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ABSTRACT

A survey of the plasma environment within Jupiter's bow shock is
presented in terms of the in situ, calibrated electron plasme messurements
made between 10 eV and 5.¢5 keV by the Voyager Plasma Science Experiment
(PLS). These measurements have been analyzed and corrected for spacecreft
potential variations; the Jata have been reduced to nearly medel in-
dependent macroscopic parameters of the local electron density and
temperature. The electron parameters are derived without reference to or
internal calibration from the positive ion measurements made by the PLS
experiment. Extensive statistical and direct comparisons with other
determinations of the local plasma charge density clearly indicate that the
analysis procedures used have successfully and routinely diseriminated
between spacecraft sheath and ambient plasmas. These statistical c¢ross
correlations have been performed over the density range of 10"3 to
2 X 102/cc. These data clearly define the bow shock, the magnetosheath
(30-50 eV) the magnetosphere (10'2/cc, 2-3 keV) as well as the periodic
appearances of the plasma sheet which are illustrated to be routinely
cooler than the surroundings. The proximity of the plasma sheet defines a
regime in the magnetosphere where very cold electron plasma (as low as
50 eV) at 40 RJ can be seen in unexpected density enhancements. These
plasma "spikes" in the density can often represent an order of magnitude
enhancement above the ambient density and are correlated with diamagnetic
depressions. These features have been seen at nearly all magnetic
latitudes within the plasma sheet., The temperature within these spikes is
lowered by similar factors indicating that the principal density

enhancements are of cold plasma. The plasma sheet when traversed in the

outer magnetosphere has a similar density and temperature morphology as
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that seen in these "spikes"., 1In all cases the plasma sheet crossing lasts
for intervals commensurate with that defined by the diamagnetic depression
in the simultaneously measured and uisplayed magnetic field, The electron
temperatures in the plasma sheet in the outer and middle magnetosphere
appear to have a positive radial gradient with jovicentric distance. The
electron temperature is observed to be lower on the centrifugsl side of the
minimum megnetic field strengch seen in each sheet, while the suprathermal
electron density is ephanced symmetrically about the locally indicated
magnetic equator. The electron distribution functions within the plasma
sheet are markedly non-Maxwellian:; during %he density enhancement’ s of the
plasma sheeb tie thermal sub-population is generally enhanced more than the
suprathermal population. The suprathermal fraction of the electron densiLy
within the plasma sheet is an increasing function of jovicentric distance,
Direct, in situ sampling of the electron plasma environment of Io's torus
clearly illustrates that the system is demonstrably removed from local
thermodynamic equilibrium; these measurements illustrate that between 5.5
and 8.9 RJ there are sizeable systematic variations of the macroscopic and
microscopic parameters; there are at least three electron thermal regimes
within the torus. These three regimes have mean ¢lectron energies in the
outer, temperate, and inner torus of the order of 100, 10~40, and less than
5 eV, respectively. The distribution functions in these regimes are always
non-Maxwellian with the suprathermal population an increasing fraction of
the density and partial pressure with increasing distance from Jupiter.
The common non-Maxwellian character of the electron torus plasma
unequivocally implies that the electrons and ions cannot locally have the
same temperature if binary Coulomb collisions are the only scattering

present in the plasma torus. The direct in situ torus electron spectra are
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shown to be compatible with a number of indirect assessments of the
electron state in the torus including observations of plasma hiss, whistler
Landau damping, gyro-harmonic emissions, possible asymmetric sink for
collisional ionization of sodium, and capacity to ionize sulfur whose
presence is implied by the optical and EUV measurements.

It is also suggested that the Io plasma torus is the limiting form of
the plasma sheet, possibly being its complete direct source, since a
progression in the fractional number in the cold, or thermal number density
is clear: this fraction is 0,999 in the inner torus, but only 0.5 in the
plasma sheet at 40 Ry We have tentatively concluded that the radial
temperature profile within the plasma sheet is caused by the intermixing of
two different electron populations that probably have different temporal
histories and spatial paths to their local observation. The cool plasma
source of the plasma sheet and spikes is probably the Io plasma torus and
arrives in the plasma sheet as a result of flux tube interchange motions or
other generalized transport which can be accomplished without diverting the
plasma from the centrifugal equator. The hot suprathermal populations in
the plasma sheet have most recently come from the sparse, hot mid-latitude
"bath" of electrons which were directly observed juxtaposed to the plasma
sheet. As the cool plasma is diluted by filling an increasing volume as it
undergoes radial expansion, the outer hot bath of electrons can

increasingly dominate until at sufficient radial distance the sheet per se

does not exist anymore.
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I, INTRODUCTION

1) Pioneer Data

Before the Voyager spacecraft encounters with Jupiter in 1¢70 the
plasma within the Jovian magnetosphere was principally defined by the in
Situ measurements of fluxes of ions and electrons capable of exciting solid
state telescopes and Geiger tubes with lowest energy thresholds of 61 and
16 keV, respectively for ions and electrons, Particle fluxes in these
energy ranges clearly showed dramatic enhancements over the nearby
interplanetary level, periodic modulations within the magnetosphere, and
effects of satellite sweeping--Van Allen et al. (197Ha,b), Van Allen -t al.
(1975), Fillius and Mcllwain (1974), Fillius et al. (1975), Trainor et al,
(1674), Trainor et al. (1975), Simpson et al. (1974), McKibben and Simpson
(1674), and Simpson et al, (1975)

Lower energy plasma measurements were also attempted using
electrostatic analyzers with encounter mode energy ranges of 100—Ei-u800 eV
and 1-Ee—500 eV for the ions and electrons, respectively, Although these
instruments were not designed for the harsh radiation environments within
the magnetosphere, after performing a difficult subtraction of the
penetrating radiation fluxes, Frank et 2l. (1¢76) reported results of the
positive ion measurements which were assumed to be protons. These authors
reported ion temperatures ranring between 100-1000 eV and substantial
density enhancements at the orbital positions of Europa, lo, and Almathea,
with peak densities in the Io vicinity of approximately 50/cc. They
suggested the presence of a plasmasphere within a plasmapause near
6 RJ and that the observed plasma originated from Jupiter's ionosphere.
Siscoe and Chen (1676-1677) came to a different conclusion, suggesting that

the density enhancement near lo's orbit indicated that it was the source of




the plasma Frank et al. reported. Neugebauer and Eviatar (1¢76) came to a
similar cenclusion as Siscoe and Chen; they also suggested a
reinterpretation of the Pioneer measurements concluding that the observed
fluxes were probably heavy ions, especially in view of the presence of
other heavy neutral and ionized material that had been inferred from the
optical data (Nal Brown (1¢73), and SII Kupo et 2l. (1976)) and that the
expected corotational energy for protons (16.3 eV) at Jo's orbit was
considerably below Frank et al's, 100 eV low energy window.

The interpretation of the thermal e¢lectrons by Intriligator and Wolfe
(1674), Intriligator and Wolfe (1¢76), and Intriligator and Wolfe (1¢77)
from the electrostatic analyzers were largely qualitative owing to the
variable and substantial spacecraft potentials apparently experienced,
However, in the presence of such difficulties, the inferences (ne v 1/cc,
Te v 4 eV, no 10-hour modulation or radial variation) that were drawn from
the electron measurements were questioned by Grard et al. (1¢77), who
suggested that the analyzed measurements pertained more to the spacecraft
sheath of trapped photoelectrons and secondary electrons rather than to the
ambient plasma population of the magnetosphere proper.

2) Optical Inferences

The implications of various optical measurements in the
intervening time between Pioneer and Voyager encounters had further defined
the astrophysical setting of the plasma near the orbit of Io. In 1973
Brown reported and confirmed (Brown and Chaffee (1¢74)) the detection of
neutral sodium emissions from the vieinity of Io. Trafton et al. (1974)
established that the resonantly scattered sunlight was the probable
excitation mechanism and that the neutral sodium emission came from a

distributed source, rather than from a localized atmosphere. These authors
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also concluded that the neutral sodium "cloud" was incomplete in System III
longitude, and usually, but not always, stronger on the Jovian side within
Io's orbital plane, and weakened (Trafton and Macy (1975) and Trafton
(1977)) by the passage of Io through the magnetic equator, Trafton also
discovered and confirmed (1977) the trace presence of neutral potassium in
To's cloud, Trafton and coworkers suggested that the modulation of the
neutral sodium emission was caused by impact ionization by the pla=ma
(electrons) confined to the magnetic equator. Carlson et al. (1675) had
earlier correctly =suggested, based on the Pioneer plasma quantities, that
impact ionization by thermal electrons of neutrals within Io's torus would
br the dominant loss mechanism, By independent arguments Eviatar et al,
(14676) reached a similar comclusion., The in situ ultraviolet measurements
conducted on the Pioneer spacecraft were interpreted by Carlson and Judge
(1974) to imply the existence of an incomplete neutral hydrogen torus
concentric with Iofs orbit. (The measurements have recently been
reinterpreted by Mekler and Eviatar (1980) as emissions of sulfur and
oxygen ions.) The inference of neutral species with ionization potentials
of 5.3 and 13.6 eV within the radiation belts of Jupiter put some
degenerate but instructive limits on the probable combinations of density
and temperatures of the plasma environments that would allow neutrals to

remain unionized., Before the Voyager encounters the sodium emissions were

confirmed by several independent observers; they were documented: 1) to be

a more or less permanent feature of the inner Jovian magnetosphere (Trafton
and Macy (1975), Brown et al. (1975), Mekler and Eviatar (1978), Trafton
(1677); 2) to possess substantial temporal variations (actual and apparent)
(Trafton and Mzcy (1975), Brown and Yung (1676), Trafton (1977), Murcray

and Goody (1978) and Merkler and Eviatar (1678, 1¢80)): 3) to be
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concentrated when present on the Jupiter side, or inner edge of Io's orbit.
Some Keplerian studies by Smyth and MoElroy (1977) have also discussed the
likely locations of the escaping neutrael sodium from Io's surface,

In 1676 evidence for ionized sodium plasma was announced (Eviatar et
al, (1976)) and Kupo, Mekler and Eviatar reported the emission features in
To's spectrum which they assigned to the deexcitation transition of
collisionally populated excited states of singly ionized sulfur, which has
an ionization potential of 10.4 eV, The ionized sulphur emission appeared
to be strongly anti-correleted with the neutral sodium emission, which led
these authors also to infer that collisions, which could ionize and excite
the sulfur, would also lead to the demise of the neutral sodium with the
corresponding reduction in the resonantly scattered sunlight. An upper
limit on the density in the torus was suggested by Kupo et al. (1576).
Citing classical methods for studying the electron environments of gaseous
nebulae, Brown (1676) suggested that the emission features reported by Kupo
et al. could be used as a remote indicator of the electron density and the
temperature; the values he determined were

log n, = 3.5 % 0.5 and log T, = A. 4 ¥ 0.6°K.
By relaxing Brown's approximations, Mekler et al. (1677) suggested ng
v 500 and Te v 10 eV were more appropriate. Mekler and Eviatar (1978) used
a large catalogue of observations of the anti-correlations of Nal and SII
emissions to infer probable ranges of the electron densities between 1¢TH
and 1677 to be 50-~600/¢cc.

3) Voyager Inferences of Electron Properties

Using the Voyager data there have been a variety of additional
inferences of the properties of the electrons within Jupiter's

magnetosphere. In varying degreec these measurements require certain
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assumptions about 1) the distributed plasma volume sampled in the case of
integral or line of sight measurements or 2) the inferred phase space
distribution of electrons or 3) arguments by analogy with the earth's
plasma properties. The principal tools (inferences) in these efforts have
been the rich variety of EUV emissions reported and discussed by Broadfoot
et al, (1979), Sandel et al. (1979) and Shemansky (1580) (apparent line of
sight average electron temperature (v» 10 eV) and densities), radio
propagation characteristics during the In torus occultation of the Voyager
spacecraft (average electron density in torus column) by Eshelmann et al.
(1979), the gyroharmonic electrostatic emissions (local "cold" n&) by
Warwick et al. (1976a), and assignments of the upper hybrid "line" (n.) by
Gurnett gt al. (1979 vs, Warwick et al. (1579%). Of all these inferences
those determined by the cutoff of the continuum plasma radiation as
determined by the broadband data discussed by Scarf et al. {1979), Barbosa
et al. (1979), Gurnett et al. (1680) and in detail by Gurnett et al. (1¢81)
are most directly related to the local total electron density at the
spacecraft., Other electron properties, such as the apparent "torus
average" electron temperature (if it were Maxwellian) was inferred from the
frequency dependence of damping of the whistler mode radiation by Menietti
and Gurnett (1680); densities of keV electrons were inferred by Coroniti et
al. (1¢80) within Jo's torus to support the hiss noise reported there;
non-thermal electron distribution functions were invoked by Warwick et al.
(1979a) and Birmingham et al. (1981) for the Io torus measurements, by
Barbosa et al. (1979) and Kurth et al. (1980) during the crossing of the
magnetic equator inside of 23 RJ in order to understand the gyroharmonic
electrostatic emissions observed as in analogy to that seen at earth.

