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SUMMARY

The behaviour of the steady state spurious error modes of the MacCormack scheme
and the upwind scheme of Wamming and Ream is obtained from a linearized difference
equation for the steady state error. It is shown that the spurious errors can
exist either as an eigensolution of the homogeneous part of this difference
equation or because of excitation from large discretization errors near oblique
shocks. It is found that the upwind scheme does not permit spurious oscillations
on the upstream side of shocks. Examples are given for the inviscid Burgers'
equation and for one- and two - dimensional gasdynamic flows.
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1. INTRODUCTION

One of the major difficulties in numerical computation of gasdynamic flows is
caused by the occurrence of shock waves. The most straightforward way of dealing
with shocks is based on the concept of weak solutions of conservation laws in-
troduced by Lax [1] . By a conservative formulation of the difference equations
the shocks are captured automatically and no special treatment is required. The
price to be paid for this simplicity is generally large errors in the vicinity of
the shocks, most commonly in the form of pre- and post-shock oscillations. Effi-
cient use of these so called shock-capturing methods therefore requires som under-
standing of the nature of these errors.

The existing work on this question is mostly based on the time-dependent equations.
One standard procedure is to investigate the truncation error of simple linear
model equations [2].  The results obtained are limited to the amplification and
phase errors of the Fourier components of the solution and do not give any
direct information on the effects of shocks. The case of an unsteady travelling
shock has been treated by Kreiss and Lundqvist [3] for the simple linear wave
equation 3u/ 3t - 3u/3x = 0 and by Lerat and Peyret [4] for the nonlinear,
inviscid Burgers' equation. Both these works show that oscillating errors are
generally to be expected near the shock.

Time-dependent numerical methods are also a useful tool for many steady flows of
aerodynamic interest. In this paper the errors in the final steady state of such
computations will be considered. Since none of the above methods of analysis are
particularly well suited for the steady case, we shall describe a procedure by
which it is possible to study the steady state errors more directly [7], [14].

Consider the system of conservation laws in one space dimension

oH _ :
ﬁ*ﬁ'o (1)

where for inviscid, compressible flow F= {p,m, e } is the field vector of mass,
x-momentum, and total energy densities. We solve this system by the stable time-
-dependent numerical scheme

n+1 n .

Fj =DJ-(PJ-) j=1, 2,..., N (2)
where F’j1 is the computed field vector at grid point j at time step n,

and Dj is the difference operator replacing the partial differential problem,
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i.e. eq. (1) with appropriate boundary conditions. The procedure (2) has con-
verged to a steady state if F'-1 ! F? = Fi to a specified accuracy in all the N
grid points. Our purpose is to study the error 1. this result, particularly when

shocks appear in the field. The error is defined by:

n
g-5- %

where FgJ = F(n At, jAx) is the exact solution of the differential problem with
initial conditions FgJ Substitution of Fn from eq. (3) into the difference

eq. (2) gives an equation for the error expreseed in the exact solution FOJ

Such an equation is of course just as complicated as the original difference pro-
blem and furthermore requires a knowledge of the unknown exact solution Fy. The
discussion is therefore limited to small errors, and the nonlinear effects will

be neglected. Substitution of (3) into (2) gives after linearization:

n+1
e =L (e) +T‘j‘ (4)

where Lj is the linearized operator and
+1
5 = D; (Foj) - Koj (5)

is the truncation error. From (4) the usual requirements for convergence of the
linearized problem is obtained. If the error shall become smaller as the mesh is
refined, the operator D. must be consistent so that T'J‘ + 0. This is particularly
important if shocks appear in the field. We must also require the operator L. to
be stable [2]. When a steady state is reached, eqs. (4) and (5) reduce to:

(T - 1) s? = TJ? (6)
Ty = D5 (gp) - Fo; @

If we assume that the exact solution FS is known, then T? and Lj are detemmined,
and eq. (6) is a linear algebraic system for the error at every grid point. The
scheme is consistent with p-th order of accuracy if ™ =0 (axP) , where Ax is
the grid spacing. From eq. (7) it follows that the scheme must be consistent
everywhere if the error shall vanish as Ax -+ 0. In particular eq. (7) implies
that the difference scheme must be a consistent approximation of the jump relations
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when shocks or other discontinuities appear in the field. Finally we must also
require that the coefficient matrix obtained from the operator I-LJ. remains non-
singular as Ax + 0. If this is not the case, there can be an error in the final
steady state (of indetermined amplitude in the linear approximation) determined
by eq. (6) which is a singular homogeneous system in this limit. It is interest-
ing to note that in this case an eigenvalue of L. npproaches 1, so that the time-
~-dependent scheme ceases to converge when T + 0. Below we shall give simple
examples of such behaviour for a model equation and for steady one-aimensional
flow with a shock.

Eqs. (6) and (7) will be used below to study the behaviour of small errors for
some simple steady cases with known piecewise constant exact solutions Fy -
The analysis for more general Fy would be prohibitively difficult even if such
a solution was known. For a slowly varying field these simple results could be
used to judge the errors locally. The analysis will be applied to the two-step
scheme suggested by MacCormack [5], and also with the upwind corrector of Warming
and Beam [6], although some of the results are applicable to a wider class of
schemes.

We shall first discuss the homogeneous error problem which arises from a simple
nonlinear scalar equation. The properties of the operator I- Lj of eq. (6) will
be discussed and an example given which does not converge in the limit Ax - 0,
although the computation is stable. An analysis of the initial value problem for
this scalar equation has been given by Harten et al [14], for the Lax - Wendroff
scheme. Their analysis shows that the steady state is weakly unstable in the L2
norm. It can be shown, however, that the initial-boundary value problem is stable
when the number of grid points N is bounded which is also indicated by the com-

putational results in [14].

Similar results will be derived for the one-dimensional gasdynamic case with a
stationary shock. For the two-dimensional case we shall finally discuss the
magnitude of the discretization error for steady, oblique shocks.

2. A SCALAR MODEL EQUATION

As an illustration we shall study the nonlinear, inviscid Burgers' equation

%)
c

9
ax

2
() =0

+

Q'
¢
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subject to the following initial and boundary conditioms:

1 x=0 u(@,t) =1
u(x, 0) = 0 0<x<1 u(l, t) =-1
-1 x=1

The exact solution of this problem is

- 1-8(x=2t) -S(x-1+31); t<1
X,t) =
0 1-25(x-3); tz1

where S(x) is the unit step function. This solution represents two discontinuities
(shocks) travelling away from the boundaries with velocities % and -% . When they
meet at x =3, they form a stationary discontinuity with the jump 2.

For the one-dimensional case given by eq. (1) with F=u and H=§u2 the MacCormack
(MC) scheme is:

GHRE T R =
AL BT - ol - ) (85)

where h= At/AX, Hl.lﬂ = H (17n+1) , and o=1 gives backward predictor - forward
corrector differencing, and the converse for o=-1. When u is positive, the
predictor with o=1 is upwind, and the second-order upwind scheme of Warming
and Beam (WB) is obtained if (8b) is replaced by the corrector:

1 +1 n n +1  n+l
#J‘ 3 (F] + 70 - h(Hy -2H e 1) - h (T - T (80)
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. In a steady state F?H = F? we get from eq. (8) for the MC (with o=1)
and WB schemes respectively:

-H, =0 (9a)

2H.-3H. , +H., . + H.-H. ., =0 9
j -1 j=2 HJ HJ'1 (9b)

where the superscripts have been dropped for simplicity.

The only possible exact steady solution in the one-dimensional case is

H0 =H(F0) =const. Since this solution exactly satisfies the difference egs. (8),
the steady state truncation error TS of eq. (7) 1is exactly zero. The eq. (6)

for small errors on the steady state is therefore homogeneous. For the present

scalar problem we substitute uj = U, j + eJ. into the difference eq. (9a):

