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PREFACE

The techniques which are the subject of this report were developed to support
the Agriculture and Resources Inventory Surveys Through Aerospace Remote Sens-
ing program. Under Contract NAS 9-15800, Dr. C. B. Chittineni, a principal
scientist for Lockreed Engineering and Management Services Company, Inc.,
performed this research for the Earth Observations Division, Space and Life
Sciences Directorate, National Aeronautics and Space Administration, at the
Lyndon B. Johnson Space Center, Houston, Texas.
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1. INTROOUCTION

Recently, considerable interest has been shown in the development of
techniques for the classification of imagery data such as remote sensing data
obtained using the multispectral scanner (MSS) on board the Landsat.
Classification of muitichannel imagery data is typically done by applying a
decision rule to each resolution element or picture element (pixel) and
classifying it based on spectral information. This procedure ignores spatial
information. Most of the imagery data contain much spatial information which
can be used to improve computer-assisted classification.

The use of contaxtual information in pattern classification has attracted the
attention of many researchers, mainly in the area of character recognition
(refs. 1, 2). Generally, one of two basic approaches has been used, the table
lookup method or the Markov approach. The table lookup method is based on the
assumption that avery word to be recognized is selected from a known finite
table. A word is classified by comparing it'wiﬁh every word of the same
Tength in the table and finding the best match.

The Markov approach is based on the assumption that the true category of a
character is related in a probabilistic manner to the true categories of a
small number of surrounding characters. Its use requires the estimation of
the probability of occurrence of all possible pairs, triplets of characters,
etc., from the sample text. Abend (ref. 3) derived optimal procedures when a
Markov dependence exists between the states of nature of neighboring
characters, and Raviv (ref. 4) gives the results of applying such procedures
for the recognition of English text. :

The use of contextual information in speech recognition is considered by Alter
(raf. 5). Chow (ref. 6), using a nearest neighbor dependence method, obtained
the structure and parameters of a recognition network for patterns represented
by binary matrices.

Several researchers attempted to use spatial information in the classification
of imagery data. Kettig and Landgrebe (ref. 7) developed a technique called

/




Extraction and Classification of Homogeneous Nbjects (ECHO), which segments a
scene into homogeneous objects and uses sample classification to assign each
object as a whole, rather than by its individual pixels. Haralick et al.
(ref. 8) used textural features based on gray-tone spatial dependence matrices
S to characterize a local scene texture and experimentally showed them to be
S useful for classification purposes. Swain (ref. 9) developed a cascade model
for classifying a pattern based on multiple observations in a time-varying
environment. Welch and Salter (ref. 1Q) presented a mathod for the contextual
classification of imagery data. Chittineni (ref. l1) discusses the use of
context with linear classifiers. Tousc2int (ref. 12) gives a brief review of
the use of context in pattern recognition and presents an extensive list of
referencaes on the subject.

A1l of the approaches proposed in the literature either use arbitrarily
selected transition probabilities or estimate them from a sample and treat

i them as global. For imagery data such as those cbtained in remote sensing,
the transition probabilities very often not 6n1y vary from one image to the
other but also vary from one local neighborhood to the other in the same
image. It fs difficult to obtain glodal estimates of transition probabilities
because of the varying nature of 1magery'and the nonavailability of true
classes of pixels of images.

[t 1s the purpose of this paper to develop methods for locally estimating
transition probabilities and to use these estimates in contextual classifica-
tion. It is assumed that the classifier is trained on representative data
from the image and, for every pixel of the image, the a posteriori probabili-
ties of the classes are estimated from spectral information. Thus, the incor-
poration of contextual information into classification is treated as a
postprocessing operation.

The number of transition probabilities to be estimated increases as the square
of the number of classes. Mathematical expressions for contextual classifica-
tion become complex with the increase in the size of the local neighborhood.
Thus, making the estimation of transition probabilitfes is computationally
expensive. In this paper, the transition probabilities are modeled in terms
e
& ¢
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of a single parameter 8, under reasonable assumptions, and methods are
developed for the estimation of 8. The estimated 8 {c then used for the
{ncorporation of spatfal information into classification.

The paper is organized as follows. Models for transition probabilities in
tarms of a single paramster 9 are developed in sectfion 2. Techniques for
locally estimating the parameter 9 of transition probabilities using the
maximum likelihood method are developed in section 3. Section 4 presents
expressions for using the contextual information in classification. Section 5
presents the results of contextual classification of remotely sensed agricul-
tural imagery data, using techniques developed in the paper. Conclusions are
presented in section 6. Appendix A presents an extension of spatially uniforn
context to large neighborhoods. I[n appendix B, expressions are developed for
sstimating transition probabilities for a two-class, three-sequential-
neighborhood case without using models. The results of estimating the param-
eters of transition probabilities under diffgrent transition probabilities
models in different directions in the local nefghborhood are presented in
arpendix C. Appendix D presents a miltitemporal interpretation of the tech-
niques developed in the paper for applicqtions sych as in remote sensing.
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2. MODELING TRANSITION PROBABILITIES

The models for the transition probabilities of the classes of the neighboring
pixels, in terms of a single parametar 6, are developed under reasonable
assumptions. Let | and j be the neighboring pixels 4s shown in figure 2-1.

L
Y
W1 Wj

Figure 2-1.- Neighboring pixels i and j.

Let X; and X; be the pattern vectors and wy and wy be the labels (classes) of
pixels 1 and j, respectively. iet w; and wy take values of 1, 2, <+, M;
where M is the number of classes.

A linear model describing the dependehéy between the neighboring pixels in
terms of a single parameter & for d1ffergnt rand s is given in equation (1).

Plug = rlug s s) = (1 - 8)P(wy = r) ) '
Plug = Flﬂj sr)s (1 -9)P(uwr)+2 f (1)
0¢acl
For 8 = 0, equation (1) becomes

P(ui - rhnj L S) = P(m., - l") )

12)
and Plugy = r!mj =r) s Plag = r) ’
Equation (2) is the case where the labels of neighboring pixels are
independent. For 8 = 1, equation (1) becomes
Plug = r!wj = g) =0 } )
dnd P(QH - r‘m: s r) s 1 /

e
o
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Equation (3) is the case where the labels of the netghboring pixels are
completely dependent. Notice that the linear transition probabilities model
of equation 1) fs a linear interpolatfon in terms of 2 single parameter 3
betwee) tha extremes of equations (2) and (3). It can be easily shown that
the modu! of equation (1) satisfies the postulates of probabilities. That is,

0<P(-»1-r|uj-s) cl'

and {;P( | s)-“ at
3 Ploy = rlay 1

Using a quadratic intarpolation between the extremes of equations (2) and (3),
a quadratic model describing the dependencies between the labels of
neighboring pixels can be written in tarms of a single parameter 3 as

Plug = riuj sg)s (1 - 9)29(‘"1 =r)
Plug = rlug = r) = (1 - 8)2P(uy = r) + 5(2 - 0) (5)

D<o <l

The mode! of equation (5) also satisfies the pestulates of probabilities.

However, it fs to be noted that the dependancies between the neighboring
pixele can be modeled through some other parameter. For example, by replacing

8 with =, the dependencies are described in tarms of a, 0 ¢ 3 ¢« by

Q-B

J e'a'

replacing 8 with the dependencies are described in terms of 3,

- { g Ce,

The transition probabilities betwnen the classes of the neighboring nivels i
and j also can be modeled to satisfy the followiny characteristics of
depencencies, resulting in a nonlinear model. Some of the general
characteristics of dependencies between neighboring pixels i and i zan be
written as follows.

