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ABBTRACT

Geodetie pasitioning using range, Integrated Doppler, amd inters
Ferometric obaervations from a constellation of twenty-four Global
Posltioning System satellites is analyvzed, A summary of the propasals
for peodetie positioning and baseline determination is given which
Ineludes a deseription of measurement techniques and comments on rans
deficlency and error sources., An analysis of variance comparison of
range, Doppler, and dinterferometric time delay to determine their rela-
tive geometric strength for baseline determination is included. An
analvtic examination of the offect of a priori cengtraints on posi-
tioning using simultancous observations from two stations Is presented.

Dynamile point positioning and baseline determination using range
and Doppler is examined din detail., Models for the error sources influ-
encing dynamic positioning ave developed. Included is a discussion of
atomic clock stabllity, and range and Donnler observation errov statis-
tics based on random correlated atomic elock errer are dervived.
Criterda for cstablishing observation schedules for optimum peometric
strength for positioning solutions are examined. Results of peodetic
positicning simulation studies are presented.

Satellite interferometry results based on the double diffor-
encing of simultaneous dnterferometric phase measurements from two
satellites are siven. The effects of ophemeris and refraction errors

and the nonsimultaneity of observation are considered.
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1. INTRODUCTION

1.1 Background on a Global Positioning System

A Global Positioning System (GPS) is a passive all-weather
navigation satellite system proposed for oparatioh after 1985, The
system uses the concept of passive satellite navigation based on highly
accurate atomic frequency standards to enable the navigator to determine
his three~dimensional posgition, velocity, and time instantaneously on a
continuous worldwide basis. Range and range-rate measurements taken
simultaneously from four satellites will be reduced to determine these
parameters [Milliken, 1978]. A total of twenty~four satellites in three
orbit planes will be available for navigation giving accuracies and
avallability far exceeding the current Navy Navigation Satellite System
or Transit System [Stansell, 1978a)] which GPS is designed to replace for
navigation, With the number of satellites in'view always exceeding the
required number for navigation, the user may select a subset of four
based on some criterion which optimizes the geometric strength of the
navigation solution.

The GPS system consists of three major segments: Space System
Segment, Control System Segment, and User System Segment. Each segment
is developed over three separate phases, each being a logical extension

of the previous phase in an integrated and cohesive manner.
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Phase I cncompasses the initial design and cvaluation of system
components ineluding the development of user equipment satisfying the
various navigation applications [Borel, 1978], testing of user equipment
at a ground based simulation facility [Denaro, 1978], and che space
based system as satellites become svallable. These satellites are pro-
totypes of operational satellites which will validate a new ranging
technique and the stability of atomlec frequency standards in a space
environment [Bartholomew, 1978]. This initial constellation will pro-
vide four-in~view geometry similar to the complete system for up to
three hours each day over selected geographle areas. An initial ground
tracking network will be developed and tested during Phase I as a protuo-
type of the operational ground system [Russell, 1978]. Certain limited
demonstrations of operational scenarlos are to be conducted.

Phase II consists of the initial production of low cost user
equipment and development of operational satellites. During this phase
additional satellites will augment the Phase I constellation, This will
result in a constellation of four satellites in each of three orbit
planes providing eight hours of continuous four-ip-view geometry each
day. These satellites will later be maneuvered to provide continuous
worldwide two~dimensional navigation.

Phase III builds upon this two-dimensional capability augmenting
the constellation until a total system of twenty-four satellites in
three orbit planes exists. Orbiltal periods are twelve hours. The
ground tracking stations will become operational and modified as neces-

sary to accommodate full system operation.
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Summardzing, Phase T is the concept validation period, Phase IL
is the system validatdion period, and Phase III consists of production
and operation. Initial worldwide operational capability should become a
; realdty after 1985, 7Phase T has been completed,

The final Space System Segment will consdst of twenty-£four

T A LT

satellites deployed in three orbit planes separated in right ascension
by sixty degrees. FEipght satellites are equally spaced within cach
plane. Integrated into each satellite will be at least two atomle fre-

quency standards to maintain stable time and frequency required for pre-

2 i Rt e

clse ranging.

T

The Control System Segment is composed of a master control sta-

1 tion, an upload station, and three monitor stations [Russell, 1978].

g

The master control station and the upload station are currently located
at Vandenberg Alr Force Base in California and three monitor stations
are located on Guam and in Alaska and Hawaii. These monitor stations
measure the range and range-rate of the satellites, collect meteoro-
logical data and forward this information to the master control statiom,
Every monitor station is equipped with a cesium frequency standard. The
master control station processes the data collected at the monltor sta-
tions and 1ts own tracking data to obtailn best estimates of satellite
ephemerides and time synchronization offsets for the system. DPredicted
ephemerides and clock corrections are forwarded to the upload station

, for transmission to the satellite.

The User Control Segment consists of the development and testing

of electronic receilvers and associated equipment required to perform

navigation. The function of this equipment 1s to detect and to acquire

3
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the GPS patellite navigation signals, to extract range and rapge-rate
Information, to perform corrections for ionospheric refraction, and to
compute three=dimensional position and veloeity and time. The expected
positional accuracies of the system are nine meters in cach horizontal
component of position and ten meters in the vertical component ninety
percent of the time. These estimates of accuracy are based on a single
determination of positlonusing four satellites based on the expected
crror budget and optimum satellite geometry [Milliken, 19781,

An eventual replacement of the Translt System by GPS would pos-
sibly curtail geodetie positioning currently availlable with the former
system using integrated Doppler observations and precise satellite
ephemerides [Sims, 1972]. At the present time Doppler positioning is
playing an increasingly important role in many countries for network
densilfication and control ag detailed in the Proceedings of the Iirst
and Second International Geodetic Symposiums on Satellite Doppler Posi-
tioning [1976, 1979). The curtailment of this program could have sig-

nificant implications within the geodetic community,

1.2 Review of Previous Studies

A Global Posditioning System although designed for navigation,
can offer the means for continued geodetlc positioning using Doppler or
range observations, Anderle and Tanenbaum [1974] point out that a GPS
system 1s orders of magnitude better in oscillator stability and sup-
pression of ifonospheric refraction and is effected less by uncertain-
ties in the gravity field. These factors imply that the typical errors

present in current Transit positioning would be reduced using GPS.
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In addition the presence of six to nine satellites in view at all times
means that continuous data acquisdtion will he possible as opposed to
iatermittont data obtained from Transit,

However the extreme altitude of these satellites, having an
orbital semi~major axis of over 25,000 kilometers, means that the rela-
tive velocity or Doppler shift between a satellite and an electronic
recelver on the earth would be smaller limiting the amount of posi-
tioning information available from each integrated Doppler observation.
A comparison of simulated range difference data from GPS and Transit
demonstrates this geometric dilution of infurmation, GPS range dif-
ference data which have a maximum value of around 17 kilometers for a
thirty-second integration period are approximately an order of magnitude
smaller than typlcal Transit observations which can have a maximum raunge
difference of 150 kilomecers over the same integration interval,

Figures 1.2.1 and 1.2,2 illustrate thirty-second integrated Doppler
range differences for a typlcal Transit pass and for a high elevation
CPS satellite pass respectively, The elevation angle of the satellite
is given at the endpoints of the curve and at the time of closest
approach (TCA). Inaddition the maximum length of a GPS satellite pass
ls about six hours whereas a Transit satellite pass lasts about twenty
minutes. Thus GPS range dififerences are smaller in magnitude than cur~
rently obtailnable Transit observations and, due to the length of a pass,
range differences from congecutive integration periods will vary less.
This implies that continuous tracking of GPS satellites over a complete
pass may not represent an optimum data acquisition procedure. A sequen~

tial tracking approach in which a number of satellites are tracked over
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sepgnents of a pags may give a more peometrically significant colleetion
of observations,

Thus it is evident that GPS integrated Doppler observations
offer cortain real advantages over Transit obscrvations but lack in
geometyie strength of ohservation. However the GPS system offers addi-
tional observational approaches, nomely, ranging and, as will be dio=
cussed below, the potential for interferometric obscervation.

The majordty of the investigations made to date have eentered on
the navigational capabilities of the GPS system., These studies consist
of both simulations and analysis of actual obsorvatlons to determine the
accuracies achilevable in numerous navigational applications, Denaro

[1978] deseribes the 1initial testing of adreraft and land~-based

o

navigation recelvers using the Invertod Test Range at Yumd, Avizona,
These tests involved the use of ground~based transmitters simulating the
satellite system. Stansell [1978b] considers the advil marine applica=
tions of GPS and Cox [1978] describes the augmentation of an inertial
navigation system with GPS observations. Miller [1977] gives results of
an analysis of ocean navigation using GPS range observations, and
Kruezynski [1978] considers adreraft navigation using a limited opera-
tional phase of the GPS system,

Numerous additional studles have centered on the theme of navi-
gatlon using the GPS system, However only re’.tively few studies have
examined fthe possible geodetic or geophysical potential of this system.
One of the earliest papers, given by Anderle [1978a], discusses the
major crror sources effecting GPS range and Doppler obsexrvations and

arrives at anticipated accuracies for geodetic positioning and baseline

7
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eomponents by extrapolating regsults of a limited analynis based on
gingle pass solutions for two components of position. Anderle [1978b]
again gives estimates of preelsion of relotive station positioning based
on GFS range observations. The results were agoln based on the projec-
tion of limited results, TFell [1979]) gives an indication of the effect
of atomie eclock stability crrors on positioning Lusud on the use of
range and Doppler observations obtained from one or two GPS satellite
passes, These limlted studics comprise the present results indicating
the potential of GPS range and Doppler obsexvations for geodetic posi-
tioning derived uging a dynamic point posgitioning :mproach.

In addition to dynamic positioning, interxferometric approaches
have been proposed which utilize radio signals broadcast by GPS satel-
lites to determine baseline components by measuring the time difference
of arrival or phase of these signals at two statlons. Counselman [1978]
propog¢s to utilize interferometric observations derived froma series of
continuous wave signals transmitted by equipment which would augment the
GPS system satellites, Using this approach baselines ranging up to a few
hundred kilometers would be measured. Counselman presents baseline
uncertainiy estimates for this sy:tam based on the geometry of the
satellite posses, These results are then adjusted to reflect the cffect
of unmodeled tropospheric refraction. Applications of the system are
discussed.

MacDoran [1979] proposes to derive intexferometric observations
from broadcast GPS satellite radio signals in a manner similar to that
used in very long baseline interferemetry [Dermanis, 1977] or in the
portable ARLES system [MacDoran et al., 1978] both using

8
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quagar sourees. MacDoran gives a gummary of the proposed SERIES syotem
and estimates of the effects of random and systematie error gources, A
praph of ecstimated baceline accuracy derived frem SERIES is given,
Finally, Bender [Letter to I. I. Mueller, 1979] proposes an
interferometric approach in which the phases of the reconstructed GPS
carvier frequencies with respeet to a loeal oseillator are measured at
two stations in order %o monitoxr crustal movements, As with the pre-
vious two interferometric proposals this approach remains in an early
stage of development and the exact magnitudes of the crror sources can
only be conjectured at present, A more detalied examination of all pro-

posed systems of usage 1s presented in Chapter 2.

1.3 Desecription of Present Study

The major objective of this study is to present an analysis of
geodetic positioning obtained from both dynamis point positioning using
GPS range and integrated Doppler observations and from interferometric
gsatellite observations. One of the basilc aims of geodesy is ihe pre-
cise and consistent determination of the coordinates of points of
interest in an adopted earth-fixed frame of reference. How well this
can be accomplished using GPS satellite observations will depend on
many factors which must be examined in detail.

The first step in this study, described in Chapter 2, is to
examine the proposed methods for the geodetic implementation of Global
Positioning System observations., These proposals are divided into two
basic classes, dynamic positioning with range and Doppler observations

based on the use of satellite ephemerides and satellite interferometry,
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A discussion of these techniques is presented giving the mathematical
description of the obgerving technique. A brief discussion of rank
deficiency 1s presented for cach system along with a discussion of the
error sources effecting each.

The second phase of the study 1s a comparison of range, Doppler
and interferometric observations to determine their relative geometric
strength for baseline component and chord length determinations.

Ranging observations are treated in three distinct modes, as range, cor-
related range difference and as interferometric observations, A
description of the :djustment procedure Ls given and an examination of
the effect of a priori constraints on positioningusing simultaneous
observations from two stations is given for each approach. This analy-
sls 1s presented in Chapter 3.

Dynamic positioning ugsing range and Doppler observations is
addressed in Chapter 4. A detailed description of the error sources
influencing dynamic¢ posdtioning is presented and error models for these
gources are developed. Included are a discussion of atomic clock erron
modeling and the develoywait of the statistics for range and Doppler
observation errors due tu random atomic clock error. Ephemeris, atmos-
pheric refraction and instrumental error sources are considered. Simu~
lation of GPS range and Doppler observations is discussed along with
criteria for the selection of satellites to be tracked which yield opti~
mum geometric strength of solution. A sequential algorithm is derived
for the estimation of geodetic station coordinates from range and
Doppler observations with fully correlated weilghting. Results of geode-
{ic posgitioning simulatilon studies are presented.

10
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Satellite interferometry rvesults ave presented in Chapter b
hased on the double differencing of interxferometric phase measurements
From two satellites obscrved gimultancously at two locations, This
obhservation procedure dg designed to eliminate the effect of timing
errovs on the determination of baseline components. The offects of
ephemerds and tropospherdie refraceion errovs and the nonsimultanelty of

observation are consideroed,

A final summary and recommendations for additfonal analysis

are presented dn Chapter 6.
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2, SUMMARY AND CONSOLIDATION OF PROPOSED

‘ SYSTEMS OF USAGE

B ot

2,1 Introductory Remarks

ALl currently proposed methods for the geodetic dmplementation

g of a Global Positioning System of navigation satellites have centered on
; the use of three basic types of measurement. These observatlons are

| range, integrated Doppler oy range difference, and the interferometric

} delay in time of receptilion or difference in phase of electromagnetic

\ sipnals at two sites., Ranging and Doppler techniques discussed by

Anderle [1978a) are suitable for dynamic point posittioning applications

in which the coordinates of the tracking receiver ave determined in an

adopted earth-fixed frame of refervence. GCoovdinate differences, or

baseline components, may also be obtalned from such observations
acquired at two or more stations. The interferometric approaches
advanced by MaeDoran [1979], Counscelman and Shaplro [1979], and Bender
[Letter to T. I, Mueller, 1979], although differing greatly inmethodology,
are proposals for using the measured time delay or phase difference at two
stations to determine baseline components in order to densify exdsting
geodetde control and to monitor crustal movements.

In this chapter a discussion of these techniques is presented
which summarizes each observational procedure and gives a mathematical

description of the observation equations. A brief discussion of rank

12
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deficlency is presented for cach system and the error sources effecting

each are addressed,

2,2 Dynamic Positioning Using Range
and Doppler Observations

The concept of dynamic point positioning using satellite obser-
vations is nearly two decades old. At present geodetic point posi-
tioning using integrated Doppler observations from Navy Navigation
Satellites forming the Transdit System 1s performed on a worldwide basis
primarily for network densification and control. Stansell [1978a] and
Laurila [1975] give overviews of this system and its applicatilons in
geodesy and navigation. Although differing philosophies exist for the
exact implementation of Doppler observations for geodetic positioning,
as seen in the discussions of Brown [1976], Anderle [1974, 1976], and
Colquitt [1979], where differences in methodology exist in such areas
as parameter definition and procedures for treating Doppler observations
either as uncorrelated range differences or as biased range, this system
has made a great impact on geodesy.

With a Global Positioning System of navigation satellites both
range and Doppler observations are available for point positioning,
although the electronic technology required to acquire these observa-

tions differs greatly from current Doppler measurement methods.

2.2.1 Measurement of Range and Doppler

2.,2.1.1 Range Measurement Procedure
Each GPS satellite broadcasts on two L band frequenciles,
1275.4 MHz and 1227.6 MHz, called Ll and L2 respectively, to allow for

13
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precise firvst ovder fonospheric compensation., Modulated on the Ll car-
rler are two pscudo vandom nolse (PRN) code sequences known as the pre=-
cision (P) code and the course acquisition (C/A) code. The P code is a
binary random sequence generated at a rate of 10.23 megabits each sccond
and may be considered as a square wave whose frequency is 10,23 Mz and
whose amplitude is rvandomly taken as plus or minus one every cyele
depending on the code sequence. The C/A code is generated at a rate of
1.023 megabits each second and may be considered as a square wave simi=-
lar to the P code but having lower froquency. The C/A code repeats
Ltselfl approximately every milliscecond; whereas the I code has a vepeti-
tion rate of approximately 38 weeks, although in practice the sequence
will be reset every week.

Lindsey [1973) discusses the general properties of digltal
sequences known as pseudo random nolse sequences for use In ranging
applications. The desired properties of these scquences ave:

(1) the complete code cycle length must be long enough to
avold ambiguities in range measurements;

(11) the code symbol repetition rate must be high enough to
obtain the required resolution of the range measurement;

(144) the autocorrelation function of the code should be simi-
lar to that of band limited white noilse having two distinct levels;

(Lv) to dmprove efficiency in radio frequency (RF) transmis-
sion the code should have a balanced number of ones and zeros over a
complete period of the sequence so that the power of the modulated sig-

nal is more evenly distributed about the carrier frequency.

L4
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The significance of these properties will be apparent shortly.

The L, signal transmitted by satellite i has the following form

1
as given by Spilker [1978] due to the biphase modulation of the PRN

codes and phase quadrature

i .
sLl(t) = ApPi(t)Di<c)cos(mlc+¢)
(2.2.1)
+ AcCi(t)Di(t)sin(wlt+¢)
where the Ll carrier has the form
Ll(t) = cos(wlt+¢) . (2.2.2)

In equation (2.2.1) Pi(t) is a 4+l pseudo random noise sequence. Thus
whenever the P code changes sign the phase of the cosine component is
reversed by 180 degrees or biphase modulated. These phase shifts occur

at the positive zero crossings of the L. carrier. The factor Ci(t) has

L
an amplitude of plus or minus one and has the property that when the C/A
code is minus one, the phase of the second term in equation (2.2.1) is
reversed by 180 degrees. Thus the first and second term in that equa-
tion will remain out of phase by 90 degrees or retain phase quadrature
regardless of the code values. The factors Ap and Ac represent the
amplitude of each signal when transmitted. The factor Di(t) 1s an addi-
tional data code of amplitude +1, modulated on the carrier at a rate of
50 bits per second, which gives the navigation message along with the
information required to determine the time shift between the epoch of

the received C/A code and the epoch of the received P code. Figure

2.2.1 taken from [Butler, 1978] displays the biphase modulation of a
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Figure 2.2.1, Time Domain Waveforms: (a) Unmodulated
Cavrier, (b) PRN Code Sequence,
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carrier with a PRN code. The resulting RF signal and 1its power are
spread into a frequency interval centered on the carvier wvhose distri-
bution depends on both the bit rate of the code and on the code 1tself.
Figure 2,2.2 also taken from [Butler, 1978] demonstrates this spread
spectrum effect where fc is the frequency of the code.

The La signal is biphase wodulated by either the P code or the

C/A code., Assuming the Former the L, signal has the form

1 . i ‘
SL2(L) = BpPi(L)Di(t)COh<m2t+¢) (2.2.3)

where
I‘P.(t) = cns(m,)t’f‘(f») ’ 2;2»4)

Both the Ll and L2 signals and all codes are in synchronization with
ome another when generated,

To measure range a ground recelver must generate the same PRN
codes that ave broadeast by the tracked satellite. This requires
a prioxd knowledge of the codes selected foxr broadcast hy each satel-
lite during the current week. With the receilver generating the appro-
priate P and C/A codes the range measurement 1s obtained by first
shifting the C/A code in time, compensating electronically for the
Doppler shift, until a maximum correlation with the received signal is
obtained. Thus the C/A code is shifted in time by t” and biphase modu-

lated with the received signal giving

- sy L - Ay
Ci(t—t )SL]‘(t) &= Apci(t»t )Pi(t)Di(t)cos(wlt+¢)

(2.2.5)
o+ Acci(t-t’)Ci(t)Di(t)sin(mlt+¢) .

17
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When a maximum correlation of the C/A codes is reached the second ternm
on the right side of equation (2.2,5) will have its power compressed
into a much narrower band about the carrier frequency since the product
Ci(t—t')ci(t) is one, demodulating the signal. Since C;(t-t”) and
Pi(t) do not correlate the power of the first term is spread into an
even wider band. Since the code correlation functions ¢(P,C/A)
and $(C/A,C/A) are essentially two valued with a distinct maximum as
discussed above, a value t” can be determined where maximem C/A code
correlation occurs.

Since the C/A code has a short period, t” may be multivalued,
but a maximum correlation can be obtained readily. The data code Di(t)
then provides the receiver with information relating the epoch of the
broadcast C/A code to the epoch of the P code. Thus the approximate
time required to shift the receilver generated P code to correlate with
the broadcast P code modulated signal can be determined based on t” and
the data message. The P code correlation processes is performed until
a maximum correlation occurs as in the C/A code correlation process.
The unique time T for which P(t-T) correlates with the signhal is the
measured quantity. By performing a second correlation on SLi(t) an
estimate of the first order ionospheric refraction may be obtained and
applied to correct T as described in Section 4.1.3 and in [Spilker,
1978]. The corrected value of T multiplied by the speed of light ¢ is
known as the¢ pseudo range measurement. It vepresents the geometric
range between the receiver and the transmitter plus the effect of the
synchronization error between the receiver and satellite clocks. In
addition the measurement is subject to other error sources

18




discussed below, TFor the moment, ignoring these error sources, the
observation equation for pscudo range is
R=er = f'ﬁ's-ﬁ'l + cAT

(2.2.6)

211/?

= [(us"u)z + (vs"v)2 + (ws—-w) + cAT

where Ugs vs, Wy are the coordinates of the satellite in an adopted
earth~fixed reference frame. The quantities u, v, w represent the
recelver coordinates in the same frame and AT represents the synchroni-

zakion error between the satellite and receiver clocks.

2,2.1.,2 Doppler HMeasurement Procedure

In the range measurement process both carriers are reconstructed
since the C/A and P codes are correlated and biphase modulated with the
received signal. In addition the data code is deciphered by the
recelver and removed from the carrier. The result i1s a continuous wave
carrier subject to Deppler shift.,

Two approaches may he taken to measure the accumulated Doppler
shift over an interval of time. Tirst, in forming the range measurement
the P code must be correlated with the received signal. Because of the
relative motion of the satellite with respect to the recelver the sig-
nal is subject to a varying Doppler shift and the electronic correlation
process must time shift the receilver code at rates proportional to the
range rate to maintain correlation. Thus a Doppler measurement can be
obtained by monitoring the code sequence shift rates over an interval.
The second procedure is to difference the reconstructed carrier fS with

a frequency generated by the receiver £, and count the zero crossings

0
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of the resulting signal over a time interval. This ercond procedure is
the standard Doppler technique in use currently, GPS NDoppler rcceivers
however could theoretically use either approach.

In either case the observation equation for integrated Doppler
can be expressed as the range difference over the integration interval

[ti’tj]' The equation is

AR = [E;(tj) ~ o] - |5§(t1) - .

C ” )
Q"E(; [Nji - (fo"fs)(tj "ti)]

whure Nji Is the accumulated Doppler count over the interval, The
measurement is subject to errors due to oscillator frequency variations
and atmospheric refraction, As with range this measurement is made on
two frequencies to allow for ilonospheric refraction correction.

2.2,2 Comments on Rank Deficiency of
Range and Doppler Apnroaches

Dynamic point positioning solutions are obtained from range and
Doppleit nbservations by linearizing equations (2.2.6) and (2.2.7) about

an initial estimate of station aud satellite position

V=A+1L (2.2.8)

and minimizing VTPV with respect to the unknown parameters X. This

minimization leads [Uotila, 1967] vo the least squares normal equations

NX + U =0 (2.2.9)
where
N = AYPA (2.2.10)
20
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and

U= AL . (2.2.11)

Because of a lack of ecvordinate system definfition a unique solution to
equation (2.2,9) is not possible since N is a singular matrix with rank
less than the number of pavameters. Despilte the dynamical constraints
imposed on satellite motion a unique golutlon to equation (2,2,9) cin
only be achieved 1f origin and orientation constraints are imposed on
the solution. In dynamic point positioning solutions these nccessary
constraints arc usually imposed through the use of previously estimated
satellite ephemerides, The satellite positions appearing in equation
(2.2.6) and (2.2.7) are included in the normal equations (2.2.9) with
welghted constraints based on the accuracy cstimates of the satellite
ephemerides utilized, TIf range or Doppler observations are made at two
sites the station position solutlons may be transformed into estimates
of the parameters of the baseline connecting the sites.

Arur [1977] performed a rank analysis of Doppler observations
and found that the vector of coordinate differences between the
observing station and the mid-arc state vector of the satellite pass,
the velocity components of this vector, and the frequency offset (fo~fs)
are estimable. The components of station position only become estimable
1f constraints are imposed on the ephemerils. For coobserving stations
the interstation coordinate differences are estimable quantities. A
theoretical rank analysis carried out for ranging [Van Gelder, 1978]
showed that the rank deficiency for the short arc mode is two. Thus

without the use of sufficient constraints unique solutions to equation
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(2.2.9) are not possible, Tavlis [1979] discusses the general problem
of vank deficiency and procedures for obtaining solutions,

For positioning applications of the GPS system, satellite
ephemerides will be estimated based on ranging observations from four
stations. The projected accurpey of thesc ephemerides is discussed in
Seetdon 4,1,2, Range and Doppler positiondng studics described in
Chapter 4 will incorporate weight constraints baged on assumed ephemeris

aseuracy .

2.2,3 Range and Doppler Error Sources

The accuracy of satellite cphemerides and tropospheric
refraction modeling and the stability of satellite and recelver atomic
clocks will have important consequences in the application of range
and Doppler observations to geodetic positioning. An additional factor
will be the precision of the eleetronic receiver. These sources of
erroy are discussed in detail in Section 4.1. Theilr ecffect on geodetic

positioning are discussed in Section 4.5,

2,3 Satellite Interferometry

Radio signals transmitted by GPS satellites have been proposed
as a new resource for the application of intexferometric techniques to
baseline determination, The interferometry technique is based on
observing the time (phase) difference of arrival of radio signals from
a single source at two or sore coobserving sites, Three different
satellite intorferometry proposals have been advanced. MacDoran [1979]

proposes to utilize the broadcast GPS spread spectrum signals by

22




R e R R e

i oa

crosg=correlating the recorded signals ot two sites as in very long
baseline interferometry. The observed quantity is the time difference
of arrival of the signal at the twe sites subject to a time synchroni-
zation erroxr, A sccond proposal [Counselman, 1979] would derive intere
ferometrie phase observations from a series of continuous wave signale
transmitted by equipment which would augment the GPS satellites. Obser-
vationg would be made from at least four satellites simultancously at
each site to recover the components of the baseline in near real time.
This technique relies on measuring the phase of up to ten continuous
coherent signals broadcast from ecach satellite to eliminate the 27 phasec
ambiguity which occurs when a continuous wave is used. The phase
measurements are differenced at both observing sites to form the inter-
ferometrie phase difference. Bender [Letter to I. I. Mueller, 1979]
proposes an alternative approach based on measurcment of the phase of
the reconstructed GPS carrier frequencles at two sites. The phase of
the reconstructed carrier is measured with respect to a signal based on
the receivers local frequency standard, Bender proposes making such
meagurements f£rom three or more satellites simultaneously ox within a
relatively short time interval so that the local frequency standard
stability is not a sewxilous limitation. The use of a water vapor radio-
meter is proposed as in the MacDoran approach to virtually eliminate
tropospheric refraction effects., This approach is also subject to the
21 phase ambiguity which nust be resolved.

Thus three separate proposals have been advanced for an inter-

ferometric determination of baselines. The first is based on observing
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the time difference of arrival of random signals at two sites, The

other iwo proposals are based on the measurement of phase of continuous

wave sipgnals,

2.3.1 Measurement of Intexferometric
Time Delay and Phase

The interferometric time delay i1s the difference in the time of
arrival of radio signals from a common source at two sites. In very
long baseline interferometry the sources are the extremely distant
quasars. For the proposals described above the sources are radio

signals emitted from GPS satellites, Using the notation of equation

(2.2.6) the time difference of arrival at sites i and & is given by

- — = 5 -——— Lot 5 -—-- — 2. 2
8t = (R, ~R))/e = (Jo_~p,| - [p =Py )/ + (At  -AT)) . (2.2:12)
In equation (2.2.12) the earth-fixed coordinates of the satellite

appear since the radio signals received at each site are not incoming

along parallel naths as with quasar sources. The last term

in equation (2.2.12) is the clock synchronization error of the two

observing sites.

If the observation is interferometric phase based on continuous

wave radio signals, either broadcast or reconstructed, the observation

equation has the form

I
8, =5-1lp, = | = mA + et ] (2.2.13)

where A 1s the wavelength of the sigual, m, is the integer number of

wavelengths comprising the geometric range and ATi is the

24
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synchronization ervor of equation (2,.2,0), The wavelength A ds a func-
tion of time due to the Doppler shift, The difference in phase at two

sites 1s glven by

D=0 =y Loy m[\ |~ hw ‘Bﬁl-(n&f-u&)A~PQ(ATi"“ATQ)] o (2.2,14)

Stnce the Doppler shift in frequeney will not be identdcal at both
observing sites equation (2.2,14) is an approximation to the ordew of
accuracy that the Doppler shift is known a pitord. The third term in
equatton (2.2,14) is the 21 ambigulty mentioned previously. Its
a priori uncertalnty will be a function of the initial accuracy of the
observing station's coordinates.

Mnally an examination of coquations (2.2.12) and (2.2.14) shows
that the time delay and the difference in interferometric phase are
related by

o m A AD - R
§r = . [2“ bk m mg] (2.2,15)

2.3,2 womments on Rank Deficiency of
dLolliLe Intorf01omLLLv

Equatfon (2.2,12) and (2.2.14) reveal that satellite intexrfero~
metry observvations are a Tunction of satellite position unlike quasan
anpservationy and are related to the difference in range between the
gatellite and the two observing sites. If normal equations for station
position are formed from such observations the normal mateix N will
not have fuil rank. Unless sufficient dnformatdlon is availlable on

satellite position, a unique solution for earth-~fixed station

fav]
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coordinates s not possible.  Fven with sueh constraints the normal
cquatdons can stlll tend to become singular as the baseline distance
decveases.  This {8 demonstrated in Chaptey 3,

The followiupg approximation [Counselman, 1978] can be used in
equations (2.2.12) and (2.2.14) to recast these ecquations dn tevms of

basgeline components

[y
" .‘&.‘:ﬁ - t"i ‘-‘h'.": f\‘ lﬂ’;’ m-:;i‘ . ’
lpa pi‘ lpa le (‘1 F&) Py
6&3.2»1(\)
1 s g 9 o A Y - A )2
] '“ * . bl [ 3 " ) b MmN o [N
k (20 =pP) = (hy =07k (g p) 7]

4
g

s

N
where Py i the unit vector in the dirvection of the satellite, Yor

short haselines delined as having

n

AR (2.2.17)

the second term 1n equatfon (2.2.16) way be deleted. Then equatlons

2.2.12) and (2.2.14) hecome

Q 1 ™~ - m‘aw & N O o - 2‘2.“(,
St (py=pgd p /e b (At =Aty) (2.2.18)

and
no = A (B, ~Tg) * g = (ny =m)hbelhr =Atd] « (2,2.10)
] ] 8 R 1 [
An examination of the derivatives of equation (2.2,18) with respect to
haseline components and the time synchronizatlion ervor reveals that
these parameters ave estimable if four satellites are observed which do

not lie on the same circle in the sky [Counselman, 1978).
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squatlon (2.2,19) has the same form as equation (2,2,18) except for the

2 oambiguity term which cannot be separated from the synchronization
error unless special procedures ave implemented [Counselman, 19797, The
double differencing approach examined in Chapter 5 is another technigue

for handling this problem.

