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ABSTRACT 

A mixed formulation fo r  calculat ing s t a t i c  equilibrium and s t a b i l i t y  
eigenvalues of nonuniform rotor  blades i n  h w e r  is presented. The s t a t i c  
equilibrirrm equations are nonlinear and a r e  solved by an accurate and e f f i -  
c ient  collocation method. The l inearized perturbation equations a re  solved 
by a one-step, second-order in tegra t ion  scheme. The numerical r e s u l t s  

' co r re la t e  very w e l l  with published resu l t s  from a nearly iden t i ca l  s t a b i l -  
i t y  analysis  based on a displacement formulation. S l ight  differences i n  
the resu l t s  a r e  traced t o  terms i n  the equations tha t  r e l a t e  moments t o  
derivat ives of rotat ions.  With the present ordering scheme, i n  which terms 
of the  order of squares of rotat ions a r e  neglected with respect t o  unity,  
i t  is not possible t o  achieve completely equivalznt models based on mixed 
and displacement formulations. A study of the  one-step methods reveals tha t  
a second-order Taylor expansion is  necessary t o  achieve good convergence 
fo r  nonuniform ro ta t ing  blades. Numerical r e su l t s  fo r  a hypothetical non- 
uniform blade, including the  nonlinear s t a t i c  equilibrium solut ion,  were 
obtained with no more e f f o r t  o r  computer t i m e  than tha t  required for  a 
uniform blade with the present analysis. 

1. Introduction 

It has been found tha t  nonl inear i t ies  i n  rotor-blade equations a f fec t  
blade s t a b i l i t y  [l-41 - especial ly s t a b i l i t y  of coupled f lap ,  lead-lag, and 
torsion degrees of freedom [ I ] .  In these references it was found t h a t  
e s sen t i a l  nonlinear e f f e c t s  could be retained by perturbing the  nonlinear 
equations of motion about the s t a t i c  equilibrium condition and solving for  
the eigenvalues of the linearized perturbation equations. Coefficients of 
the  l inearized perturbation equations then depend on the  solut ion of the 
nonlinear s t a t i c  equilibrium equations. 

This paper presents a method f o r  s t a b i l i t y  analysis  of nonuniform 
rota t ing  blades with aerodynamic loading t h ~ t  u t i l i z e s  the  solut ion fo r  the  
nonlinear s t a t i c  equilibrium equations i n  the  l inearized eigenvalue problem. 
Methods described i n  the  l i t e r a t u r e  have been limited t o  solut ion of 
various r e s t r i c t ed  versions of t h i s  problem [4-91. These include a modal 
approach 141, an integrat ing matrix method [S], a Myklestad method [6] ,  
a Ritz finite-element method [7], a modal approach based on a mixed varia-  
t iona l  principle [8], a transmission matrix method [9],  and a Galerkin 
f inite-element method [ lo] .  
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Xu rwtian 2 of th io  paper, u in [I], th r  gworning oqu~t ioan of motion 
u o  writtra o two u t r  of aquationr. Ono i r  a rot of d i a u r  ordinary 
d1ffmrenti.l o q u r r t b ~  that w r n r  tho s t a t i c  equlllbrium coudition. The 
9tb.E if eeot  of lheu ~tdLLb.rp B i f f a ron th l  e q u ~ t i m s  wltb ut mhmm 
-envalue that govornr tho dymmic bohavlor of d l  perturbation motions 
.bout equilibrium,. ,Thus dlff8renti.l  equations are written In a mixed, 
opathl-derlvativa forr, unl- tho dleplacemmt f o n a r l ~ t i o n  of 111. 
S o v e r d  di f forencu  bohrem mixed and displacaaent forarlat ions ere then 
dircur..d in the c o n t a t  of the  preaent-analytical task. 

Then, i n  roction 3, solution of the equations is discweed. A differ-  
ent technique l o  used t o  solve for  the nonlinear s t a t i c  equilibrium from 
that  usod t o  sol- f o r  the l inear  stability eigenvalues. The nonlinear 
s t a t i c  equilibrium i r  rolved by a collocation method for  a mixed-order eys- 
tem of boundary value equations [ I l l .  The software for this method is 
available i n  A program called COLGYS [ 121. For the linearized perturbation 
equations, several methods of solving for  the eigenvaluee are dfecuseed. 
Thee. include COUPS (121, a generalized eigenvalue approach [13], a Block- 
Stodola technique [14], and one-step numerical integration techniques of 
various orders. For the  present formulation the one-step methods, which 
appear t o  be the m e t  pramielng, are  wed. 

Flnally, in section 4, n m r i c a l  resul ts  are  presented for comparison 
with published data and for study of convergence properties associated with 
the one-step methods. lhmerical result6 are also presented for s t ab i l i t y  
eigenvalues of a hypothetical nonuniform blade. 

