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AliS'1'T.z1CT

Goodetl.c positioning using range, Integrated Doppler, and inter-.

forometr e oboerva-tions from a constellation of twenty-four global

Positioning .System saCollitos is analyzed. A summary of the proposals

for goodetl.o positioning and baseline detormination is givon which

lncludos a description of monsurement tech0quoo and comment.a on luuK

dof L eloncy and error soureos . An analysis of variance comparison of

range, Doppler, and is erferometric time delay to determine their rela-

tive f,eometrie strength for baseline determination is included. An

analytic examination of the effect of a priori constraints on posi- 	 j

t.ionfug using simultaneous observations from two stations is presented.

L)ynanaic point positioning and baseline determination using; range-

and Doppler it examined in detail. Models for the error sources influ-

encing dynamic positioning arc developed. Included is a discussion of

atomic clock stability, and range and Donnler observation error SLOW-

tic4	

SLOW-

tic: based oat random correlated atomic clock orror are derived.

Criteria for establishing observation schedules for optimum geometric

strength for positioning solutions ara onamMed. Results of goodotic

positioning simulation studios acre presented.

Satellite interforumetry results based on the double differ-

enaing of simultaneous interferometric phase measurements from two

satellites are given. The effects of ephemeris and refraction errors

and the nonsimuleaneity of observation are considered.
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1. INTRODUCTION

1.1 Background on a Global Positioning System

,A Global Positioning System (GPS) is a passive all-weather

navigation satellite system proposed for operation after 1985. The

system uses the concept of passive satellite navigation based on highly

accurate atomic frequency standards to enable the navigator to determine

his three-dimensional position, velocity, and time instantaneously on a

continuous worldwide basis. Range and range-rate measurements taken

simultaneously from four satellites will be reduced to determine these

parameters [Milliken, 1978). A total of twenty-four satellites in three

orbit planes will be available for navigation giving accuracies and

availability far exceeding the current Navy Navigation Satellite System

or Transit System [Stansell, 1978a] which GPS is designed to replace for

navigation. With the number of satellites in view always exceeding the

required number for navigatton, the user may select a subset of four

based on some criterion which optimizes the geometric strength of the

navigation solution.

The GPS system consists of three major segments: Space System

Segment, Control System Segment, and User System Segment. Each segment

is developed over three separate phases, each being a logical extension

of the previous phase in an integrated and cohesive manner.
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Phase x encompasses the initial design and evaluation of ayatem

components including the development of user equipment satisfying the

various navigation, applications [Borel., 19781, testing of user equipment

at a ground based simulation facility [Uenaro, 19781, and the apace

based system as satellites become available. These satellites are pro-

totypes of operational satellites which will validate a new ranging

technique and the stability of atomic frequency standards in a space

environment [Bartholomew, 1978). This initial constellation will pro-

vide four-in-view geometry similar to the complete system for up to

three hours each day over selected geographic areas. An initial ground

tracking network will be developed and tested during Phase x as a proto-

type of the operational ground system [Russell, 19781. Certain limited

demonstrations of operational scenarios are to be conducted.

Phase TT consists of the initial production of low cost user

equipment and development of operational. satellites. During this phase

additional satellites will augment the Phase I constellation. This will

result in a constellation of four satellites in each of three orbit

planes providing eight hours of continuous four-in-view geometry each

day. These satellites will later be maneuvered to provide continuous

worldwide two-dimensional, navigation.

Phase zll builds upon this two-dimensional capability augmenting

the constellation until a total system of twenty-Lour satellites in

three orbit planes exists. Orbital periods are twelve hours. The

ground tracking stations will become operational and modified as neces-

sary to accommodate full system operation.

2



Summarizing, Phase I is the concept validation period, Phase 11

is the system validation period, and Phase III consists of production

and operation. initial worldwide operational capability should become a

reality after 1965. Phase T has been completed,

The final Space System Segment will consist of twenty-four

satellites deployed in three orbit planes separated in right ascension

by sixty degree's. I'sight satellites are equally 6paced within each

plane. Integrated into each satellite will be at least two atomic fre-

quency standards to maintain stable time and frequency required for pro-

also ranting.

The Control System Segment is composed of a master control sta-

tion, an upload station, and three monitor stations (Russell, 1978).

The master control station and the upload station are currently located

at Vandenberg Air Force Base in California and three monitor stations

are located on Guam and in Alaska and Hawaii. These monitor stations

measure; the range and range-rate of the satellites, collect meteoro-

logical data and forward this information to the master control. station.

Every monitor station is equipped with a cesium frequency standard. The

master control station processes the data collected at the monitor sta-

tions and its own tracking data to obtain best estimates of satellite

ephemerides and time synchronization offsets for the system. Predicted

ephemerides and clock corrections are forwarded to the upload station

For transmission to the satellite.

The User Control Segment consists of the development and testing

of electronic receivers and associated equipment required to perform

navigation. The function of this equipment is to detect and to acquire
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the GPS satellite navigation signals, to extract range and range-rate,

information, to perform corrections for ionospheric refraction, and to

compute three-dimonslonal position and velocity and time. The expected

positional accuracies of the system are nine meters 
in 

each horizontal

component of position and ten meters in the vertical component ninety

percent of 
the time. These estimates of accuracy are based on a single

determination of position using four satellites based on the expected

error budget and optimum satellite geometry [Milliken, 1978]

An eventual replacement of the Transit System by GPS would pos-

sibly curtail geodetic positionIng currently availabl y: with the former

system using integrated Doppler observations and precise satellite

ephemerides [Sims, 19721. At 
the 

present time Doppler positioning is

playing 
an 

increasingly important role in many countries for network

densification and control as detailed in the Proceedings of the First

and Second International Geodetic Symposiums on Satellite Doppler Posi-

tioning [1976, 1979]. The curtailment of this program could have sig-

nificant implications within the geodetic community.

1.2 Review of Previous Studies

A Global Positioning Systeiiyalthough designed for navigation,

can offer the nicans for continued geodetic positioning using Doppler or

range observations, Anderle and Tanenbaum (1974) point out that a GPS

system is orders of magnitude better in oscillator stability and sup-

pression of ionospheric refraction and is effected less by uncertain-

ties in the gravity field. These factors imply that the typical errors

present in current Transit positioning would be reduced using GPS.
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In addition the presence of six to nine satellites in view

means that continuous data acquisition will he possible as

intermittent data obtained from Transit.

However the extreme altitude of these satellites, I

orbital semi-major axis of over 25,000 kilometers, means that, the rela-

tive velocity or Doppler shift between a satellite and an electronic

receiver on the earth would bo smaller limiting the amount of posi-

tioning information available from each integrated Doppler observation.

A comparison of simulated range difference data from CPS and Transit

demonstrates this geometric dilution of infurmation. CPS range dif-

ference data which have a maximum value of around 17 kilometers for a

thirty-second integration period are approximately an order of magnitude

smaller than typical Transit observations which can have a maximum range

difference of 150 kilometers over the same integration interval.

Figures 1.2.1 and 1.2.2 illustrate thirty-second incograted Doppler

range differences for a typical Transit pass and for a high elevation

CPS satellite pass respectively. The elevation angle of the satellite

is given at the endpoints of the curve and at the time of closest

approach (TCA). In addition the maximum length of a CPS satellite pass

is about six hours whereas a Transit satellite pass lasts about twenty

minutes. Thus GPS range differences are smaller in magnitude than cur-

rently obtainable Transit observations and, due to the length of a pass,

range differences from consecutive integration periods will vary less.

This implies that. continuous tracking of CPS satellites over a complete

pass may not represent an optimum data acquisition procedure. A sequen-

tial tracking approach in which a number of satellites are tracked over

5



ISO

loo

so
N

w
v.

w tt
0
J

1K

•50

100

-150

•5

-10

-15

0
a

0J
k

i

7

Figure 1.2.1. NAVSAT Range Differences

Figure 1.2.2. CPS Range Differences

{

6



segments of as pass may give a more geometrically significant collection

of Observations.

Thus it in evident that ONO) Integrated Doppler observations

offer certain real advantages over Transit observations but lack In

geometric 
strength 

of observation. However the GP$ system offers addi-

tional observational approaches, namely, ranging and, 
an 

will be dio-

ettoced below, the potential for interferometric observation.

The majority of the investigations made to date haven Centered on

the navigational capabilities of the CPS system. These studies consist

of both simulations and analysis of actual observations to determine the

accuracies achievable in numerous navigational applications. Denaro

[1.978] describes the Initial tenting of aircraft and land-based

navigation receivers usin g the Inverted TeSt 'Rotnge at Y'uffld, Arizona.

These, tests involved the use of ground-based transmitters simulating the

satellite system. Stansell [1978b] considers the civil marine applica-

tions of CPS and Cox [1978] describes the augmentation of an inertial

navigation system with CPS observations. Miller [1977] gives results of

an analysis of ocean navigation using 
CPS 

range observations, and

X.ruczynski [1978] considers aircraft navigation using a limited opera-

tional phase of the GPS system.

Numerous additional sLudies have , centered on the theme of navi-

gation using the CPS system. However only re?. , tively few studies have

examined the possible geodetic or geophysical potential of this system.

One of the earliest papers, given by Anderle [1978a], discusses the

major error sources effecting CPS range and Doppler observations and

arrives at anticipated accuracies for geodetic positioning and baseline
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components by extrapolating reaulta of a limited analynia based on

single pass solutions for two components of position, Anderle [1978b)

again given estimates of precision of relative otation positioning based

on GVS range observations. The resulto were again based on the projec-

tion of limited results, Vall [1979) gives an indication of the effect

of atomic clock stability errors on positioning '.;.sued on the tine of

range and Doppler observations obtained from one or two GPS satellite

passes. These lirited studies comprise the present resulto indicating

the potential of GVS range and Doppler observations for geodetic posi-

tioning derived using a dynamic point positioning ,!7proach,

In addition to dynamic positioning, interferometric approaches

have been proposed which utilize radio signals broadcast by CPS tatel-

l tea to determine baseline coriponeuts by measuring the time difference

of arrival or phase of these signals at two stations. Counselman [1978)

proposes to utilize interferometric observations derived from a series of

continuous wave signals transmitted by equipment which would augment the

GPS system satellites. using this approach baselines ranging up to a few

hundred kilometers would be measured. Counselman presents baseline

uncertainty estimates for this sy°';t;;tr based on the geometry of the

satellite passes. These results are then adjusted to reflect the effect

of unmodel.ed tropospheric refraction. Applications of the system are

discussed.

MacDoran [1979] proposes to derive interferometric observations

from broadcast GPS satellite radio signals in a manner similar to that

used in very long baseline interferemetry [Dermanis, 1977] or in the

portable ARIES system (MacDor.an et al., 1978) both using
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quasar aoureco. MacDoran 
gives 

a summary of the proposed SERIES Gyntem

and estimates of the effects	 A, cto of random and systematic error sources,

graph of entimatcd baveline, accuracy derived from SERIES 
is 

given.

Viaolly, Bonder [Letter to I. I. Mueller, 1979] proponef; an

interferometria approach in which the phases of the reconstructed GPS

carri er frequencien with respect to a local oscillator are, measured at

two stations 
in 

order to monitor crustal movements. An with the pre-

vioun two interferometric proposals this approach remains 
in 

an early

stage of development and the exact magnitudes of the error courceo can

only be conjectured at present, A more detailed examination of all pro-

posed systems of usage Is presented In Chapter 2.

1.3 Des„ cription of Prqqent st;.0_ A

,ilia major objective of this study is to present an analysis of

geodetic positioning obtained from both dynamic point positioning using

GPS range and integrated Doppler observations and from interferometric

satellite observations. One of the basic aims of geodesy is Lhe pre-

cioe and consistent determination of the coordinates of points of

interest in an adopted earth-fixed frame of reference. How well this

can be accomplished using GPS satellite observations will depend on

many factors which must be examined in detail.

The first step in this study, described in Chapter 2, ib to

examine. the proposed methods for the geodetic implementation of Global

Positioning System observations, These proposals are divided into two

basic classes, dynamic positioning with range and Doppler observations

based on the use of satellite ephemerides and satellite interferometry.

9
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A discussion of these techniques is presented giving the mathematical

description of the observing technique. A brief discussion of rank

deficiency is presented for each system along with a discussion of the

error sources effecting each.

The second phase of the study is a comparison of ranges Doppler

and interferometric observations to determine their relative geometric

strength for baseline component and chord length determinations.

Ranging observations are treated in three distinct modes, as range, cor-

related range difference and as interferometric observations. A

description of the :td;justment procedure is given and an examination of

the effect of a priori constraints on positioning using simultaneous

observations from two stations is given for each approach. This analy-

sis is presented in Chapter 3.

Dynamic positioning using range and Doppler observations is

addressed in Chapter 4. A detailed description, of the error sources

influencing dynamic: positioning is presented and error models for these

sources are developed. Included area discussion of atomic clock error

modeling and the develo).m,e.At of the statistics for range and Doppler

observation errors due tu random atomic cloth, error. Ephemeris, atmos-

pheric refraction and instrumental error sources are considered. Simu-

lation of GDS range and Doppler observations is discussed along with

criteria for the selection of satellites to be tracked which yield opti-

mum geometric strength of solution. A sequential algorithm is derived

for the estimation of geodetic station coordinates from range and

Doppler observations with fully correlated weighting. Results of geode-

tic positioning simulation studies are presented.

10



Satellite Werforomotry results 
are 

prvaented in Chapter !)

hasod 
on 

ue double differonoing of Werfarometi1v phase moasuromonts

from two satellites observed simultnneously at two locations, Thin

observation pr000dure is designed to eAminate the effect of timing

errors on the determination of baseline componvnts. The effects of

OphOMOVIS and tropospheric refraction errorn and the nonsimukaueity of

observation are considered.

A final summary and recommendations for additional analysis

aro pronented in Chapter 6.
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2. SUMARY AND CONSOLIDATION OF PROPOSED

SYSTEMS OF USAGE'

92.1 Introductory Remarks

All currently proposed methods for the geodetic implementation

of a GlobnI Positioning System of navigation sklLellites have, centered oil

the 
use of three basic types of measurement. Those observations are

range, integrated Doppler or ringo difference, and the illLerferometric

delay In time o( racopLion or difference in phase. of electromagnetic

signals at two sites. Ranging and Doppler Lochniqi.108 discussed by

Andorle [1978a] are 8'LlItable for dy lllillic point positloning applications,

in whieh the coordinates of the tracking receiver are deLermined in an

adopted earth-fixed frame of reference. Coordinate differences, or

baseline components, may also be+ obtained from such observations

ac(Ittirod at two or more stations. 'I'lie interferometrie apProacliLls

advanced by Maci)oran [19791, Counselmanand Shapiro [1,9791, and Bender

[Lettor to 1. T. Mueller, 1979], although difforing greatly In methodology,

are proposals for Using the measured time delay or phase difference at two

stations to determine baseline components in order to densify existing

goodetJc control and to monitor Crustal movomonts.

Tii this chapter 
a discussion of ther^c techniques is presented

which summarizes each observational procedure and gives a mathematical

description of the observation equations. A brief discussion of tank

12



deficiency is presented for each system and the error sources effecting

each are addressed.

2.2 Dynamic Positioning Using Range
and Doppler Observations

The concept of dynamic point positioning using satellite obser-

vations is nearly two decades old. At present geodetic point posi-

tioning using integrated Doppler observations from Navy Navigation

Satellites forming the Transit System is performed on a worldwide basis

primarily for network densification and control. Stansell [1978a] and

Laurila [1975] give overviews of this system and its applications in

geodesy and navigation. Although differing philosophies exist for the

exact implementation of Doppler observations for geodetic positioning,

as seen in the discussions of Brown [1976], Anderle [1974, 19761, and

Colquitt [1979], where differences in methodology exist in such areas

as parameter definition and procedures for treating Doppler observations

either as uncorrelated range differences or as biased range, this system

has made a great impact on geodesy.

With a Global Positioning System of navigation satellites both

range and Doppler observations are available for point positioning,

although the electronic technology required to acquire these observa-

tions differs greatly from current Doppler measurement methods.

2.2.1 Measurement of Range and Doppler

2.2.1.1 Range Measurement Procedure

Each GPS satellite broadcasts on two L band frequencies,

1575.4 MHz and 1227.6 MHz, called L 1 and L2 respectively, to allow for

13
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precise first order ionospheric compensation. Modulated on the h 1 car-

rier are two pseudo random noise (PRN) code sequences known as the pre-

cision (P) code 
and 

the course acquisition (C/A) code. The P code is a

binary random sequence generated it a rate of 10.23 megabits each second

and may be coosIdered, as a 
square 

wave whose frequency is 10.23 MHz and

whose amplitude is randomly taken as plus or minus one every cycle

depending on the code sequence. The C/A code is generated 
at 

a rate of

1.033 megabits each second and may 
be 

considered as 
a 
square wave FAIlil-

lar to the P code but having lower frequency. 
The 

C/A code repeats

Itself approximately every millisecond; whereas the 11 code has a repeti-

tion rate of approximately 38 weeks, although 
in practice the sequence

will ba resat every week.

Lindsey [1973] discusses the general properties of digital

sequences known as pseudo random noise sequences for usci in ranging

applications. The desired properties of these sequences are:

(i)
the 

complete code cycle length must be 
long 

enough to

avoid ambiguities 
in range measurements;

(ii) the code symbol repetition rate must be high 
enough 

to

obtain the required resolution of the range MeaSuroluelIL;

(iii) the autocorrelation function of the coda should be simi-

lar to that of band limited white noise having two di
s
tinct levels;

(iv) to improve efficiency in radio frequency (P.,F) transmis-

sion the code should have a balanced number of ones and zeros over a

complete period Of' the sequence so that the power of the modulated Sig-

nal is more evenly distributed about the carrier frequency.

14



The significance of these properties will be apparent shortly.

The L  signal transmitted by satellite i has the following, form

as given by 8pilker [1978] due to the biphase modulation of the PRN

codes and phase quadrature

sLi (t> a APP"(t)Ai(t)cos(w1t+^)
1

(2.2.1)
+ Ac C'(t)Di (t)sin(w t+^)

where the h1 carrier has the form

L1 (t) ^ cos(W1 t+0 .	 (2.2.2)

In equation (2.2.1) Pi(t) is a +1 pseudo random noise sequence. Thus

whenever the P code changes sign the phase of the cosine component is

reversed by 180 degrees or biphase modulated. These phase shifts occur

at the positive zero crossings of the L 1 carrier. The factor C'(t) has

an amplitude of plus or minus one and has the property that when the C/A

code is minus one, the phase of the second term in equation (2.2.1) is

reversed by 180 degrees. Thus the first and second term in that equa-

tion will remain out of phase by 90 degrees or retain phase quadrature

regardless of the code values. The factors A  and A c represent the

amplitude of each signal when transmitted. The factor D i (t) is an addi-

tional data code of amplitude +1, modulated on the carrier at a rate of

50 bats per second, which gives the navigation message along with the

information required to determine the time shift between the epoch of

the received C/A code and the epoch of the received P code. Figure

2.2.1 taken from [Butler, 1978] displays the biphase modulation of a
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Figure 2.2.1. Time Domain Waveforms: (a) Unmodulated
Carrier, (h) PRN Code Sequence,
(c) Biphase Code-Modulated Carrier
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carrier with a MIN code. The resulting RV nignal and its power are

spread into a frequency interval centered on the carrier whose distri-

bution depends on both the bit rate of the code and on the code itself.

l;igure -.2.26 also taken from (Butler, 19781 demonstrates this spread

spectrum effect where f  is the frequency of the code,

The LI signal is biphase modulated by either the P rode or the

C/A code. Assuming; the formal the T.-, signal has the form

sr^ (t)	 B P"(t)D i (t)cos(w"t+(P)	 (2.2.3)
..

where

L2(t) - cos(w2 t+^) .	 (22 . 2.4)

Both the L  and T, 2 signals and all codes are in synchronization with

one another when generated.

To measure range a ground receiver must generate the same MIN

codes that are broadcast by the tracked satellite. This requires

a priori knowledge of tile. codes selected For broadcast by each satel-

lite during the current week. With the receiver generating the appro-

priate P and C/A codes the range measurement is obtained by first

shifting the C/A code iii time, compensating electronically for the

Doppler shift, until a maximum correlation with the received signal is

obtained. Thus the C/A code is shifted in time by t' and biphase modu-

lated with the received signal giving

C Ct— t')s i (t) = ApC"(t-t')P*(t)Di(t)cos(wlt+^)
a

+ ACC"(t-t')C"(t)Di (t)sin(wl t+c )

17
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When a maximum correlation of the C/A codes is reached the second term

oil the right side of equation (2.2.5) will have its power compressed

into a much narrower band about the carrier frequency since the product

Ci(t-t *)Ci(t) is one, demodulating the signal.. 	Since C (t-t°) and

P'(t) do not correlate the power of the first Lerm is spread into an

even wider band. Since the code correlation functions 4)(P,C/A)

and 4^(C/A,C/A) are essentially two valued with a distinct maximum as

discussed above, a value to can be determined where maximum C/A code

correlation occurs.

Since the C/A code has a short period, to may be multivalued,

but a maximum correlation can be obtained readily. Tile data code Di(t)

then provides the receiver with information relating the epoch of the

broadcast C/A code to the epoch of the P code. Thus the approximate

time required to shift the receiver generated P code to correlate with

the broadcast P code modulated signal can be determined based on t o and

the data message. The P code correlation processes is performed until

a maximum correlation occurs as in the C/A code correlation process.

The unique time T for which P(t—T) correlates with the signal is the

measured quantity. By performing a second correlation on S L i (t) an
2

estimate of the first order ionospheric refraction may be obtained and

applied to correct T as described in Section 4.1.3 and in [Spilker.,

1978]. The corrected value of T multiplied by the speed of light c is

known as the pseudo range measurement. It represents the geometric

range between the receiver and the transmitter plus the effect of the

synchronization error between the receiver and satellite clocks. In

addition the measurement is subject to other error sources

18



discussed below. For the moment, ignoring these error sources, the

observation equation for pseudo range is

R a cT - j ps - p J+ cAT	
(2.2.G)

[ (us - u) 2 + (vs - v) 2 + (ws - w) 2 ) 1/ 7 + cAT

where us , vs , w  are the coordinates of the satellite in an adopted

earth-fixed reference frame. The quanLities u, v, w represent the

,receiver coordinates in the same frame and AT represents the synchroni-

zation error between the satellite and receiver clocks.

2.2.1.2 Doppler Measurement Procedure

In the range measurement process both carriers are reconstructed

since the C/A and P codes are correlated and biphase modulated with the

received signal. In addition the data code is deciphered by the

receiver and removed from the carrier. The result is a continuous wave

carrier subject to Doppler shift.

Two approaches may be taken to measure the accumulated. Doppler

shift over an interval of time. First, in forming the range measurement

the P code must be correlated with the received signal. Because of the

relative motion of the satellite with respect to the receiver the sig-

nal is subject to a varying Doppler shift and the electronic correlation

process must time shift the receiver code at rates proportional to the

range rate to maintain correlation. Thus a Doppler measurement can be

obtained by monitoring the code sequence shift rates over an interval.

