T

fxd

- UNIVERSITY OF SOUTHERIN COLORADO

Pueblo. Colorado 81001

2200 North Benlorte Boulevard
SCHOOL OF APPLIED SCIEN' K AND ENGINEERING TECHNOLOGY

TINAL TECHNICAL REPORT

NASA Grant NAG 2-2

\

' “Investigation of Distributed Microcornputer

,’ Methods for High Authority Auto Flight Systems"'
|
‘
!

(NASA-CR-163615) &R
ANP: A FAULT TO ,
2§§ggIBUTED MICROCOMPUTER STRUCTUREnggNT N30-33415
Techn;gilugvxagylou AND CONTROL Final
| : eport, 1 Oct., 1979 -
u i . 1 oct.
/ { aner:51§Y of Southern Colorado, PUeblgg,eo 63,08 g:gé:;s

Principal Investigator: William R. Dunn

& Period Covered by
. October 1, 1979 -

Report:
October 1, 1980

University of Southern Colorado
2200 N. Bonforte Boulevard
Pueblo, Colorade 81001

Institution:

- g e

RAMP - A FAULT TOLERANT
DISTRIBUTED MICROCOMPUTER STRUCTURE
FOR AIRCRAFT NAVIGATION AND CONTROL

W. R. Dunn

September, 1980

R

RAMP - A FAULT TOLERANT
DISTRIBUTED MICROCOMPUTER STRUCTURE
FOR AIRCRAFT NAVIGATION AND CONTROL

‘W. R. Dunn

ABSTRACT

Bascd on recent, continuing advances in semiconductor
technology, classical N-Modular Redundancy appears to be a
viable approach for designing ultra-safc flight control systems
in the ncar future.

RAMP consists of distributed sects of parallel computers
partitioned on the basis of softwarc and packaging constraints.

To minimize hardware and softwarc complexity, the
processors operate asynchronously. It is shown that through the

design of asymptotically stable control laws, data crrors due to

W. R. Dunn is with the University of Southern Colorado, in
Pucblo, Colorado.

the asynchronism can be minimized. It is further shown that
by designing control laws with this property and making minor
hardware modifications to the RAMP modules, the system
becomes inherently tolerant to intermittent faults.

A laboratory version of RAMP has been constructed and
is described in the paper along with the experimental results

obtained to date.

I. INTRODUCTION

The avthors are currently engaged in an avionics systems
research program sccking design methodologies for realizing
future high authority autoflight control systems. This effort is
broad in scope and includes control law devel)pment, experimenta-
tion with sensors and actuators, and the investigation of distri-
buted microcomputer architectures. The latter, in parlicular
the redundant asynchronous microprocessor {RAMP) structure
is curicntly being invcestigated and is the subject of this paper.
Before describing RAMP in detail, it is useful to first describe
the general structure and the key clements that collectively
make it a new and different approach in implemernting digital

avionics systems. This is donc in the following section,.

I, RAMP . AN OVERVIEW

Given the requirement for increased aircraft operatioi ai
complexities by the 1990's (real time air traffic control, fuel
minimization, autoland, ctc.) it ir clear that the digital computer
will become the dominant component in avionics systems
implementations. This need for these more complex operations
is at first sight an invitation for more complex avionics systems.

It has been the authors' core philosophy to research
concerts and methodologics that maximize digital avionics
system simplicity without compromise of future operational
requirements.

One result of such work is the compact Total Automatic
Flight Control System (TAFCOs) algorithm (described in
References 1 and 2) applicable to highly non-lincar systems.

This same thinking has led the authors to depart from
the conventional (c.g. data processing industry) approach of
employing dimtal systems in an avionics environment and to
instead investigate RAMP. Before discussing the extent of
this departure, it is useful to describe the overall approach

being taken as follows.

As seen in Figure 1, RAMP comprises a connected
network of microcomputers which has as input command and
sensor information and which generates servo information to
drive actuators, thrust linkages, etc. Each microcomputer
in the network moreover performs a specific, well-defined
input/output function such as sensor data conversion and
preprocessing, execution of flight control algorithms, servo-
positioning, etc. Although consisting of digital syscem
clements, the network is intentionally structured and operated
as a conventional analog control system: sensor data are input
and servo data are output as a function of command mode inputs.

Correspondingly, the individual microcomputers 'appear"
as analog-like elements each having a precdetermined set of
(command) sclectable input/output characteristics. The micro-
computers at each node are moreover autonomous:

1) Each has its own clock, i.e., the network has no
master or central timing reference with the result
that thc microcomputers in the network are not
synchronized.

2) The computers arec electrically isolated to the
extent that hardware failures do not propogate

from a given, failed microcomputer.

2-2

T RN S

3) Interconnect between microcomputers is confined to
data traffic such that a given microcomputer simply
""broadcasts'' messages to one or more of the other
microcomputers in the network, the received
messages being authomatically buffered and used by
the receiving microcomputers.

Finally, to insure flight safety in the event of hardware
failures, redundant microcomputers arc employed at each node
as depicted in Figure 2 such that failures in a transmitting
microcomputer (or the associated data transmission path) will
be recognized by a receiving microcomputer in that former's
data will be disparate with that of the remaining ''good" micro-
computers. Hence the recciving computer (which normally
will also be rcplicated) can select the correct data.

Now this approach differs from the conventional, data
processing approach (c.g. References 3 and 4) to digital systems
implementation in several respects:

1) The RAMP network and modules are structured

to perform a limited range of specific, analog-like

funciions; this is to be contrasted with the use of

a nctwork of gencral purpose computcers.

2-3

e e T e e
BT SRR

e —— U

-

By e e v g
e W
S

2)

3)

4)

The RAMP microcomputer modules are autonomous;
the system does not employ an operating system,
global executive software or complex intermodule
communications software.

The modules are not synchronized; i.e., central
timing hardwarc and software are not employed.
Finally, tolerance to hardware failures is

achieved by static redundancy (Reference 5), i.e.

results of a failed microcomputer are simply

rejected; this is donc in lieu of dynamic redundancy
(Reference 5) wherein the distributed computer
system pcrforms real time fault detection and re-

configuration of the system.

These foregoing differences are summarized in the

table which follows.

2-4

TABLE 2-1: RAMP VERSUS CONVENTIONAL IXGITAL SYSTEMS

IMPLEMENTATION
RAMP CONVENTIONAL

o General purpose
Data processing
Implementation

e Fixed function,
Analog-like
Implementation

e Centralized Operating
System, Global Executive
Software, Intermodule
Communication
Softwarc

e No operating system or
Globsl Exccutive.
Limited module-to-module
communication soitware

e Asynchronous e Synchronized

Dynamic Redundancy-
Requires Rcal Time
Fault Identification
and Reconfiguration

e Static Redundancy °

o Low Complexity e High Complexity

2-5

RN v . . Kt g R s, AT 5 .
. i L s i g
[T AP

II. THE RAMP NETWORK STRUCTURE AND OPERATION

The previous section has described the general architecture

employed in RAMP.

Figure 3 shows a specific network structure based on

the RAMP corncept which is being investigated by the authors in

the current flight research program. As shown, computers arc

distributed into five sets of triplets (e.g. N = 3).

There are three reasons for partitioning the computation

given in their order of importance as follows:

1)

2)

Figurc 3 shows that the system computation process
divides into threec groups: scnsor/command pwo cessing,
the control algorithm and servo processing. In the
airborne application, ecach of these groups would be
expectcd to physically reside in different parts of
the aircraft system. (I.e. the partitioning into
disti> ¢t computational sites is actually governed by
packaging and cabling constraints.)