2. The Governlna Equations 

The governing equations wed herein were essential ly derived i n  f15], 
i n  which the Houbolt and Brooks [16] equations are extended into  the range 
of geometric nonlinear behavior. The integro-part i a l  d i f ferent ia l  equa- 
tions are  transformed in to  ordinary dif ferent ia l  equations by f i r s t  express- 
ing the vector of unknowne, z ,  aa 

e(x,t) - f (x) + Z(x,t) (1) 

Here I is the s t a t i c  equilibrium part and is a small, perturbed part.  
The equations are linearized i n  2 and converted t o  an eigenvalue problem 
with the transformetion 

where 

The s t a t i c  equilibrirrm equations (with the sign conventions and nomenclature 
defined i n  (151 are  given i n  appendix A. From Equations ( A l )  through (AlO),  
and (A17). the s t a t e  vector, 5, for the nonlinear, e t a t i c  equilibrium 
behavior is written a s  

and Equations (Al3) , (A14) , and (Al5) define the aerodynamic loading f o r  
the hovering f l igh t  condition. 
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T& 1iaurired equr tbnr  govornw omall perturbation motions from the 
sGtk equUbr iua  atate dofined by the r o l u t h  f o r  rho equations In appon- 
di r  A are givm %n 8ppmdLt B. Th. rwta variabler , a, f o r  tho perturbod 
rtrtr are d a f M  in Equations (Bl) that* (BlO), and (B14) through (B19). 

' The voctor i i r  
-* - 

O C ~ ; E P  4 6 4. (5) s 
Y 8 s Y X 

" S  and the oquatianm may be r e p r e m t a d  in matrix form as 

t' = (A + AB)~  (6) 
C 

In the dotivation cf the equations in appendices A a td  B, terms of 0(e2) 
h v e  baa dropped otith respect t o  unity where e is the order of bending 
and t o r a h  rotatioar,  f, 0, and 4. The ordering scheme outlined in [15] 
har bwn folloolad as closely a r  posetble. A s  in f151, an exception has 
bean nude to include 0(e2) termr ia the torvion equations that  a re  uncou- 
pled from the bending equations but are known t o  influeace the uncoupled 
torrian frequency. It i r  not possible, however, t o  be ccxnpletely consistent 
in order- schemes in either a mixed fonnulntion for  the dif ferent ia l  

. equations o r  in a displacemeat fanmlatioa. Furthermore, a s  w i l l  be shown 
in the next section, it i r  not always possible t o  reach complete agreement 
betweween the mixed and displacement f ormulatione in the decision of which 
tern to retain, even when trying to'follow the same guidelines on neglect- 
ing Ugher-order terms. 

An exception to  the guidelines in [IS] on the ordering of terms has 
been to  re ta in  complete trigonometric expressions involving the variable 4. 
In [IS], cos(0 + 4) and sin(b + 4) were approximated by the appropriate 
expaneions in terms of cos 0, sin 9,  and +, neglecting terms of second and 
higher powers of 4. In t h i s  paper it has been convenient t o  retain the 
complete trigonometric expression i n  a l l  equations except the equations 
relat ing rotation derivatives and moments which are presented below. - No 
significant differences in the resu l t s  of [l] and th i s  paper w i l l  occur a s  
a consequence of using t h i s  convenient trigonometric form. 

When the equations are  formulated a s  a system of first-order differen- 
tial equations (i.e., a mixed formulation) several a t t rac t ive  features 
become apparent, These include the simplicity of the form of the governing 
dif ferent ia l  equations, the absence of the derivativee of the e las t ic  char- 
acter is t ice ,  the eimplicity of applying numerical integration techniques, 
and of handling boundary and interface conditions. The mixed formulation 
was particularly convenient i n  t h i s  application since the integro- 
di f ferent ia l  terms could easily be rewritten as  di f ferent ia l  equations 
[note Eq. (A17) , (B14) , and (B19) ] . 

i 
k E 1 .  

i 
Concerning retention of specific tenns, the main difference between a 

j mixed-order formulation and displacement formulations involves the equations 
I 

j 1 .  relat ing derivatives of rotatione t o  moments which are 



-00 equatioru l..d t o  Equationr (A4) m d  (A8) in appendix A and Equa- 
tiona (84) and (88) ln appendix 0.  Referonce [a], which is a dieplacement 
f o r d , a t f o n  aeglact r  the N contribution (i.e., the  ringle-underlined term 
ta Quation 7) In a conrist#nt -or on the  baaia that  tors ional  momenta a r e  
at  lurt ana 0rd.r of m a ~ ~ i t u d e  l e a s  than the  bending moments. References [ l ]  
and [IS] wr 8 quai-coordirutr  rre the  torsion var iable  aa discussed i n  [I?].  
For that fotp~ulation, t h e  toreion m m t s  whea used in t h e  bending equation@ 
are writ ten u integral8 of applied and i n e r t i a l  ioads and a r e  thus of 
0(tt2). In ?he band* 8quatIOIU they are multiplied by quant i t ies  of O(E) 
and ara thua nagligible. References [ l a ]  and [19], which a r e  allso displace- 
mt formulationr, uue Lagrangian tors ion variables and i n  a consistent  
manner re ta in  the  single-underlined te rn .  There, the torsion moments a re  
written in terms of the  f i r s t  derivatives of 4 and a r e  O(c) quanti t ies .  
When they are multiplied by terms of O(c) in the  bending equations, they a r e  
not formally negligible and thus pre retained. The s iaglevnder l ined terme 
are also retained in the mixed fo?.r,ulation presented here, although they could 
be  neglected on t h e  baeie of the  arguments in [ l] .  Results a r e  presented i n  
a later sect ion which docuwnt the e f fec t  of the  single-underlined terms. 