Recently Strobel and Davis (1¢80) have also suggested that a non-thermal
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distribution of electrons is required within the plasma torus of Jupiter to
understand the line intensities and features observed by the EUV
measurements,

4) Voyager In Situ Electron Measurements

This paper documents the first quantitative definition of the
electron thermal plasma environment within Jupiter's magnetosphere in terms
of the plasma electrons that are directly observed by the Plasna Science
Experiment (PLS). However, local time morphology 1is not addressed in the
current survey, This experiment has been fully described by Bridge et al.
(1677) and 13 the first luw energy plasma instrument designed specifically
to operate in the solar wind and within the magnetosphere of Jupiter.
Initial Jupiter encounter PLS results, primarily of ions, have been
reported by Bridge et al. (1979a), Bridge et al. (1979b), McNutt et al.
(1679), Sullivan and Bagenal (1579), Bagenal et al., (1980), Belcher et al.
(1980), and McNutt et al, (1981),

The electron populations between 10 eV and 5,¢5 keV have been routinely
sampled in the solar wind by the Plasma Science Experiment since the
instrument turn-on, have been successfully analyzed, and have been reported
in the literature (Sittler et al. (1679), and Sittler and Scudder (1680)).
As will become clear in the analysis section of this paper, our
quantitative encounter analysis makes detailed use of the average
properties of the spacecraft surface that have been gleaned from an
extensive cruise data reduction that has only been recently conipleted. In
a forthcoming paper results from this cruise analysis will be given,
including a compreheisive discussion of the analysis procedures used which
are only cursorily discussed in this paper. This order of the data

reduction was required in order to preserve the independence of the direct
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electron analysis from the parallel and smbiguous determinations that are
implicit in E/Z measurements of the ionic phase density (PLS and LECP). In
order to appreciate the great value of the complementary electron
measurements in defining the magnetosphere of Jupiter on the Voyager
mission, it should be realized that there is no unique way of assigning the
partition by number of the ionic plasma composition below Eo = 200 kev,

The ionic diserimination sbove this energy is determined by solid state
methods as reported by Krimigis et al. (1979a,b) and Vogt et al. (1579).
Varied heavy ion composition has been clearly shown sbove Eo as well as in
the EUV emission features that have already been alluded to., Since the
direct, local low energy (E € Bo) lonic measurements are only resolved with
respect to energy per unit charge, there is a certain subjectivity involved
in assigning tnis much of the flux in a given channel to species X and this
fraction from species Y, .., which per chance have the same energy per unit
charge., This degeneracy has until now been approached in two ways (Belcher
et al., 1680; Krimigis et al., 197%a). The first of these approaches (PLS)
assumes that multiple species, if present, should have a common
corotational bulk motion, and examines the patterns in the determinations
on this assumption that are seen in A/Z implied; in particular, when
individual peaks are not resolved, the species present are assumed to be
similar to that most recently seen, with the smearing of the fluxes
attributed to an enhanced thermal speed for these populations. The LECP
team's approach to the analysis of their measurements assumes that the
compositiop directly measured at E > Eo is the appropriate compositional
distribution of the lower energies (E < Eo> where the phase space densities
are in principle degenerately mixed. Studying the constraint of local

gross charge neutrality with the availability of the electron density can
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help to decipher the convolutions over species present in the raw ion
fluxes for energies below Eo.

The complications of blended ionic phase densities are not present in
the energy per unit charge fluxes of negatively charged fluxes, except in
those unusually cool plasmas where stable anions can reside with
significant lifetimes against breskup: anions usually have very low binding
energles (EB < 1 &V) relative to even the lowest quantitative electron
temperature that have been dircctly determined within Jupiter's
magnetosphere, However, an cxhaustive 1ist of anions (and their binding
energies) that could result from the demise of neutral volcanic gases is
not available, and there has been 8 recent suggestion [Cheng (1¢80)] that
there should be a significant number of anions within the plasma torus. By
the usual pick-up arguments for newborn (an)ions, these heavy anions if
dominant by number would have nearly the corotational bulk and thermal
energy, making them conspicuous trangsonic peaks in the ne,ative fluyx
currents, A search for such distributions is in progress; however, for the
data discussed in this paper these signatures are not discernible nor
likely to be present.

In view of the controversy surrounding the intorpretation of similar
energy range measurements on the Pioneer spacecraft, the initial sections
of this paper are devoted to validating the measurement and analycis
procedures. This is done by comparing quantities determined solely from
the in situ PLS electron measurems<nts with other quantities that are
independently measured and that are theoretically expected to be
comparable. These comparisons are of three types: 1) direct comparisons
of the PLS electron densities with Lhose determined from the continuum

cut-off as reported by Gurnett et al. (1¢81); 2) pressure balance studies
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across interplanetary and magnetopause discontinuities; and 3) internal
compariscr between the electron charge density inferred at NASA/GSFC from
the PLS electron fluxes, with the ion charge density determined
independently by our MIT colleagues from the positive ion fluxes (cf.
McNutt et al. (1981)., These comparisons indicate that our electron
analysis procedures are routinely compatible with the theoretical
requirement of charge neutrality of the plasma on spatial scales larger
than the debye length. These comparisons span four and one-half orders of

3. 2 x 102/co) and clearly indicate

magnitude in ambient density (5 x 10
that routine discrimination between ambient electron population and those
characteristic of the spacecraft sheath has been accomplished even in the
rarefied distant maghetosphere. These comparisons span regimes between the
magnetopause and closest approach on both spacecraft, including outer
magnetosphere, middle magnetosphere and within the plasma torus. Having
validated our basic measurement and analysis procedures we will highlight
the regimes suggested within the magnetosphere as defined by the
non-relativistic electrons and discuss their relationship to the growing
body of inferences from the indirect measurements referred to above as well
as their relationship to the ion morphology reported by .LS and LECP
Krimigis et al., 1679a,b.
II. PLS ELECTRON INSTRUMENT

The direct sampling of the ambient plasma electrons between 10 eV and
5.65 keV was obtained on the Voyager spacecraft by a cylindrical, potential
modulated Faraday cup which is usually oriented nearly orthogonal to the
solar direction on the ordinarily attitude stabilized spacecraft. The
design of the cup and its relation to the other PLS sensors is discussed

ext:ensively in Bridge et al. (1977). The currents transmitted to the earth
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are determined by ac synchronous current detection and do not contain de
background contributions that arise from penetrating (unmnrdulated)
radiation. The field of view of the cup (variously referred to as the side
or "D" cup) is :U5° and the response is cylindrically symmebric about the
normal Lo the collector [Binsack (1¢66); Sittler (1¢78); Olbert, private
communication (1680)]). The fluxes measured by the instrument are
essentially differential in the normal component of the electron speed to
which it is tuned; however the detector's response is integral with regards
to the velocity components transverse to the cup normal, (These concepts
are discussed in detmil in Sitbler (1¢78); Sittler et al. (19079).) As
discussed extensively in Sittler and Scudder (1681), the phase space
distribution function along the cup normal is retrievable in spite of tnhe
integral character of the detector's transverse response, so long as the
velocity windows Av are everywhere small compared to the magnitude of the
reciproecal of the local logarithmic derivative of the distribution function
with respect to speed. Loosely, this condition is equivelent to saying
that the velocity windows are narrow with respect to the thermal spread, w,
of the electron distribution. At low energies (below 140 eV), the speed
windows are of the order of 300 km/s, whereas even a very cold electron
plasma with a 2 eV temperature has a thermal speed of 1000 km/s; in the keV
regime of electron temperatures, the thermal speeds are on the order of
20,000 km/s, and the instrument window widths Av « 4000 km/sec; therefore,
this condition of differential measurement 1s routinely met so long as the
plasma-spacecraft floating potential is not excessively high. As outlined
below we explicitly determine the self-consistent floating spacecraft
potential and show that this latteor concern is not a serious problem for

the Voyager vehicles,
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It should be noted that our present analysis ha& neglected the
corrections resulting from secon.ary electrons emitted from the collector
plate of the cup and not successfully returned to it by the supressor grid,
However, a preliminary study indicates that thls effect will result in an

underestimate of the electron density by no more than 10% for

T, < 100 eV, and no more than 30% for T, > 100 eV. Such corrections will
be made in the near future.
III. MACROSCOPIC ELECTRON PARAMETERS

Once the distribution function f(v) is determined along the cup normal
estimates of the electron density and temperature can be estimated by the

following quadratures:

[ ]
2 :

neuuuaf'r(vdwd dv (1

T =04 j: f(v,) 172 m v 2y 2dy /(3/2n kg) (2)

e " "o d Me¥a Yd “Vd B >
where V4o defined by
2 ]
Vg = —(;; - 2jelogy/m,, (3)

is the speed that an elecctron collected at the spacecraft with an observed
speed Vo would have had prior to dropping through a spacecraft potential
edgpe The factor of Ur embodies the assumption that the phase space
sampled in the direction of the cup normal is representative of Ur strd.
The nature of the isotropy assumption in the spacecraft frame implies that
the electron plasma pressure is approximated as isotropie and that the
excellent approximation that the plasma flow velocity, U, scaled by the
electron thermal speed, w, is small. For our calculations we have assumed

U/w = 0. The large thermal speed of electrons (T = 2 eV implies w « 1000
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km/s!) makes this latter approximation excellent nearly everywhere in
astrophysical plasmas, unless the odd moments of the plasma such as bulk
velocity or heat flux are themsiive: being determined (eof. Ogilvie and
Scudder, 1978). In the abaove apry..imation one can show using Liouville's
theorem that the phase density f(vd) % f(vo). (i.e., implementing & simple
energy shift correction), so long as the sensor does not sample an
appreciable fraction of electron trajestories passing closer than 45° to
the spacecraft skin, For the Voyager PL3 instrument this condition is
always met (Sittler, 1978). The extent of good correlation of the derived
quantities in the presence of these assumptions will be commented on below.
The limits of integration defined above are those of the kinetie
definition of density and temperature., Usually the distribution funection
f(vd) is not sampled directly at or near zero V4 by the electron experiment
with its low energy threshold of 10 eV. We attempt to correct to first
order for the low energy variation of f(vd) below our threshold by
extrapolating the Gaussian tendency indicated by the first few channels
above our energy threskold. 1In addition, the integrands go to zero in this
vicinity as Vd2 and vdu assuming that f is not varying too rapidly below 10
eV relative to that indicated by the channels above 10 eV, These two
effects imply that small contributions to the integrals are made below
10 eV except in the circumstance that the low energy Gaussian "temperature®
is much colder than 10 eV, or the electrostatic spacueraft plasma potential
is negative by an amount comparable to the local plasma electron
temperature. This effect yields uncertainties rarely larger than 5%, when
Te is greater than 5 eV, which is the situation in most of the
magnetosphere. The actual observations do not extend to infinite energy,

either, However, the 6 keV upper energy limit is generally large enough to

e s = e
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estimate the trend of f(v) near the upper threshold. This trend plus the
knowledge that f(v) must go to zero faster than 1/v® in order that the
density exist, allow estimates to be made for the unmeasured density and
the fractional imprecision caused, Because the characteristic energy as
reflected in Te determined in this way is rarely over 2-3 keV, these
fractional corrections to the density from E > 6 keV electrons are only 10%
when the temperature is this high and much smaller if the characteristic Te
is smaller.

It should be reemphasized that thils approach has attempted to quantirfy
the electron properties as a Kinetic gas, deriving densities and
temperatures that do not refer to a particular energy range but to the gas
as a whole, In this sense the derived temperatures represent evaluations
of the mean random energy possessed by the gas; this quantity, as is well
known, agrees with a similar value determined by fitting a Gaussian
(Maxwellian) to some energy sub-interval, provided the distribution is
known to be Maxwellian in the measured energy range and over those energies
which dominate the density and temperature. This fortunate circumstance is
rarely encountered in astrophysical plasmas; the observed distributions
generally possess suprathermal tails, This point has recently been
reemphasized in connection with the observed ions at Jupiter by Belcher et
al., (1980). Regardless of the non-thermal tails, the energy densities of
all the particles do act as the gas pressure; in this sense the numerically
determined quantities outlined above do characterize the electron density
and pressure, provided it can be documentod that 1) all the ambient
electron density is accounted for and 2) that the extrapolation above 6 keV
makes a small contributicn to the pressure integral.

The remaining particular in carrying out these quadratures, is the
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determination of the spacecraft floating potential, ®gor 85 8 function of
time during the enccunter. 1In theory and practice this is not a constant
quantity, and the ability to infer how this quantity varies, is synonymous
with the ability to exclude from the analysis those currents to the
detector that arise from trapped photoelectrons and secondary electrons
which encircle the spacecraft in a sheath. This quantity is determined
with the assistance of the detailed analysis and comparison of the solar
wind cruise analysis that will be briefly discussed in the next section.
IV. SPACECRAFT POTENTIAL AND RETURN CURRENT RELATION

The spacecraft potential is dynamically determined in two different
ways depending on the avallability of ion charge density constraints.