As will be discussed in mox:e dctail in Section V,
the reliance on static redundancy for flight salety
presumes that each computer be fully sclf-tested

before flight. The distributing of the computation

D T T S 0 £ TR "SXOME T2 S eIy e m v D1 maar

3)

load into several, smaller microcomputers facilitates
reasonably short yet comprchensive preflight tests.
The final motivating factor in distributing the comp-
utation is that hardware boundaries can be set on
the system softvare. E.g., as depicted in Figure 3
software is partitioncd into corrcspending hardware
modules with the result that software can be con-
currently developed and, more important, modified

without effecting the remainder of the software in the

system.

The neotwork opcrates in the following manner:

1) Microcomputers in the sct {,Mlj} input data from a triply

redundant set of scnsors” and redundant (crew
generated) commands, the latter consisting of
trajectory waypoints and flight modcs. The micro-
comjut crs process the senscr data (correct values
being sclected from the redundant inputs) and
derive estimates of the ai rcraft states. Corres-
pondingly, corrcct waypoints and mode commands

are sclected. (The exact mechanics of this

%
It is also possible in this tvr~ of application to employ an
analytically redundant scnsor mix as described in References
6 and 7.

3-2

selection process are discussed in the next section.)
Each microcomputer in the set {M”% transmits
results to all microcomputers in the set {.sz} .

2) As noted, each microcomputer in the set {szf
has the results of computations made by all the micro-
computers in the set L.Mlji . From this sct of
inputs, each microcomputer in {sz} selccts
by voting, the correct statc cstimates, command
modes and commanded waypoints and comput cs the
trajectory to be flown by the aircraft. Thesc results
arc then transmitted to microcomputers {M3j25

3) This process continues in a similar manner, micro-
computers {M3j§ selccting results, computing the
confrol (using the commanded and actual trajcctory
statcs) and transmitting these to {M‘ijf and so on.

4) The final sct of microcomputers {Msjﬁ dri ve
redundant actuators. (A current trend in ultra-safe
actuator rescarch is not to use redundant actuators
but instead single actuators with rcdundant hydraulic
valving systems. These devices operate on redundant
electrical inputs. Sce for example Reference 8.)

It is seen in this description that information flows from

Jeft to right in the figure. Each microcomputer morcover

3-3

e ——— —
— .

operates recursively in what will be referred to subsequently

as computation ''frames'. In the current experiments, the
period T of these frames is constant (T = 50 ms. in the present
laboratory version of RAMP.) (Section VIII discusses this
aspect of timing in more detail.) As a result, the computation
process of the system as a whole is a combination of parallel
processing (e.g. the microcomputer set {MZJ} } and pipeline
processing (Figure 4).

A key feature of the RAMP structure as depicted in
Figure 3 is that each microcomputer in the network is designed
to be autonomous. This autonomy is achieved by:

1) Letting each microc.omputer have its own clock

such that as a whole, the system is not dependent
upon a central timing reference.

2) Having each microcomputer employ a set of buffer
memories that are independently written by other
microcomputers in the network. The configuration
of these memories and the interconnecting communica-
tion paths are depicted in F'igure 5. The essential
features of this detailed structure are:

a) Each microcomputer in the set é-Mlj-z writes
data into all microcomputers in the set
'{'M.“ .'7* Data are simply "forced" into
Litl,j)

these memories during the former's computation

3-4

E

——— - —

2R e st e e GOSN

frame. (l.e. there is no "handshaking'" or

other coordinating of the data transfer between

microcomputers.)

b) Each microcomputer in the set {M. § ,
itl,j ;
fetches data from the buffer memories when

(The

nceded during its computation frame.

mcans of avoiding read/write conflicts is

|
discussed in Section VIII.) ;
i

c¢) Electrical isolation (e.g. high impedance and/or

optoisolation) is employed as shown between
camputers.
The purpose of providing this autonomy is to prevent
propagation of hardware failures in any given microcomputer
or in any given transmission path to the other hardware clements

in the system. As a result, for the system of Figure 3, up to

onc microcomputer in cach triplet can undergo a2 hardware failure
without affecting the hardware integrity of the remaining pair

of microcomputers in the triplet.
Now the handling of such failurcs has been somewhat

vaguely referred to in the foregoing {e.g. sclection of "correct"

data, ''voting', ctc.) This topic is however central to the RAMP

3-5

B e e U -
St~ A e))
T) r

concept and discussed at length in the remainder of the paper.
Before embfn‘ldng upon this however, it is important to note that
the employment of asynchronous microcomputer modules places
an important constraint on the design of the control laws imple~

mented in RAMP. This is discussed in the next Section.

3-6

“-rv— v T Ty I, T T 7T TTRE ATUR e L e

e e e e AL 1 R e A ENAT PEINIR

1V, FLIGHT CONTROL WITH PARALLEL, ASYNCHRONOUS
COMPUTERS

A characterising feature of RAMP is that each micro-
computer in the network has its own clock. Hence as a result
of variations in (oscillator) components from microcomputer to
microcomputer, operation of the system as a whole is asynchronous.
It has alrcady been stated that this asynchronism places
‘ an important constraint on the design of the control laws hosted

by the network. This is discussed in the following.

| With little sacrifice of generality, consider a set of
’, parallel computers employed in the control of a plant as
|
| jllustrated in Figure 6. In the current control law work, aircraft
control u is obtained from the plant states y using the following
recurrence equation:

ufi +)T = Au (iT) + By (i + 1)T (4-1)
where T is the period of a computation frame (Sce Section III and
Figure 4). Referring back to Figure 6, it will be assumecd that
only computer Cj is selected for control of the plant and that
its computation frame has period T. Correspondingly, it will

¢ be assumed that the remaining computers have different and

!
b
*

unequal computation frame periods such that only computer CI
is selected. (Some generality is lost here since the select
process is a function of thc output of all the computers. What

fol’ows therefore is a necessary condition for the properties

of Equation 4-1).

Next consider the case in which computer CJ has a
shorter computation frame period by an amount 3 T such that

after exccution of n computation frames by computer CI'

bt B e e e o o

computer CJ has executed exactly (n + 1) computation frames,
i.e.,

n$T = T (4-2)
Looked at another way, computer CJ would execute exactly
one more computation frame than CI cvery nT seconds.

It is shown in Appendix A that duc to the timing error,
computer CJ will generate an error having the following
rccurrence relation:

WG + nT = AL GaT)
A" (A - 1) u(jnT) + A By(jnT) (4-3)

It is shown (also in Appendix A) that to guarantee con-

vergence of this error, it is nccessary that the control law being

computed (by all the computers) be asymptotically stable.

4.2

e im0 b et ks,

I

(This result can in fact be obtained in a more general
manner by arguing that the outputs of the desclected computers
are uncontrollable such that to insure convergence of the error,
the control law being executed must be asymptotically stable.)

The cffects of the timing error car be illustrated by
considering the example of Figure 7 which depicts a simple
sccond order system cmploying a stable, mectastable and unstable
control as shown. The system response (to a unit impulse)
is the samec for each controller and is shown in Figure 8a.
Figurc 8b shows time historics of the errors that would exist
in a deselected computer having a 10% ﬁming* error (i.e.,
..%T_ = 0.1.).

To gencralize these examples, it is clear that by
employing an unstable or mectastable control algorithm, a
deselected microcomputer can, as a result of timing crrors alone,
accurnulate excessive data crrors or possibly be incapacitated
(e.g. as a result of overflows).

Conscquently, in RAMP (more specifically in the TAFCOs
algorithin discussed briefly in Section II), the control laws are

designed to be asymptotically stable. This design policy, which

*
In the practical application such errors are typically
much smaller, e¢.g., -01% to .001%.

