor (LPS). To-
gether these two sensors allow the measurement of the location of each RP in
the coordinate system.

The alignment system source point is located near the prime focus and is
supported by the secondary mirror support structure. For our purposes, we
assumewithout loss of generality that it is at the prime focus (although it
would, in that case, be blocked from a view of the primary by the secondary).
This system is illustrated in Figure C.I. Nine measurements are made (three
vectors of three components each) for each reference plane.

C. The Trilateration Concept

OPSmeasurements (length only) are made to each RFPfrom at least three
separated source points in a plane nominally containing the prime focus and
perpendicular to the optical axis. The source points form an equilateral
triangle about the optical axis. The concept is shown in Figure C.2. Again,
nine measurements are made (3 length measurements per RP) for each reference
plane.

D. Measurements Required for Reference Plane Definition

Complete specification of Reference Plane location requires at least six
measurements - one for each degree of freedom. However, the six measurements

• must be independent. For example, measurement of the (x,y,z) location of two
points on the reference plane provides six parameters, but since the separation
of the two points in a rigid body is fixed, one of the six parameters is not
independent. The additional parameter might be the range to a third point on
the reference plane. Selection of the appropriate independent measurement
parameters depends on the alignment system concept.

A minimum of three points is required to define the location of the refer-
ence plane; hence nine measurements per 3 RP segment are obtained in each
alignment concept. Instead of discarding three of the nine measurements, we
include the extra data to reduce measurement error.

E. Reference Plane Position Measurement: Single Axis Concept

This problem is to measure the reference plane position by OPSand LPS lo-
cated at the prime focus. The followinq procedure is used. First, the vectors
from the prime focus to the RP defininq the aliqned reference plane are determined,
i.e. the vectors from the prime focus to the three reference points located at
(x + p_, Y + oi) , i = I, 2, 3 where the_subaperture center is at (x,y). The_e
vectorS, M., are the sum of the vector Mr to the reference plane center and U.. 1
from the r_ference plane center to each _P. The misaliqnment vector, A, a
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function of the misalignment parameters and RP coordinates are determined
and added to the "id_ai" vectors, M. defined above If a segment is mis-
allgned, the vector Mi is changed t_ Mi + _i"

The change in M_ is measured by the OPS and LPS sensors with each sensor
measuring the approOriate component to determine changes. The result is nine
linear equations (the sensor measurements, G) in six unknowns (the misalignment]
parameters, P) or in the matrix equation.

G = AP Then

ATG= ATAp

The least square solution is

p: EATA]-I ATG

where AT is the transpose matrix of A and [ATA]-I denotes the inverse of [ATA].
This approach is valid for small misalignment amplitudes since, as will be seen,
second order terms will be dropped. The solution is a set of linear equations
which relate the sensor measurements directly to misalignment Darameters. The
matrix inversion depends only on the alignment system _eometry and hence need only
be performed once. Thereafter, a simple summing of measurements yield each misalign-
ment parameter.

Error propagation from G to P is also determined easily.

, [ATA]-I AT ij Bij

Hence, for random independent sensor errors, the variance of the parameter, P.

<<p 2 >=_j 2 _ ii (Bij < G >)

Wenow proceed to the modeling details.

The surface of the primary mirror is given by

x2 + y2Z - 2R

where R is the radius of mirror curvature. The z axis lies _lo_g _he opticalaxis with the origin at the vertex. Wedefine unit vectors i, j_ to lie in
the s, y, z directions respectively.

A segment is centered at (x ,y ). Three reference points are located!at
(Xn + Pn' Yn + q,) (n = 1,2,3) iB a°reference plane tangent to the segment
center. Me_sureNent of reference point positions by the single axis OPS-LPS
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constitute the input data. Output data consists of complete knowledge of the
position of the reference plane (one per segment). Henceforth the subscripts
of (x ,Yn) will be suppressed since we are dealing with only a sinqle segment;
align_en_ of other segments will be treated by the same techniques.

Segments are assumed to be rigid bodies; they do not warp or expand.

The unit normal to the seqment center is
Y_x

* _ lN(x,y)
The vector from the segment center to the reference points in the reference
plane is

XPn+ Yqn. + qn_ +_n _ U(x'y'Pn'qn) = PnI R
+ +

Vector Un is defined by the condition (since Un as in the reference plane)
:o

n

The vector from the prime focus to the subanerture center is

M° _ _o(X,y) = x_ + y_ R2 -(x22R+ y2)

The vector from the prime focus to the nth reference point is

Mn _ Mn(x'y'Pn'qn) = _o + _n

In the absence of misalignment, the measurement of the vector to the refer-
ence points made by t_e single axis OPS-LPSis called _ The definition of the
misalignment vector, A follows, n

Piston Error, S. Piston error is segment error+displacement along the normal.
The misalignment vector due to piston error is S = SN, where S is the piston
error parameter.

Out of Plane Tilt Error, __, apT. Tilt of the reference plane by ap_perpendicular
to the plane of incidence _i.e., about a unit rotation vector axis_which is both
in the reference plane and perpendicular to the plane of incidence) clockwise
looking along the rotation vector is called Saqittal Tilt. The misalignment
vector is

xU
_'sn aps _ x n

C-4



where _ is the misalignment parameter, and "x" denotes a cross product.

Tilt of the reference plane by #T in the plane of incidence (i.e., about
a unit rotation vector which is both in the reference plane and in the plane
of incidence) clockwise looking along the rotation vector is called Tangential
Tilt. The misalignment vector is

. _(___) x_I x@Tn = @TL1("x _. n '

where _T is the misalignment parameter.