A
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a. If the label w; = r of pixel i frecuently occurs concurrently with the
label wj s of pixel j, then

P(m‘i 2 rluj = g\ > F’(mi = r) (6)

and, if they always occur concurrently, then
' Pluy = r‘le =5) =1 (7)
b. If the iabel wy = r of pixel i rarely occurs concurrently with the tabel
wy =S of pixel }, then

P(mi = rlmj = 5) < P(mi = r) (8)

and, if they never cccur concurrently, then
Plu; = r‘]wj z5) 20 (9)
c. If the label w; = r of pixel i occurs independently of the label wj =S
of pixel j, then _
Pug = rlug =.5) = Plag = 1) (10)

A modéf satisfying characteristics a, b,  and ¢ can be written-in terms of a
single parameter 8 for different r and s as
. a- G)P(mi = r)
P(wi = rie; = s) = T W“’j = 3)

P(mi z pr) ’ (11)
PR o S B I e 1

s ria

) -» <9 <1

It can be easily shown that the transition probabilitie: described by

equation (11) satisfy the postulates of probabilities. Also, notice that
requirements a, b, and ¢ on the transition probabilities correspond to the
cases where 8 < 0,8 > 0, and 8@ = 0, respectively. The model of equation (11)
is referred to in this paper as the nonlinear transition probabilities model. {
Figure 2-2 illustrates the Tinear, quadratic, and nonlinear transition
probabiiities models.
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Pmi' ﬂmj-s)‘
Nonlinear

1.0+

Linear

\
Plw; = r)
! Quadratic

-
Linear
Nonlinear
$ >
-® 0 1.0 9

Figure 2-2.- I1lustration of spatial dependency models.

In the remainder of the paper, only the linear model of equation (1) and the
non! inear model of equation (11) are considered.
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3. LOCAL NEIGHBORHOOD ESTIMATION OF TRANSITION PROBABILITIES

In this section, techniques are developed for the estimation of transition
probabilities in the local neighborhood of the pixel under consideration for
use in its contextual classification. The criterion used for their estimation
is the l1ikelihood function. That is, the transition probabilities are esti-
mated as those that maximize the likelihood function of observed spectral
vectors, {f their spatial relationships are as given in the local neighborhood.

3.1 A GENERAL EXPRESSION FOR THE LIKELIHOOD FUNCTION

An expression for the likelihood function of N patterns in a general local
neighborhood is developed in the foliowing. Let Xy, X3, -+-, Xy De the
patterns in the general neighbcrhood. The likeTihood function of these
patterns can be written as

L' = p(XI’XZ"" sXN)

2 % % p(xl’“l = il;‘xzy‘“z = 'i'g; 000y XN’NN = iN)

11-1 i =1

M M ) =
) 1%1 2o v L KK Ryl = gy =gy = iy)
1’ 12' 1N’1

P(ml = 1'1’“’2 = iz:"'sz = 1N) (12)

where M is the number of classes. In the following, it is assumed that
(a) the probability density function of a pattarn, given its label, is
independent of other patterns and their labels and (b) the labels of the
patterns are independent of the labels of their nonneighbors. By repeatedly
using assumption (a), the following is obtained. Consider
p(xX'XZ""'le'l s 11,,.2 a iZ""'“N s ‘N)
. p(xlgxz....,xn; w e fl""""N - 1NJ"(X2""‘XNI"I . 11....,,,” . *N)
s "“1"1 . 11’"“2“3""'XN‘ . ’l""'“’ﬁ . 1~)p(x3'..._x"1.1 N fl..--.uh . ’N)

- D(XIlUI 2 11)9“2]“2 . 12)P(x3."‘-xxlﬁ1 . H."‘.ﬁ . 1?()

X .
. Jq ?(XJIUJ * 'J) . (13)
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Using equation (13) in equation (12) results in

) N
L' s see (x, . = 1,) P = i RN z i ) (14)
1%1 1%1 il [}:{1 PlRylug = 4 ] (o = 4y “N TN

Since [ f& p(Xj)} is independent of the cransition probabilities, dividing

both sides of equation (14) by it yields the criterion L to be used for
estimating the transition probatilities. That is,

Jull N plu, = 1|X)]
L 2 LN 41 g—‘l P =z i N =z i ’oco’ = i
1‘%1 1‘%11 1%-1 [Jl:l; P(wj =) (o = Tyam = 1y ay = y)

(15)

PQ»I a il""“”N = iN) depends on the particular local neighborhood and will
be considered in detail in the foliowing.

3.2 SPATIALLY UNIFORM CONTEXT — FOUR NEIGHB@R;

The pixel under consideration, pixel O, and its four neighbors in a two-
dimensional local neighborhood are showr .in figure 3-1.

--4. 4 ] |--

SEL!
1

X4,m4 Xo,mo Xz,mz
4 0 2

X3,W3
3

1
1 t ) {
I 1 [ 1

Figure 3-1.- Four neighbors of pixel 0.

By repeatedly using assumption (b), equation (16) is obtained. From
equations (15) and (16), an expression for L for the local neighborhood of
figure 3-1 is obtained, as shown in equation (17).
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3.2.1 AN EXPRESSION FOR L WITH LINEAR TRANSITION PROBABILITIES MODEL

Since a priori probabilities are position independent, when a linear model oY
equation (1) is used for transition probabilities in equation (17), L becomes

§: ( 1Xg) fl 2 H_p(m L ! )
L= plw a . X Zl .S‘i‘;w = i
io'l 0 0'"0 jul Jj0 0

i, *10

play = 14iX;) ‘I
+ J 0 ) P(w = TOMO’

?(mj = 10) J
pla = 1g]X.)

") : )
% plw = 10|X0) { L [1 - 9) Z, (w ‘TJ‘XJ) + 8 —W;—.l-ag—]}
e plw = 101x;)
i%-l Pl = Tolto lJI-Il l.(l " +_e “= o :l

< @-0)tre(t-aas021 -0)%8 1031 - 0)c+ 6h (18)

where

plw = 10|X0)
A= & T [olw = 1giXy) *+ pla = iglX,)

+ plw = 1‘olx:;) + plw = 10‘)(4)]

Plw = iO‘XO)

P Colu = 1g1X;Jpla = 1g1X,) + pla = 1g1X Jadw = fgl%y)

+ ple = 51X )ple = 151Xy) + plo = ig1X,)p(w = i5lX3)

+ pla = 10“‘2)9(‘" = 1'olxq,) + plw = 10[X3)p(m = T'lea,)]

/;/




Plw = iolxo)

C= g [p(w = 151X} )P0 = f5i%;)p(w = 1g]X3)
1'0-1 P {w = 10)

+ plw = 10|X1)p(m s 10|X2)P(W 2 10lx4)
+ plo = 1-lel)p(“‘ = iolx3)p(“ = iolx4)

+ plw = io‘xz)P(‘” = iolx3)P(“’ = 1.leq,):l

pla = iolxo) . : ; ;o
D= - Ep(“’ 2 10|X1)p(“ 3 10|X2)p(“’ = 70lx3)p(w = 103)(4)]

P fg*l P (w = 1g)

3.2.2 AN EXPRESSION FOR L WITH NONLINEAR TRANSITION PROBABILITIES MODEL

; Using the nonlinear transition probabilities model of equation (11) in
equation (18) gives the following expression for L.

3 yf S—
L= plun = 14]X4) — —
iosl 0 0'"0 jal; 1 -8} + eP(m0 1)

ul -
(1 -9) 12,1 P(“j s TJ|XJ) + p(“’j = iolxj)'
J

¥ S M[(1-8) + 8p(w= ig]X.) )
= a j.lX - J )
1%31 p(“ 10| O)IJISII [ﬂ -9) + P(w = 10) :l)

3.3 SEQUENTIAL NEIGHBORHOOD — GENERAL CASE

A general N-pixel sequential neighborhood is shown in figqure 3-2.

