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PREFACE 

Jia K. lhura i s  a professor a t  the University o f  Cali fomia, Lo5 Angeles, 

California, and i s  a consultant t o  the Jet Propulsion Laboratory. 

I .  
ABSTRACT 

-- , 
j 
! 
I Packet radios are of ten expected t o  operate i n - a  mctia-comuni_cation 

- / - - - - 
I - 

network eminorrent where there tends t o  be man-made interference sfwaf s, Te 

- codmt such interference spread spectrun waveforms are being considered f o r  
... 

some applications 111. I n  th i s  report we examine the use o f  convo!utional 

coding with Vi terbi  decoding t o  further improve the performance o f  spread spec- 

tru packet radios. A t  110' b i t  error rates improv-nts i n  performance of 4 dB 

t o  5 dB can easily be achieved with such coding without any change i n  data rate 

nor spread spectrum bandwidth. This coding gain i s  more dramatic i n  an in ter-  

ference envi r o m n t  . 



Ye &r ive expressions for the b i t  e r m r  probabi l i ty ,  Pb, as a function of 

energy-per-bit t o  noise rat io,  Eb/NO, and interference-to-sf anal power ra t io ,  

- I/$. Here interference can be due t o  multipath, intersymbol interference, and 

other ~ n - r a d e  signals. The basic mdu la t ion  we consider i s  QPSK where the 
6 

inphase and quadrature b i t s  consist of orthogonal b i t  sequences o f  length h. 

For our examples we pick N = 16 o r  32*. The modulation system i s  shown i n  
- R: - Fig. 1. Here we also show the use of convolutional codes wi th constraint lenath 

K = - 4 f o r  N 2-16 and K = 5 f o r  N 2 32. 
- 

5 =. 
_+ e 
5 I n  t-his analysis we assune that  any interference signal o f  power I w i l l  
r 

appear as a Gaussian noise term a f t e r  passing throuah the matched f i l t e r s .  

Thus when No i s  the single sided noise spectral density when there i s  addi t ive 

white Gaussian noise alone, then wi th  interference the new eqwvalent noise 

spectral density i s  

w k r e  ITb i s  the interference sianal energy during a b i t  time Tb. This i s  

used t o  obtain an equivalent energy-per-bit t o  noise r a t i o  

*This i s  based on Co l l i n ' s  packet radio [I]. 

1 



The Gaussian assumption i s  based on the fact tha t  the matched f i l t e r  essent ia l ly  

provides N samples of the interference using binary, C-l,l), weighting which i s  
1 

approximated as a Gaussian random variable when N i s  moderate i n  size. Thus 

the channel i s  assumed t o  be an addi t ive white Gaussian noise channel o f  spectral 

density No w i th  no interference and when we want t o  include interference we use 

the signal t o  noise ra t io ,  

I n  t h i s  report we f i r s t  examine coherent receivers both w i th  and 

without convolutional coding [?I. This i s  followed by an examination of non- 

coherent receivers using bas ica l ly  the same modulat ion/coding transmitters. We 

shal l  refer  t o  inphase and quadrature o r tho~ona l  binary sequences o f  length N 

which w i l l  be modulated on QPSK car r iers  t o  form the spread spectrum signals 

as inphase and quadrature chip sequences. These orthogonal chip sequences can 

k k  be generated using rows of 2 x 2 matrices denoted t ik  generated i n  the fol low- 

ing recursive manner. 



The two rows of HI form two chip sequences. (1 1 )  and (1 -I), of length 2 

that are orthogonal. Next f o r  k = 2 we have the zk = 4 rows  o f  Hz, 

which are orthogonal binary chip sequences o f  length 2k = 4. I n  general there 

k k are N = 2 orthogonal binary chip sequences of length N = 2 . 

I n  the following we shall denote, as shown i n  Fig. 1 and Fig. 2, 

inphase and quadrature chip sequences as I and 4 C respectively. Each o f  these 

N chip sequences can be one of N orthogonal binary sequences as shown above. 