In Plane Segment Rotation, _. In plane rotation is rotation of the reference
plane about the segment center nodal by _. T_e rotation is positive if the
segment turns clockwise as seen looking along N. The misaliqnment vector is

. , }
_n =_ {_ x _n

where _ is the misalignment parameter.

In Plane Displacement, T" In plane sagittal displacement is displacement
of the reference plane iB'a direction perpendicular to the plane of incidence
(i.e., along the unit sagittal rotation vector). The misaliqnment vector is

_s : _s _ x_1
where _ is the misalignment parameter. As defined, this is motion in the
clockwise direction about the vertex as seen when lookinQ along the k vector.

In plane tangential rotation is displacement of the reference plane away
from the vertex (along the tangential vector). The misalignment vector is

_T = _T (_ x _) x
(_ x _)

where ET is the misalignment parameter.

Alignment System Measurement Characteristics. The single axis OPS-LPSmeasures
the vector _ + _ from the prime focus to each reference point.n n

The misalignment vectors defined above are summedto form A. This vector
gives the displacement of the nth reference point due to the misalignment para-
meters; i.e.

_n S_ + @sn+ @Tn+ _n + _s + €T
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The first three terms are out of plane motion (i.e. along _); the second
three terms are nearly inplane motion.

The vector _ + _ , resolved into ranqe and cross ranqe components is
measured by the OPSan_ LPS. The OPSmeasures the length of M + An n

I_n + XnI _ I Mnl 1 + n n
_n _n

where terms on the order of _ " _ have been omitted. Three such measurements
are provided. The quantitites

n n _ ]_n + _n I ]_n I = (OPS)n
I nl

are linear in the misalignment parameters and provide three eouations in six
unknowns.

The cross range measurements made by the LPS system are in two orthoqonal
directions and are best characterized by angular deviations in the radial and
cross radial (sagittal) direction. The unit vector in the cross radial direc-
tion is

(_n + In) x _ _n x= ~

sn I(_n + _n ) x _I In n x El

The angular deviations are

(LPS) - In " _sn

sn i Rnl
providing three more equations in six unknowns.

Likewise, the unit vector in the radial (tangential) direction is

= sn n
MTn

I sn Ix _n
The angular deviations are

_n _Tn
(LPS)Tn -

I _n I
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providing three more equations in six unknowns. Totaled, there are nine
linear equations in six unknowns as given below

n

n l nl : (OPS)n n : I, 2, 3

_n Msn : (LPS)sn n = I, 2, 3

_Tn = (LPS)Tn n =_n I, 2, 3
I_nl

These nine equations solved as outlined above yield under rigid body
constraints, the various misalignment parameters denoting the segment misalign-
ment from its ideal position established during alignment calibrations Since

• ° . _ - . , •

the system geometry is contalned in _n and An (exclusive of the parameters),
the inversion process need be performed only"once. Thereafter, the misaliqnment
parameters can be expressed as the sum of nine products of which the measured
quantity is one component• This increases the speed of the algorithm.

Each segment may be treated as outlined above. There will be combinations
of misalignment parameters from segment to segment which indicate a displacement
of the alignment sensor rather than the segments. If necessary these "coherent"
displacements may be extracted from the data prior to control system input.

For small misalignments, the wavefront error introduced by one type of mis-
alignment may be nearly cancelled by a second misalingment. For example, a
sagital segment out of plane tilt can nearly cancel the aberration from a tan-
gential segment inplane translation• Hence, is is probably sufficient to control
only segment out of plane tilt and piston error and assume that the segment in-
plane motions are small enough so that residual errors from correction of one
misalignment by another are negligible.

The errors in measurement of reference plane position are given below in
terms of sensor measurement noise. Variance of the misalignment parameter in
terms of sensor measurement noise are presented and random errors are assumed.
The parameter e is the angle of incidence of the incident ray to segment normal.

<S 2> = <@s2> : < @T2>= cos2 e<a(OPS)2> + sin 2 @<_(LPS)2>T;

<_T2> = sin 2 0 <_(OPS) 2> + cos28 <_ (LPS)2>T;

<_ 2> = <_(LPS)2>s"S
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where <6 (OPS)2>, <_ --(LPS)2>Tand <6 (LPS)2> are the measurement variances of
the OPS, tangential LPS and sagittal LPS, respectively.

F. Reference Plane Position Measurement: OPSTrianqulation

The preceding section has outlined the technique as applied to the Single
Axis Concept. Except for changes in geometry and the different way the misalign-
ment vectors are resolved, the results apply to OPStriangulation as shown in
the paragraphs to follow.

The OPStriangulation concept consists of several OPSsource points symmet-
rically located about the optical axis in the plane of the prime focus. No
LPS is used. Location of each reference point is accomplished by range measure-
ments only.

The first item to be determined is how many source points are required. One
source point is not sufficient (except if it is located at the center of curvature
of a spherical mirror) since the alignment system could not detect segment rota-
tion about the source point. It can be shown by similar arguments and by reference
to Figure C.3 that a two source OPStriangulation concept cannot provide an ac-
curate measurement of the position of a reference point along a particular vector
(a function of reference point-alignment system geometry). Therefore, the system
to be modeled next will be a three source OPStriangulation concept shown in
Figure C.2.

