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ABSTRACT

This report describes a simple analytical and empirical model for
parametric study ¢f multiple-beam antenna frequency reuse capacity and
interbeam isolation. Two types of reflector artennas, the axisymmetric
parabolic and the offset-parabolic reflectors, are utilized CO'present the use
of the modei.. The parameters of the model are introduced and their
limitations are discussed in the context of parabolic reflector antennas.

However, the use of this model is not restricted to analysis of reflector

antenna performance.

This report is divided into six sections. Section 1 presents an overall
summary of the report followed by the results of the analyses covered in two
tables. The model parameters, objectives, and descriptions are given in the
next three sections. Multiple-beam antenna frequency reuse capacity and
interbeam isolation analysis for the two types of reflectors are discussed
subsequently. Section 6 discusses future developments of the program model.
Multiple-beam antenna is emerging as one of the most important components of
communication satellites; and an efficient model for parametric evaluation of

their performance could prove most beneficial.
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SECTION 1

SUMMARY

Multiple-beam antennas are becoming a more important part of satellite
communication systems as the necessity of electromagnetic spectrum

conservation becomes more evident. This is due to the fact that multiple-beam

antennas (MBA's) have the potential to conserve the electromagnetic spectrum
-4 through frequency band reuse.

‘ This report presents a discussion of performance characteristics of MBA's
when two types of antennas, the full-paraboloidal axisymmetric and the

offset-parabolic reflectors, are used. A major factor in the design and

T T RRTLE . R

application of multiple-beam antennas is the presence of interbeam cochannel
interference which reduces MBA's frequency reuse capacity. Therefore, the
analysis of performance characteristics is based on the interbeam isolation

and frequency band reuse performances of the MBA as functions of antenna

characteristics.,

An analytical/empirical model, consisting of a computer program, was used
to obtain the performance analyses. The main parameters of the model are the
number of beams, number of frequencies, beam patterns, beam spacing, and
footprint level of the hypothetical boundaries between the coverage zones. In
this report, the analyses done for parabolic-axisymmetric and parabolic-offset
reflector MBA's assume that feed elements in the multi-element feed system
possess identical radiation patterns.

In the axisymmetric reflector case, modified versions of the reference
pattern for satellite transmitting antenna recommended at WARC-77 and

CCIR(78)[}] were used as the beam radiation pattern model. These patterns are

modeled using an envelope function to approximate the upper bound of the
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sidelobe peak;. However, in this case the effects of the off-axis location of
the: primary-feeds uéon the beam radiation patterns were not considered. For the
offset-reflector case, the same type of beam patterns were used; but extensive
considerations were given to the pattern deteriorations caused by the off-axis
location of the primary feeds (scanning of the beams).

An optimum layout of the beams, a layout which minimizes the interference

power from cochannel beams, was used to perform the analvses in all cases,
The result of an optimum layout is that only a specific, optimum, number of
frequencies needs to be used and any other larger non-optimum number of
frequencies can be reduced to the optimum number without increasing the
cochannel interference power.

In all adalyaés done in this report, an approximate "worst case" estimate

of MBA performance was obtained by

a) assuming an envelope function to approximate the upperbound of the
sidelobe peaks for model patterns;

b) use of w.rst case sidelobes, for the offset-reflector beam patterns,
which corresponds to the case of the beam scanned in a
counterclockwise manner with respect to the reflector axis. Also,
for the above scanned beam, the sidelobes closer to the reflector
axis, which are higher than the sidelobes away from the reflector
axis, are used;

¢) considering the desired beam with highest interference power,
because of its position in the beam layout, and placing the maximum
possible number of cochannel interfering beams in that layout
(uniform layouts).

Some preliminary results have been obtained, for two types of reflector

antennas, by the use of the model.




4
4
:
4

N e

L Y e e, W

In the case of offset-parabolic reflector, a 100 wavelength diameter
reflector is used while the focal length over parent paraboloid diameter
ratios (F/D ) and illumination tapers are varied. It is known that as
long as thepreflector dimensions (D/, and F/D ) and the antenna
characteristics (i.e., illumination tapers) are kept constant, the relative
characteristics of the beam patterns, as a function of number of beamwidths
scanned, stays the same. Therefore, the analyses done for the 100 wavelength
diameter offset-parabolic reflector are valid at all the microwave
frequencies. In general, the results are frequency independent as long as the
antenna dimensions, relative to the signal wavelength, are preserved the
same. However, since the uplink and downlink frequencies ¢f the satellite are
not the same (but close), there could be slight variations in the interbeam
isolation and frequency reuse performance of the two linka., The results of
analyses have been summarized in the following tables. Care should be taken
in applying the results shown here since these results can greatly vary for

different reflector dimensions.




TABLE 1.

Results of Analysis Done for Axisymmetric Reflector MBA with Uniform

Beams and Uniform Layout

Parameter Axisymmetric Re€lector MBA with Uniform Beams

Number of C/1 decreases as number of beams is increased (C/I is the

Beams carrier-to-interfareace power ratio, or the interbeam
isolation} where the desired carrier power, C, is calculated
at an angle 6 off the desired beam boresight and the
interference power, I, is calculated at the same point).

Number of As the number of frequencies is increased, the C/I

Frequencies performance improves. C/I is more sensitive to number of
frequencies when beam patterns contain sidelobe levels of
=30 dB or lower. A change in number of frequencies from
3 to 4 produces the largest impact on C/l performance for
the lower sidelobes.

Sidelobe A reduction in the level of sidelobes causes considerable

Level improvement in C/I performance. Sidelobe level has a more
notizeable effect when larger number of beams and
fiequencies are used.

Crossover C/1 values are relatively insensitive to the crossover

Levels levels of between -2 to -7 dB for very large number of beams
and -5 to -7 dB for smaller number of beams with higher
number of frequencies. So, the optimum crossover level is
dependent on the number of beams and frequencies.

Footprint For a rixed bea spacing, ¢he C/I value is almost a

Level linearly decreasing function of increasing footprint area
(or decreasing footprint level). Sidelobe level variation
has no effects on the slope of the function.

Beam For a fixed footprint level, the C/1 performance improves

Spacing as larger separations between beams are produced. For
different number of beams and frequencies, the rate of
improvement becomes uniform after 1.65 (HPBW) beam
separation for -25 dB sidelobes and 1.25 (HPBW) beam
separation for =30 dB sidelobes.

F/Dp No analysis

Illumination No analysis

Taper

Conclusion In evaluation of C/I performance of MBA's, number of beams

and frequencies are the determining factors. However, C/1
performance can be improved by better sidelobe design and,
if possible, larger beam spacing.

FUETOTE TR REREEEE e e o T T



TABLE 2.

Results of Anilylil Done for Offset-Reflector MBA (100 Wavelength

Diameter with Non-Uniform Beams and Uniform Layout)

e

Offset-Reflector MBA (100 Wavelength Diameter) With
Non-Uniform Beams (Beam Cagradations are due to

Parameter Scanning of the Beams)

Number of C/1 decreases as number of beams are increased.

Beams (same as axisymmetric reflector).

Number of As the number of frequencies is increased, the C/I

Frequencies performance improves. When larger frequency reuse factors
are used, a small change in number of frequencies causes a
considerable improvement in C/I performance. A change in
number of frequencies from 3 to 4 produces the largest
impact on C/I values, As sidelobe levels are lowered this
effect becomes more noticeable.

Sidelobe A reduction in the level of sidelobes causes considerable

Level improvement in C/1 performance, Sidelobe level has a more
noticeable effect when larger number of beams and
frequencies are used (same as axisymmetric reflector).

Crossover The optimum crossover level is independent of the number

Level of beams and frequencies, For the case of a 100
wavelength diameter offset-reflector with F/Dy = 1.0,
-10 dB taper, and -25 dB sidelobes, the optimum crossover
level is found to be between -% to ~7 dB.

Footprint For a fixed beam spacing, the C/I value is almost a

Level linearly decreasing function of increasing footprint area
(or decreasing footprint level). Sidelobe level variation
has no effects on the slope of the function (same as
axisymmetric reflector).

Beam Same as axisymmetric reflector, but ¢he rate of C/I1

Spacing improvement is the same for all number of beams,
frequencies, and sidelobe levels.

