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ABSTRACT 

To assess criteria for the determination of actual evaporation 

by remotely sensed surface temperature, a sensitivity analysis of the 

energy balance equation is performed. 

Constraints in the design of field experiments are specified and 

criteria to collect direct spot measurements of actual evaporation 

are formulated. 

By Taylor expansion of the energy balance equation, analytical 

approximations are derived and fitted to experimental data. The latter 

are obtained by the Bowen ratio for both actual bare 80il evaporation 

and actual transpiration from natural vegetation. 

A comparison of different equations, with actual evaporation as 

a function only of surface albedo and surface temperature is also 

presented. 
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I. INTRODUCTION 

The work contained in this note was performed while the author 

w .. on leave from TECNECO spA (Italy) for eight montha. during 1979. 

According to many recent references, remotely sensed surface 

temperature allows for a rather promising way. to the estimation of 

actual evaporation losses from large non-homogeneous surfaces. However, 

plots of direct measurements of actual evaporation versus surface 

temperature show a substantial scatter of the points. Therefore it is 

not ea.y to define some analytical expression of the relationship be­

tween evaporation rate and surface temperature. The problem is that 

such a scatter is due to the interference of other independent para­

meters of the surface energy balance and due to the lack of some 

a-priori equ~tion to relate the parameters involved. 

A-way to solve this problem is to derive analytical expressions 

by Taylor's expansion of the energy balance equation. 

II. TAYLOR'S EXPANSION OF THE SURFACE ENERGY BALANCE EQUATION 

a. C 0 rt e e p t 

According to the previous suggestions, it seems worthwhile to 

specify in a form,ll "#ill'! the concept of relationships between evapora­

tion rate and the different variables of the surface energy balance 

equation. There is however no need to establish a new relationship 

as it is already implicitly included in the energy balance equation 

at ground level. 
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PaCa ,4 4 
LI • - (T ... T ) + (1-(1)1< + (;'OT - EoT .• G ra ass a s 

-2 -1 
(J .em .day ) (I) 

where L • latent heat of vaporizatio':l of water (at mean air tempe" 
rature) (J.8 -1) 

-2 -I E • evaporation rate (g.em .day ) 

p (! • thermal capacity of air (J.cm-3•oc- 1) a a 
r a • aurfaCA aerodynamic resistance (day.cm- I ) 

T a • air temperature (K) 

T 
a 

• surface temperature (K) 

CI • surface reflectivity 

R s 
-2 -I • shortwav. incoming radiation (J.cm .day ) 

£' • air appa",-eni:, emissivity 

£ • surfaceemis~ivity 

0 
-2 -I 0 -4 • Stephan-Boltzmann constant (J.cm .day • K ) 

G 
-2 -I • heat 80il flux (J.cm .day ) 

S h t · b 1 ht 1 f' • 7 . h uc an equa lon may e tloug as a lypersur ace ln~ , Wlt 

the c~ordinate axes being Et Ta' ra' Tbt a, Rs' G. Eq. (I) defines 
a general relationship between evaporation rate and the meteorological 

conditions at the aurface level. This relationship is not subjected to 

~ny kind of constraints related to the kind of surface and/or meteo­

rological situation. That is to say if the turbulent exchange coeffi­

cients are evaluated without restricting hypothesis. The obviljuS dis­

advantage is the extensive data requirement of this equation: compre­

hensive and area-spread meteorological data are needed for the evalu­

ation of regional evaporation losses by eq. (I). To evaluate regional 

evaporation, using, i_f possible t only remotely sensed data over large 

areas we thus have. for practic,ll reaSOllS, to look for more simple re­

lations. This 18 equivalent with defining functions of a degree of 

dimensions lower than eq. (I), for instance a line-relationship (E t T
s
)' 

or a surface-relationship like (E, T , n). These functions can be 
s 

defined through a Taylor's expansion of eq. (I) around some physical 

Itatus E*, where E* :: f(1'* n*. r* T* C", ~{*) with a notation in 
13' a' "at s 

"'7 
Taylor's theorem. using tilt' vector S as representing the point 

( ... k+\ with coordinates Xl' ••••• xkl ll1l'" eal, be written as: 

2 

". 
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f(-l • f(.*) + f' (s*)(s"si!) + ftt(s*)(.-~.*) 12: + f~"'1 (.*)(s_.*)n-I / 

(n-I)! + R 
n 

where: Ro, is the remainder 

(2) 

£1 is the ,total i-th order derivativ4 with respect to 8 :: x , 
, J .... , ~ 

The SUIIl of an unlimited number of terms as in eq. (2) approximates 

the f~tion f if, 'and only if, the remainder approaches ~ero as the 

pumber of t~rms becomes infinite. Such a serie. is convergent to the' 

function f vi th the numbes:' of terms. Then the error in the approxima­

tion of the function f depends on such a number. 