I n  practice we may want t o  f i nd  sequences with good par t ia l  correlation proper- 

t i e s  such as Gold codes o r  BCH codes [3]. 
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11. CQHERENT SYSTEM - NO CODING 

We f i r s t  examine a coherent receiver  t h a t  tracks a reference phase 

f o r  the t ransmit ted packet rad io  s ignal .  With no coding consider the inphase 

and quadrature data b i t  and chip sequence re la t i ons  

Inphase Quadrature 

f where &I and C are any two chip sequences. I n  a whi te Gaussian noise channel 
a 4 

the b i t  e r r o r  p r o b a b i l i t y  i s  s i m ~ l y  t h a t  of b inary antipodal signals [2], 

where 

- - 
e Qod = /" d t .  

I f  mul t ipa th  causes chip sequences t o  overlap i n  time one approach t o  

overcoming t h i s  intersymbol in ter ference i s  t o  use sequences w i t h  small p a r t i a l  

co r re la t i on  proper t ies [3]. Another op t ion  i s  t o  consider a1 tern at in^ 

orthogonal chip sequences as fo l lows 

Inphase Quadrature 

C O O + $,I -9,2 
0 1 + C  -C 

1 -Q,2 
1 0 +-C - 4  %,2 

1 1 + - c  - C 
-491 - 4 9 2  



where GI and di ,2 are orthogonal and C and C are orthogonal w l  t h  small 
4 9 1  -4 9 2  

par t ia l  cross-correlation properties. The receiver i s  assumed t o  sample the out- 

puts o f  the matched f i  l t e r s  on al ternate b i  t intervals,  Thus, mu1 ti path i n t e r f e r -  

ence o f  one data b i t  does not add much interference a t  the sample time o f  the follow- 

ing chip sequence matched f i l t e r  output, which corresponds t o  the next data b i t .  I f  

the mu1 ti path delays are longer than 4 b i t  time, 4Tb, then a1 ternat ing two orthogonal 
* 

chip sequences can be extended t o  many orthogonal chip sequences. Assuming 

ideal data b i t  synchronization as well  as ide i  qhase synchronization we achieve 

the same uncoded b i t  e r ro r  probabi l i ty  given by (6) except w i th  interference due 

t o  various par t ia l  correlat ion terms of each mu1 t i ~ a t h  component. 

Figure 3 shows the b i t  er ror  probabi l i ty  as a function o f  the 

energy-per-bi t t o  noise ra t io ,  Eb/No. Here we have intev ference parameterized 

(8) 

where I / S  i s  the interference t o  signal pcwer r a t i o  and N i s  the number of 

chips per data b i t .  Hencc f o r  

a = .05 

N = 32 

- I - - 1.6 = 2.04dB 
S 

we have 

* 
4Tb i s  equal t o  two symbol times on each of the 1 and Q channels. 



Figure 3. Coherent BPSK, QPSK (Uncoded) 
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111. COHERENT SYSTEM - CODING 

We i l i u s t r a t e  the  use o f  convolut ional cading f o r  the ease where 

the cons t ra in t  length i s  K = 5. Also we trez! 9nly  the inphase data b i t  and 

the inphase ch ip  sequence since the two components o f  the QPSK modulation can 

be considered as separate channels. 

A Simplex* convolut ional code o f  cons t ra in t  length K = 5 consists 

of a 5 b i t  s h i f t  r eg i s te r  where the 5 b i t s  i n  $he s h i f t  r eg i s te r  are used t o  

select  one o f  32 possi::le b inary sequences of 32 b i t s  length. Sixteen of  these 

sequences are orthogonal t o  each other  wh i le  the other  16 are sign revvrsal  s o f  

the f i r s t  16 seauences. This i s  shown i n  F i g .  4. 

Cor~sider a K = 5 consL-aint length convo lu t~ona l  code o f  r a t e  

Fisure 4. Simplex Convolut iont l  Encoder 

*Tnese convolutional codes are analogous t o  the Simplex blork. codes [2] s:nce 
any two d i  verging and l a t e r  remerging sequences have cross-corre lat ion that  i s  
almost zero and negative. These codes were independently discovered by 
James Massey [4]. 