1. Cruise Phase: Potential Determination

During the cruise portion of the Voyager mission the floating potential
is determined in an iterative way so that by its assignment, the
integrated, or moment definition of the measured solar wind electron charge
density equals that independently determined for the icns. (In the
supersonic solar wind, the ion number density for the protons and alphas
are very accurately determined from the forward Faraday cups of the PLS
experiment (cf. Bridge et al. (1677)). The first approximation to the size
of this potential can be easily determined as

~~

2n
(0) _ ip + <y
e@sc = -kTe wn

n ¥

-

where np and n, are the proton and alpha number densities and n_* is the

apparent electron density under the assumption that ¢gc = 0. Subsequent

iterations are performed until ne(o(n))= np + 2na.
As an experimental by-product of this procedure, we can determine the

plasma return current density, J(wsc.r.t) wnich is approximately the




electron thermal flux. This return current and‘associated floating
potential Osc(r.t) were determined by enforcing charge neutrality during
the cruise portion of the mission., Significant variability in osc(r.t)
takes plact during cruise and allows a statistical determination of the
relation between the return current and the floating potential that is used
as a "calibration curve" fer the spacecraft-plasma interaction when the
positive ion charge density may be unknown, imprecise, or highly model
dependent.

2. Cruise Phase: Return Current Relation Construction

The floating potential of the spacecraft at a fixed position in
sunlight is determined parametrically by the ambicat plasma return current
that is intercepted by the spacecraft surface. This potential floats to a

value so that the intercepted ambient plasma current, J (@gcorit) in

return

the presence of the potential ®sc is precisely balanced by the
photoelectron current that can escape from the spacecraft to infinity in

the same electrostatic potential, Thus a potential ®sc is established so
that

J (Osc Wyt Agg = 9 (4)

return photo Asunlit

where ASC and A are the receiving and illuminated surface areas on

sunlit

the spacecraft and where

. f . 0d3
Jreturn(°SC'r't) - s fe(vo) Vo hd Vo’
Ve sc!
where Vo i's the observed velocity, V@SC = (2|e|@sc/me)1/2, and fi is the cup

(spacecraft) normal. Since the escaping photoelectron current is larger
for smaller ®sco it should be clear that the floating potential and plasme

return current should be anti-correlated. Because of the stream dynamics
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and time variability of the soler wind plasma, the return current, and
correspondingly the spacecraft potentisl, will vary in time for fixed
radial distance. 1In addition, because the spacecraft is moving away from
the sun, the UV flux and corresponding reservoir of available
photoelectrons in the surrounding sheath will vary with a 1/r2 dependence,
Therefore, the observed return current at r will scale like (ro/r)2
relative to some reference point r  assuming other conditions remain
unchanged. To put it another way, for fixed spacecraft potential, the
photocurrent leaving the spacecraft will vary like 1/r2.

In Figure 1 we have plotted the empirical "return current relation"
derived from our cruise analysis [Sittler and Scudder (1681)]. The return

current plotted along the ordinate is normalized to 1 AU by the following

relation:

r
Jp (1 AU = Jp (obs) obs

r
AU
while the abscissa 1s the spacecraft potential. Above 0.1 volts we find

this relation is well fit with a power law of negative slope with power law
index -2.0 * 0.08. The data points have been computed by binning over 5700
hourly averages within bins of equal width along the best fit line [ecf.
Sittler and Scudder (1680), where similiar binning and fitting procedures
are used]. Errors in the mean of the individual points are smaller than
the plotting symbols. The solid curve indicates this fit to the data for
potentials greater than 0.1v. The turn over at lower potentials results
from a saturation of the photoelectron current at zero volts where all the
available photoelectrons have gscaped to infinity; the placement of this
dashed curve segment 1s approximately indicated and will be defined

experimentally by future work. The slope and magnitude of the power law
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portion of this curve are consistent with theoretical and observaitional
expectrtions at 1 AU (see Reasoner and Burke (1672)). This empirically
constructed curve, which we have called the "return current relation",
represents a statistical, empirical synthesis of the equilibrium properties
of the plasma/Voyager spacecraft surface interaction in sunlight and can be
used as a calibration curve within Jupiter's magnetophere and in the deep

solar wind,

3. Encounter Phase: Using the Cruise Return Current Relation

With the return current relation developed during cruise, the analysis
of the electron data taken within Jupiter's bow shock is completely
independent of the ion measurements. Our procedure is to assume a {1, st
guess of the floating potential, 050(1). on the order of the most prcbable
energy of the data under consideration; under this assumption the return
current to the spacecraft implied by the measurements of electrons with
observed onergies E > 9030(1) is determined., This current, parametric in
the assumed potential, is then compared with the equilibrium return current

(1)

expected at potential ®sc on the basis of the "return current relation"

derived from the cruise data. The potential is then iterated until the
observed return current and potential assignment osc(n). are compatible
with the statistical, cruise generated calibration curve shown in Figure 1.
This potential is then used in the velocity space transformations necessary
to evaluate the moment density and temperature integrals (cf. eqtns.
(1-3)).

4, Encounter Phase: Return Current Relation Complications:

Secondary Production:
The return current relation discussed previously was generated under

interplanetary conditions when the effects of secondary electron production
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in the spscecraft plasma balance were not very important, Within Jupiter's
magnetosphere wherv the energetic particle radiation is orders of magnitude
higher, the spacecraft plasma interaction is further complicated by the
potentially significant reduction in the plasma current as a result of
escaping secondary electrons. Thus the plasma return current is more
correctly the primary current less the escaping secondary current, Several
mitigating factors make tnis effect less important than one would
ordinarily surmise., They are: 1) when the electirons are sparse,

Ne V" 10"3/cc,they are hot Te v keVy 2) when they are denser,ne 3 10'1/cc,
they are colder T, < 100 eV; and 3) the non-linear dependence of the
spacecraft potential upon the plasma return current (see Figure 1),

In the outer magnetosphere where return currents are low and electron
temperatures v KkeV the spacecraft floating potential QSC may be on the
order of tens of volts (cf. Figure 3)., For electron energies greater than
a few hundred eV, secondary yields may get over one, and dominate the
photocurrent at these high spacecraft potentials, (Note that almost all
secondary electrons are due to primary electrons which have higher yields
and larger thermal speeds than ions), Since almost all secondaries have
energies ¢ 20 eV [ef, Bruining (19%54)], they will contribute only to the
photo-current for ¢o. < 20 volts, since for ¢4, > 20 volts all secondaries
are returned to the spacecraft. Therefore, in such regions we may under-
estimate @SC by no more than 5¢SC + 10 volts, Since electron temperatures
are v keV in these regions, negligible corrections (v 1%4) to our density
estimates results, since this error scales as exp (—ee¢SC/kTe).

When the electrons are colder, the density and return currents are much
higher so that in these regions the spacecraft potentials are § 1 volt.

Because of the colder temperatures (Te < 10C eV) most of the primary

i,
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electrons have yields ¢ 50%, This means we may overestimate the return 1
current (primaries minus secondaries) by no more than a factorr of 2 and !
correspondingly underestimate the spacecraft potential by no more than a i
volt or two (refer to Figure 1), One then finds that corrections to the i
electron density for ®g0 > 0 are no more than 10% for the worst case. The
only regions where such corrections may be important are those where the
spacecraft goes negative, inside the denser cooler regions of Io's plasma
torus and within shadow. Under such conditions, the return current
relation as shown in Figure 1 is very flat, so that chlanges in the
spacecraft potential v kTe is required in order to counter any increases in
the return current, Therefore, a factor of two error in the return current
will produce a similar error in the electron density. In future analysis,
secondary electron corrections are planned where its major impact will be
within Io's torus and regions where the spacecraft goes into shadow,

Albedo

As Jupiter 1s approached the illuminated area of the spacecraft is
increased since the nearby presence of the planet acts like a solar UV
mirror, This effect can be very important in the negative potential regime
of Figure 1, where a very small change in the emitting sunlit area (cf.
eqgtn, U4) and therefore photociirrent (not photocurrent density), which
equals the plasma return current, dictates a very large change in the
floating potential relative to kT, to remain on the return current
relation. These corrections are in progress, but primarily affect the
closest approach data of Voyager 1 encounter, For the preponderance of the
data this effect is not important,

V. STATISTICAL DENSITY COMPARISONS

The determination of the electron density from a propagation cutoff is
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a standard laboratory procedure [Heald and Wharton (1¢65)], Gurnett et sl,
(1681) discuss the use of a related technique (with internally generated
electromatic noise, "the continuun”, unable to leak cut of the plasma
cavity) in conjunction with the PWS bremdband data obtained for 2 limited
number of intervals of the Voyager 2 flyby. During each U8s frame of
broadband data these authors have defined the minimum and maximum electron
densities as evidenced by the continuum cutoff, with high precision. They
have attributed the often substantial variations within these {rames to
apparent (3/at or d/dt) time variations: a number of these frames are at or
near large,gross changes in plasma regimes as determined from the plasma
time series., We have plotted the avalirvle PWS data along the horizontal
axis of Figure 2 with a diamond symbol at the mean of the limits stated
with horizontel error bars to indicate the range of temporal variability
implied by this data., The vertical coordinate of all points plotted in
this figure is the PLS electron density. Vhen the PUS broadband intervals
occurred within a calibration cyecle or data gap of the PLS instrument, data
for the electron density on either side of the PWS time were averaged to
determine the vertical coordinate of the point; the vertical flag reflects
the PLS variability during which the PWS sample was obtained. As a group
the diamond points cluster near the slope onc linc indicating good
agreement. The most diserepant of the points are associated with the
calibration intervals; these comparisons are the least nearly time
coincident, but are nevertheless consistent with this trend. It is
fortunate for our validation arguments that these comparisons are nearly
absolute and at very low densities that are indicative of the mid-latitude
outer magnetosphere. They clearly indicate the capubility of our analysis

system to reject photocurrents which, if retained, would have caused the
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apparent density in the outer magnetosphere to be nearly 4/¢cc as was
inferred by Intriligator and Wolfe (1674) and challenged by Grard et al.
(1677). This absolute comparison clearly indicates (as limited as the
sample is) that the PLS electron observations below 6 keV contain the
preponderance of the neutralizing electrons, even in the hotter portions of
the outer magnetosphere (cf., Figure 4).

The crosses plotted in this figure are located at the abscissa
determined by the PLS total ionic charge density, n_ = I Z;n;, with the
corresponding ordinate determined from the electron charge (equals number)
density, n_ that was determined from the PLS electron data no more than 30s
removed in time, It must be reemphasized that the ordinate and abscissa
for this figure are in all cases from independent measurements and and
analysis groups. This is especially important for the intra PLS
comparisons implied with the cross dats points. The use of the electron
return current relahion maintains the complete independence of the electron
analysis, This curve represents the first actual comparison of the ion and
electron charge dexisity during the encounter over such a large dynamic
range., The manner in which n, is determined, 15 discussed in detail by
McNutt el al, (1¢81); the principle assumptions are that the macroscopic
flow velocity of the ions is trans- or supersonic and that all of the ion
current is found within the energy range of the PLS instrument. Under
these assumptions

gl

n =
RS
|e[Vn Ae

+*
ff

where vn is the component of macroscopic bulk flow along the Faraday cup
normal, £I is the total measured ion current, e is the fundamental charge,

and Aeff is the effective collector area of the cup. For the ion data the
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fit determined corotational velocity aleng the cup normal reported by
McNutt et al., 167¢ has bean used, which does show departures from
corotation beyond 17 R,, (also sce Belcher et al., 1980}, 1If a similar
determination for n_ is made using the stri-t corotation at the distance
the observations were made, the n data would begin to drift systematically
to the left of the slope one line, The dsts 1) are clearly : .nsistent with
gross charge neutrality, 2) support the departurez from corotation inside
30 RJ inferred from fitting the lon peaks when available: 2) are consistent
with the ion current messured by PLS containing more than 80% of the local
charge density as evidenced by n_ £ n, and 4) with a clear rejection of
photoourrent s contribution to the clectron analysis (since (a) there are no
photocurrent contributions to the ion measurements), and (b) the comparison
with the continuum cutoff measurement: of Gurnett cb al. (1¢81) is nearly
an absolute measure,

The random scatter sbout a #lope cne line slightly displaced above the
slope 1 line n_ = n_ probably reflects the high level of temporal
fluctuations in the medium impliecit in the PUS broadband data, and a'so
explicitly shown in the PLS data .f. Figure 5) since the n, and n_
quantities are determined from currents that are measured serially, with
the time interval between them being » 205, and a time interval of 50 sec
to complete the entire low and high energy range of the electrons (only 4
sec for each energy range snapshot)., We interpret the slight offset of
this line as an indication of the size {v 10%) of the unaccounted ion
charge density above the 5,¢5 keV PLS poritive ion high energy threshold.
In addition some of the scabter may arisc from breakdowns of the isotropy
assumption impliecit in the approximation given in equation 1. At the

present, time if is difficult to tell how important this problem is--since
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our derived quantities are within the PWS variability whenever we have a
measurement time coinc¢ident with the broadband coverage as can be seen in
subsequent discussion., Additional mitigating factors which make it
difficult to quantify this effect is that when in the magnetosphere the
Faraday cup samples a conical field of view of the unit sphere with full
width field of 90° approximately centered on the 90° pitch angle particles.
Thus 70% of the range of pitch angles of a gyrotropic distribution are
sampled in the field of view; these particles generally contribute nearly
70% of the density if the distrioution is quasi-isotropic. In order for
the fluctuations to be due to anisotropy effects the unmeasured 30% of the
particles have to have a substantial distortion by number 7/3"(nt.mue