4-3

e . T O

e A e i T SR T
B

A
SRk,

permits control of data errors due to timing, has an equally

important role in RAMP's tolerance to intermittent faults.

Before discussing this aspect, the subject of faults and

fault tolerance is first explored in the following sections.

4-4

A B A A N s 53455 5 5580 St el - o
' - . Y
el . S sy -y Lo L,

r—u—-.- BN R it ot i o e e+ ST)

V. FAULT TOLERANCE, MASKING AND IDENTIFICATION

In the previous section, the RAMP concept has been
illustrated using triplicated computer sets such that each computer
(with the exception of those interfaced to the sensor inputs) has
three buffer memories.

In terms of the general concept of RAMP (Scction II)
each computer will have N (= 2n + 1) memorics containing data
generated from N redundant computers. (In general, more
than onc redundant set may input to a given computer in which
case there will be as many mrmories as there are computers.
This case becomes obviously included in the discussion that
follows.)

Each of the N memories will in turn contain a total of
K (rcal number) data valucs placed there by the corresponding
transmitting computer. This is illustrated in Figure 9 where
for cxample Djk corresponds to the jth data value in the kth
buffer memory.

Now where there are no tinming e.;rrors (i.c. differing
clock rates in the transmitting computers) or faults (in the
transmitting computers, data transmission paths, and/or the

buffer memories), the data in a given row of Figure 9 will be

5-1

- B e P otk R w ae it

e

identical. However, where timing errors or faults exist,
these data values can differ.

The basic approach in RAMP is to use these data in pro-
viding fault tolerant performance of the system. Before discussing
the specific strategies employed by RAMP, it is necessary to
consider the nature of the faults themselves.

First, it is assumed that the faults result from random
hardware fa.ilures.* I.e., common mode or ''generic'' sources
of failure arising from design mistakes, external effects due to
heating or EMI, fabrication mistakes, ctc. have all been accounted
for in the system design and development process.

Second, the faults being considered may be either permanent
or intermittent (Reference 5). (Intecrmittent faults are a crucial
issue in the "recal world' implementation of systems such as
RAMP and are discussed in Scction VII.)

Third, it is assumed that the Faruvare faults cxperienced
in a given module are confined to the r..odule and do not propagate
(i.e. the microcomputer modules arce fully «atonomous). Note
that this latter assumption is readily c;anfirmed in practice by

simply cnumcrating the input/output hardware failure meodes for

*For the electronic components of the type employed in micro-
clectronic systems such as RAMP, a constant failure ratc model
is employed. Scc for example, Reference 9.

5-2

. o vl

g g i

sk i cunil

T TTERTIYOE TS e svems ow ~rs ~- —

B

each microcomputer module and verifying that none effects the
function of the remaining microcomputers in the network.

Given these types of faults, RAMP employs two basic
methods for realizing fault tolerant performance:

1) Mid-Value Select

Due to variations in the clock rates in the individual

microcomputers the data values corresponding to the
rows of Figure 9 will include errors due to timing.
I.e., the data values will be dispersed along the

rcal line as shown in the example of Figure 10.

The basic strategy employed by all the micro-
computers in RAMP is to sclect, as the correct :
data valuc, the mid-value of these dispersed operands

*
(c.g. D, in Figurel0). More sharply stated, given

j2

the set of N (= 2n + 1) distinct valucs {(some subsets
of which may be ecqual) in a given row of Figure 9,

a value will be sclected such that there are cxactly 3
n distinct valucs greater than or cqual to it and
exactly n distinct values less than or equal to it.

The postulate here is that this mid-value will

approximate, with a known error, the corrcct value

sk
Mid-values for the sensor and commmand values are

selected as well.

in spite of any kind of failure in up to n of the
transmitting microcomputers. (A detailed argument
behind this is reviewed in Appendix B.)

The net result is that for a given set of data
values, only one value is selected and 2n are
ignored. I.e., the selection process ''masks" the
results of any failed units and the remainder of the
"good'" units.

2) In-Flight Fault Identification

The fundamental strategy behind RAMP is to
rely on the known reliability of redundant hardware
to safely cxccute flight-critical operations. Specifically,
RAMP docs not employ any software other than the
mid-valuc seclect to compensate for faults experienced
in flight.

Faults expcrienced during flight are however
jdentificd but for two diffcrent purposes:
a) To alert the flight crew that failurc(s) has

occurred. Here, the decision to continue or

to abort flight critical opcrations with the

degraded system is a crew decision.

b) To provide a flag and rccord for system

5-4

R

maintenance of both permanent and intermittent

faults experienced during the flight operations.

The basic approach to in-flight fault identification
is simplc threshold dctection which is described as
follows.

Referring back to Figure 10, it has already becn
noted that somec of the data values will be dispersed
as a result of timing crrors in the computer clocks.
Bascd on anciysis and flight test results, an cxpected
maximum range can be determined for the dispersion
of thesc data. Corrcspondingly, maximum ranges
can be cstablished for cach redundant scensor and
redundant cammand* inputs. During flight, the actual
range of cach data valuc is determined and compared
to the corresponding, predetermined maxdmum
range. Where the actual range excecds that maximum,

the flight crew and maintenance recorder are signalled.

To this point in the discussion, little has been
said about system reliability which is of course the

major concern with RAMP. Reliability modelling and

% Digital command inputs must of coursec be identical.

I N

techniques for deriving reliability estimates arc well
covered in the literature {(e.g. References 9 and 10}
and will not be discusscd in this paper with one
exception. This is the fact that to estimate the
reliability of RAMP for flights of given duration
(e.g. ten hours maximum) it is necessary to
detcrmine, at the outsct of flight, the existence and
nature of any faults residing in the system.

As a result, the RAMP system must be tested
prior to flight. This is discussed in the next

Scction.

5.6

~—— e e

Vi, RAMP PREFLIGHT TEST

It has been pointed out in the previous section that in
o-der to derive valid estimates for the in-flight relicbility of
a given implementation of RAMP, a rreflight test is required.
Ideally, onc seccks to design a test that will verify that no
faults exist. Morcover, the time required to perform th- test

must be short (in the RAMP application the preflight test

time should be under ten minutes). Now it is well Ynown in

digital systems practice that the problem of fully testing LSI
components of the type employed in RAMP is intractable to the
extent that the required test times have astronomical dimensions.
Instcad, onc scttles for testing to a given ''coverage'', defined
as a ,orcentage of all possible faults that can be uncovered with
a given test method. (Sce for example Reference 11).

Before procecding with the discussion of this subject it
is appropriate to point out that the problem of designing tests
to 2 known coverage and morce important preving that such
coverage has been obtained is at present an open research
question. This applies not only to RAMP but in fact to LSI-bascd

systems at large. What follows therefore is a description of

the authors' approach to this problem in the context of designing
and verifying the preflight test for RAMP.
Before discussing the approach to fault testing, it is

necessary to look more closely at the nature of the faults

themselves. Recalling that the microcomputer modules in RAMP

do not propagate their failures, concern is confined to the ways
a given microcomputer module can fail.
To do this, a "top-down'' or fault tree (Reference 9)

approach is currently being investigated. This approach is

explained by the following example.
Consider a single microcomputer module executing the

control algorithm given by Equation 6-1. This is illustrated

in Figure ll1a, where the control algorithm consists of the
repetitive execution of the arithmetic replacement statement,

u = Au + By. (6-1)
It has already becen pointed out that each RAMP module operates
recursively, inputting data, performing mid-value selection,
performing threshold detection (to flag inflight errors),
executing the control algorithm, and outputting results. This
process is illustrated by the program shown in Figure l1b in

which all the foregoing functions with the exception of the control

6-2

algorithm are performed by procedure (i.e. subroutine) calls.
The TIMEOUT procedurc is invoked as a part of this code in
order to cstablish the computation frame time T (Scction L)