The second procedu re is to difference the reconstructed carrier f  with

a frequency generated by the receiver f 0 and count the zero crossings
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of the resulting signal over a time interval. This second procedure is

the standard Doppler technique in use currently. CPS Doppler receivers

however could theoretically use either approach.

In either case the observation equation for integrated Doppler

can be expressed as the range difference over the integration interval.

( ti , t 
J 
1. The equation is

AR	 ITs ( t ) - PI - Ip (t > -- TI
(2.2.7)

E CN i	 (fp f^) (t^ ^- ti) J
0

where Ni , is the accumulated Doppler count over the interval. The

measurement is subject to errors due to oscillator frequency variations

and atmospheric refraction, As with range this measurement is made on

two frequencies to allow for ionospheric refraction correction.

2.2,2 Comments on Rank Deficiency of
Rance and Doppler ApZroach es

Dynamic point positioning► solutions are obtained from range and

Doppler observations by linearizing equations (2.2.6) and (2.2.7) about

an initial estimate of station a.T ►d satellite position

V AX + L	 (2.2.8)

and minimizing VTPV with respect to the unknown parameters X. This

minimization leads (Uotila, 1967) to the least squares normal. equations

NX + U = 0	 (2.2.9)

where

N=APA
	

(2.2.10)
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and

TU A PL .	 (2.2.11)

Because of a lack of coordinate system definition a unique solution to

equation (:.2.9) io not po go ible ninee N in a singular matrix with rants

leso than the number of parameters. Despite the dynamical constrainto

imposed can satellite motion a unique solution to equat4on (2.2.9) can

only be achieved if origin and orientation constraints are imposed on

the solution. In dynamic point positioning solutions these necessary

constraints are usually imposed through the use of previously estimated

satellite ephemerides. The satellite positions appearing in equation

(LM) and (2.2.7) are included in the normal equations (2.2.9) with

weighted constraints based on the accuracy estimates of the satellite

ephemerides utilized. if range or Doppler observations are made at two

sites the station position solutions may be transformer' into estimates

of the parameters of the baseline connecting the sites.

Arur [1977] performed a rank analysis of Doppler observations

and found that the vector of coordinate differences between the

observing station and the mid-arc state vector of the satellite pass,

the velocity components of this vector,and the frequency offset (fQ-fs)

are estimable. The components of station position only become estimable

if constraints are imposed on the ephemeris. For coobserving stations

the interstation coordinate differunces are estimable quantities. A

theoretical rank analysis carried out for ranging [Van Gelder, 1978]

showed that the rank deficiency for the short arc mode is two. Thus

without the use of sufficient constraints unique solutions to equation
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(2.2,9) are not ponnible, Pavlin (1979) discusses the general problem

of rank deficiency and procedures for obtaining; solutions.

yor positioning applications of the CPS ayntem, satellite

ephemerides will be estimated based on ranging observations from four

stations. The projected accuracy of these ephemerides is discussed in

Section 4.1,2, Range and Doppler positioainS studies described in,

Chapter 4 will incorporate weight constraints bused on assumed ephemeris

accuracy.

2.20 Range and lla^1er terror. Sources

The accuracy of satellite ephemerides3 and tropospheric

refraction modeling and the stability of satellite and receiver atomic

clocks will have important consequences in the application of range

and Doppler observations to geodetic positioning. An additional factor

will be the precision of the electronic receiver. 'These sources of

error are discussed in detail in Section 4.1. Their effect on geodetic

positioning are discussed in Section 4.5.

2.3 Satellite Interferometry

Radio signals transmitted by CPS satellites have been proposed

as a new resource for the application of interferometric techniques to

baseline determination, The interferomaLry technique is based on

observing the time (phase) difference of arrival of radio signals from

a single source at two or lore coobserving sites, Three different

satellite int:rferometry proposals have been advanced. MacDoran [1979

proposes to utilize the broadcast CPS spread spectrum signals by

r`s
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croon-correlating the recorded signals at two rites as in very long

baseline interferometry. The observed quantity Is the time difference

of arrival of the signal at the two sites subject to a time synchroni-

zation error. A second proposal [Counselman, 1979) would derive inter-

ferometric phase observations from a series of continuous wave signals

transmitted by equipment which would augment the GPS satellites. Obser-

vations would be made from at least Lour satellites simultaneously at

each site to recover the components of the baseline in near real time.

Thin technique relies on measuring the phase of up to ten continuous

coherent signals broadcast From each satellite to eliminate the 2 ,ff phase

ambiguity which occurs when a continuous wave is 'used. The phase

measurements are differenced at both observing sites to form the inter--

£erometric phase difference. Bander [Letter to 1, 1. Mueller, 1979]

proposes an alternative approach based on measurement of the phase of

the reconstructed GPS carrier frequencies at two sites. The phase of

the reconstructed carrier is measured with respect to a signal based on

the receivers local. frequency standard, bender proposes making such

measurements from three or more satellites simultaneously or within a

relativ6ly short time interval, so that the local frequency standard

stability is not a serious limitation. The use of a water vapor radio-

meter is proposed as in the Macllor6n approach to virtually eliminate

tropospheric refraction effects. This approach is also subject to the

21r phase ambiguity which must be resolved.

Thus three separate proposals have been advanced for an inter-

ferometric determination of baselines. The first is based on observing
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the time difference of arrival of random signals at two sites. The

ocher two proposals are based on the measurement of phase of continuous

wave signals.

2.3.1 Measurement of Interferometric
Time Delay and Phase

The interferometric time delay is the difference in the time of

arrival of radio signals from a common source at two sites. In very

long baseline interferometry the sources are the extremely distant

quasars. For the proposals described above the sources are radio

signals emitted from GFS satellites. Using the notation of equation

(2.2.6) the time difference of arrival, at sites i,and Q is given by

6T = (Ri - RP.) /c = (As - P i i - + Ps - p^+) /a + (AT i - ATQ) . (2.2:12)

in equation (2.2.12) the earth-fixed coordinates of the satellite

appear since the radio signals received at each site are not incoming

along parallel .naths as with quasar sources. The last term

in equation (2.2.12) is the clock synchronization error of the two

observing sites.

If the observation is Interferometric phase based on continuous

wave radio signals, either broadcast or reconstructed, the observation

equation has the form

27r [Ip s - pi I - mia + cATi J	 (2.2.13)

where X is the wavelength of the signal, m  is the integer number of

wavelengths comprising the geometric range and AT  is the

8i =
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synchronization error of equation UAW), The wavelength X as a .func.-

t ion of time due two the Doppler shift, The difference In phase at two

as i t eta in given by

t1tl a il^^^1^ " ^ [^ `t a ^' ^^ - (t7ta""t^^^ ^. (mi--QX+c(tTI..11t^)]

since the popplor shift; in frequency will not be identical at botch

obsovving sites (equation (2.2. 14) is an approximation to the order of

accuracy gloat, the Doppler shift is known a p; mi. The third term in

e(luatlon (2. .14) is the 'S ambiguity mentioned previra(sh - its

at priori uncertainty will be a function of the initial accuracy Of the

observing station's coordinates.

Finally in examination of equations	 and	 shows

that; tho time delay and the dif fcronce in interferometric. phase are

Wood by

ST N + M m

2. 1.2  Collllll , t s (111 R(lalk	̂ of

8atc Ili te. Intel.!`(,2L) Liletrv.

Equation (2.2.12) and (2.2.14) reveal that satellite interfo o-

motry observations are a ,function of satellite position unlike quasar

obsorvations and are related to the di,f''roreace ill raauge between the

satellite and the two observing sites. If noLmal, equations for station

position are. formed from such observations the. normaal. matrix N will

not have :full. tank. Unless a0ficient in:formatioil is available on

satellite position, a unique :solution for en Lh-fi.xed station
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roordkiatoo Is not pohtilblo. Ewen will such rolatrainul tho normal

oquat rona Call still Lond to ltomw singular as tho banol3ne difitmWO

dt,oreatjon. This to domonstrated '111 t.haj)L r 3.

Tilt, 	 following; alllll't1X1111atioa	 [01mnseb11an, 19781 can 11e rafted 111

t'tlnnt:itllltl	 «^.	 ::^^	 ,lntl (,,1,.:.14)	 tC1	 1"t`C41	 t	 tl l e ftts etlt"It'i^olls 3 11 Loans o

has(11111e 0011111ollonts

(ws ~ fl 't, I - ` t̂ t3	 ll , , I	 Fj.l R. r)	 f1 t1

"t^ t^tt^} ^^? ^6',i " f^^l ^ lf^:t r f'ttl.. ^t° tF^1^ ' f1 s ) ^^

5t°11ero t1 '; Is the tln;^t \l t'L'-t;or Ln the tl j '1't?(',t::^1111 O	 tho tlt,%vol ,'^to.	 7'`or

:short 11at1h1.1:netz dothl od as hav'.lnl

G".., . 171

tho t,ocond Lot"111 '1711 t':llliltion (21.2.16) Wily 110 d(I l. ?Ited.	 ',Chen equations

In l	 become

&C ,I ff';1 — F _e. l f' /c, "i" WrI —nTkl

and

1	 A
r10	 r	 ^,j - FE Z ) - 1) t,- (rn ,L - tat) X+1'.(111 {1 - M q	 l"« .x.;1.9)

An oxaminat;ion of tho derivatives of equation	 with reslleet to

1,1,tt$ol:1no Qompon nts aiid the time synchronization error rovonts Oat,

those parameters are est:1a11,Abl.r if !'clot° satel'Ji:es are observed wbich do

not 1.1r On tho same circle in the sky (Counsel.man, 19781.

,,

i^ t	 f' ^ ( L	 1^ y
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VquaG;lon	 lias L11u taame form an equiaG! oaa	 except for thc'

:lt .atnlati;ulty Germ which C,111110td be	 from t.jo synchroni..atlon

error unless special procedures are implemented (Coulwelmtna, 19791. The

double differcncing approach examined In Chapter 5 is 1110ther Geclnalgaae

for handlini, Glaris problem.

u.3. "3 :Carter,feroma xic Error Soorces

Maeboran (10791 and Gnunselm€an (19791 uuLliliv Llm E,ysL.,m;Me

and random error sources effecting their proposals. Included Sara the

froquency stability of the recelvcr clocks, transmission media c+rror t

Consisting of tropospheric and :ionospheric rofraction, CPS satellite

pos.Lt;aonal ac-euracy and the prec;isioa of tho ins trumcaatsaLion.
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3. PRECISION COMPARISON OF RANGE', DOPPLER, AND

INTERFERODILTRIC APPROACHES FOR

BASELINE DETEMINATION

A complete comparison of the positioning accuracies obtainable

from rango, Doppler, and interferomotric satellite observations would be

difficult to perform since proposals based on the latter approach remain

in an early stage of development. For instance, the. exact nature of the

instrumental error sources associated with satellite intorfermiletry can

only be conjectured at present. However range mid Doppler geodetic

receivers are currently being tested and estimates of measurement error

are available. Therefore, for the range and Doppler proposals a

detailed error analysis is presented in Chapter 4. Then in 
Chapter 

5 an

intarferomotric observation technique for baseline determination is con-

sidered which has a distinct advantage over the range and Doppler

approaches.

In this chapter a comparison of the geometric strength of the

three approaches is given based on the processing of range observations

as range, correlated range difference and as intorferometry or dJf-

feranced ranges from two stations. This analysis will give an indica-

tion of the relative geometric strength of each approach for the

determination of coordinate differences and baseline distances using

observations from a constellation of high altitude siatellites.
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`l.1 Mathematical Model and Ad justiyiont Proveduro

3.1.1 Mathematical Model

Let Rij be the topocentriv. rauge from any ground station

I' 1 (til ,vl ,wi) to any satellite position (, ,j (tl ,vi 1w  ) as 8110101 in

Figure 3.1.1, where the earth--fixed coordinate system ku,v,w), is

oriented towards the Greenwich mean astronomical meridian (u-axis) and

the Conventional lnteruati.onal tlrigin (w-axis) with the v-axis forming a

riccht-handed coordinate. system with u and w, this coortiinate system

being deflued by the Bureau International de I I lleure (B111). From

Figuve 3.1.1, the following equation can be written for the topc)cc^ntric

ran LC

Rid	
[(u

i 
-U 	 + (vj ~ vi)^ + (wj -- wi)`'']lf 2	

(311.1)

From two consecutive topocentric ranges, R iRj and P^ilc, the ran ;e dt:^__ _ .^ ^..

Terence is defined as

Rl. j k = l ik ` Ri;j
	 (3.1..2)

and from simultaneous range observations, R ii and RW taken at two

stations Pi (ui ,vi ,wi ) and P Q (uV vVWk), the interferometric observation

is defined as

6Riz j = Ri j -• RQ j .	 (3.1.3)
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Figure 3.1.1. Geometry of Topocentric Range

3.1.2 AdIustment 'Procedure

The mathematical models (3.1.1) through (3-1-3) of the general

form

may be linearized by a Taylor series expansion about preliminary values

for station and satellite coordinates X0 to obtain the observation equa-

tions [Uotila, 19671

V - AX + L	 (3.1.5)

where V is the vector of observation residuals defined by

V = L	 L
b
	(3.1.6)
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Tile elements of L 
are 

the differences between, the function P evaluated

at the preliminary values for the coordinates and the observed quantl,--

ties 1,b and A 
is 

a matrix of partial derivatives of F with respect to

the coordinates. The vector X, representing corrections to the prolimi-

nary coordinate values, will be estimated from the observations Lb

giving

xa M x 0 + x	 (3.1.7)

using least squares minimum variance estimation.

For range observations R 
,Lj 

and R,j made simultaneously at two
. 

stations the rows of the design matrix have the form

R.
A
ij	 lLu,, Dux , 3u i

(3.1.8)
- [a 

ij 
1 0 1 -a j I

and

f0) R
A__

xj	 Dui,@Uz,Du i

0 1 aQ I -atj
j

wilere

U	
Ua 

V	 V	 W	 Nqj

a	 LL--
-	

$ — 'j- $	 (3.1.10)
ij	 R ij	 Rij	 R ij

and

X T = [dUi$dviPdw:L$duVdvZ,dw x , du, , (,IV i , dw 
j 
I •	 ( 3.1-11)

The index- J ranges over 
the 

number of satellite positions where range
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observations are acquired. For single station tracking the parameters

du,, dvV and dwz are naturally omitted.

For range difference observations ARi,jlc the contribution to the

design matrix takes the form

BAniilc

ig k aui , 3u lc , aui

[ailc - aii 	 at,lc ai3

where

T
X - [dui ,dvi ,dNai ,duk ,dvk ,dwk' duj$ dvj$ dwi I .	 (3.1.13)

And finally for interferometric observations cSRikj from two stations

the contribution to the design matrix for each observation is

HRizj

Aikj	 aui,auA,aui

(3.1.14)
[ ai j i	 aQj - 

aij + a
R j )

XT = [dui ,dvi ,dwi ,duQ ,dvQ ,dwQ ,du,,dvi ,dwi ]	 (3.1.15)

In the analysis presented in this chapter, which is intended to

compare the geometric strength of these three observational approaches,

the satellite ephemeris will be assumed known and excluded from the

normal equations.

The least squares minimum variance estimate of X based on a set

of observations is obtained by minimizing the function

^ = VTPV — 2K (AX+ L — v)	 (3.1.10

k

with
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with respect to the unknowns Vp K, and X. V is the weight matrix for

the observation act. After -minimizing ^ and eliminating the unknowns R

and V, the least squares estimate for X to given by the solution of the.

normal equations

NX + U m 0	 (3.1.17)

where

N C3 A T PA	 (3.1.18)

and

U t-. A T PL

Solving equation (3.1.17) gives

X = N
-1 U	 (3.1.20)

The crivariance of the parameter estimates is given by the inverse of tile

normal matrix provided P is the inverse of the observation ccvatianco matrix,

lax  . 
N-1 .	

(3.1.21)

For observations from two stations the uncertainties in 
the 

base-

line components are obtained by the linear transformation

Z AX "' GE X GT
	

( 3.1.22)

where

0 - [-1 1]
	

(3.1.23)

and

AX T = [du z - du,, dv, - dv,, dw, - dw,] = [AuoAv,Aw] . (3.1,24)

The uncertainty in the chord length d is given by the transformation
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Cr2 - HE 11T a 11GE GTHT	 (3.1.25)

where:

11	

uQ - u .7 v ^- vi 	tai ^- wi
-- d	 d	 d	 (3.1, 26)

3.1.3 Wei Llit Matrix

In minimum variance least squares estimation the weight matrix

is taken to be the inverse of the covariance matrix of the observational

errors

I' R EL F
	

(3.1.27)

For statistically independent range observations with constant variance

the covariance matrix is given by

ER = Cr zI .
	

0.1.28)

The dimension of this matrix is equal to the number of observations

acquired.

For N independent range observations taken from a single sta-

tion, whose statistics are given by equation (3.1.28), the least squares

normal equations for station coordinate improvement are

where

(Al?R^t)X + ARP
RLR = 0	 (3.1.29)

XT = [du,dv,dw] .	 (3.1.30)

For (N-1) correlated range difference observations,defined as

the difference between successive ranges, the least squares normal
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equations can be directly obtained from the matrix coutl)onents in equa-

tion (3.1.29) by the transformations

(3.1. • 31)

(3.1..32)

(3.1.33)

AAA ^ B^t

LAR - BLR

!41- BEI^IIT

where the matrin B is defined by

	

."	 ,3 .	 .	 0

0 - 1 1

	

L 0	 0 0 	
(N-1 x N)

(3.1.34)

with the range observation covariance matrix given by equation (3.1.2$).

The weight matrix for correlated range difference observations is even

by

pQR	
CIS.. (BE RBT ) -1` c 

2 
(I323T )

-i
 .	 (3.1..35)

ct

For unlit variance equation (3.1.35) becomes

	

2	 -1	 0	 .	 0 -1

	

-1	 2 -1	 0

	

0	 -1.	 2	 -1	 0
pAR - (BB^3)

-i
 =	 (3.1.36)

	

0	 1	 2	 -1

	

o	 0 -1	 2 (N-1 x N-1)
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The, normial equations for (N-1) correlated range difference observations,

according; to equation (3.1.17), may be written as

14

(AT P A )X+Ar P 1,	 0
AR AR AR	 AR Alt AR

(3.1.37)

or, using; equations (3.1.31) through 	 , equation (3.1.37)

becomes

Consider now N independent range observations taken simul-

taneously at two stations at times tl,t2,...,tN

RT - [Rl)...,RN,120,...,ltZ)	 (3.1.39)

The least squares normal equations for the parameter set

X (dt►i,dvi,dwi)du,,dv,,,dwQl	 (3.1.40)

are given by equation (3.1.29) with modifications to allow for the addi-

tional set of parameters. Defining N independent satellite interferon-

metry observations as the difference between simultaneous ranges, the

least squares normal equations for iaterferometry can similarly be

developed from the matrix components of equation (3.1.29) by the trans-

formations

A6R	 riAR
	 (3.1.111)

L 
6 = MLR
	 (3.1..42)

ESR = MERM
	

(3.1.43)
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where

it =[-III 
(N X 02N) a

	
(3.1.44)

The weight matrix for the statistically independent interferometric

observations is given by

p 
SR '3 FSR'"l

 - (mr, 1N 
T 

I - 
(2a 21)_1

0 (21) -1

for unit variance. The normal equations for interferometry are

T	
+ 

T
AW6RA6R)X AWSRNR cl '	

(3.1,46)

or, using equations (3.1.41) through (3.1,45) ) are equivalent to

T T T -1	 Ir tv	 T -1
(A^ji (MM )	 ) MLIt - 0	 (3.1.47)

Thus the. weight matrices for range difference and interfero-

metric observations are obtained using the same linear transformation

matrices which convert the range observations to the alternative data

form. The range -difference observations are correlated since aach suc-

cessive range difference observation is furmed using a common rangco

This is reflected by the off diagonal elements in matrix equation

(3.1.36). Finally, it was shown that the range difference and inter-

ferometric normal equations are directly obtained from the range normal

equatiuns if the weight matrix is also modified accordingly. In equa-

tion ( 3.1.38) (, ;ie modified weight matrix becomes B T (BB T 
)
-I B and in

equation (3.1.47) it is
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3.1.4 Effect of A Priori Constraints on Positioning
Based on Simultaneous Observation

In general, for simultaneous observations from two stations, the

normal equations are developed for two sets of parameters, station coor-

dinates and ephemeris variables. Although the analysis in this chapter

assumes the latter to be known, it is of interest to examine the more

general form of the normal, equations to arrive at an understanding of

what effect a priori information on either the ephemeris variables or

the coordinates of one station has on the variance of the coordinates of

the second station and baseline components. This situation would natu-

rally arise in network densification using any of the observation types

considered herein.

3.1.4.1 Range and Doppler

For simultaneous range and integrated Doppler observations from

two stations, the least squares normal equations for station coordinates

and ephemeris parameters have the following form for measurements that

are either uncorrelated or are correlated by errors at individual

tracking stations

N11 0	
Nls X

1	 U1

0	 N22	 N 2 X2 + U2 = 0	 (3.1.,48)

NSl NS2 NSS XS	 US

The covariance matrix for station coordinates based on the observations

and on a priori knowledge of the first station's coordinates and the

ephemeris parameters is

" r,
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-N
is 

(N
SS 
+P

S 
) -I N8 9)
 

V

N 22 - 
N

28 (NSS 
+P

S )

-I 
Nq

N 
ll 'l' I'1.  