F/Dp Compurison made for two different F/D, ratios of

0.5 and 1.0, with -10 dB taper and ~2g dB sidelobes, shows
a maximum C/1 improvement of = dB. This result was
obtained for the desired beam .. the focai point of the
reflector and is immune from large scan losses produced by
smaller F/Dp's at large scan angles.

W

o . g . = 1, o A e S i e o PR X R T A P e 8 T e 2




R ek

TABLE 2. (Continued)

Results of Aﬁnlynil Done for Offset-Reflector MBA (100 Wavelangth
Piameter with Non-Uniform Beams and Uniform Layout)

Offset-Reflector MBA (100 Wavelength Disameter) With
Non-Uniform Besms (Beam Degradations are due to

Parameter Scanning of the Beams)
Illumination Comparison made for two different illumination tapers of
Taper -10 and -15 dB, witn F/D, of 1.0, shows an improvement
of about 1-4 dB in C/I performance.
Conclusion Same as axisymmetric reflector. Higher values of F/D_'s

and lower values of illumination taper can give C/I
improvements of up to 4 dB in some cases.

L
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% SECTION 2
g INTRODUCTION
4

It is possible to increase the bandwidth capacity of a band-limited
satellite by the use of multiple-beam antennas. This is done by transmitting
separate messages to different ground stations by means of many separate
narrow beams, instead of a broad beam which illuminates an entire coverage
area with all the message signals. An example of multiple-zone coverage beams
i from a satellite antenna is shown in Figure 1. In this paper only the class f
of multiple-beam antennas suitable for satellite-borne applications is

considered.

MFRCU O St RS As IT T r A 2 G

Figure 1. Multiple-Zone Coverage Beams from a Satellite Antenna




A major factor in the design and application of multiple~beam antennas is
the presence of the interbeam cochannel interference which reduces frequency
reuse capacity. The cochannel interference determines the interbeam izolation
or carrier-to-interference power ratio (C/I). Interbeam isolation is defined
as the ratio of the power density of the desired beam, at any spot within the
coverage area of this beam, to the incoherent summation of the co-polarized
components of the power densities of all other cochannel beams at the same
spot. The objectives of this paper are:

1) To describe an analytical/empirical model for parametric study of

the frequency reuse capacity of multiple-beam antennas, and

2) present some preliminary results obtained by use of the model.

The model consists of a computer program which takes the radiation
pattern information of each beam and the geometrical layout of all the beams
in the coverage area as its input, and calculates the interbeam isolation of
the cochannel beams at any spot within that coverage area. For the purpose of
this study, this is done for a cellular-coverage system in which the multiple
beams are equally spaced in a triangular matrix with a hexagonal boundary.
Fighre 2 shows this cellular-coverage beam layout, where in an optimum
cellular-coverage beam layout, two adjacent beams cannot operate on the same
frequency band. The knowledge of carrier-to-interference power ratio as a
function of number of beams, number of frequencies, beam separations and the
radiation patterns of the individual beams would provide us with the frequency
reuse capacity of the multiple-beam antenna system. In this report, it is
assumed that all beams have equal frequency bandwidths and are of equal

capacity. Also, the only type of interference considered is the cochannel
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interference from the cochannel beams of the multiple-beam antenna system

under study.

Because of general interest in offset-reflectors as the antenna type for
multiple-beam antennas, only two types of antenna, namely a full-paraboloidal

axisymmetric reflector and an offset-parabolic reflector are considered in

this report. These antennas consist of a set of linear array feeds located ir

the focal plane of a parabolic, axisymmetric or offset, reflector. aico, each

one of the feed elements in the multi-element feed system is assumed to

possess identical radiation patterns, However, the model is not restricted to

analysis of reflector antennas or identical feed patterns, since the antenna
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beam pattern 'ia just an input to the model. Therefore, other antenna types
like lens antennas, phased array antennas, complex feed antennas, and other
reflector antennas can be used as well. A major goal in the model development
has been to obtain an efficient engineering tool for parametric evaluation of

MBA performance.

10
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SECTION 3

PARAMETERS OF THE MUDEL

The parameters of interest in this model &are as follows:

a) Number of Beams: This determines the number of possible zone

coverages.

b) Number of Frequencies: The frequency reuse capacity is determined
by this parameter. Frequency reuse factor
is defined as the number of beams divided by
the number of frequency bands.

c) Beam Spacing: Since the feed separations on the optimal focal plane

are determined by the separation of beams within the

coverage area, the separation between the beams

determines the size of the focal plane. The minimum

Palis NS

separation between the feeds is limited by the mutual

o0 o

coupling between the elements [2] and by the physical
size of the feeds. On the optimal focal plane, feeds
should be placed as close as possible to the

reflector focal point; so the beam degradations due

to the off-axis location of the primary-feeds are

minimized.

2T Ry

d) Beam Patterns: Individual beam patterns are dependent on the feed
patterns, the location of the corresponding feeds on
the optimal focal plane, and on the antenna

i characteristics (size, F/D, illumination taper,

. aperture efficiency, and etc.). Beam patterns of the

11
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MBA system specify many of the model parameters
including beamw{dths, sidelobe patterns, beam
positions and more.

e) Footprint level: The footprint level is defined as the power
density of the beam, relative tc the main
beam-maximum, at an angle 6 off the beam
boresight. The footprint level, or. calculation
point, determines the hypothetical boundaries
within the coverage zones where the
carrier-to-interference ratios (C/1's) are
calculated and specified.

These parameters are discussed in more detail in the context of two reflector
antenna systems. The performance of MBA's in terms of its interbeam isolation
is solely dependent upon these parameters. In determination of an acceptable
or required carrier-to-interference ratioc and frequency reuse capacity of MBA

systems, the trade-off between these parameters is of utmost concern.

12
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SECTION 4

DESCRIPTION OF THE MODEL FOR DETERMINATION OF THE FREQUENCY
REUSE CAPACITY OF MULTIPLE~BEAM ANTENNAS

In this section the objectives of this model and the theoretical basis

for its development are explained.

4.1 MODEL OBJECTIVES AND DESCRIPTIONS

The main output of the model is the MBA frequency reuse capacity in terms
of carrier-to~interference power ratio (C/1). Figure 3 shows the case of one
beam interfering with the desired beam. The desired carrier power, C, is
calculated at an angle O off the desired beam boresight and the interference
power, I, is calculated at the same point, which is at an angle (ec - 0) off
the boresight of the cochannel interfering beam. This represents the
calculation of C/I or interbeam isolation at any spot within the coverage
area. The angle 0 specifies the footprint level of the calculation point and
angle 6, specifies the beam separation between the desired beam and
cochannel interfering beam under consideration.

The cochamnel interference in a frequency reus: system has been found to
behave like additive thermal noise as long as it is not correlated with the
desired signal. For multiple cochannel interfering beams, which are not
coherent to each other, the total interference power is assumed to be the
incoherent summation of the signal power from each interfering beam [i]. So
the total carrier-to~interference power ratio, up-link or down-link, could be

found in the following manner

13
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where
C = desired carrier power,
Ii = jnterference power from ith cochannel beam, and

N = total number of interfering beams.

Sometimes, it is possible for cochannel beams to be cohereat to each
other and, possibly, to the desired beam. For the purpose of this report, we
define two cochannel beams as coherent to each other if they carry the same
signal and the signals are in phase. In such cases, the total desired power
received by a receiver, at some point within the coverage area, is the
coherent summation of the desired beam carrier power and the coherent
cochannel beams carrier powers. At the same point within the coverage area,
the total interference power received by the receiver is found by,

a)  the coherent summation of the carrier power from all the interfering

beams that are coherent to each other,
b) the incoherent summation of all the sets of cochannel interfering

carrier powers found in part (a).

e e R L T I YO

Then at any spot within the coverage area, the total carrier-to-

3 interference power ratio, up-link or down-link, could be found by:

Q 2
(DCV+ z CCVi)
_ i=]
(€/Dyorar = K 2 L 2 N 2
(= x) (T ) s (2 1)
i=1 i=] i=1

15
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where
DCV - the desired beam carrier voltage,
CCV; = the ith coherent cochannel beam carrier voltage
(coherent to the desired beam),

1. = the interference carrier voltage from ith cochannel
beam which is coherent to the other interfering
cochannel beams within each one of the summations
shown above,'

Q = total aumber of cochannel beams that are coherent to
the desired beam, and

Ky Ly ¢eeey N = total number of cochannel interfering beams that are

coherent to each other in each summation.