Before the modeling specifics are addressed, the accuracy of the two source
OPStriangulation concept in the most favorable direction - RP displacement in
the plane containing the OPSsource points is derived.

Displacement of the nth RP in the incident plane is resolved into inplane
(_to N) and out of plane ( II to _) displacements. Let these component dis-
placements be S and €T respectively.

Th_ question is how well can the two source OPStriangulation concept re-
solve An into the appropriate components.

The two OPSmeasurements can provide (_ic is the expected distance for
an

aligned system)

(oPs)1 = I_iI- l_ic I = -S cos 81 + _T sin el

(OPS)2 : ,.I_21 - ..I_2cI : -S cos e2 + _T sin 82

Hence

S = (OPS)2 sin e 1 - (OPS)l.sin e2
sin (e2 eI )
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If the OPSsources are separated from the optical axis by +L and are in
the plane F meters from the primary vertex and perpendicular to the optical
axis

S _ (OPS)2 sin 6I.- (OPS)1 sin 82
sin (2_ cos 2 6)

where e = .(61+ e2)/2.__The variancein S is

< (0PS)I2>sin2 e2 + <_0PS)22> sin2 61

<$2> = sin2(_-cos 2e)F

= lO m, 6 = 10° and<(OPS)2 ½ = 0.Ol _m, 61 = 7.30For _ = 0.5 m,_F
e2 = 12.7v and< $2>2 = 0.027 um.

This shows that for the above parametersthe measurementerror of piston
displacementis approximatelythree times the sensormeasurementerror. This is
due to the fact that the OPS measurementsare not alonqN.

A similaranalysisfurnishesaT and its variance

<aT2> = <(OPS)_> cos2e 2 + <(OPS)_> cos2 0l

sin2(-_L-cos 26)

which for the above parametersyield

<(_aT)2>½ = 0.15 um

Fortunatelythe toleranceto inplanedisplacementis greaterthan tolerance
to pistonerror. A more detailedanalysisof error propagationis providedby
the componentsof the invertedmatrix as outlinedin the previoussection. The
specificsof the three source0PS Trilaterationconceptare now given.

The threesourceOPS TrilaterationConceptshown in FigureC.2 consistsof
threesource pointspositionedin an equilateraltriangleincludedin a circle
of radiusL and centeredon the projectoropticalaxis. As before,there are
three referencepointsper segmentand all referencepointsare illuminatedby
all OPS sources.

The vector,A, describingthe misalignmentmotion of each referencepoint
has been derivedpreviously. This vector is determinedby resolvingit onto
three non orthogonalaxes - the vectorsfrom each of the threeOPS points.

The measurementof the mth 0PS on the nth referencepoint is denotedby

(OPS)mm _ n mn -* I l mnl
I_mnI IMmn+ _n
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where An is the vector motion of the nth RP due to misalignment and

is the vector from the mth OPSto the nth reference point in an
mn aligned system

Since m and n = 1,2,3; the system is nine equations in six unknowns and is
solved by matrix algebra as indicated in the previous section.

•The above technique has been implemented by a computer algorithm. Con-
version from measurement parameter to misaliqnment parameter by a summation
of linear terms has been demonstrated.

C-IO
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For a number of years, Kodak has been successfully involved in the design,

fabrication, assembly, and test of complex, high reliability, state-o_the-art,

diffraction-limited optical systems. Current and future needs for optical

systems extend into the areas of energy, communications, weapons syster_s, and

telescope observation systems. These applications share common needs for

lightweight, stable, mirror structures.

The design of a lightweight mirror is governed by three basic features--weight,

optical figure and rigidity. Neight is of primary importance in the total

system design since launch margins and optical figuring are critical. Weight

(mass and moment of inertia) is also a prime driver in the dynamics of slewing,

tracking, and dynamic beam control. Rigidity is the relationship between

mirror deformation and mirror loadings, and is one of the factors that influences

the design of the optical test support and mirror. A systematic trade analysis

must be made considering all these factors, thereby providing guidance for

selection of mirror substrate dimensions and mounting concepts. The resulting

design includes constraints on the mirror by blank manufacturing in a gravity

environment, by processing and testing in gravity and acoustic load environments,

by launch and by operating in a zero gravity environment. It must be emphasized

that the following data is for a simply supported mirror, with no particular

mirror mounting arrangement or optical system configuration being considered.

Lightweight glass mirror blanks are currently manufactured for high reliability,

diffraction-limited optics using a high temperature, fusion welding process.

A "honeycomb" core, a faceplate, and a backplate are separately fabricated,

the faceplate is bonded to the plano-plano core, and the whole assembly is

inverted and slumped over a form to the desired curvature. In this process,

distortions are inevitably introduced into the faceplate, backplate, and core

struts. Such distortions can be reduced by preshaping the core and plates

before fusion bonding. Since the core and plates must be heated to the

softening point, some distortion is unavoidable. The mirror blank must be

designed with the mirror blank manufacturing constraints in mind. A typical

fusion welded mirror, which was designed, processed, and tested at Kodak, is

shown in Figure 1.