-A '; .. ylor' 8 series can be used to a!=-proximAte the [IJnct:lon'LE '" 

£(T , u, r ~ Ta, r., R ). For out purposes it is very 'convenient to 
S . a s 

use onl~. the ,linear terms ,in eq. (2), i.e. applying ?nly' the first 

order derivatives. Then from eq. (2) we get: 

where: E* is the value of eq. (I) at (1 *, a*, r *, T *, G*, R *) 
s ~ a s 

D • is the partial derivative with respect to x. 
Xl 1 

i. is 
-J 
i .. it. 
-J --. 

E, E* 

the versor (unit vector) of axis x. 
J 

is the scalar product between the two versors 

equal to the cos. of the angle i ~ i
k

) 
-2 -I J 

are in g.em .day 17 is the versor of E 

(then 

(3) 

b. N u mer i cal e val u a t ion 0 f-'t h e d e r i vat i v e 

wit h res pee t tot h e 8 u r f dee tern? era -

t u r e 

. 7 
The geometrieal framework in a can be followed further to obtai n 

a formal expression of the relationship between E and T : 
s 

-2 -I 
(g.em .day ) (4 ) 
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I(T ) lathe projection of the vector J. on the coordinate plane • _ la. 1.- SUcb. projection can be .pproxlatad accordi ... to aq- (t) • 

. (3" 

(5) 

where: EtCT ) i. the fir.t-order approximation of ECT ) and 
• I 

I'· tha value with T - T * s • 

'l'his kind of equation can be ,applied to fit experimental data on 

evaporation rate VI. lUI' face temparature. A. can be seen from eq. (5) 

the slope of the function,B'CTs ) depends on T. (supposed to be known 

everywhere) and the prevailing meteorological condition. over a wide 

range of the .urface roughness. 
-However, in the common range of surface temperatures, low values, 

of the aerodynamic relistance may cause a shift from a small slope of 

1'(Ts) to a Iteeper one. In Table 1 values are reported for lifferent 

aerodynamic resistance., as calculated from: 

p c -t ( : a + 4 £ aT!> 
a 

-2 -I-I (g.cm .day .K ) (6) 

E'(Ts ) i. decreasing everywhere, since quantities inside brackets 

are positive, when oT. is positive. Anyhow it follows from Table 

chat exrerimental point. with low values of rarequire a steeper slope 

of eq. (5) in order to be fitted. 

Table I. Value. of the slope of E'(Ts ) - eq. (6) - for different values 

of the aerodynamic resistance ra 

) • 16 

• 116 

.0116 

( 1000) 

(100) 

( 10) 
-,---------, ,----------

4 

-2 -)-1 
(i.em .day .K ) 

.0212 

.0249 

.0617 

! . , , 
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e. V • t i ,ab. t 1 i .t. Y 0 fey a p 0 rat ion rat a a. 

t • 1 at. d tot h e 0 the r • eta 0 r 0 101 i cal 

• a ria b 1 e a 

In Fi,. I data of actu.l soil evaporatlon,a. obtainad by the 

.... ratio_thod are plotted veraus the c:orreapoadiq lurfaca ta.,... 

r.t ...... 

ria. I. 

actual h.OfMItobon E 
eN! doit , 

• tltt" wlitl 1Ht.1" and tel. '7' 

1 
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285 290 295 J?O JQS 310 315 I K I 
~ * ~ n n * bl~l 

aurfOt.e t~otvr. T, 

Ivaporation rates a. calculated accordina to aq. (5) with. 

conltant slope (middle broken line). The rang_ of .catter due . , ~. 

to lurface albedo as calculated by eq. (7) i •.• howa by the 

.hort broken lines. Measured evaporatioD rat .. I are plotted 
versus measured averaged daily surface temperature T • Dotted • points are wi thin, Op~ll c:1 rc lea are outside the ranae bounded 

by eq. (7) 

The scatter due to differences in surface albedo is al.o shown, . 