In practice, the cochannel interference could be present in both up-link
and down-link. In this case either one or both links may determine the
overall C/I performance. Since it is assumed that the cochannel interference
is not correlated with the desired signal and behave like additive thermal

noise, then it could be shown that [ﬂ]

-1 -1 -1 ]
and if ©/Dyprmk © ©/Dpoun-Lng® then
(C/Dpgmar, ® (¢/Dpoum-rnx (98 = 3 (dB).
OR UP-LINK

In this report, it is assumed that all the cochannel beams are incoherent
to each other and the cochannel interference is only present in the down-link

at all times. (It is possible to reduce cochannel interference in voice

16
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channels through the use of voice activated carrier (VOX) in all
transmitters, In this case, the C/1 performance of the system depends on the
percent of the time that any occupied voice channel will have a carrier
actually present).

The model program simulates the multiple-beam antenna pattern by the
superposition of a two-dimensional array of individual beam patterns. In the
case of reflector antennas the beam radiation pattern depends on the antenna
characteristics, feed characteristic#, and the location of the feeds on the

_optimal focal plane of the reflector. Considering the effects of the antemna

characteristics upon the beam characteristics (scan loss, beam broadening,

sidelobe levels, and beam deviation), the relative position of the feeds on
the optimal focal plane determines the relative location of the beams within

the coverage area.

4,2 COVERAGE BEAM-LAYOUT

Multiple-beam antennas can cover large geographical areas by
two-dimensional networks of small coverage beams. Figure 4 shows the case of

U.S. coverage with 69 contiguous beams. Covering a geographical region with

R R o ta 2 SR

equal regular polygons (i.e., in order to totally cover the area and closest

to a circle) which do not overlap is known as tessellation. In particular, a

T e

hexagonal coverage-layout has been considered, since the hexagon has the
distinction of being the highest ordered (most sides) regular polygon which
tessellates a plane [}]. The circles inscribed in these hexagons would
illustrate the actual beam cross sections for some arbitrary footprint level
as shown in Figure 4, Because of the high level of interference between

adjacent beams which are cochannel, ir an optimum beam-layout if a given

17
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Figure 4., The Case of U.S, Coverage with 59 Contiguous Beams
and 3 Frequencies
carrier frequency is used in one beam, then it cannot be repeated in the
adjacent beam. The necessary separation between cochannel beams is deter-
mined by the requirements on interbeam isolation.

The optimum layout of the beams is an important factor in frequency reuse
with multiple-beam antennas when there is a requirement on the interbeam
isolation (C/I1) of the system. An optimum layout of the beams is achieved by
dividing the total number of beams into groups of beams such that each beam in
a group utilizes a different frequency~-band (or channel). A single
frequency-band can be used only by one beam in each group and the number of
cochannel beams can be as large as the number of groups. Figure 5(a) depicts
the case of seven beams in one group. Of course, the actual beam cross
sections are circular, but for convenience they are shown as hexagons. Now,

if more beams are needed to cover an area, a new group of beams could be added

18
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(f) (g)

g Figure 5. (a) Case of Seven Beams in One Group. The Dots Inside the

Hexagons Show the Boresight of the Beams and the

; Numbers Next to the Dots are the Beam Numbers. (b)),

g (¢), (d), (e), (f) and (g) An Added Group of Beams is

} Rotated Around the First Group. The Distances Between

the Cochannel Beame, with the Same Number, are

£ Preserved,

i to the first group as shown in Figures 5(b), (c), (d), (e), (f), and (g). It
can be seen that in all six cases the distance between the desired beam in the
first group, Figure 5(a), and the cochannel interfering beam in the new add
group is the same. For instance, thc distance between the desired beam number
7 and the cochannel interfering beam number 7 in the aaded group of beams is

the same in all 6 cases. Therefore, as long as the beam layout is generated

in 1 systematic fashion by

19
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a) groupiny of the beams in groups with equal number of beams, and
b) starting with one group and building the new groups around it until
the required number of total beams is obtained,

the total interference power at any spot within the coverage area of the
desired beam would be the minimum obtainable. Figure 6 shows the case of 49
beams with 7 beams per group. As shown in this figure, each group of beams
generates a polygonal boundary and centers of the beams 2-7 are located on the
vertices of a hexagon. In general, for different number of beams in each
group, the centers of beams generate many different polygonal configurations
with these centers on the vertices of the generated polygon. In . tical

applications, each group is not required to contain the same number of beams.

“.‘““‘“““““ (J

Figure 6. Example of the Seven Beams per Group. Notice that each
group of beams generates a polygonal boundary and centers of
the beams 2-7 are located on the vertices nf a hexagon.
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However, for.che purposes of our analysis this restriction has been imposed,
and thus the total number of beams will be equal to the number of beams per
group times the number of groups. This assumption would yield the maximum
number of cochannel interfering beams in the beam layout and also the worst
case interbeam isolation in coverage of a geographical area.

In comparison of various two-dimensional. layouts of the beams, there are
three parameters that should be considered. The parameter D is the distance
between centers of the closest cochannel beam boresights, R is the maxiwmum
distance from the center of a cell to the cell boundary, and NF is the minimum
number of channel sets (frequency bands) required to fully cover any planar
area. It has been shown [ﬁ] that is is possible to identify all possible
configurations generated by the center of the beams given the minimum
permissible D/R., Also, the minimum number of channel sets is found in [5],

whish for hexagonal grouping of the beams is given by

and NF can take on only the selected values
NF = 3, 4, 7, 9, 12, 13, 16, 19, 21, ...

determined from NF = (k + %)2 - k&, where k and % range over the positive
integers. The relationship between the integers k, £ and the optimum number
of frequencies (NF) is determined by the spacing between beams on the same
frequency [6]. Table 3 lists the possible optimum configurations and the

corresponding values of k and £.
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Table 3. Number of Frequencies as a Function of k and %
for Optimum Cellular Coverage

Number of Frequencies (NF) k- 2
1 0 1
3 1 1
4 0 2
7 1 2
9 0 3

12 2 2
13 1 3
16 0 4
19 2 3
21 1 4

Figures 7-15 show some more layouts as examples of 3, 4, 7, 9, 12, 13,
16, 19, and 21 beams per group. Other numbers of frequencigs in between the
indicated numbers are, of course, possible, but the case of eight beams per
group, for instance, can be reduced to seven without increasing inter-
ference. In general, an increase in number of frequencies would improve the
C/I performance. The above result means that, for example, aun optimum
layout which uses seven frequency bands would yield a higher C/I than any
layout with eight frequencies, any nonoptimum layout with seven frequencies,
and all the layouts with smaller number of frequencies. This important

conclusion is a result of an optimum layout of the beams for the purpose of
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Figure 7. Layout for an Example of 3 Beams per Group. The Broken Lines
Show the Distances Between Cochannel Interfering Beams
Number 1 and the Desired Beam Number 1 for the Case of
21 Beams. All the Groups of Beams, Shown in this Figure, Make
Up the Case of 69 Beams and 3 Frequencies.
cellular coverage of geographical areas, To summarize, there are three rules
to be followed in order to achieve an optimum layout:
1. No two adjacent beams should use the same frequency band;
2. Uniform grouping of the beams should be used while no two beams in a
group would use the same frequency band;

3. The optimum number of frequencies, which equals the number of beams

per group, should be used,
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SECTION 5
MULTIPI E-BEAM ANTENNA FREQUENCY REUSE CAPACITY AND

INTERBFAM ISOLATION ANALYSIS: AXISYMMETRIC PARABOLIC
REFLECTOR AND OFFSET-PARABOLIC REFLECTOR

In order to radiate multiple~zone coverage beams from a single antemna
aperture, a multi-element feed system could be utilized to illuminate a
parabolic reflector. Reflectors constitute one of the most widely used
classes of large antennas. A reflector itself is quite broadband, limited at
upper frequencies by its roughness. The roughness of the surface causes phase
errcrs in the aperture field of the antenna, resulting in sidelobe level

increase and peak gain decrease.