Optimizinga simplysupported

mirror for weight (i.e.,solving

a simultaneousset of partial

derivativeequationsto determine OOO0 ....
blank parameterssuch as core .

height,core web spacing,core

web thickness,etc.) yields a

fusionweldedmirror design,as

shown in Figure 2. An optimized

1.4-meterdiametermirror intended

for visiblelight applications,

with an aspect ratioof 7 to I,

would have a simply supported FUSION-WELDEDLIGHTWEIGHTMIRROR

mirror deflectionof a few waves. Figure I

In order to keep the deflectionof

a 10-metermonolithicmirror to a level of less than 100 waves (at _ = 0.6328

microns)the aspect ratio is forcedto

4 to 1, thus causingan "extremelyheavy"

104 mirror. The secondcurve,shown in
VISIBLE TO
NEAR IR Figure2, was calculatedfor an aspect

ratio of 20 to 1, reducingthe weight

at the expenseof the inherentstruc-

tural rigidity. (Note: The deflection

is approximately600 wavesat 10 meters,
NEAR IR TO

H MICROWAVE which might be toleratedat far IR an.4
1o3

microwaveoperationalwavelengths.)
z

If it is assumedthat the Large

DeployableReflectoris made up of

phasedsegments,each segmentcan be

designedas a separatemirror. The

,' _ weight of a lO-metertelescope,with1o2 L L 8 lo
mirror segmentsof a fixeddiameter,

SEGMENTDIAMETER (METERS)
is shown in Figure3. The arbitrary

FUSION WELDEDLIGHTWEIGHTMIRROR
(SEGIv_NTWEIGHTVSSEGMENTDIAMETER) lowerlimitisa telescopemadeupof

sixty-one1.4-meterdiametermirrors.
Figure 2
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A conventionalaspect ratioof 7 to I 25,000-_ I SEGMENT

yields a reasonablemirror deflection _°_

for a near IR operationalwavelength. _ 20,000- "v_
An aspect ratio of 20 to 1 on each

segmentyields a larger deflection

which might be toleratedduring _ 15,000- /

manufacturefor a microwaveopera- _ /

lO,O0O-
tionalwavelength. The overall aspect ,_ 61 SEGMENTS

ratio of the 10-metertelescope, _ _._
using this diametersegment,is about _ /5000- 1 SEGMENT
180 to I. (The upper limit on these

curves is a one segment,10-meter

diametermirror and shouldbe used for ½ 4 6 8 I'0
referencepurposesonly since facility SEGMENTDI_d_IETER(METERS)

and transportationissuesprecludethe IO-_TER DIA_IETERFUSION WELDED

use of this size segment.) LIGHTWEIGHTMIRROR
(MIRRORWEIGHT VS SEGMENTDIA/,_,TER)

Figure 3
The high temperatureprocessto achieve

plate-to-corebondingin the fusion-weldedmirror placesa constrainton the

mirror designand, in effect,limits the amountof lightweightingthat can be

achieved. A manufacturingprocesscalled frit bondingavoidsthe high temperature,

fusionweldingtechnique,thus

relievingthe mirrorblank man-

ufacturingweightconstraint.

In frit bondingthe glass mirror

blank is manufacturedby using a

glass adhesivesystem,eliminating

the high temperaturefusion step

while maintainingthe balance

of the conventionalmirror

manufacturingprocess. In 1978

_'" the 0.5-meterdiameter,ULE_*I,

frit-bondedmirror (shownin

Figure4) was designedand

FRIT-BONDEDLIGHTWEIGHTMIRROR polishedby Kodak and fabricated

Figure4 by CorningGlassWorks as part of
D-4 a Kodak-fundedprogram.



104_

Optimizing a simply supported mirror

yields a frit-bonded mirror design

relationship as shown in Figure 5.
The deflectioncriteriaused in

b_

Figure2 have also been used in

Figure5. The weight of a 10-meter, _:=F_

frit-bondedmirror,made up of various _ lO_-

size segments,is shown in Figure6, _J

utilizingthe same deflectioncriteria

as Figure3. Predictedmirrorweight

area ratios for lightweightglass

mirrorsare shown in Figure7. Based

on a preliminaryanalysisof a simply 102
supported,unmountedmirror design, ½ 4 6 8 1()

SEG_[ENT DIAMETER (METERS)the technologyassociatedwith a
FRIT BONDED LIGHThrEIGHTMIRROR

segmented, frit-bonded mirror is (SEG!._NTWEIGHT VS SEG:.._t,;TDIA,:.TTER)

approaching a mirror goal of 25 kg/m2. Figure 5

25,0o0- Additionalwork is needed in the

followingareas to substantiatethese

20,000- preliminaryresults:

_ I SEGMENT 1. Mountedmirror design

_"'_ 2 Segmentedmirror fabrication

,_15,000- <O_%%_%/_/ "

o_ and testing

i0,0001 q__ In addition studiesshouldbe per-o_ / ___^_.__--'_ formedto identifymethods for phasing

5000- __ and aligningthe segments,both in the
I SEGMENT factory for acceptance testing and

61 SECMENTS on-orblt for operation. Weights

4 6 8 1'0 associatedwith the mirrormounting,

SEGMENTDIAMETER(METERS) phasingand aligningequipmentshould

IO-t,ETER DIAI,_TERFRIT BONDED be added to the mirror segmentweight

LIGHTWEIGHTMIRROR in comparingdesignapproaches.
(MIRROR WEIGHT VS SEG_NT DIAt_TER)

Figure 6

D-5



200 --
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Figure ?
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APPENDIX E

DESIGN CONSIDERATIONS

Problem: What are plausible and practical conceptual designs for LDR sun

Shades?

Approach: Select shade configurations of simple geometry and relatively

easy deployment. Compare relative advantages and disadvantages

of these concepts. Estimate weight requirements. Scope the

dynamics impact of adding a sun shade on LDR and estimate the

associated weight penalty due to additional dynamical control

of LDR.