-ncurrent)' where ntrue is the actual density and n is the one

current
determined by the above outline procedure. Note that the present
cu.mparison includes data between 30-43 R+ where Krimigis et al. (1¢79b)
have suggested that a dominant fraction of the local ion plasma charge
density is above 30 keV. These estimates, being parametric in the assumed
composition are c)early at variance with the calibrated PLS electron charge
density PLS-ion charge density comparisons. It seems likely that a
different compositional assumption could reconcile the overall charge
budget in those regimes. 1In particular if the ion population sampled by
Krimigis et al., 1¢7% were a suprathermal proton population the inferred
LECP ion density would be decreased by a factor of 4 below the oxygen
assumption,

There are, in addition, several systematic anomalies within this
comparison which deserve brief attention. For densities below 3 x 10'2/cc
the PLS n, determinations tend to scatter preferentially below the slope

one line. This can be attributed to the minimum ion density (v 10‘2/cc)

w
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that can be determined ir this hot portion of the outer magnetosphere .here
the plasma is trans to subsonic (J. W. Belcher, private communication
(1980))., (By contrast this density is easily measurable in the presence of
the supersonic solar wind plasma). For a brief interval near an electron
density of 10/cc, the inferred n, is below that expected on the basis of
the electrons; in this interval of the hot, heavy ion plasma torus there
may be some missing positive current to the PLS sensors; in addition the
corotational velocity is oblique to the side sensor and there are some
unresolved issues concerning the response function in this configuration in
transonic flow (Belcher, and Olbert, private communications, 1680). As the
density increases above this point we are following the trajectory inward
to plasma regimes where the corotational flow 18 more supersonic where
these concerns are not as severe, the spacecraft does not sample the same
density regime as long zad therefore noise is not so prevalent and the n_
and n_ agreement 1s excellant and the scatter reduced. The measured ion
density continues to climb toward a maximum charge density in excess of
1000/cc at closest approach [Bridge et al. (197%a)] and the interpretation
of the PRA data by Warwick et al. (1979); Birmingham et al. (1981), appears
to require an electron (not a heavy anion) density of this order of
magnitude. (See comparison in Bagenal et al. (1980)). We now know that
the spacecraft became negatively charged with respect to the plasma in this
regime. From the excellent Voyager 1 agreement between n_ and n,
determined before DOY 64, hour 06 we can determine the satursation curve of
the return current relation (the plateau region of Figure 1) by enforecing
charge neutrality, for the inner passage through the cool dense torus.

When this has been done a quantitative assessment can be made of the

electron density distribution and partiticn with energy within the cool




torus,
VI, JOVIAN PLASMA ELECTRON REGIMES
1. Sqlar Wind at 5 AU and Bow Shock

An example of the Voyager inbound crossings of Jupiter's bow shock and
magnetopause on March 1, 1¢7¢ (DOY 60) is illustrated in Figure 3 where
electron moment parameters are displayed. The upper trace illustrates the
variation of the moment electron temperature; in the lower trace the
electron density is indicated as directly determined every ¢6 seconds from
the PLS electron fluxes. The self-consistently determined
spacecraft-plasma floating potential is shown in the lower panel. The
shock crossing between 12:26:07 and 12:27:43 SCET, occurred near local noon
and was very nearly a perpendicular shock (6 = 91°). At Jupiter, as at the
earth, the electron plasma quantities in this circumstance indicate
characteristic, abrupt, near maximal density jump (v Y4) and overshoot which
is consistent with the magnetometer measurements. The electron temperature
Jump (» 10) is rather large compared to that seen at earth; however, there
is no theoretical limit on the size of this jump (Jeffery and Taniutti,
1964) so long as conservation of energy is not violated. The energy stored
in the electron pressure change is a small fraction of the solar wind ram
energy density that is lost in traversal of the shock. The directly
observed unshocked solar wind before the bow shock crossing was
characterized by the following average parameters: bulk velocity 400 km/s,
electron density 0.5, Te/'I,‘P = 2.5 (with some variability), and plasma beta
B = 2, (but ranging from 0.5 to greater than 10 in the vicinity of a large
magnetic hole near 0600 SCET). The electron specific properties for this
12 hour period at 5.26 AU are that the thermal or core temperature T, is

approximately 3 eV while that for the suprathermal electrons is Tc w 43 eV,
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In this interval the electron suprathermals comprise approximately U0% of
the electron pressure, but only 4% of the number density. The upstream
regime contains many magnetic directional discontinuities and variations in
magnetic field intensity [ef, Lepping et al. (1981)]. These structures
appear to be in pressure equilibrium when the actual measured electron,
proton, alpha, and magnetic pressures are included. The pressure balance
is achieved with a precision of better than x10% even though there are
variations in the magnetic pressure greater than *100% during the interval.
The electron pressure is usually the dominant gas pressure and the frequent
anti-correlations between T  and n, seen in the solar wind reflects this

tendency, since the plasma B for this period is usually greater than unity.

2. Magnetosheath-Boundary Layer

The magnetosheath spectra are similar in many ways to those in the
earth's magnetosheath, (Mentgomery et al., 1970), with characteristic flat
topped distribution functions. The typical electron mezn energy in the
sheath is 40-60 eV. The spacecraft floating potential is reduced as
expected from Figure 1 since across the shock boundary there is an
increased plasma return current presented to the spacecraft while the
sunlight intensity remains unchanged. Near 1715 SCET in the sheath, the
electron density and temperature change in magnitude towards values that
are later achieved in a full boundary layer crossing which occurs between
1630 and 2015. This is supported by the southward turning of the magnetic
field direction [(ef. Lepping et al. (1981)] during this initial skimming
of the boundary layer. The depletion of the electron density and enhanced
temperature near the maghetopause is similar to that seen at the earth's
magnetopause as has been illustrated with the ISEE data by Ogilvie and

Scudder (167¢), and discussed theoretically by Zwan and Wolf (1076).
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After entering the magnetosphere around 20 hrs SCET the plasma becomes
highly rarefied and hot with densities as low as 2 x 10'3/cc and
temperatures as high as 2 keV. The large variability shown in the
magnetosphere with enhanced density and depressed temperature spikes are
indications that the spacecraft skirted in and out of the boundary layer.
For purposes of corroboration we point out that the density profilc between
2000 and 2200 SCET matches very well with that reported by Scarf et al.
(1676) using the 16 channel spectrum analyzer measurements and the
assignment of the continuum cutoff to estimate the electron density.

Three traces of the Voyager electron velocity distribution funetion on
either side of and within the durable boundary layer crossing into the
magnetosphere are shown in Figure 4. The horizontal axis is the velocity
the observed electrons would have had prior to being accelerated towards
the charged spacecraft. In this sense the horizontal axis is the
electron's speed outside the spacecraft sheath and is therefore
characteristic of the ambient plasma. The vertical axis is the logarithm
of the calibrated phase density in the six-dimensional phase space. The
corresponding energies in decades (with respect to the plasma potential)
are indicated across the top of the figure. Only points that represent
measured currents above three times the noise of the instrument have been
plotted in this figure. The instrument's noise level has been indicated by
dashed curve near bottom of figure.

The spectrum with the triangle points is taken just on the
magnetosheath side of the boundary layer, and is typical of the sheath for
some distance away from the boundary layer. This spectrum has a well
developed non-thermal tail as well as a prominent cooler component which

comprises the bulk of the density; the characteristic energy of these

R TP



cooler particles is 26 eV. The spectrum plotted with the squares is within the
the precipitous decrease of the density and temperature inerease indicated
in Figure 3. The principle reason for this abrupt change in mecroscopic

parameters is the loss of low energy plasma that is being ext.uded, or more

correctly, extruded in the sense of Zwan and Wolf (1976) from penetrating ?

into the magnetopause,

The suprathermal high energy tail within the boundary layer, with a
characteristic energy of keV's, is seen to be enhanced by number, but with
the same spectral shape as seen in the magnetosheath, perhaps indicative of
magnetosphere magnetosheath interchange of electrons as the source of the
non-thermal tails found in these reglons., The variability in the low
energy fluxes (below 140 eV) within the boundary layer is comparable to the
noise level of the instrument.

3. Magnetospheric Side of Boundary Layer

On complete entry into the magnhetosphere as shown by the open circle
spectrum there are very few points below 140 eV that have signals greater
than three times the noise. The channels in this energy range are much
narrower than those above this energy and consequently they have larger
threshold (dashed curve) phase densities than the higher energy channels
which are considerably wider above 140 eV, This spectrum has very nearly
the same spectral form of the suprathermal tail seen in the magnetosheath
and the boundary layer, but with all cool plasma excluded.

On this compressed scale, the magnetospheric spectrum looks nearly flat
but really spans almost an order of magnitude in phase density, so that an
estimate can be made of the trend in the phase density at high energy to
assess the number of uncounted electrons. By inspection it is clear that

the characteristic rms thermal speed will be zssociated with an energy of
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several KkeV as is shown in the moments plot where the full numerical
integrations for the moment density and temperature have been performed,
The outer mid-latitude magnetosphere of Jupiter appears to be filled with a
sparse, hot (2-3 keV) characteristic energy electron population.

The exclusion of the cold sheath plasma from the outer portion of the
magnetosphere, determines that the characteristic energy increases to an
energy of several kilovolts and the densities drop precipitously to
densities below 10'2/cc. Nevertheless the spacecraft floating potential
does not change drastically, rising to approximately 5 volts., The plasma
return current to the spacecraft only di-ops by one order of magnitude, even
though the density drops more than two and one half orders of magnitude
across the boundary. Referring to Figure 1 we see that an increase in the
spacecraft potential is required to retain the appropriate number of
photoelectrons at the spacocraft. For reference it should be recalled that
the early concerns that the Jupiter encountering spacecraft would become
highly charged within Jdupiter's outer magnetosphere were predicated on the
"sling shot" models of Brice and co-workers of the ionospheric supply of
plasma to the outer magnetosphere [Ioannidis and Brice (16¢71)]. This
plasma was suggested to have a characteristic energy of 10-15 eV near the
exobase and cooler beyond. If the outer magnetosphere had a temperature of
1 eV in conjunction with a density of 10~2/ce it is clear that the
spacecraft would have become charged positively in excess of 200 volts,
thereby severely affecting the measurements of low energy ions as well as
electrons as suggested by Mendis and Axford (1¢74) and others. We will
show in subsequent discussion that the quantitative determination of the
electron density in the outer magnetosphere is in detailed excellent

agreement with continuum cutoff measurements. There can be little doubt
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therefore that these densities within the magnetopause are accurate and
that the return current is correctly assessed and that the spacecraft is
not radically charged compared to the electron temperature which is on the
order of 2-3 keV.

It follows from this discussion that the outer magnetospheric electrons
are a very hot, sparse gas which differs from the interpretation of the
Pioneer measurements by Intriligator and Volfe (1€74). Our finding is
certainly consistent with the criticism made by Grard et al., 1977 of the
Pioneer interpretation.

Taking the measured electron pressure Pa within the magnetosphere it is
instructive to determine the equivalent ion pressure required in
conjunction with the magnetic field to balance the solar wind ram pressure
under the assumption that the magnetopause as traversed was nearly in
equilibrium. The particular magnetopause crossing used for this purpose is
the one which occurred toward the end of July 5, 1¢7¢, (DOY 186) from
Voyageir 2 inbound data. This was done because the variability in the ram
pressure monitored by the Voyager 1 measurements throughout this period was
not tno high (refer to Figure 2 in Bridge et al., 1¢7%). Using a field
strength of 5 gamma for the magnetic field (ef. Figure 2 in Ness et al.,

1076b) , ram pressure of 5 x 10710 2

dyne/em™, and electron density w 10_2/00
typical for this time period (but not shown) we get an equivalent ion
temperature '1‘i v 25 keV which supports the suggestion by Krimigis et al.,
1¢70a, that the outer magnhetosphere contains a very "hot" ionic plasma that
plays an important role in the pressure equilibrium there,.

This preceding calculation only infers the dominant equivalent
temperature of the ion species that dominates the ion partial pressures:

it does not suggest in what energy range the preponderanze of the ion

e it i, Y
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density is to be found except that it is below 25 keV. In this connection
it is important to keep the comments of Belche: et al. (1980) in mind,
since the energy interval of a sub-transonic plasma that contains the
dominant fraction of the energy density (pressure) (e.g., Krimigis

E > 30 keV), need not contain the dominant number density--especially in
the case where the LECP measurements used to estimete the pressure have a
finite low energy cutoff. Thus, our support for the Krimigis et al.,

1679 ,b estimate of the energy density is still consistent with the PLS
posi£ive ion densities (E < 6 keV) (Bridge et al., 1¢79a,b) being dominant
in the outer magnetophere.