.. evaluated frc;»ll: 

R 
D I--..!.da 

CJ L 
-2 -I (g.cm .day ) 

... a.aluated with 6a • (ax ~)/2, corre.pondina to a ~al • ~ 1.4 

... daY·', where ax and aN are the maxiaum (0.583) re.p. the minimum 

.al~ (0.262) of the surface reflectivity in the data let. 

om:I~;.\L P.\GE IS 
(JF POUR Q~:/\LITY 

(7)' 
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rll. 2. As Fia. t, but the range of Icatter il not only due to lurface 

albedo but allo due to air temperature al calculated by eq. 

(8) 

In Fil. 2 the Icatter due to the air temperature, accordinl to 

&be dedvadve, 

DL I. 1(4 0 T3 paca 
,a L £' a .. -r;-) d Ta 

-2 -I 
(g.em • day ) (8) 

i. al.o .hova. In eq. (8) 6 T • (Tx_TN)/2, where TX and TN are the a a a a a 
... 1 ... re.p. the ainiau. value of air temperature in the data .et. 

As caD be leen fro. iia. 2, thi. ~ account for a variability in 

.. aporatlOD of ~ additional! 0.3 ... day-t. A camparilon of Fig. 

with Fia. 2 Ihowa that the Icatter due to the variability of surface 

reflectivity could be justified by a curve E (T ,a). 
I 

Before continuing. the dependence of DTS! on T. must be evaluated. 

In the rial. 3 and 4 I(T.> i. calculated and plotted with u varying 
elope (eq. S), while the Icatter is calculated according to: 

I x N 4 £' a i 3 TX 
- ~ P c Tx..-rH 

(51) ... • r T + L a ( a 2 a) - L:: ( a 2 a) 

-2 -1 (g.CII • day ) (9) 

As can be le.n, the relult. of Fig. 2 and Fig. 4 are practically 

equivalent. 
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In a way similar to eq. (4), an analytical expre.~ion of E(T ,a) • can be clerived: 

-2 -I 
(8. cm • day ) ( 10) 

or 
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leT ,0) • 1* + DT I dT + D E d 0 
5 • I Q 

-2 -I (a.cm .clay ) (II) 

d. NUll e ric ale ale U 1 a t i 0 Q 0 f t h. d. r i v a -

t i v e v i t hr. 8 pee t t 0 I U r f ace t. m p • r a -

t u rea n d ref lee t i v i t y 

Eq. (II) can be written al: 

I Pac. 3 2 I E(T ,a) • E* - -(---- d T + 4 £ n T d T + R d a) (g.cm- .day- (12) 
s L r. s S I , 

Thi. equation corresponds to eq. (6) and, according to the .... 

procedure applied there, the zero' of the second term of the right 

hand side of eq. (12) can be eval~ated: 

P c 3 
: a d T. + 4 COT, d Ts + Rs do· 0 

;J 

-2 -I (J.cm .day ) (13) 

Solutions T " of eq. (13) depend on the combination of the incre­s 
ments 6T and 00. In Table 2, values T " are shown as included in the s s 
interval corresponding to .. he different values of r. (Table Ii. The 

Jeft hand lIide of eq. (13) can be <0 when either OTs or 00 ilil negative. 

ac(!ording to the value of r a' The headings of rows and columns in 

Table 2 show the different choices ~f 61 and 60. s 

For a proper interpretacion of these results it must be kept in 

mind that they have been derived by Taylor's expansion of eq. (I). 

nlu~ the trend of the evaporation rate E is, strictly speaking. de­

termined c,ly in the neighbourhood ot the point one is dealing with. 