2,3,3 Interferomeiric Error Sources

Machoran [1979] and Counselman [1979] outline the systematic

and random error sources effecting their proposals. Included ave the

froquency stability of the recelver clocks, transmission media crrors
conslisting of tropospheric and fonospheric refraction, GP§ satellite

posicional accuracy and the precisfon of the instrumentation.
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3. DPRECISION COMPARISON OF RANGE, DOPPLER, AND
INTERFEROMETRIC APPROACHES FOR

BASELINE DETERMINATION

A complete comparison of the positioning accuracies obtainable
from range, Doppler, and interferometric satellite observations would be
difffcult to perxform since proposals based on the latter approach remain
in an early stage of development, For instance, the exact nature of the
Instrumental error sources associlated with satellite interferometry can
only be conjectured at present. However range and Dopplexr geodetic
recedlvers are currently being tested and estimates of measurement error
are available. Therefore, for the range and Doppler proposals a
detalled ervor analysis is presented in Chapter 4. Then in Chapter 5 an
interfevometric observation technique for baseline determination is con=
sidered which has a distinet advantage over the range and Doppler
approaches.,

In this chapter a comparison of the peometric strength of the
three approaches is given based on the processing of range observations
as range, correlated range difference and as interferometry or dif-
ferenced ranges from two stations. This analysis will give an indica-
tion of the relative geometric strength of each approach for the
determination of coordinate differences and baseline distances using

observations from a constellation of high altitude satellites.

o
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3.1 Mathematical Model amd Adjustment Procedure

J.1,1 Mathematical Model

Let Ri

Pi(“i’vi’wi) to any satellite position Q1(“j’vj’wj) as shown in

j be the topocentyic range from any ground station

Figure 3.1.1, where the carth-fixed coordinate system (u,v,w), is
oriented towards the Greenwich mean astronomical meridian (u-axis) and
the Conventional International Origin (w-axis) with the v-axis forming a
richt~handed coovdinate system with u and w, this cooruinate system
being defined by the Bureau International de 1'lleure (BIHN)., Trom

Figuve 3.1.1, the following equation can be written for the topocentric
range

= [(uj--ui)2 + (v '-Vi>2 o+ (x\vJ——wi)z]l/2 . (3,1.1)

R1 i

3

Trom two consccutive topocentric ranges, Rii and Rik’ the range dif-

ference i1s defined as

= R - 2
AR;{.jk l\ik Rij (3.1.

and from gsimultaneous range observations, Rij and Rli’ taken at two

stations Pi(ui,v ,wi) and Pz(uﬁ,vﬁ,wg), the interferometric observation

1
is defined as

6Ri£j = Rij - RQj . (3.1.3)
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form

may be linearized by a Taylor series expansion about preliminary values

for station and satellite coordinates XO to obtain the observation equa~

w lw
Q)
Ry |
P; [
L
l
L T lru
Vit
A

I

Figure 3.1.1. Geometry of Topocentric Range

3.1.2 Adjustment Procedure

The mathematical models (3.1.1) through (3.1.3) of the gemeral

La = h(ka)

tions [Uotila, 1967]

where V &s the vector of observation residuals defined by

V= AX+L

V= La - Lb .

30
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The elements of L are the differences between the function F evaluated
at the preliminary values for the coordinates and the observed quanti-
ties Lb and A is a matrix of partial derivatives of F with respeect to
the coordinates. The vector X, representing corrections to the prolimi-
nary coordinate values, will be estimated from the observations L

b
glving

Xa = Xo + X (3.1.7)

using least squares minimum variance estimation,

For range observations Rij and jo made simultancously at two

stations the rows of the design matrix have the form

JR, ,
A =] B N

13 Bui,aug,auj
(3.1.8)
[nij | o l—aij]
and
3 Uy uﬂ, uj
(3.1.9)
= [ 0 I“gj —agj]
vhere
u, - u v, -V W, - W
ayy = 1, L 1, A (3.1.10)
13 13 14
and
T ]
Xt = [dui,dvi,dwi,dug,dvz,dwg,duj,dvj,dwj] » o (3.1.11)

-

The index j ranges over the number of satellite positions where range
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observations are acquired. For single statlon tracking the parameters
dug, dvg, and dwg are naturally omltted,

For range difference observations ARijk the contribution to the

degign matrix takes the form

0AR

A o Cdqk
ijk aui’auk;auj
(3,1.12)
= lag = ay |- ay lagy)
where
T
X" = [dui,dvi,dwi,duk,dvk,dwk,duj,dvj,dwj] . (3,1.13)

And finally for interferonmetric observations aRizj from two stations

the contribution to the design matrix for each observation is

. i} GGRiz
12 Bui,Sug,Buj
(3.1.14)
= lay, | - azji -yt agy)
with
T ,
X" = [dui,dvi,dwi,dul,dvz,dwx,duj,dvj,dwj] . (3.1.15)

In the analysis presented in this chapter, which is intended to
compare the geometric strength of these three observational approaches,
the satellite ephemeris will be assumed known and excluded from the

normal equations.

The least squares minimum variance estimate of X based on a set

of observations is obtained by minimizing the function

¢ = VTPV - ZKT(AX+L—V) (3.1.16)
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with respect to the unknowns V, K, and X. P is the weight matrix for
the observation sct, After minimizing ¢ and eliminating the unknowns K
and V, the least squares estimate for X 1s given by the solution of the

normal equations

NX 4+ U= (3.1.17)
where
N = ATpA ¢3.1.18)
and
T
U= A"PL , (3,1.19)

Solving equation (3,1.17) gives
. ~1 JU
X=N"T. (3.1..20)

The covariance of the parameter estimates 1s glven by the dinverse of the

normal matrix provided P is the inverse of the obseyvvation ccvariance matrix,
S =N . | (3.1.21)

For observatlons from two stations the uncertainties in the base~

line components are obtained by the linear transformation

5. = GL G
X

AX (3.1.22)

where
¢ = [~ I] (3.1.23)
and

= [Au,Av,Aw] . (3.1,24)

T
AX™ = [du'q - dui’ dvl - dV:L’ dwz - dwi]

The uncertainty in the chord length d is given by the transformation
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Gd " nxAxu w HGXxG 31 (3.1.25)
where
u, = u Vo™V W, =W
I B R A T T
Il {: d ] d ;] d ] v (3&1'26)

3.1.3 Weight Matrix

In minimum variance least squares estimation the welght matrix
1s taken to be the inverse of the covariance matrix of the observational

Crrors

P = z;i : (3.1.27)
For statistically independent range observations with constant variance

the covariance matrix is given by

= 2 3
ER gL . (3.1,28)

The dimension of this matrix is equal to the number of observations
acquired.

For N independent range observations taken from a single sta~
tion, whose statisties are given by equation (3.1.28), the least squares

normal equations for station coordinate improvement are

T T -
where
= [du,dv,dw] . (3.1.30)

For (N-1) correlated range difference observations,defined as

the difference between successive ranges, the least squares normal
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equations can be direetly obtained from the matrix components in equa=

tion (3.1,29) by the transformations

: AAR = BAR (3.1,31)
: o
v g T , ]
5 AR n};Rn (3.1.33)

i where the matrix B 1s defined by

? -1 1 0., . 0]

h} 0 "‘1 l . . * 0

i’ b o= ' (3.1.,34)
| ~

; L 0 0 0 . . "’1 l"(N"‘.}‘ X N)

with the range obscrvation covariance matrix given by equation (3.1.28).

The welght matrix for correlated range difference observations i1s given
i by

] = \"'l - T -1 - l T,.-1
‘
]

For unit variance equation (3.1.35) becomes

"2 -1 0 . . . o™t
/ =1 2 ~1 . 0
T ""l 0 '-l 2 -1 . » 0
PAR = (BB™) = . (3.1.36)
'; o . 1 2 -1
:
_0 . 0 "'1 2- (N"l % N"'l) .
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The normal equations for (N=1) correlated range diffcrence observations,

acecording to cquation (3.1.17), may be written as

T o

(%wM%QWMFPL 0 (3,1,37)

AR" ARAR

or, using equatlons (3.1.31) through (3.1.36), equation (3.1,37)

becomes
g D U TN Sy S, A L
(ARB (BB BAR/X4'ARB (BB”7) BLR =0, (3.1.38)

Consider now N independent range obscrvations taken simuyl-

taneously at two stations at times tl,tz,...,tN

y - 0
RY = [RT, .00 RE, RS, 000 R (3,1,39)
The least squares normal equations for the parameter sct

XT = [dui,dvi,dwi,du ,dvz,dwz] (3,1.40)

are given by equation (3.1,29) with modifications to allow for the addi-
tlonal set of parameters, Defining N independent satellite interfero-
metry observations as the difference between simultaneous ranges, the
least squares normal equations for interferometry can similarly be

developed from the matrix components of equation (3,1.29) by the trans-

formations
AGR = MAR (3.1.41)
= 73,
L(SR MLR (3.1.42)
5. = ME MY (3.1.43)
6R R [ *
36
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t[ 8 ["I I] (Nx 2N-) . (3 110‘1510)

The welght motrix for the statistically independent interferometric

observations 1is given by

Pep ‘sSR . (M}:Ry"-')"l a (20017t

) (3.1.45)
s (1)t ’

for unit voriance. The normal cquations for interferometry are

(AP spher) X+ AP sabon ° © (3.1.46)

or, uging equations (3.1.41) through (3.1.45), are equivalent to
.7, . I ~1 -
(A 1 oty ” MAR) CRAMT(MMT) "MLy = 0 (3.1.47)

Thus the weight matrices for range difference and interfero-
metric observations are obtained using the same lincar transformation
matrices which convert the range observations to the alternative data
form, The range difference observations are correlated since gach suc~
cegsive range difference observation is furmed using a commnn rangec,
This is reflected by the off-diagonal elements iIn matrcix equation
(3,1.36). Finally, it was shown that the range difference and inter-
ferometric normal equations are directly obtained from the range normal
equations 1f the welght matrix is also modified accordingly. In equa-
tion (3.1.38) rae modified weilght matrix becomes BT(BBT)~1B and in

equation (3.1.47) it is MT(MMT)_lM.
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3.1.4 Effect of A Priorid Constraints on Positioning
Based on Simultaneous Observation

In general, for simultaneous observations from two stations, the
normal equations are developed for two sets of parameters, station coor-
dinates and ephemeris variables, Although the analysis in this chapter
agsumes the latter to be known, it 1s of interest to examine the more
general form of the normal equations to arrive at an understanding of
what effect a priorli information on either the ephemeris variables or
the coordinates of one station has on the variance of the coordinates of
the second station and baseline components. This situation would natu-
rally arise in network densification using any of the observation types

considered herein,

3.1.4.1 Range and Doppler

For simultaneous range and integrated Doppler observations from
two stations, the least squares normal equations for station coordinates
and ephemeris parameters have the following form for measurements that
are either uncorrelated or are correlated by errors at individual

tracking statilons

11
0 Nyyg  Wog || %, [+ Uy |=0. (3.1.48)
Nep Ngo Ngg||¥] LUg

The covariance matrix for station coordinates based on the observations
and on a priorl knowledge of the first station's coordinates and the

ephemeris parameters is
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x] =]
Nyg b Py = NygNeot D) "Ngy =Ny o (Nt Pe) Ny
Px © -1 -1
Nyg(Ngg*Pg! Ny Nyp = NpgNgg+Pg) N
E OO Q
11 P12 1 Y2
Boy  Bon Uy Ry

where the parameter set X 1s defined by

m

T
X" w [dul,dvl,dwl,duz,dvz,dwz] .
The covarifance matrix clements ave glven by

Qpq = [Byq = By,oB,

= » - "1 —
[Ny P =Ny (N Ngy = Nyg

-1
1 tPg) "Ngy

g5 T Ngg

Ly - wly gnl
(Mg = Ny Mg+ 7)™ M) ™yl )™

S Sl]

-1 -1
Qpp =8 24'322321QJJ 12822

= T - Je P -1 - D -1
[Ny = Nyo (No ot P) "Ngy = Nog (Ngg +P) "Ny

T T S
(Nyy +1 +Pg) Ngy) Nlesstzl

Py = Ny g (Ngg

-1

Q127 =Qp18y,809

(N + P ) Iy

-1
= -s S P
Q11M5 Mg go (Ngp = Mpg(Ngg+Pg) N

sal

T
Qy = Qg -

(3.1.49)

(3.1.50)

(3.1.51)

(3.1.52)

(3.1.52)

The matrix Quq is the covariance matrix for the first station's
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coovdinates Xx y ond sz Ls the covardiance matrix for the second sta-
1
tlon's coordinates Ny
2
The covariance matrix for coordinate differences, or baseline
components, Is obtained from equation (3,1.49) by the lingar transfor-

matlon

In terms of cquatiions (3.1.50) through (3.1.53), equation (3.1.54)

becomes
Bpg = Qpp * Vpg + Bpg8p100 81,855 + Q118 85s
N qun 1Q1l (3.1.55)
= ‘;;‘ + [n;iuzl + I]Qll{B,;%le URI

This equation may also be written :dn the form

. =l . .
ax = By xxz 4 rhll 1oBap * Boz o1y X, (3.1.56)

Consider now the effect of a prilori information on the covari-
ance matrices gilven by equations (3.1.50), (3.1.51), and (3.1.56). The
following cases are considered:

Case (1). Ephemeris parameters constrained and no knowledge of
station 1 coordinates (PS = 0, Pl = 0). Under these assumptions equa-

tions (3.1.49) through (3.1.56) reduce to the results
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ax = Nyg ot Ny

(3.1.57)

(3.1.58)

(3.1,59)

Case (41). Ephemeris parameters partlally known and statdien 1

coordinates constrained (0 < P, ¢ ®, P = ),

S 1

™
I

0

8

[N,, = NZS(NSS + PS) N

22

= [Nyy = Nyg(Ngg + Pg) "N

(3.1.60)

(3.1.61)

(3.1,62)

Casc (iii). Ephemeris paramecters constrained and station 1

coordinates constrailned (PS = 0, Pl = ),

-1

Ly = sz

wJ ﬁ _'l
Iag = Noy -

(3.1.63)

(3.1.64)

(3.1.65)

Case (Lv). ©Ephemeris parameters and stacion 1 coordinates are

partially kncwn (0 < Pg €, (< Pl < ),

-1
2, = [N )
X

-
-~ - b — 3 . 1)
11 Py~ NygWeg + Po) "Ngy = Ny g (Bgo+Po) N

52

1 ]~l

-1 -1 -
Ngp) "Npg(Ngg + Tg) "Ngy

(Npy = Nyg(Ngg *+ P)

41
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zxz"‘{sz"stchs"'Ps)'lezrl
o+ [sz-st(NSS~FPS)~1NSZ]"1N28(NSS-kps)“lmslxxl (3.1.67)
Ny (Ngg + Bg) Mg, Ny = Npo (g + PO NG 17
Iyx=Bx * By Iy ByaByy + Bppby Ty (3.1.68)

q 12722 22721°X

1 2 1

A comparison of these results indicates that the uncerxtainties
in the coordinates Uys Vg W, are equivalent in cases (i) and (iii)
where the ephemeris was assumed known and that this uncert:inty can be
expected to increase as the orbit uncertainty increases as in case (ii)
and increase further as the uncertainty in station 1 also increases. In
terms of eigenvalues of the covariance matrix, or parameter uncertain-

ties, the following relationship can be established among the cases

AGHD) L) () ) (3.1.69)

X, Xy 2 X,

The uncertainties in the coordinate differences Uy = Uy Yy TV,

- w, are likewise a function of the assumed a priori information.

Y27
Comparison of the results indicates first that if the coordinates of one
of the observing stations are known, increasing the ephemeris uncer-
tainty increases the uncertainty of the baseline components; and second,
that if the ephemeris is known, increasing the uncertainty of the first
station's coordinates also increases the baseline component uncertainty.

The relationships among the baseline component covariance matrices are

established to be

A(iii)

(4d)
A S My (3.1.70)

42

43




and

A(iii) < A(i)

The most important result however 1s obtained by noting that for rela-
tively close stations the submatrices le and NZS in equation (3.1.48)
are approximately equal, Thus the last term in equation (3,1.68) of
case (dv) will be negative definite insuring that the covariance for
coordinate differences will be smaller than the sum of the coordinate
covaviance matrices, as opposed to case (i) when the ephemeris is con=-
gtrained., Thus in general

{iv)
AX

(iv) . () .
SA AT (3.1.72)

1 2 '

A

This demonstrates how baseline component determinations may be obtained
successfully in the presence of ephemeris errors which cause larger

uncertainty in the coordinates themselves.

3.1.4.2 Interferometry
For satellite interferometry observations from two stations the
least squares normal equations for station coordinates and ephemeris

parameters have the form

i 1.7 L
Mo Mo Mgl F] | B
Noy  Npp N || %, |+ Uy |=0 . (3.1.73)
Ms1 Ts2 Nes||%s| [ Us]
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After algebraic elimipation of the ephemerds parameters the covariance

matrix for station coordinates including a priori information is

) -1
o -1 ) -1
Npg # Py =Ny g (NGt ) "Ne Ny =Ny g (oo Pg) "Ngp
By = ~1 -1
LN?.l = Npg(Ngg+Tg) "Ney Ngg = Nag(Ngg +Pg) "Ngo
, 4 (3.1.74)
Bp 0 By [Qll Q12
L?Zl Boo LQzl Qo

where the covariance matrix clements are given by

PR
Qqq = [Byy = BypBopBoy]

- . -l
= [Ny Py =N o (N F P T NGy = (N

-1, -
11t Py NlS(NSS—+PS) st) (3.1.75)

sl 127

-1 -1 “1. T -1
(Nyp = Npg(Ngg o) "Ngo) " (N =Ny g (Ngg+P) "Ngo) ™

-1 -1
Qpy = By 4'B°2leQ11 12822
-1 -1
[Nyp = NogNgg +Pg) "Ngy = (Nyy =Npg (Ngg +P) "N, ) (3.1.76)
~L. -1 -1 -
Ny # Py =Ny (Ngg+Pg) "Ngy) “(Npy =Ny (Ngg+Pg) "Ngy) "]
Q,, =~Q,.B gt
21" "911%12802
1 L (3.7
= =0y g (Nyp = Ny g (Ngg PG) Ny (Ny g = Ny (Ng o 2D sz)
Q,, = Q- (3.1.78)
01~ Qo L

Again Qll and Q22 are the covariance matrices for the station coordi-

nates.
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The evvardance matrix for the baseline components i1s obtained
using the transformation equation (3.1.54) and has the same form as

equation (2.1.56):

Iax = Quq + Qgp = Qpp = Qyy
o (3.1.79)
= 5 + I + I, B..B + B "B %,
x, * x, T Piatae * Pa2ban

For the cases considered previously, equations (3.1.75) through (3.1.79)
reduce to the following
Case (). Ephemeris paramecters constrained and no knowledge of

station 1 coordinates (PS mo, P. = 0),

1
_ TR R

%, - N, N12N2§N21] (3.1.80)

Lo = [N.. - N..N-T§. 17k (3.1.81)

X, 22 ™ Na1Mp1819 rde

Booo= S, + T, Lo NNk NIz (3.1.82)

S A A A T +L

Case (i1). Ephemeris parameters partially known and station 1

coordinates constrained (0 < PS < oo, Pl = o),

I, =0 (3.1.83)
1

X, = [N,, =~ N, (N.. +P )'l ]"l 3,1.84

x, 22 T MagtNss T g Ngo (3.1.84)

L= [Noo = NN +2) Iy 17t (3.1.85)

AX 22 28°7ss ' s S2 * il

Case (i1i). Ephemeris parameters constrained and station 1

coordinates constrained (PS = oo, Pl = o),
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le -0 (3.1.86)
T, = Nk (3.1.87)
x, = M22 1.
L. = Nk (3.1.88)
ax = Moo - oL

Case (iv). Ephemeris parameters and station 1 coordinates are

partially known (0 < Py <, 0 < Pl < ),
Zx = (gee equation (3.1.75))
1
ZX = (see equation (3.1.76))
2
Lo = N, 43, ok B B.oBoy o+ BIIB T . (3.1.89)
AX Xl XZ Xl 12722 22721 Xl t

An examination of these cases reveals the following relation-

ships in terms of the eigenvalues of the station covarilance matrices

(1i1) (14) (iv)
Ao < A < A (3.1.90)
X, X X
and
(1id) (1) .
sz < sz . (3.1.91)

For baseline comporant determinations

(414) (L)
XAX < AAX (3.1.92)

In cases (1) and (iv), however, the equations reveal how interferometry
is suited for the determination of baseline components for close sta-

tions. Under those circumstances
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Nyp (3.1,93)

(3.1.94)

) Thus, the last two terms in equations (3,1.82) and (3.1.89) are nearly

k the additive inverse of the sum of the [irst two terms vielding an
acceptable baseline component covariance even in the presence of large

| ephemeris errox.

g Interesting also, under conditlons where approximations

; (3.1.93) and (3.1.94) are valid, are the results obtained in cases

l (1) and (iv) for the coordinate covariances, equations (3.1.80),

(3.1.81), (3.1.75), and (3.1.76). In these cases. even when the satel-

lite ephemeris is known, the covariance matrix tends to be singular as

S e T

the baseline distance decreases, Tor interferometry, station coordinates

are not estimable under these conditions; however, baseline components

$ are,

) 3.2 Comparison of Range, Doppler,and
Satellite Interferometry

In this section, a comparison of range, Integrated Doppler, and

satellite interferometry techniques for the determination of baseline
components and chord distances is described. The basic intent of this
analysis is to compare the relative geometric strength of each techni-
que and obtain a measure of how the results themselves vary under dif-
fering clrcumstances of usage. The analysis is based on statistically
independent range observations of unilt variance taken simultaneously

from two sites using a single-channel receiver as shown in Figure 3.2.1.

47

S -
N



\\
) \ /
NN,
N
STATION §
STATION »

Figure 3.2.1, Simultaneous Range Measurcments
From Two Ground Stations

A E e

] These observations are treated as range, correlated range difference,
and as interferometric observations, Observations are included in the

\ analysis if the satellite elevation exceeds 10 degrees. An analysis of

' variance is performed nsing least squares minimum variance estimation
incorporating the weight matrices of Section 3,1.3. The parameters are

the corrections to the baseline components

Au = dul - du

i 3
Aw = dwg - dw:L

and the chord distance d, defined as

d = [(u2’~-ui)2 + (vz--vi)2 + (wz--wi)2 1/2 . (3.2.2)

No time synchronization parameters are included.
The orbital elements used in this study are given in Table

3.2,1, With a 24~-satellite constellation five to nine satellites are
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in view of a station at all times, For simultancous observations from
two stations, the number in view decrcases with an inerease in the
geparation distance, Simultaneous threeostation tracking was not con=
sidered sinee each baseline would not be determined as well, especi-
ally for stations of great separation where the number of satellites in

common view dis less.

TABLE 3.2.1. GLOBAL POSITIONING SYSTEM ORBITAL ELEMENTS

EPOCH: 1975 DAY 116.0 4w 26560Kkm =63
e = 0.0 we 0°
SATELLITE M N
R 0 A TN T Mt TR ————.
! o* o*
2 45 0
3 90 0
4 135 (4]
5 180 0
6 225 0
7 270 0
8 315 0
9 345 120°
10 30 120
11 75 120
12 120 120
13 165 120
14 210 120
15 255 120
16 300 120
17 15 240°
18 60 240
19 105 240
20 150 240
21 195 240
22 240 240
23 285 240
24 330 240

Two station groups are congidered. The first is a mid-latitude
group of three stations whose geodetic coordinates are given in Table
3.2,2, The chord distances separating the station pairs 1001-1002 and
1001-1003 are approximately 100 kilometers. The second group of sta-

tions 1s the so~called "Iron Triangle" very long baseline
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intexferometry (VIBI) stations whose geodetic coordinates are given in
Table 3.2.3 and whose chord distances arc found in Table 3.2.4. The
maximun baseline distance for this group is nearly 4000 kilometers, and
the minimum is 1500 kilometers.

Since variations in the tracking scenario are possible with
multiple satellites in view, a criterion for satellite selection is
adopted. Given the normal matrix N based on all prior observational
data, the next satellite to be selected for observation will be the one
whose observations, when included with prior data, minimize the trace
of the parameter covariance matrix. For baseline components this trace

1s the sum of the baseline parameter variances

- ool 2y AR A A n
Tk{EAX) = Oy F O, F Oy, ( )
For the chord the trace is the variance of the estimated chord length.
For each type of observation these criteria are virtually independent
since minimizing the trace of the baseline component covariance matrix
does not guarantee that the chord length variance is a minimum, That

will depend on the correlations between the baseline components.

3.2,1 Short Baseline Comparison

An analysis of variance study was made for the mid-latitude sta-
tions with parameter sets consisting of the baseline components and
choxrd length. The observation schedules for the two baselines con-
sidered, the north-south baseline 1001-1002 and the east-west baseline
1001-1003, were based on ranging measurements taken every five minutes.
Range observations were processed as range, correlated range difference

20
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TALLLE 3,302, GEODETIC COORDINATES OF MID=LATTITIDI STATIONS

STATION GEODETIC COORDINATES

NO. LATITUDE LONGITUDE HEIGHT {m)
1001 30° 0 000" | 45° 0o 0.00" 0.0
1002 36 54 756 | 4 0 0,00 0.0
1003 30 0 000 | 43 57 496 0.0

TABLL 3.2,3. TRON TRTANGLE STATTON COORDINATES

| GEODETIC COORDINATES

F STATION

| LATITUDE LONGITUDE HEIGHT (m)
WESTFORD (WS) 420 36’ 46518 | 783° 30° 22.720" 67.4

v OWENS VALLEY (OV) | 37 13 53287 | 241 43 2,441 11729

| FORT DAVIS (FD) 30 38 44924 | 256 3 00 15800

TABLE 3.2.4., BASELINE DISTANCES (km)

WS -
ov 3929 -
FD 37135 1508 -
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and as interferometry. The results are based on an equivalent number of
observations of each type., The satellites selected for tracking were
chosen using the critevia defined above which are a function of the
observation type and the parameter set definition. Several observa-
tion schedules were considered where the time allotted for sinmultane-
ously tracking each satellite was fixed at ome, two, or three hours.

One tynical observation schedule is given in Figure 3.2.2 where the
satellite tracking interval is three howrs. The analysils of variance
results for the mid-latitude station group are given in Tables 3.2.5
through 3.2.7. The results are based on 24 hours of continuous obser-
vation with intermediate results gilven at either 8 ox ¢ hours. No

a priori knowledge of the station coordinates was assumed in these
results. The range observations were taken as sitatistically independent
having unit variance or a one meter standard error, To obtain an esti-
mate of the ultimate precision obtainable for a particular observation
type the wesults found in the tables must be scaled by the ratio of the
assumed standard error in centimeters of that observation type, con-
verted to the uncertainty of an equivalent range observation, to the 100
centimeter standard error used to obtain the results. Tor instance, 1If
it were assumed that correlated range differences may be measured with

a standard error of 10 centimeters then, noting the defining equation
(3.1.3) for range differences and equation (3.1.35), the standard error
of an equivalent rangs measurement would be 10 centimeters divided by
the square root of two. The standard error of an equivalent range

measurement 1s defined as tlat value which when utilized in equation

L
jy]
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EOWNNEITIE Wt e




(3.1.35) or (3,1.453) would yield the assumed standard error for range

difference or iInterferometric observations respectively.
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Figure 3.2.2. Typical Observation Schedule for a Three-Hour
~ Satellite Tracking Interval (Stations 1001
r and 1002, Range Observations)

Using 24 hours of range observations the baseline components
are determined with an uncertainty of approximately 15 centimeters with
slight variation as a function of the time interval each satellite is
tracked. The chord distance has a standard error of approximately 11.5
centimeters and increases, but not more than 1( percent, as the tracking
interval increases to three hours. This increase is due to an increase

in the correlations between baseline parameters. There are no discern-

ible trends due to the orientation of the baseline,
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For correlated Doppler cuservations based on one-hour tracking
intervals there is a six~fold increase in the baseline component uncer-
tainty compared to the range results as scen from Table 3.2,5. low-
ever as the satellite t. cking dnterval is increased to three hours this
standard error decreases dramatically. The same is true of the uncer-
tainty din chord length. No variation in the Doppler results is seen on
the basis of orientakion except with chord length where the uncertainty
in the length of the east~west chord remains significantly larger in
all cases, ranging from a difference of 2 parts to 0.9 parts per million
(ppm) . A comparison of the best Doppler results from Table 3.2.7 with
the corresponding range results from Tables 3.2.5 through 3.2.7 indi~
cates that regults obtained from range observations with a one meter
standard error can be equivalently obtained using correlated range dif-
ferences 1f the standard errvor of the latter observation type is
approximately 49 centimeters. This result ils obtained by determining
the uncertainty of an equivalent range observation (35 centimeters)
which when used in the range difference weighting equation (3.1.35) will
scale the Doppler results of Table 3.2.7 to be equivalent to those of
Table 3.2.5 obtained using range observations with a one meter standard
error. To obtain an equivalent uncertainty in estimated chord length,
correlated range difference would require a standard error of 54 centi-
meters.

Also of importance is the ratio of the uncertainty of the esti-
mated parameters to the observation uncertainty. This ratio is obtained
by dividing the parameter uncertainties found in Tables 3.2.5 through
3.2.7 by the standard error of the appropriate measuremert type.
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The standard errors for range, range difference, and interferometry obser-—

vations are 100, 141, and 141 centimeters respectively which may be veri-
fied using equations (3.1.33) and (3.1,43) assuming the one meter
standard error for range. Based on 24 hours of observation this ratio
is approximately 0.15 for range and 0.28 for correlated range difference
considering the best results for the latter. For the chord length the
ratlos for range and range difference are 0.12 and 0.14 to 0.21, respec-
tively. The last two ratios for range difference reflect the variation
in the results in Table 3.2.7 for the two orientations. These ratios
are of importance as scale factors which can be applied to assumed
observational uncertainties to obtaln estimates for parameter uncer-
taintles. Tor instance, if correlated range differences had a measure-
ment uncertainty of X centimeters, the uncertainty in the derived
baseline components would be approximately 0.28X centimeters instead of
the approximately 40 centimeters as given in Table 3.2.7.

With interferometric observations the resulting uncertainties of the
baseline components are approximately twice as large as the range obser-
vation results after 24 hours. The uncertainty increases about 25 per-
cent as the tracking interval increases fromone to three hours. The
uncertainty in the chord length is about 2.5 times greater than the
range-derived chord. The trace of the covariance matriw from inter-
ferometry shows little variation with orilentation but variation in the
distribution of the uncertainty among the parameters exists. The chord
length uncertainty is nearly equivalent for the two orientations. To
produce baseline component uncertainties equivalent to the range

results, the standard error of interferometric observations would be
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requived to be 71 centimeters. Again this result is obtailned by deter-
mining the uncertainty of an equivalent range measurement (51 centi-
meters) which when used in the interferometry welghting equacion
(3.1.45) will scale the interferometry results of Table 3.2.5 to be
equivalent with the range results of Table 3.2.5 bagsed on a one meter
standard error of observation. TFor comparable chord results with inter-
ferometry a standard error of 54 centimeters or an equivalent range
uncertainty of 38 centimeters would be necessary. The ratio of para-
meter uncertainty to measurement uncertainty is approximately 0.21 for
baseline components and 0.38 for the chord length.

The covariance computations for the one~hour tracking interval
were repeated to obtain a measure of how knowledge of one station's
coordinates could improve the results. The expected change in the basc~-
line component covarilance is given by a compariscn of equations (3.1.59)
and (3.1.65), which predict a square root of two decrease in the coordi-
nate difference uncertainty for range and Doppler observations and by a
comparison of equations (3.1.82) and (3.1.88) for interferometric obser-
vations. In the latter comparison the exact decrease in the uncer-
tainty to be expected is not as obvious. An examination of Tables
3.2.5 ang 3.2,8 show in fact that the uncertainty of the coordinate dif-
ferences’and also nf the chord length decrease by the square root of two
for range and Doppler. Tor interferometry the baseline component uncexr-
tainties decrease by approximately the square root of three and the
chord uncertainty by approximately the square root of seven. Notice that
the uncertainty in the chord based on interferometry with one station held
fixed is equal, to the number of digits given, to the chord uncertainty
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based on range with no a priori constraints. TFor shorter baselines
thege results will be nearly equal, and this can be shown mathematically
using cquations (3.1.43), (3.1.54), (3.1.59), and (3.1.88) keeping in
mind the partial derivative equations (3.1.10) and (3.1.14). It can be
concluded for network densification that a priori knowledge of the
coordinates of the existing control point has a greater impact on

interferometry than on range and Dopplerx.