N 
is 

(N 
SS + 

P
s ) 

N 
^.Jl I

-N,) 8 (N SS + 1) S	
N 
Sl

11 12 	011 12

l3^	 1322	 Q21	 2

where ow paramec:ir sat X is defined by

x T - ((lll,,dV (IW,,Cltl,),dv,,d 	 ) -
1	 1	 ^q2

The covaria llce matrix claments ar p given by

(B	 1317132"".)1]^1
Q1, - 11 - 	 22 -

[N 
11+ 

P 
I 

N 
is 

(N 
SS + 

p S)—1 N 191— 
N 
is 

(N 
SS 

p 
S	 NS')

(N,) ,) — N (N +P )-1
N
	 —IN (N +P q	 S.,) ­IN 1 —1

2S" A.	 SS	 8	 82)	 2S SS

1322+1322
-1 

	—1 11 Q B 	
—1

  21 1.1 1.223 22 

r
L	 -I
	

)- IN 
22— 

N 
2S 

(N 
SS + p S ) 

N
S2 - N2S 

(N 
SS + p S	 NS1	

(3.1.51)

(N + p
1 — 
N (N +P )—I N

81 )—I N is 
N

-1 
N

11	 is SS	 S	 SS S2

Q12 - _q B B- 
I

1.1 12 22	

1	 1	 1	
(3,1.52)

, 
Q
11N :LS (N SS + 

p 
S

) - N S2 (N22 "' 
N 
2S 

(N SS 
+ P 

S
) - N S21-

T	 (3.1.53)

I'l i e matrix Qll is the covariance matrix for the first station's
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coordinates F , and Q22 is the covariance matrix for the second sta-

bon's coordinates 9  .
2

The covariance matrix for coordinate differences, or baseline

components, is obtained from equation (3.1.49) by the linear transfor-

mation

Qll Q12

FA}C 
	 (3.1.5+)

Q21 Q22	 ^

Q11 
.t, 

Q2N - Q12 ' Q21

In terms of equations (3.1.50) through (3.1.53), equation (3.1.54)

becomes

.	 Q1 + 11
42 +1i2"B21Q 11b 12h 2?	 Q1:1b 121321

i- 322321Q11	
(3.1.55)

h 22 + C1122B21 + 1IQ11[p'22h21 + x]1

This equation may also be written in the form

F^^,	 Fl + F^, -I• F^ 13 213112 -1. 132213 1? x 
l

(3 .l. at`i)
1	 2	 1 

Consider now the effect of a priori information raft the covari-

ance matrices given by equations (3.1.50), (3.1.51), and (3.1.56). The

,following cases are considered:

Case (i). Ephemeris parameters constrained and no knowledge of

station 1 coordinates (r. = W, P1 = 0). Under these assumptions equa-

tions (3.1.49) through (3.1.56) reduce CO the results
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X	 m N-11
1	 (3.1.57)x 

F.	 N 
-1	 (3.1.58)

	

x 2	
)2

Y" AX 
N 
-1 

+ N 
-1	 (3.1.59)

	

 11	 22

Case (ii). Ephemeris parameters partially known and station I

coordinates constrained (0 < P S
 

< 00, P, = CO) .

Y. x	 0	 (3.1.00)

E x 
2	

[N 
22)	

N 
2S 

(N SS + P 
S

)
-1 

N 
S21-

F, AX u! [N22 - 
N 
2B (N SS + P 

S
)
-1 

NS2 1 -1	 (3.1,62

Case (iii) . Ephemeris parameters constrained and station I

coordinates constrained (P S = CO, P1 ;4 00) .

E
x 

= 0	 (3.1.63)
 ,

E 	 N 21
	 (3.1.64)EX 2	 22

E	
' 

N 
-1
	 (3.1.. G5)

	

AX	 22

Case, (iv) . Ephemeris parameters and stacion I coordinates are

partially known (0 < P S < -, 0 < P I < 00).

E X,	 (N11 + P1.	 N is (N SS + P S	
N 
Sl	

N 
is 

(XI 
SS 

+P 
S	 N 

S2 (3.1.66)

(N22 - 
N 
2S 

(N 
SS + PS)-1  

N 
S2)-1 N 2S 

(N SS + P 
S )

-1 
N 
Sl 1-1
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established to be

X (iii) '^ A(ii)
AX	 AX

FX
2 

m 
(x22 - N2S(NSS+PS)wlNS21_1

+ (N22 - N 2 
(N 

SS + p S ) -1NS23-1N2S 
(N 

SS +P S) _lNS1 'X1	
(3.1.67)

NiS(NSS + p5 )-1NS2 (N22 - N2S(NSS + pS)-1NS21-1

SAX - EX + EX + ZX bl^b22 + B
-
22
1 B21(3.1.68)

]	 2	 1	 1

A comparison of these results indicates that the uncertainties

in the coordinates u2 , v2 , w2 are equivalent in cases (i) and (iii)

where the ephemeris was assumed known and that this uncert:inty can be

expected to increase as the orbit uncertainty increases as in case (ii)

and increase further as the uncertainty in station 1 also increases. In

terms of eigenvalues of the covariance matrix, or parameter ur.certain-

ties, the following relationship can be established among the cases

X(iii) - a(i) ^ X (ii) 'C X (iv) .
X2	X2	 X2	 X2

(3.1.69)

Tha uncertainties in the coordinate differences u 2 ul , v2 - vl,

w2 - WI are likewise a function of the assumed a priori information.

Comparison of the results indicates first that if the coordinates of one

of the observing stations are known, increasing the ephemeris uncer-

tainty increases the uncertainty of the baseline components; and second,

that if the ephemeris is known, increasing the uncertainty of the first

station's coordinates also increases the baseline component uncertainty.

The relationships among the baseline component covariance matrices are



and

x(il.i) < X(J)
nx	 Ax

(3.1.71)

The most important result however is obtained by noting that for rel.a—

t1vel.y clone stations the submatrices N is and N 2 
in equation (3.1.48)

are approximately oqual. Thus the last term in equation (3.1.68) of

case (1v) will be negative definite insuring that the covariance for

coordiiv,i e differences will be smaller than they sum of the coordinate

covariance matrices, as opposed to case (i) when the ephemeris 1.8 con-

strained. "Thus in general

x(iv) e X(iv) + X(iv)
Ax	

x 
	 x2

(3.1.72)

This demonstrates how baseline component determinations may be obtained

successfully in the presence of ephemeris errors which cause larger

uncertainty in the coordinates themselves.

3.1.4.2 Interferometry

For satellite interferometry observations from two stations the

least squares normal equations for station coordinates and ephemeris

parameters have the form

N11	 N12	 Nis x1 U1

N2l	 N22	 N2S x2 + U 2 = Q

sl	 S2	 NSS xS NS

(3.1..73)
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After algebraic elimination of the ephemeris parameters the covariance

matrix for station coordinates including a priori information in

Nl2 " 
Nis (Nss 

+ V s  
_ 

NS2

1
N22 - N 2 (N so + 

P S ) ~ NS2
(3.1.71+)

N1.1 
+ Pl " N

is (NSS + P S ) p1 NSl
A N21 _ 

N 2 (N SS + 
11s )

 -IN IS

g 11	 g 12 	 ["'11 412
R	 R

13 21	 g 22	 142 1 	 Q22

where the covariance matrix elements are given by

Q11 01311- 3i12S2213211

CN11 + P
1 r N1S (NSS 

+ 
P S ) ^1NS 1

- 
(N12 .. N1S (NSS + PS)-I Ns)

(N 22 ^N 2S (NSS +P S )-IN52
)_1(N

12 N is (NSS+PS)- INs2)T -1

Q22 13 22 13221321411^3121i22

[N22 - N 2 (N SS + 
P S ) r1NS2 - (N21. _ N 2 (N Ss + 

p
s ) ^1NS1)

(3.1.75)

(3.1.76)

(N 11 +P
1 -Nis (NSS +P s )^1N S1)- (N21 - N2S(NSS+Ps)- NS1)37

4 21 ° ^411P12^322

^Qll (N12 - Nis (NSs +P S )^1NS2 ) (N22
.. 

N2S(NSS
+Ps)_1NS2)-1 (3.1..77)

4 21 = Q T12
	 (3.1.78)

Again 411 and Q22 are the covariance matrices for the station coordi-

nates.
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The civari*nce matrix for the baseline components is obtained

using the transformation equation (3.1.54) and has the same form as

equation (3.1.56):

EAX ^ all + Q22 ^ 412 - Q21
(3.1..79)

EX 	EX
 + EX 12 22P22h21X

For the cases considered previously, equations (3.1.75) through (3.1.79)

reduce to the following

Case (i). Ephemeris parameters constrained and no knowledge of

station 1 coordinates (P S = 00, P1 = 0).

EX 	 [N11 .. N12N22N211~1	 (3.1..80)
1

EX == 
[N22 	 N2]N11.N121~1	

(3.1.87.)

2

AX
- EX + EX + 

EX N12N22 + N22N27EX .
	 (3.7..82)

1	 2	 1	 1

Case (ii). Ephemeris parameters partially known and station 1

coordinates constrained (0 < PS < 00, P1 = 00),

EX = 0	 (3.1.83)
1

EX
2 = 

[N 
22 _ N2S(NSS f• PS)^1NS23_i
	

(3.1.84)

EAX = [N22	N2S (NSS + PS)r1NS21_1	
(3.1.85)

Case (iii). Ephemeris parameters constrained and station 1

coordinates constrained (PS = 00 , P1 = CO).

P)
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S

EX1	 Q	 (3.1.86)

XE 
2
X ^ 22	

(3.1.87)

E	
..1	

(3.,9..88)AX R N22

Case (iv). Ephemeris parameters and station 1 coordinates are

partially known ( Q < P  < w, 0 < V I < 00) .

EX	 (see: equation (3.1.75) )

l

FIX = (see equation (3.1.76))

2

EL1X R 
EX + EX •i^ EX >312B-1 + B-

22

1
 B21(3.1.89)

	

1	 2	 1	 1

An examination of these cases reveals the following relation-

ships in terms of the eigenvalues of the station covariance matrices

(iii)	 (ii)	 (iv)
X2	 X2	 X2

and

X(iii) < X
(i)	 (3.1.91)

X2	 X2

Por baseline component determinations

X(iii) < X(W
	

(3.1.92)

In cases (i) and (iv), however, the equations reveal how interferometry

is suited for the determination of baseline components for close sta-

tions. Under those circumstances
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r^

N12 
C: 
-N22

b12 
V 

-R22 .
	 (3.1.94)

Thus, the last two terms in equations (3.1.$2) and (3.1.8 Q ) are nearly

the additive inverse of the sum of the Urst two terms yielding an

acceptable baseline component covariance even in the presence of large

ephemeris error.

Interesting also, under conditions where approximations

(3.1.93) and (3.1.94) are valid, are the results obtained in cases

(i) and (iv) for the coordinate covariances, equations (3.1.80),

(3.1.81), (3.1.75), and (3.1.76). 	 In these cases, even when the satel-

lite ephemeris is known, the covariance matrix tends to be singular as

the baseline distance decreases. 	 For interferometr . , station coordinates

are not estimable under these conditions; however, baseline components

are.

3.2 Comparison of Range, Doppler,and
Satellite Interferometry

In this section, a comparison of range, integrated Doppler, and

satellite interferometry techniques for the determination of baseline

components and chard distances is described. The basic intent of this

analysis is to compare the relative geometric strength of each techni-

que and obtain a measure of how the results themselves vary under dif-

fering circumstances of usage. The analysis is based on statistically

independent range observations of unit variance taken simultaneously

from two sites using a single-channel receiver as shown in Figure 3.2.1.

47



i

STATION I

Figure 3.2.1. Simultaneous Range Measurements
From Two Ground Stations

These observations are treated as range, correlated range difference,

and as interferometrc observations. Observations are included in the

analysis if the satellite elevation exceeds 10 degrees. An analysis of

variance is performed using least squares minimum variance estimation

incorporating the weight matrices of Section 3.1.3. The parameters are

the corrections to the baseline components

Au = dui - dui

Av = dv9 - dvi	(3.2,1)

Aw == dwz - dwi

and the chord distanctA do defined as

d = [(u 
C  

ui) 2 + (vQ - vi ) 2 + (wQ - 
wi) 211/2	 (3.2.2)

No time synchronization parameters are included.

The orbital elements used in this study are given in Table

3.2.1. With a 24-6atellite constellation five to nine satellites are
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in view of a station at all times. For simultaneous observations from

two stations, the number in view decreases with an increase in the

separation distance. Simultaneous three-station tracking was not con-

sidered since cacti baseline would not be determined as well, especi-

ally for stations of great separation where the number of satellites in

common view is less.

TABLE 3.2.1. GLOBAL pOSITIONINO SY$TEM ORBITAL BLEMENTS

EPOCH: 1975 DAY 116.0 :► a 26560km In 63'
d	 0.0 W N 00

SATELLITE M 0

1 0° 00
2 45 0
3 90 0
4 135 0
5 180 0
6 225 0
7 270 0
a 315 0
9 345 120°

10 30 120
11 75 120
12 120 120
13 165 120
14 210 120
15 255 120
16 300 120
17 15 2409
18 60 240
19 105 240
20 150 240
21 195 240
2 2 240 240
23 285 240
24 330 240

Two station groups are considered. The first is a mid-latitude

group of three stations whose geodetic coordinates are given in Table

3.2.2. The chord distances separating the station pairs 1001-1002 and

1001-1003 are approximately 100 kilometers. The second group of sta-

tions is the so-called "Iron Triangle" very long baseline
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interferometry (VLBI) stations whose geodetic coordinates are even in

Table 3.2.3 and whose chord distances are found in Table 3.2.4. The

maximum baseline distance for this group is nearly 4000 kilometers, and

the minimum is 1500 kilometers.

Since variations in the tracking scenario are possible with

multiple satellites in view, a criterion for satellite selection is

adopted. Given the normal matrix N based on all prior observational

data, the next satellite to be selected for observation will be the one

whose observations, when included with prior data, minimize the truce

of the parameter covariance matrix. For baseline components this trace

is the sum of the baseline parameter variances

22	 2
Tr(SAX)	

CrAU + Cr r aAw	
(3.2.3)

For the chord the trace is the variance of the estimated chord length.

For each type of observation these criteria are virtually independent

since minimizing the trace of the baseline component covariance matrix

does not guarantee that the chord length variance is a minimum. That

will depend on the correlations between the baseline components.

3.2.1 Short Baseline Comparison

An analysis of variance study was made for the mid-latitude sta-

tions with parameter sets consisting of the baseline components and

chord length. The observation schedules for the two baselines con-

sidered, the north-south baseline 1001-1002 and the east-west baseline

1001-1003, were based on ranging measurements taken every five minutes.

Range observations were processed as range, correlated range difference
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TADI 1:.ib.s 3 ! 2111,E .	 OFODE JarC (V6 / \/{1 PIkYi4 ES OF MID-LAT I.T M S.Li1.4tIt 141

STATION	 GEODETIC COORDINATES

NO.	 LATITUC	 LONGITUDE	 HEIGHT (m)

1001	 300	 0'	 0.00 11 	0'	 0,00"	 010
1002	 30	 54	 7.55	 45	 0	 0100	 0,0
1003	 30	 0	 0,00 1 43	 57 ,; k 36	 0.0

TABU 3.2.3. TXtON TRTANOL11 STATTON 000111MI! ES

STATION
GEODETIC COORDINATES

LATITUDE LONGITUDE HEIGHT (m)

WESTFORD (WS) 420	 36'	 46,518" 700 0 	30'	 22,720" 67,4
OWENS VALLEY (OV) 37	 13	 53,287 241	 443	 2,441 1172,9
FORT DAVIS (FD) 30	 38	 44,924 256	 3	 0,0 168010

TABLE 3.2.4. BASELINE DISTANCES (kni)

ENS -

-OV 3929

FD 3135 1508

INS 0 V FD
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and as interferometry. The results are based on an equivalent number of

observations of each type.. The satellites selected for tracking were

chosen using the criteria defined above which are a function of the

observation type and the parameter set definition. Several observa-

tion schedules were considered where the time allotted for siu,ul.tane-

ousl.y tracking each satellite was fixed at one, two, or th-i-ee hours.

One typical observation schedule is given in Figure 3.2.2 where the

satellite tracking interval is three hours. The analysis of variance

results for the mid-latitude station group are given in Tables 3.2.5

through 3.2.7. The results are based on 24 hours of continuous obser-

vation with intermediate results given at either S o r y hours. No

a priori knowledge of the station coordinates was assuned in these

results. The range observations were taken as si.atistically independent

having unit variance or a one meter standard error. To obtain an esti-

mate of the ultimate precision obtainable for a Rarticular observation

type the results found Jn the tables must be scaled by the ratio of the

assumed .standard error in centimeters of that observation type, con-

3erted to the uncertainty of an equivalent range observation, to the 100

cent Meter standard error used to obtain the results. For instance, if

it 'were assumed that correlated range differences may be measured with

a standard error of 10 centimeters then, noting the defining equation

(3.1.3) for range differences and equation (3.1.35), the standard error

of at, equivalent range measurement would be 10 centimeters divided by

the square root of two. Tb.a standard error of an equivalent range

measurement is defined as tiLat Jalue which when utilized in equation

rn
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1	 3	 6	 9	 IZ	 15	 id	 Z^q

TIME (HOURS)

Figure 3.2.2. Typical Observation Schedule for a Three-tour
Satellite Tracking Interval (Stations 1001
and 1002, Range Observations)

Using 24 hours of range observations the baseline components

are determined with an uncertainty of approximately 15 centimeters with

slight variation as a function of the time interval each satellite is

tracked. The chord distance has a standard error of approximately 11.5

centimeters and increases, but not more than E ! percent, as the tracking;

interval increases to three hours. This increase is due to an increase

in the correlations between baseline parameters. There are no discern-

ible trends due to the orientation of the baseline.

aI
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For correlated Doppler reservations based on one-hour tracking

intervals there is a six-fold increase in the baseline component uncer-

tainty compared to the range results as seen froze Table 3.2.5. How-

ever as the satellite L, Aing interval is increased to three hours this

standard error decreases dramatically. The same is true of the uncer-

tainty in chord length. No variation in the Doppler results is seen on

the basis of orientation except with chord length where the uncertainty

in the length of the east-west chord remains significantly larger in

all cases, ranging from a difference of 2 parts to 0.9 parts per million

(ppm). A comparison of the best Doppler results from Table 3.2.7 with

the corresponding range results from Tables 3.2.5 through 3.2.7 indi.-

cafes that results obtained from range observations with a one meter

standard error can be equivalently obtained using correlated range dif-

ferences if the standard error of the latter observation type is

approximately 49 centimeters. This result is obtained by determining

the uncertainty of an equivalent range observation (35 centimeters)

which when used in the range difference weighting equation (3.1.35) will

scale the Doppler results of Table 3.2.7 to be equivalent to those of

Table 3.2.5 obtained using range observations with a one meter standard

error. To obtain an equivalent uncertainty in estimated chord length,

correlated range difference would require a standard error of 54 centi-

meters.

Also of importance is the ratio of the uncertainty of the esti-

mated parameters to the observation uncertainty. This ratio is obtained

by dividing the parameter uncertainties found in Tables 3.2.5 through

3.2.7 by the standard error of the appropriate measurement type.
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The standard errors for range, range difference, and interferometry obser-

vations are 100, 141, and 141 centimeters respectively which may be veri-

fied using equations (3.1.33) and (3.1.43) assuming the one meter

standard error for range. Rased on 24 hours of observation this ratio

is approximately 0.15 for range and 0.28 for correlated range difference

considering the best results for the latter. For the chord length the

ratios for range and range difference are 0.12 and 0.14 to 0.21, respec-

tively. The last two ratios for range difference reflect the variation

in the results in Table 3.2.7 for the two orientations These ratios

are of importance as scale factors which can be applied to assumed

observational uncertainties to obtain estimates for parameter uncer-

tairties. For instance, if correlated range differences had a measure-

ment uncertainty of X centimeters, the uncertainty in the derived

baseline components would be approximately 0.28X centimeters instead of

the approximately 40 centimeters as given in Table 3.2.7.

With interferometric observations the resulting uncertainties of the

baseline components are approximately twice as large as the range obser-

vation results after 24 hours. The uncertainty increases about 25 per-

cent as the tracking interval increases from one to three hours. The

uncertainty in the chord length is about 2.5 times greater than the

range-derived chord. The trace of the covariance ma.tri •sr. from inter-

ferometry shows little variation with orientation but variation in the

distribution of the uncertainty among the parameters exists The chord

length uncertainty is nearly equivalent for the two orientations. To

produce baseline component uncertainties equivalent to the range

results, the standard error of interferometric observations would be

55



required to be 71 centimeters. Again this result is obtained by deter-

mining the uncertainty of an equivalent range measurement (51 centi-

meters) which when used in the interferometry weighting equation

(3.1.45) will scale the interferometry results of Table 3.2.5 to be

equivalent with the range results of Table 3.2.5 based on a one meter

standard error of observation. For comparable chord results with inter-

ferometry a standard error of 54 centimeters or an equivalent range

uncertainty of 38 centimeters would be necessary. The ratio of para-

meter uncertainty to measurement uncertainty is approximately 0.21 for

baseline components and 0.38 for the chord length.

The covariance computations for the one-hour tracking interval

were repeated to obtain a measure of how knowledge of one station's

coordinates could improve the results. The expected change in the base-

line component covariance is given by a comparison of equations (3.1.59)

and (3.1.65), which predict a square root of two decrease in the coordi-

nate difference uncertainty for range and Doppler observations and by a

comparison of equations (3.1.82) and (3.1.88) for interferometric obser-

vations. In the latter comparison the exact decrease in the uncer-

tainty to be expected is not as obvious. An examination of Tables

3.2.5 and 3.2.8 sluzw in fact that the uncertainty of the coordinate dif-

ferences and also of the chord length decrease by the square root of two

for range and Doppler. For interferometry the baseline component uncer-

tainties decrease by approximately the square root of three and the

chord uncertainty by approximately the square root of seven. Notice that

the uncertainty in the chord based on interferometry with one station held

fixed is equal, to the number of digits given, to the chord uncertainty
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based on range with no a priori constraints. For shorter baselines

t;heoe results will be nearly equal, and this can be shown mathematically

using equations (3.1.43), (3.1.54), (3.1.59), and (3.1.88) keeping in

mind the partial derivative equations (3.1.10) and (3.1.14). It can be

concluded for network densification that a priori knowledge of the

coordinates of the existing control point has a greater impact on

interferometry than on range and Doppler.

3.2.2 Lon Baseline Comparison

For the long baselines of the Iron Triangle (Table 3.2.3) a simi-

lar analysis was performed to determine the relative geometric strength

of each observation type for determining baseline components and chord

length. The results are based on an observation schedule of simultane-

ous observations taken from two stations every five minutes for a

full day. Here, one- and two-hour satellite tracking intervals are

examined. Parameters corresponding to each side of the triangle ere

determines; using only observations from the two stations forming that

side. This allows the greatest flexibility in satellite geometry. The

results are given in Tables 3.2.9 and 3.2.10.

Based on 24 hours of range observations with one-hour tracking

intervals, the uncertainties of the baseline components range from 13.5

to 17.0 centimeters showing minor variation with triangle side despite

the different orientations and lengths. Increasing the satellite

tracking interval to two hours produces a marginal increase in these

uncertainties. The chord length uncertainty also increases slightly

with side length but in terms of ppm decreases significantly.
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Increasing the tracking interval to two hours produces a small increase

in the standard error of the chard.

For correlated range differences the uncertainties are again

much larger than the range results after one day of observation. The

results improve relative to the range results as the tracking interval

increases. The trace of the baseline covariance matrix shows more vari-

Lion with baseline length than range, and the chord uncertainty is about

three tames larger than the range case, comparing best results.