Hence, the program of Figure 11b is endlessly executed cvery

T scconds. |

To begin the discussion of faults from a "top-down'

vicwpoint note first that the microcomputer module exccuting

|
the algorithm of Figurc 11 has just onc failurce mode: it will

| not generate a correct y(t) for some wu(t). It is the postulate

that in RAMP modules this single failure mode can arise from

B s B B

I
!
!
)
; only three kinds of faults:
f . .
‘ 1) Faults that cause data alteration.
l 2) Faults that result in improper exccution of the
desipned code.
§ 3) Faults that cause coxcessive fiming crrors.
| u
Considering the first of these, it is further postulated
that under the assumption that the code is being correctly
exccuted, the microcomputer module data can be altered only
}‘ as a result of one or more of the following: .
a) Faults in the path(s) conncceting the input data

y(t) to the CPU (i.c. accumulator)

6-3

b) Faults in the paih(s) connecting the CPU (i.e.
accumulator) to the output of the module.

c¢) Faults in the constant data (c.g. A and B

in Figurc 11) store.

d) Faults in the rcad/write data (e.g. u) temporary

storc.

e) Faults in the CPU that correctly evaluate
arithinctic and/or logical cxpressions for some
operand pairs but not others. In the example
at hand such faults would include thosc that give
invalid results for u for some valucs of y but
not others.

Next, in considering imp-oper program execution, we first
note that in RAMP the instructions are fixed, i.e. cach module
is preprogrammed to repetitively execute a predetermined, exact
sequence of instructions. The instructions moreover fall into
two catcpories:

a) Those that arc data-sensitive. I.c. the path taken

in the program flow is determined by the data being
processed. (Data-scensitive instructions are illustrated
in Figurc llec.)

b) Those that arc data-insensitive (c.g. the procedure

6-4

e

—— — ——

ﬁ\"

CALLS, and JUMP TO TOP instructions in

Figure 11b).

Corrcspondingly, improper program cxecution can be
traced to:

a) Faults in the CPU that correctly exccute data-sensitive

instructions for some data values but not others.

b) Faults in machine code store, instruction counters,

address decoders, rcad/write stack, etc.

Finally, cxcessive timing errors can be traced to faults
in the fiming reference (c.g. crystal), oscillator amplifier
fajlures, ctc.

The discussion of the example is summacized in Figure 12
which the authors postulatc embraces all the possible ways a

RAMP module can fail.

The objective of the preflight test therefore is to test for
the faults depicted at the basc of the Figure. Since the preflight
test is initiated immediately after system start-up (Scction VII), the
s*stem will initially "appear' synchronized. (For example,
if the clock frequencies of all the microcomputers are within
a rcadily achicevable .001% of onc another, a system with a50ms ‘.
computation frame rate will "appear" to be synchronized for

some 80 minutes after system startup.) Hence, the preflight

6-5

test will be carried out during this period of apparent

synchronization.

In the current work. .(he plan is to carry out the preflight

test for each module in two steps:

1) A seclf-test of cach module would be initially performed

to:
test the CPU for faults associated with

a)

evaluation of arithmetic and logical operations

and the testing for faults in data scnsitive

o S DL e e,

instructions.
b) test the recad/write store.

This test would be carried out concurrently by all the

microcomputers.

2) An input/output test. To perform this test, the

RAMP structure would be supplemented with two
microcomputer modules, onc that inputs test patterns
to the scnsor/command microcomputers and a sccond
to monitor outputs of the servo microcomputers. ¢
Given these additioral microcomputers, and
referring back to the basic structure of RAMP as

depicted in Figure 3, the network structure under

test would have cach set of redundant microcomputers

.

™ This latter computer would also be employed for in-flight

fault identificalion.
6-6

| AR e i St ST
; e e i 2o

— — e

- T T e — o

T e A RTINS e s e e

receiving test inputs from at lcast one microcomputer

and each set would likewise be monitored by at least

one microcomputer. In executing the input/output

test, each microcomputer in a redundant set would

accordingly:

a) Generate checkwords signalling success or
failure of the seclf-test.

b) Receive and verify input test patterns validating
data input paths.

c¢) Transmit all the contents of its constant store.

d) Rececive a sequence of data inputs that test al‘l
paths in the instruction code and transmit the
results to a monitoring computer (i.c. to the
next sct of redundant computers or the micro-
computer monitoring the servo microcomputers’
outputs).

e) Transmit its value of time.

{f) Transmit test patterns to check the downstream
computers inputs.

g) Generate data patterns that will exercisc all
the instruction paths in the downstream
computers.

Recalling that the system appcears synchronized

during this test, cach microcomputer meonitoring a

6-7

—~——

redundant set must receive identical data from each
microcomputer in that set. Success of the preflight
test is accordingly achieved by a '"bit-by-bit'" match
of thesc data for the full duration of the test.

Returning to the subject of coverage, the foregoing test

covers all the faults depicted in Figure 12. Given the validity
of the postulate that these represent all possible faults, the
actual coverage that can be attained by this testing procedure is
governed by:

1) The coverage that an be achieved in the CPU and
rcad/write store sclf-tests.

2) The pcobability of compensating faults, e.g. a
failed CPU test routine that signals a ''success"
checkword.

The foregoing preflight test approach is currently being

investigated with the current laboratory version of RAMP

(Scction VIII). Results will be presented in the future.

VII. INTERMITTENT FAULT TOLERANCE

In Section V it was noted that faults can be classified
as being either permanent or intermittent.
Of these two types of faults, the permanent faults are
best understood: the bulk of the available electronic component
failure rate data and failure mechanism models are based on
permanent faults, they arec more readily uncovered by testing,
and their cffects on system performance easily determined.
Intermittent faults on the othcr hand are less understood yet
in the 'teal world'application account for the majority of failures
in computer systems (some 80% to 90% as estimated in Referencel2).
For the purposes of the discussion that follows, these
intermittent faults can be inclusively classified as being either

permancnt or transient. In the context of the microcomputer

systems of the type that would be employed in RAMP such

permanent faults arc those in which an intermittent fault has

altercd normal program flow to the extent that the microcomputer

: enters an infinite loop, enters a halt state, etc. I.c., the micro-

computer system is 'crashed". With the transient faults however,

normal program flow is resumed after disappearance of the

7-1

intermittent fault but usually with the consequence that the data
being processed have been altered. These two conscquences
of intermittent faults arc depicted in Figure 13 which also shows
how these relate to the faults discussed in the previous Section.
Note in the figure that intermittent timing faults result
in transient system faults. This particular type of fault has
been indircctly discussed in Section IV, i.e., by virtuc of
use of an asymptotically stable control law, the errors introduced
by an intermittent timing fault will, in time, converge to zero.
Now it should be clear from Figure 13 that this will also be the
case for all the other intermittent faults that produce transient
system faults. I.e. the RAMP microcomputer module is
inherently fault tolerant to thesc types of intermittent faults.
Permanent system faults, i.c., those resulting from
broken p-ogram flow, can be accommodated by the simple
expedient of using external hard\vare* to detect a loss in program
flow and force the microcomputer into a restart or retry
(Reference 12) operation. This can be done in a (probably
endless) variety of ways. Hence, the .following describes one
such approach mainly to illustrate the simplicity and cffectiveness

of the basic idea.

As will be scen, such cxternal hardware is alrecady available
in current microcomputer components.