Findinss: Simple shade designs are: balloon, umbrella, scoop, and cylinder

(extension of the scoop design). Balloon and umbrella can provide

shading of the telescope backstructure and the spacecraft in

addition to shielding the primary. They must be re-oriented with

re-orientation of the telescope. They potentially incur substantial

solar torques which must be compensated for (weight penalty for

LDR) and provide no shielding from the earth. The scoop is a

minimum-area design, and several different deployment options exist,

of varying complexity. It provides no earth shielding. The cylinder

is considered the most likely LDR shade concept, primarily because

it provides some shielding against the earth. This is important for

keeping temperature gradients and variations with time low. It

provides no backstructure or spacecraft shielding (unless extended

below the primary mirror) and has the largest weight. All designs

involve no known material or deployment difficulties. The weights

are low compared to the total systems weight. Because of the low

weight, excitation of low vibration modes of the mirror, which could

_ffect figure control, is unlikely. Solar torques (rotation of the

system) can be compensated for by CMGs, and the associated weight

penalty is small (less than 1000 ib for a 30 m LDR)

E-I



The simplest sun shade is an inflatable plastic (Mylar or Kapton membranes) balloon, which

is sized and positioned such that its sun shadow covers the face of the primary mirror. A

larger balloon, shown in the figure, can cover the secondary and its support structure, the

spacecraft (minus solar panels) and the mirror support structure. Advantages of this concept

are simplicity and low weight. Disadvantages are vulnerability to meteoroid penetration and

consequent loss of pressure (which can be maintained with a small supply of gas but adds

complexity to the system), and large solar torques. The vibration frequencies of the balloon

are relatively low, but because of a low overall weight, the effect by coupling these modes

to the mirror is unimportant. The minimum balloon diameter is about D/2, where D the primary

mirror diameter. This value gives very low total weights for this concept and unimportant

solar torque effects. However, it is doubtful, if this concept is used, that the advantage

of backstructure and spacecraft shielding will not be utilized. The_ _v_ges can be

derived from larger balloon diameters giving larger masses and torques.
I



LDR

SUNSHADECONCEPTI: BALLOON

. I I I

12 M. SPHERICAL BALLOON
(mil MYLAR CEX)

SILVERED

BLACK COATED

I

'X SOLAR ARRAYS

/
\

II.28 M. PRIMARY _ SPACECRAFT



This concept is a large umbrella of conventional design. It involves multiple fol_ing ribs,

a central boom structure attached to the outer edge of the primary mirror, and a web of

thin plastic (Mylar or Kapton, or other strong, space-compatible materials). As in the case

of the balloon, the umbrella orientation must be changed with telescope re-orientation so

that its shadow will cover the proper portions of the mirror, spacecraft and secondary

support structure. Advantages of the umbrella concept are: simple deployment, non-vulne-

rability to meteoroid puncture, light weight and smaller area than the balloon. Again, as

in case of the balloon, a minimum-size umbrella would cover only the primary mirror, but the

advantage in having a lower mass, which is small to begin with, may not be tr=ded against

the advantage in additional shielding provided by the larger size shown in the figure. The

umbrella is more difficult to store for ]_L_ch - a disadvantage which becomes more

severe the more folding joints are used in a design. The (large) umbrella involves the largest

solar torques (tending to rotate the spacecraft in orbit) of all designs, and therefore the

largest weight penalty associated with correcting for those torques.
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SUNSHADECONCEPTII= UMBRELLA
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The scoop is a cutaway semi-cylinder which shadows only the primary cylinder. It obtains its name

from the resemblence to a sugar scoop when attached to the sunward outer rim of the primary mirror

support structure. The shade fabric may be Mylar or Kapton or a thin sheet of Graphite-epoxy (in

case of the designs involving rolling it up for stowage), with a number of stiffening and support

ribs (also Graphite-epoxy or Graphite-metal). The advantages of the scoop are: minimum surface

area and the possible extension around the mirror periphery which results in the conventional

barrel-type cylinder sun shade. The barrel provides shielding from the earth as well as from the

sun. Shielding from the earth is important since the heat load from the albedo is of the same

order as from the sun at a 60° illumination angle. Furthermore, the albedo, for a low earth orbit,

varies with time (i.e. over the orbit) due to varying cloud cover and terrain. These variations

translate into temperature fluc_lations for the mirror which need to be kept at a minimum value.

The main disadvantage of the scoop design (and the cylinder or barrel) is the complexity of folding

, and deploying, whether automatic of sem-automatic.

In the following 3 foils, three different deployment concepts are shown: (i) the roll-out flexrib;

(ii) the fold-out hingerib: and (iii) the wrap-around or roll-up.
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In the stowed configuration, the roll-out scoop is rolled up inside a cylindrical cannister

positioned at the edge of one of the primary mirror segments. Longitudonal deployed stiffness

is derived from the curvature of the outer edge of the primary mirror segments. The ribs are

made of thin metal resembling "stem" masts or large-scale versions of the familiar pull rule

steel tape, and they are stowed on spools in the same canister as the shade material (Mylar

or Kapton web). The sunshade is deployed as a unit using spring motors or electric drives.