S.1 CHARACTERISTICS OF THE AXISYMMETRIC AND OFFSET-PARABOLIC REFLECTORS
Symmetrical front-fed parabolic reflectors suffer from high blockage due
to feeds, feed trusnes, and transmission lines., Most of the degradation in
the performance c¥ this type of antenna is due to blockage. Compared .o its
full-paraboloidal counterpart, the usage of an offset-reflector offers a
number of advantages. The offset-reflector avoids aperture-blocking effects,
reduces the reflector reaction upon the primary-feed, and leads to the use of
larger focal-length to dismeter ratios (F/Dp) while maintaining an
acceptable structural rigidity [7]. As a consequence, the offset-reflector
reduces the radiation scattering effects which results in a loss of system
gain aad the general degradation in the suppression of sidelobes. Also, the
primary-feed VSWR can be made go be essentially independent of the reflector
and can employ relatively larger radiating apertures which, in the case of
multiple-element primary-feeds, will result in lower direct mutual coupling

. Svws Y A BTTY OWTOY
‘:Dr‘;u I.):.A‘\Jb UL.'\u!‘b TR}
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between adjacent feed elements. These inherent advantages of the
offset-reflector make the configuration attractive for use as a multipie-beam
antenna. There are other advantages and disadvantages of these two reflector
antennas but a rigorous comparison is beyond the scope of these notes.
Figures 16 and 17 show an axisymmetric parabolic reflector antenna and the
offset-parabolic reflector reference geometry.

In these reflector antennas, off-axis (scanned) beam operation results in
appreciable performance degradation; This degradation is strongly related to
the focal length over diame;er (F/Dp) ratio of the reflector and to the
aperture illumination function. Since the primary feed is made up of a
muiti-element arrangement, it is important to determine the effects of the
off-axis locatior of the elements upon the antenna radiation characteristics.
The principal effect of an off-axis location of the primary-feed, as the beam
is scanned off the reflector axis, is in the formation of co-polarized
comalobes on the side closer to the reflector axis. Other deteriorations
caused by scanning the beam are comprised of beam-maximum scan loss, beam
broadening, and main beam-maximum deviation. Software has been developesd by
Dr. Y. Rahmat-Samii of JPL [8] which takes these scan properties into account
and calculates the axisymmetric and offsei-parabolic reflector antenna
patierns very accurately. In this report, in the case of axisymmetric
reflector beam patterns, it is assumed that all beams have the same pattern
and no consideration has been given to the pattern degradations caused by
.off-axis beam operation. This is due to the fact that the JPL developed
sof tware was not available at the time of axisymmetric reflector multiple-beam
antenna study. However, for offset-reflector beam patterns, the JPL developed

sof tware was used to obtain the beam degradations due to the off-axis beam
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Figure 16. An Axisymmetric Parabolic Reflector Antenna
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Figure 17. Offset-Parabolic Reflector Geometry
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vperation for each individual beam and to calculate the beam pattern model for

all beams.

5.2 FREQUENCY REUSE CAPACITY AND INTERBEAM ISOLATION ANALYSIS: RESULTS FOR
AXISYMMETRIC FARABOLIC REFLECTOR

The analysis done for axisymmetric parabolic reflector is included in

~ this section.

5.2.1 Beam Patiern Model iur Axisymmetric Reflector Multiple-Beam Antennas

The beam patterns used in the axisymmetric reflector case are very
simple. The patterns are modified versions of the reference pattern for
satellite transmitting antenna recommended at WARC-77 and CCIR(78) [1]. These
model patterns possess an exponential main beam with linear sidelobe
boundaries away from the main beam. Figure 18 shows these beam patterns with

the following functional form:

G(e) = -12 82 0<8<8.,
- 6, < @ < 3.16,
= -G -25 log,, 0 3.16 < 6,
where

G(8) is the normalized gain in dB,
8 is the off-axis angle in beamwidths, and the constants K, C, and 61
were obtained from Figure 18 and are shown in Table 4.
These pattern models do not include degradations due to the scanned beam
operation and it is assumed that all beams possess identical patterns which

are circularly symmetric. An analysis, for a 100 wavelength axisymmetric
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Figure 18, Modified Versions of the Reference Pattern for
Satellite Transmitting Antenna Recommended at
WARC-77 and CCIR(78). Modification is in the
variation of sidelobe level.

TABLE 4

Exponential Pattern Function Constants

Sidelobe level, K (dB) el (BW) C (dB)
20 1.29 7.5
25 1.44 12.5
30 1.58 17.5
35 1.71 22.5
40 1.83 27.5
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reflector anténna with F/DP = 1 and varying illumination taper, done by the
JPL developed software, shows that it is theoretically possible to achieve
beam patterns with sidelobe envelopes very close to the sidelobe envelopes
shown in Figure 18. However, since the beam patterns for each individual beam
and the pattern degradations caused by off-axis beam operation were not

calculated, it was assumed that all beams have the same pattern (i.e., one of

the patterns shown in Figure 18).

5.2.2 Frequency Reuse Capacity and Interbeam Isolation

The relation between the number of beams and the number of frequencies
for beams equally spaced in a triangular grid was described in 4.2. The
relationship defines a discrete combination of a number of beams and a number
of frequencies which is used to calculate a specific value of
carrier-to-interference power ratio (C/I). The C/I calculation is repeated
for the various allowed combinations of number of beams and number of
frequencies, and the results can then be displayed as shown in Figure 19. In
this figure, the C/I values of the multiple beam antenna systems are graphed
as a function of number of beams. Every curve corresponds to a specific
number of frequencies which was used to evaluate the C/I performance. It can
be seen that the primary factor in the C/I performance level, interbeam
isolation, is the frequency reuse factor (frequency reuse factor is defined as

the total number of beams divided by the number of frequencies).

5.2.3 Sidelobe Level Analysis

Figure 19 was shown for a modified CCIR reference pattern with sidelobes

starting at ~20 dB level. Figures 20, 2!, 22 and 23 were obtained for the
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Figure 19. Frequency Reuse Capacity, Axisymmetric Reflector
Modified CCIR reference pattern with -20 dB sidelobes
Calculation Point: =3 dB down from peak of the main beam
Beam Separation: 1 HPBW of the main beam
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Modified CCIR reference pattern with -25 dB sidelobes
Calculation Point: =3 dB down from peak of the main beam
Beam Separation: 1 HPBW of the main beam
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Figure 21, Frequency Reuse Capacity, Axisymmetric Reflector
Modified CCIR reference pattern with -30 dB sidelobes
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Beam Separation: 1 HPBW of the main beam




(/1) dB

« II7IIIII]IJII|IITI]Illl]llll]lll1]|l7lrllll]l]ll]lill'll]l]1ll\]lll

NF = 19
NF = 16

NE=12NF =13
NE=4 NE=7NE=?

=
=

NF=3

\\

30

r1r 1T T T T T I1TTT(]llTlI!iﬂfﬂHTW‘UTITI—HHH]IIITHTI

!

T

b r ot p gt b rirepren e b I i

ol Lo b Ly D Lo D b P Dy Py b g gl gl
0 15 0 45 75 %0 1. 120 135 15 65 180 195 210
NUMBER OF BEAMS

Figure 22. Frequency Reuse Capacity, Axisymmetric Reflector
Modified CCIR reference pattern with -35 dB sidelobes
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Beam Separation: 1 HPBW of the main beam
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same beam pacgarn with the value of sidelobe envelop: varying from -25 dB

to =40 dB. From these curves, it can be seen that a change in number of
frequencies from 3 to 4 causes a considerable change in the C/1 value (about
8-17 dB) for sidelobe levels of -30 dB and lower. But, for example, a change
from 12 to 13 frequencies does not cause any appreciable change as the
sidelobe levels are varied. So as the number of frequencies increases, the
frequency reuse factor becomes less sensitive to it. Figures 24 and 25 show
the effect of different sidelobe levels when a different number of frequencies
is employed and compares the C/I values obtained for these different sidelobe
levels. It can be seen that the sidelobe level has a more noticeable effect
for larger number of beams when smaller number of frequencies are used as
shown in Figure 24, Overall, the sidelobe level has a much greater effect

when a larger number of frequencies is used (see Figure 25).