7-2

AL v i«

JIESEE A AES S o Rl SEL TR .
| it B e e
B Siiidiion

e et e

i s e e R - e
T e S e e psemss i h T BTy - s

First, notc that to initiate operation of a microcomputer,
the device is normally supplied with an external reset signal
(or l'mlse) that results in the start of the computer program at
some predesignated location (i.e. address). Since ecach RAMP
module will be expected to perform different functions (¢.g. the
preflight test, processing of the flight algorithm, etc.) the
module will receive (i.c. have deposited in buffer memory)
not only data, but a command word that when fetched will
indicate the specific function the module should be performing
at that time. Hence, to start system operation, a RAMP module
will be given a hardwarec reseot and its program will "look'" at
the command word (which fellowing the previous section, will
signal the module to begin the preflight testl. At the completion
of the preflight test, the microcomputer module would receive a
diffecrent command word to signal start of processing of the control
algorithm.

Given this, a retry or restart duc to broken program flow
can be achieved using the hardware structure shown in Figure l4a.
The idea here is to supplement the pro.gram employed in the
RAMP module with output instructions such that under normal

program flow, a pulse is output during cach computation frame.

7-3

B e e

i

- T e s e
e e,

. T e sy o
T i e g a T T .
T s s e sa e e e D e T et e e o g g s s
: TS g e i S

I.e. in the unfailed condition, the microcomputer will generate

a pulsc train of period equal to the computation frame period

Tl' Each of these pulses in turn will retrigger a monostable
multivibrator as shown in the figure. As long as this pulsec

train is maintained, the multivibrator will output a constant

level (OFF) as shown in Figure 14b. In the event of broken
program flow, it can be expected that this pulse train will cease.
Now the monostable multivibrator is adjusted such that at a time
T?. (TZ) Tl) after the last pulse (Figure 14b) its output level
shifts (ON) as shown. This output in turn is wsed to gate an
astable multivibrator (Figure 14a) which in this gated condition
gencrates a train of pulses having period T3 (>Tl) as shown in
Figure 14b. The function of cach of these pulses is to reset the
microcomputer such that it begins processing at the reset address,
fetches the command word and recognizing that it should be
executing the control algorithm begins processing the algorithm
from some predesignated initial state (c.g. W = 0 in Equation 6-1).
Successful resumption of computation restores the pulse train
driving the monostable multivibrator ca;using its output to return

to the OFF level. The astable multivibrator in turn is gated off

as shown.

o

Finally, it can be cxpected that the algorithm will initially
be computing incorrect states following the retry. However,
bascd on its convergence propertics, it will, in time, recach the
correct statc.* Hence, the above reset circuitry plus the
convergence properties of the control law provide a RAMP
module with the inherent high tolerance to intermittent faulte

enjoyed by most analog systems.

s
lI.c., as a result of the intermitteat fajilure the module wili
be desclected and hence be running 'open' loop.

7-5

VIII. LABORATORY IMPLEMENTATION OF RAMP

In order to verify its underlying concepts, RAMP has
been implemented in the laboratory as shown in Figure 15.
Here, as shown a pair of redundant microcomputer triplets
are uscd to gencrate trajoctory commands and provide tra-
jectory and attitude control of a rotorcraft plant mechanized
on an analog computer. (Only the pitch plane has been
mechanized in the laboratory; a full, six axis version of RAMP
is currently under development.)

The basic microcomputcr module employcd in the
laboratory is shown in Figurc 16 along with its basic specifications.
This structurc was sclected by the authors as heing representative

-

of what in the 1985-1990 dcsign period may be available on a

%*
single chip or, at most, a thrce chip family (e.g. sec Refcrence 16).

Each of the modules arc implemented on a single card, the six
modules interconnccted on a wired backplane.
In the laboratory, the basic microcomputer module of

Figure 16 is employed as a sensor microcomputer (the first set

The laboratory version employs a 16-bit architecture with
NMOS technology. Future, single chip versions may be
available in 32-bit architecturcs with faster (c.g. SOS)
technology. Sce Referencel3 .

of triplets in Figure15) and a servo computer (the second sect

of triplets). The structurce of thesc modules is depicted in

Figure 17 and their opcration explained as follows:

1)

Each of the three sensor modules (Figurc 17 a)
selects (analog) outputs from the ruurrcraft plant
and converts thesce to digital representation.
(Non-redundant sensor inputs havc been used to
datc.) The computer then gencrates trajectory
commands (range and velocity) and executes a
trajoctory control algorithm bascd on the errors
between these commands and the actual aircraft
states. The outputs of the trajectory control
algorithm are attitude control commands which,
along with the mceasurcd attitude control staces
(pitch attitude and pitch rate) are written to the
buffer memories of the gervo modules. (Refer
again to Fipure 3 for the structure of the inter-
connect between modules transmitting and receiving
buffered data.) In addition .to those conumand and
data values, & "data ready” signal is transmitted

to indicate to the receiving (servo) microcomputer

R R e

i TN

that the memory has been written. The purpose
of this signal is to circumvent the conflict of the
receiving microcomputer trying to read a memory
simultaneously being written by a transmitting
computer.
2) Each servo computer in turn reads the contents
¢of its buffer memories, performs the midvalue
se'ect, threshold detection, executes the attitude
control algorithm, and generates an analog control
(Figure 17b). Control outputs feed a model of a
"fly-by-wire" actuator (Figure 15) which in turn
outputs a single control to the aircraft plant.

The above implementation of RAMP has verified that the

e e

basic concepts behind RAMP can be realized in practice

! specifically:

’ 1) Minimum Complexity Realization

One guage of complexity in a fault-tolerant
computational system is the amount of "overhead"

that is required to provide fault tolerance. In terms

L_IV of computational resources, one is concerned principally
with the demands on available program memory and
execution time. Figure 18 shows the fractions of
8-3
]

————

2)

3)

program memory and execution time that constitute
the overhead of the currcnt laboratory vereion of
RAMP as would be applied in the six-degree-of-
freedom application. (In the figure "FAULT"
refers to the midvaluc-select,threshold~detect
code, "COMM!" to the code for writing and rcading
buffer memories, "OTHER' referring to the modules
mainline program, initialization proccdures, etc.
"AVAILABLE" refers to that portion of the resource
which can be uscd for the modules intended
application.)

Note that the pre-flight test is not included
in the figure (the current version being evaluated
employs approximately .5K of program memory
and requires approximately 4 ndnutes to execute).

Asynchronism

Clock rates can and have been varied in the
laboratory to demonstrate the convergence properties
of the asymptotically stable control algorithms.

Mid-Value Sclect; Threshold Detection

The mid-value select strategy has, to date,

been employed in the laboratory simulations with

s Bne

4)

B s T

g e v —_—

T TR T —y

no offects on system stability or accuracy. The
coverage of the threshold detection process is still
under investigation and will be reported in the
future.

Intermittent Fault Tolerance

The reset circuit mecthod described in Scction VII
has been implemented and tested successfully in the

laboratory.

X, CONCLUSION

As explaincd earlier, the RAMP is cargeted to the | i
VLSI microcomputer components that are projected to be
commercially available in the late 1980's. I.e., implemecntation ,
of RAMP using prescnt-day components is not practical chiefly
due to the large volumes required for packaging. Correspondingly,

the reliability levels that can be aclicvced by RAMP will depend

upon the recliabilitics of thesc future components. LSI semi-

-———

conductor failure rates (on a per-gate basis) have continued
to decrease with improvements in screcning and proccssing
technology. It is the industry's goal to continue this trend,

’ in the face of the new and forceful challenges which VLSI

' technology will present (Reference 14). Hence, the viability
of RAMP as a means of realizing ultra reliable avionics
systems hinges on these future developments.