4, The Outer Magnetosphere

In the previous section the general morphology of the plasma electrons
Just insiide of Jupiter's magnetopause was examined. In this section we
will illustrate that portion of the outer magnetosphere where the solar
wind still has an influence, but where the plasma sheet timing becomes more
predictable, indicative of the growing planetary influence on this regime.
For this purpose we have chosen to present in Figure 5 Voyager 2 inbound
electron parameters for data acquired on July 7, 1676 (DOY 188). These
data span the radial interval between 46,5 and 33.1 RJ and are presented in
nearly the same format as that for Figure 3, with the exception that the
position of the acquired data is explicitly indicated by an "x" and the
trend of the data suggested by connecting these symbols. Superimposed on
the continuous PLS density trace we have indicated the position and
reported variability of the electron density determined from the broadband
continuum cutoff studies of the PWS team [Gurnett et al. (1981)]. The
capital "I" symbol has been used for these data, with the variability

discerned within the U48s frame indicated by the extremities of the
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character. The lower four paneis display the magnetic field magnitude, its
directions in the canonical Voyager RTN coordinate system, and the
pythagorean variance as determined from U8s averages., These data have been
kindly supplied by the magnetometer team to provide a framework for the
discussion and interpretation of the electron plasma measurements, We have
gl so plotted the tilted dipole magnetic latitude of the spacecraft for
added reference in the panel between the logarithmic panels and the
spacecraflt potential.

This figure illustrates 1) the complex and apparently time variable
character of the outer magnetosphere; 2) that the plasma electron
definition of this regime is fully consistent with the available broadband
PWS (density) and MAG (plasma, current sheet definition) data; 3) that the
electrons in the plasma sheehs are much cooler and denser than the
surrounding mid-latitude mugnetospheric plasma sampled and becomes
increasingly cooler with decreussing radius; and 4) that the electron
temperature on average is lower on the centrifugal side of the minimum
magnetic field strength seen in each sheet crossing. Fach of these points
will now be developed in turn,

Complex and Variable

The spiky enhancements in the electron density and the correlated
decreases in the electron temperature between 0200 and 0500 indicate the
sudden, quasi-periodic appearance of electron plasma that is much cooler
and denser than the hotter (2-3 keV) plasma more typical of the magneto-
sphere off of the plasma sheet at this radial distance, Such spikes would
ordinarily be challenged as unhphysical or processing artifacts, At the low
densities of these measurements incomplete rejection of photoelectron

fluxes from analysis could lead to such "feed through" effects., This is
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not correct and the order of magnitude changes in the density within the
"spikes" are properties of the plasma indigenous to the region. This can
be shown from the enhancements in the energy spectra of the electrons, but
more simply, by referring to the magnetometer data plotted in this figure
which show that the density enhancements are well coorelated with
depressions in the magnetic intensity, Although the sampled electron
pressure does rise within these spikes, its variation is insufficient by
itself to be the dominant compensating energy density within the plasma
sheet "spikes" traversed. Alternatively, these may not be static
structures at all.

As can be seen from the temperature trace, these density enhancements
are coincident with a marked reduction in the electron temperature, It
should also be noted that the trend, correl~tion and magnitude of the
density and temperature within the "spikes" are similar to those obtained
when the spacecraft is located within the plasma sheet for a considerable,
contiguous period (after O4U5, for example) suggesting that the brief,
nearly periodic (T v 30m) density-temperature spikes may result from
transient phenomena associated with the proximity of the plasma sheet--such
as surface waves or time dependent equilibration of dense material that has
just arrived in this viecinity via some form of flux tube interchange or
other transport. Regarding the latter suggestion, cold plasma recently
deposited within a flux tube may be oscillating in magnetic latitude along
B, where the oscillations have not had time to damp out. This suggestion
is similar to that made by Cummings et al. (1980) regarding Io's torus, and
the steady state discussions made by Hill et al. (1974) interpreting
Pioneer 10 measurements and Goertz's (1676b) interpretations of Pioneer 10

and 11 measurements, We conclude, therefore, that these features of high
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contrast in the density and temperature profiles reflect real departures

from a smooth pattern of plasms and field configurations in a steady

equilibrium,
! The magnitude of the density variability has been emphasized by the PWS
: team [(Gurnett et ml. (1661)], in their study of the continuum cutoff
within the sparse U8s frames of data that they have available for study.
The changes within each U8s frame have been indicated by the extremes of
the I character on the logarithmic plot, even though their suggested
F precision is three significant digits (F, Scarf, private communication,
1¢80), Comparisons of these data points indicate the excellent agreement
between the PLS and PWS density determinations, bubt &lso indicabe that the |
PWS variability within 48s is the "tip of the iceberg" when the continuous
PLS time series is considered, The routine PLS determinations of the
electron moment parameters dramatically reveal the perils of interpolation

between the very accurate, but unfortunately sparse, broadband PWS density

determinations, The structures between 0200 and 0500 are resl, order of

[ magnitude variations in the local density which interpolation of the

! broadband determinations would completely miss; a similar situation obtains

‘ between 1200 and 1400 and 1100~1200. Several of the PWS broadband
determinations (e.g., 01:36, 14111, 16:38) occur on the edge of precipitous
drops in the macroscopic plasma parameters, further indicating the perils
of interpolating these measurements to compare with data acquired over an
interval long compared to the ¢6s required to determine successive plasma
measurements.

The comparisons with the broadband determinations of the electron

density in this very low density regime clearly establishes that

photocurrents and secondaries have not been evaluated as if they were
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electrons indigenous to the magnetosphere, Were this not the case the
number density would be nearly 4/cc and the inferred electron temperature
in the ¢V range (Grard et al, (1577)) rather than the 10™2/cc substantiated
by PWS and the keV range as reported here. The analysis procedures in this
regime were not speclalized to attain the level of agreement shown here,
but follow the methodology outline in sections III and IV and ere identical
to those used everywhere within Jupiter's bow shock.

It has been previously suggested (Carbary et al. (1676)) that the time
variations observed in the high energy particle data during the Pioneer
inbound approaches could be due to the refilling of plasma tubes which had
Just been emptied, into the magnetotail on the preceding planetary
revolution, Until the precise origin and mechanisms of this replenishment
and its equilibration can be suggested we carnot rule out this as a
possible source of cold plasma and the resulting transient phenomena seen
in these spikes., Alternatively, the extant discussions of flux tube
interchange motions (Gold (1¢59), Sonnerup and Laird (1663), Hill (1¢76)
and Chen (1977)) suggest that the temperature of the plasma in the final
state is usually no greater than that it had been before the flux tube
became interchange unstable. In this connection it is important to note
that the temperature (mean energy) of the electrons in tliese spikes is
considerably larger than the electron temperature found in the very dense
portions of the Io plasma torus, but becomes comparable to the electron
temperatures on the outermost portions of the plasma torus proper; thus,
interchange motions most recently with the outer portions of the plasma
torus (v ¢ RJ) is another possible candidate to explain the spike
morphology in the outer magnetosphere.

Plasma Sheet Correlation with B (t)

I



40

The durable snd tranalent density enhancements of the plasma sheet are
observed to be in close associstion with the dismagnetic depressions and
directional changes defined by the magnhetometer data, In genersl the data
are consistent with cooler electron plasmas being confined in a plamna sheet
(approximately £7° magnetic latitude in width) which extends (near noon
local time) beyond U0 RJ. Becauee of its confinement to amall magnetic
latltudes, the origin of this cooler plasma 1s probably ultimately one of
the Galilean satellites (Hill and Michel (1¢76), Siscoe (1677)), with lo
the most likely source as indicsted by the observed sctive voleanis
[Morabito ek al. (1679)] and plasma torus discussed in the introduction.
The plaema within the sheet has temperatures and densities that are
markedly different from the mid-latitude reglons which bound the sheet, In
this mid-latitude region, at this radial position the typical densities are
10"2 and the characteristic mean energy of the electrons is in the vieinity
of several KeV, As noted previously for the transient sheet, the
temperature, Tsheet' in the durahle plasmz sheet, thocugh cooler than its
mid-latitude surroundings, is still mueh higher than that characteristic of
the dense portions of the lo torus; in addition Tsheet is an increasing
function of Jjovirentric radius; these facts asrgue for a complicated and
probably energy dependent egress of the electrons from their "source" to
their current location within the sheet,

Although there 15 good correlation between the field and plasma
signatures at the sheet at 0730, 1230, 1600, 1¢00, 2230 SCET, there is no
single ten hour wave that describes the arrival of the sheet, Before the
clear 180° lambda angle crossing of the magnetic current sheet near 1230,
the plasma and field show a compatible but irregular pattern. As indicated

in the dipole magnetic latitude, Lm. trace on this figure, the expected
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current sheet crossing at 0200 did not occur, and the observed field
indicates the spacecraft is north of the actua) magnetic equator while it
should have been south of an undistorted plasms sheet if it were coincident
at this distance with the dipole magnetic equator. The incomplete current
sheet traversal at 0430 did occur "on-time" for a S-N crossing. We
therefore suggest that the spacecraft during this period (v 40 RJ) was
slightly above the plasma sheet that has been bent down from the dipecle
equator indicating the external influence of the magnetopause currents
driven by the solar wind. The sheet traversals after 1200 are "on-time"
with respect to the trajectory and the dipole equator, except for the
"spurious" incomplete plasma sheet penetration centered at 1900 SCET,
Between the plasma sheet encounters at 1600 and 1600, at approximately 1745
SCET there was an abrupt increase in the magnitude of B with no anguliar
change, which may have been the sigial of the change in the external
conditions of tf- i 'ar wind ram pressure reported by Bridge et al.
(1¢76b), Figure ;. .. 1s therefore possible that the "spurious" sheet
encounter at 1600 resulted from this change in the external conditions with
the plasma sheet having been pushed up toward the spacecraft. By the
Pioneer conventions this regime is clearly within that called the outer
magnetosphere.

The plasma sheet crossing at 1230 is another example where external
conditions may have had an influence. Near 1200 SCET the spacecraft begins
to enter the plasma sheet, crossing the current sheet or magnetic equator
at 1230. After this time, it suddenly leaves the plasma sheet before
reentering at about 1250 before finally emerging around 1310, Here it
appears the plasma sheet moved suddenly above the spacecraft possibiy by

some change in the external conditions before returning to its equilibrium
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position. However, for this event, no significant change in the external
conditions are predicted by the Voyager 1 data in Bridge et al. (187%).
Therefore, some alternative explanation maybe required, or the Voyager 1
spacecraft did not observe the change In solar wind conditions experienced
by Jupiter's magnetosphere at this time.
Electron Temperature within and Along the Plasma Sheet

The electron temperature variations during this day within the plasma
sheet reveal an interesting pattern: being generally cooler on the side of
the sheet more nearly connected to southerly magnetic latitudes (A v 03
360" (for inbound data)) than northerly ones (A v 180°). Examples of this
effect can be seen at 0500 (N~S), 0600 (S~N), 1600 (S5-N) and 300 (N-3),
where the expression in parentheses indicates the direction of the magnetic
hemisphere traversals along the trajectory., Even the current sheet
crossing at 1230 shows this effect, with the transient effect just
discussed complicating the plcture. More generally there are many "spiky"
signatures throughout the plasma sheet crossings which are randomly
distributed in magnetic latitude, that have been visually smoothed over in
suggesting this pattern. As previously noted and discussed in detail in
the next section, we believe these transient spikes are the result of newly
added cold plasma to these parts of the plasma sheet which may be bouncing
in magnetic latitnde along B and have not yet come to equilibrium with the
plasma sheet populations. Geometr‘cally, the nearly fixed jovigraphic
latitude of the spacecraft on this day determines that the centrifugal
"equator" will be encountered on the soubtherly extremities of the plasms
sheet, i.e., on that side of the magnetic equator where the field line
vectors are pointing toward the planet. By the usual steady state

arguments (ef. Hill et al., 1674 Goetz (1¢7Ca) and Cummings et al. (1¢80)
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and reference, therein) cooler plasma within the sheet should be found
towards the centrifugal side of the magnetic equator and the hotter plaama
would be preferentially observed towards the magnetic equator. In some
average sense this is the pattern we have observed. We will also
illustrate this effect in the middle magnetosphere section for inbound and
outbound plasna sheet crossings.