I

OO



I_DR SUNSHADECONCEPTIII.'SCOOP(ROLL-OUT)
I

MYLAR WEB SILVERED OUTSI ROLLOUT MECHANISM STOWED

BLA<K INSIDE ('TYP.) IN CANISTER AT OUTER EDGE
OF PRIMARY MIRROR SECTOR

LAR ARRAYS

60°
i

uO

!
11.28 M. PRIMARY /
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In this scoop concept no cam_ster is used. The ribs are rigid (except for folds) and for stowage

fold against the faces of the primary mirror segments, on which they are mounted.

i

0
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SUNSHADECONCEPTIV: SCOOP (FOLD-OUT)
I

MYLAR WEB SILVERED OUTSIDE HINGED RIBS STOW AGAINST
BLACK INSIDE FACE OF PRIMARY MIRROR.

SOLAR, ARRAYS

60 o

!

11.28 I'4. PRIMARY
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For this concept a more rigid plastic or thin metal web is used with or without longitudonal

ribs, depending on the web thickness and its inherent stiffness. The web rolls up into the

longitudonal direction relative to the optical axis. For stowage the entire roll is hinged so

that it lies alongside the folded primary mirror segments in the STS bay. Deployment is

accomplished by hinging the roll-out to its proper longitudonal position and then unrolling it

around the periphery of the primary mirror, using cords or some similar means of actuation.

I



LDR

SUNSHADECONCEPTV_ SCOOP(ROLL-UP)
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This foil is self-explanatory. The balloon and umbrella diameters were chosen for some spacecraft

and backup structure (and secondary mirror and support structure) shielding rather than their

minimum values (applicable to shielding of the primary only, for 60° solar incidence relative

to the mirror normal), which would be smaller by a factor 2, hence the surface area smaller by

a factor 4. The total weights for the two concepts would be, if only shielding of the primary

is required, even smaller than given in the table. Since also the solar torque is reduced (next

foil) and the therewith associated weight penalty, the balloon and umbrella concept would there-

fore be associated with the smallest overall weights.

The numbers in parentheses in the last column of entries refer to a graphite/epoxy fabric.

l



LDR

WEIGHTESTIMATES- 11 M LDR
I

WEIGHTS (kg)
i

SUNSHADE SURFACE FAB RIC SUPPORT• AND
TYPE AREA (m2) I rail MYLAR 5 mil Grle MECHANISMS TOTAL*

BALLOON 7rD2 23 NA 15** 38

I

D214UMBRELLA _ 6 NA 20 26

SCOOP D211.7 4 (20) 20 24 (40)

CYLINDER 7rD211.7 12 ( 48)' 40 52(88)

* MECHANISMS FOR DYNAMIC EFFECTS COMPENSATION MUST BE ADDED TO ABOVE
(CF, NEXT FOIL)

** INCLUDES GAS AND VENTING MECHANISM



Atmospheric dra$ depends on spacecraft altitude, configuration and attitude. For a circular,
minimum inclination orbit at 400 n.mi. altitude, the drag per cross-sectional area is about

10-9 ib/ft 2, depending on solar conditions. For a 12-m diameter sunshade facing in the flight

direction, the resulting force is about i0-bib, about a factor 200 lo_er than the force due to

solar radiation pressure. Hence the torque on the satellite (trying to rotate it about the center

of mass) may be neglected compared with the solar-induced torque discussed below. The atmospheric

drag on the satellite (tending to slow it) is increased by about a factor 2 by adding a sun shade

(maximum factor). At the nominal altitude of LDR the required adjustment in initial orbit is,

however, quite small, since the atmospheric density decreases very rapidly with increasing altitude.

Solar radiation pressure on a silvered sun-facing surface (assumed flat) is about 2xlO -7 ib/ft 2

For a 12-m diameter surface the resulting force is about 2x10-4 Ib (for a spherical surface a

factor 2 lower). The typical center-of-mass offset for LDR (i.e. the torque arm) is about 2 ft

nominally, giving a torque of 5xlO-4 ib.ft., and for a 1/4 orbit the torque results in an angular
momentum change of 0.7 ib.ft.sec. For LDR, the change is non-cyclical i.e. does not reverse during

the orbit, and it results in a total change J = 20 ib.ft.sec, per day. This change is non-trivial

and must be compensated for. Over a period of 2 years (re-furbishing interval of LDR_, a total of

15,000 ft.lb.sec must be compensated for at most. The compensation can be done using the CMGsI

which must be unloaded periodically, or using gas jets or magnetic torquers. If hydrazine Jets

are used, and if a nominal torque arm of 15 ft is used, the required amount of hydrazine is about

5 lb. We add a safety factor of 3 and a factor of 2 for the deployment mechanism, thus giving a

total weight penalty of about 30 ib, certainly less than 50 lb. (Cold gas, with a much lower

specific impulse than hydrazine, gives a penalty about 4 times larger). These penalties scale

approximately with the square of the mirror diameter. The penalty for a 30 m LDR would thus be
less than 500 lb. - If magnetic torquers are used to unload the CMGs, the weight penalty is about
the same.