After collecting experimental values of the ~vaporation rate for 

different surfaces and periods one by one, the procedure to be applied 

is the following. Firstly one checks for a point PI if 01 E/ ~ _,a p 
o or >0. Secondly, for the pointll PI ~ P2 if 0T oEI ,0 or >0. I 

s, P 
This means to check if the points P I and P 2 can be I connected by 

a monotonic ,ingle-value function of the couples (1 .n). The points , 
PI and P2 constitut~ a data set denoted s2. Then the same procedure 

i~ applied to a r.ertain po;.nt 1», looking for the neare.t point in 52 

with respect to the coordinate SY8tem T ,a. Now O~le haG to check if s 
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Mle 2. Surface t .... r.ture. T." (I) •• ti.fyi ... eq. (13) for dUrerant 
~. .. -I 
.. choice. of ft .... &I, with O.OIJ6"f ~." 1.16 (dar.CIt ). 

Wheft. < 0, I > E for T. > T.". The r ... na ... 1. fo~ aT. > 0 
,.-i 

&I •• , &I • -.1 
~ ~c) ~ (oC) 

4T • I -553<T "<-488 (-126<T "<-761) 396<1' "< 386 ( 123<T "< 21') • • • • • 
6 T • -I 396<T "< 486 ( 123<T u< • • • 213) -SS3<T "<-411 • (-126<T "<-761) • 
~ T. • 5 -424<T "<-287 (-691<T ,,~ 560) -311'T "< 213 (-5I4"'T n< 10) • • • • • 

~ T8 · -) -311<T "< 283 (-584<T "< 10) -424<T "<-287 (-697'.T ftC' 560) 
I S a • 

'3 cn be ccnmected to ita nearest point i!' S2 vith •• lope of tM I .. 
2 2 1 aian al in S • If 10, add '3 to S to Ret S • If not, .dd " to a •• cond 

uta lub-Iet where the l10pe it of opposite Ii ... The repeat the pro-
• k-J cedure for .ach 'k wlth relpect to S • Then it il pOI.ible to fit 

independently the two let. with positive (6T E~O) and nalAtive -,0 
(6TI ,o<0) variation. 

In the following. different relationship. betvaan I, T , G will • be analytically derived and fitted to data obtained fro. a leriel of 

axpar~tl performed in an inhoaoaeneoUi deaert ara •• 

e. Fir 5 t - 0 r d era p pro xi. • t ion 0 f the 

• u I' f a c a E(T ,~) s 

In the pre.ant caae the well known condi~ion for four point a be­

longing to the I~ plane leads to the followina axpression of the 

linear function B'(Ta,a): 

T _T1 I E_E l a-a • • 
TI_T2 I 2 £1_E2 

• 0 • • a-a (14) 

T3_r 
• a 

(13-0 2 £3_12 

9 



11MI,point, P, J <T!. QI, al
), '2 ! <t!. a

2
, 12), , = CT!. a 3, £3) 

.... t be choMa oa the b.d. of ~. (I). Tbil Mana th.t, vith • aiai .. l 

qu.ntity of d.t., the r'.I. I to 4 to.ether with eq. (I) e.n be u.ed 

to choo ••. tbe poiat. 'I' '2' ',' Th~ tera. B !,,1. and I !"!2 in eq. 
(10) CaD be rapr •• eated o. the coordiaate p1.ae. (I, T,) aad (I, a) 

r •• peetlftl,. If • cout.nt v.lue' for DT I h u.ed, I' (T ) .nd I' (a) 
I • 

• re ,tr.laht line, 1. the two pl ••••• Iv.luation of the ,lop. of £'(a) 

require •• n e.ci.atlon of che shortw.v. ineom! .. r.di.tion. In thi, 

paper the .ver ••• I, of the whole d.t •• et (winter time and ,ummer 

ti .. dat.) i. u •• d, Ev.luation of the 'lop. of I'(T,) i, .o~e cuaber­

.cae, bec.ute DT.I • f (T"r.). A, c.n be •• en fro. Fi.,. 3 and 4, 
D 1 i, not varyinl Itronaly in the interv.l 280<T <320 (K) (7<T <47 °C). T, • • 
As f.r ., r i, concerned, there i. a Itronl v.ri.tion of r in che a a 
.xi.tina d.t •• et. Thi. probl .. will be dilcu"ed later in detail in 

.ection III.c. Anyhow, in order to ev.luate the fe •• ibility of very 

,iaple for.ula. ( •• deriv~d in • fo~l vay frc~ ~~e enerlY balan(e 

equation) only .ean values are used. 