Far ex& data Biit tht s!hii'Fts iia we gemrate a 32 b i t  sequence denoted as 

fillis: 

(a) bits - s = (a&,c,dj i m  the mgiister to pick 

off 16 0-1 Limry seqmmes 0.T IlemgLh 32- 

S i m  we h a t  %east 32 d s q m i m s  ary sLJbSeS o f  

16 will $muinpox, Denote t h i s  32 b i t  binalry 

sequence as -- Cts). thee sf  t h e  16 pssih;e s h i f t  

-ster "sf aie" 3 = {ayby~,d) has a unique ot ' h ~ g o n a l  

Bam;ary sequence OT 7-h 32 associated MWI it, 

b ]  The tmnsmitted 32 b i t  3 e 4 m c e  i s  t h  given by 

Repeating t h i s  procedure each t ime a data b i t  enters the  s h i f t  

resister resu l t s  i n  a 32 b i t  expansim o f  t h e  data r a t e  and the  desired spread 

spectrum signal of 15 ciB processing gain. Note t h a t  t h i s  procedure has not  

forced any change i n  data r a t e  nor any ctranqe i n  t h e  s i  ma1 spread bandwidth. 

The 16 s ta te  t r e l l i s  diagram h s  the  property t h a t  t he  32 b i t  

sequences on branches leav ing the  same s ta te  are o f  opposite sign whereas they 

are orthogonal t o  a l l  other 32 b i t  sequences leaving other states- 

B i t  E r ro r  Bound 

We assume an add i t i ve  white Gaussian noise chennel w i th  spectral 

density N0/2 (double sided). Each o f  the  b i t s  i n  the  32 b i t  code sequence i s  

ca l led  a "chip" and i s  transformed i n t o  a BPSK c a r r i e r  w i th  energy Ec. The 

energy per dsta b i t  i s  



1 

0 

TRaclS Dl&RP,,rd 

Consider now the usual coding bound s t a r t i n g  w i t h  two chip sequences r'ano 

t h a t  d iverge and remerge over a span o f  K + j data b i t s  o r  "branches-'" 

E r r o r  Event of Length K + j 

10 



The pa imse  e m r  pr~bability i s  

For the Simplex convolutional code we get 

1 i = 1 I = ( + 1 32 Q 

= t K  + j) Eb 

and 

Hence 

and 

I 

j Them are M. 2 possible sequences x that diverge frcm x during 
* 

- -- J - 
t h i s  span o f  K + j branches (K.5) each causing up to  possibly j + 1 b i t  errors 

I - i f  chosen over r, the assumed transmitted sequence. Thus the b i t  e r m r  Pb i s  

bounded by 



For K = 5 we then have 

For the uncoded case the b i t  e r ro r  i s  aiven by (6). 

Fig. 5 shows p lo ts  of the uncoded e r ro r  probabi l i ty  and the Simplex 

convolutional coded e r ro r  bounds for  K = 3,4,5,6. Note tha t  a t  b i t  e r ro r  

probabi l i ty  w i th  constraint length K = 5 the coding gain i s  approximately 4.5 dB 

It i s  almost 3 ti5 f o r  a simple K = 3 Simplex convolutional code w i th  V i te rb i  

decoding. Fig. 6 and 7 show the K = 4 and K = 5 Simplex convolutional codes' 

performance w i th  the added impact of interference signals. Comparing wi th  the 

uncoded case o f  Fig. 1 we see that  the potent ia l  coding gain i s  much greater 

w i th  interference i n  the channel. I n  anti-jamning appl icat ions it i s  known [5) 

that  coding gains against jamning can be much greater than expected f r o m  the 

usual white Gaussian noise channel . 

It should be noted that  orthoqonal convolutional codes have the 

same performance shown i n  (17) except w i th  K + 1 replaced by K. Hence the 

Simplex convolutional code achieves performance equivalent t o  one constraint 



length longer orthogonal convolutional codes. We conjecture that these 

convolutional codes which are analogous t o  Simplex block codes are optimum for 

the addit ive A i t e  Gaussian noise channel. Also note that since only 2 K- 1 

orthogonal sequences are required f o r  th is  convolutional code i t  can use less 

bandwidth than the orthogonal convolutional codes. Again th is  i s  analogous t o  

the re1 ationship between Simplex and orthogonal block codes. 