3.2.2 Long Baseline Comparison

For the long baselines of the Iron Triangle (Table 3.2.3) a simi-
lar analysis was performed to determine the relative geometric strength
of each observation type for determining baseline components and chord
length., The results are baged on an observation schedule of simultane-
ous observations taken from two statilons every five minutes for a
full day. Here, one-and two-hour satellite tracking intervals are
examined. Parameters corresponding to each side of the triangle ere
determined using only observations from the two stations forming that
side. This allows the greatest flexibility in satellite geometry. The
results are given in Tables 3.2.9 and 3.2.10.

Based on 24 hours of range observations with one-hour tracking
intervals, the uncertainties of the baseline components range from 13.5
to 17.0 centimeters showing minor variation with triangle side despite
the different orientations and lengths. Increasing the satellite
tracking interval to two hours produces a marginal increase in these
uncertainties. The chord length uncertainty also increases slightly

with side length but in terms of ppm decreases significantly.
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Incrcasing the tracking interval to two hours produces a swmall increcasc

in the stondard error of the chord.
For correlated range differences the uncertainties are again

much larger than the range results after one day of observation., The
results improve relative to the range results as the tracking interval
increases. The trace of the baseline covariance matxix shows more vari-
tion with baseline length than range, and the chord uncertainty is about
three times lurger than the range case, comparing best results,
Intexferometry observatlons give baseline component results
which are better than correlated range difference results; however, the
uncertainty in the chord length can be determined better from range dif-
ferences from longer satellite tracking intervals. The uncertainties of
the parameters tend to increase as the tracking interval is dncreased
and a pronounced increasc in parameter uncertainty is noticed as the

baseline length increases,

¥Yor range difference observations to yield equivalent base-
line component uncertainties to range observatlons after 24 hours the
standard error of range difference observations would need t5 be
reduced to approximately 41 centimeters. In that case the range dif~
ference results given in Table 3.2.10 would be reduced to approximately
the level of uncertailnty given in Table 3.2.9 for range observations
with a one meter standard error. Tor chord length a range dif=-

ference uncertainty of 46 centimeters would be necessary to achieve

equivalent results with range.
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For interferometry, a statement of the required observational
uncertalnty neeegsary to produce ranpe equivalent results is more com=
plicated sinee the results based on interferometry are more variable as
a function of station separation. All 24=hour interferometry results In
Table 3.2.9 would be at least as good as the range results in that table
if the Westford-Owens Valley results were equivalent. The parameter
uncertaintices are greatest for this baseline., Tor this to occur a
measurement uncertainty of 41 centimeters would be required for equi-
valent baseline component results and 30 centimeters for chord length.

Ratior of parameter uncertainty to observational uncertainty

may likewlse be developed from Tables 3.2.9 and 3.2,10.

3.2.3 Summary

Some general conclusions can be drawn from an examination of
the results, For the observation types considered it is evident that
ranging measurements provide the best geometric strength of solution.
The two other derived observation types, correlated range difference
and interferometry, are geometrically weaker although the results
obtained from these latter procedures can be improved upon by increased
observational precision. Correlated range difference observations give
the best geometric strength of solutlon 1f observed satellites are
tracked over longer time intervals, With this type of tracking proce~-
dure both the baseline component and chord length uncertainties are
minimized. Tor range and interferometric observations ghorter satellite
tracking intervals produce the least uncertainty in the baseliane
parameters. Lengthening the tracking interval for these observation

types increases the resulting parameter uncertainties. Howevér the
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rate of increase is smaller than the variation in Doppler results pro-
duced by decreasing the tracking interval. And finally the interfero-
metry approach becomes geometrically weaker as the baseline length
increases to become a more significant percentage of the distance to the
satellite, although the relative error in parts per million decreases
for the baselines considered.

The analysis presented above considered the relative geometric
strength of three observation types, two derived from basic ranging.
The results were based on the assumptions that satellite positions in
space were known and that the basic ranging measurements were subject
to uncorrelated stationary random noise. Some additional comments con-
cerning these assumptions are appropriave. If the ranging measurements
are in addition subject to a receiver timing bias, then timing parameters
would be required to augment the current parameter set, at least one for
each obgerving station. Under these conditions the range and correlated
range difference results would be approximately equivalent depending on
the satellite geometries sampled, tracking interval adopted, and the
a priori uncertainty of the timing parameters. The interferometry nor-
mal equations will also have to incluvde these parameters and the base-
line parameter uncertainty will be increased. For close stations the
effective error introduced into interferometry obsevrvations would be
the difference in the timing error at each station. The effect of
timing error on interferometry can be greatly reduced by tracking addi~
tional satellites simultaneously as considered in Chapter 2. If the
first assumption concerning the accuracy of satellite positions is
violated, the resulting baseline parameter uncertainty will increase.
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This was shown analytically. TFor short baselines the effect of the
epheneris error will be minor for all threec approaches,

Finally a comment concerning Doppler observations is necessary.
In the precision comparison study the derived range difference observa-
tions were correlated since successive range differences were formed
using a common range., If Doppler results were ohtained from independ-
ent Doppler counts over the same time intervals the correlations in the
welght matrix would vanish and the resulting parameter uncertainties can

be expected to increase.
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4, DYNAMIC POSITIONING USING RANGE

AND DOPPLER OBSERVATIONS

In this chapter a study is presented which attempts to determine
the accuracy of dynamlc point positioning using range and Doppler obser-
vations from a constellation of twenty~four Global Positioning System
satellites. Two positioning problems have been addressed, These are
the determination of the geodetic coordinates of a station and the
determination of baseline components for stations which lie 100 to 2000
kilometers apart. An error analysis is performed to determine what
effect various systematic and random modeling errors hawve on tracking
station positions determined by a least squares adjustment using simu-
lated observations. All results are based on the use of a single chan-
nel, dual frequency, sequential receiver whereby only one satellite is
tracked at a time on two frequencies to virtually eliminate iomnospheric
refraction.

The observations analyzed consisted of range and integrated
Doppler measurement:s. Tor both data types the assumption is made that
the observations are subject to two random noise processes, namely
uncorrelated white noise with a normal distributfon and correlated error

due to integrated fractional frequency errors in both satellite and

_..alver atomic osc¢illators.
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In order to perform vigorous simulations of dynamic polat posi~
tioning a complete adjustment model must be adopted. Model parameters
included in thig study are receiver coordinates, polynomial clock error
: models for station clocks, satellite state vector components, and a

polynomial satellite clock model for each pass. A priori weighting con-

TR

sistent with the model error levels introduced is included for satellite
ephemeris and clock parameters allowing station coordinates to be esti~
mated. Since two sources of random error are present in the observa-
tions weight matrices used in the adjustment account for each random
process, the complex one being corvelated atomic clock error. An analy-
tical method is developed to gilve the statistics of this random process.
The procedure starts with either actual or models of the Allan variance
for a particular oscillator or class of oscillators and develops the
statistics of range and integrated Doppler observaticns based on the

two oscillators used in deviving the measurements. Statistics for

i
|
i
!

residuals to polynomial clock models are then obtained by a transfor-
mation, These residupl statistics are incorporated into the adjustment
weighting.

To further define the adjustment procedure, several studies were
performed and are described in this chapter. A study was made to deter-
mine if it is possible to perform a sequential adjustment of the con-
tinuously observed measurements. Since all observations based on the
receiver clock are correlated through random atomic clock error, must
all data be processed simultaneously using a fully correlated weilght
matrix or (zn the measurements be divided into fully correlated blocks

each with independent clock models requiring adjustment? Secondly, a
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study was made to determine the time sp» ‘er which a given polynomial
clock model might be adopted. Further, tests were conducted for range
and Doppler tracking to determine the optimal selection of satellites
which produce the least uncertainty in derived station coordinates, a
selection which produces the best geometric strength. And finally, the
use of two-body analytic partial derivatives for orbit improvement
rather than rigorous numerically integrated partials based on a spheri-
cal harmonic gravity field complete through degree and order eight was
examined.

Results frow numerous computer simulations of statlon posi-
tioning are included to demonstrate the effect of the error sources and
evaluate the full weigh! matrix concept. In general the rTesults were
computed for cases where observations are six second ranges smoothed
over 300 second intervals and 60 second integrated Doppler observations

aggregated over 300 seconds.

4.1 Error Sources Influencing Dynamic Positioning

In this section the dominant systematic and random error sources
influencing dynamic point positioning using GPS range and Dopplar obsex-
vations are described in detail and error models for these sources are
developed. Also included is background information on atomic clock fre-
quency error characterization required for an understanding of the dis-
cussicn 'n Section 4.4.

'"he error souvrces considered hers are belisved to be the domi-

nate ones effecting dynamic positioning. They include:
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(i) seostematice errors in the computed ephemerides of (PO
satellites reprosented by perfodice radial, alongetrack, and
out=of=plane errors and in addition by a quadratic alopge-track error,
Hodels for these errors were chosen to produce satellite position
errorvs having the same signature as errovs produced in simultations of
ephemeris accuraey by investigators currently ivvolved in computing CPH
navigational and post-fit ephemerides.,  The simulations performed Ly
these Investigators were dene to establish probable error levels in
future estimated orbits:

(11)  residual systematic bias and drift in P8 satellite
clocks after ephemeris and clock error estimates are obtained in the
orbit determination problem. The levels of thisse errors were extracted
from the same refercnces as in (i)

(i4i) correlated random satellite clock errors due to the
inadequacy of polynomial satellite cleck models. These errors are basad
on Allan variance frequency stability models for the rubidium oscilla-
tors on GPS satellites;

(iv) uncorrelated random noise from the tracking receiver,
Nominal range measuremeni uncertainty is one meter fer a six—second
measurement and three centimeters for 60-second integrated Doppler;

(v) systematic biers and drift of the receiver’s cesium
atomic clock;

(vi) correlated random receiver cloclk error based on an Allan
sariance model for the re  .ver casium frequency standard;

(vii) systeratic tropospheric refraction error equivalent to
five percent of the tropoepheric model predictions.
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Resldual second-order lonospheric refraction errors were not included
since this error is shown to be only a few millimeters at GPS fre-

quenci.es.

4,1.1 Atomic Clock Errors and Frequeuncy Stability

A clock is a device which counts the cycles of a periodic
phenomenon and among the most stable clocks in use are the atomic
clocks which form the basis for atomic time scales such as Interna-
tional Atomic Time (TAI). Atomic time is used primarily as a measure of
time interval and is based on the electromagnetic oscillations produced
by quantum transitions within the atom. An excellent reference on time
and frequency is edited by Blair [1974].

Global Positioning Syst.m satellites will incorporate rubidium
frequency standards to provide short-term frequency stability for the
navigator, and ground tracking recelvers for geodetic utilization will
be assumed to incorporate cesium frequency standards to insure good
long-term stability. The precise definition of stability is found in
Blair [1974]. Basically it is a measure, usually given statistically,
of the random fluctuations in frequency which can occur in a clock's
oscillator over spacified periods of time. Tor a given time interval a
particular oscillator is considered best if the expected level of fre-
quency fluctuation is a minimum in terms of the Allan variance defined
below.

This paragraph deals with the characterization of typical errors
associated with atomic clock time scales and statistical measures of

frequency stability. This information provides the general background

72

o




T

required for the discussion related to the development of observation

statisties and their use in geodetie positioning studdies.

4,1.1.,1 Characterization of Atomic Clock Errors
Let CI represent an ideal clock whose oscillator frequency fI is

constant. The period of this oscillator is by definition

Ty = 1/fI . (4.1.1)

In (t-—to) scconds of ideal time M. cycles are counted and the time

I
reglstered by the clock is

NITI = NI/f;I (4.1.2)

-

where NI is given by the integral

T e e T

t
= = - N Z.' .

N, S fdt fI(t Lo) (4.1.3)
1 tO
|
f
fr Thus the time elapsed from t_ is

NI'II &= f]<t~to>TI = o= tO . (40].04)

Consider now a typical atomic clock G, whose frequency is sub-

i

jeet to error. TFrom to this clock has a frequency represented by the

7 medel
\ fi(t) = fI + Af + f£(t - to) + £(t) (4.1.5)

where Af is a frequency bias, f is a drift in frequency, and E(t) are

random fluctuations in frequency. The clock Ci records Ni cycles in the

73

IR < V.




el

Se—

L -

time interval [to,t] where

t
Ni mtf fi(T)dT
° (4.1.6)
f(t t) t
= £ (b=t ) +AL(E~t )+~—--——2-3-—+ S E(tydr .
t
0

In addition the clocks Ci and 01 may not be synchronized at e, intro~

ducing a time or phase error at £y represented as ANQTIu Each count Ni

is incorrectly assigned the period TI giving at t ideal the time t:i as

ti-Ni'l‘ +AN'1' =(t~t )+ (t t)
(4.1.7)
f(t;—t )“ 1 t .
+ sz +T: S f(T)dr+AN TI .
) It

From a comparison of equations (4.1.4) and (4.1.7) the time error at t is

f(t—t ) 1 t .
T.(t)=¢t, -t = (t—t )+-—-———-—-—+AN T .+ = [ £(1t)dT (4.1.8)
i i I fI I fI ¢
(o]

or, rearranging terms and introducing new notation,

T () =D (e-e ) b R (E-e) + T, (0 ) + x(E) (4.1.9)

D, (

The quantity x(t) is the random time error at t defined by

~ ~ t
%() = == ; £(r)dt = J y(t)dr (4.1.10)
I L t
(o]

where y(t) is the random fractional frequency error of oscillator i.
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Consider the quantity Ti(t) written as

D t
= - ...é - 2
Ti(t) 'li(to) + Ri(t t;o) + - (t nc) +tf y{r)dr . (4.1.11)
(o)

Suppose an estimate of Ti(t> was made at £, o8 shown in Figure 4,1.1
based on avallable data taken prior to ts' If a clock correction based
on this estimatewas applied to the time scale, then at Lb the error
Ti(to) 1ls due to the error in the prior estimate Ei(ts) which was
applied to the time scale, the effect of fractional frequency exrors
over the interval [ts,to]

t

~ [¢]
x(e ) = [ y(r)dt (4.1.12)

Fs

and, systematic contributions to the time error in the form of a time

drift and ageing, the quadratic term in equation (4.1,11). The error

Ti(to) with no clock correction at ts 1s approximately given by

t
D o]
o M - T Y - 2
Ti(t:o) = Ti(ts)+Ri(Lo-t:s)4 5 (to ts) + tf y(T)dT (4.1.13)
8

since Tt(ts) is an estimated quantity, If the time scale is corrected
at t, then Ti(to) would be an estimated offset independent of the cur~

rent oscillator random error y(t) for t greater than Ey

The error equation (4.1.9) is the model used to describe the
types of error present in atomic time scales. The deterministic erxzors
consist of bias, drift, and ageing terms modeled as a quadratic poly-

nominal. in time. The ageing term is usually not observable for clocks
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whose long-term stability 4s good such as cesium, The additional term
in equation (4.1.9) vepresents the random time errox due to the intepra-
tion of random fluctuations in frequency. The magnitude of this term
depends on the interval of tim- which has passed sinee the scale was resct

or calibrated and on the stability of the clock. Table 4.1.1 lists the

error terms assoclated with atomic clock time scales.

TABLE 4,1.1, ATOMIC TIMD SCALE ERROR TERMS

DETERMINISTIC NOTATION
TIME BIAS T, (ty)
TIME DRIFT Ry
AGEING TERM D,

RANDOM

%N)INTEGRATEDFRACWONALFREQUENCY

4,1.1.2 Trequency Stability Measurement
and Characterization

Hellwig [1977] points out that 'the characterization of ﬁhe
stability of a frequency standard is usually the most important informa-
tion to the user especilally to those interested in scientific measure-
ments and in the evaluation and intercomparison of the most advanced
devic;s (clocks)." Since the frequency stability of a standard depends
on a variety of physical and electronic influences both internal and
external to the standard, measurement and characterization of fraquency
stability are always given subject to constraints or environmental and
operating conditions. In addition frequency stability depends on the

exact measurement procedure used to determine stability.
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Frequency stability characterization ie done in both the fre-
quency and time domain., In the time domain a frequently used meaoure of
stabdility 4s the Allan variance or ite square root, In the frequency

domain it is the power spectral density,

4,1,1.2.1 The Allan Variance, The Allan variance as a time

domain measure of frequency stability is found especially useful ip
practice since it is obtainable directly from experimental measurements
of fractional frequency error y(t) and because it contains all informa-
tion on the second moments of the statistical distribution of fractional
frequency error, The Allan varilance 1s defined as follows: let
yo’yl’y2"”’yk’yk+l’yk+2"" be observed fractional frequency errors
separated by a repetition interval of T seconds. TFor each integer N

greater than or equal to two calculate ?%, from

~ q (w)N-1
y o= z y m=0,1,2,...M . (4.1.14)
moN k

This 1s an average over N consecutive values of Yy The Allan vari-
ance, oi(N), is then obtained from the averages ;; by

M~ 1

2 1 - -\ 2
cy(N N z (ym+l ym) . (4.1.15)

m=0
An examination of this equation reveals that the Allan variance for a
particular sampling interval NT is the average two-sample variance of

the —};‘m(N) .
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For frequency standards the square root of the Allan variance io
usually given in graphical form on a lop~iog scale. Tox individucl
classen of frequency standards modeis for the Allan variance are used
whiech portray pgeneral frcequency stability characteristics, lHellwip
[1975]) pives examples of such models for many oscillator types. Figure
4.,1,2 ghows the typical form. In this form, oy(T) is the square root of
the Allan varifance for the sample dnterval 1. The quantity Op is callcd
the flicker floor and Ty» Tyy Ty ave the break points of the plot. The
congtants assoclated with this figure are usually specifled for cach
type of frcquency standard. A comparison of such information can facil=
itate the scelection of a frequency standard for a spe.lfic applicatiom,

The stability characteristics shown in the three reglons of
Figure 4.1.2 are typically present in many Allan variance plots of
spenified oscillator performance. The first part, reglon I, reflects
the fundamental noise properties of the standard. This behavior con-
tinues with increased sampling time until a floor is reached corres-
ponding to region IIL. After Ty the performance deteriorates with
inereased sampling time. Hellwig [1977] outlines the error sources
corresponding to each portion of the graph. The magnitude and slope of
each segment will depend on the particular category of standard.

Figure 4.1.3 details the prrformance specifications fur the
Allan varianre for the GPS satellite rubidium oscillator and for the
cesium oscillator used in tracking receivers supporting orbit determi-
nation. This latter oscillator is an example of the type which will be

used in range and Doppler geodet’'~ receivers.
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2 lower Spectral Dengity. An alternative procedure for

specifying the stability of a frequency standard, dn the frequency

domain, its the use of the power spectral density (PSD) of instantancous

fractional frequency [luctuations y(t). Allan et al, [1974] have given

a useful model to represent the PSD for various categories of frequency

standards. This model is in the form of a power law speckral densdty

having the form

by =
qyyCM)

(&

| W\
et <w <
Yo (211'/ 02wz,

(4.1.16)

0 n>w
h

where o takes on the integer powers between -2 and 2 inclusive depending

on how the interval [O,wh] Is to be divided into subintervals, one For
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cach & to be used. The quantity hu is a scaling constant and the PSD is
asgumed to be negligible beyond the frequency range [O,mh].

Barnes et al, [1971] and Meditceh [1975] gidve the transformations
between the time domain measures of frequency stability in the form of
the Allan variance and the power law spectral densities., Table 4.1.2
taken from Medite's glves these conversions for three types of frac-
tional frequency errox sources.

4,1.1.3 Range and Doppler Observation Brrors

Due to Random Atomic Clock Lrror

Ag previously discussed an atomice clock's time scale can be
expected to differ from ifdeal time due to both deterministic and random
crrors. The random compouent is due to integration of fractional fre-
quency errors. A range observation determined by correlating the RN
signal broadcast by the satellite with a similar signal generated in the
recedver is subject to the random errors of both atomilc frequency
standsrds. The effective range error at time t due to the timing crror

in one of the time scales t:i is

SRi(t) = cTi(t) (4.1.17)
with the random component being the random walk

t
ni(t:) = ¢ [ y(r)dr (4.1.18)
t

S
where ¢ is the velocity of light. The random component is due to the
accumulated effect of fractional frequency error since the clock's

start or reset at ts.
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The random ervor niCt) ig correlated in time. Consider two
measurements of range R(c,) and R(tk) hased on the use of the ovsellla-
tor in the satellite, and assume momentarily that the recedver's oseils
lator ts free from random error, The covariance between these measured
ranges due to correlated fractional frequency ervor in the gatellite

ancedllater is

by N A\l = B - -
L[R(LJ)n(ck,] L[n(Lj)n(Lk)]
. t: b ‘
s ekl S y(Ddr S y(r)dr”)
t t
8 8
(4.1,19)
L, t
2 J ok . .
w e [ [ Elv(t)y(r7)]drdr
t t
8 8
t, t
9 ; k
= o - 1"‘
o cf tf @yy(w T7)drdr
s 8

where @vy(TwT”) is the autocorrelation function for fractional frequency

error y(t) defdined by

8 (T=T) = BTy (r7)]
3 (4.1.20)

=
= ST yyTECy,y T, T ) dy dy”
Rk ]
The funetion f(y,y”,1,T") is the joint probability density function for

fractional frequency error. Here it is assumed that y(t) is a mean zero

stationary random process. The function ¢VV(T—T‘) can be obtained by
¥ v
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the inverse Fourier transform of the given power spectral density

) 5y (W)
: o (L) = - }ns (w) e ¥au (4.1.21)
| vy 2 vy
where
e -1t (h,1.22)

RS L ekt G )

A procedure for obtaining the autocorrelation functlon ¢yy(t) from the

Allan variance is gilven in Section 4.4,

R EEST ee—

The variance of a range observation is obtained from equation

(4.1.19) by taking t, equal to ty

Y
? ]
t t,
2 o J . . | ‘
op = ¢ S O & _(v=17)dtdt” . (v.1.23)
4 R A

f S S
]
|

Allowing random frequency error in the receilver oscillator introduces

additional, but similar, terms into equations (4.1.19) and (4.1.23)

which must be considered when assessing the range uncertainty due to all

random clock errors effecting the measurement.

R i

TFor integrated Doppler or range differcnce observations the ran-
dom measurement error assoclated with system clocks is the integral of
fractional frequency errox over the Doppler integration interval. The

random error in range difference due to one oscillator is
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n,, = nt,) = ne,)
1) h| k {4.1,24)

ttj
L f Y(’Udi .
by

Notice in equation (4,1.24) that the random error n:H is a function of

T 1‘, and v(t),  The error does not depend on tﬂ. Range difference

measurements have the following corvelation from cach oscillator

t

h[AkijARkn] = Elnijnkﬂj

(4.1.25)
R R | ¢VV(T~‘T’)de1”
bt
with the varfance
t t
2 s ) . )
Ohg, = eT S S =T (4.1.26)
1) by oty

Ohserve that the random range difference errvors, whose statistdes are
given by equations (4.1.25) and (4.1.20), ave stationary; however, ran-
dom range ervors, whose statistics ave given by equations (4.1.19) and
(4.1.23), arve not, A stationary random process is one whose statistics
are invariant in time.

For the oscillator performance specifications shown in Figure
4.1.3 examples of the contwibution to the range error arve given for bath
oseillators in Figures 4.1.4 and 4.1.5 over a five~day span. The clocks
are assumed to be perfect initially. Also included is the standaxd

error for the random walk n(t) obtained using equation (4.1.23). The
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procedure used in simulating the random range crror is discussed in

[Mediteh, 1975].

TABLE 4.1.2., ALLAN VARIANCE AND POWER SPECTRAL DENSITY
FOR COMMON ERROR SQURCES

ERROR SOURCE ALLAN VARIANCE TWO SIDED SPECTRAL DENSITY
y (1) o2y (v) Syy (w)
WHITE NOISE Mo, No
T

FLICKER NOISE 2Nyin 2 Ny

on Jw]
INTEGRAL OF Nyt N,
WHITE NOISE ~3 7
{RANDOM WALK)

4.1.2 Ephemerls Frrox

The ultimate accuracy of Global Positioning System satellite
ephemerides and satellite clock solutions is difficult to predict since
many Factors influencing the final error budget have to be resolved,
Amonpg these are the number and location of tracking sites to support
orbit determination, the exact estimation algorithm to be used including
force modeling, and the final geometry of the satellite constellation.
At present, errors in computed ephemerides significantly exceed accu-~
racy design goals, especlally in the prediction region used in naviga-
tion as reported by Schaibly [1979].

In order to establish bounds on expected ephemeris and satellite
clock errors simulations of orbit determination were performed assuming

expected levels of model error for gravity, solar radiation pressure,

86

e




——rar
e e v——— =

30 4

w—
E
1

THEQRETICAL STANDARD ERROR ;

RANDOM RANGE ERAOR

s

RAKGE GUAKTITGES “METERD,

B o

18“ "‘“M‘

0 v Y ¥ Y Y T ¥ 1 1 i 1
L] g5 10 15 20 26 3o 35 40 45 b

TIME (DAYS}

Tigure 4.1.4, Standard Error and Random Range Lryor
Based on Station Cesium Specifications

“g!
30 7
THEQRETICAL STANDARD ERROR
et
& / -
:; /
=
w & o /
£ ——
= RANODOM RANGE ERROR
E
v w s’.
“w
1 [$]
=
<
Ll 1
o 05 10 1 20 25 10 15 10 46 50

TIME {DAYS
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pole position, tracking site coordinates, and system clock crrovs.

The results of these studles veported by Schaibly [1976] indicate the

following:

(4)

(11)

(1ii)

(iv)

(v)

the radial component of position crror is a twelve~hour periodic
function whose amplitude ranges form one to three meters;

the along~track component of position error has two components,
The first is a twelve~hour periodic function whose amplitude
ranges from two to five meters. The sccond component is a quadra-
tic function in time introducing maximum errors of up to twenty
meters. In most cases this error appears to average five meters;
the cross~track component of orbit error is a twelve-hour periodic
function whose amplitude ranges from sever to twenty meters., This
error and the periodic radial orbit error appear to have zero
mean;

satellite clock solution errors have systemstic components which

may be modeled as a blas and drift;

ephemeris and satellite clock errors will be correlated in the
gense that the net effect of all error sources on an observation

residual will be smaller than the sum of the individual error

sources.

This analysis of expected orbital accuracy will be used as a basis for

developing error models and a prinri statistics for ephemeris state vec-

tor components and satellite clock parameters in simulation studies

designed to predict accuracies for dynamic point positioning.
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4,1.2.1 Ephemeris Error Model

Using the results of the simulations described above, models

for cphemerds erroc can be developed for use in positloning studles.

Thege models will conaist of variations in the osculating orbital cle=

ments for cach satellite which will produce radial, along-track, and

cross=track orbit errors comparable with the simulation results. The

magnitudes of these variationas can be approximated by noting the errors

introduced by changes in Keplerian orbital elements.

TFor instance,

radial orbit ervor ds primarily a function of errvors in the semimajor

axis a and cccentricity ¢ of the orbit. The model for radial orbit

error will be developed as follows:
Taking

Aa = 8a cos(M4~m4‘Ba)
and

Ae = Se ,

(4.1.27)

(4.1.28)

where da and Se are errors in a and e respectively and Ba is the phase

of the error sdgnal Aa, and differentiating the equation for the radius

of a Keplerian orbit

r = a[l-ec cos(E)]

with respect to a

dr
a

2t

l

= 1 -~ e cos(E) = 1(e= 0)

oL

one arrives at the error introduced into r by Aa
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Ar o Aa (4,1.31)

Choosing Aa as in equation (4,1,27) gives perilodic radial orbit error of
amplitude §a and phase Ba‘ The period o the ervor is orbit period.

Differentiating equation (4.1.29) with respect to ¢ gives

dy .
Jo & ~a cos(E) (4,1.32)
or
Ar = =aAe cos(E)
("*91-33) .
e ~ale cos (M)
for ¢ and w approximately zero, Introducing a phase error and using

equation (4.1.73) yilelds §

Ar = -ale cos(M'kw~PBe) . (4.1.34)

Thus an error in orbit eccentricity Se introduces a periodic radial
orbit error whose amplitude is ade and whose phase is Be'

Along-track orbit error can be produced by variations in mean
anomaly M and argument of perigee w as well as eccentricity  Con-

sidering M + w as a single element the rollowing model will be adopted

AM+w) = 6(M4-m)cos(M4~m4'BM+m) . (4.1,35)
For nearly circular orbits
r = a[l-e cos(E)] ~a (4.1.36)

and the along~-track error due to equation (4.1.35) is approximately
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As = aA(M4w) .
(PR Ry

g aS (M w)coa(+o b ﬁbﬁ w) R

This orbit period cerror has an amplitude of ad(Mtw) and phase Rbﬂnﬁ
An error in eccentriedity will algo dntroduce a periodic error

i the alonp~track satellite position., This error will have the form
Ao = 2a06e ain(M4~m4~ﬁe) ' (4.1.38)

Notice that the along=track error due to Se has twice the amplitude of
Induced radial error due to de.
An crror in the ascending node § of the orbit plane produces an

along~track bilas
As = adflcos (L) (4.1,39)

independent of the in-plane satellite position.

In addition a quadratic along~track error polynomial will be
introduced to produce the quadratie error to fit found in the orbit
accuracy simulation studiles. This crror is developed through an error

in mean anomaly M of the form
AM = CA+ DM+ CM2) /a C4.1.40)

where A 1s an epoch error given in meters and B and ¢ are determined to

allow the quadratic error to he symmetric over a seven~day span;

B = =5040C

(4.1.41)
C = 2A/6350400 .
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The exoso=track or out=cf-~planc oxhit crrvr is due to ervor in
inelination 1 and ascending node £, The cross=track error due to an

error in orbital inelination has the form

A(rxv) = addoin (M+wtp,) (4.1.42)
for a eirecular orbit. The error model chosen for inclinotion is

AL = 61 . (4:1.43)
The cress=track crror due to a change in ascending node is

A(rxv) = ~aAQain(i)cos(M4-m4-BQ) (4,1,44)
where AR is given by

AR = 80 (4.1.45)

This error has orbit period and amplitude adQdsin(d).
Notice that the two radial error signals are 180 degrees out of

phase when ﬁa and Be are zero, Therefore let
(4]
B, = B, + 180 (4.1.46)

in order that the total radial error have the functional form found in
ths orbit simulation results.

Since no along-track bilas was present in the simulation results
no error will be iIntroduced into the ascending node in positioning simu~
lations. As a result all cross~track error will be attributed to an

error in inclination.
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In addition the phase BM+w will be adjusted by 90 degrees to
allow the along-track error due to inclinatilon and mean anomaly plus

argument of perigee to be In phase.

4.1,3 Refraction Errors

4.1.3,1 Tropospheric Refraction Error

The nonionized portion of the atmosphere slows the passage of
electromagnetic signals introducing an error into electromagnetic
measurements such as range, Doppler and interferometric phase. Compu-
tations of receiver positions for geodetic control utilizing such
measurements must incorporate elther refraction error modeling of suf-
ficient accuracy to eliminate these atmospheric effects oxr incorporate
corrections based on radiometry measurements as suggested by MacDoran
[1979].

Currently, the Hopfileld model [Hopfield, 1969] is used exten-
sively to correct for tropospheric refraction present in satellite
observations of range and Doppler. This model requires a knowledge of
surface weather conditions at receiver sites to ensure proper scale,
These weather observations are of surface pressure, temperature, and
humidity. The error in this model is generally assumed to be less than

five percent of the total refraction.