Another mare important difference between mixed and displacement for- 
mulations is i l l u s t r a t e d  by the  double-underlined terms of Equation (7). 
I n  [I] ,  [IS 1, [18], and [19] the double-underlined terms were retained in 
deriving the  fourth-order governing equations f o r  the lead-lag and flap- 
bending behavior, but they were neglected in deriving the second-order 
toreion equation. These terms a r e  consistently retained o r  neglected in 
the abwe  references on the bas i s  of essent ia l ly  the same ordering scheme, 
and the retained terms resu l t  in a sywnetric e l a s t i c  s t i f f n e s s  matrix. For 
the  present mixed formulation, however, there is no reason, a p r io r i ,  t o  
neglect these terms. We may expect t h e w  t e r m  t o  have some observable 
e f fec t ,  especial ly when there is signif icant  s t a t i c  equilibrium deformation, 
such a s  whea 8 is large. This e f fec t  w i l l  be i l lus t ra ted  in  the next 
eec t ion. 

Previously, w e  discussed eome advantages of the  mixed formulation. There 
a r e  a l so  some drawbacks t o  use of mixed formulations. The matrix operator for  
the  s t ruc tu ra l  terms in t h e  equations no longer appears i n  symmetric form, and. 
the  rider of variables i n  the  a t a t e  vector is several times tha t  of displace- 
ment foran~lations. For some applications, however, the convergence is more 
rapid f o r  mixed fonnulations than for  displacement formulations [20 and 211, 
thereby offse t t ing  somewhat the  l a t t e r  disadvantage. Further, force resul tants  
a re  obtained with the same degree of accuracy as the displacements i n  the 
mixed formulation. The disadvantage of the n o n s y m ~ t r i c  form of the  s t ructura l  
operater can be somewhat of f se t  by select ion of solution techniques tha t  do 
not make use of matrix syonnetry o r  poeitive definitenese, Basically, the  
choices considered here were whether t o  use collocation methods, generalized 
eigensystem approaches, o r  one-step integrat ion methods. 

3. Solution of the Systems of Equations 

For obtaining the nonlinear, s t a t i c  equilibrium solution, the colloca- 
t ion method [ l l ]  was used since the  software [12] w a s  readily available 
and since the method ensures a high accuracy. The program is capable of 
t rea t ing general systems of nonlinear multipoint boundary value problems up 
t o  order four with a variety of options available t o  the user. COLSYS pro- 
duces an approximate solution t o  a user-specified accuracy using a polynomial 
spl ine which can be evaluated a t  any point within the domain of the problem. 
The i n e r t i a l ,  geometric, and e l a s t i c  properties of the blade can be expressed 
a s  functions of the ax ia l  coordinate in t h i s  approach, and the high-order, 



rpline-fit mathod l u d o  to  almort a0 high a degree of accuracy a t  noncollo- 
catgon point8 ar a t  tha collocat ion poiate. Further, trigonometric exprer- 
riona involving rtata v a r h b l e r ,  ouch am sin(% + 4), can be expreeeed 
exactly without tho am11 angle arr\rmptimr on 4 t ha t  a r e  of ten made. 

The collocatioa roftware package, CaLgYS, war wri t ten  t o  solve a set 
of nonlinear multipoint boundary value probleme. Ae such, it can a l s o  be 
applied t o  eigmlue problem6 w i a g  the approach outlined in [22]. After 
Imteetigatlon of thir apprmch f o r  the eigenvalua problem, it was discarded 
l o r  variour reaaonr. I n  par t icular ,  mince the c q l e x  roots  doubled the  
number of required governing aquatima,  the  exis t ing  code could no longer 
acca~lmodate there  cases without modification. A fu r the r  1iPlitation is t h a t  
a p r i o r i  ertimater of t h e  desired comp1.e~ eigenvectors and eigenvaluee 
muat be provided. 

Next, the  general'tzed eigenvalue approach was investigated. In  t h i s  
approach, Equation (6) is discret ized using a f inite-dif f erence approxima- 
tion. The one choaen hare involved the  cen t ra l  difference approximation 
given by: 

where the  subscripts  denote the  locat ions a t  which the  var iables  are 
evalua tad. 

This r e e u l t s  in a generalized eigenvalue problem of the  form 

The dimensions of the  matrices and a r e  16k x 16k, where 16 is the  
dimension of the matrices A and B i n  Equation (6), and k is the num- 
ber  of sepents in the  discret izat ion.  I n  preliminary invest igat ions the 
subroutine EIGZF [13] was used t o  obtain a l l  the  eigenvalues f o r  t h i s  
generalized eigenvalue problem. It was found t h a t  a s  many a s  100 segments 
would be required t o  obtain 3-place accuracy f o r  the second eigenvalue. 
Unfortunately, the  lack of symmetry prevents the  banded s t ruc ture  of the  
matrices from being exploited; thus, a storage problem i s  created. 

One a l t e rna te  approach is t o  f ind selected eigenvalues. The Blcck- 
Stodola method [14] uses a block inverse-iteration algorithm t o  f ind the 
f i r s t  few eigenvalues. In  those caees which were tested f o r  t h i s  method, 
no more than the f i r s t  eigenvalue could be computed accurately. Here, 
because of the  lack of q m w t r y ,  there is no underlying var ia t ional  princi- 
p le  that can be employed a s  i n  [14]. Although it is possible t o  symmetrize 
one of the  two matrices and obtain the hypotheses in [14), t h i s  r e s u l t s  in 
a s igni f icant  degree of f i l l - i n .  A s  a coneequence, t h i s  approach wact not 
pursued. 