(1'hu0j+‘| )u0j+'l Ej+1 +h(u0j+1+u0j) uOj €;
Un. 9 E- =0 10
- (1+hug) Yoj-1 €1 (10)
This equation, together with the boundary conditions ur;= ur11+1 =1, uﬁ=u§+1 ==-1,

i.e. € =€\ 0, 1leads to a system of linear algebraic equations corresponding to
eq. (6). If we substitute the exact steady solution Uy into these, we could
investigate under which circumstances the coefficient matrix becomes singular.
This method, however, is not very practical for more complicated situations and

a different approach is therefore taken. Let us assume that the shock is located
between mesh points m and m+1, and hence separates two regions of constant Uge
With qu =u, = const. # 0 eq. (10) gives:

(1-v) ej+1+2\)ej- (1 +v) ej_1=0 D)

where v= huo is the Courant number. Eq. (11) is a linear difference equation

with constant coefficients and has solutions of the form Ej = const. « M. Eq. (11)

gives two solutions M =1 and Ay =§—f11- , and the general solution is:

€. = k

g7k k, (1)’ (12)
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The mode A1-1 is necessary for consistency and is termed the correct mode. The
other mode is an additional solution of the difference scheme and is therefore
called a spurious mode. Since the variation of the error is exponential in space,
we shall refer to this second mode as the exponential mode. For stability of the
scheme it is required that |v | <1. A, is hence always negative, and the exponen-
tial mode is therefore oscillating. For j <m Y is positive, }\2 < =1 and the
exponential mode is increasing towards the shock. For j 2 m+1 u, is negative
and we therefore define the Courant number by wv= -huo to make it positive. In
this region the eigenvalue Ay is %}.} which means that the errors decay with the
same rate away from the shock on both sides. If we use the notation )‘2 ='¥;JT the
general solution in this region is:

= 1 j )

To study the errors through the shock discontinuity it is more suitable to con-
sider the error Gj in the flux H= }u2. In the linear approximation Gj = €
which makes eq. (10) an equation for GJ. , and egs. (12) and (13) remain valid
with € replaced by GJ.. From eq. (10) it can be seen that (12) is valid

for j £m-1 and (13) for j 2Zm+1. With j=m and Ugn™ “Yom+1 (the jump rela-
tion) eq. (10) gives a relation for the error across the shock:

-5 . =0 (14)

With the boundary conditions 61 = 6N=O we also obtain from (12) and (13):

kq = -k2 )‘2 (15)
1 N
From (12) and (13) we obtain with (15) and (16):
1.m1 N-m
1- () 1-(35)
L Sy o SO S Y (17
m T e VT A2 )
2 ped
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Eqs. (14) and (17) are two equations for 6m_1 and 6m+1. It can clearly be seen
that these equations become identical, and hence the operator I - Lj singular, when
the factors (1/7\2)1 in (17) vanish. This happens when either v+ 1 or N,m+ e,
The last possibility corresponds to 4x + 0. From eq. (17) it is also seen that
when such errors arc possible, they are dominated by the exponential modes, and
the constants k1 and k3 vanish in the above limits. The decay of the error away
from the shock made possible by the exponential modes are therefore the important
factor. This is of importance in more complicated problems where it would be
difficult to study the coefficient matrix from I~ Lj‘

Fig. 1 shows the result of a numerical computatior. of the present problem with
N=20 and v=.4 after 100 time-steps. The oscillating steady state error can
clearly be seen, although the decay of the exponential modes is relatively slow
for this low Courant number. Because of the singular nature of the error in the
steady state, the amplitude is mainly determined by the errors introduced in the
computation of the discontinuous unsteady transient. To illustrate this effect we
have also made a computation with initial conditions given by the exact solution
of the differential probiem at the time when the discontinuities have travelled two
mesh intervals from the boundaries. This leads to a morc well behaved transient in

the subsequent numerical computation. Fig. 2 shows the final steady state, and
the error is now about 1.5 $. The ratio of the errors on both sides of the shock
6m+1 /6m-1 is 1.04 in this result which is in good agreement with the value
predicted from eq. (14).