tIl. NUMERICAL DEVELOPMENT OF LINEAR EVAPORATION EQUATIONS 

a. S e I e c t ion 0 f • u ita b J e c x per i men tal 

poi n t • 

Wh.ther or not the ute of e~. (14) is Nucce •• ful depend, on the 

leleetion of the pointl Pit P2, P
3 

(.ection II.e). The muat reasonable 

choice seems to use extre.e values either for T or o. One of the s 
pc,j nts p. can be on the axis E. the other two on the coordi''Ulte planes 

1 

(E, T ) and (£, 0). With this solution it iu likely that the expcri.ental • 
v;aluea of E are cloler to the plane E' (1' ,a). The fint Iter iI to 

S 
c~tc::ulate the intercepts of the atraiRht 1 inca E' (1' ) and E' «(I) frOll • 
eq. (5) and (7). ~en u.ing the input data presented in Tabl~ 3, the 

following values for the deriVAtives are found: 

DE· -0.206 
Ta 

10 
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"ale3 .... rieal input data used for the calculation of the functionl 

It (T ) ad I' (a) 
• • 

4 

P.r~.r Value 
" .1 

: I 

Paca 1.154 

4 
-7 

EO 18.615.10 

.... 2.15 ra 

T 300.8 • 
'i • 2154.8 

J,.. ,2432.3 

the functions It (a), ! t (T ) are described as: 
s 

I'(T.> • -0.206 (T.-280) + m 

I'(a) '. -8.86 (ar.2S) + n 

(mm.day-I) 

(mm.day -') 

uait. 

-2 -1-4 J.e. .day .K 

-I 
day. ell 

It 

-2 -I J.c:a .day 

-. 0 J.g (a1: 27 C) 

(16a) 

(16b) 

The intercepts m and n can be calculated simply by iapoling that 

two known point. belong to the lines. The origia of the eoordinate 

planes was chosen corresponding to a • 0.25 and T • 280 OK, both • 
values beiDl smaller than the minimum values in the data •• t. The point 

Q
1 
= (280, 0.162, 3.8) is on the plane (E,a) and the point Q2 = (300.8, 

.25, 3.8) is on the pl.ne (E,T.). The average values are: i · 3.8, 

T • 300.8, =. 0.362, and accordingly m· 8.1 and n· 5.0 were found. 
s 

nne of the three points required was chosen as E • (m+n)/2. Then an 

arbitrary choice of the points peT , a, E) can be: s 

PI = (280., .25, 6.6); P2 = (300.8, .25, 4.); P3 = (280, .7, 1.2) 

The point P3 was al.o calculated from eq. (J6b) on the plane (E,a). 

Prom such. selection and according to eq. (14), a relationship between 

I, T and a was obtained a.: • 
I' (T ,a) • -12.a - O. J 2S T + 4 .... 6 

• 8 

-I (ID.day ) (17) 

Since a poor agreement wab obtained for experimental values cor-

I J 

-,-... 



n ..... i .. t4 biab refleetivities and low temperatures, Ii new trial 

::.:wjs; __ ,.itti;'"!,' t:.,', r 

.... np3'1. measured. In this case the relationship obtained was: 

£'(1' ,0.) • -8.520. - 0.125T + 43.73 
8. s 

-I <_.day ) 

b. Co. par i son bet wee n cal c u 1 ate dan d 

-e x per i men tal val u e s 

(18) 

The accuraey of eq. (18) and eq. (5) was tested against the expe­

ri.ental points of the Figures· 1 to 4. In Table 4 measured E-data, es­

tla-ted valUesB'CT ) from eq. (5) and E'(T ,~) from eq. (18) are com-
s s 

pared. Standard deviations are also shown. The experimental values 

were collected over quite different surfaces and different periods of 

the year. 

Table 4. Comparison between experimental data with values obtained from 

eq9. (5) and (18) 

I-function Mean (J 

-1 (mm.day ) (DIm. day -1) 

I 3.8 1.26 

E'(T) from eq. (5) 4. I 1.43 s 
E-E'(T) -.3 ) .46 s 
g' (T ,a) from eq. (18) 3.2 ).2) s 
E -E'(T a) a s' 0.6 1 • 1 

According to the theory developed in section II.d, it is still 

necessary to check the sign of the derivative for every point in the 

data set. Such a check was performed, with the derivatives evaluated 

using the average shortwave radiation R ,and the actual data of T 
s s 

and r • The aerodynamic resistance r was evaluated according to a a 
FE DOES (1911) as: 

12 

... 