Alternatively, a water vapor radiometer may be used to measure
the tropospheric refraction (wet compoment) in the slant range direction

to the sarellite at the time of observation. MacDoran [1979] has
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Indteated that such an approach may have an accuracy of 2 om to a few

willdmeters, virtually aliminating this crror source,

4,000,101 Refeaction Modeling Approach,  The tropospherie
refractlon model adopted dn this analysis ds a modifled version of the
Hopfield wmodel [Andewle, 1974] fuvolving a change in the form of the
quartic polynomial to allow wove rapid calculation,

The theoretiecal form of the frst=order tropogpheric refraction

correction for ranpe measurements {s given by

sat 2 2 w1/ »
8R= [ (= Dr{e” =k de (ha1.47)
r
8
where
kar ging (4.1.48)
and
AN A ,
g ¥ B U s, (hel d0)
8

The vectors L, and vy represent the postition wveetoxs for the
Y. [y

at
observing statlon and satellite, respectively. The sontth anple 2 is
measured from the ellipsodidal normal ﬁ; throuph the statdion (seo
Mgure 4,1.0)

The index of refraction n is computed using surface weathey
megsurements.  Glven the centigrade temperature T, the surface pressure

Yodn millibavs, and the velative himidity W, the dindex n fs computed

using the equations
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‘! SATLLLITE

SURFACE

CENTER OF MASS
Mpure 4.1.6., Geometry of Tropospheric Refraction

no~ L= Ml + M2 (4.1.50)

0 otherwise

where the surface refractivities Ni and radid ri for the dxy and wet

components ave glven respectively by

Ny = (,775><1o“")p/~K (4.1.52)
N, = (373)8/1 C4.1.53)
ry o= gt 40,1+ L1497 (km) C4.1.54)
ry = T + 12,0 (km) (4.1.55)
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The quantity TK represents the Kelvin equivalent of the Centigrade tem-

perature T. The quantity E is the water vapor pressure gilven by
2
E = (H/lOO)exp{—37.2465+-.ZlBlGGTK- .000256908TK“} + (4.,1.506)

For radio frequencies up ti 1: iz tropospheric refraction is not a
function of frequency.

For integrated Noppler the refraction correction is taken as the
difference in equation (4.1.47) applied at the end times of the integra-
tion interval. The magnitude of tropospheric refraction onrange observa-
tions is given in Figured4.l.7 as a functlon of zenith angle. This crror

grows rapidly when the elevation angle of the satellite falls below ten

degrees.
90 +
80 +
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W
5 6o
3
z S50
o
-
O 404
<
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W
W 304
o<
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10 nL
0 t t { } t t t } }
0 10 20 30 40 50 60 70 80 90

ZENITH ANGLE (DEGREE)

Figure 4.1.7. Tropospheric Refraction Profile for Range Observations
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The tropospheric refraction model described above attempts to
predict the refraction error as a function of surface weather condi-
tLons. How adequately this is done in practice is diffileult to detexr-
mine especially for non~-vertical measurcments, MHopfield [1972] has
compared this model to values of tropospheric refraction computed using
meterological balloon data and found good agreement for zenith measure-
ments with the contribution due to the wet component suffering the
largest error. lowever the dry component is predicted accurately from
surface pressure alone,

An adopted technique in utilizing this model is to include in
the mathematical model for the observation equation a scaling parameter
CR as an unknown to be determined in the adjustment procedure with an
a priorid uncertainty, Tor range observations the mathematical model

equation (2.2.6) becomes

1/2

R = [(us—u)z + (vs~v)2 + (wq'—w)z] + eAT + (1+GOR . (4.1.57)

Fell [1975] used such an approach for orbit determination using Doppler
observations from Transit satellites. Although this procedure tends to
weaken the normal equations it reduces the level of unmodeled error and

improves the accuracy of the estimated quantities.

4,1.3.2 Tonospheric Refraction Error

The ionosophere, the charged portion of the atmosphere which
extends above 100 kilometers, has a variable index of refraction which
1s a function of both the frequency of the passinpg electromagnetic sig~

nal and the altitude along the signal path since the electron density
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varies with location. The clectron density distribution which deter-
mines the refractive index at a particular frequency is quite variable
with a dominate diurnal variation due to earth rotation and with long
term variations with the solar cycle.

Clynch [1979]) reviews the second order expansion of the refrac-
tion index n as a function of frequency

2
AIN(h) _ A2N (h)

5 (4,1.58)

ney.l~-

f £
where the Ai are constants and N is the electron Jensity, a function of
height along the signal path,

The total ilonospheric refraction for range observations 1s the
difference between the integral of the refractive index along the opti-
cal path and the geometric range:

SR = funds - fds . (4.1.59)
o Y

Using equation (4.1.58) in equation (4.1.59) gives to second order the

lonospheric refraction as

B B
6R=-—-§:-—Z- ¢4.1.60)
£ £
where
i
Bi = Ai gN (h)ds . (4.1.61)

If two known frequenciles are transmitted from a satellite, fl and f,,
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then each signal 1s refracted according to cquation (4.1.60). These
two equations may be combined to eliminate the first order effect:
¢

4 £ “
¢ -k : o 4 2

#e £

where (Rdlﬁki) represents the range observed using frequency fi' This

two frequency technique leaves a residual range errow eR of

ER = gt (4.1.63)

Clynch [1979] gives examples of two frequency corrccted residual range
errors for simulated Navy Navigation Satelldte passes. These ilono-
spherle crrors were computed by ray tracing through an lonospheric
model with a range of sunspot numbers considered. TFor elevatilon angles
above ten degrees the upper bound on the residual range errvors is [ive
meters, Using cquation (4.1.63) with €R equal to five maters and the
150 MHz and 400 MHz frequencies of the Transit system, an upper bound
on B2 is obtained. Computing €R using the Global Positioning System
satellite frequencles of 1227 MHz and 1575 MHz gives an upper bound of
4,8 millimeters for the residual range crror. Tor observetions above
twenty degrees thils residual error has an upper bound of 1.9 wmllli-
meters. Since this error is small, residual lonospherie error was not

included in the positioning studies conducted in Section 4.5.

4,.1.4 Instrumental Error Sources

Tracking receivers designed to measure range and integrated
Doppler from GPS satellites introduce random measurement error in
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addition to the random clock error discussed in Section 4,1.1. The
reasons for this error are jitter in the carrier tracking loops and in
the code correlation process and electronic thermal noisc, Opecdfica-
tions of the statistical properties of this noise are usually given for
cach recelver type; and in practice estimates of these properties are
usually obtained through examination of obscrvation residuals. Unfor=-
tunately it may be difficult to completely separate these recedver
noise effects from clock noise sinca oscillator errors are manifest in
the residuals.

Jorgensen [1978] attempts to predict the short-~term quality of
range observations by fitting a ninth degree polynomial to 70 minutes of
six-second high quality range observations taken at the Hawaill and
Vandenberg tracking statlons from two satellites. In this procedure it
is assumed that the polynomial models all systematic trends in the
observations., The residuals from this least squares fit appear as white
noise., Jorgensen concludes from this fnvestigation that two frequency
corrected range observations of high quality are subject to 60 centd-
meters of white noise. An extrapolation of Table 4.4.5 indicates that
these residuals are due almost entirely to receiver noilse since the
expected level of residual eclock error is much less than this magnitude.

For 60 second dual frequency Doppler observations the Stanford
Telecommunications [1978] specifications for Model 5007 NGR receiver
indicate that the error due to jitter in the carrier tracking loops
should not exceed 0.9 centimeters. Thermal nodse may increase this

level to at least one centimeter.
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Based on these results Table 4.1,3 gives bounds on the range of
recelver noise which can be expected from present reeceiver technolopy,

These levels will be used in Seetion 4.5,

TABLE 4,1,3, MAGNITUDE OF RECEIVER wHITE NOISE

DATA TYPE NOMINAL LEVEL OPTIMAL LEVEL
RANGE (6 sec) 1m 60 ¢m
INTEGRATED
DOPPLER (60 sec) 3 cm 1T¢cm

4.0 Simulation of Observations

4.2.1 Range and Doppler

Range and Doppleyr observations were simulated for the tracking
stations of Table 4,2.1 over time intervals ranging from two to five
days. The locations of the three station groups utilized ave shown in
Figures 4.2.1 through 4.2.3, Observations of topocentric range and
range difference were based on satellite positions obtained from the
numerical integration of the satellite's equations of motion using a
foree model consisting of the WGS72 [Seppelin, 1974] geopotential coef-
ficients to degree and order eight, solar radiation pressure, and
luni~solar gravitational perturbations. The initial conditions for the
orbit integrations were obtained from Table 3.2.1 for each of the
twenty-four GPS sutellites. The observation sets consisted of vange and
Doppler range differences generated every five minutes. Satellites were
tracked sequentiaily and selected on the basis of criteria discussed

below. The duration of the satellite tracking interval varied from

101

R
|




')

N T T @ T et TR R R

TABLE 4.2.1. GEODETIC COORDINATES OF TRACKING STATIONS

STATION GEODETIC COORDINATES

NO. LATITUDE LONGITUDF. HEIGHT (m)
1001 30° o 0.00" | 46° 0O 0.00" 0.0
1002 30 54 756 | 45 0 0,00 0.0
1003 30 0 000 | 43 57 48,96 0.0
1004 30 0 000 | 46 2 11,04 0.0
1005 3 0 0.00 | 43 26 4344 0.0
1006 30 0 000 [ 46 33 16.56 0.0
1007 3 0 000 | 46 24 3226 0.0
1008 30 0 000 | 47 35 2776 0.0
1009 % 0 000 |0 0 000 0.0
1010 B9 & 6518 | 0 0 000 0.0
1011 0 0 0.00 0 0 0.00 0.0
1012 0 0 000 [ 0O B3 6393 0.0
1012 0 63 6393 [ 0 0 000 0.0
1014 3 38 660 | 4 38 6,69 0.0
1016 23 39 3970 | 38 37 1874 0.0
1016 36 20 20.30 51 22 41,26 0.0

one to three hours as a function of the adopted clock error modeling
procedure.

To the geometrically derived observations of range and range
difference, equations (3,1.1) and (3.1.2), systematic and random exror
gources were added as required in accordance with Table 4.2.2. White
noise consistent with that expected fromsix-second ranges smoothed over
300 seconds or one-minute integrated Doppler range differences aggregated
over the same interval was added based on the adopted levels in Table
4,2.2 as described in Section4.l.4. Random rubidium and cesium clock
noise were simulated using the algorithm of Mediteh [1975], based on the
selected Allan variance models for the satellite and geodetic receiver
oscillators. Random receiver cesium clock noilse was added to the obser-

vations along with a time bias and drift as given in Table 4.2.2.
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TABLE 4.2,2, SIMULATION ERROR SOURCES

ORBITAL ELEMENT

M+ W
§2

TROPOSPHERIC REFRACTION

CLOCK ERRORS
1. STATION

2, SATELLITE

WHITE NOISE

PERIODIC ERRORS (RMS)

RADIAL ALONG TRACK CROSS TRACK
2m
2,.6m 53m
12m
6.4m*

*PLUS 5m QUADRATIC ERROR
5% OF HOPFIELD MODEL PREDICTION

BIAS: 30 TO ~10 nsec
DRIFT: .000083 7O -.00004 nsec/sec
RANDOM: CESIUM SPECIFICATIONS

RMS BIAS: § nsec
RMS DRIFT: 0002 nsec/sec

RANDOM: RESIDUAL NOISE BASED ON RUBIDIUM
MODEL FOR GPS SATELLITES

RANGE: 100 - 60cm (6 sec)
DOPPLER: 83 =1cm (60 sec)
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For caeh patellite the total time eyxeor converted to distanec in

piven by equation (4,1,11) as

e
i " o e o 83 Q:*r:ai‘;‘ w4 2 " 9
gTi(L) o cii(en) o eni(t ~t0) 4 5 (t tg) o+ ni(n) (4.2.1)

where
t
n,(t) = ¢ S y (1%ar ., (4.2:2)
1 £ i
0

Aoguming the ageing to be negligible over the satellite tracking inter-

val, equation (4.2,1) coan be written as

cTi(h) s a4 b(t=t") b Ei(c) (4.2.3)
where
ey 2
» " I - — " -
a = eri(no) 4 eni(c co) 4 5 (t Lo) o+ ni(t ) (4.2.4)
b = cRy (4.2.5)
£ (E) = (e) =, (£7) . (4.2.6)

~
Letting cTi(t) be the best prior linecar estimate of cTi(t) over the

satellite tracking interval, the residual range error is defined as
el () =~ T,()] = (a-a) + (b-B)(e-€7) +x,(t) . (4:2.7)

The expeeted standard errors of the residual random bias (a~g) and drift
(bug) of the satellite cleccks were taken to be consistent with the
ephemeris simulation results described in Section 4.1.2 and are given
in Table 4.2.2. The residual random range error ri(t) is obtained from

ni(t) by linear least squares approximation., These quantities are
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added to the geometrically derived range and range differences aceord=
ingly, assuming the random bias and drift are normally distributed
although constant within a particular tracking interval,

A repidual tropospheric refraction error in the form of five
pereent of the Hopfield model prediction was applied to the obgerva-
tions in certain cases to represent a difference between actual and
modeled refraction, In these cases the adjustment model (Seetdion 4.3)
included tropospherie scaling parameters as indicated in cquation
(4,1.57),

The resulting quantities are the obscrved range and range dLf~

ference observations given by

R (£) = R(E) * vav'ﬁ’ a4+ ble=t") + nlt)

- n (4.2.8)
+ (ag=a,) + (by=Dby)(E= ")+ xy (£) + BER(E)
and
AR (£) =R(E) = RCE=AE) o Vi Vo o AL + n(t)
- N(t=AE) + (b, =D)AL + ¥, (£) = ¥, (b= AL) (4.2.9)

+ BISR(t) - SR(t~-At)]

where n is the number of six-second ranges assumed smoothed, VR are
independent zero mean Gaussian random numbexs having a standard devia~-
tion equal to that of the six-second ranges, B is 0,05, SR(r) is the
tropospheric refraction error, m is the number of aggregated Doppler,
observations, Vap are independent zero mean Gaussian random numbers
having a standard deviation cqual to that of the Doppler measurements,

t” and t* arve clock model epochs, and At is five minutes.
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The white noise level applied to range differences according to
equatdon (4,2.9) corresponds to the summation of m independent one minute
Doppler counts. For continuous count integrated Doppler the total noilse
of the aggregated count may be less and possibly independent of the
count in* rval; thus the coefficient of vAR in equation (4.2.9) may be
as small as one. The consequence of thiswill be examined in Section 4.5.

In the least squares adjustment ~f range or Doppler observations
actual measurements are differenced from estimates of the measurementr
The estimated observation value is obtained from the geometrilcally
derived range or range difference by a linear adjustment of thilsg quan-
tity which introduces the assumed level of orbit error. TFor range

observations this linear adjustment has the form

6
= SR(t
R (t) = R(t) + . E | Be, (E) he, (t ) (4.2.10)

where the Aek(tc) represent errors in the orbital elements of the
tracked satellite at the midpoint of the satellite tracking interval.
These errors are assumed to be nrxmally distributed varying with each
satellite of the constellation. The expected ephemeris error is given
in Table 4.2.2. The required partial derivatives in equation (4.2.10)
are developed in Section 4.3.2 and approximzted in Section 4.3.3. Fox

range difference observations an equation analogous to equation (4.2.10)

was utilized.

Notice that the error in the satellite clock was introduced into

the observed quantity along with the estimates a and b. Strictly

speaking these error estimates should be introduced into the estimated
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observatilon but the net effecet on the differonce of estimated and
observed quantitics in elther case 4s identical, The same avgument

holds for the tropospheric refraction error.

4.2.,2 Optimal Desgign for Dynamic Yoint Posltioning

A Global Yositioning System is designed so that six to nine
satellites are usually available for cobservation from any geographic
locatlon. Since options iu the tracking geometry are available, it is
reasonable to design a data acquisition schedule which produces the bhest
results for the adjusted statlon coovdinates derived from dynamic point
positioning. Some factors to be congldered in such a design are the
length of the tracking interval for each observed satellite, possible
criterda for wminimizing the coordinate covariance, the period of site
occupation and the tvpe of receilver operation anticipated, sequential
tracking ox the use of multiple channel vecelvers., With these factors
defined a sequence of satellites can be selected whose obscvvations glve
the best geometrical strength of solution according to the criterion
adopted.

Various procedures for sclecting the satellites to be tracked
can be defined. These include the simplest approach of random selectlon
from those visible to approaches based on chodlees for covariance mini-
mizatlon., TFor dynamic positioning performed using a gequential single
satellite recelver two criteria will be discussed:

(1)  the selection of satellites whose observations minimfze the squarc

root: of the trace of the accumulated covariance matrix, and
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(1) the selectton of satellites whose observations minimize the nom
of the vector of correlation coefficients of the accumulated
covarfance matrix,

The first procedure is also known as the evaluation of the geometric

dilution of precision. This second procedure allows a more statisti-

cally independent determination of individual parameters. In evaluating
these erdteria observations are assumed subject only to Goussian white
noise, No correlated random errors are introduced. However in addi-
tion to the station coordinates a receilver cloeck errvor model was incor-
porated fn some cases.

Using globally distributed stations a geometric analysis of
point positioning for range and Doppler tracking was made examining the
two criterda. The use of warious station locations insured that
nmerous samplings of satellite pass geometry were utilized such as
those shown in IFigures 4,2.4(a) and 4.2.4(b). Yor one particular sta-
tion Figures 4.2.5(b) through 4.2.5(e) give the square root of the
trace of the covariance matrix and standard error in latitude, longi-
tude, and height as a function of the number of one-hour satellite
tracking intervals of ranpge observations having a one meter standard
error. Range observations were assumed every five minutes and no eloek
error model was included in this case. Tigure 4.2.5(a) gives the azi-
muth and elevation angles for the epoch of each tracking interval for
selection based on minimizing the trace of the covariance matrix.

Flpure 4.2.6 gives analogous information for the second criterion. Obser~

vations below ten degrees elevation were excluded from the results,

109




L T N

]

0° (NORTH)
MISE .~ |

G
&

180

(a) Short Pass

0" (NORTH)

. iz .

RISE
SET

180°

(b) Tone Pass

Figure 4.2.4. Examples of Satellite Pass Geometry
for an Equatorial Station
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Using these criteria the next satellite to be tracked is thar
whose obgervations over the upcoming interval, when combined with all
previous observations, produces the optimum coordinate covarianece with
respeet to the selection eriterion, Notice in these examples that the
standard error of cach position component drops rapldly within the first
day then shows only gradual fmprovement with additional data. An cxaml-
nation of the results using the second criterion shows some reduction in
the parameter correlations but ylelds an increase in the expected

standard ecrror as evidenced in Figures 4.2.6(b) through 4.2.6(e).

Based on a number of similar determinations the following
general conclusions can be drawn for the optimal selection of GPS satel-
lites for both range and Doppler. First, it is readily apparent that
the second technique results in somewhat lower parameter correlations
but at the cost of increased parameter variances with respect to the
first criterion. However, the technique adopted is a matter of choice
since each is independent. TFor the positioning studies of Section 4.5

the first criterion was utilized to establish the observation schedules

in all cases. Secondly, from the results it is noted that initially the
varlance of the estimated parameters increases rapidly as the interval
of tracking each satellite is increased, Teor a fixed number of observa-
tions the results obtained are quite varied when the total observation
time is less than six hours. With increased observation time allowing
more sampling of pass geometries the results become virtually equivalent
after twelve hours. Thirdly, with range observations the introduction
of a receiver time bias significantly weakens the variance of station

height as evidenced by comparing Figure 4.2.5(e) with Figure 4.2.7.
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Figure 4.2.7. Standard Error in Height when Adjustment includes
Time Blas (Selection Criterion Minimum Trace)

The varlance of station latitude and longltude also increase but not as
significantly. The reason for this increase in height uncertainty canbe
explained by noting that a time or range bias error in a given observa-
tion 18 equivalent to a linear combination of a vertical and horizontal
position error of the station. The horizontal error lies along the
projection of the slant range vector onto the horizon plane., Successive
observations taken as a function of azimuth would yleld horizontal error
conponents whose sum would tend to cancel. However the vertical error
component can only be separated from an actual station height error by
using observations of low elevation., At ten degrees elevation the ver=-
tical component of range bias 1s approximately seventeen percent of the
total bias. Therefore with the restriction of observations to clevation

angles greater than ten degrees a weakening of the actual station

118

| I




PEYEEE Y

hedpht uncertainty can be expected pinee a station hedght error will
tend to be masked by the vertical component of range bias,

Finally, the patellite orbits have repeating pround traclks
vielding a tracking geometry with a diurnal perioed. For the {irst
neleetion erdterlon this tends to result in a clustering of the initial
satellite azdmuth of each tracking interval Into a serdies of three bands
separated by 50 to 150 degrees with a sampling of different elevations
in cach band., This 15 most obvious In cases where the tracking interval
is short. This property 1s not a fixed rule but a general trend as
demonstrated somewhat in Figure 4.2.5(a). For the sccond eriterifon the
distribution of azimuth is less congistent,although iIn some cases con~
sldered the distribution may fall almost entirely within a single band
of 150 degrees width,

TFor the determination of baseline components and chord length
only the first criterion was cxamined and the results were discussed in

Chapter 3,

4.3 Adjustment Procedure

The adjustment of range and Doppler observations using the
method of observation equations may be developed in a mathematical form
which accommodates the introduction of new obgervations and new para-
meters. Uotdla [1967] discusses this sequential approach and it is
emphasized that such a technique 1s valuuble in agsessing the effect of
additional observations on current parameter estimates. This approach
may be adopted for the analysis of GPS observations taken in a sequen~
tial fashion as discussed in Section 4.2, The estimation equations for

this procedure are now developed.
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4,3.1 Sequential Adjustment of Parameters

Given N statistically independent sets of observations Lb

1
wheare

L

: (4.3.1)
Ly = Flx,xy)
equations are developed for the least squares minimum variance cstimate
of the primary parameters x and secondary parameters Yy using all N
observatlion sets, The primary parameters of interest are the
carth-fixed station coordinates or coordinate differences., The sceond-
ary parameters consist of orbital elements, satellite clock model para-
meters, refraction blas parameters;and tracking recelver clock
parameters. TFormulas glving the paramcter covariance matrices xx and
Xyi and the weilghted sum square of residuals after adjustment, VTPV,

are developed., The sequential forms of these equations are given as

required. In sequential form the estimated quantity ; bagsed on N + 1

N+1
sets of observations 1s wridtten ag

A ~
Zea1 © 2y + AZN4~1 (4.3.2)

~
where AZN+1 is the correction to the prior estimate z,. due to the inclu~

N

sion of ohservations Lb .
N+1

4.,3,1.1 Estimation of Pvimary Parameters
The least squares minimum variance estimate for the parameters
of primary interest x from any one set of observations Lb from equa-
1

tions (4.3.1) 1is given by
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. (4,3.3)
= -5 R, =X
xi 1 T
where
~Nxx Xy4i
a AT
Ni = . Ai]?iAi (4.3.4)
|71 Pygyy
U
* T (4.3.5)
Ui = ” = AiwiLi .3,
Yy
= i 40306
Ay be A :L] ( )
i
1, Lb
i
1 oy bi
L, = F x5y, ) (4.3.9)
i 0

with the a priori variance of unit weight og equal to one. Equation

(4.3.3) is the solution for x based on observations Lb which results

i
after algebraic elimination of the secondary parameter set yi.

With the addition of a second observation set Lb the estimate
k|

for x becomes

R Ry Il I P
*11 x; " 1 TRy (4.3.10)

Denoting the covariance matrix Ex as Zx » equation (4.3.10) may be
i I
written using matrix ildentities as
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L)

A -1
2 | = Y ‘ c—: : ’F: ) l{ -{ul{
xn [&& %%me)xs rﬁﬂ[i jl )
(4.3,11
~ln =1, o =ly~1
mx. =N (B +E. ) Txe = (B 7FRT) R
I Xy Xp xJ I Xp xj |
or
" l::n v ks 2]
Xpp XI 8 AxII . (4.3.12)

The covariance matrix Ex based on a pailr of data scts, assumed uncor-
IT
related set-wilse, becones

R, ® [x;l’bz;l]"l : (4.3,13)
I I ]
In gencral given §N and XY basad on N sets of observations, the

N
estimate based on the inclusion of an additional observation sct is

piven by

gN%-J = §N + AxN-hl (4.3.14)
where
_.1.;«
A s on (DL +N. 1TR
Nk 1 XXy Xpgq N
(4.3.15)
SRS R
B [xxN‘{‘)’xn-}‘l] I\n+l
and the covarilance is
5 Pl DA
N+ W Tas1
(4.3.16)
T T T TS
N N Fng N
or
B, mI_ 44D (4.3.17)
N+1 N 41
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AL m o=y L 3 ] 5. (4.3.18)
AN 1 XN[XN *ne1d *y

Bquations (4.3.15) and (4.3.18), although not necessarily computa-
tionally efficient, glve a measure of the expected change to the primary
parameter set estimates and thelr uncertainties if a new observation set
is added. It is assumed here that:
(1) new normal equatilons are formed using the same initial parameter
estimates Xo’yi as used previously; and
(i1) the new data blgck LbN+l is uncorrelated with all previously used
observations.
4.3.1.2 Estimation of Secondary Parameters

Consider the least squares normal equations for the observation

set Lbj:
N N X U
XX xyj x
+ = 0 (4.3.19)
N N V. U
X ,
Yj ijj J YJ
or
anx + nyjyj + UX = 0
(4.3.20)
N x + N + U =0 .
4 yjyjyj vy
The solution for yj is given by
§j w Nt Ul 4N _x] (4.3.21)

where ; 1s based on all N observation sets:
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Substituting equatdion (4.3.22) into (4.3.21) ydelds

A -1 -1
y =N AT P oL AN (U N U )]
Iy yj 373 yjyj Y% X[ x" xyi Yy vyt
LA ey 4N A L o-n. oA e or) (3.2
=—-N \ .
Yy vy 44 yjijx[ (APyTy- x)iNyyiyiiii:l

Equation (4.3.23) can be written as

~ -1 -1 -1
S =N " AT DL kNN 3 E\p LN NT AL PL] +qQ U (4.2.24)
) P FI B A I x{ X373 TwyyygYyyy 3 }

where @ is a function of all data sets except Lb . The covariance
3

matrix Zy i1s obtained from equation (4.3.23). Since all data sets are

assumed statistically independent the covariance Zy 1s glven by

N
T
dy dy
N 1=t |0 '
L= 2 |dL |k || - (4.3.25)
i k=1 ¢

Differentiating equation (4.3.23)

-1 .7 -1 T -1 T
-N A" P, +N N I |AP,-N N k=
yjyj Vs j y.,yj ij X[ x ] Xy Vs y:j yj j] =1

dy
[ﬁi} (4.3.26)
Kk ,
R [A'lr I Y G- ] , k# 3
yjyj ij x| xk XY VY Vi k

Substituting equation {4.3.26) into equation (4.3.25) and summing over

k yields the final result

I, =N;ly +N"lyN SN N“ly i (4.3.27)
3 75 Y373 73 Vi Y373
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The vesiduals of £it after adjustment arve given by the

linearized form of equation (4.3.1)

~

1 X
= ’l f A
V'.L [AXA ] . +Li ('nutm8>
| R

or
(4.3,249)

l P
~V.Y A A0 ., XA L
1 x Dy IR
2 "~
ngAxOAyz...O Yy
, y ' : (4.3.30)
N ~
LvN, LA, 0 0. . .AyN_ Lyyd Loy

Since the ohservation blocks are uncorrvelated

N Al
1 S ap T
vV = Y [L Lyl + [x yi] |:Ax A"i] P,L 1]

=1 4

N T ,
T 1
= % |LP.L, -+ XATPL
'l I i] (4.3.31)

e

T 4T
. LiPiLi 8 Xiui] .
L.

n
1[M=

The a posteriori variance of unit wedight is

A2yt
G, = L2V (4.3.32)

d
where d is the number of degrees of freedom in the total adjustment

problem.
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The equations developed here were utilized in the adjustment of

simulated GPS range and Doppler observations. It is an illustracive
approanch for determining how the uncertainty and error in station
positioning vary in time as a function of such variables as the number
of observations, method of satellite selection, tracking interval, and

others.

4.3.2 Model Parameters and Partial Derivatives

In the adjustment of range and Doppler observatilons the number
of secondary parameters Yy for each data set of equation (4.3.1) is
subject to variation depending on the tracking schedule and the choice
of specific clock error models and additional bias parameters. The
secondary parameter set includes six c¢rbital elements for each satel-
lite tracking interval, a polynomial clock model for receiver clocks
over the time span of each observation set, a polynomial clock model for
each satellite clock over the interval each is tracked, and may include
tropospheric refraction scaling parameters for every satellite~station
combination within an observation set. The primary parameter set x con~
sists of the pgeodetic coordinates of the tvacking stations in the
adopted earth-fixed frame of reference.

The design matrix A introduced in Section 3.1.2 is developed
fiom the first partials of the data function with respect to the model
parameters. The partial derivatives of the range observation model,
equation (4.1,57), with respect to the Cartesian earth-fixed coordinates

of the tracking station are
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where Ugr VoW, ave the coordinates of the satellite at time t in the
& ? &

same frame. The partials for geodetide coordinates ave obtained using

equation (4.3.33) and the chain rule

AR L MO Ju, B Dy, R
RI du 3¢ v 9 v ¢

$ = A,h (4.3.34)

where the partials of Cartesian coordinates with respect to pgeodetic

coordinates are given in Rapp [19706] as the coefficients of the dif-

ferential cquations

du = = (M+h) sindeosAdd ~ (N+h)cos ¢ sinddd + cospeosidh
dv = ~(rith) sindsinAd¢ + (N+h) cosdpeosAdA + cosdsinddh (4.3.35)

dw = (MF+h) cosddd -+ sinddh

where M and N are the ellipsold radii of curvature in the meridian and
prime vertical.

The satellite coordinates are obtained In a mean inertial systew
by numerical integration of the equations of motion whose forces include
the geopotential to degree and order eilght, solar radiation pressure,
and luni-solar gravitational perturbations and are rotated into the
earth-fixed frame. The initial conditions for the integration are
obtained from Table 3.2.1.

For range difference observations the partials for station

coordinates are given by the difference
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BARCE) u () - u i u (t-4L) ~u . |
du R(E) RCL - At) u v, (4.3.36)

where At is the Doppler integration interval. TFor geodetlc coordinates

a similar expression holds

aqu()c) B 65;1:) . 3R<§5At) o+ A,h (4.3.37)

Each interval a satellite is tracked six orbital elements are
introduced to model ephemeris error. The elements are represented as
the orbital semi-major axis a, the eccentrielty multiplied by the cosine
and sine of the argument of perigee, ecoswand esinw, the ineclination
1, the sum of mean anomaly M and argument of perigee w, and the
ascending node Q. Letting t, represent the midpoint of the satellite
tracking interval and to the epoch associated with the initial orbital
elements, the partial derivatives of range with respect to the elements

at t, are given by

OR(t) _ 9R(t) R . .3,
% * 1Po(t')wo (Lc>T(Lc> (4.3.38)
de X (t)
t s
c
where
BR(t) _[OR(t) BR(t) BR(t) 4.3.39
3K (E) [ax (5 9% (o) 9z (&) ° ° 0] (4:3:39
S 5 8 S
and
X (t) - X(t)
oR(E) s 4.3.40
9X_(t) - R(t) X~ 1,2 ( )

where XS,YS,ZS are the satellite Cartesian coordinates in the mean iner-
tial system, The quantities X,Y,Z are the station coordinates in the
same frame. The matrix ¢b(t) 1s the state transition whose elements are
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obtatned from the homogencous solution of the satellite's variational

cquations [Baker, 1967].