In [7] we have shown that the error equations can be made nonsingular simply by
switching from o=1 for u >0 to o =-1 foru,< 0 in the MC scheme. Computa-
tion with this switching gives the exact steady solution to machine accuracy as

T S L e SRR L R

expected. Since the cquations for constant g (12) and (13) are thc sume as
before, the error equations are nonsingular because of the special relation across
the shock which does not permit the oscillating exponential modes. This type of
switching is not very effective for more complicated systems of conservation laws,
becausc we then have several coexisting exponential modes as will be scen below
for the gasdynamic case.

A much more efficient wuyy to make the operator I-LJ. nonsingular is to use a scheme
with a different behaviour in the exponential modes. We therefore consider the
scheme with the WB upwind corrector (8c). Proceceding in the same way as for the MC

scheme on the steady state equation (9b) it is easily shown that the eigenvalue of
the exponential mode for wu, > 0 1is given by:

" R | | L
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A .\)'1
2 v-3

This scheme is stable for v £ 2 [6]. The exponential mode is oscillating for v>1
and monotonic for v < 1. The interesting fact is, however, that the error always
decays with increasing j towards the shock. If the MC scheme is used as before
for Yy X 0, the exponential mode is everywhere decaying with increasing j. Since
the error is zero at j= 1, it must remain so at every point tuwards the shock.

To keep the scheme fully conservative the switching operator of [6] must be used.
When the MC scheme is used for u < 0, a steady oscillation is still possible on
this side of the shock [9). If the upwind scheme is used on both sides, the exact
steady state is obtained as expected.

3. ONE-DIMENSIONAL INVISCID, .“WMPRESSIBLE FLOW

For this case we have F= {p, m,e} and H= {m, ."!)‘i +p, (e+p) % } whcrezthe
pressure for a perfect gas is given bv the equation of state p = (y-1) (e -% '—2—) ,
Y being the ratio of specific heats. The only possible exact steady solution is

H, = const., 1‘;’ =0 and the error equations are homogeneous as for the previous
case. H0 = const. is the Rankine - Hugoniot relation, giving a possible supersonic
state FOI and a subsonic state FOZ such that H(Fm) = H (FOZ) = llo .

A small error ¢, on the steady state FO gives an ervor in Hj which is §. 'Aj ej,
provided that the Jacobian Aj of H with respect to I is given by Aj =A(F0j) ,
i.e. we ne,lect its variation with e, . A, must also be nonsingular which rules
out the special cases M=0, %1, where M=g- is the Mach rumber, u is the velocity
and a the speed of sound. Substitution of this into eq. (9a) and using (8a) for
the error in the predictor, we get the following equation for the steady state
errors of the MC scheme:

(I-hA j A

*h(A+ A Aes - (T+hA) A =0 (18)

i*1 59 €5-1
We shall invastigate the simple case consisting of a constant upstream supcrsonic
flow FO.l ( <m), a normal shock between j=m and j=m+1, and downstream sub-
sonic flow Fy, (j 2 m+1). Since A, is constant except for the jump across the

shock, we first study the behaviour of the error on both sides of the shock by
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solving eq. (18) for A, = const.= A. The solutions are of the form ¢ "o Aj ,
which leads to the eigenvalue problem:

((A2-11 - (x’-zzn)hA)eo =0

There are obviously 3 eigenvalues A = 1 which represent the constant correct
mode. The problem for the remaining 3 eigenvalues for the exponential modes is:

TR S P
so that

s S

E X--l “’1

where w; are the eigenvalues of A given by wy=a (M+1), Wy = aM, and ws-a(M-‘l).
In the following it will be assumed that M > 0. The von Neumann condition for
stability is then for the MC scheme:

v =haM+1)2 1

The eigenvalues J\i can therefore be written

+

b o
"
<
—

3

 M(v+1) 1
)‘2 v-

A _ﬁvﬂ%-%vﬂ%
3 v1) = (v+

For v < 1 the eigenvalues are always negative which corresponds to oscillatory
increasing or decaying modes. The l.l mode is always decaying in the upstrcam
direction and does so more rapidly as v -+ 1. Fig. 3 shows 1, and A; as functions
of the Mach number for different v. The AZ mode also decays in the upstream
direction, whercas the g mode decays upstream for M > 1 and downstream for M< 1.
The A; mode is very significant since it allows errors produced at the shock to
decay in both directions away from it. The decay rates grow towards the ), mode as
M+o, As M+ 0 the decay rate of the AZ mode vanishes since Ay > -1, and the
downstream decay of the ), mode becomes increasingly more rapid, A, + 0.
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The eigenvectors ey corresponding to the eigenvalucs of the exponential modes arc
given by the column vector matrix:

1 1 1
E = a(M+1) aM a(M-=1)
1 M2 1 1
32(% M? ’M*TY':T) a? 7!- u2(~2- M -I\HV;T)

which are the eigenvectors of the Jacobian A. They ure always lincarly
independent for «y <+ 1,

Since we have taken A to be vonstant and lincarized, these results are valid for
any Lax - Wendroff typc scheme using 3 points in the spatial coordinate. It can
also be expected that the results should be locally valid it A is slowly varying,
such as for example in a slowly diverging onc-dimensional duct f{low.

In the constant flow on hoth sides of the shock the exponential part of the crror
can be written:

e.= EMNK (19)
J
where A is a diagonal matrix with M o5 as clements and Kois anoaaplitude
r=
vector. A mere suitable form of eq. (19) is:
E:j+1 = ( C_i (20)

where C=E A B

As hefore it is better to consider the error in H for the cquations valid through
the shock. From eq. (20) we get for the upstream and downstream sides respectively:

{21

Sne1 = €2 S (22)

A relation for the error across the shock is obtained from eq. (18) with j=m:
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I- hA,)) Sy * D (A +A1) 8y - (I-hA,l) $pey = 0

which can be identically written as
(I-hA) & .4+ (I+hA)) 8 = (I-hA) 6 + (I+hA) s, (23)

It is easily shown that the two sides of eq. (23) are identically zero by eq. {21)
and eq. (22) respectively. The three eqs. (21) - (23) for the errors Gm-l’ ‘Sm’
and peq aTE hence not linearly independent, and a non-zero solution can exist
for the error through the shock. On the subsonic side of the shock there is only
one mode which decays in the downstream direction, given by the eigenvalue Age
The other two modes cannot exist because they would produce an increasingly large
error at the downstream boundary where the boundary conditions must be satisfied.
The error 1 therefore has the form given by the eigenvector of the Az mode .
Because of the exponential decay with j, the rem ining error at the downstream
boundary rapidly approaches zero as the mesh is re ined, thus satisfying the exact
downstream boundary conditions. From eq. (22) the error § n in the last point
upstream of the shock must have the same form as ey » ONly larger by the factor
(V/23) 5+ In the supersonic part all the exponential modes decay upstream, and
the error therefore vanishes at the upstream bondary as the mesh is refined, thus
satisfying the given inlet conditions. Since the eigenvectors of the modes are
linearly independent, any error Gm can decay in this manner.

To illustrate this error behaviour a simple numerical experiment has been made.

The mesh consisted of 50 grid points, and the initial conditions were taken as the
exact steady solution with the shock at m=25, except for a 10 % increase in the
pressure at the first downstream point j=26. At j=1 the inlet conditions were
kept fixed during the computation with p1=1 kg/ms, my =600 kg/m2 S, e1=4.3-105 J/m3,
which gives an upstream Mach number Ml =1.60 . The exact values were also kept at
the downstream boundary. The computation was run for 2000 time-steps with upstream
Courant xsmmber v, = .9. The relative change in density per time-step was then less
than 10 ~.

shock is shown in Fig. 4. Tablel shows this computed relative error together with

The resultiag steady state relative error in the flux vector near the

the errors calculated from the linear theory above. To determine the amplitude of
the theoretical modes the error in the mass flux was chosen to have the same value
at the first downstream point j=m+1. As can be seen the agreement is very good.
Although the maximum relative error in the flux vector is only about .6 % ,
corresponding errors in density aad pressure is 2 and 4 § respectively.