The one-step methods using t ransfer  matrices s imilar  t o  the  Myklrstad 
method seem t o  be the  most promising. The term one-step method re fe r s  t o  
those methods which depend onlv upon s t a t ion  i t o  obta9n solut ions a t  
s t a t ion  i + 1, Higher-order terms of a Taylor expansion can be used with 
the  one-step method t o  speed convergence. The method can be described a s  
follaua. A Taylor expansion of Z ( X ~ + ~ )  about x i  is 



A f i r r t -order  method can be obtahad from the f i r s t  two terms of Equa- 
tion (10). y ie ldh$  

where Equation (6) i r  urad to  eliminate a'  (xi). Equation (13) has 0(h2) 
local rnmcrrtim error. A second-order method can be similarly obtained 
from the f t r r t  three termo In Equation (10) yielding 

which bas 0(h8) local truncation error. Here Equation (6) is used t o  
elhinate a'(xi) and sW(xi). Both Equations (13) and (14) may be rewritten 
an = Ti t i ,  where T i  is a suitably chosen matrix evaluated a t  . xi,  
so that  

The form of T i  dbpends on the order of the method. Hence, Zn = Tzo where 
T - T T n T  The honogenous boundary conditions a t  aso and + are  then 
used t o  reduce matrix T t o  a smaller (6 x 6) matrix T whose determinant 
det (?) i a  a polynomial in  A. The desired eigenvalues correspond t o  those 
A ' s  that  produce zero determinant for  . In cur implementation of the 
one-step methods, subroutine WNLYT [13] is ueed to  find m e  or more of the 
complex roots of the rea l  polynomial det (T) . Subroutine LEQTIC [13]' is 
used t o  decompose matrix T into  L and U factors. The product of the 
pivots produced from t h i s  factorization gives the determinant of Finally, 
whenever Ci is used, i t  is approximated by the backuard difference 

and C; is assumed to  be zero. In any one-step method, care must be taken 
toc def ine the C' terma properly a t  those points where cusps or discon- 
t inu i t ies  in the axially varying properties occur. 

If  there a re  axial  variations in iner t ia l ,  geometric, and e las t ic  
properties or  in the tension, the term Clzi in Equation (16) can have sig- 
nificant impact on the speed of convergence. Rotor blades have a l l  of 
these axial  variations. Therefore, the method i l lus t ra ted by Equation (16) 
wee wed in t h i s  paper. A ~ I  r h m  in  the next section the number of eeg- 
ments required t o  produce accurate resul ts  increases substantially i f  the 
Cizi term is omitted from Equation (16). 



4 ,  lmmrical Uarultr and Dibcurrion 

Ntmuricrl r a r u l t a  ware obtainrd uring an SBM 360167 computer and a r e  
presented i n  t h i r  rect ion f o r  several rotor-blade configurationr. These 
rerults are i n t a d a d  t o  serve pr inur i ly  three purporer: (1) t o  compare 
with published r e s u l t s  and thus, a t  l e a s t  pa r t i a l ly ,  va l ida te  the present 
computer program; (2) t o  study the  convergence propert ies  of one-step 
methods; and (3) t o  present some new reou l t s  f o r  a nonuniform blade which 
may serve a s  a reference problem f o r  fu ture  analy t ica l  r tudies.  The 
numerical values of the  various inertial, e l a s t i c ,  and geometric propert ies  
ore  prmented in  Table 1 f o r  configurations t o  be compared with raru lcs  
from (1) and [9] and f o r  the  hypothetical nonuniform blade. 

4.1. Cmpariron with publirhed r a s u l t r  

In t h i s  sect ion numerical r e s u l t s  a r e  presented t o  compare trith some 
published data. No attempt w i l l  be made t o  compare with a l l  of the many 
available numerical r e s u l t s  in the  l i t e r a t u r e .  Instead, we w i l l  focus on 
r e s u l t s  from an in vacuo configuration i n  (91 and the  aeroelas t ic  s t a b i l i t y  
r e s u l t s  of [ I ] .  Because of the  very good agreemeut between the  present 
r e s u l t s  and those published, it was f e l t  tha t  a prere5tation of the r e s u l t s  
in tabular  form would f a c i l i t a t e  comparison with published data and under- 
standing of the  e f f e c t s  of the  underlined terms in Equation (7) on the  aero- 
e l a s t i c  s t a b i l i t y  r e s u l t s  of [ I ] .  For serving the l a t t e r  purpose we 
designate two constants k l  and k2. For k l  (or k.2) = 1, the single-(or 
double-)underlined terms i n  Equation (7) a r e  included. For k l  (or k2) = 0, 
the  single-(or double-)underlined tenns In  Equation (7) a r e  deleted. 