Interferometry observations give baseline component results

which are better than correlated range difference results; however, the

uncertainty in the chord length can be determined better from range dif-

ferences from longer satellite tracking intervals. The uncertainties of

the parameters tend to increase as thu tracking interval is increased

and a pronounced increase in parameter uncertainty is noticed as the

baseline length increases#

cor range difference observations to yield equivalent base-

line component uncertainties to range observations after 24 hours the

standard error of range difference observations would need to be

reduced to approximately 41 centimeters. In that case the range dif-

ference results given in Table 3.2.10 would be reduced to approximately

the level of uncertainty given in Table 3.2.9 for range observations

with a one meter standard error. For chord length a range dif-

ference uncertainty of 46 centimeters would be necessary to achieve

equivalent results with range.
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For interferometry, a statement of the required observational

uncertainty necessary to produce range equivalent results in mono Pon-

plioated since the results based on interferometry axe more var.oable a.]

a :function of station separation. All 24-hour interferometry results In

Table 3.2.9 would be at least an good as the rnnge results in that table

if the Westford-Owens Valley results were equivalent. The parameter

uncertainties are greatest for thin baseline. For this to occur a

measurement uncertainty of 41 centimeters would be required for equi-

valent baseline component results and 30 centimeters for chord length.

Ration of parameter uncertainty to observational uncertainty

may likewise be developed from Tables 3.2.9 and 3.2.10.

3.2.3 S -mar

Some general conclusions can be drawn from an examination of

the results. For the observation types considered it is evident that

ranging measurements provide the best: geometric strength of solution.

The two other derived observation types, correlated range difference

and interferometry, are geometrically weaker although the results

obtained from these Natter procedures can be improved upon by increased

observational precision. Correlated range difference observations give

the best geometric strength of solution if observed satellites are

tracked over longer time intervals. With this type of tracking proce-

dure both the baseline component and chord length uncertainties are

minimized. For range and interferometric observations shorter satellite

tracking intervals produce the least uncertainty in the baseline

parameters. Lengthening the tracking interval for these observation

types increases the resulting parameter uncertainties. however the
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rate of increase is smaller than the variation in Doppler results pro-

duced by decreasing the tracking interval.. And finally the interfero-

metry approach becomes geometrically weaker as the baseline length

increases to become a more significant percentage of the distance to the

satellite, although the relative error in parts per million decreases

for the baselines considered.

The analysis presented above considered the relatives geometric

strength of three observation types, two derived from basic ranging.

The results were based on the assumptions that satellite positions in

space were known and that the basic ranging measurements were subject

to uncorrelated stationary random noise. Some additional comments con-

cerning these assumptions are appropriate. If the ranging measurements

are in addition subject to a receiver timing bias,then timing parameters

would be required to augment the current parameter set, at least one for

each observing station. Under these zonditions the range and correlated

range difference results would be approximately equivalent depending on

the satellite geometries sampled, tracking interval adopted, and the

a priori uncertainty of the timing parameters. The interferometry nor-

mal equations will also have to include these parameters and the base-

line parameter uncertainty will be increased. For close stations the

effective error introduced into interferometry observations would be

the difference in the timing error at each station. The effect of

timing error on interferometry can be greatly reduced by tracking addi-

tional satellites simultaneously as considered in Chapter 2. If the

first assumption concerning the accuracy of satellite positions is

violated,the resulting baseline parameter uncertainty will increase.

6G
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This was shown analytically. For short baselines the effect of the

ephemeris error will be minor for all three approaches,

Finally a comment concerning Doppler observations is necessary.

In Lhe precision comparison study the derived range difference observa-

tions were correlated since successive range differences were formed

using a common range. If Doppler results were obtained front independ-

ent Doppler counts over the same time intervals the correlations in the

weight matrix would vanish and the resulting parameter uncerta:i,nties can

be expected to increase.
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4. DYNAMIC POSITIONING USING RANGE

AND DOPPLER OBSERVATIONS

In this chapter a study is presented which attempts to determine

the accuracy of dynamic point positioning using range and Doppler obser-

vations from a constellation of twenty--four Global Positioning System

satellites. Two positioning problems have been addressed. These nre

the determination of the geodetic coordinates of a station and the

determination of b=aseline components for stations which lie 100 to 2000

kilometers apart. An error analysis is performed to determine what

effect various systematic and random modeling errors have on tracking

station positions determined by a least squares adjustment using simu-

lated observations. All results are based on the use of a single chan-

nel, dual frequency, sequential receiver whereby only one satellite is

tracked at a time on two frequencies to virtually eliminate ionospheric

refraction.

The observations analyzed consisted of range and integrated

Doppler measurements. For both data types the assumption is made that

the observations are subject to two random noise processes, namely

uncorrelated white noise with a normal distribution and correlated error

due to integrated fractional frequency errors in both satellite and

__giver atomic oscillators.

I
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In order to perform rigorous simulations of dynamic point posi-

tioning a complete adjustment model must be adopted. Modal parameters

included in this study are receJver coordinates, polynomial clock error

models for station clocks, satellite state vector components, and a

polynomial satellite clock model for each pass. A priori weighting; con-

sisteat with the model error levels introduced is included for satellite

ephemeris and clock parameters allowing station coordinates to be asti-

piatccl. Since two sources of random error are present in the observe-

tioni weight matrices used in the adjustment account for each random

process, the complex; one being correlated atomic clock error. An analy-

tical method is developed to give the statistics of this random process.

The procedure starts with either actual or models of the Allan variance

for a particular oscillator or class of oscillators and develops the

statistics of range and integrated Doppler observations based on the

two oscillators used in deriving the measurements. Statistics for

resdua.l.s to polynomial clock models are then obtained by a transfor-

mation. These residual, statistics are incorporated into the adjustment

weighting.

To further define the adjustment procedure, several studies were

performed and are described in this chapter. p study was made to deter-

mine if it is possible to perform a sequential adjustment of the con-

tinuously observed measurements. Since all observations based on the

receiver clock are correlated through random atomic clock error, must

all data be processed simultaneously using a fully correlated weight

matrix or k :n the measurements be divided into fully correlated blocks

each with independent clock models requiring adjustment? Secondly, a
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study was made to determine the time sp} .	or which a given polynomial

clock model, might; be adopted. Further, tests were conducted for range

and Doppler tracking to determine the optimal selection of satellites

which produce the least uncertainty in derived station coordinates, a

selection which produces the best geometric strength. And finally, the

use of two-body analytic partial derivatives for orbit improvement

rather than rigorous numerically integrated partials based on a spheri-

cal harmonic gravity field complete through degree and order eight was

examined.

Results from numerous computer simulations of station posi-

tioning are included to demonstrate the effect of the error sources and

evaluate the full weight matrix concept. In general the results were

computed for cases where observations are six second ranges smoothed

over 300 second intervals and 60 second integrated Doppler observations

aggregated over 300 seconds.

4.1 Error Sources Influencing Dynamic Positioning

In this section the dominant systematic and random error sources

influencing dynamic point positioning using GPS range and Doppler obser-

vations are described in detail and error models for these sources are

developed. Also included is background information on atomic clock fro-

quency error characterization required for an understanding of the dis-

cussif:tz ,',n Section 4.4.

;''he error sources considered here are believed to be the domi-

nt.te ones effecting dynamic positioning. They include:
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Residual second--order ionospheric refractJon errors were not included

since this error is shown to be only a few millimeters at GPS fre-

quencies.

4.1.1 Atomic Clock Errors and Frequency Stability

A clock is a device which counts the cycles of a periodic

phenomenon and among the most stable clocks in use are the atomic

clocks which form the basis for atomic time scales such as Interns-

tional Atomic Time (TAI). Atomic time is used primarily as a measure of

time interval and is based on the electromagnetic oscillations produced

by quantum transitions within the atom. An excellent reference on time

and frequency is edited by Blair [1974].

Global Positioning Systa:m satel.l i.tes will incorporate rubidium

frequency standards to provide short-term frequency stability for the

navigator,, and ground tracking receivers for geodetic utilization will

be assumed to incorporate cesium frequency standards to insure good

long-term stability. The precise definition of stability is found in

Blair [1974]. Basically it is a measure, usually given statistically,

of the random fluctuations in frequency which, can occur in a clock's

oscillator over specified periods of time. For a given time interval a

particular oscillator is considered best if the expected level of fre-

quency fluctuation is a minimum in terms of the Allan variance defined

below.

This paragraph deals with the characterization of typical errors

associated with atomic clock time scales and statistical measures of

frequency stability. This information provides the general background
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required for the discussion related to the development of observation

st°atisLics and their use in goodetir positioning studies.

4.1.1.1 Characterization of Atomic Clock Errors

I.et CI represent an ideal clock whose oscillator frequency f l its

constant. The period of this oscillator is by definition

TI # 1/fI .
	

(4.1.1)

In (t - te ) seconds of ideal time, N I cycles are counted and the time

rej istered by the clock is

NIT, = r,I/f 1
	 (4.1.?)

where Ni is haven by the integral.

t
NI	1 fldT	 fx (t- t0)

t0

Thus the time elapsed from to is

N ITI	f1'. (t -- t 0 )Tx = t - to	(4.1,.4)

Consider now a typical atomic clock C  whose frequency Is sub-

ject to error. From t 0 this clock has a frequency represented by the

model

fi(t)	 f  + Af + f(t - 1 0) + f(t)	 (4.1.5)

where Af is a frequency bias, f is a drift in frequency, and f(t) are

random fluctuations in frequency. The clock C  records N i cycles in the
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time interval [t 0 ,t] where

t

Ni = f fi(T)dT
Co

(4.1.6)

f(t - t )	 t
m fx (t- t° )+Af(t-^ t0 )+	 z_O + f f(T)dT

t0

In addition the clocks C  and C  may not be synchronized at t 0 intro-

ducing a time or phase error at t 0 represented as ANoTx . Each count Ni

is incorrectly assigned the period Tx giving at t ideal the time ti as

t i ; N i T 1 + ANOTT. = (t - t° ) + At (t-  t°)
z	 (4.1..7)

f(C- t `	 t -
+	 2f 0 )
 +y- f f(T)dT+ANoTx
I	 x t

O

From a comparison of equations (4.1.4) and (4.1.7) the time error at t is

(	 )2f	 t
T. (t) = t.. - t = Af (t- t ) +

t-t 
° +ANT + 1. f f(T)dT (4.1.8)

x	 i	 fx	 0	 2fx	 o I	 fx t
O

or, rearranging terms and introducing new notation,

Ti(t) - 2 D1 (t- t0 ) 2 + R1 (t- t0 	 T (r_°) + X(t)	 ( 4.1.9)

The quantity x(t) is the random time error at t defined by

a

X(t) = 
f f t(T)dT = f y(T)dT

	It	 t

	

°	 O

(4.1.7.0)

where y(t) is the random fractional frequency error of oscillator i.
9
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t/^
ry	 o
x(to )	 f y(T)dr

is
(4.1 .1.,2)

Consider the quantity Ti (t) written as

Ti (t>	 Ti ('to ) + Ri (t _ t 0)	 z (t- t0 ) 2 + l y(T )dT 	 (4.1. 11>
to

Suppose an estimate of Ti(t) was made at i s as shown in Figure 4.1.1

based on available data taken prior to i s . If a clock corroct"ion based

on this estimatewas applied to the time scale, then at ^^ the error
n

Ti (tn ) is due to the error in the prior estimate T i (ts ) which was

applied to the time scale, the effect of fractional frequency errors

over the interval, [ ts , t:o1

and, systematic contributions to the time error in the form of a time

drift and Being, the quadratic term in equation (4.1.11). The error

Tito) with no clock correction at t $ is approximately given by

t

Tito ) = Ti ( ts ) + p.i (t o  - ts ) 
+ D^ 

( to - ts )
2
+ fo y(T)dT	 (4.1.13)ts

since T t (ts ) is an estimated quantity, If the time scale is corrected

at t:o then Tito ) would be an estimated offset independent of the cur-

rent oscillator random error y(t) for t greater than to.

The error equation (4.1.9) is the model used to descrJ)e the

types of error present in atomic time scales. The deterministic errors

consist of bias, drift, and ageing terms modeled as a quadratic poly-

nominal in time. The ageing terir. is usually not observable for clocks
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whose long-term stability is good such as caaium, Tito additional term

in equation (4.1.9) represanta the random time error due to the integra-

Lion of random fluctuations in frequency. The magnitude of this term

depends on the interval of tim- which has passed since the scale wa y reset

or calibrated and on the stability of the clock. Table 4.1.1 lists the

error terms associated with atomic clock time scales.

TABLE 4.1.1, ATOMIC TIME SCALD: ERROR TERMS

DETERMINISTIC	 NOTATION

TIME SIAS	 TI (to)

TIME DRIFT	 RI

ACsEING TERM	 DI

RANDOM

X (t) INTEGRATED FRACTIONAL. FREQUENCY

4.1.1.2 prequency Stability Measurement
and Characterization

Hellwig [19771 points out that "the characterization of the

stability of a frequency standard is usually the most important informa-

tion to the user especially to those interested in scientific measure-

ments and in the evaluation and intereomparison of the most advanced

devices (chocks)." Since the frequency stability of a standard depends

on a variety of physical and electronic influences both internal. and

external to the standard, measurement and characterization of frequency

stability are always given subject to constraints or environmental and

operating conditions. In addition frequency stability depends on the

exact measurement procedure used to determine stability,
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Frequency stability characterization is done in both the fre-

quency and time domain. In the time domain a frequently used measure of

stability is the Allan variance or it q square root, In the frequency

domain it is the power spectral density.

4.1.1.2.1 The Allan Variance. The Allan variance as a time

domain measure of frequency stability is found especially useful in

practice since it is obtainable directly from experimental measurements

of fractional frequency error y(t) and because it contains all informa-

tion on the second moments of the statistical distribution of fractional

frequency error. The Allan variance is defined as follows: let

yo'yl'y2,•••,yl, ►yk+l'y1t+2'... be observed fractional, frequenc y errors

separated by a repetition interval. of T seconds. For each integer N

greater than or equal to two calculate ym, from

L

(M+1)N - l

ym - N	 E	 yk	 m= 0,1,2,...M	 (4.1,14)
k=mN

This is an average over N consecutive values of y k , The Allan vari-

ance, ay (N), is then obtained from the averages y  by

a2(N)	 M	 (y	
-Y- Y ) 2

m=©
(4.1.1.5)

An examination of this equation reveals that the Allan variance for a

particular sampling interval. NT is the average two-sample variance of

the ym(N) .
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For frequency standards the, nquare root of the Allan varianco io

usually given in graphical form on a log-log, scale, For individual

alaonen of frequency standards mode0i for the Allan variance are uned

which portray general frequency staLility cliaracLO-ristico, Ilellwir,

[1975) gives examples of such models for many oscillator types. Figure

4.1.2 :shown the typioal form. 
in 

this form, a 
y 
(r) is the square root of

Clio Allan variance for the sample interval T. The quantity of
 
io call(A

the flicker floor and Ti p T 2 1 T3 
are the break points of the plot. The

conotanto associated with this figure are usually specified for each

type of Frequency standard. A comparison of such information can facil-

itate the selection of a frequency standard for a spe,.Lfic application.

The stability characteristics shown in the three regions of

Figure 4.1.2 are typically present in many Allan variance plots of

specified oscillator performance. The first part, region 1, reflects

the fundamental noise properties of the standard., This behavior con-

tinues with increased sampling time until a floor is reached corres-

ponding to region 11. After T2 the performance deteriorates with

increased sampling time. Hellwig [1977] outlines the error sources

corresponding to each portion of the graph. The magnitude and slope of

each segment will depend on the particular category of standard,

Figure 4.1.3 details th ,^ p , rformanca specifications fir the

Allan variance for the GPS satellite rubidium oscillator and for the

cesium oscillator used in tracking receivers supporting orbit determi-

nation. This latter oscillator is an example of the type which will be

used in range and Doppler geodet'- , receivers.
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4.1.1.2.2 VowcrQq;tXQ.DqnyitX. An alternative procedure for

specifying the stability of a frequency standard, 
in 

the frequency

domain, in the use of the power spectral density (PSD) of instantaneous

fractional frequency fluctuations y(L). Allan et al. [1974] have given

a useful model to represent the PSD for various categories of frequency

standards. This model is in who form of a power law spectral density

having the form

P
11 64-	 0e W < W

11Cx 2'n'	 — —

	

yy (W)
	

()	 to > W

where a takes on tho Wtoger powers between —2 and 2 inclusive depending

on how the interval [O,w] Is to be divided into subiatervals, one for
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each tx to be used. The quant'i:ty 10i  is xa scaling constant and the PSD is

assumed to be negli gible. beyond the frequency range [0,t^ a ] .

Barnes et al. (1971) and Madi,tch (19751 give the transformations

between the time domain measures of frequency stability in the form of

the Allan variance and the power law spectral. densities. Table 4. 1.2

taken from Meditr'., lives these conversions for three typ(,, s of frac-

tional frequency error sources.

4.1.1.3 Range and Doppler Observation errors
Due to l:andom Atomic Clock Error

As previously discussed an atomic cloak's tinac, scalo can be

expected. to differ from ideal time due to both deterministic and random

errors. The random component is duce to integration of fractional. fre-

quency errors. A range observation determined by correlating the 1'RN

signal broadcast by the satellite with a similar signal. generated in the

receiver is subject, to the random errors of both atomic frequency

standards. The effective range error at title t due to the timing error:

in one of the time scales t
i is

6Ri (t) - cTi (t)	 (4.1.3.7)

with the random component being, the random walls

talit)	 c f y(T)dTt s

where c io the velocity of l.i.glrt. The random component is due to the

accumulated effect of fractional frequency* error since the chock's

start or reset at k
s
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The random error q i (t) in correlated in time. Consider two

►lic'F1,IM411e11ttl of range R(t j ) and RYt ) based on the llOP of the OcaA la-

for is the satellite, and anonme momentarily that the receiver'8 cosh-

later is free from random error, The covariaace bet1Joen th000 measured

rauf,es due to correlated fractional frequency error in the oatollito

onA llator i„

QRVi )R(t kA - BC1tCt.j)ilKS

,,	 to	 tic
l Y(T)W t yC't`'>dT'^

	

t 	 t 
(4.1 .10)

rk 
Qy (T) y(T O ) jdT dTa

	

t,	 t

	

rl	 s

t
;j plc  

yy (T ^ T °)c1Tc1T' 
t^ t^

whore IA (T-T') its the autocorrelati.on .function for fractional froq"oney

error y(t) defined by

r Yy^iOr,y^,T,T")dy dya

The function	 is the joint probability density function for

fractional frequency error. here it is assumed that y(t) is a mean zero

stationary random process. The :function IYy (T-T'") can be obtained by



f°1
a

the inverse Fourier transform of the given power spectral density

Syy M:

00

'YY ( t) - z 
f Syy (w) eiWtdw
	 (4 . . 2a >

where

t R T - T'	 (4.1.22)

A procedure for obtaining the autocorrelation funcuion (1)yy (t) from the

Allan variance is given iii Section 4.4.

The variance of a range observation is obtained from equation

(4.1. 1.9) by taking ti equal to 
t 

22 t 
	

to
Cr	 c C	 f	 f (^ (T - T') dTdT'	 0..1.23)

R
;^	 t	 t	 YY

s	 s

Allowing random frequency error in the receiver oscillator introduces

additional, but similar, terms into equations (4.1.19) and (4.1.23)

which must be considered when assessing the range uncertainty due to all

random clock errors effecting the measurement.

For integrated Doppler or range difference observations the ran-

dom measurement error associated with system clocks is the integral of

fractional frequency error over the Doppler integration interval. The

random error in range difference due to one oscillator is
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Notiee in equation (4.1.24) Chat- the random error 
tji1 

is a funs Lion of

t i , t ^, and y(t:). The error does not depend on L.	 Range differenvo

lilt , a;t+1rc111onts have the following eorrelation from each oscillator

ECAktl:1A%Z) 1^7 E('1idltllcl^^

jz (pyy (^ — T")dTdt'

t,i L^

wiLb the variance

tj t1

c,	 c` I	 I ^ (T W 'r')dTdT	 (4.1.?6)
l;l	 ti t	

^

i	
y

01's srve that the random range difference errors, whose statistics are

given by equations (4.1.25) and (4.1.26) , are stationary; however, ran--

dom range errors, whose statistics +ire given by equations (4.1.19) and

(4.1.23), are not. A stationary random process is one whose statistics

are invariant~ in time.

For the oscillator performance specifications shown in Fip'ure

4.1.3 examples of the contribution to the VInge error are given for both

oscillators in Figures 4.1.4 and 4.1.5 over a five-day span. The clocks

are assumed to be perfect initially. Also included is the standard

error for the random walls TI(t) obtained using equation (4.1.23) . The
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procedure used in simulating the random range error is discussed in

[rfeditch, 19751.

TABIX 4.1.2. ALLAN VARIANCE AND POIMNR SPECTRAL DENSITY
FOR COMON ERROR SOURCES

ERROR SOURCE ALLAN VARIANCE TWO SIDED SPECTRAL DENSITY

Y M 02  (.) SYY (w)

WHITE NOISE No
T

FLICKER NOISE 2Ny In 22 N?n IWI

INTEGRAL OF N2 t N2
WHITE NOISE '" 3 w2

(RANDOM WALK)

4.1.2 Ephemeris Error

The ultimate accuracy of Global positioning; System satellite

ephemerides and satellite clock solut:i.on8 is difficult to predict since

many ;actors influencing the final error budget have to be resolved.

Among these are the dumber and location of tacking sites to support

orbit determination, the exact estimation algorithm to be used including;

,force modeling, and the final geometry of the satellite constellation..

Al present, errors in computed ephemerides significantly exceed accu-

racy design goals, especially in the prediction region used iii naviga-

tion as reported by Schaibly [1979].

In order to establish bounds on expected ephemeras and satellite

clock errors simulations of orbit determination were performed assuming

expected levels of model error for gravity, solar radiation pressure,

86



30
a 0

	

 46	 i0	 16	 20	 25	 a0	 a6	 40	 45	 50

TIME ;DAYS!

	

jqg ti re 	 .9 ta n da r d Error and Random Range Exror
B.ised on Station Cesium SPQcifiPNItiOn$

-in,
30

11,	 is

30
D0	 a5	 1a	 1	 25	 au	 J	 4u	 4 b

TIME (DAY"PI

Standard Error and Random Range Error
Based on Satellite Rubidium Specifications

30

4.

z u

87



pole position, tracking aite coordinates, and system clock errors.

The results of these studies reported by Schaibly [1976] indicate the

following:

(i) the radial component: of position error is a twelve-hour periodic

function whose amplitude ranges form one to three meters;

(ii) the along--track component of position error has two components.

Tha first is a twelve-hour periodic function whose amplitude

ranges from two to five meters. The second component is a quadra-

tic function in time introducing maximum errors of up to twenty

meters. In most cases this error appears to average five meters;

(iii) the cross-track component of orbit error is a twelve-dour periodic

,'unction whose amplitude ranges from sever. to twenty meters. This

error and the periodic radial orbit error appear to have zero

mean;

(iv) satellite clock solution errors have systematic components which

may be modeled as a bias and drift;

(v) ephemeris and satellite clock errors will be correlated in the

sense that the net effect of all error sources on an observation

residual will be smaller than the sum of the individual error

sources.