1213 [ N=-1 N

Ky 43

Figure 3-2.- A general N-pixel sequential neighborhood.
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The transitions for which the transition probabilities are applied in the
sequential neighborhood are indicated in figure 3-2. An expression is
developed here for the likelthoaxd function L of the patterns in a general
sequential neighborhood of N pixels. Only the pixels immediately adjacent to
each pixel are treated as its neighbors. Consider

P(ml ] 1'1’000 ’uN ] ‘iN)

= Pluy = 1p)Plug = fwg = g,eee,ay = dyluy = 4y)
a P(m2 a 12)P(<»1 = 11‘02  dpug @ igpeee,uy = 1N)P(w3 = i,

i [N X ’wN = ‘iNImz = 12)

= Plag = 15wy = 1yluy = 15)Plag = Tg,0ee,uy = iyluy = 1)) (20)

Assumption (b) is used in obtaining equation (20). The Bayes rule is used to
obtain the following.

P(q,z 2 12,-oo’mN = 'iN)
P(mz 5472)

i Proceeding in a manner similar to equation (20), the numerator of
equation (21) can be written as

(21)

P(m3 = i3,w4 s 14,-",mN = iN!wz = 1'2) =

P(uz = 12,4»3 = 13’“.’“N = 1N)
= P(m3 = 13)P(Nz = izlm3 b i3)P(w4 = 14,"‘,WN = ile3 = 13) (22)
Continuing fn a similar manner obtains the following result.
Plogy = Tyapmy = Ty = Playp = ya)Pluy = iyloy g = 1y ) (23)

The following is obtained from the Bayes rule.

Plw, = i,)
Pla = Tylug = 1y) 'T‘T%T%TP(% = gluy = 1) (24)

Equation (25) is obtained from equations (20) through (24).

3.6




P(ml = 'fl’mz s iZ'.;.'“N = 1N)
= Plog = 1Py = fplug = 1 0Plug = Syfuy = fp)eeePluy = dyloyy = ty.y)
(25)

Substitution of equation (25) into equation (15) results in an expression for
the criterion L for a general sequential neighborhood. That is,

cfb B B [ gt

PSP B o
Plug = 1gluy = 15)0eePluy = fyluy s = 1N_1)]t (26)

3.3.1 THE LIKELIHOOD FUNCTION L OF PATTERNS IN A SEQUENTIAL NEIGHBORHOOD

WITH THE LINEAR TRANSITION PROBABILITIES MODEL
In this section, equation (26) is expressed in a polynomial form in terms of 6
for a four-pixel sequential neighborhood, using the linear transition
probabilities model of equation (1). The four-pixel sequential neighborhood
considered is shown in figure 3-3.

iLalals]

Figure 3-3.- A four-pixel sequential neighborhood.

The Tikelihood function of equation (26) for the neighborhood of figure 3-3
becomes

9(03 = 73“3)
L’E: plw, = i,(X,) % - Plug = iq]w, = 1,)
12'1 2 2'72 13‘1 ?(m3 fi) 3 3772 2

pluy = f4“‘4 plug = 1s”‘s . .
DRLTERR * fqlug = i 55 Pl e T Tslug = ig)

>




pluy = 1,]Xq)]
2

-5

2 Plug = fplXy) plug = f51X3)n(wy = 151Xy)]
+8°(1 - 9)[3345 L T P R C I Py O P

3 P(“3 . i2|X3)p(m4 » 12:x4)P(“5 = 12|X5)I
" Plug = Tp)Pley = T teg = 1) |

= (1-0)% +0(l - 0)¥(ayy + agy + agg) + 0(1 - 0) (g2,

3
* 234 * 33g5) T 0Tayys | (27)

Since the a priori probabilities are position 1hdependent in the local
neighborhood, the different quantities in equation (27) can be shown to be

P(Wz d 12!X2)p(w3 '_12|X3)

A =
23 12.1 Plw t 1éT
9(03 = 13|xq)9(@4 . 13|X4)
334 13’1 Plw = 13) ‘ oy
P(W4 » 14[X4)p(w5 = 14|X5)
a -
45 1'4’1 P(W = 14,)
(28)
p(“z = 12|X2)p(w3 = 12IX3)D(M4 = 72;X4)
4234 * 2 )
12=L P w = 12)
2y * p(w3 = 73!x3)pE;4 = i3|x4)9(“’5 - i3'X5)
W P2 = 1)
. . D(wz = iz'xz)P(W3 = 12|X3)p(u4 = 12!X4)P(05 = lexs)
2345 a3 .
12-1 P w = 12/

~.
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Using a Tinear model of equation (1) for the transition probabilities and the
definitions in equation (28) in equation (26), expressions for the 1ikel{hood
function for different sizes of sequential neighborhoods can be easily written
and are listed in table 3-1,

3.3.2 EXPRESSIONS FOR THE LIKELIHOOD FUNCTION L OF A SEQUENTIAL MEIGHBORHOOD
WITH NONLINEAR TRANSITION PROBABILITIES MODEL
Using the nonlinear transition probabilities model of equation (11) in
equation (26), expressions for the 1ikelihood functicn for several sequential
neighborhoods can be easily derived. These are illustrated for three-, four-,
and five-pixel sequential neighborhoods in the following expressions. In
order for the transition probabilities model to hold true, the transitions in
the neighborhood must be as indicated in f1gura§ 3.4, 3-5, and 3-6. Define

(1 ~8) + 8p(w = 1[Xg) -
ag(f408) = (T -8) + &Pl = 1,) \

(1 '”[1%1 plu = f4|x4)asu4.a>] * 00(u + 1311 dag(15,0)
‘l

145{130) = [ I L IO Py
& ) } (29)
(1 '0)[1 . Pl = 13“3)‘;5(13-9)] + 0p(w = 12“3)545(17_'9)
3.
azs(120) * T8+ ®la v 75)
(1 -Q)[{il plu = 12|X2)l345“2.9) + op(w = 11|x2)8345(11o°)
a23a5(11.0) = T- 8+ ®w=T]]
The l11kelihood function for the three-pixel sequential neighborhcod of
figure 3-4 is given by
L3(°) = 1%1 plw = i3|X3)a45(13,9) (30)
3.
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The 1ikelihood function for the four-pixel sequential neighborhood of

figure 3-5 is given by

L4(°) . iﬁl Plw = 12“2)0345“2’9) (31)
zl
The likelihood function for the five-pixe) sem.ential neighborhood of
figure 3-6 is given by
Ls(e) s 13:1 pla = 11}x1)az345(11,e) (32) A

1

31415

-

Figure 3-4.- A three-pixel sequential neighborhood.

2 { 4 |5 l

Figure 3-5.- A four-pixel seguential neighborhood.

1l2(3]a sl 7,
e !

Figure 3-6.- A five-pixel sequential neighborhood. ;

3.4 (OMPUTATION OF 8 8Y THE MAXIMIZATION OF LIKELIHOOD FUNCTION

With both linear and nonlinear transition probabilities models, the likelihood
function is a continuous function of the parameter 8. The parameter 9 that
maximizes the 1ikelihood function with the nonlinear transition probabilities
model can be obtained using a one-dimensional bounded search, sinc. “he
parameter 8 is bounded and the likelihood function is ronlinear. Wich the
linear transition probabilities model, the likelihood function is a polynomial
in the parameter 8. The flow diagram (refs. 13-16) of figure 1-7 can be used
to find the optimal 8 (84n) for the linear transition probabilities model in
the range 0 ¢ 8 < 1, which gives the global maximum for the likelihood

function.