A s  pointed out above, consistent  application of the ordering scheme i n  
a displacement formulation, such a s  in [ I ] ,  may lead t o  discarding terms 
tha t  may not necessarily be negligible in  an analogous ordering scheme f o r  
a mixed formulation a s  in thic. paper. I n  order t o  match r e s u l t s  of (11, i t  
was necessary t o  experiment with delet ing and retaining the underlined terms 
in Equation (7). One example of the dilemmas faced in trying t o  be con- 
s i s t e n t  is apparent when the  torsion moment % is writ ten a s  an Integral  
of applied and i n e r t i a l  loads. In t h i s  case it i e  c lear ly  0(e2),  a s  noted 
in [15] and explained i n  [ 171. However, when Mx is written In term of 
the  derivatives of rotat ions,  i t  contains one term, which is O(E). I f  MX 
i s  regarded a s  O(c), the single-underlined terms must remain (kl = 1); i f  
Mx is  regarded a s  0(c2) , these terms should be neglected f o r  the sake of 
consistency (kl = 0). A second example involves the double-underlined 
terms. When the  moment components M,, and Mz appear in the  bending equa- 
t ions  In a displacement formulation, they appear multiplied by O(1) 
quatrtities. On the other hand, In the  torsion equation they a r e  multiplied 
by O(E) quanti t ies .  Because terms up through 0(e2) a r e  retained in a l l  
equations in (11, it is consistent  t o  take only the dominant terms i n  
expreseions fo r  My and MZ i n  the  torsion equation but r e t a in  the  more 
accurate expression, including double-underlined terms, f o r  My and MZ i n  
the bending equations. In  the present mhed formulation, however, dropping 
of the double-underlined t e r m  (k2 - 0) i n  Equation (7) would resu l t  in 
matching the  toreion equation of a displacement formulation equation but 
r e su l t  i n  an oversimplified s e t  of bending equations. Retention of the 
double-underlined term (k2 = 1) r e s u l t s  in matching the bending equations 
of a displacement formulation, but adds addit ional  0(c8) terms that  a r e  
inconsistent in  the  torsion equation of the  displacement formulation. Thus, 
a coneistent s e t  of equations i n  a mixed formulation may, when transformed 
t o  a displacement form, r e s u l t  I n  neglect o r  retention of terms tha t  would 
be d i f ferent ly  t reated in a uet of equations wri t ten consietently in 



TULB 1, V A L W  o? f#mtTUL, W T T C ,  Am CmmTRIC P d w m T n s  FOR 
OaSARIsoae OF W8ULT8 WITX [ 11 m (91 . 

(a) 8.ter.aca (11 Confiwration 

I 0.026787 (u,, - 0.7n, eoft in-plane case) 
BI,/~Z~R~) - 

(b) Reference [ 9  1 Configuration 

9 - 0  8 - n/4 rad 

P, - 0 GJ 9000 lb  in. 

R - 40 in. = - 1 in.' 
b 

rn - 0.000125 lb  rec2 in. -2 e - k A - 0  A 

EIy  - 25000 l b  in.' e =  fib. 

EI, 7500 l b  ha2,  

(c) Tapered Cora 

All propertier a t  blade root identical  to those l i s t ed  above i n  port (a) 
for  the soft-in-plane case. A l l  properties a re  constant except EIy.  
EIz,  GJ, and m, which a re  mull t ip l i ed  by the factor (1 - 0 . 1 ~ )  . 



di.pl.cwrzrt form, .We axpoet differancar ouch a r  there to  be ma l l .  
Othrnire, wr nut conclude tht whatever bar been ulm a. an ordering 
ockrw mt i t r e l f  be ~ b o v  iaconrirtemt. 

A sample of r d t r  ganarated for  tha r i rp l i f i ed  configuration from 
[9] ir preruatod in Table 2. The rotor speed ir  rero i n  t h i r  care, and 
therefor. tb r ra  ir no urod la rp i c  lording a d  no r t a t i c  equilibritl~r defor- 
lutiaa, Thara ir nrvrrthalarr ,  m off ret be t r rm  the blade mars center and 
rhur canter and nousero pitch a g l e  (the propertier are  given in Table 1). 
Thus, a l l  dew- of f r . r d a  a re  coupled. The d a r  of r e g m t r  ured by 
the axampla from (91 is unknown. Howwar, it i r  clear that  the prerent 
rosultr  b u d  on 8 rscond-ordar , one-rtep method (C* - 0 for  t h i r  care, . atme the b- ir uaiform with no t e r i o n )  are  tanding towardr thore of 
(91 u the atdm of wp.atr b h c r u r e d .  With ouly 24 aagmentr, the 
f i r s t  mode ir within 0.U of b r t h y ' r  rarult .  

TABLE 2. COwARISObJ WITH UESVLTS FBOH 
(91 FOR FREE VIBRATIQ# PREQUFNCIES OF 
BLADE WITH W S  CBblTER OFFSET, 

.- 
u iradlrec) 

S e v t r  Modal M e 2  Mode 3 

16 30,7552 53.6968 179.8088 
24 30.7%2 53.7691 182.3980 
32 30,8107 53.7947 183.35:9 
40 30.8174 53.8065 183.8023 

Ref. [9] 30.8295 53.6277 184.6175 

When the rotor rpeed ir nonzero, the prerence of rteady aerodynamic 
l o d r  and, In .ou carer, iarrti.1 loadr, causer rignif icant r t a t i c  defor- 
mation whichmuat be taken into account properly in order to  obtain correct 
r t ab i l f ty  e ipnvaluer  (1). R a u l t r  from the prerent u u l y r i r  (COLSYS) are 
prermrod in  Table 3 along with thore of [ I ]  for both ?oft-in-ylane (w = 0.7) 
and rtiff-in-plaae ( - 1.5) carer with 8 - 0 and 0.3. The quantities 
tabulated are  t i p  def "I octionr of 5, C, 5, and the accuracy i. rpecified to 
be four rigaif haat figurer. Tlw ~ l u t i o n  ir neither d i f f icu l t  to  obtain 
nor particularly time conatring. The agreement i r  quite good regardlerr of 
th r  choice of kl  and k2. We conclude from th i r  that the r t a t i c  equilibrium 
rolution ir  not rtrongly affected by the prerence of the underlined t e m r  
in Equation (7) for  the limitad range of valuer presented here. Such is 
not thr care for  the r t ab i l i t y  eiganvrluer, however. 