LDR

SUNSHADE:DYNAMICSEFFECTS
I II I I ,

• VIBRATION

- LOW NATURAL FREQUENCY

- LOW MASS

- INSIGNIFICANT INPUT TO TELESCOPE STRUCTURE

• ATMOSPHERIC DRAG

- MAY DOUBLE

r_ - ADJUSTMENT IN ORBITAL ALTITUDE SMALL AT 700 +km
I

F-J

"_ • ATMOSPHERIC TORQUE

- SMALL COMPARED WITH SOLAR

- TYPICALLY CYCLICAL

• SOLAR TORQUE (RADIATION PRESSURE)

- TYPICALLY NONCYCLICAL, MUST BE COMPENSATED, FOR (CMGs)

- AG _20 lb. ft.s/day FOR 11 m LDR

- UNLOAD CMGs WITH GAS JETS OR MAGNETIC TORQUERS

- WEIGHT PENALTY ~ 50 + Ib FOR 11 m LDR

,,, 500 - Ib FOR 30 m LDR

I



THERMAL BENEFITS

Problem: To which extent does adding a sun shade to LDR help controlling

thermal gradients and their time variations across and through

the primary mirror_ Are contraints on mirror segment design

relaxed by the sun shade so that, for example, a light-weight

ALuminum mirror can work at much lower wavelengths _h_m 500 _.m
J

(original estimate for without a sun shade; maximum sun soak)

and thus become a viable LDR concept?

Approach: Thermal deformation calculations carried out earlier in the study

were made for worst-case steady state sun-soak, ignoring radiation

transfer effects and also orbiting "smoothing" effects. Consider

these first. If effects due to radiation transfer or smoothing are

significant, carry out thermal calculations for a "dynamical " case:

calcula_temperature gradients across and through the mirror and

time variations for a specific mirror model of an LDR mirror.

Estimate reduction in thermal bending as a consequence of adding a

sun shade.

Findings: Radiation transfer effects inside the mirror core are significant

only for glass segments, not Alumnimum. Orbital "smoothing" also is

significant only for glass. For Aluminum mirrors, therefore, the

only reduction in gradients and their time-variations, derives from

the reduced heat loads and the reduced variations in heat loads.

Calculations for a 20 m diameter, F/0.5 mirror, with total segment

height i0 cm, a mass/area ratio of 20 kg/m 2, gives reductions in

thermal gradients, for a 20 m long cylindrical sun _ha_e, across

the mirror of a factor 5 to i0, and a maximum temperature difference

of less than i0 OK. Orbital variations of surface temperature are

reduced by factors greater than 2 (at worst), and the thermal dis-

tortion (due to reduction in the front-to-back temperature gradient

by about a factor 6. This would set the minimum operational wavelength

of the aluminum mirror at about i00 _m.
i
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Thermal bending of a mirror segment is roughly proportional to the front-to-back temperature

difference. The difference is smaller if, in addition to heat conduction, heat transfer by radiation

is operative, as is possible with mirrors with a hollowed-out core (core cells). We assume that the

walls are perfectly reflecting (they are silvered). In the steady state case where all radiation

absorbed by the front of the mirror is radiated by the back, and there is no heat input to the

back (optimum case), then for heat transfer by radiation

Tf-Tb =(_-i) rb

while for conduction

Tf-Tb = Qhr,r_

where Q the absorbed heat rate (W/m2), h the mirror total thickness, _the thermal conductivity of

the _irror material, and r the ratio of cross sectional area: mirror surface:mirror core:

(m/A)/(_ h) - 2t/hI r =
i -\2t/h

m/A the mass/area ratio of the segments,_ the density of mirror material; t the front and back plate

thickness. For sun soak at 60° to the mirror_ surface normal, and 5% absorption, Q=37.5 W/m 2, and

Tb=160 OK. The next two foils give the values of _T = Tf-Tb for Aluminum and ULE, respectively, and

for m/A = 20 kg/r 2 and 45 kg/m 2, and a mirror segment height of i0 cm - all values used'in earlier

LDR thermal calculations. _]-is plotted against t/h. Increasing this ratio increases the plate thick-

ness and decreases the amount of material in the core, thereby reducing conduction through the c_re.

In both cases, Aluminum and ULE, orbital effects are ignored. The calculations a_e for steady sun-

soak (37.5 W/m 2 absorbed).



LDR

FRONT-TO-BACKTEMPERATUREDIFFERENCE

CONDUCTION ONLY

....m_ CONDUCTION PLUS RADIATION

100

m

50 - 2 q5 kg/m 2

t_O

...._ _ ULE
10

- h= 10 cm
m

I I I i I
0.0 0.02 0.04 0.06 0.08 0.10

t/h



Unlike the case of ULE, where radiation from top to bottom of cells in the mirror core effectively

reduces the _T_ value by a factor 2 (typically), there is negligible effect for Aluminum. The

reason is simple: the radiation transfer is effective (important) only for relatively large _ T,

_-is of the order of a degree or less We conclude that for Aluminmum,whereas for Aluminum _

ignoring radiation is inconsequential, whereas for ULE mirrors, the thermal bending is reduced,

and by a factor 2, typically.
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This foil shows the actual reduction in thermal bending of ULE segments*when radiation transfer

in the core cells is efficient. There is negligible effect for corresponding Aluminum segments.

The effects increase with increasing value of t/h because conduction through the core decreases,

thereby making the radiation effect increasingly important.

Arrow indicates reduction in bending
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Smoothing effects (due to orbital motion of LDR) on the temperature gradients depend on the

thermal relaxation time for heat transfer. The next two foils look at the relaxation time from

front-to-back, for the same types of mirror segments studied earlier. We define the relaxation

time as
transferrable heat per OK of_T

= rate of transfer per OK of_T

We assume that the transferrable heat is all stored in the front plate (this model certainly

should be refined in future studies) and that the plates have negligible temperature gradients

(compared to _T), and that the temperature across the plates is constant. For thermal conduction

only, _ _ where

-[¢ = 0.5 th_cr/K

(all qnatities defined earlier). For radiation only, _= ___ _ where

I

_ = 0.5t_ c/4_h-T 3

where (Y'is Stefan's constant, and T _ Tb_T f ( _ T always true). For T we assumed the

value 160 OK referring to worst-sun soak conditions. This assumption underestimates the radiative

relaxation time, since the average temperature T during an orbit is lower than as assumed.