! 
• i 

! 
I 

I 

. ~'. __ .... _~ ___ ..-.. ....... ___ ....... ____ -'- _·~·-_-' ... ·e_-...... ___ ....... __ 



""",,*-. 'e· 

Pa 
u : 

f(l) 

1 

a 

a 

b 

b 

-) 
(8.m ) 

.'TatlO·;Ot W1ec:utat' weight of water vapour to dry air 

-atmOspheric pressure (pascal) 

.·WiDdYetOci~y (m •• - I) 
b 

.. a 1 

• height of r~ughness elements 

.. 0.167 x 10-1 when 1 ~ 20 cm 

.. 0.3704 x 10-7 when 1 > 20 em 

... 59 when I ~ 20 em 

... 2827 when 1 > 20 em 

(19) 

'l11e increments 6Ts and ell were cWlluatcd according to the proce­

dure described in section II.d. 

With such a procedure it was possible to separate the experimental 

points in bWo sub-sets, according to the negative and positive values 

of DT E. The sub-set with the positive derivative included five 8.a 
points out of the 33 presented in Figs. I to 4. A new evaluation of 

the accuracy of eq. (18) was performed for the sub-set with the negative 

derivative. Results are shown in Table 5. 

Table 5. Comparison between experimental and calculated values of the 

sub-set with the negative derivatives 

I-function Mean (J 

(DIll. day -1 ) -I 
(mm. day ) 

E 3.6 1.25 

3. I 1.2 Ef (T ,a) . 
. s 
Ea-I'(Ts,a) 0.5 I • I 

'l11e results of Table 5 are not excellent, but they still support 

the theory. In the following sections the effect of air temperature 

and the way how to handle data with very low rat will be analysed. 

.. 



If f • c t i v. n 8 S S 0 f t b e a e rod y n a. i cre­

• i • t • n c.t ra 

~ ~~1 DOW the «lependence of B upon ra wal not taken into account 

Sucb,. bypothuis aeems rather inaccurate because thus points of high 

.. rod~c r •• iatance were eonnected with points of low aerodynamic 

ruiatance. From eq. (I) D E is derived as: 
ra 

DE· J. p c (T -T ) lw d r 
ra ... a a a s r" a 

(20) 

a 

since a finite evaluation of 0 E is needed, it is better to write 
ra 

eq. (20) as: 

P. P. 
J J 

IS E I I d -2 -I (21) • t P c (T -T ) r (g.cm .day ) 
r. a a a s ~ a 

P. P. a 
1 1 

where P., P. are 
1 J 

points in the data set, and the average (T -T ) is 
a s 

taken between P. and P .• The correction according to eq. 
1 J 

(21) must be 

evaluated for the points in the data sub-set where DT < 0, for those 
, Sta 

points showing the highest roughness. The points to be considered to-

gether with the data required for the calculation are depicted in 

Table 6. 

Table 6. Experimental input data corresponding to days and sites with 

low aerodynamic resistances r • The last column represents 
a 

data obtained from calculations with eq. (18) 

T T a r E E'(T,a) s a a 
(mm.day -1) s -I 

(K) (K) (day. em -I) (mm.day ) 

308.7 305.7 0.298 O. J J 5.5 3.58 

2 309.2 312.7 0.301 0,1 I 6.3 3.54 

3 309.9 310.3 0.303 0.13 6.4 3.50 

4 307.9 306.2 0.304 0.07 5.2 3.56 

14 
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Until now the relationship between aC,tual evaporation rate E and 

surface characteristics T and a has been souaht in a three-dimensional 
" .'. ' a., .... 

space (Ea , T.t al. In principle evaluation of the effectiveness of r a 

OD I (witbout )hadovina contribUtions from T. and 6) requires couples 

of points differing from each oth~r only with re.pect to ra. It is 

i.,o.sible to match with the data available such a ~onstraint. Then 

points with almost the lame value of Ts' but with different albedos 

were selected from the data-.et. The data for th ••• pointe are given 

in Table 1. 