’ The concepts underlying RAMP, in particular the use of

autonomous, asynchronous, intermittent-fault tolerant modules (.,

e

for control has broad, inmmediate application. Correspondingly,

Bl SVEN

ﬁ- _<w»’.q:nﬁ~w.;‘wmsw. FOREE

these concepts present scveral new rescarch challenges for both

the systems theorist and cxperimentalist in the gencral arcas

of distributed asynchronous microcomputer networks, tcsting

and fault masking and identification.

——————
e e e

————

9..2

P TR N . i
A3 by ok oo F

APPENDIX A - EFFECT OF TIMING ERRORS IN PARALLEL

ASYNCHRONQUS FLIGHT CONTROL COMPUTERS

As described in the main body of the text, it is the
function of each microcomputer in the RAMP structure to
mid-value select operands from the upstream set of redundant
computers. To simplify the discussion of the effects of
asynchronism consider the case of two parallel computers
Mg and My employed in a control configuration as shown in
Figure Al. As seen in the figure, MS is the computer
selected for the control, i.e., is operating in the closed loop.
Coraputer MD is deselected and is hence operating open loop.

As also cxplained carlier, each of a given set of parallel
computers in the RAMP structure has n cache memories
such that the nth cache memory in each computer in the set
is simultancously written by the nth upstrecam computer.

This process is represented in Figure Al by a samplc-and -~
hold function as shown (i.c¢., only the sclected upstream
computer is depicted). Computers MD and MS in turn sample
the held values as shown. This sampling process is depicted

in Figure A2 wherein the samplings by MD and Mq are shown

by impulse functions iD(t) and is(t). For the development that

follows, it is assumed that the sclected computer MS samples
at the same rate that y(t) is sampled with each sample taken
at a time immediately following the sampling of y(t). Computer
My samples at a higher rate as shown such that at times iT
and (i + n)T computers Mg and My simultaneously sample
the input. Between these times, computer MD samples an
input value immediately preceeding that sampled by Ms. Note
that in the period nT, computer MD takes exactly one more
sample (and hence onc additional computation) than MS‘

Now both computers will exccute the same control law

given by the following recurrence cquation:

u [Zi + 1)T] = Au (iT) + By Bi + l)T] (Al)

In what follows it is shown that Equation (Al) must be
stable in order that the deselected computer not accumulate
unaccept abl ¢ errors due to its asynchroni sm. Stabi lity of
Equation (Al) is however not required for stability of the
closed loop system. The existence and form of the error is
arrived at inductively in the following.

At time iT, let the sclected and desel ected computers
respectively compute control values uS(iT) and uD(iT).

Moreover, assumec that the deseclected computer has an error

u. (iT) due to the asynchronism such that,
sy = < . A2
uD(xT) us(xT) +u (IT) (A2)
Now compute
uc{(_1 + n)'I‘] un {'(1 + n)T] U [(1 n)T
as follows.

First, note that in solving Equation (Al),
nH-1

ug [(i + n)T] = A“us(iT) + Z Anti-k-1 By[(k-!-l)T] (A3)

=i
Through study of Figure(A?2) it can be scen that
uy L(i + n)T]= A"“uD(iT) + ATBy(iT)

nH-1 . . .
+ 5 prtikelgy [0+ 1)'1‘] (A4)
X = i -

From (A2),

uD(iT) = us(iT) + u (iT)

Substituting this into Equation (A4) and subtracting

Equation (A3) the error at time (i + n)T is obtained:
- nt+l n
u i+n)T] = A u (iT) + A (A -I)u (iT)
Al ((A-Dul
n
+ A By(iT) (A5)

The assumption that u. (iT) is an error due to asynchronisimn

T

is correct since at t = 0, u (O)f\(i.c. the first sample is

taken simultancously by the computers) and at time t = T,

ud(T) arises solcly from the asynchronism and is in general

non-zZero.

Equation (A5) may be written in final form:
7s n+l . - : .
u, [+ T] = A" u GnT) + A7 [A - 1] uginT)
n
4+ A By(jnT) (A6)

Now for (A6) to be stable matrix An"'1 must have eigcenvalues

)\ ., such that,
eb

l '\(:.Ll <1 Vi (A7)

Correspondingly, for Equation (Al) to be stable matrix A

must have cigenvalues)\,,.,subjcct to the same condition.

-

But
ntl
)

Ne. = €N
i.e.,
: n+l

l/\egl =)’\b;'

Hence, to guaranftce convergence of the error in the

desclected computer duc to asynchronism, it is nccessary

that the control law being computed be asymptotically stablec.

Note further that when n is large (as is the case in
practical applications) Equations (Al) and (A6) have the same

natural responsc. E.g. at time t = mnT (m an integer)

us(mn T) = Amnus(0).

SR

Correspondingly,

Arn(rx-i- 1)

u , (mnT) = u, (0)

A
= us(mnT).

Hence, the rate of convergence of the asynchronism

error introduced into the deselected computer is the same

as that of the control law being computed.

Finally, looking at the last two terms on the right of
Equation (A6), the magnitude of the error in the desclected
computer can be reduced by one or both of the following:

1) Increasing the rate of convergence in the control

law.

2) Increasing n{i.e. rcducing the timing error).

APPENDIX B - MID-VALUE SELECT FOR FAULT MASKING

Section V described the strategy of sclecting the mid-value
of a set of N = (2n + 1) data values as a means of masking
faults in the RAMP network. The following paragraphs
explain in grecater detail the justification for this approach.

Recall that the effect of the timing errors in the set of
N computers is to disperse the data values over some range
2 & about that value which would be obtained with no timing

error. This is illustrated in Figure Bl in which each of the

N values are classified as being correct or incarrect as follows.

A correct value lies within t & of the value that would be
obtained with no timing crror; all other valucs are jincorrect.
Given no faults (i.e. timing error only) all valuecs would be

correct. On the other hand a data value gencrated by a

faulted computer could be in gencral cither correct or incorrect.

It can now be argucd that given up to n failures in the N
computers, the mid-vajue will always be correct: If the mid-
value originated from a non-failed computer, it is obviously
correct. If on the other hand it originated from a faulted
computer it will still be correct. The reason for this is that

the mid-value by definition has exactly n distinct values greater

T i oo g

%

than or cqual to it and exactly n distinct values lcss than or

equal to it. Hence, if the mid-valuc is gencrated from a

faulted computer there must remain up to n - | values

originating from faulted computers. The mid-value must
accordingly lie between two correct values and therefore be
correct.

This argumecent also shows why N must be odd since in
using an even numbcer N = 2n of computers* only (n ~ 1)
failures can be iolcrated, the same condition that would
correspond to use of an odd number, N - 1 of computers.

I.c., the use of an cven number of commputers is uncconomic.

Given an c¢ven number of computers there is of course no
mid-value. One would instead select the median value of

the two innermost values on the real line.

TR W o
L A T

|
w LdADNOD
TUOMIAN ILNGNMISId INVY - 1 FYNoOLd

$OAIDS

ALIIVYL VIVA/ IDOVSSAW OL
QANLINOD NOILVOINAWWOD o
ﬂ
_, QI LVTOSI ATTVONIOATI °
|
SNCNOYHONASY °
| STTAAON INTT-DOTVNV o
| spuewiwlo) "
_, \
A, \

”
g - 15 duwiod0adIN = @ §305U S

(14)
_/ \"\~\
\\
TN
N’ ‘\ 2
— e
s /?-—
M)~
. "/
-
0%
-/
\ P—
Transmitting

Computer

FIGURE 2

m— ,.—-"

[S,

Receciving
Computer

REDUNDANT MIC ROCOMPUTERS

Redundant

Scnsors/ s

Commands

Note:

Sensor/
Command
Processors

INFORMATION FLOW

Control Algorithm

o

: . M \
; 12
J//

i
!
i
!
i
.