Our definition off, probably underestimates the relaxation time for low values of t/h by ignoring

the heat stored in the core material.
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The orbital period of LDR (400 n.mi. nominal altitude, circular orbit) is i00 minutes. We see

that the relaxation time for Aluminum is always less, even much less than the orbital period.

Thus Aluminum is in a steady state as far as heat transfer through the core is concerned. Thi

is not true for ULE (previous foil). Thus orbital smoothing effects are operative for ULE but

not Aluminum. (In effect, for large relaxation times, the back plate of the mirror is at a

constant temperature i.e. varies little with time over an orbit).

I
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This foil shows the front and back surface temperatures of a ULE segment of h=10 cm height, mass/area

ratio m/A=20 kg/m 2, and plate thickness of 2 mm, as a function of orbit time. The orbit is in the

plane of the earth orbit, and the segment faces south (i.e. no heat load by the sun on the mirror)

As before, there is no heat load assumed on the back plate. Radiation and conduction are taken into

consideration. Because of the large time constant, there is a nearly constant back surface tempera-

ture

!
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In the case of Aluminum, in contrast with ULE segements with the same values of m/A, h and t, and the

same orbit as in the previous foil, the back surface varies as much as the front - there is little

"smoothing" effe_ because of the short time constant.

t_
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This foil shows that if dynamic effects (i.e. the effect of a finite time constant) are ignored,

the change in front-to-back temperature difference during an orbit, per unit change of heat load,

4q, is not only overestimated but also shows a completely different dependence on the plate thick-

ness, t (constant h in this foil, h = i0 cm). Here, only thermal conduction was considered. While

for the "static" case (zero time constant assumed)

_(hT)_ h_q r

and thus the change in (AT) increases with increasing value of t/h (since, for constant h and

m/A, the plate/core area ratio increases)_for the"dynamic" case (finite time constant),

(_T)_ i/t-_ q

which decreases with increasing value of t/h because the front-plate heat capacity increases,

m .and changes in q have less and less effect on the plate temperature.I
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In the remaining foils we show the effects on temperature gradients and their time variation

(orbit effects) of adding a 20 m lon cylindrical baffle to a 20 m diameter ULE or Aluminum

lightweight mirror. The F/ratio of the mirror is 0.5, the mirror thickness is i0 cm, the plate

thickness (front or back) is 2 mm. The front surface has _/E = 0.05/0.03. The mirror back

surface has _=0.82, and there is no heat input assumed to the back (same as before). The baffle

has _ =0.05/0.03 outside and _ =0.88/0.95 inside. The mirror is continuous, so that there

is maximum heat transfer across the surface (the surface gradients are therefore underestimated).

However, most of the heat transfer is through, rather than across, the mirror. Therefore the

simplifying assumption of a continuous, rather than segmented, mirror may be rather inconsequential

for our purposes. The surface is divided into 36 thermal nodes.

The results for m/A=20 kg/m 2 and for 45 kg/m 2, respectively, are similar. Of course, the settling

times for the heavier mirror are longer. The reductions of thermal gradients and their time vari-

' ations by the addition of the baffle will be less for shorter baffles, or other types of sun shields,

because of the lesser shielding from the earth shine.
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This foil shows the mirror orbit and orientation relative to the orbit, sun and earth. The mirror

is approximately 1/3 of the time in the earth's shade.
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This foil shows the differences between local and average mirror temperature at the sub-solar point

for ULE. The maximum difference without the 20 m baffle (unshielded mirror) is 55 OK, while with a

baffle it is reduced to only 7.5 OK, a factor of 7 reduction.
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For the Aluminmum mirror, the reduction surface temperature gradients by adding the 20 m baffle

is somewhat less than for ULE, from 45 OK to 9.5 OK, a factor about 5.

i
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This foil shows, for ULE, the maximum temporal variation of front surface temperatures for the

unshielded and shielded mirror. The variations are reduced by at least a factor of 2 by adding

the 20 m baffle to the mirror.
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The maximum temporal variations of front surface temperatures for Aluminum mirrors are also reduced

by a factor of 2 or more due to the addition of the baffle. - The change in surface temperature during

the orbit can be related to a change in front-to-back temperature difference, assuming heat conduction

only and a steady-state condition _ustified because of the short time constant for Aluminum):

A'I'

where Tf the temporal average of the front surface temperature (local), where all other qumntities

were defined earlier. The thermal deformation of a mirror, for a flat mirror and with no across

gradients, is proportional to (AT}.Ignoring the curyature of the mirror and the across gradients,

we can therefore estimate the reduction in the mirror deformation due to changes in the through-the-

mirror temeperature gradient changes: This reduction is about a factor 6 at worst (least reduction

in surface temperature variation), much better in many cases, as the foil shows. Consequently, keeping
!

in mind the simplifying assumptions made above, we can conclude that the minimum operational wave-

length of the Aluminum mirror is reduced from the earlier estimate, based on static thermal conside

rations and assuming no baffle, of 500_m to less than I00 ._n.
/
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