. . T
8x_(t) o 2%, (k)
Bu(tg) . BQ(CO)

P (e) = . (4.3.41)
92, (c) 07, (t)
{EHTE;T IR I )

and T 18 the Jacobian matrix

Efg(tc?, axs(tc)
Ba(e) 0 T
1) = o . o (e (h.3.42)
8 5 ¢
_3a(t°> 3R(tc)— .

For range difference observations equation (4.3.38) is modified using

BAE(Q) :[:BAR(t) BAR(E) BAR(L) o o} (4.3.43)
9x . (t) oX_(t) oY _(t) 92, (t)

where
MR(E) xs(t)-x(t) i xs(t-At)-x(t-At> (5.3.40)
Bxs(t) R(t) R(t - At) ’

Tor polynomial clock models of the form

. o o e n L3,

Pn(t) =a + al(t ) + .. ok an(t £”) (4,3.45)

the partials of range with respect to the model parameters Qe

are just the parameter coefficients
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a%{(l:.) = (t”t’)i imo"“)n (403'46)

where t° is an arbitrary epoch for each model. The constant term in
equation (4.3.46) represents the time (range) bias or phase error at t”
asgsoelated with the modeled clock., The second parameter ay is propor-

tional tu the oscillator frequency bias Afi

C ar
a, ?-Af (4.3.47)

L

and a, is proportional to the frequency drift £

e S
8y = 5F £, (4.3.48)

For range difference observations derived from integrated Doppler over

the interval [tk,tg] the partials are

OAR(L) _

A 0 (4.3.,49)
[o}

BAR(E) _ . _
—EEI#— tz tk (4.3.50)

and

2

DAR(t) (tz”'tl)z - (g )" (4.3,51)

Baz

n

In terms of frequency bilas and drift the partilals are

BAR(E) _ ¢ _
oR( 2 (t,-t) (4.3.52)
and
a2 ¢2
BAR(E) _ e [(ty-t")" - (£ -£t)"] (4.3.53)
Y 2f

according to equation (4.1.7).
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For the tropospherle refraction scaling parameter the partials

of range and range difference are given by

Q%éil = §R(L) (a3, 54)

and

3%%i5l = 6R(ty) = OR(E,) Ch.3.55)
R

valng equation (4,1.57).

4.3.3 Use of Kaeplerian Partial Derivatives
in the Adjustment Model

Numerical integration of the variational equations [0'Toole,

1976)

gio . dF(s;z’p) vk (4.3.56)
glves the variation in a satellite's inertial position and veloclty at
time t with respect to changes in the initilal state at time tO’ These
partial derivatives are used in forming the observational partial deri-
vatives of the design matrix A when the satellite state vector at to is
included in the adjustment. TFor satellites at extreme altitudes an
approximation may be introduced. This approximation consists of
replacing the numerically integrated golutions of the variational equa-
tions with Keplerian two body partial derivatives., This approximation

is both economical and valid at GPS altitudes if observatlon times are

within a few hours of the time at which the satellite state vector ds to

be improved. Keplerian partials are analytic expressions derived from

the basic equations of two-body motion [Mueller, 1964].
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The orbital clements at time t are obtained fyom the clements

at time £y by the transformation

a1l 1 0 0o o o 0][al
e 1 0 0 0 0
1 0 1 0 o0 offt
“ (4.3,57)
M a 0 0 1 0 O0l|M
w 0 0 0 0 1 olflw
ol o o o o o ujlel

0

where o 48 a time dependent quantity derived from Kepler's thivd law

o = \‘%ﬁi (b=t ) (4.3.58)

For Keplerian motion the only time varying element in equation (4,3.57)

1s the mean anomaly
M(t) = M(to) + n(t-co) (4.3.59)

where n is the mean motion of the satellite. Differentiating cquation

(4.3.59) with respect to theorhital semi-major axis a at t. gives the

0
rate of change of mean anomaly given a change in a at tO:

oM(t)  _ .3 _m
2

Ba(t)) ~ 2 a(t,) (t=t) . (4.3,60)

All other element variations are of the form

de, (t 1 1=
23, (®) { ! (4.3.61)

e, (t) o 1gy .

J
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At observation time t let {u (t),v (t),w_(t)} be the coordinates
of satellite position in the carth-fixed system. Let {u,v,w} be the
earth=fixed Cartesian cooxdinactes of the tracking station. Tor range
observations

BR(E) u (t)

au(c> R(t) T

Mauo
bu (t)

TR AT (4.3.62)

For orbital element estimation at time t” the partials of R(t) with

respect to orbital elements are given by the matrix equation

F5 o~ e ;.
[%Q R (e )](6><1) G“f;“w( )] (3% 1) (4:3,63)

where the matrix G is obtained from equations (4.3.60) and (4.3.61)

1 i=j
de, (L) 0 1#3 excepti=l, =4
G = [G [-—éi—a—;.-)-:] (4.3.64)

3n ”

The last factor in equation (4.3.63) has row dimension three since the

velocity partials of range are zero. The matrix H has the form

‘aus(t) Bws(t)T
Bact) " " " Ba(r)
H = ]Hij] = : (4.3.65)
Bus(t) e e Bws(t)
| oR(t) () J .
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The development of the elements of I follows., The transforma-
tion from the mean inertial (I) system of epoch t, to the earth-{ixed

(ET) system at time t ip gilven by

ua(c) X(t)

v, (t) unz(»xp)nlc-ypmscms'r)np Y(t)

w_(t) | Z(t)
o7 Juk I Ch.3.66)
x(e)
= RlY(t)
() |y

where the coordinates In the mean inertial system are given by

r., "

X(t) x(t)

Y(E) [ = Ry(=Ry (~1IRy(=w) {y(t) (4.3.67)
Z(t) z(t)

and {x,y,z} are the coordinates of the satellite iIn an in-planc coordli-

nate system as defined in Mueller [1964]

x(t) = a(cos E~e)
y(t) = n(l--ez)l/2 sink (4.3.68)

z{(t) = o .

The quantity E 1s the eccentric anomaly related to the mean anomaly by

Kepler's equation

M=1IL~csinkE (4.3.69)

and Xp and yp are the coordinates of the instantaneous rotation axis of
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the earth [Mueller, 1969]. The rotation matrices P and N account for
precession and nutation and GAST is the Greenwich apparent sidernal
time. In terms of direction cosines equation (4.3.67) has the

form

X(t) x cos(xX) + y cos(yX)
Y(t)| =] x cos(xY) *+y cos(yY) (4.3.70)

Z(t) I % cos(xZ) + y cos(yZ)

IEquation (4.3.66) may be differentiated with respect to the orbital

elements

du (t)
s ' o 19%(E)
[,.B_.e_(_g)_. . = R[—-——-———ae(t)]I , (4-3-71)

Using equation (4.3.70) and assuming a nearly circular orbit these par-

tials derivatives are

Bus(t) 'us(t)

_ (4.3.72)
da a

ov _(t) v _(t)
(B vy (4.3.73)
da a

dw_(t)  w_(t)
‘S = s (4-3-74)
oa a

du_(t)
ge = -a[R; cos(xX) + Ry 508 (xY) + R, ,c08(x2) ] (4.3.75)

_ae sian [Rllcos(yx)q-Rlzcos(yY)4-R13c05(YZ)]
l-e




R

v (L)

ex-:!’mmm < T € -\ - 4 " r‘
B 1[1{21%3(.\}«.) +R,,C08 (xY) + 1{23Los(x?)]

ae sl Si,.‘!li [

e
2]
,/l -~

cos(yx) +R, LOS(VY) o R cos(yz)]

dw, (&) v .
ﬂa‘é”_,,a ;;;[R:;lgmi (xX) -+ Rqyco8 (xY) + Rsscos(a?.)
~aesinh [R”ww(v\) o} I\J.,LO.':»(VY) MHLO“(W.)]
)
\/l -0
du (L)

et L g i I-:[R.ucas (xX) + RJ »C08 (XY) + R] ,3uns(x}’.)]

ML)
"'.f
a V1 =0 cogh[ ppeos(yX) + 1\1.,L(323(V\’) Ry qeos(yi)]

Wv ()

o i T3 we8Y 48 ) . y 3 o » N veyar (arY
WO - sin l.[Ralcns (xX) + 1\220,0&:(:&) + 1\23«0:’ (x7.)

N By
+aVl-e” cm:l-‘.[Rmcos(yX) o+ Rzzc.os('y\') s R:,,;mm (yi) ]

qu(c)
et < i -1 8] : o8 ‘.‘7 e R 208 (s .1 v 08 ’,,:
M t) 18inl [1{31“"’ (xX) -+ ]\BELOHC‘{\) o+ ]\33(.05 (x4) ]
‘/ y
+aV¥l-e” cos]’:‘.{RBlcos(yX) + qucos(y\') +1‘\3‘3cos(y}’.)]
Bu (t)

0

i Y[Rllsin 1 sinwgind ~ Rlzsin 1 sinwcos+ R

13008 1 sinw]

0 3.
4+ v[R 1J.>ini coswsing - ]l,)uiﬂ 1 cosweosf I~R“

qu(t)
oL

+ Y[RPlSin 1 coswsini) - Ry,81n 1 cosweosil + 1{23
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cos 1 cosw]

=x[R, 8in 1 sinwsind - Ryasind sinw cosid+ Ryqc0s 1 sinw]

cos 1 costw]

(4.3.70)

(4.3.77)

(4.3.78)

(ha3. 79y

(4.3.80)

(4.3.81)
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dw (L)

. g--:}-mm:m “ 3 e * 3 "' o 1 ¢
o X[R3lsin 1 sinwsinh R329 in i sdnweos A4 1{330.03 1 sinw]
(4.3.83%)

+ y[R.,ls'.Ln 1 coswsini - RB,,sin i cosuwcos + 1:3.30;05 1 cosw]

(\uq(t.)
FU. L - x[R

" lllcos(y}{) +Rlzcos(yY) + 1il3cos (y2)]

(4.3.84)
- _VLRllCOS (xX) I\lzcos(xY) + I\lscos\xz)]

v (t)
S x[Rzlcos (yX) + R22°°5 (yY) -+ R23cos (yz)]
(4,.3.85)
- y[RZlc:os (xX) + Rzgcos (xY) + Rzacos(xl,) ]
l\wq(t)
B e XLRSJ.COS (¥yX) + Razcos(yY) + Ryqc08 (y2)]
(4.3.80)
- ;v[RBlcos (xX) + 1{32003(xY) + ngcus(xZ) ]
du ()

.ﬂ,..a.ﬁ.‘m:; x[-—-l{llcos (xY) + Rl?_cos (xX)]

(4.3.87)
+y [..1{1 1c08 (yY) + Ry ,c08 (yX)]

‘avg(&)
R oaa x[~1{21cos(xY) e Rzzcos (xX)]
(4.3.88)
+y [-—RZlcos (yY) + Rzzcos (yX)1
Sws(t) |
T x[~1{31c:os (xY) + RBZCQS (xX)]
(4.3.89)

+ oy [—I{Blcos (yY) + RBZCQS (yX) ]

137

R A




o o/ cap A} At

Partial derivatives for integrated Doppler measurcments are
obtained by Jdifferencing range observation partials formed at the end
times of the Doppler integration interval.

The difference in positioning introduced through this approxi-
mation was determined from simulation results of absolute and relative
positioning using range observations from two stations 100 kilometers
apart. Results were obtalned using two days of simulated observations
with one hour of observation each time a satellite was acquired.
Tnitial positioning adjustments were made in which orbital elements
were included as parameters with a priori weights for each hour of
tracking. Variational equations based on the WGS72 potential model
[Seppelin, 1974] truncated to degree and order eight were numerically
integrated and used in forming observational partial derdivatives. Then
the adjustments were repeated using the Keplerian two body partials,
Except for this modification the adjustments were identical. A com-
parison of the covariance matrices obtained in each case was made,

TFor absolute positioning the standard error of the station coordinates
obtained using the Keplerian partial derivatives averaged 2.9 percent
more optimistic. In the determination of coordinate differences the
solutions using Keplerian partials had standard errors averaging 2.4
percent more optimistic,

As a result of this experiment it was decided that Keplerian
two body partial derivatives could be adequately used in the adjustment
of station coordinates when orbital elements were taken as parameters

in the adjustment.
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4.4 Development of Adjustment Weight Matrices

The minimum variance estimate of receilver earth-fixed coordi-
nates obtained from range ox Doppler observatilons by least squares
adjustment requires that the weighting matrix be developed using the
second order statlstics of the random observation errors as outlined in
[Liebelt, 1967). 1In the application of Glohal Positioning System satel-
lite observations of range and Doppler to geodetic positioning the
adjustment weighting must include the observation error statistics for
correlated atomlc clock errors in both the satellite and receiver
clocks and for noise from the tracking recelver. In this chapter the
observation error statistics for atomic clock fractional frequency
error are developed from the Allan variance for each system oscillator
by an analytic procedure which transforms the Allan variance into the
autocorrelation function for random frequency error. The integral of
this function provides the statistics for range or range difference
observations based on the two oscillators used to derive the measure~
ment. Statistics of the resilduals to selected polynomial clock models
are obtained by an additional transformation of the range or Doppler
error statistics. These residual statistics are incorporated with the
instrumental white noise statistics into the adjustment weighting. The
correlations between residuals to successive polynomial clock models are
shown to be negligible allowing the adjustment to be performed sequen-

tially.
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random fractional frequency errors were presented,

4.4.1 Range and Doppler Observation Error Statistilcs

4.4,1,1 TFractional Frequency Autocorrelation
from the Allan Variance

In section 4.1.1 the equations giving the second order statis-

tics of random range and integrated Doppler observation errors due to

Those equations

require that the fractional frequency autocorrelation function be known.

In this section discussion of a procedure for obtaining an analytile
approximation to this function from the Allan variance is given. This
method avoids numerical difficulties that may arise when the inverse
TFourier transform of the power spectral density is evaluated and yields
simple analytic autocerrelation function.

The Allen variance models shown in Figure 4.1.3 for the satel-

lite rubidium and receiver cesium oscillators are a function of the

sampling time T having the form

N0
2 < T <
) O¢ TP ST2 T
o (1) = (4.4.1)
y N,T
——g-— T < T T
3 2~ " = "3
N
T TpiTie

Using the transformations in Table 4.1.2 the power spectral density for

fractional frequency may be developed from equation (4.4.1):
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S [IV] = (4.1’02)
yy( )

m
< m <
N0 wzwu_w

The square root of the power spectral density, or transfer function,

corresponding to the Allan variance specifications of Tigure 4.1.3 is
given in Figure 4.4.1. The constants associated with the two functions
and formulas for compuvting the constants assoclated with the power
spectral density function based on the Allan variance are given in
Table 4.4.1. These formulas are developed from the transformations of
Table 4.1.2.

The autocorrelation function ¢yy(t) can be obtained from the
power spectral density using equation (4,1.21)

[eo]
. lwt 44,3
¢yy(t) 2“_0{, Sy(m)e dw ( )

M

With Syy(w) an even function equation (4.4.3) reduces

o]

1
d t) === f S (w)coswtdw
yy( ) o ! yy( )

(4.4.4)

0]

S S (Wecoswtdy .
I8y

=

[

Uslng the power spectral density model, equation (4.4.2),in

141




1or
WHITE NOISE
Sz 1900i0”"
0 ‘ ; INTEGRATED WHITE NOISE
10 iy (lfo

VNE, /W
SATELLITE VEHICLE N\ 4

VA3 23110"'" CLOCKS (RUBIDIUM) sy
FLICKER NOISE

K T
N atw,

-
a

]
¥
16" masTer srarion
CLOCKS [CESIUM)

adw
(A
FLICKER NOISE

A& APPROXIMATION 1

a5 1.90x 10"

”a’wo‘ )
10" /o 2 9.49 % (0 2
iy
1 1 — vl 1 i
-y -§ ] -4 -3 -p
10 10 10 10 10 10
FREQUENCY w (SEC™) we2mwl
Pipure 4.4.1. Oscillator Transfer Functions
TARLE 4.4.1. OSCILLATOR PARAMETIRS
SATELLITE CLOCKS STATION CLOCKS
QUANTITY UNITS FORMULA IRUBIDIUMI ICESIUM)
1 s0c 100%10° 1.00x10%
1 soc 1.00x10° 1.00x108
1 sec 100109 1.00x107
wp noc ! Vi 173710 8 173%10 7
wy soc ! 6 2yl 132x10 ® 1.32x10 8
wy soc | niiZeyin 21 22710 3 227%10 8
W Goosto 3.00%10 ¥
Ny sng 1o 360x10 ggox10 ®
N, o202 8.16x10 2.04<10 ¥
N, ga¢ ! KRR/ 109x10 2 270x10 ¥
Ny sac 0?1420ty 360x10 ® 9.00810 ¥
@ lurglesrg V8 2.36x10° 1.61x10¢
2
Wy soc ! wf 203%10 ¥ 1.67%10 6

142

A iy




L, L

= G —

T WS T 5

equation (4.4.4)

frequency as

byyle) =

gives the autocorrelation function for fractional

w W
1
1 1 ; Nzcos(wt)

4]
- S Nqcos(wt)dw + = e sl 1)

2
0 wo [\

1 Wy Nlcos(wt) 1 10'_:L
g [ e E——y k= S N _cos(wt)dw
m w m [¢)
Wy W,y

. 3 5
Nt (wlt) (wlt)

’-3.3! '*'5.5! = see

. 3 5
Nt (w ) (w,t)
4‘*7;“ Wt

L 0 "'3.3! +5.5! Ll s e (4'4"))

Nzcos(wlt) Nzcos(mot)

nwl ﬂwo

-

2t)2 (w2t>4
-logcwzt) - 2. 2! + 4. Z{! = s

NT (w

£

o+

N, T (wlc)2 (wlt>4
-y | esWy ) Tt T

-1
Nosin(lo t) ) Nosin(wzt)
Tt T .

-+

However this form for the autocorrelation function has an osciilatory

behavior for small t as shown in Figure 4.4.2 as a result of trans-—

forming the band limited white noise portion of the spectrum. This is

an artificiality of the model.
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Figure 4.4;2, Satellite Rubidium Standard PFractional
TFrequency Autocorrelation from Inverse
Fouriler Transform
An alternate approach for obtaining an autocorrelation function
ils to approximate the power spectral density model with a smooth func-
tion whose autocorrelation is expressible in simple analytic form. The
first step in this development is to approximate the flicker noise seg—
ment of the spectrum with a series of cascading funetions whose value
alternates between being constant and being inversely proportional to
the square of the frequency., This type of procedure is described by
Mediteh [1975] in constructing a linear system which simulates flicker
noise using a white noise input. TFigure 4.4.3 shows the transfer func-
tlon for flicker noise. A three stage cascading transfer function is
superimposed consisting of the functions FA’ FB, and FC which are

defined in Table 4.4.2. These functions are defined to have the
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TABLE 4.4.2,

FUNCTION

Fa

Fg

WHERE

INTERVAL

St o——
wyhow & oy,
wy & ow kg,

dug & w & wy

wp & w8 uzw,
W, & w & 0w,
a’w. 5w b owy
wp & w s a‘w,
oha w w s oba,

25w 6 w6 wy

Ny = auny Ny

Ng = adayNy

Nc = a“w,N‘
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required properties and give a continuous although not: smooth approxi-
mation to the £licker noise power spectral density.
The constants of this approximation are now derived ovey fre-

quency intervals as given in Mediteh [1975], The general form of the

function FA 1s

" 4,4,6
I"A(w)vmi- (4.4.6)

W

between the frequencies w, and o e At frequency W, s defined in

Table 4,4.1, the function F, takes on the value

A
N N

Pyw) = d e L C4uha?)
}S [t2 wa .]..

since the flicker noisc power spectral density has the same function

value at frequency W, Solving equation (4.4.7) giveas

(444.8)

A similar analysis gives the constant NB. The function FB has the form

NB
Fn(w) ::—-i‘ . (4:4-9)

W

At frequency azma, FB has the function value

N N
FB(“Z‘%) = 413? - “2_1.\5 (4.4.10)
‘ cw otw
a a
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3]
sinee at a“mq the functdion FB has the same value as function TA at fre-

quency o, (see Figure 4.4,3). Solving equation (4.4.10) pives

P oS bl
NB s Q hA 0 wlNl (4.4.11)
using equation (4.4,8). For the funetion FC’
Ne
C wz

its functilor value at frequency aéwa equals the value of ?B ac fro-

guency agwu glving

N N
F (daw«) = "Wg“ & “72? (4.4.13)
C a ol w2 anwé
a a
resulting in the solution
20 o o) Loa
NC = g, NB o wlNl (4.4.14)

using equation (4.4,11). Numerical values for o and w are glven in
Table 4.4.1, The power spectral density consisting of the three cas~
cading functions and the remainder of cvhe original function will be
denoted as the second power spectral density model for each oscillator,
The next step in the development of an analytic autecorrelation
funetion is to approximate varilous segments of this second model with a

first order Markov process power spectral density function, a function

of the form
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S(w) = mgg R

m2 + B

] (4:4'15>
where f is the inverse of the corvelation time (sce [Gelb, 1974]).

The autocorrelation function for a firpt order Markov process is

d(L) = otoBltl h.4.10)

Graphs of these functions are given in Figure 4.4.4. Notice in cqua~-
tion (4.4.15) that the power spectral density decrcases as the inverse
of the square of the frequency which is the type of funetional behavior
seen in the interdior of the cascading functions FA through FC. It is
also the behavior of the oripginal power spectral density in the inter-
val [mo,wl]. In addivion the power spectral density of the Markov pro-
cess remains virtually flat until the frequency reaches a point when the
function decreases rapidly. These properties make this function an
excellent choice for approximating the scecond power spectyal density
model plecewise,

The sccond model is then divided into five segments defined in
Table 4.4.3. The high frequency cut off W, s ghown as 10'1 in Figure
44,1, will be increased so that that band limited white noise component
of the power spectral density may be approximated better by the first
order Markov power spectral density.

The approximation consists then of fitting a function in the
form of equation (4.4.15) to each subdivision of the ‘econd model
S;y(m) given in Table 4.4.3. There are two parameters o and § to be

determined for each segment giving a total of ten parameters.
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Figure 4.4.4. Markov Process (First Order)

Two procedures for this approximation were examined. The first
wasg a least squares fit of the function S(w) to each segment of S;y(w).
The second, which was adopted for use, was an assymptotic approximation
whereby two constraints were imposed on the Markov power spectral den-
sity function giving & and B directly. The second procedure was impli~-
mented because of gimplicity and because the results compared favorably
with the least squares approach as seen by comparing Figures 4.4.6 and
4.4.7. The assymptotic approach develops an approximation on the inter-
val Ij’

Ij ~ [mk,mgl (4.4.17)

using the following constraints:
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(L) at zero frequency the approximating Markov power spectral density

equals the second model at frequency wk:

bj(o) = Syy(mk

(41) din the limit as © increases the value of the function $,(w) con=

]
verges to the following function
ol
1im 81(m) = ég?ﬁ (4.4.19)
W > w

and at

g this limiting value ds set equal to the value of S;v(m):

S

Ny
[~

=
Wo

Fquations (4,4.18) and (4.4.20) are a system of two equations in

two unknowns. Their solution yields the parameters «,

J 3

approximating Markov power spectral density function Si(m). The nature
of the second constraint, equation (4.4.20) is to foree the function
Sj(w) to assymptotically approach S;v(w) at wp . The first constraint is

necessary to approximate the white noise or flat component of S;y(m) at

the beginning of ecach subinterval.

Finally a comment concerning the approximation in the last sub-

division IS is necessary. In order to obtain a good approximation to

S;y(m) in that interval it is necessary to choosec W,

allow the flat portion of the Markov process spectral density to fit the

white noise component which dominates this interval as scen in
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2B g , boby2
qyy(wﬂ) (4. 4,20)
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TABLE 4.4.3. DIVISION OF SECOND PSD MODEL
FOR MARKOV PROCESS

APPROXIMATION
NOTATION INT RVAL
I [0, w,q)

Iy [wq, aw,]
I3 law,, adw,)
I [dPwg aBw,)
Ig [aBwg, wp)

SATELLITE RUBIDIUM ACF

10728

T T

100

LRI RRAL)| =TT

10! 102 103
TIME (SEC)

T [104

T L] l|‘ L]
10-2 107!

Figure 4.4.5, Assymptotic Fractional Frequency Autocorrelation
Functions Based on Markov Process Approximations
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Figure 4.4.1, Chooslng W, three or four orders of mapgnitude larpgew than

0.1 and S’y(wh) two to three orders of magnitude smaller than N0 enables
a pood approximation to be made but adds power at these higher fre-
quencies. The result is an autocorrelation function whose variance will

incrcage as wh is chosen larger (sce Figure 4.4.5) and tends to o delta
funcclon as W, goes to infinity, MHowever, this will have negligible
cffect on range and range differcence statistics. This point will be
examined in wmore detall after the development of additional equations
based on the first order Markov approximations,

The smooth fractional frequency autocorrelation function @yy(L)
is given by the inverse Fourier transform of the five Markov process
power spectral densities Sj(w). The result of each transformation is an

analytic function whose form is given by equation (4.4.16), The [inal

result is the sum of these functions

5 .
() = zj N Zofﬁjltl . (4.4.21)
Yy 371 J

For range and integrated Doppler observations the statistical contribu-
tion due to vandom oscilllator error is obtained using cquation (4.4.21)
in equation (4.1.19) through (4.1.26). Figure 4.4.9 illustrates the

steps discussed in the development of these statistics from the Allan

variance model.

Figures 4.4.6 and 4.4.7 show the original transfer functlon for
the satellite rubidium oscillator with the smooth least squares and
assymptotic approximations. The least squares fit to cach subinterval

of the sccond model S;y(w) was based on two hundred equally spaced
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TABLE 4,4,4, TRACTIONAL, FREQUENCY AUTOCORRELATION
FUNCTION PARAMETERS TOR MARKOV
PROCESS APPROXIMATIONS

ASSYMPTOTIC LEAST SQUARES

OSCILLATOR TYPE INTERVAL IALPHAR BETA IALPHAR BETA
RUBIDIUM {SPEC) 1y 31170 M 1732¢10 * 3.3719x10 1.861x10 ¢

Iy 0.2626x10 % 2032410 ® 7.6238x10 2,266x10 §

Iy 8.2626x10 2 1,128%10 4 7.6246x10 % 1.262x10 4

N £.2626x10 8 8.262x10 4 7.624Bx10 7 8.947x10 4

% 1.0000x10 1 1.000610"" 1.9343x10 1* 9.631x102"
CESIUM (SPEC) Iy 7.7942x10 2 1732210 7

I 1.2022x10 ¥ 1.677x10°

Iy 1.2022x10 7 4:321x10 ©

Iy 1.2022x10°%7 1.113x10

s 4.6000x10 20 1.000x10%*

"wy, = 1.0%10° S'yyluwy) @ Ngi1.0x10%

samples of the function within the subinterval. The parameters
obtained using each approximation procedure are given in Table 4.4.4
for this rubidium oscillator. Since the assymptotic procedure produced
results comparing favorably with the least squares procedure this method
was adopted for use. Hence no least squares parameters appear in
Table 4.4.4 for the cesium oscillator. The agsymptotic transfer func-
tion for the cesium oscillator fractional frequency error and the origi-
nal power spectra -ensity are shown in Figure 4.4.8.

4.4.1.2 Observation Error Statistics

Based on Markov Process Approximations
The first order Markov autocorrelation function, equation

(4.4.21) and equations (4.1.19) through (4.1.26) give the second order
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statistics for random range and integrated Doppler observation errors due
to cach oscillator used in the measurement process. These integrals may
be evaluated giving analytical expressions for the variance and covari-

ance of range and Dopplexr observations,

4.4.1.2.1 Range Observation Statistics. Let R(ti) and R(tk)

be range observations subject to random clock error only. The covari-
ance between the observations is given by equation (4.1.19). Using the

first order Markov ayp, v widons, the integration of equation (4,1.19)

gives the covariance 2ag

E[R(e OR(E )] = E[n(e,In(e, )]

2
5 o R (e, =t ) (4.4.22)
= o2 > #[20:1-4: ) +—él‘-(e 173 s
=173 ) N

R IR ACE R I ”

for tk greater than ti where t, is the start or reset time of the

clock. The variance of the random range error is obtained by setting €y

equal to t:i in equation (4.4.22)

E[R(£IR(E,)] = E[n(eIn(t,)] (4.4.23)
bedra23

1

2

5 20 -R.(t, =t )

c2 B —~—ﬁ—i[(ti-—ts) +~Bl-(e Jod s —l)]
j=1 "] ]

The range error N(t) resulting from the integration of frac-
tional frequency error y(t) is a statistically non-gtationary process.
An examination of equation (4.4.22) and (4.4.23) reveals terms in these

expressions which are functions of ti or tk minus ts' Thus the
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variance, for instance, increases with time, This is illustrated in
Flgure 4,4.10 for the rubidium clock, The standard error of a range
measurement based on the use of this clock is given for twenty range
observations spaced at fifteen minute intervals starting five minutes,
one hour, and five hours after the start of the cloek, The increase in
variance 1s almost linear., An examination of the autocorrelation func-
tion shows that this function, dominately flat, is similar to a random
bias having a constant autoecnrrelation and whose integral is a random
ramp which Incrcases exactly linearly. Hence a linear growth in
variance is expected asg seen in Figure 4.4.10. The correlation coeffi~
cients Py between the Ffirst range observation and the 4'th in

cach of these sequences are gilven in Tigure 4.4.11. As thestarting time
of the sequence from ty increases so does the correlation among the ran-
dom errors which agaln is expected since the variance inereases with
time and the errors are correlated.

Figure 4.4.12 gives the autocorrelation function for the cesium
clock based on the Markov process approximation and Figures 4.4.13 and
4.4.14 give the standard error and correlations of range errors based on
this clock. A comparison of Figures 4.4.10 and 4.4.13 reveals the
greater stability of the cesium clock. After ten hours of operation the
standard error of the cesium clock output is approximately 3.5 nano-
seconds compared to 63 nanoseconds for the rubidium standard. In addi-
tion the correlations among the cesium clock errors decreases more
rapldly than the rubidium clock.

Considering both random clock error sources the total variance
and correlation of range observations Rk(ti) and Rk<tj) measurpd by
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recedver ko are given by the equations

EIR (£ R (6] = E[n Len Ce)] -+ Blny (epmy (e )] (G420

BIR ()R (6 )] = BIngCedn Ce) )+ BIn Ceny (e )] (404, 29)

where the variances and correlations of the yrandom error n are given by

equations (4.4,22) and (4.4.23). The subseript "s" refers to the satel

lite rubiddium clock,
Tor simultaneous observations of range by two recelvers the

covariance of the observations Rk(ti) and Rg(tj)iﬁ glven by

BIR (kR ()] = BIng (e )n (k)] (444426

I the above ecquations the random errors N have zero-mean which is a con-

sequence of fractional frequency error being zero mean.