I n  general we mquire the chip length N and constraint length K 

satisfy 

As long as t h i s  i s  sat isf ied we see that  f o r  f ixed N, there i s  no reduction i n  

data rate nor change spread spectrum bandwidth t o  a c ~  ieve these coding gains. 



Figure 5. Coherent BPSK, QPSK (I = 0)  



Figure 6. Coherent BPSK, QPSK (Coded K = 4 )  



Eb/N, (dB) 

Figure 7. Coherent BPSK, QPSK (Coded K = 5)  
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I V .  NONCOHERENT SYSTEM - NO COOING 

Uhen the  inphase ch ip  sequence L1 and the  quadrature ch ip  sequence 

C are orthogonal, noncoherent detect ion i s  possible. I n  the uncoded case we 
4 
assume t h e  fo l low ing data b i t  and ch ip  sequence r e l a t i o n  

Inphase Quadrature 

0 + C -I ,1 O + %,I 

l + C  -I ,2 + %,2 

C C where LIS19 -1~29 -(),I. and 4 9 2  C are  orthogonal t o  each other. 

The noncoherent receiver  for  t h i s  modulation consists of the  four 

matched f i l t e r s  fol lowed by envelope detectors whose outputs are sampled a t  the 

symbol time T = 2Tb The samples a t  the matched f i l t e r  envelope detector  outputs 

f o r  the two inphase ch ip  sequences are ccnr.pared and an inphase data b i t  decis ion 

i s  made. The same procedure i s  f o l l w e d  f o r  the quadrature matched f i l t e r  

envelope detector  outputs t o  make the quadrature data b i  t decision. Again the 

inphase and quadrature channels are t reated separately. The performance i s  the 

same as b inary FSK s ignals w i t h  noncoherent detect ion [ 2 ]  . Hence we have 

This i s  shown i n  Fig. 8 f o r  various interferences. 

Note t h a t  t h i s  noncoherent sys,em resu l t s  i n  3.3 dB degradation com- 

pared t o  the coherent system. This i s  p r imar i l y  due t o  using orthogonal signdls 

ra ther  than antipodal signals. The noncoherent system, however, does not  requ i re  

phase t rack ing  which can be a problem i n  a mul t ipath and in ter ference environment. 

For t h i s  reason t h i s  noncoherent system may requi re fewer preamble symbols for4 

synchronization associated w i t h  each packet o f  b i t s  i n  the packet rad io  appl icat ion.  



To minimize interference due t o  long mult ipath delays we can apply 

the a1 ternat ing orthogonal chip sequence technique described i n  Section I I. 

Here we can also use post detection integrat ion techniques. To i l l u s t r a t e  t h i s  

consider mult ipath where we have m paths t o  the receiver w i th  average energy 

El. E2, E3, .... Em. The energy detector* output a t  the m path sample times are 

denoted Z1, Z2, Z3, .... Zm. Ue assume these sample times are known and the 

decision i s  based on 

xhere A 1 , . . . , $,, i s  some deighting o f  the m mult ipath samples. Using a 

Chernoff bound 121 we have the b i t  e r ro r  probabi l i ty  bound 

*We can set a threshold and sample t.hose outputs o f  the enerq; + tector  exceed- 
ing t h i s  thresl~old. 



where {Zk)  arc  squared samples out  o f  the matched f i  l ter/envelope detector  o f  the 

t ransmit ted chip sequence and (it) are the corresponding samples from the a l t e r -  

na t ive  ch ip  sequence. Assuming mul t ipa th  delays are confined t o  the ch ip  

sequence time durat ion we have [6] 

Thus, 

This bound can be minimized w i t h  respect t o  0 < 5 1 k =  1 , 2 ,  ..., m.  