This analysis of expected orbital accuracy will be used as a basis for

developing error models and a prinri statistics for ephemeris state vec-

tor components and satellite clock parameters in simulation studies

designed to predict accuracies for dynamic point positioning.

r^

A P,
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4.1.2.1 Ephemeris Error Model

Using the renulto of the simulations described above, models

for ephemeris error 
can 

be developed for use in positioning studiefi,

These models will consist of variations in the osculating orbital ele-

ments for each satellite which will produce radial, along-track, and

erosn-track orbit errors comparable with the simulation resuln. The

111,11nitUdCH Of 
these 

Variations can 
be 

approximated by noting the errors

introduced by changes in Keplerlan orbital elements. Vor instance,

radial orbit error 
is 

primarily a funatton of errors in the vemimajor

axis a and eccentricity v, of the orbit. The model for radial orbit

error will be developed as follows:

Taking,

A ,,I - &1 0, o s (M + 0) + ^ a )	 (4.1.27)

and

Ae - Se ,
	 (4.1.28)

where Sa and 6e are errors in a and e respectively and 0
a 

is the phase

of the error signal Aa,and differentiating the equation for the radius

of a Keplerian orbit

r;

r - a [1- e cos (E) ]

with respect to a

dr. . 
1 - a cos();) m! 1(e 0)	 (4.1.30)

da

one arrives at the error introduced into r by Aa
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F1

Ar u An, .

Choosing Aa 
as 

in equation (4.1,27) eves periodic radial orbit error of

amplitude 6a and phase B a . The period o; the error is orbit period.

Differentiating equation (4.1.29) with respect to e gives

dr
Te - a coo (B	 (4.1.32)

or

Ar -aAa cos (D)
(4.1,33)

_aAa 0001+0

for e and w approximately zero. Introducing a phase error and using

equation (4.1,^I) yields

Ar -̂' -a6e cos(M ,?w+fie) -	 (4.1.34)

Thus an error in orbit eccentricity 6e introduces a periodic radial

orbl..t error whose amplitude is aSe and whose phase is Go a .

Along-track orbit error can be produced by variations in mean

anomaly M and argument of perigee w as well as eccentricity Con-

sidering M + w as a single element the tollowIng model will be adopted

A(M+W) = 6(M+w)cos(b1+W+O MJ -	 (4.1.35)

For nearly circular orbits

r - a [3, - e cos (L-) ] z a	 (G .1.36)

and the along-track error due to equation (4.1.35) is approximately
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An 
	 ,iA (14 4 , W)

(4.1,37)

Thin orbit period error hav 
an 

amplitude of	 and phane, 6 
MIA)'

An error 
in 

eccentricity will aloo introduce a periodic orror

it'i the ,along track satellite position. This error 
will 

have the form

An o We ain(D1+w+O 
0) -	 (4.1.38)

,Notice that the along-track error due to 6e has twice the amplitude of

Induced radial error due to 6e.

An error in the ascending node P of the orbit plane produces an

alonp-track bias

As - aMeos(i)

Independent of 
the 

in-plane satellite position.

Tn addition a quadratic along-track error polynomial will be

introduced to produce the queAdratic error to fit found in the orbit

accuracy simulation studies. This error is developed through 
an 

error

in mean anomaly M of the form

All r3 (A+BM+CM 2 )/a
	

(4.1.4o)

whore A is an epoch error given in motors and B and C are determined to

allow the quadratic error to be symmetric over a seven-day span;

B - -5040 C

	

C - 2A/6350400 .
	 (4.1.41)
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The croon-track or out-of—plane orbit erzar is due to error in

inclination i and ascending node S!. The croon-track error due to an

error in orbital inclination has the form

A(r x v) - a A coin (H+w +l i)	 (4.1,4 2)

for a circular orbit. The error model chosen for inclination i

Ai o Si .	 (^^ .1. 4)

The crags-track error dc,e to a change in ascending node in

A(rxv) - M aAPx in(i)cos(rs+w +6,) 	 (4.1.44)

wherry ASS is given by

ASZ-0.	 (4.1..40

This error has orbit period and amplitude a60sin(i).

Notice that the two radial, error signals are 180 degrees out of

phase when 0 a and 0a are zero. Therefore let

04 -a +1.80°
	

(4.1.46)

in order that the total radial error have the functional form ,found in

th. orbit simulation results.

ince no along-track bias was present in the simulation results

no error will be introduced into the ascending node in positioning simu-

lations. As a result all cross-track error will be attributed to an

error in inclination.
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In addition the phase 
0M+W 

will be adjusted by 90 degrees to

allow the along-track error due to inclination and mean anomaly plus

argument of perigee to be in phase.

4.1.3 Refraction Errors

4.1.3.1 Tropospheric Refraction Error

The nonionizid portion of the atmosphere slows the passage of

electromagnetic signals introducing an error into electromagnetic

measurements such as range, Doppler and interferometric phase. Compu-

tations of receiver positions for geodetic control utilizing such

measurements must incorporate either refraction error modeling of suf-

ficient accuracy to eliminate these atmospheric effects or incorporate

corrections based on radiometry measurements as suggested by MacDoran

[19791.

Currently, the Hopfield model [Hopfiel,d, 19691 is used exten-

sively to correct for tropospheric refraction present in satellite

observations of range and Doppler. This model. requires a knowledge of

surface weather conditions at receiver sites to ensure proper scale.

These weather observations are of surface pressure, temperature, and

humidity. The error in this model is generally assumed to be less than

five percent of the total refraction.

Alternatively, a water vapor radiometer may be used to measure

the tropospheric refraction (wet- component) in the slant range direction

to the satellite at the time of observation. MacDoran [19791 has
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PI
I

Il1tILc"shed that ouch an l[1111`(1ach may have an .1C'Cllr:1(`y of 2 em to it few

millimeters, virtually 011tttioating this error source.

Refraction Modeling Approach. The t°t'ohonphcrfe

refraction model adopted in this analysis is a modified version of the

Hopfl.eld model (Anderle, :19741 involving a change In the farm of this

eluart3e polynomial to allow more rahlxl eal.eulatio-.

The t.hooretioal form of the 1`irat-t>x'dor Vropo8phot'fo rolraotion

correc' lo" for range- Illens"remo a s is given by

rSO t	 4	 2

r

whe re

It a r s:t. ►1'l.^(..+I IA)

and

A
c 	 z+ u:a 0 11 .

The vootors Ls 
aucl szatr	 represent the position vectors for the

Observing Station and Satellite, respectively.. The SS ooQh ogle F is

measured from the ellipsoidal normal P . through the station  (see

Vi fur; 4 . l . 6)

The index of WJ.netlon, n is computed ll,ii,ng ;illliface weather

metlsuS` pmencs. Given the centigrade t= el poratur:e T, the surface prPssuro

in Al:{.1l:1barS, and the relative hilll'ldity II, the index n In eQmputvd

using the equation
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Viguro 4.1.6. Geometry of Tropospheric RefraCU011

11 — I ' MI  + M 2 (6.1.50)

2

rii	
N

rc; r
- .

	
i -

0 otherwise

if r s .< r 1 r i (4.1.51)

where the surface refractivities N 
i 

and radii r 
i, 

for the dry and wet

components are given respectively by

NI - (.776 x 10-4
 

A / T

N 0 (.373)E/T 
2	 K

r, = 1:s 
 
+ 40.1 + .149T (km)

r2
 = r s + 12.0 Qm) 	 .(4.1.55)
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The quantity TK
 represents the Kelvin equivalent of the Centigrade tem-

perature T. The quantity E is the water vapor pressure given by

E - (H/l00)exp{-37-2465+ .213166T 
K_ 

.000256908T 

K 2
1 .	

(4.1.56)

For radio frequencies up to I I 3,11z tropospheric refraction is 
not 

a

function of frequency.

For integrated Doppler the refraction correction is taken ,is the

difference in equation (4.1.47) applied at the end times of the integra-

tion interval. The magnitude of tropospheric refraction onrangcobserva-

Lions is given in Figure 4.1.7 as a function of zenith angle. This error

grows rapidly when the elevation angle of the satellite falls below ten

degrees.

ZENITH ANGLE (DEGREE)

Figure4.1.7. Tropospheric Refraction Profile for Range Observations

96



The tropospheric refraction model described above attempts; to

predict the refraction error as a function of surface weather condi-

tions, Ihow adequately this is done in practice is difficult to deter-

mine espeelally for non-vertical measurements. Hopfield [19721 has

compared this model to values of tropospheric refraction computed using;

meterological balloon data and found good agreement for zenith measure-

ments with the contribution due to the wet component suffering the

largest error. Iiowever the dry component is predicted necurately from

surface pressure alone.

An adopted technique in utilizing this model is to include, in

the mathematical model for the observation equation a scaling parameter

0R as an unknown to be determined in the adjustment procedure with an

a priori uncertainty. For range observations the mathematical model,

equation (2.2.6) becomes

R - [(uS - u) 2 + (vs -v) 2 + (ws -w) 2 1
1/2 + cAT + (I+C R)6R	 (4.1.57)

Fell [1975) used such an approach for orbit determination using; Doppler

observations front Transit satellites. Although this procedure tends to

weaken the normal equations it reduces the level of unmodeled error and

improves the accuracy of the estimated quantities.

4.1.3.2 Ionospheric Refraction Error

The ionosophere, the charged portion o£ the atmosphere which

extends above 7.00 kilometers, has a variable index of refraction which

is a function of both the frequency of the passing electromagnetic sig-

nal and the altitude along the signal path since the electron density
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6R = 21 '2
f 
2	

f 
4

(4.1.60)

varies with location. The electron density distribution which deter-

mines the refractive Index at a particular frequency is quite variable

with a dominate diurnal variation due to earth rotation and with long

term variations with the solar cycle.

Clynch [1979] reviews the second order expansion of the refrac-

tion, index n an a function of frequency

A 
1 
N (h)	 A 

2 
N 

2 (1)
n C!	 - 

f	 f 2

where the. Ai are constants and N is the electron density, a function of

height along the signal path,

The total ionospheric refraction for range observations is the

difference between the integral of 
the refractive index along the opti-

cal path and the geometric range:

SR = fnds - fds
	 (4.1.59)

0	 9

Using equation (4.1.58) in equation (4.1..59) gives to second order the

ionospheric refraction as

where

B i = Ai
 
fN 

i 
(h) ds

0

If two known frequencies are transmitted from 
a 

satellite, f 1 and f.),
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li ^
2	 .R	

i'1.1 f2 
) (4.1.63)

then each signal is refracted according to equation (4.1.60). These

two equ*at ntis may be combined to eliminate the first order effect:

it	 (R+ SRl ) -	 (R+cSR2)	 r	 ^	 (4.1.6 )
2	 2

wht,^re (R•t• 6R 
I.

represents Clio range observed using frequency f 1 4 This

two froquon ev technique leaves a residual range errov eR of

Mynch [1979] gives examples of two frequency corrected residual range

errors for simulated Navy Navigation satellite passes. Those iouo-

e,pheric vrrory were computed by ray tracing through an ionospheric

model with a range of sunspot numbers considered. For elevation angles

alcove ten degrees Clio upper bound on the residual range errors is five

motors. Using equation (4.1.63) with rR equal to five nv`.ters and the

150 riliz and 400 Mz ,frequencies of the Transit system, an upper bound

on B 2 is obtained. Clomputing CR using the Global, Positioning System

satellite frequencies of 121 27 l•illz and 1575 Miz gives an upper bound of

4,8 millimeters for the residual range error. For observ p tions above

twonty degrees this residual, error has an upper bound of 1.9 milli-

meters. Since this error is small, residual ionospheric error was not

included in the positioning studies conducted in Section 4.5.

4.1.4 instrumental. Error Sources

Tracking receivers designed to measure range and integrated

Doppler front GPS satellites introduce random measurement error in
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addition to the random clock error discussed in Section 4.1,1, The

reasons for this error are jitter in the carrier tracking Loops and in

the code correlation process and electronic thermal, noise. Opecifica-

Lions of the statistical properties of this noise are usually given for

each receiver type; and in practice estimates of these properties are

usually obtained through examination of observation residuals. Unfor-•

tutnately it may be difficult to completely separate these receiver

noise effects from clock noise since oscillator errors are manifest in

the residual6.

,Jorgensen [1978] attempts to predict the short-term quality of

range observations by fitting a ninth degree polynomial. to 70 minutes of

six-second high quality range observations taken at the Hawaii and

Vandenberg tracking stations from two satellites. In this procedure it

is assumed that the polynomial models all systematic trends in the

observations. The residuals from this least squares fit appear as white:

noise. Jorgensen concludes from this investigation that two frequency

corrected range observations of high quality are subject to 60 centi-

meters of white noise. An extrapolation of Table 4.4.5 indicates that

these residuals are due almost entirely to receiver noise since the

expected level of residual clock error is much less than this magnitude.

For 50 second dual frequency Doppler observations the Stanford

Telecommunications [1978] specifications for Model. 5007 NOR receiver

indicate that the error due to jitter in the carrier tracking loops

should not exceed 0.9 centimeters. Thermal noise may increase this

level to at Least one centimeter.
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Based on theiie result,-i Table 4.1.3 given boundn 
on the range of

revelver nottiw which, can be vat-poeted from prosent revelver teehnolorlv.

Th000 levels will I,e used in Seca ion .'f*5#

TABLIP 14.1.3. MAOIN1TUDY"y OF RHWUV1 ,',R 011TE, NOISE'

DATA TYPE NOMINAL LEVEL OPTIMAL LEVEL

RANGE (6 sec) 'I M 60 Cm

INTEGRATED

DOPPLER (60 sec) 3 o#71 1 c

4.2 Simulation of Observation.,;

4.2.1 Ran;,e and Doppler

Range and Doppler obsorvations were simulated for the tracking

stations of Table 4,21 .1 over time intervals ranging from two Us five

days. 
The 

locations of 
the three station groups utilized are shown in

Figures 4.2.1 through 4.21 J. Observations of topocentric range and

range difforence were based on satellite positions obtained from the

numerical Integration of the satellite t s equations of motion using;

force model consisting of 
the 

14GS72 [Seppelin, 19741 geopotential coef-

ficients to degree and order eight, solar radiation pressure, and

luni-solar gravitational perturbations. The initial conditions for the

orbit integrationswaroobtained from Table 3.2.1 for each of the

Lwenty-four CPS Satellites. The observation sets consisted Of range and

Doppler range differences generated every five minutes. Satellites were

tracked sequentiall y and ,,elected on the 
basis of criteria discussed

below. The duration of tho satellite tracking interval, varied from
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TAUB 4.2.1. GEODETIC COORDINATI,S OF TRACKING STA'T'IONS

STATION
NO,

GEODETIC COORDINATES

LATITUDE LONGITUDF. HEIGHT Im)

1001 300 0' 0.00" 45 0 0' 0,00" 010
1002 30 64 7.66 46 0 0.00 0,0
1003 30 0 0,00 43 67 48,66 0.0
1004 30 0 0,00 46 2 11,04 010
1006 30 0 0.00 43 26 43,44 0,0
1006 30 0 0100 46 33 16.66 0,0
1007 30 0 0100 46 24 32.26 0.0
1008 30 0 0.00 47 30 27.76 010
1009 90 0 0.00 0 0 0,00 0.0
1010 89 6 65.18 0 0 0100 0.0
1011 0 0 0.00 0 0 0.00 010
1012 0 0 0100 0 E3 63,93 0.0
101A 0 63 63.93 0 0 0100 010
1014 30 38 6.69 46 38 6.69 0.0
1016 23 39 39.70 38 37 16.74 0.0
1016 36 20 20.30 61 22 41.26 0.0

one to three Hours as a function of the adopted clock error modeling

procedure.

To the geometrically derived observations of range and range

difference, equations (3,1.1) and (3.1.2), systematic and random error

sources were added as required in accordance with Table 4.2.2. White

noise consistent with that expected from six-second ranges smoothed over

300 seconds or one-minute integrated Doppler range differences aggregated

over the same interval was added based on the adopted levels in Table

4.2.2 as described in Section 4.1.4. Random rubidium and cesium clock

noise were simulated using the algorithm of Meditch [19751, based on the

selected Allan variance models for the satellite and geodetic receiver

oscillators. Random receiver cesium clock noise was added to the obser-

vations along with a time bias and drift as given in Table 4.2.2.
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TABLE 4.2.2. SIMULATION ERROR 8011ROBS

ORBITAL ELEMENT	 PERIODIC ERRORS (RMS)
RADIAL	 ALONG TRACK	 CROSS °TRACK

n	 2m
0	 2.6 m	 5.3 ni
1	 12m

M + W	 6.4 m"
$I

"PLUS 5m QUADRATIC ERROR

TROPOSPHERIC REFRACTION 	 Vo OF HOPFIELD MODEL PREDICTION

CLOCK ERRORS
1. STATION

BIAS: 30 TO —10 nsoc
DRIFT: .000083 TO —.00004 nsoclsec
RANDOM: CESIUM SPECIFICATIONS

2. SATELLITE
RMS BIAS: 5 nsec
RMS DRIFT: .0002 nseclsoc
RANDOM: RESIDUAL NOISE BASED ON RUBIDIUM

MODEL FOR GPS SATELLITES

WHITE NOISE
RANGE: 100 . 60 cm (6 sac)
DOPPLER. 3 - 1 cm (60 sec)
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For each oatellite the total time error converted to diotance 1i;

given by equation (4.1,11) an

CD
eT I M 0 CT 

i (t 0 + el'. 
i 
(t - t0)  + 1# 

2 
1	

0) + ni (t)	 (4.p . 1)

where

t
(L)	 f yj (rr")dT r	 (4.'r2)

0

Atz,uriiug the. ageing to be ne-gligible over the oatellite tracking inter-

val, equation ( 14 .2.1) can be written as

cT 
i 
(t) - a + b (V - t') + F, i (t)	 (4.2.3)

where

cD	
2

a = CT t	 OR, ( t	 2
to ) + :a (t-  t0 ) + n 1	 (4.2.4)

b = 
ell,	

(4.215)

r, i M - TI i W - ni ( t") -	 (4.2.6)

Letting CT i W be the best prior linear estimate of cT i 
(t) over the

satellite tracking interval, the residual range error is defined as

A

c[T 
i (t) - T

i (t)]	 (a - a) + (b - b) (t	 + rift)(4.2.7)

A

The expected standard errors of the residual random bias (a_a) and drift
A

(b-b) of the satellite clocks were taken to be consistent with the

ephemeris simulation results described in Section 4.1.2 and are given

in Table 4.2.2. The residual random range error r 
i 
(t) is obtained from

ni ( t) by linear least squares approximation. These quantities are

r)
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added to the geometrically derived range and range differences a

ingly, assuming the random bins, and drift are normally distributed

although constant within a particular tracking, interval.

A residual tropospheric refraction error in the form of five

percent of, the 11opfield model preftetion was applied to the observa-

tions in certain cases to represent a difference between actual and

modeled refraction. In these cases the adjustment model (Section 4.3)

included tropospheric scaling parameters as indicated 
in equation

(4.1.57).

The resulting quantities are the observed range and range dif-

ference observations given by

Rb (t) - R(t) 
+ VR	

+ a +	 t - t	 r,	

(4.2.8)
A

+ (a	 a 
i 

+ 
(bi , 

b i (t - (:,0 ) + r i(t)

and

ARb (t) - n(t) - R(t - At) + 
VVi VAR 

+ bAt n(t)

A

- t1(t - At) + (b 
i 

_ b i )At 
+ r	 x 

i (
t - At)	 (4.2.9)

+ R(SRW - Wt- At) I

where n is the number of six-second rang 	 R aro,as assumed smoothed, V L

independent zero mean Gaussian random numbers having a standard devia-

tion equal to that of the six-second ranges, ^ is 0,05, SR(t) is the

tropospheric refraction error, m is the number of aggregated Doppler,

observations, V 
A 
n are independent zero mean Gaussian random numbers

having a SLandard deviation equal to that of the Doppler measurements,

t . and e' are clock model epochs, and At is five minutes.
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The white noise level applied to range differences according to

P(piation (4.2.9) corresponds to the summation of m independent one minu4e

Doppler counts. For continuous count integrated Doppler the total noise

of the aggregated count may be less and possibly independent of the

count int rval; thus the coefficient of VAR in equation (4.2.5) may be

as small as one. The consequence of this will be examined in Section 4.5.

In the least squares adjustment ^f range or Doppler observations

actual measurements are differenced from estimates of the measurements

The estimated observation value is obtained from the geometrically

derived range or range difference by a linear adjustment of this quan-

tity which introduces the assumed level of orbit error. For range

observations this linear adjustment has the form

G	 dR(t
R0 (t) = R(t) +	 E	

de (t) ^ek(tc)	
(4.2.10)

k = 1 k c

where the Aek (tc) represent errors in the orbital elements of the

tracked satellite at the midpoint of the satellite tracking interval.

These errors are assumed to be nr. rmally distributed varying with each

satellite of the constellation. The expected ephemeris error is given

in Table 4.2.2. The required partial dFrivatives in equation (4.2.10)

are developed in Section 4.3.2 and approximated in Section. 4.3.3. For

range difference observations an equation analogous to equation (4.2.10)

was utilized.

Notice that the error in the satellite clock was introduced into

the observed quantity along with the estimates a and b. Strictly

speaking these error estimates should be introduced into the estimated

T
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observation but the net effect on the differe

observed quantities in either case is identic

holds for the tropospheric refraction error*

6.2.2 Optimal Design for Dynamic Point PositIqLAjij,

A Global positioning SysLom 
is 

designed so that six to n1ne

satellites are usually available for observation front 	 geographic

location. Since options in the tracking geometry are available, It Is

reasonable to design 
a 
data acquisition schedule which produces Lho boiL

results for the adjusted StAtion coordinates derived from dynamLe point.

positioning. Some factors to 
be considered 

in such a design are the

:Length of the tracking interval for each observed satollito, possibjo

criteria for 111infillfz"I'llf" the coordinate covariance, 
the 

perlod of -OVo

occupation and 
the 

tYj)0 of receiver 01)ernLion anLiCillated, Sequential

tracking or the use of multiple channel receivers. With 
these 

factor.,).

defined a sequence of savollitos can be selected whose obsorvatJons gi.vo

the best geometrical strength of solution according to the criterion

adopted.

Vnrious procedures for solocting the satellites to be tracked

can be defined. These include tht', ,, simplest, approach of randow Selection

from those visible to approaches based on choices for covarlance IiIiiii-

mizatIon. For dynamic positioning porformod using a socitiontial single

satellite receiver two criteria will be discussed:

M	 the selection of satellite-, whose observations minimize 
the square

root of the trace Of the aCCUIIIUlatCd COVIII-JAIM-1 matrix, and
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7 --,. 7--

(II) the t"Ot'etion Of slatellitcs whoiw obsorvati,ons mi.nimizo Ow norm

Of thC vector of correlation coefficients of the accumulated

t-ovaz lanco matrix.