4,4,1.2.2 Integrated Doppler Observation Statistics, Let

AR(t ) be an integrated Doppler or range difference mecasurement over

the interval [t ,t ] and AR(tZ) a similar measurement from the same

recelver over the interval [tk’tg]' The covariance of the observations

is

BIARCE ), AR(E))] = EInCe ) = n(e,) nlty) = n(e,)]

=En(e ) ne))1-En(e ) n(tk)]-E[n<ti) n(ey)l
+ E[n(ey) n(t >]

; (4.4.27)

2: f%.[ —B (tg-t) e~8j(tk-t )

i= j

- e + a

-B,(ty - t,) -Bj(tk-ti)]
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The varianee of a range difference observation 1o aiven by

2
‘ J | ) 3. : L “Bj(%“%) ] X
BIARCE DAR(E )= ¢ 3%'17%(‘:““"&)*'@(& 1), 4628

Equatdions (4.4.27) and (4.4,28) are independent of the elock epoch t, .
The statistics of the range difference error depend only on the Doppler
integration interval or the time difference between observatdons. Thus
the random range difference error is statiomary. Expressions analegous
to cquations (4.4.24) through (4.4.26) express the complete atatistics
of range difference obscrvation errors for individual or simultaneous

observations due to clock error.

ho4,2 Statistics of Residuals to Polynomial Clock Models

The statistlcal characteristics of fractional frequency error
and its integrated cffect on range and Doppler observations have been
discussed in detail. Tor range observations the total random error 1s
due to thtee sources, two of which are correlated noise processes. The

total random range evror is expressible as
n(e) = n (L) +n (k) + E(r) Cho4.29)

where Mg and n, are the correlated random range crrors due to satellite
and receiver random clock errors respectively. The quantity & repre-

sents recelver white noise as discussed in Section 4,l.4. The total

integrated Doppler random error over the integration interval [tj,tgl is

An(ep) = ”s“z) - ns(tj) + “k("z) - nk(t:j) + Ly (4.4,30)

where ;2 is the white noise associated with the Doppler measurement pro-

cedure. 161
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Depending on the stability of the clock the random range or
Doppler error components, ns(t) and nk(t), may appear quite systematic
over fixed time intervals and may be represented by polynomial models of
varying degree. Tor short time spans the models for the clocks con-
sldered in this analysis were taken to be a bias and drift for range
observations or a frequency bias for Doppler observations. lowever
these models and even higher order polynomial models are not sufficient
to entirely represent this coxrelated error., Thus knowledge of the
statistical properties of the deviations of the error from such a model
becomes important since these residuals represent an unmodeled part of

the observation equation after the inclusion of the polynomial model.

162

il ik




L

TR IRy TR T Ty

R ki

D A .

P e A, w T STES AT RIS R TR T e e e e e
Co

Proceeding, equation (4.4.29) is expressed as follows
nt) = Pms(t) + Pnk(t) + rs(t) + rk(t) + E(t) (4.4.3L)

where Pms(t) 1g an m'th degree polynomial chosen to model the corre-
lated random error ns(t) and Pnk(t) is an n'th degree polynomial
modeling the random process nk(t). The statistics of the residuals
r{t) may be developed from the covariance of the random clock errors
developed in Section 4.4.1 using the procedure derived in Appendix A
which develops the mathematics for polynomial approximation to random
walk segments. Using equation (A.1.9) the second order statistics of

the range residuals r(t) ro a polynomial model are obtained as

E[r(t)rT(t)] = GE[R(E)R- ()]G (4.4.32)
where

G = [T -~ AGATA)Y 1A (4.4.33)

and A 1s the design matrix for the polynomial model selected. The
E[R(t)R?(t)] is the covariance matrix of the random clock error being
modeled. This covariance is given by equations (4.4.22) and (4.4.23).
For integrated Doppler observations the statistics of the resi-
duals to a given degree polynomial model are similarly obtained from
equations (4.4.32) and (4.4.33) with the use of the covariance matrix
for integrated Doppler random error due to each system clock, equations

(4.4.27) and (4.4.28). The equation may be written as
T T T
E[Ar(t)Ar (t)] = HE[AR(t)AR (t)]H (4.4.34)

where the matrix H is similar to the matrix G of equation (4.4.33)
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with changes due to the cholce of the model adopted for clock dnduced

random Doppler erroxrs

He= [I~=A"(AA") “A7] . (4.4.35)

Equation (4.4.30) has the form
An(tz) = Pis(tz) + ij(cg) + Ars(tl) + A“k(tz) + cg (4.4.36)

after the selection of the polynomial models.

If the statistics of these residuals were ignored in dynamic
point positioning adjustments the resulting coordinate covariance
matrix would be optimistic, An increase in the degrees of the poly-
nomial clock models would offset this optimism to some extent since the
level of unmodeled errox would be decreased. However 1f a rigorous
adjustment is to be performed then these residual statistics must be
included in the least squares adjustment weight matrix to account for
the unmodeled ervor r(t) or Ar(t) in a statistical rather than para-
metric fashion. The adjustment should then produce a valid coordinate
covariance matrix regardless of the order of the polynomial models used
provided numerical problums are not e¢ncountered and the parameters are
independent and we’l observed.

The question of adequacy of a particular polynomial for a given
data span needs to be addressed.

4.4,2,1 Comments on the Choice of

Polynomial Error Models
To determine what degree polynomial model would be best to

represent random clock error various factors have to be considered.
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Flrst among these are the length of the data span belng modeled and the
number of additional parvameters which need to be introduced into the
geodetic positioning adjustment. Use of a higher order polynomial wili
reduce the variance of the clock model residuals but may tend to numeri-
cally weaken the adjustment normal equatilons.

To determine how well a given order polynomial model repre-
sents correlated clock error over a fixed time interval a series of
first and second order polynomial fits were made using simulated ran-
dom clock error. The algorithm of Meditch [1975] was used to generate
sequences of clock error which were then converted to range error. The
polynomial fits were equal weighted least squares approximations to the
range errors. A sampling rate of one minute was used. Trom the
residuals of f£it r(t) autocorrelation functions were numerdeally

obtained for each approximation using

_r(ti)r(ti4~T) (4.4.37)

$, (1) =-%
J i=1

R e =1

where n depends on T and the total number of samples. The varilance of
the residuals from each case were averaged to determine an overall
variance for the residuals of fit for both the linear and quadratic
polynomials. TFor the rubidium clock three time intervals were
considered with a linear polynomial fit. The root mean square
errors are given in Table 4.4.5. Tor the cesium clock the

results indicate that the longer the interval the better the second
order polynomial performs, as expected. Howeve  =his increase in good~-

ness of fit is less significant as the length of the interval decreases.
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TABLE 4.4.5, RANGE RESIDUAL STANDARD LERRORS BASFD ON
POLYNOMIAL FITS TO SIMULATED CLOCK ERROR

RMS ERROR OF FIT (cm)
Cc E 0, CASES
CLOCK TYPE | POLYNOMIAL MODEL | NO, C TITAETIEY hr_m
CESIUM LINEAR M 87 | 118 187 | 256
QUADRATIC 10 7.0 93! 161 | 174
2 hr 4 hr 8 hr
RUBIDIUM LINEAR 30 18,1 36.6 66.3

It is chvious that a tradeoff exists between the level of model error
remaining and the number of model parameter required, TFor instance two
linear models over 16 hours leaves an 1ll.8-centimeter sample standard
error for the residuals, while a single quadratic fit over the same
interval leaves 15.1 centimeters of expected error, An increase in one
parameter produces a 22-percent decrease in the expected error. Tor
the rubidium clock the expected level of residual error is higher due to
the pourer short term stability of this clock (see Figure 4.1.3) and is
comparable only to the cesium if the fi: interval is about one-eighth
the length. Tigures 4.4.15 and 4.4.16 give examples of the residuals of
fit for each ¢lock for a linear f£it over 8 hours. In Table 4.4.5 the
length of the rubidium clock cases was Limited to 8 hours since one
clock model for each satellite pass was anticipated for the positioning
studies to be conducted.

Finally, the theoretical standard errors for range residuals to

a linear fit were determined using equation (4.4.32) for these clocks
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for the same intervals with the exception of the 4-hour case for the
cesium clock, The results are glven in Figures 4.4.17 and 4.4.18,
These figures support the conclusions drawn above, and in additdion,
graphically demonstrate that the statistics of the residuals to the
clock modeling polynomial are not stationary, The variance of a
residual depends on the order of the polynomial, the interval length
and the location within the sample. The correlation coefficient matrisx,
contoured in Figure 4.4.19 for an 8~hour linecar fit for the cesium
clock, does not have the constant dlagonals except for equally spaced
samples of a stat.onary statistical process. However, by Theorem A,1l
of Appendix A, the statistics of the residuals will be constant from
interval to interval of the same length provided the sampling is per-

formed equivalently and the same order polynomial is used,

4.4.2,2 Correlation Between Sets of Residuals

An examination of equations (4.4.22), (4.4,23), (4.4.27) and
(4.4.28) shows that the random errors due to oscillator instability are
correlated over all time. That this is the case is a consequence of
the error being a random walk or the difference in elements of a random
walk where the underlying process is fractional frequency error.
Since correlation between range or Doppler observations is due
entirely to clock error, it lacomes interesting to examine the cor-
relation between the residuals of two successive polvnomial fits to ran-—
dom clock error. If the cross correlations are relatively small, the
assumption that successive .servation sets can be taken as statisti-

cally independent is justified when polynomial clock models are adopted.

.
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This assumption would then permit sets of correlated observations *o be
introduced into a geodetic positioning adjustment as independent blocks
! in a sequential least squares approach, Computationally this implies
, that the dimension of the observation covariance matrix to be inverted
: to form the least squaies welght matrix is reasonable.

To test that assumption the residual covarilance matrix was
computed using ecquation (A.2.5) of Appendix A for two linear fits

to successive clock error segments for both the cesium and rubidium

§ clocks:
)
" N rolivo S i w7 o BT
Elr,x,] Elr;s)] E[RlRl] E[R,R;] :
o S | = T
L E[rzrl] E[rzrzl E[Rle] E[R2R2]
L "
where
@ = [1 - AATA) AT (4.4, 39)
and
. Al 0
A= (4.4.40)
0 A,

The correlation coefficient matrix for the residuals was computed and

the coefficients from the off-diagonal block, E[;i;g] were compared to

the correlation coefficients from the diagonal blecks, E[?l;g] and
E[;E;E]. The results indicated in all cases that the correlation coef-
ficients between residuals from two different fits were at least twn
orders of magnitude smaller than the correlation coefficients for

residuals from the same polynomial fit. These results support the
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assumption that successive blocks could be treated as independent

although cach block itself would be internally correlated.

4.4.3 Welght Matrix

The introduction of polynomial clock models tends to statisti-
cally decouple the residuals from successive polynomial fits; thus, GPS
range and Doppler observation sets, which are correlated in time by
random clock error, may be treated as independent when polynomlals are
adopted to model these random components. Iach set is itself fully
correlated and the statistics of the residuals to the adopted poly-
nomial models must be included in forming the least squares adjustment
welght matrix as shown in Figure 4.4.20. The size of each correlated
data set will depend on the time interval over which the models are
applied which, along with the degree of polynomial, determines the
variance of the remaining residuals. Since the receiver cesium clock
has better stability than the satellite rubidium clock the time inter-
val over which a single receiver polynomial clock model is adopted may
span multiple intervals of satellite tracking data each with its own
clock model., This will of course depend not only on clock stability,
but also on the geometric strength of the observations taken. Figure
4.4,21 1illustrates this concept in which observations within block K
are assumed statistically independent of observations within block L,
each of which includes range observations from four satellites taken in

this case simultaneously from two statilons.

The weipht matrix, taken as the inverse of the covariance matrix

of random observation errors, is assumed te be block diagonal wherein
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edeh bloek contains the second order statistles of the yesiduals to the
neleegted polvnomial eloek models and of the white nolse due to the
receiver, The wedght matrix corresponding to the observation schedulc
of Pipure 4,4.21 is shown in Fipure 4.4.2%L, Eaeh diagonal block is the
inverse of the sum of three eovariance matrices. For relative posi-
tioning using range obscrvations from two stations observing simultane-
ous the form of the diaponal block is given by equation (4.4.41) where
the covarianee matrices E[rrT] are based on equatdon (4,4.32), The form
of the matrix is identical for Doppler observations using the covariance

E{ArArT] given in equation (4.4.34),

4.5 Results of Dynamle Positioning Studies

The simulated range and integrated Doppler observations
developed in Section 4.2.1 according to equations (4.2.8) through
(4.2.10) were used in the sequential least squares adjustment algorithm
developed 4n Scction 4.3.1 to obtain minimum variance estimates of
geodetic station coorxdinates and baseline components using a dynamic
positioning approach. Observations from three separate station
groupings were considered in this analysis. The geodetic coordinates
of these stations are found in Table 4.2.1., The GPS orbital elements
adopted in this study are given in Table 3,2,1 referred to the mean
equator and equinox of 1950.0.

Solutions were obtalned for the geodetic coordinates of indi-
vidual tracking stations then for baseline components and chord lengths
from slmultancous observations from pairs of stations. Solutions were
developed using either range or integratea Doppler observations sepa-~
rately. No solutions based on both observation types were considered
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althcugh this possibility may be available with two frequency Doppler
recoivers having a two frequency ranging capability. For each posi-
tloiing problem the effects of the random and systematic error sources
ok Sty 4.1 were addressed and the adjustment welghting procedure
developed in Section 4,4.3 was utilized as a function of the random

errcr cources consildered and the error models chosen to represent atomic

clock error,

Integrated Doppler observations were assumed to be independent
sixty-second measurements aggregated every five minutes, not correlated
range differences, as in Chapter 3. This latter type of treatment would
add additional strength to the least squares normal equations enhancing
the Doppler results presented below. The type of correlations con-
sidered in this analysis however are those due to the correlated random
atomic clock error present in both the receiver and satellite clocks.

Range obse.vations were considered subject to time errors
and the normal equations included timing parameters in accordance
with the tracking scenario under consideration. The dinclusion
of such parameters weakens the normal equations as considered in
Chapter 3. However in actual applications these parameters are neces-
sary since tracking receiver clocks will be subject to timing offsets
and drifts with respect to an adopted time system such as GPS system
time.

The solutions presented were basesd on two basilc tracking proce~
dures each with the adaptation of similar modeling for atomic clock
errors. The first data acquisition procedure consisted of tracking

satellites over three hour intervals and performing the least squares
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adjustment for statdon coordinates every nine hours. In this case a
, linear model was used to approximate the error in cach separate clock,
Thus the satellite rubidium clocks were modeled by a linear function of y/
time over three hour intervals and the tracking station's cesdlum clock
) error was modeled by the same type of function over the nine hour intor-
val., Sciutions were performed sequentially approximately every nine

hours with some variation 1f a tracked satellite's period of observ-

e

ahility is less than three hours. Observations were utilized only if

Raiac il

M

the topocentric elevation angle of the satellite exceeded ten degrees.,

The sccond tracking scenario reduces the satellite tracking interval to 1

one hour with a sequential adjustment of parameters occurring after
four hours of observation. A similar clock modeling procedure was 7
adapted but over the shorter intervals., This latter tracking procedure
allows a more rapid sampling of the satellite pass geometries and a bet-

ter approximation of the random clock error; however, thils procedure

G S b e e

introduces a larger number of parameters of solution over a fixed period
of site occupation.
In all cases considered parameters representing the satellite

orbital elements were introduced into the adjustment with a priori

A L R ot oo e 2

welghting consistent with the amplitude of the ephemeris error intro-

duced, as described in Section 4.1.2. Orbital elements were introduced
for each satellite tracking interval and corrections to these clements
5 at the midpoint of the interval were estimated as described in Section
4.3.2. The inclusion of these parameters In the adjustment is con~ E
sistent with the approach of Brown [1976] althcugh the modeling proce~-

dure for ephemeris error is different.
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As a final introductory comment 1t must be noted that the transe
formations between the mean Celestial System of 1950.0 and the
carth=fixed coordinate system are assumed known. This fmplies that no
crrors in precession, nutation, earth rotation, or polar motion are
Introduced into the results. The consequence of errors in these vari-
ables is of great importance in geodesy but are not addressed in this
study. Therefore in the following 1t is assumed that an error [ree

tranaformatilon dnto the carth-fixed coordinate system exidsts.

4.,5,1 Dynamic Point Positioning

4.5.1,1 Range Solutions Based on Threeslour
Tracking Intervals

A limited set of simulations based on two frequency compensated
range observations were made using obscrvations from Statlons 1001 and
1002 with each selected satellite of the GPS constellation tracked for
three hours, A sequential adjustment of the earth-fixed Cartesian sta-
tion coordinates was performed every nine hours over a five day period.
The complete parameter set included a linear clock model for cach
satellite rubidium clock for every three-hour interval of tracking,

a linear model for the receiver cesium clock for every nine-hour
interval, cphemeris parameter corrections for every three hours of
tracking, and the earth-fixed Cartesian cooxrdinates of the station.
In addition a tropospheric scaling parameter, as described in Section
4.1.3, was dincluded for every three hours of observation when

tropospheric refraction errors were introduced into the observations.
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To evaluate the effects of random and systoematie erroy sources
on station positioning, simulatlons were made In which individual
error sources were introduced into the range observations and only a
Timited number of parameters were adjusted.  Flrst, the effect of
random cestum elock error on station positionding was examined, Simu-
lated random cesium clock errors were developed for the cesium clock
specificatdons given dn Figure 4.1.3 using the algorithm of Mediveh
[1975], This random cesium clock error was added to the peometric
ranges to OGS satellite positions acvording to equatien (4.2,8). The
gatellites were selected using the eriterieon of mindmizing the Crace of
the statdon covariance matrix as described in Section 4,2.2. To these
canges an optimistic ten contimeters of Gaussian white noise was dntro-
duced, The adjustment parameters included the Cartesian coordinates of
the station and a filrst degree polynomial in time to represent the
cesium clock error every nine hours. The adjustment welghting was based
solely on the white nolse statilstics and the statlon coordinates were in
errvor initially by 100 meters in latftwle. Mgure 4.5.1 glves the ervor
in estimated position of station 1001 as a function of time with a
sequential adjustment In station posiltion performed every nine hours.
With a random white nolse level of ten centimeters the range observa-
tions would predict standard ervors of 0.17, 0.21, and 0.15 centimeters
for the u, v, and w components of station position in this example.
According to Figure 4.4.18 adopting a linear model to .e¢present random
cesium elock error over nine-hour intervals would leave an unmodeled
random residual errvor with approximately a 12 to 16 centimeters standard

error. The thirteen sets of this random residual errvor introduced the
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Flgure 4.5.,1, LEffect of Random Cesium Clock Error on
Positioning Using Range Observations
(Station 1001)

station position errors in Figure 4.5.1. The residual random clock
errors represented by the difiference between the random clock error and
the best fitting lincar model are correlated as shown in Fipure 4.4.19,
The errors introduced iInto station positioning by these random clock
errors, modeled an a Llincar function, will not average as those intro=-
“uced by Gaussian white noise of a similar magnitude as evidenced by the
station position errors shown in Figure 4.5.1. A comparison of these
ervors with the standard errors expected by 10 centimeter Goussian white
observation noise, given above, indicates the level of error expected
from unmodeled cesium clock noise. Errors of similar magnitude although
different in their distribution were present in the results from statlon
1002, The magnitude of this error plays a more critical vole for the

determination of baseline components and 1s discussed in Section 4.5.2,
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The effect of atomie clock errvor on station positiondng also
includes the effect of unmodeled random satellite rubidium elock ervor.
For the dynamic positioning approach under examinatlon in this analysis
{t 48 assumed that estimates of cach satellite's clock error are pro-
vided with the ephemerides. For the current study this ilmplies that
these estimates will take the form of the best linear it and will pro=
vide a1 estimate of the systematic rubidium eloek error over the inter-
val of satellite tracking utilized in geodetile positioning, TIn the
current examples that represents a three=hour interval of time.
Assuning for the moment that over this interval the bilas and drift of
the satellite cloek ave known, then the question ralsed is what effceet
will the unmodeled random residual satellite clock error produce in
station positioning? To obtain an estimate of this error station posi-
tioning simulations were made introducing this resddual rubidium clock
error into the same geometric ranges used in the previous exawmples,
This random residual errvor was computed by differencing simulated ran-
dom rubidium clock noise with the best Llinear least squaves it to the
nolse over the tracking interval, The residuals from such a fit have an
average standard errvor of approximately 30 centimeters as seen from
Figure 4.4,17. The rubidium clock noise simulated was consistent with
the rubldium oscillator Allan variance given in Figure 4.1.3. Ten
centimeter Gaussian white noise was also introduced into the observa-
tions representing an unrealisticly optimistic level of random receiver
noise. The adjustment parameters included the station's earth-fixed
Cartesian coordinates. TFigure 4.5.2 gives the position errors for
station 1001 as a function of time. The error represents the magnitude
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Figure 4.5.2, Effect of Residual Random Rubidium Clock Error on
Positioning, Using Range Obsarvations (Station 1001)

of the difference between actual and estimated station coordinates after
each nine hour update. The observatilons were welghted using only

the white noise statistics, Based on a ten centimeter standard

error of observatlion the full set of range observations would predict an
uncertainty in station position of 0.11, 0.12, and 0,09 centimeters for
the u, v, and w coordinates. The final errors in the statilon coordi-
nates were 1.3, 0.8, and 0.6 centimeters after 117 hours of observation.
Again, scaling the predicted standard errors by 3.0, the error intro-
duced into station coordinates by the sequences of correlated residual
rubidium clock exrror averages although not as rapidly as errors
introduced by white observation noise of an equivalent varilance. In
this example the residual rubidium clock error even though of higher
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variance than the residual cesium cloek noise produces a smaller posi-
tioning errvor. The rate at whieh the errors in statdon positioning
average will depend on the varlance and correlation of the residual
noisc process, the number of noise segments introduced, and the correla-
tions among station position coordinates and the clock modeling para-
meters introduced into the adjustment., MHowever, as in the previous
example, the effect of wnmodeled residual rubidium elock error on the
determination of station cooxdinates is negligible.

To further refine the estimate of station position errvor
introduced by atomic elock error sources, an adjustment of statlon
coordinates and linear clock error models was made in which random
cesium elock error, residual vubidium clock errvor and ten conti-
meters of Gaussian white receiver nolse were introduced iuto the geo-
metric ranges. Adjustment welghting was based on the statistileal
modeling developed in Section 4.4 including the fully correlated
welghting due to unmodeled atomic clock errors. The results of this
adjustment are given in Figure 4.5.3(a) through 4.5.3(c) for each
Cartesian coordinate of station 1001. The atomic clock errors intro-
duced into the range observations were simulated as previously described
for the cesium and rubidium clocks under consideration. Rememberlng the
results of the previous two examples where the resulting standard errors
of station positioning based only on Gaussian white noise were extremely
small, it can be seen that the standard error in station position com-
ponents due to correlated atomic clock error sources ranges from 8 to 11

centimeters after one day of observation and from4 to 5 centimeters after
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five days., The magnitude of this error will be of importance in the
determination of baseline components discussed in Seetlon 4,5.2.

To obtain an estimate of the effect of the ephemeris crrox
deseribed 4in Section 4.1.2 orbit error was introduced into statdon
positioning simulations using equation (4,2,10). The nominal level of
ephemeris error utilized throughout this study is given in Table 4.2.2
and the assumptions regarding its distribution are discugsed in Section
4,2,1, Adjustment results for the Cartesian coordinates of Station 1001
are given in Figure 4.5.4 wherce the absolute value of the coordinate
errors are given, Parameters in the adjustment included only station
coordinates, ephemeris errvor modeling being momentarily ignored.

Ten centimeters of Gaussian white noise were again applied to the obsex~
vations and formed the basis for the adjustment weilghting. The results
indicate that the level of orbit error addressed in this analysis may
introduce errors into station position of greater thanone meter in cach
component even after five days of continuous observation. Modeling of
the ephemeris erxror tends to reduce this error, These results are simi-
lar to those obtained for Station 1002, The errors introduced into
positioning by each error source are dominated by the effect of errors
in the satellite cphemerides. This error will be the limiting factor in
the overall accuracy to which geodetic station positions may be obtained
using GPS ranging.

To define an uppex bound on the effect of unmodeled tropospheric
refraction error on station positioning a five percent error was assumed

in the predicted tropospheric refraction correction based on the
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Tigure 4.5.4, Effect of Uncompensated Systematlc Orxbit Drror on

Positioning Usipe Range Observations (Station 1001)
Hopfield model discugsed in Section 4.,1.3. This errox was taken with a
constant sign. Observatiops below ten degrees clevation angle were
excluded, The results of a positioning simulation for Statdon 1001l are
given in Flgure 4.5.5 where the adjustment included only the Cartesian
coordinates of the station. Ten centimeter Gaussian white noilse was
included as before. Refraction scaling parameters discussed in Section
4,1.3 were not included in the adjustment. The results demonstrate that
a constant percentage model exrror in tropospheric refraction of five
percent can introduce errors in station position varying between 8 and
12 centimeters., If the actual modeling error had taken the form of a
constant percentage for cach observation but with a random sign varia-
tion for each tracking interval, the error in station positioning would
be considerably less since the sign of the station position errors from
each iInterval of tracking would have variations resulting in hetter
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] averaging. Subtracting the mean of each component of station position
]
| error from the results in Figure 4.5.5 gdves an estimate of 4 to 6
i

centimeters of variation at 1 day and 1~2 at 5 days which could be
expected in such a case. Again the magnitude of this errox, cven con-
sidering a worst case as in this example, is small in comparison to the

effect of ephemevis crrox.

R

Finally, the cffect of a realistic level of recelver white noise

ey

is assessed in Figure 4.5.6 in which the standard error of the Cartesian
station coordinates are given as a function of time. After twenty-four
{ hours of continuous observation the standard error of the solution for
each coordinate is approximately 2 centimeters and reduces exponentially
to approximately 1 centimeter after five days of observation. A com~

parison of Figures 4.5,6 and 4,5.3 reveals that, in the absence of .
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nystematic ervors such as satellite position and tropospherie refraee
tion, improvement in the receiver ranpe measurement noise will not
improve the quality of station positioning since the effeet of random
atomie cloek crror will dominate.

Table 4,5,1 summarizes the approximate levels of error introe
duced into station positioning from the crroy sources discussed above
wvhen the satellite tracking dnterval is three hours,

For Stations 1001 and 1002 complete simulations of dynamic
point positioningwere made using range observations from three hour
tracking intervals, The error sources intrvoduced inte the observations
consisted of ephemeris error, satellite rubidium clock error, receiver
cesdum cloek error, tropospheric wefraction error, and one meteyr of
Gaussian recelver white noise in accordance with Table 4,2.2, Va...us
independent sequences of random atomic clock error were utilized in the
analysis of stotion positioning for both statfons. TFigure 4,5.7 gives
the standard errors and actual position errors for Station 1001 for one
case., The paramcters of the adjustment consisted of the full set
described above weighted according to the level of error introduced into
the observations., T7This set included station coordinates, ephemeris
parameters for each three hour interval, a linear ecrror model for the
receiver cloek over every nine~hour interval, a linear error model for
cach satellite clock fov every three~hour tracking interval, and a
tropospheric refraction sealing parameter every three hours. The least
squares adjustment algov.thm incorporated the fully correlated adjust~
ment welghting based on random atomic clock error and the Gaussian white

receiver noise. Initially the station's position was in error by 100
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Figure 4.5.6. Standard Error of Station 1001 Coordinates
Obtained from Range Observations Subject
to One Meter Gaussian White Noise

TABLE 4.5.1. EFFECT OF ERROR SOURCES ON POSITIONING DERIVED FROM
RANGE OBSERVATIONS USING A THREE-HOUR TRACKING INTERVAL

APPROXIMATE COORDINATE

ERROR SOURCE ERROR (cm)
1 DAY 5 DAYS
TROPQSPHERIC REFRACTION (t5%) 8-12 4-6*
EPHEMERIS 150-200 80-120
RESIDUAL SATELLITE RUBIDIUM CLOCK ERROR 6 2
RANDOM RECEIVER CES/UM CLOCK ERROR 8 4
RECEIVER WHITE NOISE (1m) 1.5-2.0 7-,9

*ASSUMING AN AVERAGING DUE TO SIGN VARIATIONS
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meters in latltude, An examination of the solution with all evror
sources included indicates that cach component of station position can
be determined with an accuracy of from 1.5 to 2.3 meters after one day
of observation and from 0.8 to 1.2 meters after five days.

The statilon posidtioning analysis based on a three-hour tracking
Interval was not Immediately extended to include the other stations in

Table 4.,2.1, Instead consideration was given to improving the current

results.

4.5.1.2 Range Solutions Based on One~Hour
Tracking Intervals

Taking dnto account the results obtained in Section 4,2.2 for
the optimal selection of satellites for point positiloning, improvement
in the geometyrie strength of the solutdon could he obtailned by decreasing
the tracking interval and sampling the satellite constellation geometry
more rapidly., Thus a second scenario was investigated consisting of
tracking each selected satellite for one hour and estimating station
position every four hours. TFor a fixed interval of site occupation
this approach dntroduces additional modeling parameters but allows
a better sampling of satellite~station geometry. Using this approach
ephemeris parameters are included for each hour of observation along
with a linear satellite clock error model. A linear receiver clock
error model 1Ls introdused every four hours. Since the clock modeling
intervals are reduced the linear models are a better approximation to
the random noise processes and the residual error statilstics are
reduced. However the inclusion of additionsl modeling parameters will
have the opposite cffect of weakening the least squares normal equa-

tlons.
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To determine 1f an improvement in the prior station positioning
results was achievable a series of solutions were made for Stations 1001
and 1002 adopting this new approach. These positioning simulations were
based on one hour tracking intervals witt : tutal site occupation
ranging from two to five days and were desisued to measure the effect of
random and systematic errors on positioning based on this tracking
scenario. Table 4.5.2 gives estimates of the effects of these error
sources in a form comparable with Table 4.5.1. The magnitude of the
errors introduced are again taken from Table 4.2.2.
TABLE 4.5.2. EFFECT OF ERROR SOURCES ON POSITIONING DERIVED FROM RANGE

OBSERVATIONS USING A ONE~HOUR TRACKING INTERVAL

APPRQXIMATE COORDINATE

ERROR SOURCE ERROR (ecm)
1 DAY 5 DAYS
TROPOSPHERIC REFRACTION (£5°%) 8-12 4.6"
EPHEMERIS 50-80 2540
RESIDUAL SATELLITE RUBIDIUM CLOCK ERROR 4 !
RANDOM RECEIVER CESIUM CLOCK ERROR 5 2
RECEIVER WHITE NOISE (1m) 1.5-2.0 79

*ASSUMING AN AVERAGING DUE TO SIGN VARIATIONS

An examination of Tables 4.5.1 and 4.5.2 reveals that this
change in the observation and modeling procedure reduces the effect of
two primary error sources, ephemeris error and random atomic clock
error. The efiect on positioning due to residual tropospheric refrac-
tion and receiver white noise remain virtually the same. These latter

effects will be discussed first.
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Simulations of station positioning were made in which Gaussian
white noilse with a standard error of one meter was iIntroduced into the
peometrical ranges to GPS satellites selected using the criterion which

produces the smallest trace of the station coordinate covarilance

developed sequentially. The adjustment results for Station 1001 are
glven in Filgure 4.5.8 where the standard error and magnitude of the
station position error are given for each component., The results are
similar to those given in Figure 4.5.6 for the three~hour tracking
Interval demonstrating that the effect of recediver instrumental noilsc
on positioning averages equivalently for each observation procedure,

The results indicate that the error in each component of position due to
recelver nolse is approximately 1.5 to 2.0 centimeters after one day and
0.7 to 0,9 centimeters after five days of continuous observation.

For tropospheric refraction the results based on a five percent
blas in the predicted refraction corrections show station pesition com-
ponent erroxs ranging from 5 to 20 centimeters., With the sign of the
modeling error taken as constant the error in the station coordinates
appears as a blas in the range of values just given with variations
generally on the order of five centimeters. Thus the overall effect of
residual tropospheric refraction error remains at a level similar to
that from the prior tracking approach. However with the introduction of
refraction bias parameters this error is substantially reduced. Tigure
4.5.9 gives the results of an adjustment with range observations subicct
to a systematic tropospheric refraction error of five percent and ran-
dom instrumental noise with a one meter standard error. In additilon to

the Cartesian statilon coordinates refraction scaling parameters, as
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given in equation (4.1.57), were included, one for ecach hour of
tracking., The errors in positioning due to refraction were reduced to
a level of approximately 4 to 6 centimeters after one day and 2 to 4
centimeters after five days of observation, Thus refraction errors
will not play a critical role in the determination of earth-fixed
coordinates from GPS range observatlons.