Table 4 preaaatr the r t ab i l i t y  eiganvalucr bared on a recond-order, 
one-rtep u t h o d  v i th  C' t e r n  included and 16 segertatr (converged t o  
3 rignificant figurer). A#ain, the agreement i r  very good, especially a t  
8 = 0. The prerence of the mingle-uuderlined t emr  (kl = 1) ham no effect  
on the r e ru l t r  fo r  8 - 0 and very l i t t l e  effect  for  8 = 0,3, The double- 
underlined term8 (k2 - 1) r a i r e  the torrion frequency a t  8 - 0.3 from i t 8  

value a t  8 - 0 inrtead of lowering it a r  indicated in [I ] .  The effect8 
of k2 on lud- lag  damping a re  minor. The difference in the torrion f re- 
quency due to  the k2 t e r n  i r  about 2%. In d i a p l a c m t  f ormulation, 
there termr of aecood degree i n  bending curvature8 are ne lected in the 
torriot1 s t i f fne r r  (i.e., third-deyee terms, u c h  a r  wf, (v"u". etc.. 
a re  neglectad i n  the recoad-degree t o r r h n  equation). Thir ir consirtent 
i n  dirplacament fomuht ionr  ruch rr [ l  1, 1151, [18], and 1191. It i r  not 



3. VUIfRll m n a I c  PQUamR1t)l 
D- AT Bum TI?. (k1 - 0, 
L2 = 1 for als irk \ t r )  

-8 4.002321 0.0 0.0 
Ref. [l] -0.002326 0.0 0.0 

(b) + OmIZ1, 0 0.3 

(d) mg I.%, 0 - 0.3 

ua.ll 4. m m  OF STABILITY tIGRWALUE WULTS OBTA'XNED BY . 

USfllC VARIOO11 VILIRS OF Id and k2 (16 rap.atr). ltipnvaluea are 
$1- per tmit O. 

kl &2 krd-bg FlWPinl Torr ion 

0 0 
0 1 
1 1  

t f .  [l] 



obviouo, however, that thera third-degree temr a r e  the  only ones tha t  have 
an obrervable e f fec t  on the trend.. The only way t o  rerrolve tha t  question 
i r  t o  examine r e r u l t r  from a conrir tent  cuulyrrir In  which o(E') terms are  

i 2 

nwlected  wlth reapact t o  unity, which b.8 not yet  been developed. i 
4.2. Convergence of one-rtep method6 i 

i 

We now addrerr the  subject of convergence f o r  the  one-step method& i 

including the C' t a m .  In Table 5, r e s u l t s  obtained fo r  the soft-in-plane I 

case a t  6 = 0.3 a r e  tabulated a6 A function of the number of segments. 
The convergence is f a i r l y  rapid a t  f i r s t  and tapers off ae  the converged 
value is approached. The smallest eigenvalues a re  generally within 1% 

a fo r  15 segplanta. 

TABLE 5. CONVERGENCE OF THP ONE-STEP METHOD BASED ON EQUATION (16) 
?OR VARIOUS WIMBERS OF SE-S (+ = 0.7ns 0 = 0.3, kl  = 0, k2 1) 
Eigenvalues are given per un i t  Q. 

Segments Lead-lag F ~ ~ P P  in8 Torsion 

In  the one-step method, the C'  terms may be neglected i n  some appli- 
cations. This is cer ta in  t o  have an adverse e f fec t  on convergence for  a 
rotat ing beam, however. Even f o r  a beam with uniform properties, the per- 
turbation equations w i l l  have variable coefficients  due t o  tension and 
s t a t i c  equilibrium terms. Thus, it i s  important t o  study the convergence 
of the s t a b i l i t y  eigenvalues a s  a function of the number of segments fo r  
methods which do not use the C' terms. In  Table 6, the lead-lag and f lap  
eigenvalues a r e  presented fo r  three methods versus the number of segments. - -. 
Method (1) is the  complete second-order method with the C' terms included 
(Eq. (16)). Method (2) is the second order method without the C' terms. 
Method (3) is the f irst-order method (Eq. (15)). There is l i t t l e  d i f fer -  
ence in the r a t e  of convergence for  Methods (2: ,nd (3). The inclusion of 
the C' terms, however, r e su l t s  i n  about an order of magnitude reduction 
i n  the number of segments required fo r  convergence. Hundreds of segments 
may be needed f o r  convergence when C'  is neglected 1231. It should be 
noted that  [6] uses only the  tension terms i n  evaluation of C ' .  While 
tha t  should resu l t  i n  a substantial  improvement i n  convergence over Meth- 
ods (2) and (3), it would still be infer ior  t o  Method (1 1 i f  the beam has 
portions of even modest nonuniformities i n  s t i f f n e s s  or  i n e r t i a l  properties. 