COMPUTE L(0) AND L(1)

!

COMPUTE

L(e) = 28]
v

FIND THE ROOTS OF L'(8) = 0

ARE ANY
OF THESE ROQOTS
IN (0,112

i S

[ ——

\ 4
o CHOOSE 8,5, EQUAL
DESIGNATE THE ROOTS TO 0 OR 1, DEPENDING
IN [0,1], 8q,00¢ 8 ON WHETHER L{0) OR L(1)
IS LARGER
4

CHOO§€‘65§£ EQUAL TO THE ~
VALUE 0, 1, 8y, ==+, or 8,

THAT GIVES THE LARGEST
VALUE OF L(84g,)

Figure 3-7.- Procedure for finding 8ot In the range D<coacl,
which gives global maximum for L (3),
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Optimal transition probabilities that maximize the likelihocd function for
some typical sequential neighborhoods, with bcth linear and nonlinear
trar:cition probabilities models, are given in appendix C.




"W

e G L e e e gt

BB, 11002 v . prarnams o v s < s o e et s e on -+ e e e e

e

BT SO, T 0 SO S N S S RN PN PR N i

4. UPDATING A POSTERIORI PRNBABILITIES

Using the transition probabilities models of section 2, methods are developed
in this section for incorporating contextual information into the classifier

decision process.

4,1 UPDATING THE A POSTERIOR: PROBABILITIES OF A PIXEL USING INFORMATION
SINGL iGH

Expressions are developed for updating the a posteriori probabilities of the
labels of a pixel using information from its single neighbor. These are used
to exploit contextual information from large local neighborhoods. Let the
pixel undcr consideration be X, and its neighbors be X,_ | and Xp.i.

Figure 4-1 shows the positions of these pixels..-

Xn-10 | X0, | Xnels
®n.1 R ene
\VA l\/! -

rigure 4-1.- I1lustration of pixel n under consideration
and its neighbors.

The assumptions used for updating the a posteriori probabi]itgés are the same
as those made in section 3. Namely: (a) The probability density function of
a pattern, given its label, is independent of other patterns and their labels;
(b) The labels of the pixels are independent of the labels of their
nonneighbors. These assumptions are used in the rest of the section. The
information contained in the pattern Xp.1 regarding the label of the pattern
X, can be written in terms of transition probabilities as

play = k|X, ;) = f:l plo, = ko g = 11X ;)

M
s a Plog = kluy_q = 1)ple_y = 11X, ;) (33)

Similarly, the fcliowing is cbtained.
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P(Xp Xpay) = ;gi P(Xpsuy = 11Xy y)
= : p(anmn s i)n(mn = ilxn_l) (34)
1=

Now, the a posteriori probabilities of the labels of the pattern X, are
updated using the information from the patterns X, and X, 1 and their spatial
relationship as follows, using the assumptions (a) and (b) above.

p(X,lo, * )play = KIX,_})
p(‘“n - k|xn-1’xn) = p(Xn‘Trn-l)

plu, = le) M .
Z o(“ = k’“ = 1.)F’(‘“n_l = ”Xﬂ-l)

*H = sqx)
Z §IP _=klm = i)pla,_y = 11X ;)

k=1 1=1

(35)

Using the linear transition probabilities model of equation (1) in
equation (35) yields , a =

p(“’n = klxn)P(‘“n_l = klxn-l)

( X , (1 -8)plw, = kiX;) + 8 Pla_ = k)
Pl =z k X)) = - -
n-1 L -0+ ﬁé plu, 4 ;1Xn-l)p(”n = kX))
k=1 (o = %)

(36)

The information in the pattern X,, in obtaining the label of pattern X,,i,
can be mitten as follows.

M
plupyy = 31X,) = g Plwpyy = dawy = §1X)

. fl Plugey = dluy = Dplay = 11X,) (37)
1’
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Similarly, the following is obtained.

pXyy 1X,) ® J}M_; plX sty * d1Xg)

M
- le P(X g fopey = DIP(ugyy = 31X, (38)

Using the patterns X, and X,.1. One has

p(un = klxn’xﬂ"'l) = .g p(”n = kler.I = J’xnlxml)

i P(Xppqlopey = 3IP(wpyq = Jlug = K)pluy = kiXp)
I

2 M . p(mn+1 = jlxn+1)
i ) ' S NEICIEE LY
i‘i Plug = 11X,) Jﬁ’l FT("'n*“l = ey = 1) Plagy = J)

E (39)
Using the linear transition probabilities model of equation (1) in
E equation (39) yields the following.
. plunyy = kiXopy)
Ee plag = k%) [“ -8 el ) .
E p(mn ) k(Xn’xn-'-l) - (1-0) +o % p(“'n+1 = JTXn+1) ( X ) 140)
-8) : plug =1J
; J’l P((ﬂn+l JI n n
E

4.2 USE OF SINGLE-NEIGHBOR UPDATING EQUATIONS FOR LARGE LOCAL NEIGHBORHOQDS

This section shows how single-neighbor updating equations can be used
repeatedly to exploit spatial information in large local neighborhoods.




4,2,1 SPATIALLY UNIFORM CONTEXT — FOUR NEIGHBORS

Consider the pixel under consideration, pixel 0, and its neighbors in the
1ocal neighborhood shown in figure 3-1. In this section, expressizis ar2
developed for obtaining the a posteriori probabilities of the classes of
pixel 0, using information from its local neighborhood. Consider
equation (41), where f = p(XO’XI""’x4)‘ Using equations (13), (16),
and (17) in equation (41) yields equation (42).

From equations (39) and (42), the following is easily understood. Updating
the a posteriori probabilities of the classes of pixel 0, using information
from its neighbors as shown in figure 3-1, is equivalent to using the singie~
neighbor updating equation (39) repeatedly, taking one neighbor at a time.
The sequence in which the neighbors are used is immaterial.

4.2.2 SEQUENTIAL NEIGHBORHOOD — GENERAL CASE

-This section considers the problem of updating the a posteriori probabilities
of the classes of the pixel under consideration, pixel j, in a general
sequential neighborhood. The location of pixel j in a general sequential
neighborhood of N pixels is shown in figure 4-2. -

t{2 3 eee] gl e n-11]N
~Lolala Lade Lo - s

Figure 4-2.- The pixel under consideration, pixel j, and its general
sequential neighborhood.

The transitions for which the estimated transition probabilities apply in
the whole sequential neighborhood are indicated in figure 4-2. Consider
equation {43) where NU(ij) is the numerator of the first expression in
equation (43). Using equations (13) and (25) in the numerator of
equation (43) results in equation (44).

=1

N
If the numerator and denominator of equation (43) are divided by { [1 p(Xz)],
the numerator of equation (43) can then be written as shown in ecuation (45).
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pluy = 1,1X,) P(Wj_l . 1j-1|Xj-1)
Nlty) = '”H?L [1£ Pyl ) SR

J j-l-

see % P(uz = 12!191 = 1'1)9(“1 = 11|X1)]

Plogey = 1jer K ger)
P(wj+1 = 1j+1)

[f f‘..l Plagar = fgeplug = 1y)
j+1

P(WN * iN‘XN)]
veu & Ploy = iy|w 2 i, ) — (45)
fN'l N NITN=1 Nel P(wN 1N)

The term in the first set of brackets of equation (45) is the contribution
from pixels to the left of pixel j (see fig. 4-2), the term in the second set
of brackets is the contribution from pixels to the right of pixel j, and the
first term is the contribution from pixel j to.the a posteriori probabilities
of the classes of pixel j. These contributions appear in multiplicative form
in equation (45).