The electron plasma distribution functions sampled within the plasma
sheet reveal a non-Maxwellian distribution of speeds and suggest that the
probability distribution function pattern observed results from the
kinematic intermixing of two different space-time history populations in
much the same way as recently discussed for the solar wind distribution
(Scudder and Olbert, 1679a,b), with the suprathermal population coming most
recently from the hot mid-latitude plasma reservoir and the thermal portion
perhaps arriving at the point of ubservation by "interchange" motions.
Although not illustrated the mean energy of the thermal subpopulation of
this non-Maxwellian distribution within the plasma sheet in the outer
magnetosphere ranges between 50 and 300 eV, with the more typical value of
100 eV (which is compatible with the hot outer Io torus discussed later).
As we have seen the plasma sheet is juxtaposed to a hot, sparse reservoir
of 2-3 keV plasma which seems to be present at all mid-magnetic latitudes
sampled. This hot population can symmetrically penetrate the plasma sheet
population from both hemispheres, with very little Coulomb impediment,
especially since the plasma sheet is so sparse in an absolute sense.

The partition of number density between the thermal and suprathermal
electrons within the plasma sheet is nearly even with n, v ny at 40 RJ. As
the radial distance gets smaller we have noted that the cooler thermal

subpopulation fraction of the density is increasing. VWe will illustrate

il
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this trend with data in the next sections of the middle magnetosphere and
within Io's plasma torus. These facts are consistent with the source of
the cooler, thermal subpopulation being inside of the observers radial
location; this source of plasma is increasingly diluted by filling a larger
volume as it moves radially out from its source,

The observer within the plasma sheet samples (at any given time) an
electron population that is a mixture of these two types of plasma
populations. At varying radial positions along the sheet, the relative
mixture between these hot and cold populations determines the actual mean
or thermal energy reported by an observer, viz,

Tz (0T, + nT)/(ng + np),
where n, and Ny and 'I‘c and 'I'h are the densities and mean energies of the
thermal and suprathermal populations, respectively. Depending on which
source is the dominant supplier of partial pressure to the observer, either
limit of the temperatures of the respective sources can be attained: near
the boundary layer at the magnetopause it would appear that the "cold"
source has been effectively diluted and T w» Th; as we approach the planet T
is observed to decrease indicating that the cold source is increasingly
providing the dominant partial pressure to the vicinity of the observer.
This pattern is consistent with Io as the cold plasma source, and the hot
bath reservoirs at the mid-latitude regions being the source of hot plasma.
Mid-Latitude Region: Exospheric or Acceleration?

It is not clear that the higher mean energy outside of the plasma sheet
necessarily requires any acceleration per se of the electrons, since this
high mean energy is realized at a very low density, with the energy density
of the electrons not possessing a strong variation over the latitudes

sampled, even though the density and temperature do. It is possible that
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this distribution is a natural result of the "zenopotential”, which is the
renamed version of the geopotential of Angerami and Thomas (1¢64), which
has been studied by many authors in connection with the behavior of ions at
Jupiter (cf. Goertz (1¢76a) and referennes therein). At the ionotphere
gravity acts to stratify the plasma, with the peculiar, higher eneryy
electrons escaping its pull; at the centrifugal "equator" a similar
stratification is produced with the effective gravity implied in the
centrifugal force, again leaving the higher energy ones free to escuape.
Thus each field line that threads the plasma sheet is connected to two
different exobases, with the mid-latitude regions being "above" both of
them. It would seem quite natural that in steady state those electrons
which can be found in this intermediateé region should have an energy higher
than either of the base temperatures and at a much lower density than at
either exobase. This is certainly the case in this situation; however
whether such a segregation of keV electrons t¢ mid-latitudes is actually

realized or whether acceleration is actually required must await a detailed

evaluation of this idea.
Summary

This sample of the outer magnetosphere data has illustrated six main
points: 1) the ambient electron plasma within Jupiter's magnetosphere does
participate in the formation of the diamagnetic plasma sheet as defined by
the in situ magnetometer data; the density enhancement in the sheet
primarily results from an increased fraction by number of cooler electrons;
2) the electrons are cocler on the centrifugal side of the sheet than on
the magnetic equator side; 3) the typical electron densities in the
mid-latitude outer magnetopheric regions sampled are in the vicinity of

10—2/cc. with the electron temperatures in this regime on the order of
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2-3 keV; U4) the enhanced density within the plasma sheet is non-Maxwellian
distributed and accompanied by a reduced average random energy

(300-800 eV); this minimum temperature within the sheet appears to be an
increasing function of the radial distance; this thermal density is also an
increasing fraction of the total density in the sheet as the planet is
approached; 5) there is much variability in the time series on the time
scale of 96s surveyed in the outer magnetosphere--this time dependence is
most prominent within and very near to the plasma sheet proper; and 6)
quantitative agreement is excellent with the very accurate, but sparse, PWS
broadband determinations of the electron density.

5. The Middle Magnetosphere

In this section we focus our presentation on two examples of plasma
sheet crossings within the middle magnetosphere. These examples have been
chosen to illustrate the observed electron properties within the plasma
sheet in more detail than previously shown for the outer magnetospheric
sheet. The principle features to be illustrated are that the density
temperature anti-correlation noted in the outer magnetosphere persists; 2)
the mean temperature in the sheet is further reduced as we approach the
planet; 3) the temperature distribution within the plasna sheet is
consistent on the inbound and outbound current sheet traversals with the
pattern seen in the outer magnetosphere--being cooler on the centrifugal
side of the magnetic minimum; and 4) to illustrate that the zlectron speed
distribution within the sheet is markedly non-Maxwellian with the largest
cold to hot density ratios occurring within the plasma sheet and the
suprathermal density is symmetrically enhanced about the magnetic equator
proper.

Plasma Sheet Morphology
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Data from the inbound traversal of the Voyager 1 spacecraft of the

plasma sheet at 16.9 R, are illustrated in Figure 6. These observations

were acquired on March 4, 1679 (DOY 63). In the upper panel the variation

of the total electron density, Ner and the suprathermal portion of this

density, Ny are shown. The hot density, Pp o is determined by direct

integration over the suprathermal phase density defined by |
fhot (V) = £IV) = £ 514 (V),

where f ., is the best fit Gaussian to the thermal population and the

integral is of the form in equation 1. Care has been exercised to limit

the range of integration to only those energies above which the Gaussian

representation f, ,, (v) is less than 50% of the observed phase density

S A e

f(v). (The thermal population are well fit by Gaussians as discussed below

in connection with Figure 7). The second pane) illustrates the variation |
of three separate statistics of the electron distribution, which |
characterize the spreads of the distributicn: 1) the total moment defined ;
temperature, Te, as per equation 2; 2) the thermal spread, Tc’ of the low
energy population determined by a Gaussian fit; and 3) the effective mean
energy of the suprathermal population, Th' as determined from the other
parameters via partial pressures. The remaining four panels illustrate the
magnetometer data in the same format as that for Figure 5, being 48s
averages and kindly provided by the MAG team to facilitiate our discussion
of this data.

The plasma sheet defined by the electrons is a region of enhanced
density above the general background increase of the density profile; the
sheet proper is not always a monotonic enhancement over the ambient
profile, since it is punctuated at times with many temporal (or convective)

perturbations. The total density enhancement over the ambient in this
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example 1s nearly a factor of 4-5, while the suprathermal density is only
enhanced by v 50%., The hot (suprathermal) density enhancement is very
nearly symmetric with respect to the magnetometer lambda angle, suggesting
that it is concentrated in absolute terms and symmetrically distributed
about the magnetic equator as expected in theory (Hill et al. (1¢74),
Goertz (1976b), and Cummings et al. (1¢80)). (In this connection it should
be pointed out that the magnetic depression in the rapidly increasing|main
Jovian magnetic field is slight; the magnetic lambda angle change in this
circumstance is a convenient marker for the magnetic equator.)

The enhancement in the total density is accompanied by the now familiar
reduction of the mean electron temperature, At the minimum of the magnetic
intensity within the sheet the observed temperature was as low as 100 eV as
contrasted with the external values of 300-400 eV seen before 1800 SCET.
This value is lower at this radial distance than comparable values seen in
the outer magnetosphere (e¢f. Figure 5), This temperature is on average
lower on the centrifugal side (A = 0°, 360°) within the sheet than on the
magnetic equator side and is precisely the pattern observed in the outer
magnetosphere and illustrated in Figw'e 5. The thermal subcomponent
temperature appears coolest (Tc = 10 eV) in a one sided mannexr near the
observed magnetic minimum, being depressed by nearly an order of magnitude
with respect to the thermal mean energy seen outside the plasma sheet
proper. The lowest observed thermal temperature in the densest portion of
the sheet is compatible again with characteristic temperatures in Io's
plasma torus. By contrast the mean suprathermal energy is relatively
unaffected during the sheet traversal, being reduced on the order of 20%
Wwith respect to external conditions.

The traces of these derived quantities lend credence to the suggestion
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that the suprathermal populations observed within the plasma sheet are
global populations that are not especially confined to the vicinity of
their observation, By contrast the thermal population which contains the
preponderance of the density are localized in a neutralizing response to
the enhancement of the centrifugally entrained ions. This situation is
similar in many ways to the solar wind, with the inhomogeneity of the
system u'timately dictating the mix of local and global populations seen in
any locale,

The density profile of the plasma sheet enhancement is not always
monotonic, even when passed through a low pass filter, usually displaying a
multi-maxima profile as in this example., The first density enhancement in
the plasma sheet per se does not correspond to the abrupt magnetic
signature of the "current sheet" traversal as indicated by the polar angles
of the magnetic field. This latter signature does accompany the extreme
density maximum just after 1600 SCET. In the first of these density peaks,
McNutt, Belcher, and Bridge (private communication (1¢80)) report the
largest average mass (amu), whereas in the second (extreme) maximum the
average amu of the ions is lower and the ions below 6 KeV are coolest, As
noted earlier the (total) electron temperature, T, is a minimum (with
large variability) in the vicinity of the first density maximum which we
have interpreted as the centrifugal extreme of the plasma sheet; this
interpretation is consistent with the slightly higher average amu suggested
for the ions found there. Initially it appears difficult to reconcile the
ions being coolest in the vicinity of the magnetic equator extreme of the
plasma sheet. However, it should be recalled that the minimum of the
electron temperature is reflected in the total or moment temperature,

whereas the ion temperatures below 6 keV pertain to fits to Maxwellian
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forms. Since the contribution from suprathermal ions are probably

impartant in the pressure balance in the sheet these contributions could be

e

substantial, The contribution to the ion pressurc rrom fluxes above 6 keV
(i.e., suprathermal tails) must be considered before there is a resal
conflict between the electron and ion obszervations and theoiry. |
Rapid fluctuations in the densest portion of the plasma sheet are
commonly observed in the middle and outer magnetosphere, This variability
in the moment parameters arises primsrily from the changes of the density
and temperature of the thermal subpopulation of the plasma. The periods of
these varistions in this middle magnetosphere example is approximately 7
min, which is shorter than the characteristic 30 min period of the
fluctuations noted in the outer magnetosphere in Figure 5. This Figure and
Figure 8 together with Figure 5 illustrate that the position of these
spikes within the plasma sheet is more or less random with respect to

magnetic latitude within or very near the sheet proper. Thus the profile

of the cooler thermal population is morc chaotic and on any glven sheet g
traversal is probably not in its expected equilibrium position. These
circumstances may additionally alleviate any apparent disagreements between
the ion temperature morphology below 6 keV, the electrons, and theory.

In Figure 7 we have exhibited the speed distributions of electrons
observed at the times indicated by the arrows in the moment parameter plots
of Figure 6, The motivation for a multi-component, non~Maxwellian
parameterization is immediately clear, since a simple Maxwellian in this

format is a parabola., To point out how far the electrons (and probably the

ions) are removed from thermal equilibrium it is interesting to note that
within the sheet on this day the number fraction of the suprathermal

electrons is only 8%, whereas this subpopulation comprises nearly 88% of
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the electron pressure! This is an example of an astrophysical plasma with
its internal energy density distributed in a way that is atypical of
previously sampled space plasmas, This electron distribution which has
been directly sampled with one instrument (PLS) may be a prototype for
understanding the seemingly contradictory ion morphology (PLS vs LECP) in
the outer magnetophere discussed by Belcher et al. (1680).

There are usually many low enei'gy channels available to define the
Gaussian representation for the low energy regime, The best fit for the
lower energy domain are indicated by the dashed parabolas and were used to
determine L and TQ in the usual way; the normalized chi-square for these
fits and those within the sheet is generally of order unity indicating very
good fits. The fits aud the data clearly show the substantial changes in
the equivalent width of the thermal regimes »f these spectra as the plasma
sheet is traversed. By contrast the suprathermal tails above the fit
regimes do not change as much during the sheet traversal--this being a
dramatic example that energy dependent processes do not permit fe(!) to
evolve in a self-similar way.