1 
By j u s t  choosing Fk = I we have 

m 

where 

This bound i s  p lo t ted  i n  F ig ,  9 f o r  the example w i th  



Post detection integration offers some improvement i n  performance. Since 

Fig. 9 i s  an upper bound compared to  the exact values o f  F ig .  8 i t  i s  not clear 

how much improvement i s  actually achieved here. 



Figure 8. Noncoherent BPSK, QPSK (Uncoded) 
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Figure  9.  Noncoherent BPSK, QPSK w i t h  P D I  



Y, NOAL- SYSTIYl - CODING 

'Me can use o r t h g u n a l  convolu t iona l  codes f o r  the n o n m k r e n t  

receiver system. The b i t  e r r o r  bound f o r  such a  code o f  cons t ra i n t  l e n g t h  K i s  

121 

h e r e  f o r  the PDI de tec to r  descr ibed above we have 

For  no m u l t i p a t h  t h i s  becomes 

where  choosing 1 = I y ie l ds *  2 

e D ' 3  

Fig.  10 shows t he  b i t  e r r o r  bound f o r  t h i s  noncoherent case w i t h  no 

mul t ipath .  With mu l t i pa th  and t he  use o f  P D I  t h e  performance improves. Hence 

these curves can be viewed as loose upper bounds on t h e  b i t  e r r o r  p r o b a b i l i t i e s .  

With in te r fe rence  and orthogonal convolu t iona l  codes o f  cons t ra i n t  lengths 

K = 4 and K = 5 we have the  b i t  e r r o r  bounds p l o t t e d  i n  F i g s .  11 and 12 

respect ive ly .  Comparing these curves w i t h  t he  dncoded case of Fig.  8 we see 

again t he  l a rge  coding gain achieved when there a re  i n t e r f e rence  s igna ls  i n  the 

channel. 

* 1 = 112 i s  not  the  optimum choice but  provides a  simple eva lua t ion  o f  the 
bound. 



Figure 10. Nor~coherent BPSK, QPSK ( I  = 0 )  



F i c u r e  11. Noncoherent BPSK, QPSK (Coded K = 4 )  



Figure  12. Noncoherent BPSK, QPSK (Coded K = 5) 



V I .  CONCLUSIONS 

Although there i s  some loss i n  performance, the noncoherent receiver 

systenr has the advantage o f  a s i m p l ~ r  receiver structure and the easy employment 

o f  post detection integrat ion (POI) t o  co l lec t  the mult ipath energy wi th in  a 

data b i t  duratio;.. By using orthogonal convolutional codes the noncoherent 

system cer ta in ly  performs bet ter  than the uncoded coherent system especial ly i n  

an interference envirornnent. It may also reduce the number of overhead b i t s  

required i n  each packet o f  data b i t s .  

As an example o f  a coded noncoherent system we can have N = 32 

orthogonal b i t  sequences f o r  both the inphase and quadrature chip sequences 

where each chip sequence i s  selected by an orthogonal convolutional encoder 

wi th  K = 4. The set 2K = 16 orthogonal chip sequences o f  length N = 32 used 

by the inphase signal i s  orthogonal t o  the quadrature orthogonal chip sequence 

set. The noncoherent receiver uses N = 32 matched f i l t e r s  followed by 

envelope detectors (possibly P D I  too). The 16 detectors corresponding t o  the 

inphase chip sequences are then inputs t o  a V i terb i  decoder wi th  only 

zK-' = 8 states. Another s imi lar  V i terb i  decoder operates on the quadrature 

chip sequence detector outputs. The performance i s  shown i n  Fig. 10 for  the 

K=4 curve and i n  Fig. 11 f o r  the case wi th  interference signals. 

We compare the various coded and uncoded cases f o r  both coherent and 

noncoherent receivers i n  Fig. 13 where we f i x  the b i t  er ror  bounds at  

These curves show the locus o f  required Eb/No for various values o f  the in te r -  

ference parame?er a given by (3).  The noncoherent cases have the advantage o f  

robustness and easy employment of P D I .  



F igure  13. F ixed  Pb Requirements 
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