An examination of equations (35), (39), and (45) reveals that the single-
neighbor updating equations (35) and (39) can be used repeatedly to update the
a posteriori probabilities of the classes of pixel j, using information from
its sequential neighborhood as follows. Equation (39) is used to update the

a posteriori probabilities of pixel (N - 1), using the a posterior{
probabilities of pixels (N - 1) and N. The updated a posteriori probabilities
of pixel (N - 1) and the a posteriori probabilities of pixel (N - 2) are used
to update those of pixel (N - 2). Proceeding in a similar manner, the updated
a posteriori probabilities of pixel (j + 1) and the a posteriori probabilities
of pixel j are used to update those of pixel j. Similarly, equation (35) is
useu to update the a posteriori probabilities of pixel j, using information
from pixels to the left of pixel j. The a posteriori probabilities of

pixels 1 and 2 are used to update those of pixel 2. The updated a posteriori
prubabiiities of pixel 2 and the a posteriori probabilities of pixel 3 are
used to update the a pcsteriori probabilities of pixel 3. The process is

A7




repeated until the updated a posteriori probabilities of pixel (j - 1) and the
previously updated ones of pixel j are used to update those of pixel j.

4.2.3 APPLICATION OF SEQUENTIAL CONTEXT TO TWO-DIMENSIONAL NEIGHBORHOODS

The expressions for the 1ikelihood function and updating equations become
complex with the increase in tne size of the local neighborhood. Hence, it is
proposed to use sequentially the sequential context for two-dimensional local
neighborhoods. [t is desirable that the updating be independent of the
sequence of the sequential neighborhoods in which the updating is done. From
equation (45) it is seen that, with the use of sequential neighborhoods
(centering on the pixel under consideration), the updating is independent of
the sequence of the sequential neighborhoods in which the updating is done.
The sequential neighborhoods to be used in updating, then, are the ones
centering on the pixel under consideration in four directions: 0°, 45°, 90°,
and 135°. A few typical two-dimensional local neighborhoods composed of these
sequential neighborhoods are illustrated in figure 4-3.




135 90°

138° 90 45° | f
ase
X< - 0°
X —» 0°
AN
(a) 3-by-3 neighboriood. (h) 4-by-4 neighborhood.
%0° 45°

135° T

X » 0°

(¢) S-by-5 neighborhood.

Figure 4-3.- Some typical neighborhoods and updating directions. The pixel
under considerction is marked by X.
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§. EXME2{«:NTAL RESULTS

In this section, some results are obtained by applying the theory developad in
the previous sections to the classification of the remotely sensad Landsat MSS
data. Several segments1 were processed in the following manner. The image

was overlaid with a rectangular grid of 209 grid intersectfons, and the labels

of the pixels or dots corresponding to each grid intersection were acquired.
Two classes are in the image: C(lass 1 is wheat, and class 2 is nonwheat
designated “other." A linear classifiar is trained on one-half of the labeled
data. The remaining one-half of the labeled data is used as a tiost set. The
a posteriori probabilities of the classes of the pixels are estimated by
normalizing the discriminant function values of the classes.

5.1 COMPUTATIONAL RESULTS FOR A TYPICAL 5-8Y-5 NEIGHBORHOOD

The a posteriori probabilities of the classes of the pixels in a typical
S5-by-5 neighborhood from an MSS image of segment 1739 are listed in
table 5-1. This segment is in Teton County, Montana.

TABLE 5-1.- THE A POSTERIORI PROBABILITIES OF THE CLASSES
IN A 5-BY-5 NEIGHBORHOOD

[The first entry is p(w = 1|X) and the second entry is p(w = 2|X)]

(0.716,0.284) | (0.322,0.678) | (0.820,0.180) | (0.569,0.331) | (0.326,0.674)
er.829,0.171) (0.899,0.101) | (0.897,0.103) | (0.762,0.238) | (0.886,0.114)
(0.625,0.375) | (0.158,0.842) | (0.285,0.715) | (0.757,0.243) | (0.117,0.883)
(0.087,0.913) | (0.062,0.938) | (0 06C,0.940) | (0.080,0.920) | (0.090,0.919)
(0.125,0.875) | (0.082,0.911) { (0.132,0.868) | (0.157,0.843) | (0.127,0.873)

Ia segment is a 9- by ll-kilometer (5- by S-nautical-mile) area for which the

MSS image is divided into a 117-row by 196-column rectangular array of

pixels.
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The pixel under consideration is the central pixel of the netghborhood.

The

a priort probabilities are estimated as an average of the a posteriori

plw = 1) = [ plw = 1,X)dX
= [ p(w = {]X)p(X)dX
. E Ep(w- 11X)]

ﬁ (p(w = 1IX )]

probabilities in the reighborhood. Consider the following.

(46)

where xj (§ = 1,2,0¢+,N) are the pixels in tne local neighborhood. The

a posteriori probabilities of the classes of the pixel under consideration are
updated vsing saquential context and the
This procedure is repeated for five {terations, and the computational results
are listed in table 5-2.

TABLE S-2.-

procedure described in section 4.2.3.

COMPUTATIONAL RESULTS OF UPDATING THE A POSTERIORI

PROBABILITIES OF THE CENTRAL PIXEL IN A S-BY-S NEIGHBORHOOD
(USING THE LINEAR TRANSITION PRCBABILITIES MODEL)

Estimates of parameter ¢

A posteriort A priord A posteriord
Tter- | probabilities | probabilittes | for differant sequential) prohyniiqties

ation before in the g after

Upd‘t1 ng neichborhood Q° 45 90° 138¢ Upd‘t" ng

1 (0.285,0.715) (0.4087,0.5913) 1 0.0 { 0.2904 | 0.4 | 0.4 (0.3574,0.5426)
2 (0.3574,0.6426) | (0.4130,0.5870) | 0.0 | 0.2656 | 0.4 | 0.4 (0.4315,0.5685)
3 (0.4315,0.5685) | (0.4173,0.5827) { 0.0 | 0.2416 | 0.4 | 0.4 (0.5034,0.4966)
4 (0.5304,0,.4966) | (0.4216,0.5784) | 0.0 1 0.2194 | 0.4 | 0.4 (0.5699,0.4301)
] (0.5699,0.4301) | (0.42%5,0.5745) LG.Q 0.1995 [ 0.5 | 0.4 {0.56363,0.3637)




The true class of the central pixal {s wheat; and, without using the
contextual information, the central pixel will be misclassified into class
"other." Table 5-2 shows that, using contextual information from the local
neighborhood, after the third iteration the central pixel is correctly
classified.

5.2 CONTEXTUAL CLASSIFICATION RESULTS

Comparative results with and without using contextual information in classifi-
cation are presented in this section. C(lassification maps for segment 1739
are shown in figures S5-1 through 5-3. [t is observed from the independent
test set that the classification accuracy for this segment increased by 5 per-
cent with the use of contextual information from the 3-by-3 neighborhood and
by 7 percent with the use of contextual information from the S-by-5 neighbor-
hood (over the accuracies obtained u:itiout using contextual information).
While generally prescr:ing the boundaries, contextual classification corrected
the misclassifications of many pixels and did this more accurately with data
from the S-by-5 nefghborhood than with cata from the 3-by-3 neighborhood.

Accuracies in the classification of MSS images of a few segments with and
without the use of contextua! information are listea in table 5-3.