The adoption of a one hour satellite tracking interval with
linecar modeling of random clock error over shorter time intervals
decreases the effective error in station positioning as mentioned
earlier. After a lincar approximation of random cesium clock error over
a four hour interval the unmodeled correlated residual errors remaining
have standard errors of approximately 9 centimeters compared to the 12
to 16 centimeter standard error after an eight hour linear approxima-
tion., Similarly residual rubidium clock noilse over a one hour interval
has a standard error of approximately 12 centimeters compared to approx-
imately 30 centimeters for a three hour fit interval. Thus the expected
magnitude of the unmodeled clock error will decrease with this alternate
tracking approach. However the number of model parameters required in
the adjustment will increase tending to weaken the normal equations for
statdon position. Figure 4,5.10 gives an example of the errors in
station position when random cesium clock error and instxrumental
receiver noise with a standard error of one meter are present in the
observations., The adjustment parameters included station position and
a linear receiver clock model for each four-hour interval. The adjust-
ment welghting was developed using the statistics of the two random

error sources. Taking into account the results given in Figure 4.5.8,
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" Plpure 4.5,10 indiecates that random cesium clock errovs, consistent wich

the stability specifications adopted for the receiver oscillatox, intro-
duce approximately 5 centimeters of exvor in each component of station
position after one day of observationand 2 centimeters after five days,

The random rubidium clock error modeled as a linear funetion of
time over one~hour intervals was also considered. This error gource
Introduces errors of approximately 4 and 1 centimeters after one and
five days of continuous observation respectively, With both atomic
clock random error sources and random instrumental noise included in the
adjustment, using the complete statistical weighting, the standard
errors of station position were reduced to approximately 60 percent of
the error present in the three-hour tracking procedure.

With the selection of a satellite occurring each hour the
effects of cphemeris error, whose distribution is discussed in Section
4.2.1, averages to a greater extent than in the three-hour tracking
scheme, Tigure 4.5.11 gilves an example of the errors in positioning
expected from range observations subject to one meter random instrumen-
tal error when ephemeris errors are present. Adjustment parameters
Inelude station position and six orbital elements for each one-hour
interval. A priori welghting consistent with the amplitude of
ephemerls error introduced was included for the orbital elements. The
expected error in position due to the level of ephemeris error outlined
in Table 4.2.2 is given in Table 4.5.2 to be 50 to 80 centimeters after
one day and 25 to 40 centimeters after five days of observation.

IFinally in Figure 4.5.12 results are given for Station 100l for

a complete simulation of station positioning in which all errov sources
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from Table 4.2.2 were included, All modeling paramcters were included
in the adjustment and the full weight matrix based on all unmodeled ran=
dom error sources was utilized., These results indicate that the
expected error in the components of station position range from 70 to
140 centimeters after one day of obsexvation and from 35 to 60 centi-
meters after five days. A comparison of Figures 4.5.7 and 4.5.12 glves
the improvement obtained using the shorter tracking interval. The
improvements in the accuracy of the recovered station coordinates for
Station 1001 were approximately 125, 90, and 30 centimeters for the u,
v, and w coordinates respeetively after one day of observation and 63,
55, and 20 centimeters respectively after five days of continuous obser-
vation, Similar gains in accuracy were achieved for Station 1002.
Since the adoption of the shorter tracking interval produced a
significant inerecase in the accuracy of the recovered station position,
simulations of dynamic point positioning were made for all stations in
Table 4.2,1. These simulations incorporated all ecrrox sources from
Table 4.2.2, the full set of modeling parameters with a priori weights
conslstent with the level of error introduced, and the weighting pro-
cedure developed in Section 4.4.3 for single station tracking. Table
4.5,4 presents the uncertainties in the geodetic coordinates for all
stations under investigation obtained from dynmamic point positioning
using range observations. Table 4,5.3 is provided as a key for tables
presenting simulation results., For the adopted levels of systematlc
and random errors utilized these results indicate that the geodetic
coordinates may be recovered to the 100 to 150 centimeter level ox

better after one day of continuous GPS range observations. After five
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days the accuracy of the recovered coovdinates is between 0 to 70
centimeters.  The dominant crror source in these results ds the satele
1ite ephemeris,

Some variations in the results are evident. For instance, the
solutions for the polar Stations 1009 and 1010 have a Jarger standard
errvor for latitude and a smaller uncertainty in Jongitude and height
than the results obtained in the mid=latitude station group solutlons.
This difference can be explained by examining the change in
gsvation-satellite geometry. For hipgh latitude stations the maximum
elevation angle is considerable less. Up to a latitude of 03 deprees
siatellite crossings of the zenith are possible., However for higher
latitudes the maximum clevation angle decreases to approximately 54.5
degrees meaning that a larger percentage of the observations will be at
lower elevatlon anples. As noted in Section 4.2.2 dnereasing the num=
ber of lower clevation observations decreases the strength of the hedght
solution in the presence of timing crrors. With lower elevation angle
observations the strength of the latitude and longltude components will
depend oq the distribution of observing azimuths. The equitorial sta-
tions show a larger uncertainty in height and a lower uncertainty in
latitude and longitude, again duc to the distribution of observing ele=
vations and azimuths. The increased frequency of higher clevation obsec-
vations is reflected dn the dnereased heilght uncertainty. PFigure 4.5.13
gives the positioning results for Station LOLL.

For these adjustment solutions the a posteriori variance of unit
weight was computed from equatilon (4.3.32). The square root of this

quantity, 80, for the solutions given in Table 4.5.4 ranged from 0.879
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to 0,914, Tor a least squares adjustment in which the mathematical
model for the observation equation is exact and the second order sta-
tistics of the rardom processes are modeled correctly in the welghting,
the theoretical value of the a posteriori variance is unity. Deviation
From unity is primarily due to errox in the above assumptions. The
sange adjustmont results given in Table 4.5.4 are not scaled by this
quantity.

Some speeilfic veasons for the range adjustment a posteriord
variance not being unity are the following. TFirst, the Markov process
transfer functions piven 4n Figures 4.4.7 and 4.4.8 both assign more
power to certain frequencies than the specified tronsfer lunctions given
in the same figures. Tor the satellite rubidium oscillator this addi-
tional power is at Frequencies whose wavelength is greater than 100
seconds. The actual clock noise sequences simulated using the Meditch
[1975] algorithm do not contain the same power at these frequencies.
Thus the sccond order range statistics will predict observation uncer—
tainties in excess of thelr value based on the exact use of the speci-
fied transfer function. This tends to decrease the a posteriori
variance. Seccondly, the errvors introduced into the ephemeris using the
cquations of Section 4.1.2 are periodic in mean anomaly but modeled by
a constant amplitude correction at the midpoint of cach tracking inter-
val. 'This modeling difference affects the a posteriord variance
since the level of error introduced into the observations was smaller
than the a priori orbital element uncertainty. And finally with a small
number of degrees of freedom for each tracking interval white and cor-—

related noise sequences will tend to be fit better than expected causing
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a deerease in the a posteriford variance, The interpretation of the

results should take these factors into considexation,
Finally Table 4.5.5 gives the decrcase in the standard error of
geodetic coordinates obtained dn two previous cxamples when the variance

of the instrumental white noise is decreased and the tropospheric

refraction ls compensated completely. The filrst case shows that no sdg~

nificant increase in the accuracy of the adjusted station coordinates
can be expected by decreasing this instrumental random error component.
Decereasing the standard error of this component from 100 to 60 centi~
meters produces a deecrcase of only 1.1 centimeters or less as opposed

to an expected decrease of 40 percent based on range measurements sub=~

ject to white measurement noise only. In this case however, with the

inclusion of the fully correlated statistics for unmodeled atomic clock

error, the resulting decrease is marginal.

In the second case assuming that trvopospheric refraction effects

can be compensated the refraction scaling parameters are excluded from

the adjustment. The decrease in the standard error of the geodetic

coordinates ranges from 1.1 to 3.0 centimeters after one day of obser-

vation and from 0.8 to 1.6 centimeters after five days. The largest

decrease is in the height uncertainty; although, the net effect on the

determination of eaxth~fixed coordinates is minor.

4,5,1.3 Integrated Doppler Solutilons
Solutions based on integrated Doppler or range difference obser-

vations were examined subsequently. Range differences over five—minute

intervals were formed by aggregating independent one minute integrated

Doppler observations with an instrumental measurement uncertainty of
208
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three centimeters. The parameters of the adjustment were equivalent

to the range solution set with the exception of the clock models. Tor
integrated Doppler observations the linear clock error models were cach
replaced with a gingle parameter representing time drift or frequency
bias. Ephemeris clements, tropospheric refractilon corrections, and the
geodetie station coordinates were retailned.

An iInitial solution was made for Station 1001 using range dif-
ference observations over three-hour tracking intervals. Observations
were simulated using equation (4.2.9) and ephemeris error was intro-
duced into the adjustment using an equation analogous to equation
(4.2.10). Ervor sources were taken from Table 4.2.2. Adjustment
velghting dncluded both the instrumental white noise statistics and the
random clock error statistics developed in Section 4.4.2. The receiver
clock was modeled over a nine-hour interval as in the range solutions
based on the same interval of tracking. Table 4,5.6 gives the results
for this adjustment. These results iIndicate that after onc day of
observation the geodetic coordinate errors can be expected to range from
125 to 215 centimeters and reduce to from 60 to 100 centimeters after
five days.

For this station a simulation based on a owra-hour tracking
interval was next tried to determine if better results could be obtained
as in the range case with a receiver clock model adopted every four
hours. The results from this solution are given at the beginning of
Table 4.5.7. A comparison of the three and one-hour tracking intexrval
results shows that significant improvement is obtained with the shorter

tracking interval. This latter tracking procedure allows a better
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representation of xandom cloek crror with the same model, permits better

sampling of satellite geometyy, and produces a more rapid averaging of
the effects due te systematic and random crror sources. The result Is
an uncertainty dn statdion position coerdinates dn the range of 100 to
150 centimeters after one day and 45 to 65 centdmeters after five days
of observatdion,

Since this shorter tracking interval yielded such dimprovement in
the results, station positioning adjustments were made for most of the
stations in Table 4.2.1. These results are piven in Table 4.5.7. Again
the height uncertainties for the polar Stations 1009 and 1010 are signi-
ficantly less than for all other statlonsg since the higher occurrence
of lower elevation observations allows a better separation of holght
and timing errors. However for these stations the latitude and longi=-
tude solutions are weaker. The results for the mid-latitude stations
show less variation than the range solution results. In general the
results indicate that range difference observations yileld position com~
ponent accuracles of from 85 to 200 centimeters after one day of obser-
vation and from 40 to 80 centimeters after five days of continuous
tracking. Variations in the results with location are to be expected
with the weakest solution for latitude and longitude occurring toward
the poles. Tigure 4.5.14 gives the positioning results for Station
1013.

The a posteriorl variance of unit weight was computed using
equation (4.3.32) for each adjustment of Table 4.5.7. The square root
of this quantity varied from 0.967 to 0.998 indicating more consistency
in the adjustment modeling and welghting than in the range observation

simulations.
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Table 4.5,8 summarizes the offects of varilous error gources on
positioning based on integrated Doppler observations uving a one=hour
tracking interval, Again the ephemeris error dominates the ceffecto of
all other error sources. DBecause of the geometric weakness of the inte=
grated Doppler obsarvations the effect produced by three centimeter
instrumental white noise 1s much larger than that due to a one meter

standard error in range.

TABLE 4.5.8, LFFECT OF ERROR SOURCER ON POSITTONTNG DFRIVED
FROM DOPPLER OBSERVATIONS USING A ONE=HOUR

TRACKING INTERVAL

‘ APRROXIMATE
ERRCGR SOURGE COORDINATE
e e e et e e _ESROR {cm)
1TDAY | GDAYS
TROPOSPHERIC REFRACTION (6%) 20 io*
EPHEMERIS 60-160 10-70
RESIDUAL RANDOM RUBIDIUM
CLOCK ERROR 5 2
RANDOM REGEIVER CESIUM
CLOCK ERROR 7 3
RECEIVER WHITE NOISE 16-18 6-8
*ASEUMING AN AVERAGING DUE TO SIGN VARIATIONS. TROPOSPHERIC
REFRACTION SCALING PARAMETERS WOULD REDUCE THIS ERROR TO
APPROXIMATELY 6 CENTIMETERS.

And finally Table 4.5.9 gives the reduction in the geodetic
coordinate uncertainties with modifications to the assumed error levels
introduced into the adjustment for Station 1007. Assuming that tropo-
spheric refraction can be accounted for completely either through

measurement or modeling and that the scaling parameters are deleted from
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the set of adjustment parameters, the resulting decrease in position
uncertainty 1o nepligible as shown in the table. Also a deercase in the
ingtrumental noise level from three centimoters to 0.2 centimeters pro-
duces enly a minimal reduction in the coordinate uncertainty., Minor
deereases are realized in these cases because the ephemeris crror
totally dominates these crror sources. Thus for absolute pesitioning
additronal refinements in the refraction prediction or lmprovements in
the noige level of the recedverwill not provide any rcal improvement
unless the ephemerds error is greatly reduced. Asa final example the
level of ephemerids error adopted in Table 4.2.2was halfed and as expected
a significant level of dmprovement in position uncertainty was achieved.
The uneorvtainty in the vesults improved by approximately 45 percent.

A comment concerning continuous count integrated Doppler 4is in

order, In the above analysis one minute integrated Doppler counts,

assumed statistically independent, were aggregated to form flve minute
range differences. The instrumental noise thus increased by Y5, Tor a
continuous count integrated Doppler system this is not true. The five
minute Doppler counts in chat case would still be subject to approxi-
mately the same.white noise level as one minute observations. The
results presented here consider one-minute observation noise levels of
from 0.2 to 3 centimeters or 0.45 to 6.7 centimeters for five minute
aggregated range differences. TFor continuous count integrated Doppler
this latter interval would be approximately 0.2 to 3 centimeters, a

more optimistic but partially overlapping interval. TFrom the results in
Tables 4.5.7 and 4.5.9 the accuracy of continuous count Doppler utilized

as independent range differences can be established.

217




BT e

T T R s e L el e TR RATTT R TReeRe  Tae

RTINS o R

4,5,2 Determination of Baseline Components

In this section results arc presented for the determination of
baseline components and chord length from simultaneous range and inte-
grated Doppler observations from two stations. The least squares normal
equations now include the earth-filxed coordinates of each tracking sta-
tion. After each sequential solution the resulting station coordinate
covariance matrix is linearly transformed into coordinate differences
and chord length using equations (3.1.22) and (3.1.25) or analogous
equations when the coordinates are expressed s geodetic latitude,
longitude, and height. Satellites are selected using the criteriondis-
cussed in Chapter 3 and the simulations described in this section

include Table 4.2.2 error sources.

4.5.2,1 Range Solutions

As in Section 4,5.1 initial results were based on the three-~hour
tracking interval. Simultaneous range observations were simulated
for five days for Station 1001 and 1002. These stations lie on the same
meridian separated by approximatwly 100 kilometers as shown in Figure
4.2.1., Simultaneous observations were excluded from the adjustment if
the elevation angle from either station was below ten degrees.

The effect of individual error sources on baseline components
was investigated for these stations by introducing each into the
adjustment. For this 100 kilometer north-south baseline the results are
given in Table 4.5.10. A comparison of these results with Table 4.5.1
demonstrates that the sensitivity of the baseline components to these
error sources is quite different than for the determination of geodetic
coordinates from range. Since the baseline distance is small relative
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TABLE 4,%.10, EFFECT OF ERROR SOURCES ON BASELINE COMPONENTS
DERIVED TROM RANGE OBSERVATTONS USTNG A
THREE -1IOUR TRACKTING INTERVAL (100 kmt BASELIwNgg

. APPROXIMATE
§ ERROR SOURCES COMPONENT
ERROR (cm)

“1DAY | 5DAYS
TROPOSPHERIC REFRACTION (6%) 6-8 2-3
EPHEMERIS 1-3 05-15

RESIDUAL RANDOM SATELLITE
RUBIDIUM CLOCK ERROR 0.2 0.1

RANDOM RECEIVER CESIUM
CLOCK ERROR 12 6

RECEIVER WHITE NOISE {1 m) 2-3 1-1.6

to the distonce to the satellites the effects of errors in the satellite
f ephemeris and clock project almost identically into the coorvdinates of

l

L cach station. The transformation into coordinate differences removes

; the majority of the effect. Thus although satellite position errvors

; can contribute 150 to 200 centimeters of uncertainty in station position
| after one day of observation, this same error has only an effcct of from
1 to 3 centimeters on the coordinate diffecrences. This fact precludes a
requirement for a precise ephemeris in this application., Figure 4.5.13
demonstrates the ervor in the Cartesian baseline components due to
ephemerils error. After five days this ewxror can be expected to range
from 0.5 to 1.5 centimeters. The effect of the satellite clock error

d is likewilsc minor.
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The effect of tropospherice refraction crror will also be
roduced 1T the signature of the errov is almost equivalent at both
gltes,  Tn the cases considered here a common five pereent ervor was
Introduced. lor sites separated by up to a Few hundred kilometers the
difforence fa tropospheric rvefraction will be primorily a Function of
elevation angle difference and the difference in weather conditions.
Assuming the diffevence 4s a function of the former, a constant percen-
tage orror will prodace approxiwately the sawe errvor at cach site and
the offect on baseline components will be small. In actual applica-
tions where a wore complicated prediction of tropospheric refraction
exists the hascline component errors wmay increase to a value greater

than that given in Table 4.5.10.
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The dominant error source in this application ds the instability
of the tracking recelver clock. TFor the cesium oscillator considered in
this study the error introduced into baseline components can be expected
to range from 12 to 6 centimeters after one and five days of obscrvation
respectively, Figure 4.5.16 presents the Cartesian bascline component
errors as a function of time. These errors tend to average with time
but at a rate which depends on the stability of the clock., Tor the
dynamic determination of baseline components a significant decrease in
this error can only be achieved by increasing the stability of the

receiver oscillator if the tracking interval fs held fixed.
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For a complete simulation of welative positioning five days of
cange observations were adjusted sequentially, The pavameters of the
adfustment ineluded two pairs of station coordinates, ephemeris para-
meters, a Linear satellite cloek model every three hours and a linear
model for each tracking station clock every nine hours. ITwo tropo-
spherice refraction gealing parameters were introduced for every three
hours of tracking. The adjustment weighting was based on all random
errors added to the observations. The welght matrix used every nine
hours had the form of equation (4.4,41). Errors were introduced into
the range observations according to Table 4.2,9 with the dnstrumental
white nolse uncertainty taken as one meter. The result of the adjust-
ment wias Cartesian baseline coordinate uncertainties of 23, 21, and 18
contimetors after one day of observation and 10, 11, and 8 centimeters
alter five days.

The simulation for Stations 1001 and 1002 was repeated using a
one~hour tracking dnterval., The uncertainties in the Cartesian base-
Line components after one day of observation were 28, 15, and 12 centi-
meters, After five days of continuous observation the resulting
standard errors were 12, 7, and 6 centdmeters for the Au, Av, Aw compo-
nents. A comparison of the trace of the covariance matrix with that
from the previous three-hour interval simulation shows that the shorter
tracking interval produces marginally better results. This is con=
sistent with the marginal inerecase in geometric strength for range
observations demonstrated in Chapter 3.

Tor the one-hour tracking procedure the effects of error sources

on bascline components are given in Table 4.5.11 for the 100
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kilometer baseline, The major difference between Tables 4.5.11 and

4.5,10 18 the decreanse in the effect of random receiver clock noise.

TABLE 4,5,11, EFFECT OF ERROR SOURCES ON BASELINE COMPONENTS DERIVED
FROM RANGE OBSERVATIONS USING A ONE~HOUR TRACKING
INTERVAL (100 km BASELINE)

APPROXIMATE
ERROR SOURCE COMPONENT
ERROR (cm)

1 DAY 5 DAYS
TROPOSPHERIC REFRACTION (5% 6-8 2-3
EPHEMERIS 1-3 0.5-1.5
RESIDUAL RANDOM SATELLITE
RUBIDIUM CLOCK ERROR 0.2 0.1
RANDOM RECEIVER CLOCK
FRROR 8 3
RECEIVER WHITE NOISE (1 m) 2-3 1.0-1.5

Using the one~hour tracking scenario simulations were performed
to assess the accuracy to which baseline components and chord lengths
might be determined using simultaneous GPS range observations from two
sites. The complete parameter set and weighting based on all random
error sources were included in the adjustment. The resulting uncer-
taintics in the baseline parameters are gilven in Table 4.5.12. The
uncertainty in the chord length d is also expressed in parts per mil-
lion (ppm). TFor baselines less than 300 kilometers in length these
results indicate that the uncertainty in the latitude component of the
baseline ranges from between 10.1l and 12.7 centimeters after one day of
observation and from 4.4 to 5.8 centimeters after five days. The longi-

tude component uncertainties are slightly weaker ranging from 10.6 to
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17.4 centimeters after one day and from 4.3 to 7.5 centimeters aftoer
five days of simultancous observation. The hedght difference between
the stations has the largest uncertainty due to the coxrelation of height
error with recedver timing errvor and vefraction, For baselines under 300
kilometers the height difference uncertainty ranges from 25.2 to 27.7
centimeters for one day of observation and from 12.0 to 15.0 centi-
meters after five days. For these baselines the uncertainty in chord
length ranges from 9,9 to 16.0 centimeters (0.5 to 1.8 ppm) after

one day and from 4.3 to 6.9 centimeters (0.2 to 0.8 ppm) after five
days. The chord leugth uncertainty increases with baseline distance
as seen in the results for baselines 1007-1008 and 1015-1016, How-
ever the relative ervor in parts per million decreases. The dincrease
in the uncertainty is due to an increasing projection of the ephemeris
error onto the baseline components. TFigure 4,5.17 gives the baseline
component errors and uncertainties for baseline 1011-1012., The

chord length between these stations is approximately 100 kilometers.
The chord uncertainty as a function of time is given in

Figure 4.5.17(d).

Two final examples are presented in Table 4.5.13 which show how
the uncertainty in the results given in Table 4.5.12 are subject to
change with varilations in the simulation. Decreasing the instrumental
white noise to 60 centimeters decreases the uncertainties of the base-
line components from 1.5 to 2.4 centimeters after one day of observa-
tion and from 0.6 to 1.2 centimeters after five days for the 80

kilometer baseline 1001-1014. The decrease in the uncertainty of the
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chord length ranges from 0,3 ppm to 0.1 ppm for the dnterval of site
ocoupation in this case. Finally 1f tropospheric refraction error can
be measured or predicted with high accuracy then tine deletion of the
tropospheric refraction scaling parameters will produce a significant
decrease in the standard ecrror of the baseline parameters sinece the
removal of these parameters will strengthen the normal equations. The
results for the 200 kilometer baseline 1003-1004 are given in Table
4,5,13 demonstrating that the measurement of troposyheric refraction
with a water vapor radlometer may be required to obtaln the best pos-

sible results using a dynamic approach.

4,5,2.2 Integrated Doppler Solutdlons

Simultaneous integrated Doppler observations from a palr of
stations were analyzed to determine the accuracy to which baseline
parameters can be determined. Adopting a one-hour tracking interval
the effect of the systematic and random error sources given in Table
4,2,2 on the vector components of the baseline were evaluated for Sta-
tions 100l and 1002. These results are given in Table 4.5.14. As with
the use of range observations the stability of the tracking receiver
clock will contribute significantly to the error in this positioning
problem while satellite ephemeris and clock errors have no significance
for such short baselines. As mentioned previously a five percent
unmodeled error in tropospheric refraction having constant sign can
introduce errors of up to 50 centimeters in position. However for short
baselines a large portion of this error is in common at both sites and

the resulting error in the coordinate differences ranges from 4 to 8
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TABLE 4,5.14., LEFFECT OF ERROR SOURCES ON BASELINE COMPONENTS
DERIVED FROM DOPPLER OBSERVATIONS USING A ONE=HOUR
TRACKING INTERVAL (100 km BASELINE)

APPROXIMATE COMPONENT

ERROR SOURCE ERROR (¢m)
1 DAY 5§ DAYS
TROPOSPHERIC REFRACTION 4.8 2.3
EPHEMERIS 5 o1
RESIDUAL SATELLITE RUBIDIUM CLOCK ERROR 2 .08
RANDOM RECEIVER CLOCK ERROR 10 4
RECEIVER WHITE NOQISE (3 ¢m) 20-25 8-10

centimeters after one day to 2 to 3 centimeters after five days of
observation, In actual applications the signaturc of this ecrror may
not be equivalent at cach site and the resulting baseline component
errors may be different, The recelver white noise plays the most
important role. DBecause of the geometric weakness of range difference
observations a 3 centimeter standard error for receiver noilse will
restrict baseline component uncertaintles to be more than 20 to 25
centimeters after one day of observation and from 8 to 10 centimeters
after five days. Turthermore it will be shown below that reducing the
receiver noise level will have only limited success in reducing the
baseline component uncertainties.

For the case just considered a complete simulation was made to

determine the uncertainty in the baseline components and chord using
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five days of continuous observation, The recults are presented in
Table 4,5.15. In terms of the peodetic coordinate differences the
uncertainties are 27.7, 41.6, and 45.5 centimeters after one day and
13,0, 17.1, and 18.2 centimeters after five days for the latitude,
longitude, and hedght differences, The uncertainty in the chord was 2.8
ppm and 1,3 ppm after one and five days respcctively, Results for the
game bageline were then obtained using a three hour-satellite tracking
interval. These uncertaintices are given in Table 4.5.16. Comparing the
24 hour results with those obtained using 27 hours of observation from
three=hour tracking intervals demonstrates that each tracking procedure
gives comparable results. After five days of observation it appears
that using a longer tracking interval has some advantage for detey-
mining the chord,

Since the three-~hour tracking procedure did not appear to pro-
duce a significant overall advantage results for other baselines were
determined using the one-hour tracking interval and are also presented
in Table 4.5.15. These results indicate for baselines less than 3500
kilometers Fhat the latitude difference uncertainty ranges from approx-
imately 30 centimeters after one day to 13,5 centimeters after five
days and is the best determine component of the baseline as in the case
of range obscervation., This is due to the fact that the majority of the
observations are from north or south going pass geometries as shown in
Figures 4.2.4(a) and (b). The uncertainty of the longitude component
of the baselines ranges from 37.3 - 44,8 centimeters after one day
and from 14.5 to 19.1 centimeters after five days, Hedght difference

uncertainty ranges from 35.1 to 44.8 centimeters after one day and from
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15.8 to 19,1 centimeters after five days. The uncertainty in the chord
is significantly smaller for north-south baselines for the same reason
ag the latitude compenent. This 1s also true i the range observation
examples although the difference as a function of orientation is less
pronounced after five days of observation, TFinally, the uncertainty
increases with station separation although the ratilo of the uncertainty
In the chord to 1ts length decreases with the longer baselines given
here. The increase in uncertainty is again due to the increased effect
of cphemeris error. Figure 4.5.18 gives the results obtained for base-
line 1015-1016, As is typical with the results from the other baselines
considered the decrease in parameter varlance appears as an exponentilal
decay.

Finally, in Table 4.5.17 various cases are considered in which
modifications are made to the error sources. Elimination of tropo-
spherice refraction produces a decrease in the baseline component uncer-
tainties ranging from 1.0 to 7.3 centimeters after one day of
observation to 0.7 to 2.7 centimeters after 5 days. The hedght uncer-
tainty is decreased to the greatest extent. The chord uncertalnty

decreases by 0.2 ppm after one day of observationand by 0.l ppm afiter an

additional four days of observation. Decreasing the ephemeris error

by 50 percent produces only minor variations in the results as expected.
And finally the last two cases of Table 4.5.17 show that reducing the
random receiver noise to L centimeter produces a significant increase in
accuracy but improvement beyond that level gives only limited success
since the effect of random receiver clock error begins to dominate the
resulting parameter uncertainties.
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Figure 4.5.18. Baseline Parameter Error for Complete Simulation

Using Integrated Doppler Observations from
Stations 1015 and 1016
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5. A PRELIMINARY EVALUATION OF SATELLITE

INTERFEROMETRY FOR BASELINE DETERMINATION

5,1 Introduction

In the preceding chapter the accuracy of baseline determinatilons
from range and Doppler observatilons was analyzed considering the effects
of various error sources, It was found that the range results were pre-
dominantly influenced by tropospheric refraction modeling error and ran-
dom receiver clock error while Doppler results were influenced most by
the same and by random recelver noise, Tropospheric refraction errors
may be reduced by the use of a water vapor radlometer [MacDoran, 1979]
and Doppler receiver noise levels may actually be as low as one centi-
meter [Stanford Telecommunications, Ine., 1978), hence the baseline
uncertainties obtalned from range and Doppler may be enhanced as demon-
strated 4n Tables 4.5.13 and 4.5.15. However the resulting baseline
uncertainties would still be effected by random correlated clock errors
and, in the case of Doppler, also by the weaker geometric strength of
the observations themselves. Accuracies on the order of 1 ppm may be
achieved using these methods if the perdod of site occupation is at
least 2 days for range and 5 days for Doppler observation.

Since nedither of these two observational approaches will sup-

port a rapid first-order determination of baselines, this chapter is

included to address the utilization of interferometric phase measurements
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for this application. Although the interferometric proposals discussed
in Chapter 2 are currently under development, enough information ls
available to support a general estimate of the performance of an inter-
ferometric approach, The technique examined in this chapter is based on
the double differencing of interferometric phase from two satellites
made simultancously at two sites, This approach has the advantage of
eliminating most of the clock errors which required polynomial modeling
in the range and Doppler approaches. The analysis presented here is of
a preliminary nature intended to provide a general estimate of the
accuracy of baseline determination using interferometry, A more
detailed analysis of the proposed interferometric procedures of Chapter

2 should be performed as the specifics of these techniques are refined.

5.2 Double Differencing of Interferometric Phase

The approach which is introduced in this section assumes that
interferometric phase observations are basad on the reconstructed con-
tinuous wave GPS carrier frequencles. The following observational model

is adopted for the phase measurement with station i observing satellite

kK

o 2T - Ao .
Oij(t:) = }\“(t) [Rij(t) mij(c)xij(n) cati(t)+c6tj(c)

(5.2.1)

- BSR (t)+’Yij(t)] .

13

In this equation Ai is the wavelength of the GPS carrier frequency,

N

Rij is the geometric distance between station i and satellite j, mij is

the integer number of full wavelengths comprising Rij’ 6Rij is the
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tropospheric refraction error modeled to within a percent §, and ¥y
represents uncorrelated measurement error, The quantities cGti and
cﬁtj represent gystematic and correlated random time or phase exrors,
converted into units of length, of the geodetic receiver and satellite
atomic clocks respectively arising from the accumulation of fractional
frequency error. The wavelength Aij is also a function of time due to

the Doppler shift caused by the relative motion of the satellite with

respect to the recelver. Hence,

A
Ay (E) = e (5.2.2)
1~ ple
where kj is the carrier frequency and é is the component of relative

velocdty along the topocentric range vector.,

If satellite j is simultaneously observed at station £ then

the difference in phase measured at the two sites is

Aej(t) & 0i (t) - ng(t) . (5.2.3)

3
Ignoring for the moment the Doppler shift in the carrier frequency and
assuming the same level of refraction modeling error at both sites,
equation (5.2.3) may be written as

21 . _ :
A0, (t) =3\-;{Rij(t) = Ry (£) = fmy , (6) mlj(t.):])\j
‘ (5.2.4)

- o8t () ~ e (e)] - BL8R  (E) = 8y, (6] = [,y (6) = v,y (©) ]}.

Notice that the error in the satellite clock does not appear in

equation (5.2.4) due to the differencing.
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If in addition a second satellite k 18 simultancously observed

at both stations then the double difference is defined as

AG,, (B) = A0, (L) = AD,(t)
th ] k (5.2.5)
= Qij(t> - Ogj (L) - Qik(t) + G,Q,k(t> +

Again ignoring the Doppler shift and assuming that the frequencics Aj
and Ak are equal and that B is constant for all observations, cquation

(5.2.5) may be written as

o 2L - . ] ‘
A, CE) y {Rij(t) jo(t:) Ryp (E) +Ryy (£) b n g (EDX,
(5.2.6)
- ﬁ[ﬁRij(t)-'ﬁsz(t)*~6Rik(t)4'6R£k(t)].-yigjk}
where
T R PR TR (5.2.7)
and
(5.2.8)

Yoggre = Yag " Yoy 7 Yae T Yok

Tn equation (5.2.6) no atomic cloek errors appear; thus, the double dif-
ferencing approach appears to eliminate the timing errors which required
modeling previously. The integer term‘njk(t) represents the difference
between a pair of "21 ambiguities" which exist in each single dif-
ferencing of phase according to equation (5.2.4). This ambiguity repre-
sents the integer number of full wavelengths comprising the difference
in the distances between the stations and the satellite.