A 21

—
S

»~ M

= T2

13
NG

R e DR
Sensor/
Command

Processors

Air Traffic
Command
Processors

Servo
Processors

@G?@

J I~ :
,Q&z] 42
Ms3 My | —— g |
- - - . — ” R Y e
Trajectory Attitude Servo
Control Control Control

Intercommunication connection shown only

for leftmost computers

FIGURE 3

EXPERIMENTATION

SPECIFIC RAMP CONTROL SYSTEM UNDER

b e R h e W b

COMPUTERS

Sensor/Command Computation
L Data Frame of Period T
e e,
f
{*‘11} — | |] S
results
r —
‘11\"25} C] l | | 5
results
5
1M3j i r l \ \\‘ ‘ l J
results
M4jk. i i I] NI | _
J <
results
¢
\MSJ} L | I | l N] “‘j
servos §=
FIGURE 4 - INFORMATION FLOW IN EXPERIMENTAL RAMP
STRUCTURE OF FIGURE 3.

;
1
@ = Buf fer
? Memory
[(]] = Electrical
' Isolation

1 m
Miz)7 . m M1, 27—
AN
4 EpEeecys

\;_-_

m
M., i m Mis1,3
1 m

FIGURE 5 - RAMP COMMUNICATIONS PATHS AND
BUFFER MEMORIES

L

¢ rewse s

o ek

s e et

e i o

Bt m i caaiis

R - il o S By
W AT TR - - el

Control Law:

o (i + DT] = AuiT + By [(i + 1)T]

SELECTOR

0 PLANT —r

FIGURE 6 - PARALLEL ASYNCHRONOUS
CONTROL COMPUTERS

Plant
- - - - - ‘
t |
| i
Control | u(€)‘ {f(t) o 1] () ;‘ —
, Law L _ _ S — ‘__ __!
Y - ‘
Y

CASE

COMTROL_LAW

STABLE

1

y .Y - T
)+ [R- Y - Y] o

ulktl) =

METASTABLE

a(ktl) = u(k) + [R -2¥ - Y]T

UNSTABLE

ulk) + E{l- 3Y - Y]

u(k+1) = —1
1- T

T
1- T

FIGURE 7 - EXAMPLE OF STABLE, METASTABLE AND UNSTABLE

CONTROL LAWS

. e e e e e

I T P U e o [
T e e e s e Bt 5 A a5 B s e T

T . - Ll N . ‘.
; ! i . .
_ _ , i
- - o - 4 , w m W
| : I ! “ m
“ Lo L ” [
; . i i I . : ;
! H i . 4 i {
i T - 4 - y “, mw i i o
: RN “ S T SRR
SRR RS SN P Do Do _
| o A [N B T
e R 1 I I A [N R
; ! w L : i
o A ; ; M
+ t] .
, Sefe R EE N I
g g i _ : , r=
- NW ; P E_
j : : . .
. RS . ;!..mw . . - ‘“ ﬁ(w e . .nmx..
4 RN B " ! < =,
A ([X i ‘ ; w” _Uﬂ
i R ! i i : =, i !
i et | N I s R
b e Rl S RN st N @. e
3 s L TR TIE I Coju ot &y !
1o il B i o Y.ms O
: Lz T AR 20
N o0 AL T O S RS NN DSR4
Do R | o SRR A
S s I I s < oy
A PR ST T TR N
; Lo AN i : . W
J, b R P “ _ =y ol
;- : H N ol . ! .
. i o o L w o
_ B oo Y ! 1
3 T e .I‘M.U ’ BRI R 3 R m AT
w j ,W I BRI R oo s
3 — ' . : | UG i
, B ST IS B il : SV VRN SR o}
] o : R i ! O: e
3 m A , I 3 a |
. kv‘.. o mmk =3
M D SR U = L
flvlllﬂlv Vvl‘tmn.bl' PR v —) = “
' . L . 1 } .
3 i : B
o H — w i o~ i
+ p TNy e
: — ¢ I : 1 ~— H
. B ekl _ Lo _ . " R 8m
4 : K Do A
S - b e o rw [: m.
N - i . _ Co bR
o LUCSIS NSRS ROV 1 S - ! vy
Ty R v : o
i 2 o | m._
o g AU Lo i !
o 4 = P ! B
‘ A l L b

ovn O3 MIGST R VIN0M TV 41
WO HDNE T O Gl X ol ZhTHE

02€1 Sy

o

Memory Contents

Memory
Location

T e PN RNt N

FIGURE 9 BUFFER MEMORY CONTENTS

DlZ . .- j;i-"\ . r - _DLN
Dag cv o P2k 77 Dz

iRl
hr DS~

-

-
L -

Dy

y PR
Pur Dk ~

True Value

b e e e W - o

2 Real Line

FIGURE /¢ - DISPERSION OF DATA VALUES DUE TO

ASYNCHRONISM FOR N

5

(a) Control Algorithm

y(t) —]

u = Au + By

FIGURE 11

(b) Example Program:

TOP: CALL INPUT REDUNDANT Y VALUES
CALL MIDVALUE SELECT Y
CALL THRESHOLD DETECT Y ERRORS
u = Au + By
CALL OUTPUT u
CALL TIMEOUT

~ JUMP TO TOP

{c) Midvalue Select Procedure:

If Y

tA
-
A

Y3 » MIDVAL

"
-

1 2
If Y, £ Y; €Yy, MIDVAL

"
v

EXECUTING OF EXAMPLE CONTROL

ALGORITHM

Module Gives Incorrect Output for
Some Valid Inputs

|
l | |
Data Alteration Improper Excessive
Program Timing
1 ‘ l Exccution Error
I !
Faults Faults Fa!ults Faults Faults Faults in
in in in in in Timing
Input Output Constant Read/ Evalua- Hardware
Path Path Store Write tion of
Store Arithmetic/ Data-~ Data-
Logical Scnsi- Insensi-
Expressions tive tive

Faults Faults

T

RAMP MICROCOMPUTER MODULE

FIGURE 12 -
FAULT TREE

INTERMITTENT FAULTS

]
¥
PERMANENT TRANS ENT
SYSTEM SYSTEM
FAULT FAULT
(Program Flow Intact)

(Broken Program Flow)

Most Faults Affecting
Program Execution

FIGURE 13 -

I |

Timing Faults in
Faults Input/Output
Paths

CHARACTERIZATION OF INTERMITTENT FAULTS
IN THE MICROCOMPUTER SYSTEM

Faults in Faults in Some Faults
Constant and Evaluation of Aff ecting
Rcad/Write Logical/ Program
tore Arithmetic Execution
Expressions
e o o SO O) -

S st

RESET (©) [Astable
1 Multi- @ N Pl
l Vibrator ——
MICROCOMPUTER e T
J 1
ON
@ 1 | OFF
OFF —
T
2
D | © |
OUTPUT A
/ ; Vibrator Duration of
: Intermittent Fault
14a - Circuit 14b - Waveforms
FIGURE 14 - RESTART CIRCUITRY USED TO REESTABLISH

PROGRAM FLOW

-
r 3 —
i Sensor ! < g_vl Servo i
, Micro- f | Micro- |
e . R 4
/ computer | N _____coraputer
Pa— b T b \\\
/ \
: :] \ i
b /. { \ - :
, U U N ;
3 = Sensor]l f*‘—J Scrvo ‘ Fly.-By"- Rotorcraft |
g : ~ Micro- |] — e Micro- .. Wire L~
\ ‘compuater b - —} — ey COmputer . Actuator : Plant i
\ | T B Model :
F S — ‘ b o e e t ; {
. ' 2 - i |
g - '
i N ' ‘s
3 \ ! l %
N\ i ;
| N\ | i 'i”
ot [:
! Scnsor [: i i Servo
~ Micro- { l_ .~ Micro-
‘computer }. - o - - —-a~ Computer
[S ——— L._Q——ﬂ—.—.
1