5.2.4 Crossover Level and Footprint Level Sensitivity

In Section 4.2; it was explained that an optimum layout of the beams is
achieved by dividing the total number of beams into groups of beams such that
each beam in a group utilizes a different frequency-band. A single
frequency-band can be used only by one beam in each group and the number of
cochannel beams can be as large as the number of groups. This type of beam
layout insures the fact that no two adjacent beams are on the same frequency.
Therefore, the usual considerations of the crossover level of two adjacent
beams could not be as meaningful in this case, But, for instance, in the case
of mobile satellite services, it is required to have continuous coverage beams
and C/1 values should be known at the coverage area boundaries (see
Figure 4). So it is important to know the C/I variations at these boundaries

as the beam spacing is varied. Figure 26 shows the relation between the C/I
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and crossover level for the modified CCIR reference pattern with sidelobes
starting at =25 dB level. Table 5 shows the relationship between the beam
separation values, distance between the centers of two adjacent beam, and the
footprint levels at the crossover points for the modified CCIR reference
pattern with ;25 dB sidelobes. Notice that the calculation point is located
at the midway point of the line between the center of the desired beam and the
center of the adjacent beam. In Figure 26, C/I values as a function of the
beam crossover levels are given for five multiple-beam antenna systems with
different number of frequencies and number of beams. Again, notice that the
C/1 values are relatively insensitive to the crossover levels of between

~2 to =7 dB for very large number of beams and =5 tc =7 dB for smaller number
of beams with higher number of frequencies. In this case, for an axisymmetric
‘reflector antenna, the optimum crossover level is dependent on the number of
beams and frequencies.

In the Final Acts of the 1977 International Telecommunication Union
Broadcasting Satellite Conference, Annex 8, the beam area was defined as the
'aiea on the earth's surface corresponding to the -3 dB points on the satellite
radiation pattern, "The area delineated by the intersection of the half-power
beams of the satellite transmitting antenna with the surface of the earth."
Also, it is mentioned that for a service area when the maximum dimension as
seen from the satellite position is more than 0.6° (the agreed minimum

practicable satellite antenna half-power beamwidth), the beam area would

almost coincide with the coverage area. 1t the maximum dimension is less than

0.6°, there could be a significant difference between the beam area and the
coverage area. In the case of U.S, coverage the maximum dimension as seen
from the satellite position is around 7.3°, but for a multiple-beam antenmna

with large number of beams (i.e., 75 beams) thiis maximum dimension for
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TABLE 5

Relationship Between the Crossover Levels and Beam Separation Values
for Modified CCIR Reference Pattern (-25 dB Sidelobes)

Beam Separation Calculation Point . Crossover Level

(HPBW) (HPBW) (dB)

0.80 040 -1.92
0.85 0.425 -2.17
0.90 0445 -2.43
0.95 € 475 -2.71
1.00 0.50 -3.00
1.10 0.55 ~3.63
1.20 0.60 ~-4.32
1.30 0.65 =5.07
1.40 0.70 -5.88
1.50 0.75 - =6.75
1.60 0.80 -7.68
1.80 0.90 -9.72
2.00 | 1.00 ~12.00

individual beams is less than or equal to 0.6°. For this reason the C/I
values, in Figures 19-23, were evaluated at -3 dB footprint level of the main
beam. However, since the maximum dimension as seen from the satellite by the
individual beams could be less than 0.6°, the relationship between the C/I
performance of the system, with constant beam separations, and the desired
beam footprint level should be analyzed., Figures 27 and 28 show the
relationship between the C/I values, obtained for the modified CCIR pattern

with different sidelobe levels, and the footprint level of the desired beam
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for different numbers of beams and frequencies. Figure 29 shows the

R

comparison made to see the effects of the variations of the footprint level on

F

the C/1 performance as the sidelobe levels are varied. It could be seen that

in all the cases the C/I values are almost linearly decreasing function of

T

decreasing footprint level (or increasing footp:int area).

AT

5.2.5 Beam Spacing

It was mentioned that the minimum separation between the feeds is limited

3

;

{

: by the mutual coupling between the elements and the physical size of the

i

§ feeds. On the optimal focal plane, feeds should be placed as close as

% possible to the reflector focal point; so the beam degradations due to the
]

{

off-axis location of the primary-feeds are minimized.
; 35
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Figure 29. (C/I) Performance Calculated at Different Footprint (dB)
Levels of the Desired Beam, Comparison for 2 Sidelobe Levels
Modified CCIR reference pattern, axisymmetric reflectcr
Beam Separation: 1 HPBW of the main beam
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1f a "cuﬁplex-feed" design is used, as opposed to the "simple-feed"
approach, there are certain conditions to be met [2]. The complex-feed
concept effectively combines certain phased-array techniques with
reflector-antenna techniques. The primary advantage. of the complex-feed
design is in its ability to achieve limited beam-steering or generate
closely-spaced beams. This is due to the fact that in a complex-feed a number
of elements may be employed to generate each radiated beam and each feed
element may contribute to more than one radiated beam. Since the shape of the
feed radiation pattern is governed largely by the combined array
characteristics of the multiple elements, rather than by the radiation
characteristics of the individual feeds, the avoidance or suppression of the
feed-array grating-lobe effects becomes extremely important. The maximum
separation between the feed elements is constrained by the generation of
grating lobes in the feed radiation pattern which will exist within the
spatial solid-angle subtended by the reflector. It has been shown [2] that in
order to provide closely-spaced beams without generation of grating lobes in

the feed radiation-pattern, the interelement spacing must be less than

O S
2 sin 0%
where § is the inter-element spacing and 9* is the maximum half-angle
subtended by the reflector at the geometric focus.

Since the relative position of the feeds, "simple feeds'", on the optimal
focal plane determines the relative location of the beams within the coverage
area, the C/I performance of the system, with a constant footprint level, as a
function of beam spacing was studied. In Figures 30 and 31, the results are

shown for seven multiple-beam antenna systems with different number of beams
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and frequencies. A comparison of the effects of beam spacing variations on
the C/I performance as the sidelobe levels are varied is shown in Figure 32.
It should be of interest to remember that a specific combination of beam

spacing variations and footprint level varietions generates the crossover

level variations shown in Figure 26.

5.2.6 Conclusions

The results presented here shoﬁ that the sidelobe characteristics and
beam spacing are the primary influence on frequency reuse capacity of a
multiple-beam antenna with a specific number of beams and frequencies, as
expected. However, as the number of frequencies increases, the frequency
reuse factor becomes less sensitive to the sidelobe levels, but the C/I
performance of the system improves (see 5.2.3). Also, it has been shown that

the sidelobe levels have a more noticeable effect for larger number of beams

when smaller number of frequencies are used.

: ! : ; 3
100 1.25 1,5 1,75 2,00 2,25 2,% 2,75 3,00 3,25 3,50
BEAM SPACING (HPBW)

Figure 32, (C/I) Performance as a Function of Beam Spacing (HPBW)
Comparison for 2 sidelobe levels, axisymmetric reflector
Modified CCIR reference pattern

Calculation Point: =3 dB down from peak of the main beam
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The other important fact discovered for the axisymmetric reflector
multiple-beam antenna, with identical beam patterns, is that the optimum
crossover level is dependent on the number of beams and frequencies. The
relationship between the interbeam isolation values and decreasing footprint
levels of the desired beam was shown to be an approximately linearly
decreasing function. For increasing values of beam spacing, the C/I values

have an approximately linear increase.

5.3 FREQUENCY REUSE CAPACITY AND INTERBEAM ISOLATION ANALYSIS: KESULTS FOR
OFFSET~PARABOLIC REFLECTOR

In this section the results of the analyses done for offset-parabolic
reflectors are explained. The basic approach to find the frequency reuse
factor and interbeam isolation for offset-parabolic reflectors is the same as

before with the exception of the more sophisticated beam pattern models as

discussed below.

5.3.1 Beam Pattern Model for Offset-Parabolic Reflector Multiple-Beam Antennas

It was discussed that an off-axis location of the primary~-feed causes
deteriorations in the beam radiation-pattern, which are comprised of
beam-maximum scan loss, beam broadening, main beam-maximum deviation, and most
importantly the formation of co-polarized comalobes on the side closer to the
reflector axis.