T

oy
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By similar calculations it is easily shown that the exponential modes of the WB
scheme (8c) are given by:

' v-1

Ai * V-3
v _ M(v-1) -1
I (=

AL = M%v-l% - %\)'ﬂ%
3 v=3) - (v+

This scheme is stable for M>1 and v <2. For v < 1 the error is monotonic
since J\i' > 0. The l:' mode is oscillating for v > 1 , and the other two for
sufficiently high Mach number. The behaviour of A'Z and A; is shown in Fig. 5.
As for previous scalar case all the eigenvalues have the interesting property
}Ail < 1 which means that the error always decays in the streamwise direction.
Since the error upstream in the supersonic part is cancelled by the specified inlet
conditions, the exponential modes are absent down to the shock. If the switching
operator of {6] is used with the MC scheme downstream, the AS mode can still
remain on the downstream side [9] . An interesting proposal to remedy this situa-
tion is the splitting technique of Warming and Beam [15], which treats the waves
going upstream in subsonic parts by downstream differencing similar to the WB
scheme.

4. TWO - DIMENSIONAL FLOW

The basic difficulty in the two-dimensional case is due to the large discretization
error arising from an inconsistent treatment of shocks and other discontiruities.
This errcr will remain large as the mesh is retfined except in a few special cases
which are discussed below in a simplified manner. For this case the system of
conservation laws is

oF oH oG _
5T T ax * 3y 0 (24)
2
where F= {p, m, n, e}, H={m, 3= +p, "5'—'3, (e+p) 3},
2
G= {n, rzr)l_n’p‘)__+p’ (e+p) %}, n is the y-momentum, and

p= (y-1) (e -3 (m*+n?) /p).
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If shocks appear, they satisfy the steady state jump condition

yS

where dy_/dx is the local shock inclination and [-] , ['Jy are the jumps
in the x, y -directions.

The MC scheme for eq. (24) is:

Ft}ﬂ - l:.n _ _ n

Tk = Py o oy By Hio .10 = Py CRELH o, (262)
n+l 3 n +1 1 +1

Fsp =7 (F5 g F?,k - oghy (H?m K H?,k

n+1

n+1
- oyh (GJ k+o, j,k))

(26b)
where hx= At /Ax, hy= At /Ay, and Oy » 0y=t1 determines the differencing
sequence in the two directions.

The error modes are excited by the discretization errors Tj,k (egs. (6) and (7))
which act as local source terms. In the scheme considered the magnitude of these
errors are 0( Ax?, Ay?) and can thus be made arbitrarily small in smooth regions
of the field be refining the mesh. This is, however, not the case for grid points
close to discontinuities, and in the following we shall only consider the part

of Tj,k which is not necessarily 0( Ax?, Ay?). For the MC scheme this part is

T,k = UHojay = Hojor 0 * My (Ggj ka1 = Gpj, k1) ]
- - AH 27
o (AHJ K AHOj_ox’k) hxyo (AGD K~ GOj,k—oy) (27)
where h__= Ax /Ay, subscript 0 means the exact steady solution as before,

and 'EH(;, AC, is the change in H, G after application of the predictor step

on the exact solution. If the change in the Jacobians Aj x and Bj x caused by
’ 14

the predictor step is neglected, we have:
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BRy;, k= A5,k S5,k
B%;,x = Boj,k 54,k

%50k " "% Bog, i T Moo, 1) 7 9Py Coj i Boj ko)

(28)

For simplicity the case of two constant parallel flow regions separated by a
straight shock will be considered. The local difference between this case and

a smoothly varying field is only due to terms which vanish as the mesh is refined.
The term in square brackets in eq. (27) for Tj,k can only vanish in two special
cases. If the mesh is aligned with the shock, the jumps in H and G across the
shock are zero. For this case the remaining terms also vanish, and the previous
one-dimensional results are applicable.

Secondly the first termm of eq. (27) is also consistent with the shock jump rela-
tion (25) if the local inclination of the shock dyS /dx 1is equal to l/hxy , in
which case the shock is parallel to the mesh diagonals. To make the remaining
terms in eq. (27) vanish the differencing sequence cannot be arbitrarily chosen,
i.e. Oy Uy . From eq. (28) it follows that differences should be taken across
the shock in both directions in either the predictor or the corrector step, and

not in one direction in each step.