4.3. Results fo r  a nonuniform blade 

We have included r e s u l t s  fo r  a hypothetical nonuniform blade in  Table 7. 
A l l  properties a r e  the same a s  those used i n  the configuration for  compari- 
son with [ I ] ,  except tha t  EIy, EXz, GJ, and m a re  equal t o  t h e i r  values 
for  the uniform blade times the fac tor  (1 - 0. lx) Convergence f o r  the 
nonuniform blade is a l i t t l e  slower, and a l l  frequencies a re  increased from 
the values obtained the uniform blade. The lead-lag damping is only 
s l igh t ly  decreased by the presence of taper f o r  t h i s  case. This small 
e f fec t  is not surprising, since fundamental bending-torsion coupling 



TABLE 6. EFFECT OF Cls1 TERMS ON CONVERGENCE OF FTABILITY EIGm- 
VALUES USING ONB-STEP METHODS. (8 - 0.3, yr = 0.7G, kl = 0, 
k2 - 1). Eigmaluar are givem per uni t  a. 

Scglwmts bthod (1) Method (2) Method (3) 

- - 

Flap 

TABLE 7.  STABILITY EIGENVALUES FOR A NONUNIFORM BLADE (kl = k2 = 1, 
8 = 0.3). Eigenvalues a re  given per un i t  0. 

Segments Lead-lag Flap Torsion 

parameters [l] a r e  not changed signif icantly.  No signif icant  computational 
penalty in the calculation of the nonlinear s t a t i c  equilibrium and the 
s t a b i l i t y  eigenvalues is incurred because of nonuniformity. 

Concluding Remarks 

Nonlinear equations fo r  s t a t i c  equilibrium deformation and linearized 
! perturbation equations for  small motions about equilibrium, from which 

s t a b i l i t y  eigewalues can be obtained, a re  wri t ten i n  a f irs t-order,  spa t i a l  
derivative form. These equations a r e  solved by COLSYS [12]  and one-step 
integrat ion techniques, respectively. Numerical r e s u l t s  fo r  uniform blades 

t obtained from the  equations are  compared with published resu l t s  [I] and [9] 
and used t o  study the convergence of the one-step methods. Results a r e  
a l so  presented f o r  a hypothetical nonuniform blade. In  the course of t h i s  
study several conclusions have emerged. 



1. The equations of the present mixed formulation a t +  general enough 
t o  t r e a t  nonuniform p r e M e t e d  ro tor  blades with chordvise o f f s e t s  between 
elastic center,  maso center,  and shear center. Certain higher order cross- 
sect ion i a tegra l s  are neglected, and sya~aretry about the major cross-section 
ax i s  is assraed 1151. Neither the equations nor the solution metbods, in 
their present form, apply t o  the  forward-flight problem. 

2. COLSYS is used t o  solve the nonlinear s t a t i c  equilibrium equations 
with the  present mixed forai lat ion.  The calculat ion of the s t a t i c  equilib- 
rim s o l u t i o t ~  1s neither  par t icular ly  d i f f i c u l t  nor time consuming even 
though nodlioeari t ies  and nonuniformities a r e  involved. Thus, there is no 
need t o  lhit the  static equilibrium solution t o  sopie l inea r  o r  otherwise 
ad-hoc estimate. 

3. There are s l i g h t  differences in  the  numerical r e s u l t s  obtained from 
mixed and displacement formulations of ro ta t ing  blades with geometric non- 
l inear i ty .  The differences stem from the  equations tha t  r e l a t e  moments t o  
derivatives of bending rotat ions.  A consistent  ordering scheme applied t o  
a mixed formulation rnay not produce exactly equivalent equations when 
applied t o  a displacement fornulation. The main difference i n  the resu l t s  
is in the magnitude of the  torsion frequency. The difference is of the 
order of ro ta t ions  squared with respect t o  unity (about 2%). The present 
analysis  y ie lds  the resu l t  tha t  torsion frequency increases with increased 
pi tch  angle in d i r e c t  contrast  t o  r e s u l t s  in [I]. 

4. One-step, second-order integrat ion methods appear t o  be a viable 
means of calculat ing the  s t a b i l i t y  eigenvalues. I n  order t o  obtain good 
convergence i t  is necessary t o  include the e n t i r e  second-order term, for  
rotor  blades, fo r  which tension force, e l a s t i c ,  and i n e r t i a l  properties all 
may vary along the  length of the  blade. 

5. The terms involving the torsion moment M, i n  Equation (7) were 
found t o  be negligibly small for  the  limited range of parameters investi- 
gated. The double-underlined terms do a£fect a basic trend, a s  described 
i n  conclusion (3). This m y  indicate the need fo r  consistently incorporat- 
ing terms of the next higher order i n  e l a s t i c  rotat ions.  Unfortunately, 
the only way t o  ascertain the correctness of t h i s  assert ion is to compare 
r e s u l t s  from such an analysis,  which does not yet ex i s t ,  t o  those of this 
paper o r  [I]. 
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S t u d y  State  Bquationo 

The o t a t i c  equlllbrium equation8 a re  given In the  followlug f i r s t -  
order form with t h  oign conventlono d nomenclatur. of (151. Ae in  [IS], 
u e t l o n  propertiam of W G e r  order, B1* .Id B2*, warp- rrigldlty and shear 
center offoet t a m ,  and C i  and Ci* a re  neglected. In presenting there 
equatiQ.. un b o  buh taken to  neglect term8 that are 0(r2) compared 
t o  unlty. To noid coofwfon with dl&, the pr im6 have been removed from 
the mubeeripto of ES. EXs. a d  V,. 