In Figure 17, the feed is displaced on the optimal plane, which is normal
to the line joining the focal point 0 to the center of reflector P. In each
case the feed is tilted in a manner that its beam boresight axis goes through

the Point P. In the present analysis, the patterns are assumed to be

circularly symmetric about the scanned beam boresight, and the scan properties
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are assumed to depend only on the angle between the scanned beam boresight and
the reflector axis‘(i.e., the scan angle). It was mentioned that for a
scanned beam, sidelobes closer to the reflector axis have the most |
degradation. In addition, it has been showmn [9] that when the primary-feed is
displaced downward in the optimal plane (see Figure 17), or the beam is
scanned in a counterclockwise manner with respect to the reflector axis, this
would provide the most pattern degradation. These "worst case" sidelobes were
used to obtain the sidelobe envelopé coefficient for the pattern model. A
pictorial description of the beam radiation~pattern model for the
offset-reflector case is shown in Figure 33.
The theoretical model for the main beam shape and sidelobe envelope of a
scanned beam, offset-reflector scan, has two primary simplifying assumptions:
(1) The far-field pattern is only a function of the beam scan angle,
8.+ in the plane of symmetry, and
(2) The far-field pattern is circularly symmetric about the scanned beam
boresight.

In Figure 33, the main beam function is composed of
GM(O’ ec) = GP(GC) + GS(B, Gc) (dB),

where
GP(GE) = scan loss at a scan angle 6_,
Gs(e, Gc) = main beam pattern relative to its peak at 6= ec’ and

0 = pattern angle measured relative to reflector axis.
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\

N
N

MAIN BEAM PATTERN =G, (8, oc)

SIDELOBE ENVELOPE =
GSL (6 L4 Oc)

0 b

(6 ) BEAMWIDTHS OFF REFLECTOR AXIS
Gy (0, 0)=G,(8)+G (0,0 )ds
e e9]?
Gs(a,oc)--n ';o'(—e:')' ds eo(ac)=8(8c) GO(O)

K(o)
Csi (04 0¢) =2 log | g g 99, 13/7

WHERE ko = 7D/

Figure 33. Scanned Beam Geometry
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GM(G,GC) is normalized in dB relative to GM(O, 0) = 0 dB. Since the

offset-reflector is not a symmetric configuration, Gn(e, ec) will not be a
symmetric function of © or 6., However, for initial simplicity it was
assumed that the scanned main beam is a symmetric Gaussian function centered

at 6 = ec’

6-0_\
Gs(ﬁ, ec) "-12 To;?e—c) dB,

where @ is a function of g, and @%(ec) is the -3 dB beamwidth of the
beam at a scan angle, eé. The beam will broaden as the beam is scanned

off-axis, so

®.(8,) = B(g) B,(0) ,

where B(GE) is the beam broadening function, and‘G%(O) is the on-axis
beamwidth, In the development of the beam pattern model, the
radiation-patterns of the offset-parabolic antenna, for different aperture
sizes and illumination functions, were calculated by the use of the JPL
developed software. Then, by a study of these far-field radiation-patterns
[8], the scan loss function and the beam broadening function were
theoretically derived.

The sidelobe pattern function is an approximation to the upper bound of

the sidelobe peaks. From the results given in Reference [9], it can be

59




R

S PR TR T

o TR b S R AT R R ST T e =T TN RS AAT T T R RCT Tl v v A e ” T b el kel ab s

demonstrated that the far-field E~field of an offset-reflector can be

represented in the form

M N s
. Z E . Jn+2m+1(k‘ sin V)
mn ka sin ¥ ’

o0 =0
where ¥ = |e - ec| is a small angle (less than 6°), ka = nD/\ and D is the
reflector diameter (see Figure 17).‘ At large angles off the beam boresight, Y
is large, and the first term, (w=0, n=0), predicts the sidelobe upper bound

fairly accurately. Therefore,

Jl(ka sinV¥) Koo

E K ~ ,
(ka sin V¥ )3/2

oo ka sin V¥

where for the second approximation the large argument approximation [10]

Jl(x) x x-llz is used. Thus the sidelobe power pattern envelope in dB

takes the form

K
G, (6, 6 ) = 20 log o0 (dB) .
L™ e 10 l:(ka sin‘l’)3/2]

As the beam is scanned off the reflector axis, the sidelobes closer to
the reflector axis, 6 < Gc, will be higher than the sidelobes away from the
reflector axis, 6 > ec. Therefore, the factor Koo in the numerator of the

sidelobe envelope function is actually a function of Gc,

Ko ™ K(Gc) .
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In fact, two functions are needed, one for each side of the scanned beam
boresight. However, in the present analysis, the patterns are assumed to be
circularly symmetric about the scanned beam boresight and only the "worst
case" sidelobes were used to obtain the sidelobe envelope coefficient, Koo’
of the sidelobe envelope function.

In order to derive the empirical functions which are the scan loss
function, beam broadening function, and sidelobe envelope function, the JPL
developed software was used to generﬁte many examples of far-field patterns
for the scanned beams. These data were obtained for a number of
offset-parabolic reflectors of varying reflector dimensions and illumination
function. The first example is an extreme case of a very large reflector with
D/A = 1866.67, and F/Dp = ], where D, Dp, and F are shown in Figure 17,
and a -10 dB edge taper. In this case the functions obtained for the beam
broadening function, B(GE), scan loss function, Gp(ec), and the sidelobe
level coefficients, K(Gc), are shown in Figures 34-36. In Figure 36, note
that the upper curve is for the "near" sidelobes and the lower curve is for
the “far" sidelobes. 1In order to demonstrate the accuracy of the sidelobe
envelope model, the model output is superimposed on patterns generated by the
JPL developed software (also available in {9]). This is shown in Figures 37
and 38. In both cases, the "far" sidelobe approximation is very accurate
beyond the first sidelobe. As expected, the "near" sidelobe approximation is
good beyond the second or third sidelobe. The reason that the first few
"near" sidelobes are not approximated accurately. is because the scanning
operation modifies the phase distribution in the reflector aperture and this

modification has more impact on the fields closer to the reflector axis.
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Figure 34. BeamBroadening Factor. D = 1866.67 wavelengths,
F/D, = 1, and ~10 dB taper offset-parabolic
reflector.
° T T 1 1
g o5 -
i AU
L -]
1 O‘
8
P
3 ro- .
5 Il 1 I |
0 5 10 15 2 25 2

SEAMWIDTHS SCANNED

Figure 35, Scan Loss Function. D = 1866.67 wavelengths,
F/D, = 1, and -10 dB taper offset-parabolic
reflector,
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Figure 37. The Model Output Superimposed on Patterns Generated by
the JPL Developed Software: D = 1866.67 wavelengths,
F/Dp = 1, -10 dB taper, and 6c = 10.2 beamwidths.
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Figure 38. The Model Output Superimposed on Patterns Generated by

the JPL Developed Software: D = 1866.67 wavelengths,
F/Dp = 1, -10 dB taper, and 6; = -25.5 beamwidths.

The transition point between the main beam and the side lobe envelope is
assumed, for simplicity, to be where the main beam gaiu is iess than -20 dB.
Thus, in the model program, if the calculated value for GM(G, ec) is
greater than -20 dB, then the value of GM(G, Gc) is used. However, if the
calculated value is less than =20 dB, then the value of GSL is calculated,
and after a comparison the larger of the two values is used, This will insure
the use of an upper bound in the transition region.