Table 7. Experimental input data corresponding to days and sites with 

T and a-data similar to those in table 6, but with higa s 

1 

2 

3 

aerodynamic resistances, rae The last column again computed 

with eq. (18) 

Ts Ta r B E' (T ,a) 
a _I -I s _I 

(K) (K) (day.cm ) (DID. day ) (DID. day ) 

308.2 308 0.471 2.33 4.4 2.09 

301.2 309.4 0.422 2.68 2.3 2.58 

' 301.6 309.8 0.442 2.43 2.1 2.4 

It must be emphasized that the term ~ E (eq. 21) is independent 
ra 

from the formulation given by eq. (18). Therefore taking care of the 

sign. the variation ~ E must be added to the values of the column 
ra 

headed E'(T ,a). According to eq. (21) the variations 6 E between 
s ra 

each separate p~int in Table 6 in combination with all the points of 

Table 7 were calculated. Results are shown in Table 8. From Table 8 

it can be concluded that the calculation of ~raE requires only 

approximate values of r • When r can be assigned to about 0.1 day.cm- I 
a a _I 

for a rough surface, and about 2 day.cm for a smooth one, ~ E is 
ra 

dete~ined sufficiently accurate. In Table 8 the row-index applies to 

the rows of Table 6 and the column-index to the rows of Table 7. 
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table 8. 
-1 Valu •• of 6 ! ( ... day ) evaluated from Table. 6 and 

. . ra 
·'1~ of '4 I i8 for decreaaina value. of·r 
~ ~ . . 7. 'lbe 

For each row averases can be taken and can be used for estimation 

of corrections for differences in rae 

S~lar calculations a8 performed for Table 5 yield the results 

shown ia Table 9. t.provem8nt ia the estimation of E is evident when 

comparing the ItaDdard deviations of E and E-~'(T «)+6 E]. It is 
s, ra 

important to recall that. unless Table 4, only those data were used 

with DT8 « < o. 
• 

table 9. Coaparilon between experimental and calculated values. Eq. 

(18) corrected according to eq. (21) 

E-function 

E 

E' (T «)+15 E 
s, ra 

E-CE' (T ,«)+6 E] 
s ra 

Mean 
-I 

(DID. day ) 

3.6 

3.3 

0.3 

a 
(1lI11.day-l ) 

1.25 

1.4 

0.9 

d. E f fee t i v e n e s 8 0 f air t e m per a t u r e 

The results of Table 9 show that calculated values are rather 

close the aeasured data. However standard deviation is still too high. 

When looking at the data it seems that a systematic underestimation 

occurred during the period from 2 September to 8 September, 1978. This 

period was characterized by very high values of air temperature: the 

mean air temperature amounted to 35.8oC, while being 27.4oC over the 

16 
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reuiningdata. Thus it was decided to ,valuate an additional correct­

i~ fTVm eq. (8). usina OTa • 8.4
oc. Accordinaly 0TaE. 1.8 ... day-l 

w.as found. As for 6 E the correction 0T E is independent from the 
ra a 

previous onea and must be added to Et(T ,a). Applyina such a correct­s 
ion yielded the results 6I~.':VA in Table 10. 

table 10. Comparison between experimental E and calculated (eq. 18) 

evaporation data with the correctioDS 6 E (eq. 21) and 
ra 

0TaE (eq. 8) being included 

E-function 

E 

E'(T ,«)+0 E+OT E 
iii ra a 

°E_IE' (T ,a)+o E+O E] 
~ s ra Ta. 

Mean 
-I (nnn.day ) 

3.6 

3.7 

-0.1 

e. Sum mar y 0 f the res u 1 t s 

0 

(l1li1. day -I) 

1.25 

1.28 

0.5 

Experimental values of actual evaporation rate, from different 

surfaces and periods, were compared with values calculated from eq. 