Flap aquatioas: 

1; = -4, 

8 1  ,- - + (-a8 - 2al$)$ + (a, - a,$)& + eAqx ein(0 + S)/zo 
(A81 

Torsion equations: 

2 2 iil = -Tzt + Vy3 + ran2: + 5) + d (b, - *)COB(O + q).h(e + 3) - ii 0 
(A91 

b g where, for brevity, 
- 1 5, = OJ + a6TX - as M~ .in 0 + a6 Gz COB 0 i 

t 
I 

Yo = '319 



(All 
concluded) 

The term involving a, in Equation (A10) has been a l tered  t o  agree with 
t h e  recent resu l t e  of (241. ' I '  

I n  the  above equ t iona ,  the tension in the inextensible blade is given 
by the  uncoupled expreaeioa 

The aerodynamic loading is derived In [ I ] .  The steady component 
ie 

= (pmac12) [vi2 - n2x2(cdo la) - i b i ( e  + q) I (A131 

The term i n  Equation (A15) i e  def b e d  

and is represented In the analysis a e  the following addit ional  ordinary 
d i f f e r e n t i a l  equation 

with the i n i t i a l  boundary value specified by the values of C and 8' a t  
x(0). The induced velocity i s  given by 

. where 

4, - 5 a t  x/R - 0.75 

and 



Linearbed Perturbation Equation8 

T& perturbation equ t lon r  given in [IS] have bean converted t o  the 
l i rua r  ordinrrry different ia l  equation8 i n  firat-order spat ia l  darivative 
form with the eigouvalue A. Although not neceerary for  the method of 
rolution finrrllg adopted, they a re  presented l inear in A as well. 

Lead-lag equat ionr : 

Flap equatims: 

ti - m()L;. + LA+* cos 8) - & 

Torrion equations: 

- + [B - a,(et + +')COB e]fiz + iLBl (~10) 

where the conrtantr ai and Eo are  defined in appendix A. 



Equation8 (Bl) through (B10) have been l inear ized  i n  terms of h by 
ueing the  r e l a t i o n s  

Additional d i f f e r e n t i a l  equations needed t o  supplement Equations (Bl) 
through (B10) are 

- I  61 = ~6~ + eJt (B14) 

c** A<' (B15) 

G*l = ~ ; f  

4*1 = ~ $ 1  

The perturbed tension and displacement i n  the  axial d i r ec t ion  a r e  

' - -Ti - 88 - (e,/~,,)($ s i n  e 

The aerodynamic load contr ibut ions [ l ]  a r e  

4 - (p.ac/2){-n.vii - [2nx(cd 1.1 + (0 + i )vi]  A+ 
0 

Thus, Equations (Bl) through (BlO), (B14) through (B19) form the complete 
s e t  of 16 coupled ordinary f i r s t -order  d i f f e r e n t i a l  equations required t o  
ca l cu la t e  t he  s t a b i l i t y  eigenvalues of a nonuniform, pretwisted blade. 
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e igenvalues  of nonuniform r o t o r  b lades  i n  hover is presented.  The s t a t i c  
equ i l ib r ium equa t ions  a r e  non l inea r  and a r e  solved by an a c c u r a t e  and e f f i -  
c i e n t  c o l l o c a t i o n  method. The l i n e a r i z e d  p e r t u r b a t i o n  equat ions  a r e  solved 
by a  one-step, second-order i n t e g r a t i o n  scheme, The numerical  r e s u l t s  
c o r r e l a t e  very we l l  wi th  published r e s u l t s  lrom a  n e a r l y  i d e n t i c a l  s t a b i l -  
i t y  a n a l y s i s  based on a  displacement formulat ion.  S l i g h t  d i f f e r e n c e s  i n  
t h e  r e s u l t s  a r e  t r aced  t o  terms i n  t h e  equa t ions  t h a t  r e l a t e  moments t o  
d e r i v a t i v e s  of r o t a t i o n s .  With t h e  p resen t  o rde r ing  scheme, i n  which terms 
of t h e  o r d e r  of squares  of r o t a t i o n s  are neglected wi th  respec t  t o  u n i t y ,  
i t  is not  p o s s i b l e  t o  achieve completely equivolent  models based on mixed 
and displacement formulat ions .  A s tudy of t h e  one-step methods r e v e a l s  t h a t  
a  second-order Taylor expansion is necessary  t o  achieve good convergence 
f o r  nonuniform r o t a t i n g  blades.  Numerical r e s u l t s  f o r  a  hypo the t i ca l  non- 
uniform blade,  inc luding e:?.. non l inea r  s t a t i c  equ i l ib r ium s o l u t i o n ,  were 
obta ined wi th  no more e f f o r t  o r  computer t i m e  than t h a t  required f o r  a 
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