The many point definitions of a cool (approximately 10 eV) Gaussian
distribution of electrons within the sheet would argue that these electrons
have their origins in regimes of near collisional equilibrium, perhaps
within the Io torus and observed within the plasma sheet as a result of
interchange motions. These low energy electrons in the plasma sheet would
ordinarily have a very long range against Coulomb collisions, were it not
for the large polarization potential wnich they must overcome before
leaving the plasma sheet. This potential is on the order of the mean
electron temperature in the center of the sheet and effectively confines

the predominant fraction of ti:e electrons to bounce (electrostatically




3 — e

52

mirror!) back and forth across the plasma sheet, This does not imply that
the electron density i3 necessarily bunched by such a bounce motion, but
rather that a given electron can kinemstically execute bounded trajectories
within the sheet being impeded electrostatically not to stray too far from
the densest portion of the sheet, Of course the more energetic of the
electrons have sufficient energy to get out of this electrostatic trap, but
the thermal electrons (because they have much less than the average energy)
will be ensnared by this potential well. If the residence time in the
plasma sheet can be made very long by this process, it iz possible that
local self-Maxwellizations could be in progress in these regions, This
interpretation would be consistent with, but not definitive of, a clozed
magnetic topology at these radial distances on both the night and day side
of the magnetosphere, since the time interval required for this process is
many Jupiter rotations.

The other example of dectailed data of this type 1s illustrated in
Figure 8 where derived parameters from fluxes from the identical Voyager 2
instrument on the outbound leg are presented in the s.me format as those in
Figure 6. These data were acquired on July 7, 1¢79 (DOY 1¢1) at 12.87 RJ-
In this traversal the plasma sheet density enhhancement is more regular, but
still punctuated by significant variability (T v 7 min) in the thermal
component parameters, It should be noted that the fluctuations are
confined near the sheet, As seen previcucsly, the average and thermal
temperature are depressed significantly relative to the surroundings; the
suprathermal temperature changes very little across the sheet. The
background of the profiles reflects the radially decreasing density and
increasing temperature profiles that are consistent with the earlier trends

discussed. As in the inbound middle magnetosphere plasma cheet crossing,
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the suprathermal density enhancement is necarly symmetric with respect to
the magnetic equator as indicsted by the polar angles of the magnetic
field, As in the pattern noted earlier, the total electron temperature
within the sheet is cooler on the southern magnetic latitude portion of the
sneet , which is consistent with it being the centrifugal extremity of the
sheet . (Note that the magnetometer coordinate system is & sun centered
coordinate system, 30 that on the outbound leg of the orbit southern
hemispheric field lines are lambda angles in the vicinity of 180°, while
northern hemisphere lines have x v 0°, 360°,)

The companion spectral plots at the position of the arrows in Figure 8
are shown in Figure ¢ illustrating the generality of the patterns in the
mierostate established on the inbound erosgsing within the inner
magnetosphere., As the plasma goets denser it becomes cooler upon entry into
the sheet, leaving the suprathermal phase density essentially unmodified in
structure or spectral shape, |
Plasma Sheet Gyro-harmonic Emlssions

Many theories of gyro-harmonic Bernstein-like electrostatic emissions
(ef. Young et al. (1673), Ashour-Abdalla et al. (1¢76) and Birmingham et
al. (1¢81) and references therein) suggest that the presence of these
emissions can be understood if 1) the electron phase space is more
complicated than a simple Maxwellian and 2) that varying patterns in the
gyro~harmonic structure can be produced depending on the thermal to
suprathermal density and temperature ratios. As shown in Figures 4, 7, ¢,
10 and as we have repeatedly argued, the observed PLS electron distribution
functions are almost always non-Maxwellian; at times the observed
distributions can have varying number fractions within the thermal and

suprathermal populations, Usually, but not always, when the number density
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is enhanced, the totasl increase is a result of the preferential enhancement
of the thermal populations., This is e=zpecially true in the plasma sheet
proper as shown in Figures 7 and ¢ and the spikes that have been observed
in the outer magretosphere. In this way the fraction, "c/(nc + nh). of
electrons in the "thermal" population is enhanced in these places;
according to these theories this situation increasingly favors these
emission mechanisms, In this connection the PWS team has reported evidence
for enhanced electrostatic emissions inside 23 R; near the "upper hybrid
frequency in the dayside outer magnctosphere,,, between higher harmonics of
the electron gyrofrequency," (Kivth et al, (1¢80) and references therein).
These authors discussed one of the current sheet crossings illustrated by
the PLS dabta shown in Figures 6 and 7 and inferred that the electron
distribution functions should have a two temperature structure as we have
now explicitly shown in Figure 7. As also shown in Figure 6 the thermal
density is upwards of 80% of the total which is in marked contrast to the
sheet of the outer maghetospherec where ne ¥ Ny and is perhaps the reason
for localization of the banded emissions within the inner magnutosphere
since “c/”h is increasing with decreasing distance (ef. Torus section).

6. Electron Properties in Io's Plasma Torus

Direct in situ measurements within Io's torus of electrons have been
made by the PLS experiment which bear directly on the interpretation of the
optical measurements as .:il as the definition of the plasma environment in
this prototype, as it were, of & planetary nebula. We will illustrate 1)
that the system is demonstrably removed from local thermal equilibrium, 2)
that the electron bulk parameters possess important and sizeable
macroscopic and microscopic variations with radius and magnetic latitude

within the torus, and 3) that a sample of these regimes are compatible with
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selectively inTerred properties of the plasma torus made by essentially
indirect methuds, As is already known, Io's plasma torus during the
Voyager 1 encounter was uiusually dense, reaching densities beyond several
thousand per cubic centimeter. 1In this circumstance we now know that the
spacecraft did achieve a negative potential, which has left our reduced
data base temporarily incomplete pending further analysis, especially in
the densest portions of the torus. For the present we will illustrate the
extreme situations that are known from data with three spectral examples.
These examples were also selected with an eye toward establishing contact
with the burgeoning number of indirect inferences of the plasma torus
properties discussed in the introduction.

The spectra we will show are representative of three relatively
well-defined subregimes of the plasma torus that are delineated by abrupt
changes in the characteristic electron temperatures: a) the hot/outer
torus 3 100 eV, ., the temperate/middle torus T v 10-40 eV and the
cold/inner torus Te 55 eV. We are not in a position to completely define
the spatial limits of these regimes, but can illustrate the electron
properties within each of them., We do not suggest that the spectra shown
are neccessarily typical of these regimes. Our principle emphasis is to
establish that the plasma torus is not a volume of isothermal, Maxwellian
distributed plasma~--but, rather an inhomogeneous entity in density,
temperature and microstate. This experimental fact complicates the
interpretation of line of site measurements; however, in order to extract
the maximum information from such integral measurements, the community
should be aware of the observed structure in the electron macroscopic and
microscopic parameters and that the system is not in local thermal

equilibrium., However, the general magnitude of the electron temperature

T O ST T T S T D OV T P

lh‘-‘.-:...,;..*m,‘ . em




- e e

56

especially in the outer two zones is adequate to support the collisional
ionization of sulfur in places to the doubly or triply ionized states
reported by Broadfoot et al. (1¢81).

A composite diagram composed of a sample of electron distribution
functions from each of the above regimes is presented in Figure 10. From
left to right the distribution functions refer to decreasing radial
distance from Jupiter and also from Io. In each panel the Jupiter centered
angular separation, ¥1g0 between the spacecraft and Io and the dipol«
maghetic latitude, xm. are indicated. Also included on each spectrum are
the derived statistics for the thermal and suprathermal populations. All
of these specira have well-developed thermal subpopulations, which like the
plasma sheet enhancement spectra, can be well modeled by a Gaussian
distribution., The width of the thermal component appears to be a
decreasing monotonic function of the radius, but it is clear that the
density is not. This is consistent with earlier definitions of the torus
(Bagenal et al. (1680)) and that the trajectory progresses inside the
annulus of the torus between spectras 2 and 3. To varying degrees all of
these spectra show evidence for a well-developed suprathermal tail which
illustrates that none of these regimes is in local thermal equilibrium
wherein the electrons would be distributed according to a single
Maxwellian. The torus is a regime of very strong density gradients not
only within the torus, but the contrast between the peak %orus density and
the 10'3/00 observed in the outer magnetosphere is nearly as severe as that
from the edge of the corona to the 1 AU observer in the solar wind. In
such radical inhomogeneities, strange non-thermal spectra are to be
expected as has recently been discussed in connection with the solar wind

(Scudder and Olbert, 197%a,b).
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As Jo is approached, the mean and the thermal population of the
electrons become cooler; however, the values at 14:24:36 of 5.0 eV are not
the coolest temperatures witnessed. The collisional lifetime of the
neutral sodium atoms is a sensitive function of the temperature of the
electrons which can collisionally ionize it, With its low ionization
potential of 5.3 ¢V, any asymmetry in the ionizing plasma electron
temperatures with respect to Io's orbit could play a role in understanding
the puzzling patterns of the resonantly scattered sunlight off of the
neutral sodium reported by ground-based observers and discussed in the
introduction.

The middle distribution function, indicative of the temperate region,
was also selected to establish contact with the indirect inference by
Coroniti et al, (1980). These authors suggested at this time and location
along the trajectory that suprathermal electrons (1.1% by number and
characteristic energy of 1 k¢V) were required to explain the plasma hiss
noise detected by the PWS instrument. As seen from the derived parameters
within this panel, the suprathermal population, above the fitting regime of
240 eV comprise 1.U4% of the ambient electron number density. Allowing that
not all of the suprathermal electrons counted in this way can be resonant
and that the mean energy of the suprathermal electrons is observed to be
1.2 keV (although not Maxwellian distributed!), the direct PLS electron
measurements and the indirect PWS inference are in remarkable quantitative
agreement,

This spectra also illustrates that the suprathermal fraction of the
number "h/ne density is larger than seen in the inner torus but still less
than the hot fraction seen in the outer torus. This pattern is consistent

with the trend noted Iin the outer and middle magnetosphere, with the hot
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number fraction growing with distance, while the overall number density is

declining.

The temperature of the electrons in the middle and outer portions of
the torus are clearly capable of permitting collisional ionization of
sulfur and also collisionally exciting SII and providing the optical
emission reported by Kupo et al., as well as a wealth of other EUV
emissions that have been reported by the Voyager EUV team. It must be
emphasized that the non-thermal distributions imply that estimates of cross
sections based on the apparent thermal spread of the component which is
dominant by number could seriously be in error. In such a non-Maxwellian
plasma, the evaluation of rate processes requires a full convolution of the
energy dependent cross section with the observed energy distribution of the
the electrons. It is anticipated that this effort will be undertaken in a
future study to contribute to the unraveling of the line of sight effects
embedded in the spectroscopic measurements,

The outermost example of the torus has a mean energy of 120 eV, while
the effective temperature of 92% of its distribution is 26 eV; the
suprathermal electrons at this position possess four times as much partial
pressure as the mo' e copious thermal population., It would appear that
various atomic processes as ordinarily parameterized could be variously
more sensitive to either or both of these subpopulations: clearly
collisional ionization rates will be sensitive to these suprathermal tails,
whereas recombination rates arw more sensitive to the effective temperature
of the more numerous thermal particles. In short the "canonical!" methods
invoked by Brown (19¢76) to remotely infer the density and temperature of
the electrons within the torus do not apply in this first example of a

"planetary nebula" that has been sampled directly. A relaxation of the
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Maxwellian distribution assumption for electrons embedded in this theory
appears to be required. As argued in connection with the solar wind
distribution functions (Scudder and Olbert 197%a,b), the inhomogeneity of
the plasma system connected to the point of interest determines the
departures from local Maxwellian behavior. Clearly, the most general
aspect of a planetary nebula is its proximity to the gravitational focus of
the nearby planet; therefore the radical spatial inhomogeneities witnessed
in the torus at Jupiter (where centrifugal forces produce the "effective"
gravity) are rather general properties of such systems and so, apparently,
are the non-Maxwellian features that have been observed. To some extent
the wide range of observed values of electron density and temperature
present in the line of sight of the optical measurements, makes it somewhat
artificial to argue that LTE was not so bad an approximation for the actual
eircumstance of the torus plasma. In the future these canonical methods
will have to be improved, or, lacking this improvement, taken somewhat less
seriously.

Menietti and Gurnett (1980) have attempted to bound the electron
temperature of Io's torus from the Landau damping characteristics of
whistler mode radiation on the assumption that the torus inside of L = 6 is
isothermal and that the electron distribution is Maxwellian everywhere
along the ray path. Their limits of 2-3 x 105°K (20-30 eV) are certainly
consistent, though higher than the locally sampled 6.3/5.5 eV (T /T,)
temperatures that have been directly inferred in this inner regime. The
bounds placed by these authors probably pertain more to the highest
electron temperature in the mid-latitude torus along the ray path. This
regime was probably not sampled directly, but such temperatures, as we have

seen are not unusual at other magnetic latitudes as for example shown in

L g




R i — e

60

the middle spectra of Figure 10 or in the outer and middle magnetosphere
(Figure 5, 6-9).

The PRA group (Birmingham et al. (1¢81)) have inferred that the
electron temperature ratio Tc/Th of the "cold" (thermal) to "hot!
(suprathermal) population should decrease as the spacecraft moves from the
hot outer torus towards the cool inner torus. This prediction is based on
a modeled distribution function that may not fit the actual data. However,
the trends they suggest in their Tc/Th parameter is observed (cf. Figure
10a,c) although thorough quantitative tests of this prediction must be
deferred until the complete torus data set is reduced,

On the whole we can say that the correspondence between the indirect
inferences of the torus electron properties and the direct in situ
measurements of them are in unusually good agreement, especially by the
canonical standards of astrophysical arithmetic.