In general, an examination of the classification maps of full images and
classification accuracies on the independent test set shows considerable
improvemant in the classifications with the use of contextual information.

The improvement is greater with the increase in size of the neighborhood. The
contextual classification of a full segment with a 5-by-5 neighborhood using
the methods developed here took approximately 12 minutes of total time on the
Purdue University Laboratory for Applications of Remote Sensing (LARS) IBM 3031
computer system.

jatvipli vtk ————



TABLE 5-3.- CLASSIFICATION ACCURACIES (PERCENTAGES)

WITH AND WITHOUT CONTEXTUAL INFORMATION

With sequential context With
Location Without N -
Segmert | (county, state) | context (a) un1:g:;1:l;{ext‘
NS »« S| NS = 4| NS =3
1005 | Cheyenn:, 85.88 |@88.46 | 88.46 | 90.38 86.54
Colorado
1060 | Sherman, 80.77 |8s5.58 | 82.69 | 81.73 81.73
Texas
51231 | Jackson, 89.42 |91.35 | 91.35 | 90.38 91,35
Ok lahoma
€1520 | 8tg Stone, 84.62 |87.50 | 85.58 | 86.54 84.62
Minnesota
1604 | Renville, §0.58 | 63.46 | 60.58 | 59.62 60.58
North Dakota ,
€1675 | McPherson, 68.27 |71.15 | 72.08 | 68.27 6§7.31
South Dakota
€1739 | Teton, 68.27 |75.00| 72.22 | 73.08 S 70.19
Montana .

23S = Neighborhood size.
cSegmonts in wnich class 1 is winter wheat.
-Segments in which class 1 {s spring wheat.
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The variance reduction factors obtained without using contaxtual information
and with the use of contextual information from a local neighborhaod of size §
are listed in table 5-4.

TABLE 5-4.< VARIANCE ﬁEDUCTION FACTORS WITH AND
WITHOUT CONTEXTUAL INF/RMATION

Variance reduction factor
Location -
Segment | (.ounty, state)| Without | With sequential
context | context, NS = §
1005 Cheyenne, 0.5720 0.5430
Colorado ,
3 1060 Sherman, 6227 | 4717
2 i Texas ~
1231 Jackson, .4407 4173
: Ok 1ahoma .
1520 | Big Stome, | ..6194 | .5216
Minnesota
1604 Renville, 9865 9741
North Dakota -
1675 McPherson, .9985 .9248
South Dakota
1739 Teton, 9271 .8267
Montana

Table 5-4 shows that there is a consistent improvement in the variance
reduction factor with the use of contextual information in classification.
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6. CONCLUSIONS

In this paper, the problem of incorporating contextual or spatial information
into the classification of imagery data is considered. The contextual infor-
mation is introduced into classification based on the spatfal dependencies
between the states of nature of neighboring pixels or based on transition
probabilitias. The dependencies between neighboring patterns are modeled with
- linear and nonlinear models through a single parameter 6, which describes the
transition probabilities of the classes of the neighboring patterns. An
expression is developed for the 1ikelihood function «f the pattern vectors
from a general local neighborhood under the following reasonable assumptions:
E | {4) The probability density function of a pattern, given its label, is inde-
E pendent of other patterns and their labels; and'(b) the labels of the pattern
vectors are independent of the labels of their nonneighbors. Specific expres-
sfons for the likelihood function are derived for different local neighbor-
hoods and with different transition probabilities models. The parameter 8 is
astimated as the one that maximizes the 1ikelihood function.

D »

; Expressions are presented for updating the a posteriori probabilities of the
A f classes of a pixel using information from a single neighbor. ~It s shown that
"'5,: these expressions can be used to update the a posteriori probabilities of a
] '4 ; pixel under consideration for spatially uniform context and in a general
] ‘1?7 N sequential neignborhood. The contextual information from two-dimensional
‘ neighborhoods is introduced into the classification of imagery data, also,
L through a saquence of sequential neighborhoods.

g

The techniques presented here are applied to the classification of remotely
sensed MSS imagery data. Computational results for a typical 5-by-5 neighbor-
hocd are presented. The classification maps are presented with and without

: context, and classification accuracies are given for different sizes of local
: neighborhoods.

1t
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For a two-class, three-sequential-neighborhood case, expressions are developed
for obtaining the transition probabilities without using models. Instead of
using one parameter 9 in the local neighborhood of the pattern under consider-
ation, as shown in appendix C, transition probabilities models with different
parameters in different directions can be used. The techniques, as discussed
in appendix D0, can be used for multitemporal or time-varying situations such
as those encountered in remote sensing.

3
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TO LARGE NEIGHBORHOODS




.
T AT . e S e e s oAt TR

e e

APPENDIX A

A GENERALIZATION OF SPATIALLY UNIFORM CONTEXT
TO LARGE NEIGHBORHOODS

In this appendix, the contextual relationships developed in section 3.2 for
spatially uniform context are extended for larger neighborhoods. In
particular, the neighborhood shown in figure A-1 is considered. The pixels
with the common sides are treated as neighbors, and the diagonal neighbors of
the pixels are treated as nonneighbors.

bY

\1 f\z
\ \
\oifh?
\ \
4

~3.J_ .00

)

~3

\5//-\#

>
)

Figure A-l.- Neighboring pixe1s‘in a 3-by-3 local neighborhood.

The a posteriori probabilities of the labels of pixel 0, given the inTormation
from its local neighborhood, can be written as

(1)
p(“’o = 10Ix0’xl’".’x8) - -5 (A-1)

where

M M
fl(io) 4 .Z % (XX ] Z p(xo,xl,ooo,xalwo = ‘io’ml = ‘il’o-n.us = 1’8)
ty=l fyrl tg=l

P(mo = 10’.‘."“8 s i8) (A-Z)

dﬂd f= p(xO.xl,"°,X8) (A'3)




| The notation of equation (A-4) is used in the remainder of this appendix.

P(io.il,"°.18) = P(Wo s 10,01 - 11'.‘."»8 s 18) (A"4)

Using equations (13) and (A-4) in equations (A-2) and (A-3), f1(ig) and f can
be written as

P(“’o . 10“0) - plw, = 141Xy)
fulle) * Fg=7g 1&1 1?1 41311 W%J_'_i?'_ Pligetyreeerig)d

1.
(A-5)

and f =

£ (1g) (A-6)
1o

al l

It was assumed that the labels f the pixels are independent of the labels of
their nonneighboring pixels, with the neighboring pixels defined as in
figure A-1. Now consider

P(1gaiqaeessig) = PUigIP(Hy,eeesigify)
. F'(io)P'(il|10,1'2,--',-;339(12510,13,---.18)-_;-
P(i;11gs1g)P(1gl1g) (A=7)
The second term in the right-hand side of equation (A-7) can be written as
P(illio,iz,-~-,18) = 9(11[10,12.18)

P(iolil'iZ’iB)P(il’izlis)
PlTglT2:1g P 517g)

PgH IP(,11,)P(1, I1g)

: JEPVASPy (4-8)




Similar to equation (A-8), the other terms of equation (A-7) can be shown 0o
be the following.

P(1gl13)P(14113)P(15)
0/Pl1g)
P(14'10-15."’o13) . P(14|15)

P(13l1°014oi50"'018) .