If the Doppler shift in frequency is included, then the double

difference equation (5.2.6) would be replaced by the substitution of the
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appropriate equations (5.2,1) into equation (5.2.5) and a complete can-
cellation of celock error could not be expected, In the preliminary
analysis presentec dn this chapter the carrier frequency Aj(t) will be
agsumed known and equation (5.2.6) will be adopted as the obscrvation
equation., Introduction of the Doppler shift will some causc additional
uncertainty in the results depending on the a priori crrors in station
position and satellite position and velocity.

An addititonal assumption implied in equation (5.,2.6) is that
simultancous observations of phase are to be differenced. The recogni-
tion of simultancous events depends on accurate time tagging of the
observations or knowledge of the relative time error between station
clocks, The first of these i1s impossible to achieve and the latter
requires either portable cloeck comparisons or the adoption of additional
parameters in the estimation algorithm. If phase differences are formed
from observations at two sites having a time of observation difference
of At seconds, then the error introduced into the double difference is

glven approximately by

oR,, R om om
sA0 =21rAt:[< 2k _ “)’*-Aj(-'-&i- 2.k>

jk Aj ot ot ot ot
(5.2.9)
i c(SStl “36t1c>+ <86R“-86R2k)
ot ot B ot ot .

This equation is obtained from a first order Taylor series expansion of
equation (5.2.6) assuming that the observations selected from station £
for differencing are At seconds away from those from station 1. An

examination of equation (5.2.9) reveals that the time synchronization
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error consists of a geometric term due to the position change of cach
satellite relative to station £, a term which is a function of satel-
lite clock frequency stability and a term due to the variation in tropo=
spheric refraction over At, An evaluation of this cquation for a
gynchronization error of 200 nanoscconds gives a bound on this crror of
0.05 centimeters., Synchronization to much better than this level could
be achieved by time tagging observations with the satellite time infor-
mation encoded in the transmitted GPS signals,

Adjustment of baseline parameters using double differenced
interferometric phase observations requires the differentiation of
equation (5,2.6) with respect to the earth-fixed coordinates of the
observing stations, the integer njk and the constant B, at a minimum,
Satellite position also enters into equation (5.2.6) and represents an
additional set of parameters which striccly should be included. In the
results given below corrections to the satellite ephemexildes are not
incorporated but the effect of error in satellite position is dis-
cussed, The partial derivatives used to Form the design matrix for the

least squares adjustment are the following

086, (&) _ yl[uj(t) - oy u(e) - “1] (5.2.10)
’““"aj'u' X i L Ry @® Ry (E)
utv, w
20, (6) _ gﬁl:ul - uy (8 uy - w (6 ] (5.2.11)
Bug }\j R.Q,j(t) ka(t)
u-+v, w
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A0, (L)
mé-dl‘»m 21 (5,2,12)
n
ik
A8, (t)
k PAll ~ = . 5 o
m.a.%.t?g._ o “")T;'Emizi(t) -611£j<c) = 61{1‘(0:) +6Rm(t,)] . (5.2,13)

The integer “jk for an obscrved satellite pair is a function of
time, changing at cach observation time. If the recciver however main-
tains a count of acecumulated phase change over the tracking interval,
then the rate of change of njk is known and only a single integer
unknown needs to be incorporated for cach interval of tracking. An
adjustment based on equations (5.2,10) through (5.2,13) will not pro-
duce integer solutions for the njk‘ Since no constraints are known
which will produce an integer result directly, this initilal adjustment
will provide a set of estimates and variances for the njk’ From these
quantities varicus test sets of integers may be formed. The number of
such sets will depend on the estimates of the njk and on the magnitude
of theidr corresponding variances, Tor each test set a sccond least
squates adjustment would be required utilizing these integers. This
second adjustment would include a set of absolute constraints f£ixing

the n From these adjustments the weighted sum of squares of residuals

R’

VTPV nay be compared to determine which test set of integers produces a
minimum, The covariance matrix of the station coordinates from this
solutlon may be transformed using equations (3.1.24) or (3.1.25) into

baseline component and chord length uncertainties.
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5.3 Lffeet of Trvor Sources

The crrvor sources influencing satellite dnterferometry measures
ments were mentioned in Chapter 2, TFor the double differencing approach
[ the error sources will be the same except that it appears that most
3 error due to frequency instability will be removed, The erroy sources
considered in the results presented here are the satellize ephemerides,

tropospherie vrefraction, and the random exror associated with the

e

measurement of phase. The magnitudes of the ephemeris and tropospheric

T g

refraction errors are equivalent to those used in the range and Doppler

positioning studies as outlined in Table 4,2.2, The precision of a
single phase measurement is assumed to be 3 centimeters which was the

nominal precisilon adopted for integrated Doppler obsexvatlons in Chapter

T TR ——— e

4, Counselman [1979] estimates the random phase error of the Miniature

Interferometer Terminals to be less than 1 centimeter, Table 5.3.1

gives estimates of the effects these error sources have on baseline com-
ponents and chord length for sites scparated by 100 kilometers. These
results are based on simulations using a total of six houwrs of observa=-
tion, tracking individual satellites for a fixed one~hour interval.
TABLE 5.3.1, EFFECT OF ERROR SOURCES ON BASELINE PARAMETERS DERIVED

FROM SIX HOURS OF DOUBLE DIFFERENCED INTERFEROMETRIC
PHASE USING A ONE-HOUR TRACKING INTERVAL (100 km

BASELINES)
COMPONENT ERROR CHORD ERROR
ERROR SOURCE (cm) {ecm)
TROPOSPHERIC REFRACTION (5%) 2.4 1 L
EPHEMERIS 1-5 2-4
RECEIVER WHITE NOISE (3¢m) 1-4 H
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5.4 Baseline Determination Results

Double differenced interferometric phase observations were simu-
lated every five minutes for the baselines previously considered in

Chapter 4. These observations were developed using equation (5.2.6).

Three initial adjustments were performed using observations from sta~
tions 100l and 1002 simulated using a one~half, one, and two hour
satellite tracking interval. Satellite position error and a five pex-
cent error in tropospheric refraction modeling were introduced into the
Parameters of the adjustment included :he latitude, longi-

adjustment.,

tude, and height of each station, the integer njkf and the constant B for

each tracking interval, The uncertainty of the latitude, longitude, and

helght components of the baseline and of the chord length obtained from
these initial adjustments are given in Table 5.4.1 after six hours of
observation., As the fixed interval for observing a pair of satellites
is increased from one-half to two hours, there is a marked decrease in
the parameter uncertainties except for the height component. lowever,
with additional observations this trend is apparent for height also.
Ater ten hours cf observation the height component uncertainties are
7.8, 4.6, and 3.2 centimeters for the three intervals utilized. This
trend is due to the decrease in the total numbexr of parameters required

in the adjustment as the tracking interval is lengthened resulting in a

general strengthening of the normal equations.
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TABLE 5.4.1. VARIATION IN BASELINE PARAMETER UNCERTAINTY WITH SATELLITE
TRACKING INTERVAL (BASELINE 1001-1002, SIX HOUR RESULLS,
INITIAL ADJUSTMENT)

TRACKING INTERVAL Orgp Cax Tan e
0.5 hr 9.3 em 12,2 11.4 5.6
! 3 8.1 7.5 3.1
2 2.5 4.6 9.0 1.8

For the solution based on a one~hour observing intexval Table
5.4.2 gives the actual and estimated values for the integers njk and the
uncertainty of their solutidon. It is typical in the shorter tracking
interval cases for the uncertainty of the estimated njk to exceed 0.5.
When this occurs, the number of test sets of integers requived in sub-
sequent adjustments may be large. TFor instance in Table 5.4.2 the
solution for njk for the fourth hour of observation was ~15.2. With
the standard error of this solutlon 0.71 any of the following integer
values, =13, ~14, -15, -16, ~17, could be expected ag the correct solu-
tion for this interval. If all solutions lying within a 95 percent con-
fidence interval are considerand, the number of possible unique sets of
integers to be used in subsequent adjustments may be extremely large.
TABLE 5.4.2. RESULTS OF ADJUSTMENT FOR INTEGERS njk BASED ON INTER-

FEROMETRIC PHASE MEASUREMENTS AT STATIONS 1001 AND 1002
USING ONE~HOUR TRACKING INTFRVAT,

INTEGER ESTIMATE UNCERTAINTY

TRACKING INTERVAL ik ﬁ]k Onjk

1 7 7.2 16

2 -6 ~5.8 15

3 1 0.5 16

4 -16 -15,2 71

5 ~13 ~13.0 .24

6 ~11 ~10.7 .54
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Since initial adjustments using observations from two-hour
tracking intervals produced the smallest uncertainty iIn both baseline
components and moxe importantly in the integers njk’ solutions were made
for all baselines considered in Chapter 4 using obgewvvation schedules
based on two-hour tracking intervals. Ephemeris, t.opospheric refrac-
tion, and instrumental errors were added to the observations., The
satellite palrs were selected for tracking to optimize the trace of the
baseline paramcter covarilance matrix given by cither equation (3.1.25)
when the chord was estimated or by an equation analogous to cquatdon
(3.2.3) when latitude, longitude, and height componentsg were estimated.
After an initial adjustment the same observational data were utilized in
a subsequent adjustment in which the correct integer values njk were
included and fixed by absolute constraints. In actual practice many
such solutions may be required. The results of the second adjustment
are given in Table 5.4.3. The results after six hours of observation
indicate that the uncertainty of the baseline components generally
ranges frombetween 1.0 and 4.0 centimeters for baselines of 100 kilo-
meters. These uncertainties increase with baseline length. For shorter
baselines the height component has the largest uncertainty. The accu~
racy of the chord length exceeds 0.1 ppm in all cases considered with
the relative accuracy improving with increasing station separation.

Although these results do not reflect the uncertainty due to
ephemeris error, they include the uncertainty due to a five percent
error im tropospheric refraction and a measurement uncertainty of 3 cen-

timeterz. The ephemeris error will increase the uncertainties of the

estimated parameters as demonstrated by the error magnitudes given in
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Table 5.3.1. However even with such increases the double differencing
approach appears to be adequate for providing vapid first-order

determination of bhaselines.
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6. SUMMARY AND RECOMMENDATIONS

6.1 Precision Comparison

Some general conclusions were drawn in Chapter 3 from an exami-
nation of the results. TFor the observation types considered it was
evident that ranging measurcments provided the best geometric strength of
solution. The two other derived observation types, correlated range
difference and interferometry, were geometrically weaker although the
results cbtained from these latter procedures can be greatly improved
upon by increasing the opservational preecision. Correlated range dif-
ference observations had best geometric strengthwhen observed satellites
were tracked over longer time intervals., With this type of tracking
procedure both the baseline component and chord length uncertailntdies
were minimized. TFor range and Interferometric observations shorter
satellite tracking intervals produced the least uncertainty In the base~
line parameters. Lengthening the tracking interval for these observa-
tlon types increased the resulting parameter uncettainties. However the
rate of increase was smaller than the variation produced in the Doppler
results by decreasing the satellite tracking interval. And finally the
interferometry appreoach became geometrically weaker as the baseline
length increased to become a more significant percentage of the distance
to the satellite; although, the relative error in parts per million

decreased for the baselines considered.
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The analysis presented in Chapter 3 considered the relative geo=
metric strength of three observation types, two derived from basic
ranging. The results were based on the assumptions that satelldite posi-
tions in space were known and that the basic rangling measurcments were

subject to uncorrelated stationary random noise.

6.2 Dynamic Point Positioning

The range observation results presented in Chapter 4 indicate
that such observations from GPS satellites can provide geodetic coordi~
nates to an accuracy of approximately 85 to 125 centimeters using
twenty-~four hours of continuous observation. Those results were based
on the use of a one-hour tracking interval, selecting satellites which
provide the best geometric strength for the solution. If a longer site
occupation period is utilized, then the uncertainty in the geodetic
coordinates can be reduced further to approximately 35 to 65 centimeters
after five days of observation. Since the majority of satellite passes
are north-south, the estimated latitude has a smaller standard error
than longitude and height except for stations located toward the poles.
For these latter statilons height uncertainty tends to be smaller since
a higher frequency of lower elevation observations provide a better
separation of heilght and timing errors. If a longer tracking interval
is utilized, larger uncertainties in estimated position are to be
expected since the effects .- systematic satellite position error will
not average as rapidly, The dominant error source limiting the accuracy
of geodetic coordinates is this error in satellite position, Thus

improvement in the receiver noise level and in measurement or modeling
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of tropespherie refraction will yield only minor increases in accuraey,
Therefore the geodetic utilization of GPS range observations in a
dynamic point positiondng approach will require satellite ephemerides
to be estimated as accurately as possible.
Integrated Noppler observations based on independent counts can
be expected to yield geodetic coordinate uncertainties ranging from 9%
to 150 centimeters after twenty=-four hours of observation. The uncer-
tainties will diminish to 45 to 65 centimeters after an additional four
dayvs of observation, These resul - «. hased on a one-hour tracking
interval with an expected receiver nodse level of 3 centimeters. An
inerease in the tracking interval to three hours produces a substantial
inerease in the geodetic coordinate uncertainties. Thus, as with
ranging, the best procedute i1s to track satellites over short intervals
to obtain stronger geometric strength of solution. Increasing the pre-
cision of the Doppler recelver or the accuracy of tropespheric refrac-
tion prediction will produce only a minor change in the results. Again
the uncertainty introduced into station position by ephemeris error
dominates the effects of all other error sources. Reduction of the
cphemeris error by fifty percent produces a decrease in position uncer-
tainty of approximately 45 percent. Therefore precise ephemeris compu-
tation will be required for accurate geodetic positioning using GPS
Doppler observations.
The major conclusion which can be stated regarding dynamic point
positioning using range and Doppler observations from a Global Posi-
tioning System of navigation satellites is that the accuracy of esti-

mated geodetic coordinates will be comparable with the results
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obtainable with Transit Doppler obscrvations. No major Increase in
accuracy can be antlcipated. Thus replacement of the Transit System
with a Global Positioning System will not be detrimental to the geode-
tic commuaity since with proper clectronilc receivers simlilar levels of
performance can be expected. The GPS system does offer a distinet
advantage, This system provides continuous obgervation thereby
decreaging the interval of time required to obtain comparable results
with the Transit System enabling satellite surveying to become a more
efficlent operation, Table 6,2.1 summarizes the effect of systematic

and random crror sources on dynamic point positioning.

TABLE 6.2.1. EFFECT OF SYSTEMATIC AND RANDOM ERROR SOURCES ON DYNAMIC
POINT POSITIONING USING ONE~HOUR SATELLITE TRACKING

INTERVALS
#PPROXIMATE COORDINATE ERROR (cm)
ERROR SQUARCE RANGE DOPPLER
1 DAY § DAYS 1 DAY 5 DAYS
TROPOSPHERIC REFRACTION 10 5 10 5
EPHEMERIS 50-80 25-40 60-150 30-70
RESIDUAL SATELLITE RUBIDIUM
CLOCK ERROR 4 ! 5 2
RECEIVER CESIUM CLOCK ERROR 5 2 7 ]
RECEIVER WHRITE NQISE
(RANGE 1m, DOPPLER 3cm) 2 1 18 8

6.3 DBaseline Determination

Simultaneous range observations from two statioms were utilized
to determine baseline components and chord length. Solutions based on
a one-hour tracking interval,selecting satellites which provide the best
geometry, indicated after one day of observation that the lati-

tude and longitude components of the baseline have uncertainties
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of from 10 to 17 centimeters for baselines under 300 kilometers. The
latitude component was determined with greater accuracy because of the
frequency of north and south goilng satelldte passes. TFor baselines
under 300 kilometers the uncertainty of the hedght component ranged from 23
to 28 centimeters., After five days of observation uncertainties in the
latitude and longitude components were reduced to approximately 4 to 7
centimeters and the helght component uncertainty to 12 to 15 centi-
meters, The uncertainty of these components increased with baseline
distance reflecting an increasing projectilon of orbit uncertalnty into
the estimates. Tor shorter baselines the uncertainty in chord length
ranged from 10 to 16 centimeters after one day of obscrvation and from
4 to 7 centimeters after five days. The uncertainty was less for
north-south baselines and increased with station separation. However
for the baselines considered lhere the relative uncertainty or ratio of
the uncertainty in the chord to ilts length decreased with increased
baseline distance. The accuracy of 100 kilometer baselines was approxi-
mately 1 to 1.5 parts per million after one day of observation. An
increase in the length of the satellite tracking interval slightly
degraded these results,

The dominant error sources which will effect the accuracy of
baseline determination using range observations are the stability of the
receiver clock and error in refractilon prediction, Increasing the
modeling accuracy of tropospheric refraction will significantly
increase the accuracy of the baseline parameters. Reducing the receiver
noise level from 1 meter to 60 centimeters will produce a marginal
increase in accuracy.
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The stability of the receiver clock can be improved by using an
atomic ogeillator with better stability properties. However the cscdl-
lator model chosen for use in this study was typical of cesium oscilla-
toxs having good stability; thus, it is anticipated that the baseline
paramater uncertainties attributed to random recelver clock error in
this study are typical of those expected for an operational survey syg-
tem,

With Doppler observations from one-hour satellite tracking
intervals the uncertainties in the baseline components ranged from 27 to
50 centimeters after one day and from 13 to 19 centimeters after five
days of continuous observation. The chord length uncertainty ranged
from 28 to 44 centimeters after one day and from 13 to 19 centimeters
after five days. The latitude component of the baseline was determined
with the least uncertainty and the chord lengths of north-gouth
baselines were determined significantly better. These results ave for
baselines under 200 kilometers and are based on a 3 centimeter receiver
white noise gtandard error. Increasing the tracking intexrval to three
hours produced some increase in the accuracy of the chord but the
results appeared mixed for the baseline component uncertainties.

The accuracy of the baseline parameters obtainud by the geo-
metrically weaker Doppler observations are ilmproved significantly by
dacreasing the receiver noise level to 1 centimeter, Below that level
the clock error statistics dominate and further increased precision will
yield only marginal improvement. Inhanced modeling or neasurement of
tropospheric refravtiva would improve the Doppler results but not as

significantly as for ranging.
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Agouming an instrumental nodse level of 1 centimetex, uncers
tainties in the baseline components would be reduced to approximately 9
to 14 centimeters after five days of observation. The uncertainty in
the chord would also be approximately 9 to 14 centimeters after {ive
days for baselines under 200 kilometexs, The errors limiting the
aceuracy of baseline determination using GPS Doppler observations are
receiver noise and the stability of the receiver oscillator.

Simultaneous interferometric phase observations from two sites,
twice differenced to eliminate timing errors, were examined as an alter-
native procedure for the detewmination of baseline cemponents. The use
of continuous wave phase measurements requires the introduction of inte-
nt related to the ambiguity in reecognizing
the exact cyecle on which phase measurements were made at the two sites.
As a consequence initial and secondary adjustments of the baseline para-
meters are required.

Results obtalned using a two-hour tracking interval with a phasc
measurement uncertainty of 3 centimeters revealed that baseline compo-
nants may be recovered with an uncertainty of from 1.0 to 4.0 centi-
meters after six hours if sites are separated by up to a few hundred
kilometers. The uncertainty in the recovered helght difference betweoen
observing sites was larger than the uncertainties in the latitude and
longicude differences for baselines under a few hundred kilometers. The
accuracy of the chord length exceeded 0.1 ppminall cases consildered and
improved with station separation. These results ircluded uncertainty
due to a five percent error in tropospheric refraction. Probable

ephemeris error will increase the uncertainty of the baseline components
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ag indleated in Table 6.3.1; however, even with psuch increases this
approach appears to be adequate for vapid firvst-order determination of
baselines under 200 kilometers. Table 6.3.1 summarizes the effeet of
varlous systematic and random error sources on haseline component deter-

mination,

6.4 Recommendations

The results presented in Chapter 4 demonstrated that GPS range and
integrated Doppler observations will provide sufficient accuracy for
estimation of geodetic coordinates, These observations taken simul=
taneously at two sites can he utilized to determine baseline parameters
to better than 15 centimeters after five days of observation., A
limiting factor for both observational approaches is the rtability of
the receiver oscillator, TFor certain geodynamic applications such as
earthquake prediction accuracles of 10 centimeters or better may be
required within a short time interval, GPS range and Doppler observa-
tinns might be capable of providing such accuracies in the future but
the time interval required to obtain such results will preclude this
application,

Satellite interferometry techniques can he developed which cir-
cumvent the requirements for high stability frequency standards., This
lead to the examination of the double differencing of interferometric
phase. Thus one limiting factor for the range and Doppler approaches is
theoretically not a critical limitation for interferometry,

There are several interferometric approaches which have been

proposed using GPS satellites as radio sources. These proposals
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have been described in thils study and the error sources assoclated with
satellite iInterferometry have been mentioned. It is recommended that a
detailed error analysis of these interferometry proposals be made to
determine thelr effectiveness for determining baseline components. The
speciflic details of each nced to be examined so that a falr comparison
1s realized, Turther consideration should he given to the long-term
cost effectiveness of these proposals including the range and Doppler

Instrumentation utillized in dynamic point positioning.
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APPENDIX A

LEAST SQUARES POLYNOMIAL APPROXIMATION

OF RANDOM WALK SEGMENTS

A.l General Polynomial Approximation

Let {uk} be a discrete stationary ze:o-mean gtochastic protess

and define {zn}to be its running sum with
L
zg = E u . (A.1.1)

The quantity Zy is one element in the discrete random walk sequence
{zn}. By stationary it is meant that the random process {uk} is one
whose statistical properties are invariant in time. TFurther, assume
that over selected time intervals the random walk {Zn} appears to be
th

dominated by systematic components enabling {zn} to be modeled by an m

degree polynomial Pm(t). The difference between z, and rm(tz) will be

called the residual ro: :
ry = zp - Pm(tz) 2 =1,2,...,N (A.1.2)
where the polynomial model is defined by
m .
P () = jio aj(t-to)J . (4.1.3)
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The constant to in equatdon (A.1.3) is arbitrary., The coefficients of
the approximating polynomial can be determined by a least squares fit of

Pm(t) to the random walk elements Zn sampled within a selected time

interval. The least squares solution for this approximation is

[Uotila, 1967]

a= (ATA)'lATZ (A.1.4)

where

| 1
a = a LI I a
[ao’ l? ’ m

—r
z = [zl,zz,...,zN] .

The design matrix A is given by

- y
m
l<tl—t6)tcu-ovcons(tl_to)

: - m
l (tz"t.o)oonno:oo.c(tz to) (Atl's)

* m
Ll (tN tc)..........(tN to) 1.

The covariance for the polynomial coefficients'z'depends on the choice

of to. In texms of the underlying process {uk}, it i3 given by the

following equations

Efz] = (A'A)"*ATE[Z] = 0
(A.1.6)

E(aar] = (ATAy aTe[zat 1At "t

where the covarilance E[EEE] is giver by

E[72°; - [R S]E[on’] [ .
S
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and

T ]
[Ul,uz,n-.,un .

The matrices R and § are given below,
Notice that the fitting procedure, equation (A.l.4), is non-
welghted least squares. The problem considered here is one of approxil-

matlon, not linear estimation, since the a, are based on samples from

L
{zn} not subject to an observation or sampling error. Also the proce-
dure is independent of how the z, are selucted within the time interval.

Using equations (A.1.2), (A.1.3), and (A.l.4), the residual vec-

tor T can be written as

i}

N e

[T - AtA) 1Atz (A.1.8)

—

= Gz .

il

The residusls represent the discrepancy between the samples of the ran-
dom walk and the approximating polynomial and may be interpreted as
"moise'" with respect to Pm(t). The statilstics of these residuals are
obtained from the statistics of the random walk by the linear transfor-

mation
E[FT'] = GB[7z°1G" . (A.1.9)

This equation is derived using equation (A.1.8). TFor the

residuals

E[r] = E[Gz] = GE[z] = O (A.1.10)

since, using equation (A.1.1), each z, has zero mean.
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Thus,

E[¥FT] = E[C72°GY] = GE[7a ]G> .

N

Thercfore given the statistics of {uk} and an mt:h degree polynomial

model Pm(t) to approximate {zn} over a given interval of time, the

statistics of the residuals to that model may be developed.

Theorem A.l: The covariance E[EET] is (1) independent of the

epoch of {u } provided this underlying process is stationary, and is
k !

(11) invariant provided the {zn} are sampled in an ddentical fashion in

each of two dintervals with comparable polynomial models being adopted.

Let

and

be two identically sampled sequences of the random walk {zn}.

where

The proof is as follows:

_T~ ,
ZI had {Zl,zz,...,zN}

-T {

Zrr }

AN+12 220 " 0 0 Pay

equaticn (A.1.12) can be written using
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T e morey

T

— LTI TS T T

= g T

as

where R 4ds an N X N matrix of all ones and § is8 an N x N

(A.1,13)

lower-triangular matrix of ones., Lquation (A.1.13) can be wiitten as

u.
=[RS][1]
11 Urp]

By a linear transformation, taking 51 &= (Gi,ﬁéI),

. T
(7 = [RSIE[GG"] [RT]

II II g
~T. T
= RE[u uI]R + SE[up urIR
~T T
+ RE[u uII]S + SD[uIIuII]S

From equation (A.1l.9)

1 T

T
] I II]

1r¥rr) = CElz

E[r

~T

u

IT'1

+ GRD[uI 1

However

[ ]R G + GSE[u..u.]R

T 15%et + c;sn[u.,I II]s 6t

(A.1.14)

(A,1.15)

(A.1.16)
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GR = [I-AGATA) " MATIR = [I-CIR

I ¢
k=1 Nk

*

(A.1.17)

Since the coefficlents C&k’ £ =1,2,,..,N, are based on the least

squares appro«imation of Pm(t) to the sampled {zn}, it is true that

(see lemma below)

N
z
k=

C = 1
1 1k

for every 4. Therefore

GR

= 0

and equation (A.l.16) reduces to

E[T

Using the stationarity assumption on {uk} and the result that

oy

111! °© GSE[u

u

T
IT 1L

= =0 = =To T
E[ZIZI] = SE[quI]S y

equation (A.1.20) becomes

Eir

since the matrix G in either case is identical.

-7

SEfuypuzy

TI°1I

L L,
] = GL[ZIZI]G = E[rIrI]

15T 1s tne only partial sum of the z
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(A.1.19)

(A.1.20)

(A.1.21)

(A.1.22)

Thus the quantity

statistics which is

i




mapped by G into the statistics of §II' The additional terms in equa=

tion (A.1.16) involving the R matrix are mapped into zero hy G.

Lemma A.l: For least squares polynomial approximation

by Cij = 1 and & Gij = (A 1.23)
1 i

whera
G=1~2¢C

¢ = AT ML

The proof is as follows:

The coefficients of the approximating polynomial

P () = .

[ I e =]

%
a (t-t)
0 L o]

are determined through a least squares procedure.

Thus

(aTay " 1aT;

"

and

(28]
I
N

- A3 =7 - AGATA) TATZ

H]
N
{
Q
ISR
L}
(]
N

Consider the matrix product ATG

T

ATG = AT(I— c) = AT[I—A(ATA)-]‘AT]
(A.1.24)
= AT - AT =0 ,
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Since by defindtion the first row of A? consists only of ones becausc

the approximating function is a polynomial, it follows from equation
(A,1.24) that

L G,, = 0(L=row, j = column)
g 4

for all j. Since G 1s symmetric

for all 4. From equation (A.1.23)

£C, =1~5G,, .
g g H

Therefore,

The above theorem alsc holds for random walks in which the

underlying process is continuous. TFor instance if equation (A.1.1l) is

replaced by the continuous random walk

tx
zy = z(tN) = [ u(t)dt , (A.1.25)

o

then using equation (A.l.25), equation (A.1l.13) can be expressed as
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by Nl
S u(t)de / ut)dt
to tN
7. ® . + , (A.1.26)
II
N Ean
[ ou(t)dt f u(t)de
t t
L- 0 -l hass N vad
= Q4T .

The residuals based on the mth degree polynomial fit are

?:II = <1-c)§n
a (L-C)(Q+T) (A.1.27)

= (I-C)Q+ (I-C)T .

Since Q is a vector of equal constants and since equation (A.1.18) holds

as before, it is obvious that
and therefore

Top ® (L-o)T

(A.2.29)
= QT .
The covariance for the second set of residuals is
= =T 1 _ ;prorlynl
E[rIIrII] = GE[TT ]G (A.1.30)
since
E[T] = 0 . (A.1.31)
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Since {uk} 18 aspumed statlonary with autocorrelation function

Ru(t-t’), the following integral equation dis valid

Eybg  Ewbr Eykr ™ Ener " B o
S [ R (e-tM)dedt” =/ S Ru(t*~ e**)de*dek”
ty  ty 0 0
(A.L.32)
£, L
J k1
= f f Ru(t:*- e* 4y deFde*
0 0
where
K oo -
o=t -ty

He .
> = - 3
t tN

Applying equation (A.1.32) to each element of the .ovariance matrix

E[TTT], it is seen that
T - =T
E{TT] E[zx&I]

and thus equation (A.1.30) becomes

- =T 0 - ~T, T
E[rIIrII] = GE{zIzI]G
- =T
' E[rIrI] .
Therefore the theorem is valid In the continuous case.

A.2 Correlation Between Reglduals from Approximations
Lt~ Successive Random Walk Segments

Consider two elements of the random walk sequence {zn}
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2N+i & N uk (thol)
k=l
and
? ( )
2, " L u As2.2
N el ko

Prom the assumption that {uk} 1g a zero-mean process

Elz,,,] = E[zN] w0, (A.2.3)

N+,

The corxelation between these elements is given by

E[ZN+1 ZN] = E[zN zN] + E[uN+l zN]-% veo F E[UN+i zN]
2 (A,Z.fi)

|
tions among the elements of the underlying process {uk}.

The correlations betweenz, and the elements uN+j depend on the correla-

Now consider the following question. If samples or a segment of
{zn} are to be mwleled by a polynomial of degree m, what correlations
exist between the residuals from successively fitted segments? Consider

for example the random quantities z(tn) where
n
z(tn) = I u(tk) n=lyeesfyeeey28

k=1

Suppose the distribution of the 2 is as follows:
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z(cl)

’ (Segment 1)

z(ng)

z(t

*

) (Sepment 2)

24+1)

2(typ)

Let t7 and t™ represent, without loss of generality, the midpoint of

cach sepment, If a polynomial is chosen to model the z, over cach seg-

ment as

m

P (Y= £ a.(t- L’)j (Segment 1)

m h|
J=o

and

m
Qm(t) = L b (t"ﬁ“)j (Segment 2)

j=0

can it then be assumed that EI and ;II are uncorrelated? To answer this
question perform a least squares fit of Pm(t) and Qm(c) simultaneously
to the {zn} segments and then linearly transform the statistics of {zn}
to obtain the residual statistics and compare the correlation coefficients

between the two gronps of residuals with those within each group. .he

equation for this transformation is

R R | ==
L[rIrI] ELrIrII] E[ZIZI L[zIzII] .

= G G (A'ZaS)
i o ~T1 “ - -T 1‘ > .‘T 1 - —T
Elrpprpt  Elrpgrp] Blzppzy]  BElappzg,]
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whore
G = [I~ACAYA) AT (A2, 6)
and
Al 0
A [=1 (An?n?)
0 A,

A compardson of the correlation ceefficients

E[rirj]
p. . = ‘
FiFy CIERLIEEN)

(2.8)

of the off~diagonal blocks, E[;I;§T] or E[EIIggl’ with those of the
diagonal blocks, E[§1§§] and E[Ellzgx], can be a basis for deciding if

the sets of residuals may be assumed to be independent of not,
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