FIGURE 15 - RAMP LABORATORY CONFIGURATION

-

i !
i1y i
INPUTS —! 'O i
G

i

'i
|
! N
l L gosh |
! I Micro-i
~—————! pro- }
| cessorl
‘ | '
' \
'!
{ . :
i I,, '
i /o —+— OUTPUT

BASIC SPECI FICATIONS

Technology: NMOS

CPU Arch: 16 bit

',_,____% Timer Program
i Memory: oK bytes
B Ram
Memory: 1K bytes
[4
| sx
‘%Prom

. e i

F1IGURE 16 - BASIC LABORATORY VERSION OF RAMP

MICROCOMPUTER MODULE

R e e st

o e e e e sl ¢ . a

T R R R A O SRR S N AL e

LT R A O T AT R R R,
. PRI, ettt st gt

-

A/D
Conv. + MICRO
SRS COMPU- —
TER
. To
] [(Figure Buff
Aircraft { Analog 16) cr
R Memories
Statcs Aux.
{Range,
veloci ty,
pi tch attitude,
pitch attitude rate)
(a) Sensor Module

(Also generates trajectory
commands and provides
trajectory control)

v
>

— Servos

—1 FIFO
MICRO
—eed F1FO COMPU-
S— TER
(Figure
16)
(b) Servo Module

(Also provides
attitude control)

FIGURE 17 - MICROCOMPUTER MODULE TYPES EMPLOYED
IN LABORATORY VERSION OF RAMP

R S

e AT

BT e N e

g

PROGRAM MEMORY (8.2K Avai lable)

AVAILABLE
(7K) Zl

/,

FIGURE 18 -

ALLOCATION OF MICROCOMP
TO SIX DEGREE OF

T T
o o o

TIME (50 ms Computation Frame)

AVAILABLE

(39 ms)

FREEDOM

UTER MODULE RESOURCES

FLIGHT CONTROLLER

S A A b S n

?J -
2
f {
§~
Samplers

iD(t) .

/s Mp

-

y(kT)

V"Z;;e,m

L ({\
1s(t)

Mg(t)

Cn

y(t)

PLANT

FIGURE Al -

PARALLEL, REDUN
MICROCOMPUTERS

DANT, ASYNCHRONOUS

5 Ry T

T S

(G + 7T

y(kt) : ‘
{
‘ et

—
igt) ‘— ‘ 2
\ | 5

iD(t)
P‘f _~ aT __—————h—\

FIGURE A2 - DATA SAMPLING FOR SYSTEM OF FIGURE Bl

i N
_—)
st -
i i
e
A T ik

Value with no timing error

o

i
1
{
i
l
!
| ! : ! !
|
1 b L ‘ | >
l Real Line
o - N Y
"incorrect” ‘incorrect”
values — -~ values
"correct"
values

FIGURE Bl - MID-VALUE SELECT

i i,

REFERENCES

G. Meyer and L. Cicolani, "A Formal Structure for
Advanced Automatic Flight Control Systems', NASA
TN D-7940, 1975.

G. Meyer and L. Cicolani, "Application of Nonlinear
Systems Inverses to Automatic Flight Control Design-
System Concepts and Flight Evaluations', AGARDO-
GRAPH on Theory and Applications of Optimal Control
in Aecrospacce Systems, 1980.

J. Wensley, et. al., "SIFT: Design and Analysis of
a Fault-Tolerant Computer for Aircraft Control”,
Proc. IEEE, Val. (6, No. 10, pp. 1240-1255,
Qctober, 1978.

A. Hopkins, et. al., "FTMP - A Highly Reliable
Fault-Tolerant Multiprocessor for Aircraft'”, Proc.
IEEE, Vol. 66, No. 10, pp. 1221-1239, October, 1978.

R. Ych, Ed., "Applicd Computation Theory, Analysis
Design and Modelling', pp. 352-359, Prentice Hall,
1976.

T. Cunningham, ct. al., "Fault Tolerant Digital
Flight Conirol with Analytical Redundancy”, USAF
Technical Report AFFOL-TR-77-25.

W. Dunn and G. Meyer, "A Fault-Tolerant Distributed
Microcomputer Structure for Aircraft Control Systems',
AIAA Guidance and Control Conference, Palo Alto,
California, 1978.

R T s
o N e T 5 2

10.

11,

12,

13.

14.

L i P et e

. Frmoprs

R. Smyth, "State of the Art for Digital Avionics and
Controls', AGARD Conference Procecdings No. 272,
pp. 1-1 to 1-20, May, 1979.

Military Standardization Handbook 217B, 'Reliability
Prediction of Electronic Equipment'”, September, 1974.

R. T. Anderson, "Reliability Design IHandbook',
Cat. No. RDH-376, IIT Rescarch Institute, Chicago,
Illinois, 1976.

W. Bouricius, et. al., '"Reliability Modeclling
Techniques for Self-Repairing Computer Systems',
Proc. 24th National Confcrence, Association for
Computing Machinery, ACM Publication P-69, 1969.

O. Tasar, "A Study of Intermittent Faults in Digital
Computers", Proc. National Computer Confercence,
pp. 807-811, 1977.

D. Palterson and C. Sequin, "Design Considerations
for Single-Chip Computers of the Future', IEEE
Journal of Solid State Circuits, Vol. SC-15, No. 1,
pp. 44-52, February, 1980.

V. Ohm, "Reliability Considerations for Scmiconrhictor
Memories", IEEE Spring COMPCON, San Francisco,
1979.

	0016A02.TIF
	0016A03.TIF
	0016A04.TIF
	0016A05.TIF
	0016A06.TIF
	0016A07.TIF
	0016A08.TIF
	0016A09.TIF
	0016A10.TIF
	0016A11.TIF
	0016A12.TIF
	0016A13.TIF
	0016A14.TIF
	0016B01.TIF
	0016B02.TIF
	0016B03.TIF
	0016B04.TIF
	0016B05.TIF
	0016B06.TIF
	0016B07.TIF
	0016B08.TIF
	0016B09.TIF
	0016B10.TIF
	0016B11.TIF
	0016B12.TIF
	0016B13.TIF
	0016B14.TIF
	0016C01.TIF
	0016C02.TIF
	0016C03.TIF
	0016C04.TIF
	0016C05.TIF
	0016C06.TIF
	0016C07.TIF
	0016C08.TIF
	0016C09.TIF
	0016C10.TIF
	0016C11.TIF
	0016C12.TIF
	0016C13.TIF
	0016C14.TIF
	0016D01.TIF
	0016D02.TIF
	0016D03.TIF
	0016D04.TIF
	0016D05.TIF
	0016D06.TIF
	0016D07.TIF
	0016D08.TIF
	0016D09.TIF
	0016D10.TIF
	0016D11.TIF
	0016D12.TIF
	0016D13.TIF
	0016D14.TIF
	0016E01.TIF
	0016E02.TIF
	0016E03.TIF
	0016E04.TIF
	0016E05.TIF
	0016E06.TIF
	0016E07.TIF
	0016E08.TIF
	0016E09.TIF
	0016E10.TIF
	0016E11.TIF
	0016E12.TIF
	0016E13.TIF
	0016E14.TIF
	0016F01.TIF
	0016F02.TIF
	0016F03.TIF
	0016F04.TIF
	0016F05.TIF
	0016F06.TIF
	0016F07.TIF