VII. SUMMARY

The survey just completed has defined, for the first time, the state of
the electron component of the plasma within Jupiter's magnetosphere. This
survey has not attempted to define nor preclude local time variations
within Jupiter's magnetosphere. The guantitative corroboration for the
inferences of this survey are excellent. Statistical and direct
comparisons have been performed to validate the estimates of the ambient
density, to assure the community that spacecraft sheath plasmas were not
being considered as indigenous to the zenophysical regime being explored.
Detailed comparisons with the density determined from the continuum cutoff
method of the FWS experiment show excellent quantitative agreement, even
when the density is as low as 5 X 10“3/cc in the outer noon magnetosphere.

We have also illustrated the benefits of directly determining the
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electron charge density. An illustration that assignments of observed
plasma radiation "lines" are often subjective can be found in the articles
by Gurnett et al. (1979) and Warwick et al. (197%), where disagreement on
the upper hybrid line identification yielded local density estimates at
Voyager 2 closest approach with a spread of 39(PWS) - 450(PRA)/ce! The in
situ PLS electron density at 2230 on July 10, 1979 is n_ = 2¢.9%cc whereas
PLS ion charge density reported by McNutt et 2l. (1681) is 30.8/cc. This
density yields an upper hybrid frequency of U4¢.¢ khz which is well within
the PWS 15% (3db) bandwidth of the 56 khz channel. These direct

measur ements support the interpretation of the PWS team, and provide a
resolution of the uniqueness problems of some of the plamma wave indirect
methods. Kaiser and Desch (1¢80) have recently also concluded by
independent arguments that the previous PRA interpretation was in error.

The comparisons of the PLS n_ and PLS n, densities of Voyager 2 closest
approach agree at much better than the 10% level as discussed extensively
by McNutt et al. (1981). Using the constraints of the charge budget we can
infer that the fluxes above 28 keV reported by Krimigis et al. (197%),
(1981) infer cannot be oxygen since this would violate local charge
neutrality; a compositional assignment with substantially lower amu (such
as protons!) could render a local charge budget balance, Clearly, the
electron density can assist in these decisions in the future.

The emerging picture of the electron plasma in the magnetosphere is
that the outer magnetosphere is a hot (2-3 keV), sparse (‘IO'3 - 10'2/cc)
regime, which more or less is present at all magnetic latitudes sampled,
that envelopes the plasma sheet which is formed in the presence of
Jupiter's enormous centrifugal forces. The plasma sheet when observed

contains electrons of lower average energy than the surroundings; however,
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this regime has a complicated microstate with non-Maxwellian distribution
functions. The suprathermal population of electrons within the plasma
sheet appear to have most recently come from this hot enveloping reservoir
of 2=3 keV electrons which presumably dominates the mid-latitude range of
the magnetosphere, The thermal component of the microstate within the
plasma sheet, is more variable and generally has at least half of the total
ambient density. The thermal population is often distributed in energy
within these sheets as if in a Gaussian way with a characteristic energy
width at 40 R; as small as 50 eV.

The plasma sheet sub-population properties have been monitored and
these data suggest that the average temperature within the sheet (while
always cooler than its immediate off sheet surroundings) is decreasing as
we approach the planet. Microscopically, this arises because the mix of
cooler thermal populations which seem to supply the thermal regime of the
electrons is getting stronger than the supply of suprathermal phase density
from the hot reservoir above the sheet proper. Consequently by the law of
partial pressures the average temperature of the electrons in the plasma
sheet decreases, until within Io's torus the average temperature of the
electrons is nearly that characteristic of the thermal subpopulation. We
have therefore tentatively identified the vicinity of the Io torus as the
most immediate source for the cool electron thermal populations seen within
the plasma sheet. We have also suggested that the time variability
witnessed in the vicinity of and within the plasma sheet may be indicative
of interchange motions that were actually in progress that were bringing
torus material.out to the distant magnetosphere, even as the observations
were being made. It is by no means clear that the theories of interchange

motions have seriously considered whet the thermodynamic signatures of such
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motions should be for the electron portion of the plasma. This is
particularly troubling since the interchange process proceeds on a very
slow (MHD) time scale, whereas the temperature signatures of the electrons
within these stratified flux tubes can change dramatically because of the
inordinate mobility of the electrons.

It has been suggested that the existence of the hot mid-latitude
reservoir in the magnetosphere may not necessarily require acceleration per
se since these regions on closed field lines are in the peculiar situation
of being simultaneously above two different exobases: one at the
ionospheric foot of the flux tube, with the other at the centrifugal
equator, In this situation & amall sub-population of the electrons that
can escape the respective exobases will find a natural place in the
mid-latitude regions. The need for ancillary acceleration awaits detailed
modeling of this situation.

We have illustrated some initial phases of this thermal stratification
near the centrifugal equator, by illustrating the empirical fact that the
mean energy of the electrons is cooler on the centrifugal side of the
magnetic minimum within each plasma sheet discussed in the paper, both in
the outer and middle magnetosphere. We alsoc have illustrated that the
suprathermal electron densities that have characteristic energies of
kiloelectron volts, are symmetrically enhanced about the magnetic equator
as predicted by the usual steady state theories.

The preferential enhancement of the cooler electron population seems to
have exceeded some important minimum value within 23 RJ. since the PWS team
reports banded gyro-harmonic emissions only inside of this distance, while
the purportedly responsible two component electron distribution functions

are observed at all radial distances that the plasmz sheet has been




:
|
f
3

64

directly observed,

The in situ electron properties of the Io plasma torus have been
initially surveyed. By direct observation the electron distribution
function is not a simple Maxwellia, . bub posseses suprathermal populations
which clearly indicates that e-e collisions have not been sufficiently
frequent to define a local thermodynumic state. By inference the ions
cannot be in temperature equilibrium with the electrons since the time
scale for this process is longer, the ratio of scales going like the
lon~electron mass ratio. The survey has been limited iv date by the
spacecraft becoming rnegatively charged, which has hampered a portion of our
data reduction. We have identified several systematic variations in the
microscopic and macroscopic electron parameters between 8.¢ and 5.5 RJ.
There appear to be at least three electron regimes with differing mean
temperature; these regimes have been named the outer (or hotter), the
middle (or temperate) end the inner (or cooler) torus; these three regimes
have mean energies of 100, 25, and less than 5 eV, respectively, As we
penetrated toward the inner torus the suprathermal fraction of the density
becomes as small as 0.02% of the total density, whereas in the outer torus
this fraction can be upwards of 8% by number. The partial pressures from
the suprathermal electrons start to be very important in the temperate
torus, and they are decidedly influential in the outer torus with the mean
energy in the example shown near 120 eV, wﬁile the thermal electrons only
have a characteristic energy of %0 eV. The microstate of the electrons in
the torus dictates that collisional ionization rates and recombination
rates shopuld be estimated in the future by direct convolution of the
measured electron distribution functions with the experimental cross

sections. We can however indicate that the mean thermal energy of the




directly chserved electrons is generally comparable or exceeds the
ionization thresholds of the EUV species that have beeen identified
(Broadfoot et al. (1979); Sandel et al, (1679)). Four comparisons of the
in situ properties of the electrons with indirect inferences of the
electron properties have been shown to be in excellent quantitative
agreement.,
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FIGURE 2

FIGURE 3
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FIGURE CAPTIONS

Empirical relation between the plasma return current striking
the spacecraft (normalized to 1 AU) and the spacecraft
potential. (Errors of mean are in all cases smaller thar
characters plotted.) This relation was derived from an
extensive analysis of Voyager 2 PLS electron measurements
taken during the crulse phase of the mission between 1.36 AU
and 4,70 AU, Data points above one volt are well represented
by a power law with negative slope. Best fit line computed
using method discussed in Sittler and Scudder (1680).
Saturation current shown dashed was estimated usirg charge
neutrality condition and the PLS positive ion charge density
at 64:06:39 within Io's torus when the spacecraft went
negative,

Scatter plot comparing PLS electron density determinations n-
computed at GSFC (ordinate) with the PWS broadband continuum
cutoff determinations of the electron density n_ by Gurnett
et al. (1981) (abscissa) and the PLS postive ion charge
densities n, by McNutt and Belcher (1¢81) (abscissa). The
PLS n_, PWS n_ comparisons are indicated by the <>symbol.
while the PLS n_, PLS n, comparisons by the + symbol. The
slope one line has been drawn for reference.

Times series day plot of electron parameters computed from
Voyager 1 PLS electron measurements on March 1, 1979 (DOY 60)
when the spacecraft crossed Jupiter's bow shock,
magnetopause, and boundary layer. In the top panel the

nearly model independent total electron number density Ne and
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FIGURE 4

FIGURE 5

electron temperature Te are displayed., The same vertical
scale is used for both L and ’I’e where cgs units are used for
ne and electron volts (eV) for Te. The spacecraft potential
®sc in volts is given in the lower panel. Solar wind,
magnetosheath, and magnetosphere regimes are indicated.

The electron distribution functions fo measured before
(magnetosheath), during (boundary layer), and after
(magnetosphere) the Voyager 1 crossing of the boundary layer
around 20 hrs SCET on March ¢, 1979, are plotied versus
electron speed, For reference, the corresponding electron
energy in electron volts (eV) is denoted at the top of the
figure. The dashed line indicates the instrument noise level
which for the high energy mode ((E2): above 140 V) is more
than an order of magnitude lower than that for the low energy
mode ((E1): below 140 eV) since the speed windows are much
narrower there.

Time series day plot of Voyager (inbound) PLS electron
(MIT-GSFC) and magnetic field (GSFC) parameters on July 7,
1679 (DOY 188) when the spacecraflt is within Juplter's outer
magnetosphere between 46 RJ and 33 RJ from Jupiter. The top
pane) is simllar to that in Figure 3 except the symhcl x has
been used to explicitly show the PLS electron data points.

In addition, the PWS broadband continuum cutoff
determinations of the electron density by Gurnett et al.
{1¢81) are indicated by the symbol I (see text for details).
In the next panel down the tilted dipole magnetic latitude of

the spacecraft M in degre«s has been added for reference,




FIGURE 6

FIGURE 7

where the dashed horizontal line indicates when the
spacecraft passed the dipole mognetic equator (a G.6° tilt
angle and 202° system III longitude for the dipole axis was
used, Ness et al. (1979a)). As in Figure 3 the spacecraft
potential ¢sc is plotted but with an expanded scale, In the
lower four panels the GSFC determined 48s averages of the
magnetic field strength B, RTN longitude ) and latitude ¢
(both in degrees), and Pythagorean mean rms are plotted. The
symbols N and S are used to denote whether the spacecraft is
north or south of the magnetic equator as defined by the
magnetometer measurements.

Voyager 1 inbound plasma sheet crossing on March 4, 1679 (DOY
63) when the spacecraft is about 16.¢ RJ from Jupiter., In
the top panel the total electron number density n, and
suprathermal (hot component) electron number density n, are
plotted. The arrows denote the times the electron
distribution functions plotted in Figure 7 were measured. 1In
the next panel down the temperature of the suprathermal
electrons TH, total electron temperature Te' and temperature
of the thermal electrons (cold component) Tc are illustrated
(see text for details), In the lower four panels the GSFC
485 averaged magnetic field parameters are given using the
same format as in Figure &6,

Electron distribution functions measured during the Voyager 1
plasma sheet crossing illustrated in Figure 6 are shown. The
arrows in Figure 6 denote the times sampled. The same formut

is used, as in Figure U4 where the Gaussian fits to the cold




FIGURE 8

FIGURE ¢

FIGURE 10

component have been indicated by the dashed lines, while the
noise level trace has been omitted.

Voyager 2 outbound plasma sheet crossing on July 10, 1676,
(DOY 161) when the spaceecraft is about 13 R; from Jupiter.
The same format as Figure 6 is used,

Electron distribution functions measured during the Voyager 2
plasma sheet crossing illustrated in Figure 8 are shown. The
same format as Figure 7 is used,

In each panel the electron distribution function measured at
different times within Io's plasma torus by the Voyager 1 PLS
experiment are plotted, The measurement times, radial
distance of spacecraft from Jupiter, system III longitude of
spacecraft relative to Io, and dipole magnetic latitude of
the spacecraft are indicated. For each panel the same format
used in Figures 7 and ¢ are used where in addition the
computed electron parameters are given (see text for
details). Horizortal (energy) uncertainties in Figure 10c
reflect the available, though imprecise, knowledge of the
spacecraft potential at this position. When the
observational limits on the potential are refined new
estimates of the effective spread of thermal speeds below 10
eV will be made, If Tc v 5 eV (determined from data
immediately above 10 eV) correctly parameterizes f(g) below
10 eV, as currently assumed, then the spacecraft must be =12
volts with respect to the plasma, If externsl measurements
require ¢ v 0 V then an even colder component below 10 eV

mast be present with tempersture To less than 1.7 eV,
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