The fIrst procodurc is also known as they evaluation of the geometric

kIlluti.on of precision. This second procedure allows a more statisft-callv 

indopondelat doLormination of individual parameters. In evaluatint,

those critoria observations are assa ►med subject only LO Gaussian whito

noIso . No correlated random errors are introduced. However in addi-

tion to the station coordinates a receiver clock error model was incor-

poraLod 111 80111e C ,11305 .

UsIni, globally distributed stations a geometric analysis of

polaat positioning for range and Doppler tracking was made examining the

two criteria. The use of vcr° ous station locations insured that

numerous samplings of satellite pass geometry were utilized such as

those shown in Figures 4,2.4(a) and 4.21 .4(b).  Vor: one particular sta-

lLon Figures 4.2.5(b) through 4.2.5(e) give the square root of the

trace of the covariance 111atrix and standard error in latitude, longi-

tude, and height as a function of the number: of one-hour satellite

tracking intervals of range observations having a one meter standard

error. Range observations V}, re assumed every five minutes and no clock

error model was included in this case. Figure 4.2.5(x) gives the azi-

muth wand elevation angles for the epoch of each tracking interval for

selection based on minimizing the trace of the covariance matrix.

Flf, uro 4.2.6 give.9 analogous information for the second criterion. Obser-

vations below ton degrees elevation were excluded from the results.
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Using, these criteria the next satellite to be tracked is dial,

whose observations over the upcoming interval, when combined with all

previous observations, produces the optimum coordinate covarianex WiLh

respect to the selection criterion. Notice in these examples that the

standard error of each position component drops rapidly within the fi.rr;t

day then shows only gradual improvement with additional data. An exarii-

nation of the results using the second criterion shows some reduction in

the parameter correlations but yields an increase in the expected

standard error as evidenced in Figures 4.2.6(b) through 4.2.6(e.).

Based on a number of similar determinations the following

general conclusions can be drawn for the optimal, selection of OPS satel-

lites for both range and Doppler. First, it is readily apparent that

the second technique results in somewhat lower parameter correlations

but at the cost of increased parameter variances with respect to the

first criterion. however, the technique adopted is a matter of choice

since each is independent. For the positioning studies of Section 4.5

the first criterion was utilized to establish the observation schedules

in all cases. Secondly, from the results it is noted that initially the

variance of the estimated parameters increases rapidly as the interval

of tracking each satellite is increased. For a fixed number of observa-

tions the results obtained are quite varied when the total observation

time is less than six hours. With increased observation time allowing;

more sampling of pass geometries the results become virtually equivalent

after twelve hours. Thirdly, with range observations the introduction

of a receiver time bias significantly weakens the variance of station

height as evidenced by comparing Figure 4.2.5(e) with Figure 4.2.7.
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The variance of station latitude and longitude also increase but not as

significantly. The reason for this increase in height uncertainty can be

explained by noting that a time or range bias error in a given observa-

tion is equivalent to a linear combination of a vertical and horizontal

position error of the station. The horizontal error lies along the

projection of the slant range vector onto the horizon plane. Successive

observations taken as a function of azimuth would yield horizontal error

components whose sum would tend to cancel. However the vertical error

component can only be separated from an actual station heitlit error by

using observations of low elevation. At ten degrees elevation the ver-

tical component of range bias is approximately seventeen percent of the

total bias. Therefore with the restriction of observations to elevation

angles greater than ten degrees a weakening of the actual station
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height uncertainty can be expected since a station height error will

tend to be masked by the vertical component of range bias.

Finally, the satellite orbits have repealing ground traelu;

yielding a tracking gcometry with a diurnal period. For the first

nelection criterion thin tends to result in a clustering; of the initial.

Natellite azimuth of each tracking; interval, into a series of Owe band;,

separated by 50 to 150 degrees with a sampling of different elevation,

in each band. Thin is most obvious in cases where the tracking; interval

I.,) short. This property is not a fixed rule but a general trend as

demonstrated somewhat in Figure 4.2.5(a). For the second criterion the

distribution of azimuth is less consistent,although in some cases con-

sidered the distribution may fall almost entirely within a single. band

of 1.50 degrees width.

For the determination of baseline components and chord length

only the first criterion was examined and the results were discussed in

Chapter 3,

4.3 Adjust ent Proc

The adjustment of range and Doppler observations using the

method of observation equations may be developed in a mathematical form

which accommodates the introduction of new observations and new para-

meters. Uotila [1967] discusses this sequential approach and it is

emphasized that such a technique is valuLblei.n assessing the effect of

additional observations on enrrent parameter estimates. This approach

may be adopted for the analysis of GPS observations taken in a sequen-

tial fashion as discussed in Section 4.2. The estimation equations for

this procedure are now developed.

119



4,3.7. Se uential Ad untment of Parameters

Given N statistically independent: setts of observations Lb
i

where

(11.3.1)

' r(x,YN)

equations are developed for the least squares minimum variance estimate

of the primary parameters x and secondary parameters y i using all N

observation sets, The primary parameters of interest; are the

earth-fixed station coordinates or coordinate differences. The second-

ary parameters consist of orbital elements, satellite clock model Para..

meters, refraction bias parameters,and tracking receiver clock

parameters. Formulas giving the parameter covariance matrices F, x and

f.y 
i 

and the weighted sum square of residuals after adjustment, V1'PV,

are developed. The sequential forme of these equations are given as

required, In sequential form the estimated quantity zN+l based on N + 1

sets of observations is written as

A	 n
zN+1  ° z  + AzN+1
	 (11.3.2)

where Az 
N+1 

is the correction to the prior estimate z  due to the inclu-

sion of observations L	 .
bN+1

4.3.1.1 Estimation of Primary Parameters

The Least squares minimum variance estimate for the parameters

of primary .interest x from any one set of observations L b from aqua--
i

tions (4.3.1) is given by

4
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-[N xx - 
Nx3,NYyNyx] it [Ux NxyNYyUy^ i

(4,3.3)A
Q -Ex R  = X 

where

N	 N

Ni	
xx	 xyi	

A PiAi	 (4.3.4)

N

yix Nylyi

U

Ui	
x	

AjWiLi	 (4.3.5)

U
yi

Ai	
[Ax A J	

(4.3.6)
L	 Yi i

Ti	 E L 1	 (4.3.7)

b 

Li = Lo -L 
b 
	 (4.3.8)

Lo = Fi (xo , yi )	 (4.3.9)

i	 o

with the a priori variance of unit weight a2 equal to one. Equation

(4.3.3) is the solution. for x based on observations Lb which results
i

after algebraic elimination of the secondary parameter set yi.

With the addition of a second observation set Lb the estimate

for x becomes

-1
xII = - ^Ex +z x 	 C^.J]

(4.3.10)

Denoting the covariance matrix E
xi	 xI

as E , equation ( 4.3.10) may be

written using matrix identities as
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x
	

[};x	 };x (}11x +}x
	 x	

It i

-JA	
Rj	

(4. 3.11.)
X	

x x I + X x	
x I (fix	 x

or
A
x	 x	 Ax

The covariance matrix F,	 based on a pair of data sets, assumed mic-or—
x

related set • wise, becomes

0.3

♦ 	
FI—I + F, -1 -1 -
x I xil

(4.3.13)

In gencral given xN and Z'	
based on N ficts of observations, the

x 
N

est • mate based 
on 

the inclusion of 
in additional observation set is

given by

A	 A

'N 3. 
t:j 

'N 
+ AxN, + I	 (Ij .3.34)

where

AxN +I - —1	 1.7,	 1_,c [ I	
XN

. N 
x 
N	

x 
11+ 3,

(1113.15)

x 
N 

x 
n+1	

n+1

and the covariance is

F,	 t= TI— 
1	 1 —1

F	
'h'N + I	

x n
q- I

(4.3.16)

x 
N	 XN 

x 
N x11+ 1	

x 
N

or

E	 + AF,	 (4.3.17)
XN+l	 'N	 x N + I
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A

where

AZ 
xN + I	 xN C N xt1 + 11-1 x 

	 (4.3.18)

Equations (4.3.15) and (4.3.18) 0 although not necessarily computa-

tionally efficient, give a measure of the expected change to the primary

parameter set estimates and their uncertainties if anew observation set

is added. It is assumed here that:

(i) new normal equations are formed using the same initial parameter

estimates xo ,yi as used previously, and
0

(ii) the new data block Lb 	is uncorrelated with all previously used
N+l

observations.

4.3.1.2 Estimation of Secondary Parameters

Consider the least squares normal equations for the observation

set L^ .
a^

N	 N	 x	 U
xx	 xy^	 x

+	 = 0	 (4,3.19)

Nyi x Nyj yJ y1
	 UyJ

or

N x-I-N	 +U	 0
x:;	 xyi y i	 x

(4.3.20)
N  x+Nyy y3 +Uy =0 .

The solution for y  is given by

y  = -Nyjy 

3 
[Uy 

i 
+ Ny 

9x 
x]	 (4.3.21)

where x is based on all N observation sets:
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N
x- -E

	

	 L (U - N N
-1 U)
	 (4.3.22)

x 10 1 x xy1 Y1yi yi

Substituting equation (4.3.22) into (4.3.21) yields

y^ " -Nyly AST, P^L^ + Ny3.y Ny^xExr^(Ux "" 

Nxy iNYiy iUYi) i 1L
(.4.3.23)

= --N`1 AT P L+ N-1 N E [E(A T P L -N N~1 AT P 1,) 
JY j yJ y  i J	 y i y i y

jx x i x i i xy 1 Yiy1 Y1 i 

Lquation (4.3.23) can be written as

	

= -N-3' AT P L + N-1 N E	 ATP 'L -	
^

N 	N-1 A^' P ,L	 + Q	 (4 .2.24)Yj	 Yiyi y:f 
i i	 Yj J ^

y . Y j x x	 x i	 xY y  
y  y a. 

3 il i	 I

where Q is a function of all data sets except L k, . The covariance

i
matrix Ey is obtained from equation (4.3.23). Since all data sets are

assumed statistically independent the covariance E
Yj 

is given by

T

a_ -1^
E	 dLk^ Pk 	 dL k^	 .	 (4.3.25)
yj 	 k M 1

Differentiating equation (4.3.23)

-Nyi yi y j 3 +N I 

yi NY3 xEx `Ax 

j - N Ny j y j Yj 
jJ 1z lc -,f	 L.

-LI = (4.3.26)
dLk:	

N-1	 E [ATP - N N-1 AT P	 kN
y j 

Y  
y  x x x k Xyk 

ykyk Yk k, k

Substituting equation (4.3.26) into equation (4.3.25) and summing over

k yields the final result

E	 = N
-1 + N-1 N
	 E N 

N_l	 (4.3.27)
yi	 yJ yj	 y3 y3 yj x x xyj Yj ya
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The residuals of fit after adjustment are given by tho

linearized form of equation (4.3.1)

x

yi

v	
A i 

.t, lei .	 (^^ .'^. ^^)

Tn tl'1'ms of N data sets oquat:ion (4.3.28) has th e :t`()rm

	

V y	 AX A^r	 . r	 x	 L

	

.l.	 y

	

V2	 Ax t? v
	

. . 0 y l +
2

(4. 3.30)

	

VN 	AX U 0	 . 
y YN 	LN

N

Since the observation blocks are uncorrelated

N	 r'
v I'V	 i^ 1^ iL r '+` ^xf yi^ [Ax Ayi

N T	 ^'r' T

	

i = 1 L 1'
iLi + XiAll' Li	

(4 .3.31)

N

i=
 [,TP i L i 4. iU
l

The a posteriori variance of unit weight is

^Q = 
VT V 	 (4.3.32)

there d is the number of degrees of freedom in the total, adjustment

problem.
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The equations developed hire were utilized in the adjustment of

simulated CPS range and Doppler observations. It 1.s an illustrative

approach for determining how the uncertainty and error in station

positioning vary in time as a function of such variables as the number

of observations, method of satellite selection, tracking interval, and

others.

4.3.2 Model Parameters and Partial Derivatives

In the adjustment of range and 'Doppler observations the number

of secondary parameters y i for each data set of equation (11.3.1) is

subject: to variation depending on tine tracking schedule and the choice

of specific clock error models and additional bias parameters. The

secondary parameter set includes six orbital elements for each satel-

lite tracking interval, a polynomial clock model for receiver clocks

over the time span of each observation set, a polynomial clock model for

each satellite clock over the interval each is tracked, and may include

tropospheric refraction scaling parameters for every satellite-station

combination within an observation set. The primary parameter set x con-

sists of the geodetic coordinates of the Cracking stations in the

adopted earth-fixed frame of reference.

The design matrix A introduced in Section 3.1.2 is developed

fium the first partials of the data function with respect to the model

parameters. The partial derivatives of the range observation model,

equation (4.1.57), with respect to the Cartesian earth-fixed coordinates

of the tracking station are
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u (t)	 n3tttom ,	
t v,wfit► 	 .. 	^,.	 (40, 33)

where tt ,a >vtt ,ws are the coordinates of the satellite at time t to We

samo frame. The partials for geodetic coordinates are obtained using;

equation (4.3.33) and the chain rule

3R(t)33ut) ^ + 3Ivt) 

3 ^^ a3 ^^ 	 1,^t	 (6.3.34)

where the partials of Cartesian coordinates with respect to geodetic

coordinates arcs given in Rapp (1976] as the coefficients of the dif-

fereatial equations

du = -(PI+h) sin#osXd j -- (N+h) cos Q siWN d- coslcosXdlt

dv = -(M+h) s.tn^ sinadc + (N+h) cos jcosXdA + cos f si nadh	 (4.3.3`i)

dw - Qwh) cos jd f + sinIA

where M and N are the ellipsoid radii of curvature in the meridian and

prime vertical..

The satellite coordinates are obtained in a mean inertial system

by numerical integration of the equations of motion whose forces include

the geopotential to degree and order eight, solar radiation pressure,

and luni-solar gravitational perturbations and are rotated into the

earth-fixed frame. The initial conditions for the integration are

obtained from Table 3.2.1.

For range difference observations the partials for station

coordinates are given by the difference
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aaR(t) us (t) - u	 us(t -Qt) - "
. a _ R
	

..	
R ( t - At)	

u +v,w	 (4.3.36)

where At is the Doppler integration interval. For geodetic coordinates

a similar expression holds

DAR(t) . Wt)	 Wt -At) At)	 ,1,h
	

(4.3.37)

Each interval a satellite is tracked six orbital elements are

introduced to model ephemeris error. The elements are represented as

the orbital semi-major axis a, the eccentricity multiplied by the cosine:

and sine of the argument of perigee, a cosw and esinw, the inclination

i, the sum of mean anomaly M and argument of perigee w, and the

ascending node Q. betting t c represent the midpoint of the satellite

tracking interval and t  the epoch associated with the initial orbital

elements, the partial derivatives of range with respect to the elements

at t  are given by

where

and

9R(t) _ @R(t)	 1	 4.3.38)

	

ae* 	- ax 	
l^o (t)V^0 (tc )T(tc>

	

t	 s
c

	

@R(t)	 DR(t) DR(t) @R(t)	 (4.3.39)
ax— (t) axs(t) aY$(t) az s

 M 0 0 0^}

	

3R(t)	 Xs(t) - X(t)
X ^- Y,Z	 (4..3.40)

ax SWR(t) 

where Xs ,Ys ,Zs are the satellite Cartesian coordinates in the mean iner-

tial system. The quantities X,Y,Z are the station coordinates in the

same frame. The matrix t^C (t) is the state transition whose elements are
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of ► tuineki from the homogeneous solution of the satellite's variational

oquat ionn [Baker, 19671.

DX (t)	 ax8W

4 1 0 W
i

37.^(t)	 a7,^(t)

and T is the J'acobi.an matrix

axs (t>	 Ox tG)

T(te)	
z	 r/	

)

L

(4.3.41)

(4.3.4")

For range difference observations equation (4.3.38) is modified using*,

aAR(t	 aAR t , ALLtj RAR(t) p p p	 (4.3.43)
ax 

S W IDX s W aY 
s 
(t) az s 

(t)	 I

cohere

aARW	 Xs (t) -a(t)	 xs (t - At) x(t - At)

axs W	 x(t) .,
	

lt(t - At) 	
( t+.3,44)

For polynomial clock models of the form

Pn (t) - ao + a1 (t - t') + ... + an (t - t •) n 	 (4.3.45)

the partials of range with respect to the model parameters a0,...,an

are jus t the parameter coefficients

129



P1

ah	 - ( t - t') i	 :L 23 	 (4,3,46)

where t' is an arbitrary epoch for each mode.. The constant term in

equation (4.3,46) represents the time (ranee) bias or phase error at t'

associated with the modeled clock. The second parameter a l is propor-

tional to the oscillator frequency bias Aft

al	
^ Af
	 (4.3.47)

and a2 is proportional to the frequency drift f

a2	
2f	

(t+.3.4d)

For range difference observations derived from integrated Doppler over

the interval [ tk , tQ I the partials are

aAR(t) = 0	
(4.3,40

Da
0

aAR(t)	 tR - tk	 (4.3.50)
Da

1

and

DA (t) -
 
(t	 t*')t') 2 - (tk - tQ ) 2 	 (4.3,5].)

Da
2

In terms of frequency bias and drift the partials are

a R( t) -c (tR - tic)	
(4.3.52)

and

DAR(t) - c [(tQ - t . ) 2 - (tk - t') 2 ]	 (4.3.53)
a 	

2f

according to equation (4.1.7).

130



ri

For the tropospheric refraction scaling parameter the partiala

of range and range difference are given by

4C
a Sat - 6R(O

 R

and

DAR(t)- 	
8R(t)
	

6R(t
DC R
	

A	 it

uaing equation (4.1,57).

(4.3, 4)

(1, . 3. 5 s)

4.3.3 Use of Keplerian Partial Derivatives
in the Adjustment Model

Numerical integration of 
the 

variational equations (O'Toole,

19761

dr	 r +
dr	 dr 

0	
0	 0 (4.3.56)

gives the variation in a satellite's inertial position and velocity at

time t with respect to changes in the initial state at time t 0 .  These

partial derivatives are used in forming the observational partial deri-

vatives of the design matrix A when the satellite state vector at C 0 is

included in the adjustment. For satellites at extreme altitudes an

approximat.,Lon may be introduced. This approximation consists of

replacing the numerically integrated solutions of the variational equa-

tions with Keplerian two body partial derivatives. This approximation

is both economical and valid at CPS altitudes if observation times are

within a few hours of the time at which the satellite state vector is to
be improved. Keplerian partials are analytic expressions derived from

the basic equations of two-body motion [Mueller, 1964].
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The orbital elements at time t are obtained from the elements

at time t0 by the transformation

' 1 0	 0	 Q 0	 0'

0 1	 0	 0 0	 0

0 0	 1	 0 0	 0
M (4.3X)

a 0	 0	 1 0	 0 11

0 0	 0	 0 1	 0 w

2 LO 0	 0	 0 0	 IJ LQt
0

where a is a time dependent quantity derived from Kepler's third law

(X C3 IA- (t - to)

For Keplerian motion the only time varying element in equation (4.3.57)

is the mean anomaly

M(t) = M(t0) + n(t - to)	 (4.3,59)

where n is the mean motion of the satellite. DIfferentiating, equation

(4.3.59) with respect to the orbital semi-major axis a It t 0 gives the

rate of change of mean, anomaly given a change in a at t0:

DM(t)	 3	 n
Ba(t	 2 a(t ) (t- to)

(4.3-60)
o	 0

All other element variations are of the form

De i(t)	 1	 :L= j

De 
i 

( t 
0)
	 0 j	

(4.3.61)
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At observation time t let (un(t),vn(t),wn(t)) be the coordinates

of satellite position in the earth«fixed nyotem.	 Let tu,v,w) be the

earth—Fixed Cartenian coordinates of the traeking station. For range

observations

DR(t)	 us̀(t)— tt
bun cjRt)^^

U `I' V ) w	 (4.3.63)
aR( t »	 0

DU (t)

For orbital element estimation at time t" the partials of R(t) with

respect to orbital elements are given by the matrix equation

aR(
a(t	

(6x1)

[IRIt)
GII UL

a	 _(3 x 1)
(4.3.03)

where the matrix G is obtained from equations (4.3.60) and (4.3.61)

1 i=i

a(t)	 0	 i O j except i=1, 3 ^ 4

aei tom) ^	 3 tt
(4.3.64)

au (t)aw$(t)

Da(t)	 Da(t)

1.1 = 1 Hij J

au^(t) ..
	 aws(t)

ast(t)	 ast(t)

The last factor in equation (4.3.63) has

velocity partials of range are zero. Tht
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The development of the elements of It follows, The trann;forr,a-

Lion front the mean inertial (1) system of epoch t 0 to the earth-fixed

(rS') syotem at time tats given by

us (t)	 X(t)

vs (t)	 - R2 (-xp )R1 (-yp )R3 (GAST)NP X(t)

w 	 x	 pct)

X(t)

P, Y(t)

where the coordinates in the mean inertial system are given by

rX(t)7	
x(t)

X(t)	
R R

3 (-Q)R1 (ri)R3 k-W) y(Q
	

(4.3.67)

Z(t)	 2(t)

and {x,y,z) are the coordinates of the satellite in an iii-plane coordi-

nate system as defined in Mueller [196+)

x(t) w a(cos E - e)

Y (t) a a(1-e2 ) 1/2 sin 	 (4.3.68)

z(0-o.

The quantity R is the eccentric anomaly related to the mean anomaly by

Kepler's equation

M = R - e sin R
	

(4.3.69)

and xP and y  are the coordinates of the instantaneous rotation axis of
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the earth [Mueller, 1969]. The rotation matrices P and N account for

precession and nutation and GAST is the. Greenwich apparent sidereal

time. In terms of direction cosines equation (4.3.67) has the

,Form

X(t)	 x cos(xX) + y cos(yX)

Y(t)	 x cos(xY) + y cos(yY)	 (4.3.70)

Z(t) 
x
	x cos(xz) + y cos(yz)

Equation (4.3.66) may be differentiated with respect to the orbital

elements

aus(ti	 _	 ax(t)
ae(t) .F	 R ae(t) 1

(4.3.7;1.)

Using equation (4.3.70) and assuming a nearly circular orbit these par-

tials derivatives are

aus (t) - us(t)	
(4.3.72)

Da	 a

ays(t),. = vs( t) 	
(4.3.73)

Da	 a

aws (t) - ws(t)	
(4.3.74)

as	 a

Du ( t)

ae	 — —a(R
llcos(xX) + R12cos(xY) + R12cos(xz)]	 (4.3.75)

ae sin E [R11cos(yX) + R12cos(yY) + R13cos(yz)j

1- e2
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3v W 
-at It coo NO +R22 cos (xY) 4 R^ 3 COS (Q ]

(4.:3 . 70
.>	 [IT cos QX) + R^ cos (vY) + IT Cos (v9)

^ hb

Ow  (0MW < - .."31COH ") + R3 ,coB (:"S') + R33 cos (x7)

(4.3.77)
a ^^ ^^{ nl

ER 31cos (yx) q. R32Cos by) + I133 co o CYR) ]
I . c^ ,?

a s In I. [It:I1Cos (XV + hcos (XV + IT 3 3 Cos (x:);ITC

^--- ^	 (0 .3.71+)
+	 c.OSE ER1 1 Cos (vX) A. 111 ,con Qy) + R I .3 Cos (YZ) l

1v8 W
In E[R,, i cos (x1) +I12 .,cos( 'Xy) +I' COS(xl.)