P(15115)P(1g115)P(1g)
0 6
P(igligtqatg) = Pliglty)

P(15'10|16!°'°)18) . (A-g)

P(10If7)P(18J17)P(17)
Pzl1grte) = ——BTT5IPTTy) /
Using equations (A-8) and (A-9) in equation (A-7) results in

(PP, 111 P11 )eeP(1g 1700 (1; [1g)JIP (1) HoIP (13 1oIP (15 )P Uiy 119) ]
P(igetgesecsig) PO PP P 7)

(A-10)

Expressing the transition probabilities in eguation (A-10) in terms of the
parameter 8 [equation (1) or equation (11)], equatifons (A-1), (A-5), and (A-6)
can be used to incorporate the contextual information from the local
neighborhood. As in section 3, 8 can be obtained by maximizing the iikelihood
function of the spectral values of the pixels 0, 1, 2, -, 8.

Equation (A-10) also can be used to estimate the transition prebabilities in
the local neighborhood, if the labels of the pixels are known. For example:
In remote sensing, for a selected set of images, the iabels of the pixels or
ground truth are known. Often it is necessary to astimate the transition
probabilities. The following example {llustrates, for a few typical
neighborhoods, the transition probabilities obtained from the maximization of
equation (A-10). The a priori probaoilities in the local neighborhood are
estimated as an averaée of the a posteriori probabilities of the classes.

™l
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Example: This example {llustrates the transition probabilities obtained by

, computating 8, which maximizes equation (A-10). These are listed for a few

| typical neighborhoods in table A-l. For neighboring pixels A and B, the

5 notation used for the transition probadilities listed in table A-1 fs shown in
figure A=2.

TABLE A-1.- MAXIMUM LIKELIHOOD ESTIMATES OF TRANSITION PROBABILITIES
FOR SOME TYPICAL NEIGHBORHOODS

\ Neighbo A priort Transition probabilities
0. ] rhood
probabilities Linear model Nonlinear model
1 2111 Plw s 1) = 0.56667 0.8002 0.1998 0.8163 | 0.1837
21111 Plw = 2) = 0,3333 0.4 2.6 0.4737 1 0.5263
. 21111 $ = 0.4 4= 0,55
2 211t Pla » 1) = 0.4444 0.6388 | 0.2612 0.6154 | 0.3846
2111 Plw = 2) = 0.5556 - 0.2886 0.7112 0.2857 | 0.7143
212]2 ) 4« 0,38 8= 0.5
3 21|l Plw = 1) = 0,2222 0.4166 | 0.5834 0.3n83 | 0.6%47
21212 Plew = 2) « 0.7778 J.1666 | 0.8334 0.1566 0.843&J
2122 0= 0,25 s 0,38

plwy o flwg = §)

——— §

1 2
|

i

J

Figure A-2.- Notation used for the transition probabilities
listed in table A-l.
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APPENDIX 8

OPTIMAL TRANSITION PROBABILITIES FOR A TWO-CLASS,
3-8Y-3 NEIGHBORHOOD CASE
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APPENDIX B

OPTIMAL TRANSITION PROBABILITIES FOR A TWO-CLASS,
3-BY-3 NEIGHBORHOOD CASE

In general, the transition probabilities that maximize the likelihood function
can be obtained using optimization methods such as the Davidon=-Fletcher-Powell
procedure. This requires searching for M x M parameters, where M is the
number of classes. Using the transition probabilities models of section 2,
the 1ikelihocd function is expressed as a function of a single parameter 9.
However, for 1 two-class, 3-by-3 neighborhood case, expressions for the
transition probabilities, which maximize the likelihood function without using
models for transition probabilities, are obtained in the following maaner.

Let A and B be the neighboring pixels. Let the}e be two classes. Then we
have tha following theorems.

Theorem 1: For a two-class case, if the a pr%ori probabilities are position

independent in the local neighborhood Ci.e., P{wy = i) = P(wg = 1)], then the
transition probadilities are symmetric. That fis,

Plug = ljug = 2) = Pug = 1wy =2)  ~ (8-1)

Proof: Consider

P(mA = llmB 22)=1 - P(uA = ZlmB = 2)

P(mA = 2)
I-FWB-—:_—'ZTP(&BSZIMA‘Z)

1 -1 - Plug = 1wy = 2)]

P(wB = l|mA 2 2)

Theorem 2: Let 81 = P(up = llug = 1) and 85 = P(wy = 2|ug = 2). Then, the

transition probabilities and the a priori probabilities are related as
P
1- 92{_= p; 1- 91) (B-2)

8
i




Whef'e Pi = P(WA s i) - P(WB = 1).

Proof: Using the Bayes theorem, we obtain

Play = 1)
P(NA = llu)B = 2) bl p-(-:%:-;—ZT P(uB = Z’ubA = 1)

That is, (1 -8, = ,% (1 - a,)

Theorens 1 and 2 are used in the following to obtain 81 and 3;. The
1ikelihood function L(el,ez) for the three-pixel sequential neighborhood of
figure 3-4 can be expressed in terms of 8 and 8y as

) )
L(8148p) = 07213y * 8 (1 = 8)ayy, « (1 - 8))(1 - 8y)a,,,

* (1 -81)0215p + 81 (1 - 8)apyy + (1 - 8,)(1 - )2y,

2 3
t ool - 8)agy + 8530, (8-3)
where,aqik are given by

o aliixgekixg)
i = PUIXS) oo =T (8-4)

and 1, j, and k take values 1 or 2. From equations (B-2) and (3-3), the
likelihood furction can be expressed in terms of parameter 8 as

E 2
L(el) b, a" + bze1 + by (B-5)

where
P Py 2 )
by = (2137 - ay;p) Py Bra1 - gz - 2y * ) - 7, ) 221

2
p P
1 !
by = (2y35 = ayp)) + 7y (2121 ¥ Wyp * dgyy = gy, - 2pp) » 2(?;) %21 (8-6)

2
by = 2 + PI {a -a +a + Ayn) - Pl) 2
3 122 P‘z’ 121 122 212 221 7,1 %221

¢ )
3
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Let vy be the value of 8; obtained by differentiating equation (B-S) with
respect to 9; and equating the resulting expression to zero. That is,

Vl z - -ZFI (B~7)

The parameters 8, and 9, should lie in the interval 0 to 1. Let vy and vy be
the end points of 8;. They are given by

vy = 1
%' ) > (8-8)
g‘ and vy = O,Iif F% < 1; otherwise, vy ® (1 - p%)

0 | Now, the optimal 81 and 8, can be obtained as follows. If 0 < v; < 1, choose

] the optimai value of 8,, 910pt> that equals the value vy, vp, Or vy and gives

the largest value of L(elopt)' If vy lies outside the interval 0 to 1, choose
the value for ®10pt that equals the value vp-'or vy and gives the l:rgest value
of L(elopt); 920pt is computed from equation (B-2).

R, WSPTEE g TVR

ExaggTeE For a few typical sequential neighborhoods, this example illustrates
the transition probabilities computed using the linear and nonlinear models of
section 2, using the procedure of this appendix and using the Davidon-Flet.ner-
Powell optimization technique. The a posteriori probabilities of the classes
are of the 3-by-3 local neighborhnod of dot 89 from segment 1739, Teton County,
Montana. These are obtained by normalizing the outputs of a Tinear classi-
fier. The four-sequential neighborhoods are neighborhoods in four directions:
0°, 45°, 90°, and 135°, centering on the central pixel. The a priori proba-

. bilities are computed as the average of the a posteriori probabilities in the

v neighborhood. (lass 1 is wheat and class 2 is "other.” The a priori
orobabilities computed for this 3-by~3 neighborhood are
Pw = 1) = 0.5531

(8-9)
Plw = 2) = 0.4469

The estinated transition probabilities are listed in table B-1.