Additional beam pattern models were obtained by the use of JPL developed
software for three cases of 100 wavelength diameter offset-reflectors with a
~10 dB edge taper for F/Dp's of 0.5 and 1.0, and with a -15 dB edge taper

for F/Dp of 1.0. The data obtained by the use of the software are plotted

as a function of the beam scen angle and include the scan loss {unzcion, beam
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broadéning function, and the sidelobe level coefficients. This is shown in
Figures 39-41 for the three cases. It can be seen that the scan loss is
drastically reduced by using a larger F/Dp, particulariy at large scan
angles. This same effect was noted in reference [Q]; The effect of
decreasing the feed taper from =10 dB to -15 dB on the acan loss is not
noticeable, as expected. In Figure 40, the beam broadening factor shows the
most severe beam degradation, at large scan angles, for F/Dp of 0.5. As for
the sidelobe performance away from fhe main beam, Figuce 41 shows that the
F/DP has very little effect for small scan angles, but the sidelobes are
significantly higher at large scan angles for the smaller F/Dp. In
addition, the reduction in taper from =10 dB to ~15 dB reduces the sidelobe

level, as expected.
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Figure 39. Scan Loss Function, 100 Wavelength Diameter
Offset-Parabolic Reflector
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In Figures 42-50 the beam pattern model (dashed curves) has been compared 3
to the JPL software generated theoretical patterns, for the three
offset-reflector examples, from which the model data were empirically
derived. In Figures 42-44, two features are evident.  First, the main beam
model should include the beam deviation factor (BDF) because it is a definite
factor for smaller F/Dp's. At present time this model dces not include the
beam deviation factor and it has been assumed to be very close to unity.
Secondly, the model is somewhat optimistic in the region of the first

sidelobe/shoulder for large scan angles. 1t was anticipated that the

transition region between the sidelobe envelope and the main beam would be
{ % where the beam model would show the worst approximation. Thus, for small
values of F/Dp, for beam scan angles larger than 5 beamwidths the model is
slightly better than the “worst case" in the transition region between the
sidelobe envelope and the main beam, and is slightly worse than the “worse
case" for sidelobes at large angles off the beam boresight, g .

i Figures 45-50 show how well the model approximates the theoretically
calculated patterns for F/Dp of 1.0. These figures show that the main beam

model is very accurate tc at least 10 dB below the peak gain. The beam

NP RWACTRTBN L b b st s g

deviation factor is very close to unity in all cases. The envelope
approximation is also very good outside the second sidelobe. As before, the
region near the first sidelobe is where the model is least accurate, but it is
much more accurate than the model for F/Dp of 0.5. The decrease in edge

taper from -10 to =15 dB improves the scanned beam performance and also reduces
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8 w0 ﬂ taper, and 6, = 0
beamwidths
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Figure 49. Comparison of the Beam
Pattern Model and the JPL
Software Generated
Theoretical Pattern for
Offset-Parabolic
Reflector with D = 100
wavelengths,
F/Dp = 1.0, -15 dB
taper, and 6, = 5
beamwidths
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Figure 50. Comparison of the Beam
Pattern Model and the
JPL Software Generated

g 1 Theoretical Pattern for
r4 .
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¥ APPROXIMATION 8 Reflector with D = 100
5 wavelengths,

F/Dp = 1.0, -15 dB
taper, and 6, = 10
beamwidths
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the difference between the theoretically calculated patterns and the beam

L oNa

pattern model. As a general coﬁment, for the cases considered here, the
offset-reflector diameter is 100 wavelengths which corresponds to a 7.5 meter
antenna at a 4 GHz or a 2.5 meter antenna at 12 GHz.

' ‘ In this analysis, it was assumed that the desired beam is the beam
generated by the feed at the focal point of the reflector antenna, 6, = 0.

This assumption insures a type of symmetry around the desired beam by the

interfering beams and gives a possible "worst case" for the interbeam

isolations within the coverage area. The disadvantage of this assumption is

that the scan loss is somewhat large at large scan angles and it is possible
i to have the "worst case" isolations for the desired beams with largest

! beamwidths scanned. This is specially true for the offset-reflectors with
smaller F/Dp's as discussed before. However, it should be noticed that the
beam broadening factor and sidelobe coefficients are also largest at large
scan angles. Thus, it seems that the "worst case" isolation is for the

; . desired.beam generated by the feed at the focal point of the reflector, since
for this beam the cochannel interfering beams have the highest sidelobe
levels. In general, only a thorough analysis, by considering the C/I
performances of the foregoing possibilities would show the "worst case"

interbeam isolation within the coverage area.

5.3.2 Frequency Reuse Capacity and Interbeam Isolation

In order to obtain the frequency reuse factors for the ofiset-reflector

TR T

multiple beam antennas, the C/I calculation is repeated for the various

allowed combinations of number of beams and number of frequencies, as done in

R T e

rpgar,

the axisymmetric reflector case. The results for a 100 wavelength diameter

s,
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offset-reflector, with F/Dp of 1 and -15 dB edge taper, are shown in

Figure 51. Again, every curve corresponds to a specific number of frequencies
which was used to evaluate the C/I performance. It can be seen that the
primary factor in the C/I performance level is the frequency reuse factor. A
change in number of frequencies from 3 to 4 causes a considerable change in
the C/I value (about 5~7 dB), but a change from 12 to 13 causes a smaller
change of about 1 dB. So as the number of frequencies increases, the C/I

value becomes less sensitive to it.

5.3.3 Sidelobe Level Analysis

Figure 51 was obtained for a beam pattern model with sidelobes starting
at =30 dB level. In order to study the effects of some wide variations of
sidelobe levels upon the C/I performance of the system, the beam pattern
models shown in Figures 45-47 were modified and used. Figures 45-47 show the
beam pattern models generated for an offset-parabolic reflector with
100 wavelength diameter, F/Dp of 1.0, and a =10 dB edge taper. These beam
pattern models have sidelobe envelopes starting at about -25 dB relative to
the main beam-maximum. In this study of sidelobe effects, the sidelobe
envelope for these beam pattern models were shifted up or down to create the
variations of sidelobe level. Figure 52 shows the modification for variations
of the sidelobe envelope for the beam pattern generated by the feed at the
focal point of the reflector antenna (scan angle Oc = 0). For beams at
other scan angles the same procedure was used and the sidelobe envelope of the
degraded beam pattern was shifted up or down in order to obtain the desired

level of the sidelobe envelope.
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Beam Separation: 1 HPBW of the main beam
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In order to avoid confusion, the beam patterns shown in Figure 52 were
named type A pattctms., This is due to the fact that, in practice, for an
offset-parabolic reflector with the above mentioned dimensions and a -10 dB
edge taper, it is not possible to have beam patterns with sidelobes starting
at =30 dB, or lower, relative ito the main beammaximum.

Figures 53-55 show the C/I values obtained for a 100 wavelength diameter
offset-reflector with beam patterns of type A. In these figures the value of
sidelobe envelope was varied from -25 dB to -35 dB. Figure 56 compares the
(C/I) values obtained for these different sidelobe levels and shows the effect
of different sidelobe levels when a different number of frequencies is
employed. It can be seen that the sidelobe level has a much greater effect

when a larger number of beams and frequencies is used.

5.3.4 Illumination Taper Analysis

The primary advantage of illumination tapers (edge tapers) is the low
sidelobe levels provided by them. It was shown that the use of illumination
taper slightly improves the scan loss performance and causes sidelobe level
reduction. Figure 57 shows a comparison of C/I levels for two different taper
levels and three different frequencies. The comparison shows that a 5 dB
decrease in the illumination taper, corresponding to a 5 dB decrease in
sidelobe levels, causes a C/I improvement of about 1-4 dB. 'In Figure 57, a
comparison of results obtained by a type A pattern with -30 dB sidelobes and
~15 dB edge taper pattern with -30 dB sidelobes shows that the method used in
5.3.3 (employing the beam patterns of type A to study the effects of sidelobe

level variations) could yield optimistic results by about 1 dB.
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Figure 53, Frequency Reuse Capacity
Offset-Reflector Diameter = 100\, F/D, = 1.0,
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Calculation Point: -3 dB down from peak of the main beam
Beam Separation: 1 HPBW of the main beam
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----- F/Dp = 1.0, -10 dB Taper and -25 dB Sidelobe Level
Calculation Point: =3 dB down from peak of the main beam
Beam Separation: 1 HPBW of the main beam
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5.3.5 Dimensional Considerations

It was discussed that the beam radiation pattern degradation is strongly
rélated to the focal length over the parent paraboloid diameter (F/Dp) ratio
of the offset-reflector and to the aperture illumination function. Also, it
was shown that larger F/Dp's drastically reduce the scan loss, beam
broadening factor, and the sidelobe envelope coefficients at large scan
angles. In general, linearly polarized offset antennas will generate
significant levels of cross-polar radiation unless the reflector has a large
F/Dp ratio. However, for most applications it was found that the reflector
depolarization lays below the copolarized sidelobe envelope. Hence, the
offset-reflector depolarization does not preclude the use of this antenna in a
low~sidelobe role. For smaller offset-reflectors, primary~feed spillover
constitutes the main limitations on the overall sidelobe performancesn These
effects can be alleviated by good primary feed design and some use of shields
or blinders about the antenna aperture [7]. Also, for a single linear
polarization, good polarization purity can be restored by use of
polarization-sensitive grids and a large F/Dp ratio is not necessary. In
our analysis a single linear polarization, conside’ .ng only the copolar
patterns, is used. In terms of the C/I performance it was discovered that the
performance was not affected by more than 1 dB when an F/D_ ratio of 1.0 was
used in comparison to an F/Dp ratio of 0.5. Figure 58 shows the C/I values
obtained for a 100 wavelength diameter offset-reflector with a -10 dB taper
and F/Dp = 0.5, Figure 59 shows the comparison made for two different
F/Dp ratios of 0.5 and 1.0. It can be seen that for different numbers of

frequencies, the two different F/Dp ratios compared very closely in terms of

the C/1I performance., This is primarily due to the fact that the desired beam

was assumed to be the beam generated at the focal point of the reflector aand,
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therefore, does not incur any large scan losses for the smaller F/Dp. The
difference in the C/I performances could be attributed to the increase of beam
broadening factor and sidelobe coefficients for the smaller F/Dp at large

scan angles.