M	 4

a V 1 - c' ` GovE[R23 00S (vl') + I1 91 00S Qy ) I. It., )
3

c oo (v„)
A-	 2

Dw (0

-^a sin ARF3 L aos (x.1) •N R3 ,cos (xX) + R 33 OOS (xv) ]

(4.3.80 )
+ a N I - e - cosh (R31 Cos (yX) + R3 1). ( YY ) + Rei:3Cos O,X)1

aus (t)

31	 QR11sin i si.nwsi.nl- IT ^si.n i sinwcosQ--R I 3 cos 1 si_nw]

+ v(R1 ,L ,,in i coswsNO- IT12 sin i coswcosO.4 R 
1 3, Cos i COS(,))

TV ( C )
Di -=z OR21 sin 1, sin w SAO - ROO M i sin to Cass? -" R2 3 Cos i SAW

+ y[R21 Sin! coswsinG-- R22sin;L coswcosS2+R213 cor4 :i. casw]
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Iw . W
M x[R sin i sinwsinSI - R sin i sinwcof;Q-F R cos i siiux)]	<..l1
	 31	 32	 33

(it .3,8 3)
F y [St3lsin CoSws t1Sl -- 1.32 S in i coswcosQ -f I: 3 3 COS i COuo.^ ]

<.^._` ...^ x[R
j. ,cos(yX) +I21N Cos(yY) +It l3 cos(y2) ]

y L llcos (xX) + R12Cos (xY) + R13 cos(x7.) ]

3v (t)

^
m - X[I2V1cos (yX) + R22cos (yY) -F R23 cos (yz) ]

— y [R21cos (xX) + R22 cos (xY) + R23 cos (xl,)

Ow ( 0
a.^ c3w ._ = x[R31 cos (yX) +R qcos(yY) + R33 Cos (yz ) ]

0. 3.80)
— 'YLR31COs (xX) + R32 cos(xY) •F R33 COS(x2) ]

Bus
(0

x[—R
11

 Cos (xY) + R12 Cos(xX) ]

-F y L ..It
11,Cos (yY) + R12Cos ( yx) ]

	

3S	 x[^R,)1COs(x1') +It22 Cos(xX) ]

(4.;3.33)
+ y [-R21cos (yY) +R 22 cos (yX) ]

^—	 = x [ — It3lcos (xy ) + R32COS (xX) ]

(4.3.89)
-F y L —R31 cos (yY) + R,32 cos (yX) J
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Partial, derivatives for integrated Doppler measurements are

obtained by differencing range observation partials :formed at the end

times of the Doppler integration interval..

The difference in positioning introduced through this approxi-

mation was determined from simulation results of absolute and relative

positioixing using range observations from two stations 100 Milometers

apart. Results were obtained using two days of simulated observations

with one hour of observation each time a satellite was acquired.

Initial positioning adjustments were made in which orbital elements

were included as parameters with a priori weights for each hour of

tracking. Variational equations based on the WGS72 potential model.

[Seppelia, 19741 truncated to degree and order ,sight were numori.cally

integrated and used in forming; observational partial derivatives. Then

the adjustments were repeated using the Keplerian two body partials.

Except for this modification the adjustments were identical. A com-

parison of the covariance matrices obtained in each case was made.

For absolute positioning the standard error of the station coordinates

obtained using the Keplerian partial derivatives averaged 2.9 percent

more optimistic. In the determination of coordinate differences the

solutions using Keplerian partials had standard errors averaging 2.4

percent more optimistic.

As a result of this experiment it was decided that Keplerian

two body partial derivatives could be adequately used in the adjustment

of station coordinates when orbital elements were taken as parameters

in the adjustment.
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4.4 Development of Adjustment Weight Matrices

The minimum variance estimate of receiver earth-fixed coordi-

nates obtained from range or Doppler observations by least squares

adjustment requires that the weighting matrix be developed using the

second order statistics of the random observation errors as outlined in

[Liebelt, 1967]. In the application of Global Positioning System satel-

lite observations of range and Doppler to geodetic positioning the

adjustment- weighting must include the observation error statistics for

correlated atomic clock errors in both the satellite and receiver

clocks and for noise from the tracking receiver. In this chapter the

observation error statistics for atomic clock fractional frequency

error are developed from the Allan variance for each system oscillator

by an analytic procedure which transforms the Allan variance into the

autocorrelation function for random frequency error. The integral of

this function provides the statistics for range or range difference

observations based on the two oscillators used to derive the measure-

ment. Statistics or the residuals to selected polynomial clock models

are obtained by an additional transformation of the range or Doppler

error statistics. These residual statistics are incorporated with the

instrumental white noise statistics into the adjustment weighting. The

correlations between residuals to successive polynomial clock models are

shown to be negligible allowing the adjustment to be performed sequen-

tially.
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4.4.1 Range and Doppler Observation Error Statistics

4.4.1.1 Tractional Frequency Autocorrelation
front the Allan Variance

In section 4.1.1 the equations giving the second order statis-

tics of random range and integrated Doppler observation errors due to

random fractional frequency errors were presented. 'Those equations

require that the fractional frequency autocorrel.ation function be known.

In this section discussion of a procedure for obtaining an analytic

approximation to this function from the Allan variance is given. Tli1s

method avoids numerical, difficulties that may arise when the inverse

Fourier transform of the power spectral density is evaluated and yields

simple analytic autoc6rrelation function.

The Allen variance models shown in Figure 4.1.3 for the satel-

lite rubidium and receiver cesium oscillators are a function of the

sampling time T having the form

N

T
Tk < '[ < T1

2

	

of	 T.^ < T < T2

cry (T)

N 
2 
T

	

3	 T ^ T T2^3

N3

	

T	 T3 < T < 00

Using the transformations in Table 4.1.2 the power spectral density for

fractional frequency may be developed from equation (4.4.1):
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F1

N3	 Q : Y W <W
0

N2

W < W < w

W
2 	 o

Syy(w)
Nl

w WI 
W < W 2

No W2 < rj < Wh

The square root of the power spectral density, or transfer function,

corresponding to the Allan variance specifications of Figure 4.1.3 is

given in Figure 4.4.1. The constants associated with the two functions

and formulas for computing the constants associated with the power

spectral density function based on the Allan variance are given in

Table 4.4.1. These formulas are developed from the transformations of

Table 4.1.2.

The autocorrel.ation function fi yy (t) can be obtained from the

power spectral, density using equation (4.1.21)

CO

fiyy (t) = 2
	
I Syy (w)e

iWtdw	 (4.4.3)

With Syy (w) an even function equation (4.4.3) reduces

00

^hyy (0	2Tt	
Syy(W)cos wt dw

(4.4.4)

1 f Syy (w)cos wt dw

0

Using the power spectral density model, equation (4.4.2),in
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Pigure 4:4=1.	 Oscillator Transfer Functions

a

TABLE, 4.4.1.	 OSC1UATOR PARASiI,'. ERS

SATELLITE CLOCKS	 STATION CLOCKS
QUANTITY	 UNITS	 FORMULA	 IRUUIDIUM) ICESIUM!

T l	 Sac	 100.101 1.00-106

1`2 	 saC	 1.00x106 1.00'108

73	 sac	 1 00 x 108 1.00.102

c. 0	 sac	 87113	 1.73.10.8 1,7300

+u l 	sac	 1	 6In2!(a121	 1.32.10 a 1.32-10 8

W2	 sac 1	 a1(ZTtIn21	 227-10, 2.27-10 8	 i

Of	 600.10 12 3.00-10

No	 sac	 Tiol2	 3.60.10 22 800.10 21

N 1	 n112121,12 	 816.10 26 2,04-10 27

N 2	 sac 1	 3.y21T2	 108.10 21 2,70-10 27

N 3	 sac	 012T021T2	 3 00 . 10 10 800-10 20

it	 (ar21w1 It'8 	2.36.10° 1,01-100

fate	 sac i	 WI v a	 203-10 6 1.07.10 0
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equation (4.4 .k) gives the autocorrelation function for fractional

frequency as

Wo
	 N cos(wt)

4'yy (t) R	 l N
3 
Cos (wt)dw 4. 

^r 
f 2 , _ - dw

o	 wQ	 w

W 2 N cos(wt)	 10-1
+ f l w dw + : ! N0cos(wt)dw

Wl	 w2

N3 sin(wot)

7r	 t

N2t r	 (Wlt) 3	 (W 1 
t)5

-- 7 L wit - 3 . 31 +	 !	 -- .. .

Nt(w t) 3 	 (w t)5

Tr L Wot -3 	 ,03! + 5 ©5!	
...	 04.4.5)

N2cos(W1 t)	 N2cos(wot)

TCWI
	

7TWo

N	 (w t) 2	 (w t) 4

Tr 1108(w2t) - 2 22! 
+ 

4 
241 - ...

N	 (W t) 2	 (w t) 4

Clog(Wlt) - 2 X 2 1 +	 - .. .

N 0sin(10-1't)	 N0sin(w2t)

However this form for the autocorrelatioa function has an oscillatory

behavior for small t as shown in Figure 4.4.2 as a result of trans-

forming the band limited white noise portion of the spectrum. This is

an artificiality of the model..

r^
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Figure 4.4.2. Satellite 'Rubidium, Standard Fractional
Frequency Autocorrelation from Inverse
Fourier Transform

An alternate approach for obtaining an autocorrelation function

is to approximate the power spectral density model with a smooth func-

tion whose autocorrelation is expressible in simple analytic form. The

first step in this development is to approximate the flicker noise seg-

ment of the spectrum with a series of cascading functions whose value

alternates between being constant and being inversely proportional to

the square of the frequency. This type of proredure

Meditch [1975] in constructing a linear system which

noise using a white noise input. Figure 4.4.3 shows

tion for flicker noise. A three stage cascading tr&

superimposed consisting of the functions >:A,  FB , and

defined in Table 4.4.2. These functions are defined

is described by

simulates flicker

the transfer func-

isfer function is

F 
C 
which are

to have the
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Figure 4.4.3. Three Stage Transfer Vunetion Approximatic
at Flieker Noise Spectrum

TABLE 4.4.2. DEVINITIO14 Or TIIPZH STAGE TRANSFER

FUNCTION APPROXIMATION

FUNOTION INTERVAL DEFINITION (PS01

w I h w 4 coo Nil-,

FA w^ a w 6 a W. NAYw2

aw, 4 w 4 wA NAF02(4:42

wA 4 w 4 02w, NAl02w17

F0 AV. 4 w 4 0 24". .1401 ,2

a 2w, 4 w h « a Nii'A6u.2

U.a 4, 	 4 04W, NHtabw,2

PC 04.4 w 4 a bwp Nctw2

0 6w 4 w d E02 N0

WHERE
I

NA - awiN,	 /f//w ?n
H ^+ \ 

J l^
Na a 0 w1Nj

NC a O6w,N j	n-3

i

0

1.45



N 
A

(W)
A	 2

W

(4.4,6)

required properties and give a continuous although nor, smooth approxi-

mation to the flicker noise power spectral density.

The constants of this approximation are now derived over fre-

quency intervals as given in Meditch [19751, The general form of the

function 1'A
 
in

between the frequencies w 
a 

and aw 
a* 

At frequency w a $ defined in

Table 4.4.1 1 the function 
FA 

takes on the value

N	 N

(W ) -	
—

a	
W 
2	 W
a

(4.4.7)

since the flicker noise power spectral density has the same function

value at frequency w1 ,  Solving equatton. (4.4.7) giver

2

N	
!jj^a = CU N

A	 W 
1	

1 1
(4.4.8)

A similar analysis gives the constant N8
, 

The function F 
B 

has the form

F8 (w)(W)	 (4.4.9)
2

At frequency a 2 to a , F 
B 

has the function value

F (a 
2 

W	
B 	 (4.4.10)

B a) = .4	 ,2A2
W 

a	 a
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1)

nInce tv (tw the function V Ilan the same value no function I*
A
 at f re-

quency co a (oce Figure 4.4.3). Solving equation (4.4.10) givet,

Nth 0 a 2 N A - a 3 
W 

1 
N 1	

1)

118ing equation
	

For the function FCf

N

C	
W 
2
	 (4.14.32.)

ita functioi, . value at frequency a 
4 
w 
a 
equals the value of >~g  ac ft-0-

quency (% 3 W 
a 

giving

14

V (a 
4 

W	
- 06

C	 N 
obi	

(4.4.13)
C	

a 
80 
2 a W
a	 a

resulting 
in 

the solution

N
C 

= a 
2 
N 
B = a 

5 
W 

I 
N 
1	

(4.4.14)

using equation (4.4.11). Numerical values for a and w 
a 

are given in

Table 4.4.1. The power spectral density consisting of 
the 

three cas-

ending functions and the remainder of the original function will be

denoted as the second power spectral density model for each oscillator,

The next step in the development of an analytic autocorrelation

function is to approximate various segments of this second model with a

first order Markov process power spectral density function, a function

of the form
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8 (W)	 2028 
 

W 
2 + A2

(4.4.15)

where 0 in the inverse of the correlation time (see [Gelb, 197141).

The autocorrelation function for a first order Markov proceso is

4) W - 0 
2 

e 
-^ I t I
	

0. 4 . 10)

Graphs of these functions are given in Figure 4.4.4. Notice in equa-

tion (4.4.15) that the power spectral density decreases 
as the inverse

of the square of the frequency which is the type of functional behavior

seen in the interior of the cascading functions F through V c# It is
A

also the behavior of the original power spectral density in the inter-

val [w 
01 

W1 1. 1 . III addition the power spectral density of the Markov pro-

cess remains virtually flat until the frequency reaches a point when the

function decreases rapidly. These properties make- this function an

excellent choice for approximating, the second power spectral density

model plecewise.

The second model is then divided into five segments dofined in

Table 4.4.3. The high frequency cut off w 11 , shown as 10-1 in Figure

4.4. 1, will be increased so that that band limited white noise component

of the power spectral density may be approximated better 
by the first

order Markov power spectral density.

The approximation consists then of fitting ;a function in the

form of equation (4.4.15) to each subdivision of the P-cond model

S 
yy

(4)) given in Table 4.4.3. There are two parameters a and ^ to be

determined for each segment giving a total of ton parameters.

148



AUTOCORRELATION FUNCTION
	

POWER SPECTRAL DENSITY

t	 W

4)(t) ; Q2e'p 
lt1	

S (w) = 
2,Pa 2

W2+02

Figure 4.4.4. Markov Process (First Order)

Two procedures for this approximation were examined. The first

was a least squares fit of the function S(w) to each segment of S' M.

The second, wJhich was adopted for use, was an assymptotic approximation

whereby two constraints were imposed on the Markov power spectral den-

sity function giving a and R directly. The second procedure was impli--

mented because of simplicity and because the results compared favorably

witil the least squares approach as seen by COIpnnrina Fi aimn,_ 4.4.6 and

4.4.7. The assymptotic approach develops an a

g al I^,

J

using the following constraints:
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(1) at zero frequency the approximating Markov power spectral density

equals the second model at frequency wk 11

(0)	 S'Oy (U)
y k

(ii) in the limit as W increases tliv value of the function S 
i 

M Con-

verges to the following function

N) 
2a 2

G)~

and at tlitiq 11mitAn1, value is set equal to the value or S YY (w)

W a11 = s - (W	 (4.4,20)2	
yy

Z

Equations (4,4.18) axed (4.4. 210) are a system of two equations in

two unknoNnis. Their solution yields the parameters C';
1 
and	 for the

approximating, Markov power spectral density function S 
i 
(w) . 'lie nature

of the second constraint, equation (4.4.20) is to force the function

19J(w
) to assymptotically approach S' (W at to,. I

NIC first Constraint is
 yy

necessary to approximate the white noise or flat component of S' M at
yy

the beginning of each subinterval.

Finally a comment concerning the approximation in the last sub-

division 
x5 

is necessary. in order to obtain a good approximation to

S (w) in that interval it is necessary to choose w,, , large enough to
yy

allow the flat portion of the Markov process spectral density to fit the

white noise component which dominates this interval as seen in
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TABLE 4.4.3. DIVISION OF SECOND PSD MODEL
FOR MARKOV PROCESS
APPROXIMATION

NOTATION	 IN T RVAL

1 1 	 [0, w ll

12	 [wl, awal

13	 [awa, A0

Iq	 [a3wa, a6wa l
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0
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Figure 4.4.5. Assymptotic Fractional Frequency Autocorrelation
Functions Based on Markov Process Approximations
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Figure 4.4.1. Choosing u^ a
 three or four orders of magnitude larger than

0.1 and S' (wla } two to three orders of magnitude smaller than N il enable.,,
yy

a f ood approximation to be made but adds power at these: hIgha^r fr y -

quencies. The result is ,In autocorl-Olatioa function whose vaariancc will

increase as wh 
is chosen larger (see Figure 4.4 .5) and tends to a delta

function as to Ii
gods to Infinity. However, this will havo negli ,ibl.=

effect on range and range difference statistics. This point will be

examined in more detail aftex the development of additional equations

based on the first order Markov approximations.

'the smooth fractional frequency autocorrolaltion function kDVY(t)

is griven by the inverse Fourier transform of the f Lve Markov proem"s

power spectral densities Si
 
M. `J.'he result of each transformation is an

analytic function whose ,Corm is given by equation (4.4.16). Tho f finial

result is the sum of these functions

5

Yy

For range and integrated Doppler observations the statistical contribu-

tion clue to random oscillator error in obtained u s ing equation (4.4.21)

in equation (4.1.19) through (4.1.26). Figure 4.4.9 illustrator the

steps discussed in the development of these staatl.stics from the ,Alan

variance model..

Figures 4.4.6 and 4.4.7 show the original transfer function for

the satellite rubidium oscillator with the smooth least squares and

assymptotic approximations. The least squares fit to each subintQ val

of the second model Sy y (w) was based on two hundred oquaally spaced
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Figure 4.4.6. Satellite Oscillator Transfer
Function and Sum of Least
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Figure 4.4.7. Satellite Oscillator Transfer
Function and Sum of
Assymptotic Approximations
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_	 ASSYMPTOTIC
IALPHAR BETA

3.117700 24 1.73200 A

8.2020X10 26 2.032X10 6

6,2028x10 76 1.12800 4

02626X10 26 6,262X10 4

1.0000x10 16 1.000X102•

7.7942X10 21 1.732X10 7

1.2922X10 21 1.877X10 6

1,2922X10 
21

4.321X10 6

1.2922X10' 21 1.113X10 6

4.400000 20 1,000X101'

OSCILLATOR TYPE

RUBIDIUM (SPEC)

CESIUM ISPEC)

INTERVAL

12

I,

IA

I6

11

Iz

Ig

14

16

LEAST SOUARES

IAL^ PHAP BETA

3.3719X10 24 1.041x10 6

7,0230X10 26 2,205X10 6

7,0248x10 26 1,262X10 4

7.6246x10 26 6.947X10 4

1.9343X10 16 9.031X102

TABLE 4.4.4. FRACTIONAL FREQUENCY AUTO(ORRELATION
FUNCTION PAl2AMETERS FOR DIARKOV

PROCESS APPROXID TIONS

.'J' ° 1.0X10'	 S'VVl(uh) - Np11.0X102

samples of the function within the subinterval. The parameters

obtained using each approximation procedure are given in Table 4.4.4

for this rubidium oscillator. Since the assymptotic procedure produced

results comparing favorably with the least squares procedure this method

was adopted for use. Hence no least squares parameters appear in

Table 4.4.4 for the cesium oscillator. The assymptotic transfer func-

tion for the cesium oscillator fractional frequency error and the origi-

nal power spectra. ­Pnsity are shown in Figure 4.4.8.

4.4.1.2 Observation Error Statistics

Based on Markov Process Approximations

The first order Markov autocorrelation function, equation

(4.4.21) and equations (4.1.19) through (4.1.26) give the second order
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statistics for random range and integrated Doppler observation errors clue

to each oscillator used in the measurement process. These integrals may

be evaluated giving analytical expressions for the variance and covari-

ance of range and 'Doppler observations.

4.4.1.2.1 Range Observation Statistics. Let R(t i) and R(tk)

be range observations subject to random clock error only. The covari-

ance between the observations is given by equation (4.1.19). Using the

first order Markov aj(-, ., r ` !,wions, the integration of equation (4.1.19)

gives the covariance as

R[R(ti)R(tk)3 = R[n(ti)n(tk)]

	

5	 Cr22
	

1	 _^ (t - 
ts ) (4.4.22)

	

c E - ^2(t i - t 5 ) +	 ( e

	

j C	 i

+ e^Pi 
( tk - t s ) - e^Ri 

( tk - ti) - l ) J
for 

t  
greater than ti where is is the start or reset time of the

clock. The variance of the random range error, is obtained by setting t 

equal to ti in equation (4.4.22)

E[R(ti)1z(ti) ° F"[n(ti).q(ti)
(4.4.23

-- c2	
2
. i	 e

	

(t - t) +	 (^ ^ (ti ts) - l
a l

	

^j	
s

	

a	 i

The range error q(t) resulting from the integration of frac-

tional frequency error y(t) is a statistically non-stationary process.

An examination of equation (4.4.22) and (4.4.23) reveals terms in these

expressions which are functions of t i or t  minus ts . Thus the
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variance, fox instance, increases with time. Thin is illustrated in

Figure 4.4.10 for the rubidium clock. The standard error of a rango

monsurement based on the use of this clock is given for twenty range

observations spaced at fifteen minute intervals starting five minutes,

one hour, and five hours after the start of the clock. The increase In

variance is almost linear. An examination of the autocorrelation func-

tion shows that this function, dominately flat, is similar to a random

bias having a constant autocorrel.ati.on and whose integral, is a random

ramp which increases exactly linearly. Hence a linear growth in

variance is expected as seen in Figure 4.4.10. The correlation coeffi-

cients p1i between the first range observation and the i'th in

each of these sequences are given in Figure 4.4.3.1. As the starting time-

of the sequence from i s increases so does the correlation among thr ran-

dom errors which again is expected since the variance ;increases with

time and the errors are correlated.

Figure 4.4.12 gives the autoeorrelation function for the cesium

clock based on the Markov process approximation and Figures 4.4.13 and

4.4.14 give the standard error and correlations of range errors based on

this clock. A comparison of Figures 4.4.10 and 4.4.13 reveals the

greater stability of the cesium clock. After ten hours of operation the

standard error of the cesium clock output is approximately 3.5 nano-

seconds compared to 63 nanoseconds for the rubidium standard. In addi-

tion the correlations among the cesium clock errors decreases more

rapidly than the rubidium clock.