(18). Further corrections for the ae¥odynamic resistance r as obtained a 
from eq. (21) and for the air tempera~Jre Ta as obtained from eq. (8) 

were applied (Table 10). The accuracy of the fit is also shown in 

Fig. 5, where measured versus calculated values are plotted. An inter­

val equal to 20 of E _rE'(T ,a) + 0 E + 0T E1 is also shown in Fig. 5. 
a L s ra a :.J 

In the evaluation.of the corrections, the effect of atmospheric 

instability was not taken into account. However such an effect may be 

very i[~ortant as far as period 2/9-8/9 is concerned. In those days 

surface temperatures even higher than 600 C were observed. In these 

conditions strong buoyancy phenomena develop. For these reasons the 

evaluation of ra by eq. (19) under unstable conditions might be unre­

liable. 
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Fig. 5. Measured versus calculated (eq. 18) evaporation rates. Correct­

ions included relate to surface aerodynamic resistance and air 

temperature. A scatter equal to twice the standard deviation 

is shown (broken lines) 

IV. SUMMARY AND CONCLUSIONS 

A simple procedure to evaluate actual evaporation has been derived 

by a geometrical representation of the energy balance equation, ex­

pressed as its first order Taylor's expansion. The role of the physical 

variables involved in the energy balance equation has been analysed. 

A linear relationship between actual evaporation and surface tempera­

ture was calculated and compared with experimental data. A bi-linear 

relationship between actual evaporation, surface temperature and 

albedo was also determined. Comparison with experimental data yielded 

promising results. 

Corrections were applied as related to differences in aerodynamic 

resistance and air temperature for each day·-experiment. The slope of 

the relationships between actual evaporation and surface characteristics 

18 
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va, .hOWQ to be .trict1), tied \..:. e.4rodynamic re.btance. 
Wo--i'elmet effect of the indatet1lination of the .011 h.at flux 

ta d ... rt dry IOU. 1IU fOUlld. 

e Aftar corl'e"!tionl vera appliN -_Il' .... nt betwean c:nlc:u14tud and 

axp.rt.eDtal a.aporation elata v .. Ihown'to'be tooel. 
!he for.ulaa deriv.d ara oriented to application. involving remo­

tel,. ••• eet 'ftface teriaperatura and albado. The required baaic data 

an:~ aetaorolog1cal data, height au.d kind of aoU covera.e, _an value 

'of the evapol'ation rala. ThM' data allow the calculation of Urst­

atage evaporation formults. Short t~rm ~xperi .. nt. oval' different'ex­
tr .. situation. were Ihown to be morE'! ~~dI,)1. than long-laatina expe­

rimentlover a few .urfaces • . 
The linear functions derived Ca;r'l be uted for a .traipt forward 

evaluation of actual evaporation from MSS and IRLS data. 'lbese data 

provide the required value. of surface temperature and albedo for 

each siugle area. 'lbe present procedure can be followed al a scheme, 

Vhen evaluating evaporation loss.s fr~ large inhomogeneous areas. 
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LIST or USED SYMBOLS 

Ipbol 

Q 

E 

E(T.,n) 

E'(TS,a) 

£ 

£' 

£* 

G 

1 

L 

Pa 

Paca 

r a 

R • 
a 

T a 

T. 

DX{E(XI , .. , 
xn) 

Interpretation 

lurface reflectivity 

evaporation rate 

evaporation rate calculated a8 an 

arbitrary function uf T , a 
8 

evaporation rate calculated as a 

linear function of T , a s 

surface emis.ivity 

air apparent emissivity 

ratio of molecular weight of water 

vapour to dry air 

.oi 1 heat flux 

height of roughness elements 

latent heat of vaporization of water 

atmospheric pressure 

thermal capacity of air 

surface aerodynamic resistance 

shortwave incoming radiation 

Stephan-Boltzmann constant 

air temperature 

lurface temperature 

partial derivative of E with respect 

to x .• E is any function of 
1 

(XI' •• , Xn) 

a £(X 1' •• , finite variation of E with respe~t 
Xi X ) 

n to xi' E is any function of 

(x I' ••• xn) 

Units -
-2 -1 

g.cm .day 

-2 -I 
g. em • d.-I), 

-\ 
tim. day 

-1. -1 .I.em .day 

em 

-I J.g 

Pa 

-) -I 
J.em .K 

-I 
day.em 

-2 . -I 
.T. em • day 

-2 -:-4 
.I • em • day • K 

K 

K 
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