5.3.6 Crossover Level and Footprint Level Sensitivity

The importance of knowing the C/I variations at different crossover
levels in multiple-beam antenna applications was discussed irn 3.2.4.
Figure 60 shows the relation between the C/I and crcssover level for a
100 wavelength diameter offset-reflector with a -10 dB taper and
F/Dp = 1.0. The main beam function, the symmetric Gaussian function
centered at § = ec, for the offset-reflector case is the same as the main
beam function, modified CCIR reference pattern, for the axisymmetric reflector
case when ec = 0 (the main beam of the desired beam generated at the focal
point of the offset-reflector). Therefore, the relationship between the beam
separation values, distances between the centers of two adjacent beams, and
the footprint levels at the crossover boundaries is the same as that shown in
Table 5. 1In Figure 60, C/I values as a function of the beam crossover levels
are given for five multiple-beam antenna systcms with different number of
frequencies and number of beams. Notice that the C/I values have very small
variations (0.1 dB) or no variations for crossover levels between
=5 to =7 dB. 1t can be 3een that the optimum crossover level is independent
of the number of beams and frequencies and, in this case, is between
=5 to -7 dB. This is - - important result since the optimum crossover level
was dependent on the number of beams and frequencies for the axisymmetric
reflector antenna. Figures 61 and 62 show the relationship between the C/I

values and the footprint level of the desired beam for different numbers of
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Figure 61. (C/1) Performance Calculated at Different Footprint (dB)
Levels of the Desired Beam
Offset-Reflector Diameter = 100}, F/DP = 1.0,
~10 dB Taper, and -25 dB Sidelobe Level
Beam Separation: 1 HPBW of the main beam
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Figure 62. (C/1) Performance Calculated at Different Footprint (dB)
Levels of the Desired Beam, for 3 Sidelobe Levels
Offset-Reflector Diameter = 100}, F/Dy = 1.0, and
Type A Pattern
Beam Separation: 1 HPBW of the main beam
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beams, frequencies, and sidelobe levels. Again, it could be seen that in all
the cases the C/I values, as a function of the decreasing footprint level, are

almost linearly decreasing.

5.3.7 Beam Spacing

Effects of the beam spacing variations on the C/I performance, for the
offset-reflector antenna, were studied and the results are shown in
Figure 63. The C/I performance improves as a function of increasing beam

spacing.

5.3.8 Conclusion

The frequency reuse capacity of an offset-reflector multiple-beam
antenna, with fixed number of beams and frequencies, has been shown to be
primarily a function of sidelobe level (illumination taper) and beam spacing.
However, as the number of frequencies increases, the frequency reuse factor

becomes less sensitive to the sidelobe levels, but the C/I1 performance of the
45 ﬁw‘vnnmvﬂvmﬂvmﬁWmmfﬁuvmmﬂ1wm‘
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Figure 63. (C/1) Performance as a Function of Beam Spacing
Offgset Reflector Diameter = 100X, F/Dy = 1.0,
-10 dB Taper, and -25 Sidelobe Level
Calculation Point: -3 dB down from peak of the main beam
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system improves. These are the same results as obtained for the axisymmetric
reflector antenna. The other similar result is that the sidelobe levels have
a more noticeabl~ effect for larger number of beams when smaller number of
frequencies are used.

It was shawn that for a single linear polarization, when only the copolar
pattermns are considered, the C/I performance of the system was largely
unaffected by the dimension of the offset-refiector (F/Dp). This could be.
due to the fact that the desired beém was assumed to be the beam generated at
the focal point of the reflector and, therefore, does not incur <ny large scan
losses for the smaller F/Dp. Also, the effects of the cross-polar
components, which can be very serious in this case, are ignored.

The important fact discovered for the offset-parabolic reflector
multiple-beam antenna is that the optimum crossover level is independent of
the number of beams and frequencies.

In addition, the present results use a beam pattern model, which has been
shown to spproximate the envelope of calculated theoretical patterns very
closely. Use of pattern models is expected to give an approximate worst case
estimate of frequency reuse capacity because the model approximates the
sidelobe peaks with an envelope function. Thus, the results show an upper

bound on the number of frequencies or channels required to meet a specific C/I

requirement.
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SECTION 6
DISCUSSIONS AND DEVELOPMENTS FOR THE MULTIPLE-BEAM
ANTENNA PROGRAM MODEL

The methods developed here can be used to analyze the interference
rejection performance of uniform and non-uniform coverage systems, whether the
antenna types are reflector antennas, lenses, or arrays. In this report the
major effort has been to use space diversity to maximize the interbeam
isolation and the frequency reuse caﬁacity of the system. A second reuse of
the same frequency band in each antenra beam may be achieved through the use
of orthogonal polarization. The use of polarization diversity means to
transmit two microwave carriers on the same frequency using either the two
opposite “"left-handed" or "right-handed" waves of circular polarization or two
perpendicular linearly polarized waves. INTELSAT IV-A and V antennas take

advantage of circular polarization. Use of dual polarization in multiple-beam

PP

o
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antenna presents many more design problems than does a single polarizatior., because

the antenna system and its design considerations are much more involved [3],

[)1]. But, since the combination of both space and polarization diversity is

very attractive, one of the future tasks for development of the model program

is to obtain the capacity of analyzing the interbeam isolation and frequency
reuse when the combination of both diversities is used. Circular polarization
is speclally attractive for an offset-reflector when polarization diversity is
used since an offset-parabolic reflector does not generate a cross-polarized
signal when the feed has perfect circular polarization pattern [li]. Thus,

for circularly polarized beams, good polarization isolation and axial ratio

can be obtained by properly designing the feed elements and array

configuration,
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It was méntioned that the use of a sidelobe envelope function eliminates
the effects of the sidelobe variations and the sidelobe nulls of the radiation
patterns of the interfering beams in calculation of the interbeam isolation,
and frequency reuse, and provides an approximate "worst case'" estimate within
the coverage area. Although, the sidelobe envelope functions were used in the
model program, multiple-beam antennas have real sidelobe patterns and so, in
some instances, the results could be much more optimistic at some areas within
the coverage area. The usage of null-forming and null-steering, by adaptive
feed arcays [13] in multiple-beam antennas, and uce of real patrerns in the
model program comprises another one of the future tasks. The purpose of this
task is to see how the interbeam isolation varies at different footprint
levels within the various coverage areas, the pattern contours, and how we can
obtain the maximization of interbeam isolation at some designated subareas
within the various coverage areas.

In addition, the specific tasks for the future developments of the beam
pattern model includes:

(1) Addition of the beam-maximum deviation factors;

(2) Consideration of the non-symmetry of the sidelobe patterns;

(3) Consideration of the effects of the off-axis location of the desired

beam on C/I performance.

In conclusion, it must be remembered that the results presented here
demonstrate the use of the method in tie analysis of a few specific cases, and
that more cases must be analyzed :»n .cder to obtain a full understanding of
frequency reuse capacity of multiple-beam antennas. In the future, antenna
patterns of some of the existing multiple-beam antennas will be obtained and
comparisons of measured and theoretical patterns will be made. This will

provide the necessary assessment of model adequacy and accuracy.
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