If neither of these two conditions are satisfied, the discretization error is

always 0 (1) regardless of mesh refinements. The largest errors are produced
when the scheme captures the jump in only one direction. This will occur at

regular intervals along a straight, oblique shock in a rectangular mesh.

A good example of these effects is seen in the computations of Kutler et. al. [10]
for the reflection of an incoming shock on a wedge in supersonic flow. The errors
are large along all shocks except for the reflection from the wedge surface, where
the above conditions seem to be at least approximately satisfied. The results
given here are easily extended to self-similar problems such as [10] . Another
example for a self-similar case is also given in [11] for the reflection of a
strong shock from a wedge. The mesh and differencing sequence was chosen to mini-
mize the errors along the discontinuities and the result is shown in Fig. 6.
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For the MC scheme with permuted differencing [5], the time-split scheme [8] and
the upwind WB scheme the square bracketed term of eq. (27) is the same as for the
regular MC scheme. The remaining terms are, however, always 0(1) for these
schemes. It is therefore possible that the advantage of these schemes resulting
from better stability and faster convergence towards the steady state, may be
largely offset by the better shock-capturing properties of the regular MC scheme
when properly applied.

5.  CONCLUDING _REMARKS

It has been explained in the previous sections how the discretization errors near
steady shocks can excite the spurious exponential error modes of a shock-capturing
scheme, and also why these errors can exist even in the special cases when the
discretization errors are small. We feel that proper understanding of the be-
haviour of the spurious modes is important to improve the quality of the steady
state results obtained from such schemes.

In the arguments above it has been assumed that the shock is correctly located in
the mesh. A wrong shock location can be interpreted as a large discretization
error locally and will hence lead to large errors in the vicinity of the shock.

To minimize this possibility a fully conservative scheme should be used. It is
worth noting, however, that a conservative scheme does not guarantee correct shock
locations. According to the theory above a wrong shock location in the steady
state is also possible with the use of a shock-fitting technique, provided that
the error introduced can decay sufficiently fast towards the boundaries. The reason
why the present two-dimensional shock-fitting techniques [12] work so well is
probably because the special numerical schemes used along the shock boundary tend
to suppress the oscillating exponential error modes [13]. The applicability of
such schemes is unfortunately severely limited for three-dimensional cases.

The shock-capturing approach with conservative schemes can be applied without
difficulty in problems of arbitrary dimension. The results given here are also
easily extended to multi-dimensional cases.
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Table I.

Comparison of relative errors.
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Mass flux error Momentum flux error Energy flux error
. 10° 10° -10°

j Theory Computed Theory Computed Theory Computed
23 -4.485 -4.440 -1.111 -1.079 -2.701 -2.647
24 6.003 5.898 -1.003 1.045 3.814 3.740
25 -5.912 -5.927 1.132 1.098 -4,463 -4, 449
26 4.505 4.505 -0.862 -0.886 3.401 3.417
27 -3.433 -3.433 0.657 0.639 -2.592 -2.577
28 2.616 2.598 -0.501 -0.514 1.975 1.976
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Fig. 2  Steady state solution of model scalar problem

with modified initicl conditions.
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Fig. 3 Eigenvalues A, and A, for the exponential
modes of MacCormack's scheme.
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Fig. 5 Eigenvalues A,and A, for the exponential modes
of the Warming and Beam scheme.
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Fig. 6 Reflection of shock wave from a wedge. Density contours.
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corresponding shock tube cxperiment.

R A i it




	0012A01.TIF
	0012A02.TIF
	0012A03.TIF
	0012A04.TIF
	0012A05.TIF
	0012A06.TIF
	0012A07.TIF
	0012A08.TIF
	0012A09.TIF
	0012A10.TIF
	0012A11.TIF
	0012A12.TIF
	0012A13.TIF
	0012A14.TIF
	0012B01.TIF
	0012B02.TIF
	0012B03.TIF
	0012B04.TIF
	0012B05.TIF
	0012B06.TIF
	0012B07.TIF
	0012B08.TIF
	0012B09.TIF
	0012B10.TIF
	0012B11.TIF
	0012B12.TIF