8
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TABLE B-1.- COMPARISON OF ESTIMATED TRANSITION PROBABIITIES

A posteriori probabilities

in the neighborhood

Transition probabilities

Procedure of

Direct optimization

(using Davidon-

Linear model Nonlinear model appendix B Fletcher-Powel ]
procedure)
0.5710, | 0.8140, | 0.3700, 0.5531 | 0.4469 0.1984 | 0.8016 0.1920 } 0.8080 0.1965 | 0.8035
0.4290 { 0.1860 | 0.6300 0.5531 ] 0.4469 0.8610 { 0.1390 1.0 0.0 1.0 0.0
0° direction 8 = 0.0 6 = -3.95 0 = 0.1920
02 = 0.0
0.8490, | 0.8140, | 0.1340, 0.5531 | 0.4469 0.4692 | 0.5308 0.4879 | 0.5121 0.4913 | 0.5087
0.1510 | 0.1860 | 0.8660 0.5531§ 0.4469 0.6341 | 0.3659; | 0.6338 | 0.3662 0.6363 | 0.3637
45° direction 6 = 0.0 6 = -0.4 8, = 0.4879
8, = 0.3662
0.468, | 0.814, | 0.717, 0.9246 | 0.0760 0.8609 | 0.1391 0.9240 | 0.076 0.9409 | 0.0591
0.537 1 0.186 | 0.283 0.094 { 0.906 0.1984 | 0.8016 0.09%30 | 0.9060 0.0877 1 0.9123
90° direction o = 0.83 6 = 0.8 0y = 0.924
6, = 0.906

0.236,

0.814,

0.764

0.186

0.818
0.182

135° diraction

[0.5631 | 0.4469

0.5790 | 0.4210

0.5123 | 0.4877

0.5196 | 0.4804

0.5531 | 9.4469

0.5269 | 0.4731

0.6036 | 0.3964

0.6079 | 0.3921

6 = 0.0

6= 0.1

8) = 0.5123
62 bd 0. 3964

T e T




& Table B-1 shows that the estimated transition probabilities agree well with
b i different procedures. With linear models, the parameter & tends to be zero
E | for mixed neighborhoods, thus ignoring spatial information from mixed

5 neighborhoods .
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APPENDIX C

ESTIMATION OF TRANSITION PROBABILITIES WITH DIFFERENT
PARAMETERS [N THE LOCAL NEIGHBORHOOD
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APPENDIX C

ESTIMATION OF TRANSITION PROBABILITIES WITH OIFFERENT
PARAMETERS [N THE LOCAL NEIGHBORHQQO

In this appendix, some results are developed for estimating the transition
probabilities with different parameters in different directions in the local
neighburhood and with interactions in the parameters. The local neighborhood
considered is shown in figure 3-1. The linear model of equation (1) is used
¥ for the transition probabilities. Let 8y and 8y be the parameters of the

}i - transition probabilities model for horizontal and vertical neighbors,

! respectively. For the lTocal neighborhood illustrated in figure 3-1, consider
the following equation from section 3.2:
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To determine 8y and 8y that maxiiize equation (C-1), one takes partial deriva-
tives of aquation (C-1) with respect to 8y and 8y and solves the resulting
equations for 8y and 8y. Taking the pirtial derivative of eauation (C-1) with

respect to 8y, equating the resulting arpression to zero, and solving for 8y,
one obdtains
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Similarly, taking the partial derivative of equation (C-1) with respect to 8y,
equating the resulting expression to zero, and solving for 8y, one obtains

2

o (1 Oygly * °
Ho\Z

8y + b
N °v " Pno (c-3)

3
bpa®y * Op18y- * Ppg

where

byg = 2 = ay = Zay +ayy * By - abyy

byy = -4+ Zay + By - ayy
byg = 2 - ay
bpy = 1 =ay *+ By = ay *ayy = aByy + By - abyy + By,

2+ 2oy - By +ay - ayy + By
bD0’1'0H+BH

Substituting the expression for 8y from equation (C-2) into equation (C-3)
results in a fifth-crder algebraic equation, the roots of which can be
obtained by numerical methods (refs. 15, 16). Let the resulting roots be
Ope(i); 121, 2, «eo, 5. From equation (C-2), corresponding values are
obtained for 8yn(i); 1 =1, 2, ¢o¢, 5.
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where 8,.(1) is a vector. Let
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Now, 3pe for 0<ey < 1 and 0 < 8y < 1, which maximizes equation (C-1), can
be obtained using a procedure similar to that given in the flow diagram of
figure 3-7. The above analysis can be generalized with different parameters
for more than two directions and for larger neighborhoods to obtain the
transition probabilities. '
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APPENDIX D
MULTITEMPORAL INTERPRETATION OF CONTEXT

In this appendix, a2 muititemporal interpretation of the theory developed in
the paper is given for applications such as those in the machine processing of
remotely sensed imagery data. In remote sensing, the sensor system usually
makes several passes over the same ground area and acquires a set of data for
each pass or acquisition. The data from these passes are registered, and the
classification is performed cn the registered data. Let there be r acquisi-
tions. For every pixel in acquisition 1, a data vector X; (i =1, 2, oo, r)
is acquired. Suppose that acquisitions 2, +«¢, r are registared with respect
to acquisition 1. There will be variations in the data of each pixel from
acquisition to acquisition. Also, errors are encnuntered in registration.

Let the classifier be trained on the data representative of the individua)l
acyuisitions, obtair“ng the probability density functions p(X|w = 1),

1 =1, 2 ¢es, M, for each acquisition. This appendix presents the applica-
tion of the theory of sequential context developed in the paper for the clas-
sification of the pixel under consideratjon. Let X; be the spectral vector of
the pixel under consideration in acquisition i (i = 1, 2, «+«, r) in the clas-
sificacion of the pixel under consideration. This approach takes into account
the registration errors and the variations in the data from accuisition to
acquisition. The pixel is classified using the decision rule: C(lassify it %o
classw = j, if
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The dependencies from acquisition to acquisition can be modeled through the
models of section 2; the transition probabilities can then be estimated using
the techniques developed in section 3; the a posteriori probabilities of the
classes of the pixel, using data from a'1 the acquisitions, can be computed
using the techniques develcped in section 4; and the pixel can be classified

using equation (D-1).
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[f there are no errors in registering the data from acquisition to
acquisition, the transition probabilities satisfy the following relation.
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where w  is the class of the pixel under consideration from the nt" acqui-
sition. Using sequential context [equation (45)], the a posteriori
probabilities of the classes of the pixel under coneidaration can be written
in terms of the pixel spectral vectors ryu each acquieition as follows.
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From equations (D-2) through (D-4), equation (D-5) is obtained.
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Thus, use of sequential context with assumptions (a) and (b) of section 4 and
of equation (D-2) in the classification of a pixel in a multitemporal situa-
tion amounts to the class-conditional independence of the pixe' spectral
vectors of each acquisition. Equation (D-5) can also be written as follows.
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: ’5 Equaticns (D-6) and (D-7) can be interpreted as follows: when the first

) acquisition is acquired, the a priori knowledge P(w1 s 11) about the classes
-1 of the pixel under consideration is modified fnto a posteriori probabilities
itf, according to equation (D-7). These will become the a priori knowledge for the
: next acquisition. With the use of the observed spectral vector, the a priorf
knowledge is modified intc a posteriori probabilities acccrding to
equation (D-6). When no rngistrationAerrori are present, equation (0-6) can
be used sequentially in a multitemporal situation to incorporate the
contextual information in the classification of th2 pixel under consideration.
However, using the techniques developed in tne paper, this multitemuoral
intarpretation can be easily counled with the spatial information fr-» two-
dimensional neighborhoods.
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