Considering both random clock error sources the total variance

and correlation of range observations R l, (ti) and R^ (t^) measura,! by
c
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receiver it are given by the equations

EN(tiVti)] - R[n s ( ti) na ( ti)I + U[tjk(tIhk ( t1)1	 (4.4,24)

I, [I k (ti yt j ) ] - R[ns ( ti ) no (tj ) ] + r[n11.(ti)nk(ti)1	 (4.4.20

where the variances and correlations of the random error n are given by

equations (4.4.22) and (4.4.23). The subscript "s" refers to the satel-

lite rubidium clock.

vor simultaneous observations of range by two receivers the

covariance of the observations Rk(t i) and R,(tj )is given by

E[Rk(ti)Rt (t j )I a r[ns(ti)ns(tj)]
	

(4.4.26)

la the above equations the random errors n have zero-mean which is a con-

sequence of fractional frequency error being zero mean.

4.4.1.2.2 in tegrated Doppler Observation Statistics. Let

AR(t n ) be an integrated Doppler or range difference measurement over

the interval [t V tn I and 4R(t.) a similar measurement from the same

receiver over the interval [tk ,t,]. The covariance of the observations

is

E[ AR( tn) AR(tk ] = R [n( tn) - ri(ti) M tA ) - 71(t k)]

= E [n( tn) n(tx) ] - R (TI ( tn) n(t ic )	 E, (ti n(td

+ E[n(ti) n(tk) ]
(4.4.27)

2 5 
2 e

-R j (t9 - 
tn) _ e- j (tlc - tC	 2 Cj

- e_Sj (tk ti) + e
~Rj (tk t

i) 1 .
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The variance of a range difference oboetvat1011 itl even by

I;[llit(t )t1r	 ) ]	 e2	 ,,	 (t, ° ti) °^` (e	
n	 (It.4 .2u)

U	 n	 r^	 t

Equations (4.4.27) and (4.4.28) are independent of the clock epoch t o ,

The statistics of the range difference error depend only on the Doppler

integration interval or the time difference between observations. Thus

the random range difference error is stationary. Expreasions analogous

to equations (4.4.24) through (4.4, 26) express the complete statistics

of range difference observation errors for individual or simultaneous

observations clue to clock error.

4.4.2 Statistics of Residuals to Polynomial Clock Modelsa

The utatistical characteristics of fractional frequency error

and its integrated effect on Mange and Doppler observations have bran

discussed in detail. For range observations the total random error ig

due to three sources, two of which are correlated noise processes. The

total random range error is expressible as

n(t) R n s (t) + nk (t) + r;(t)	 (4.4.29)

where n  and nk are the correlated random range errors due to satellite

and receiver random clock errors respectively. The quantity 9 repre-

sents receiver white noise as discussed in Section 4.1.4. The total

integrated Doppler random error over the integration interval Gt i ,tx ) is

An(t.) w nS(tQ) - ns(ti) + nk(tP.) - nk(ti ) + ^k	 (4.4.30)

where ^z is the white noise associated with the Doppler measurement pro-

cedure.	 161



5 HR

1 1111

To IS , 5 MIN

to

O
990

U
a
0 a04

cz

O

0C, 4_1
O0 on	 300

Figure 4.4.14.

6 00	 0 no	 12 no	 Ib 00	 10 DO	 2100	 24 00

NUMOR Of 16 MINUTE RANGE$

Correlation Coefficieiits between
Range 1 and Range i (Cesium Clock)0	 -

Depending on the stability of the clock the random range or

Doppler error components, 
T1, 

W and n 
k 
(t), may appear quite systematic

over fixed time intervals and may be represented by polynomial models of

varying degree. For short time spans the models for the clocks con-

sidered in this analysis were taken to be a bias and drift for range

observations or a frequency bias for Doppler observations. However

these models and even higher order polynomial models are not sufficient

to entirely represent this correlated error. Thus knowledge of the

statistical properties of the deviations of the error from such a model

becomes important since these residuals represent an unmodeled part of

the observation equation after the inclusion of the polynomial model.
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Proceeding, equation (4.4.29) is expressed as follows

n(t) = Pms (t) + Pnk(t) + r s ( t) + rk (t) + g(t)	 (4.4.31)

where Pms (t) is as m'th degree polynomial chosen to model, the corre-

lated random error p s (t) and P
nk

(t) is an n'th degree polynomial

modeling the random process p k (t). The statistics of the residuals

r(t) may be developed from the covariance of the random clock errors

developed in Section 4.4.1 using the procedure derived in Appendix A

which develops the mathematics for polynomial approximation to random

walk segments. Using equation (A.1.9) the second order statistics of

the range residuals r(t) to a polynomial model are obtained as

D[r(t)rT(t)] = GD[R(t)RT (t)]GT	(4.4.32)

where

G = [I - A(A7A) -1AT 1	 (4.4.33)

and A is the design matrix for the polynomial model selected. The

E[R(t)RT(t)] is the covariance matrix of the random clock error being

modeled. This covariance is given by equations (4.4.22) and (4.4.23).

For integrated Doppler observations the statistics of the resi-

duals to a given degree polynomial. model are similarly obtained from

equations (4.4.32) and (4.4.33) with the use of the covariance matrix

for integrated Doppler random error due to each system clock, equations

(4.4.21) and (4.4.28). The equation may be written as

F[Ar(t)ArT (t)] = HF[AR(t)ART (t)]UT	(4.4.34)

where the matrix R is similar to the matrix G of equation (4.4.33)
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with changes due to the choice of the model adopted for clock induced

random Doppler errors

T	 T

11 - [I - A"(A.A°)-1A.] .
	 (4.4.;35)

Equation (4.4.30) has the form

An(t k) = P is (tt) + Pj1 (t A) + Ars (tk) + Ark (r
P.
) + rk	 (4.4.36)

after the selection of the polynomial models.

If the statistics of these residuals were :ignored in dynamic

point positioning adjustments the resulting coordinate covariance

matrix would be optimistic. An increase in the degrees of the poly-

nomial, clock models would offset this optimism to some extent since the

level of unmodeled error would be decreased. however if a rigorous

adjustment is to be performed then these residual statistics trust be

included in the least squares adjustment weight matrix to account for

the unmodeled error r(t) or Ar(t) in a statistical rather than para-

metric fashion. The adjustment should then produce a valid coordinate

covariance matrix regardless of the order of the polynomial models used

provided numerical problams are not ncountered and the parameters are

independent and we ";61 observed.

The question of adequacy of a particular polynomial for a given

data span needs to be addressed.

4.4.2.1 Comments on the Choice of
Polynomial Error Models

To determine what degree polynomial model would be best to

represent random clock error various factors have to be considered.
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First among these are the length of the data span being modeled and the

number of additional parameters which need to be introduced into the

geodetic positioning adjustment. Use of a higher order polynomial will.

reduce the variance of the clock model, residuals but may tend co numeri-

cally weaken the adjustment normal. equations.

To determine how well a given order polynomial model, repre-

ent.s correlated clock error over a fixed time interval, a series of

first and second order polynomial tits were made using; simulated ran-

dom clock error. The algorithm of Medi.tch [19757 was used to generate

sequences of clock error which were then converted to range error. The

polynomial fits were equal weighted least squares approximations to the

range errors. A sampling; rate of one minute was used. From the

residuals of fit r(t) dutocorrelation functions were numerically

obtained for each approximation using;

n
q) (T) =	 Z r(t i)r(t i + r) 	 (4.4.37)

i=l

where n depends on T and the total number of samples. The variance of

the residuals front 	 case were averaged to determine an overall,

variance for the residuals of fit for both the linear and quadratic

polynomials. For the rubidium clock three time intervals were

considered with a linear polynomial fit. The root mean srsare
{

errors are given in Table 4.4.5. For the cesium clock the

results indicate that the longer the interval the better the second

order polynomial performs, as expected. Howeve- .his increase in good-

ness of fit is less significant as tlae length of the interval decreases
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TABLE 4.4.5. RANGE, RESIDUAL STANDARD ERROT6 13ASED ON
POLYNOMIAL TITS TO SIMULATED CLOCK ERROR

CLOCK TYPE POLYNOMIAL MODEL NO, CASES
RMS ERROR OF FIT (cm)
4 hr 8 hr 16 hr 24 hr

CESIUM LINEAR

QUADRATIC

10

10

8,7

7,0

11,8

9,3

18,7

16.1

26,8

17,4

2 hr 4 hr 8 hr

RUBIDIUM LINEAR 30 18.1 36.6 66.3

It is ubvious that a tradeoff exists between the level, of model error

remaining and the number of model parameter required. For instance two

linear models over 16 hours leaves an 11,8-centimeter sample standard

error for the residuals, while a sin)le quadratic fit over the same

interval leaves 15.1 centimeters of expected error. An increase in one,

parameter produces a 22-percent decrease in the expected error.. 	 For

the rubidium clock the expected level of residual error is higher due, to

the poi'rer short term stability of this clock (see Figure 4.1.3) and is

comparable only to the cesium if the fit interval is about one-eight),

the length. Figures 4.4.15 and 4.4,16 give examples of the residuals of

fit for each clock for a linear fit over 8 hours. In Table 4.4.5 the

length of the rubidium clock cases was :Limited to 8 hours since one

clock model for each satellite pass was anticipated for the positioning;

studies to be conducted.

Finally, the theoretical standard errors for range residuals to

a linear fit were determined using equation (4.4.32) for these clocks

a
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for the same intervals with the exception of the 4-hour case for the

cesium clock. The results are given in Figurts 4.4.17 and 4.4.18.

These figures support the conclusions drawn above, and in addition,

graphically demonstrate that the statistics of the residuals to the

clock modeling polynomial. are not stationary. The variance of a

residual depends on the order of the polynomial, the interval length

and the location within the sample. The correlation coefficient matri:s,

contoured in Figure 4.4.19 for an 8--hour linear fit for the cesium

clock, does not have the constant diagonals except for equally spaced

samples of a stationary statistical process. however, by Theorem A.1.

of Appendix A, the statistics of the residuals will be constant from

interval to interval of the same length provided the sampling is per-

formed equivalently and the same order polynomial is used.

4.4.2.2 Correlation Between Sets of Residuals

An examination of equations (4.4.22), (4.4.23), (4.4.27) and

(4.4.28) Shows that the random errors due to oscillator instability are

correlated over all time. That this is the case is a conseque%ice of

the error being a random walk or the difference in elements of a random

walk where the underlying process is fractional frequency error.

Since correlation between range or Doppler observations 15 due

entirely to clock error, it !,.,;comes interesting to examine the cor-

relation between the residuals of tvo successive polynotitial fits to ran-

dom clock error. If the cross correlations are relatively small, the

assumption that successive ,servation sets can be taken as statisti-

cally independent is justified when polynomial clock models are adopted.

1.68
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Thin; anaumptAion would than permit sets of correlated observations "o Le

introduced into m geodetic positioning adjustment as independent blocks

in a sequential least squares approach. Computationally this implies

that the dimension of the observation covariance matrix to be inverted

to form the least squaies weight matrix is reasonable.

To test that assumption the residual covariance matrix was

computed using equation (A.2.5) of Appendix A for two linear fits

to successive clock error segments for both the cesium and rubidium.

clocks:

E[rlr ] 
E[r1 2]	 E[R1R ] 

E[Rl 2]
G	 G 	 1.4.4.3£0

E[rzr a. ] E[r zT]
	 E[ 

R
21 ] E[RZ 2]

J	 L	 J
where

G - [T - A(ATA) -1AT ]	 (4.4.39)

and

A	 0
A =	

1	
(4.4.40)

0	 AZ

The correlation coefficient matrix for the residuals was computed and

the coefficients from the off-diagonal block, E[_[r1 
2] 

were compared to

the correlation coefficients from the diagonal blacks, E[r1 
1] 

and

E[r2r21. The results indicated in all cases that the correlation coef-

ficients between residuals from two different fits were at least two

orders of magnitude smaller than the correlation coefficients for

residuals from the same polynomial fit. These results support the
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assumption that successive blocks could be treated as independent

although each block itself would be internally correlated.

4.4.3 Wei 1t Matrix

The introduction of polynomial clock models tends to statisti-

cally dreouple the residuals front successive polynomial fits; thus,, GPS

range and Doppler observation sets, which are correlated in -time by

random clock error, may be treated as independent when polynomials are

adopted to model these random components. Each set is itself fully

correlated and the statistics of the residuals to the adopted poly-

nomial models must be included in forming the least squares adjustment

weight matrix as shown in Figure 4.4.20. The size of each correlated

data set will depend on the time interval over which the models are

applied which, along; with the degree of polynomial, determines the

variance of the remaining residuals. Since the receiver cesium clock

has better stability than the satellite rubidium clock the time inter-

val over which a single receiver polynomial clock model is adopted may

span multiple intervals of satellite tracking; data each with its own

clock model. This will of course depend not only on clack stability,

but also on the geometric strength of the observations taken. Figure

4.4 ..21 illustrates this concept in which observations within block K

are assumed statistically independent of observations within block L,

each of which includes range observations from four satellites taken in

this case simultaneously from two stations.

The weight matrix, taken as the inverse of the covariance matrix,

of random observation errors, is assumed to be block. diagonal wherein

a

172



i^	 I
...
+

I x ///

x	

Ax®• , ^
V

+•RO x
U7	 Lc LC	 LC
II	 II
J	 'f +	

J^
1

1

• O

w
x

mss,
WW

W2

x
W

2^
OV

vi

~O

f^

^WW

f"Y
^U
WO

QV

^I

Y
QI

x x^^ ®^•

Z
-i

K

ai

ro

av

a
ca

O

u
a^

O

4{-1OO
O
.r{

Mr{

1^^

Qtai

v

K

173



SATELLITE CLOCK MODELS
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BLOCK K	 I	 BLOCK l

Poo)
	

PnCll

	

STATION I. J
	

STATION I. J
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Figure 4.4.21. Clock Modeling Procedure
(Simultaneous Observation)

Figure 4.4.22. Assumed Block Diagonal. Form
for Weight Matrix
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eaeli block conttint; the :second order statiotien of the residuals; to Lite

13c 1ve,Led polynomial clock models and of the white noise due to the

r( ,eeiver. The weight matrix corresponding to the observation schedule

of Figure 4.4.21 ir, ohown 
in 

Figure 4.4.2 "̂-, Lack diagonal block it, the

inverne of the sum of three covariance marices. For relative posi-

uning range observations from two ataLions observing*, simultativ-

oun the form of the diagonal block is given by equation (A.4.41) where

the covariance matrices B'[rr T ] are based on equation (4.4.32). The form

of the matrix is identical for Doppler observations using the covariance

X'(ArAr T ) given in equation ( 4.4.34).

4.5 ResulL s of Dynamic Positioning Studies

The simulated range and integrated Doppler observations

developed in Section 4.2.1 according to equations ( 4.2.8) through

(4.2.10) were uoed in the sequential least squares adjustment algorithm

developed in Section 4.3.1 to obtain minimum variance estimates of

geodetic s tation coordinates and baseline components using a dynamic

positioning approach. Observations from three separate station

groupings were considered in this analysis. The geodetic coordinates

of these stations are found in Table 4.2.1. The GPS orbital elements

adopted in this study are given in Table 3.2.1 referred to the mean

equator and equinox of 1950.0.

Solutions were obtained for the geodetic coordinates of indi-

vidual tracking stations then for baseline components and chord length$

from simultaneous observations from pairs of stations. Solutions were

developed using either range oi: integrated Dopple., r observations sepa-

rately. No solutions based on both observation types were considered
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alth6ugh this possibility may be available with two frequency Doppler

receivers having a two frequency ranging capability. For each posi-

4ioiving problem the effects of the random and systematic error sources

of	 4.1 were addressed and the adjustment weighting procedure

developed in Section 4.4.3 was utilized as a function of the random

error sources considered and the error models chosen to represent atomic

clock error.

%tegrated Doppler observations were assumed to be independent

sixty-second measurements aggregated every five minutes, not correlated

range differences, as in Chapter 3. This latter type of treatment would

add additional strength to the least squares normal equations enhancing

the Doppler results presented below. The type of correlations con-

sidered in this analysis however are those due to the correlated random

atomic clock error present in both the receiver and satellite clocks.

Range obse-.-ations were considered subject to time errors

and the normal equations included timing parameters in accordance

with the tracking scenario under consideration. The inclusion

of such parameters weakens the normal equations as considered in

Chapter 3. However in actual applications these parameters are neces-

sary since tracking receiver clocks will be subject to timing offsets

and drifts with respect to an adopted time system such as GPS system

time.

The solutions presented were bas0 on two basic tracking proce-

dures each with the adaptation of similar modeling for atomic clock

errors. The first data acquisition procedure consisted of tracking

satellites over three hour intervals and perfor raing the least squares
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adjustment for station coordinates every nine fours. In this case a

linear model was used to approximate the error in each separate clock.

Thus the satellite rubidium clocks were modeled by a linear function of

time over t1iree hour intervals and the tracking station's cesium clock

orror, was modeled by the same type of function over the nine hour inter-

val. Sc, , utions were performed sequentially approximately every nine

hours with sumo variation if a tracked satellite's period of observ-

ability Is lass than three hours. Observations were utilized only If

the topocentric elevation angle of the satellite exceeded ton degrees.

The second tracking scenario reduces the satellite tracking Interval to

one hour with a sequential adjustment of, parameters occurring; after

four hours of observation. A Similar clock modeling procedure was

adopted but over the shorter intervals. This latter tracking procedure

allows a more rapid sampling of the satellite pass geometries and a bet-

ter approximation of the random clock error; however, this procedure

introduces a larger number of parameters of solution over a fixed period

of site occupation.

In all cases considered parameters representing the satellite

orbital elements were introduced into the adjustment with a priori

weighting consistent with the amplitude of the ephemeris error intro-

duced, as described in Section 4.1.2. Orbital elements were introduced

for each satellite tracking interval and corrections to these elements

at the midpoint of the interval were estimated as described in Section

4.3.2. The inclusion of these parameters In the adjustment is con-

sistent with the approach of Brown [1976] although the modeling proce-

dure for ephemeris error is different.

!F
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As a final introductory comment it, must be noted that the trans-

formations between the 
mean 

Celestial System of 1950.0 and the

earth-Mixed coordinate systom are assumed known. This 11111liC.13 that 110

arrorsinprecession, nutation, earth rotation, or polar motion. are

introduced •nto the results. The consequence of errors in these varl-

ables is of great importance ii^, geodesy but are not addressed In this

study. Therefore 
In 

the folloi,Jng it is assumed Oint an error free

trans f ormation Into the earth-fixed coordinate SySLO111 (IXIStS.

4.5.3. Dynamic Point Positiglin

4.5-1.1 Range Solutions Based 
on 

Three-Hour
Tracking Intervals

A limited set of simuIntions based 
on 

wo frequency compensated

range observatic)us were made using observations from Stations 1.003. and

1002 with each selected satellite of the OPS constellation tracked for

three hours, A sequential adjustment of the earth-fixed Cartesian sta-

tion coordinates was performed every nine hours over a five day period.

The. complete parameter set included a linear clock model for each

satellite rubidium clock for every three-hour interval of tracking,

a linear model for the receiver cesium clock for every nine-hour

interval, ephemeris parameter corrections for every three hours of

tracking, and the earth-fixed Cartesian coordinates of the station.

In addition a tropospheric scaling parameter, as described in Section

4.1.3, was included for every three hours of observation when

tropospheric refraction errors were introduced into the observations.
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To evaluate the effects of random 
and 

systomale error tiourcon

on station posl,tioning, simulaLlons were vale 
In 

whIch Individual

error sources were Introduced into the range observations and only 
a

limited number of parameters were adjusted. First, the Qtfoct of

random cerium clock error 
on station positioning was examined. Simu-

IaLod random cesium clock errors were developed for the cesium clock

11POCITiCaLi011.", i;AVcl ll in Figuro 4.1.3 using the algorithm of Mcdiveli

(19751.. ThA6 random cerium clock error was added to the goomocric.

ranges to GVS satellite posit '-fons, according to equation	 The

satellites were selected using the criterion of till Irtillizing the trace of

the station covariance IMAUIX as doscObed 
In Section 4.2.2. To these

ranges an Optil"listic ten centimeters of Gaussian white noise was intro-

duced, The adjustment parameters included the Cartesian coordinates of

the station and a first, degree polynomial, in tame to represent the

cesium clock error every nine. hours. The adjustment weighting was based

solely on the white noise statistics 
and 

the station coordinate.-, 
were 

'111

error initially by 100 maters 
in latitude. Yfpiro 4.5.1. gives the error

in est'imated position of station 1001 as a function of time with a

sequential adjustment 
in 

station position performed every nine hours.

With a random white noise level of ten centimeters the range observa-

tions would predict standard errors of 0.1.7, 0.21, and 0.15 centimeters

for the ", v, and w components of station position in this example.

According to Figoxc 4.4.18 adopting a linear model to .epresent random

cesium clock error over nine-hour intervals would leave 
in unmodeled

random residual error with approximately a .12 to 16 centimeters standard

error. The thirteen sets of this random residual error introduced the
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station position errors in Figure 4.5.1. The residual random clock

errors represented by the difference between the random clock error and

the best fitting linear model are correlated as sho%ni in Figure 4.4.19.

The errors introduced Into station positioning by these random clock

errors, modeled ni a linoar function, will not average as those intro-

Ouced by Gaussian white noise of a similar magnitude as evidenced by the

station position errors shown in Figure 4.5.1. A comparison of these

errors with the standard errors expected by 10 centimeter Gaussian white

observation noise, given above, indicates the level of error expected

from unmodeled cesium clock noise. Errors of similar magnitude although

different in their distribution were present in the results from station,

1002. The magnitude of this error plays a more criticA role for the

determination of baseline components and is discussed in Section 4.5.2,
181



The effect; of atomic clock error on station Positioning also

irrcludcxs the efrecL of term ►odeled random € atellite rubidium eloc>k error.

For they dynamic positioning, approneh under examination in this analysis

1L is assumed that estimates of re ach satellite's elock error are. pro-

vided with Lhe ephom rides 	 For tho current. study this implies that

these esLimates will, take the form of the best 'linear fit and will pro-

vido a i estimate of the rrystematic rubidlom eloek error over the inter-

val of satellite tracking utilized in geodetic positioning. To the

current examples that represents I three-hour interval of timo .

Assuming for the moment that over this interval the bias and drift of

the satellite clock are lcnomi, then the question. raised Is what Lffeet

will the tuutiodeled random residual satellite clock error produce in

station positioui;iig? To obtain nn estimate of, this error :station posi--

Lioni:.ng simulations were made introducing this residual rubidium clock

error into the same geometric ranges used in the previous examples.

This random residual error was comput=ed by diffeLencing simulated ran-

dom rubidium clock noise with the best linear least squares fit to the

noise over the tracking; interval. The residuals from such a fit have an

average standard error of approximately 30 centimeters as seen from

Figure 4.4.17. The rubidium clock noise simulated was consistent with

the rubidium oscillator Allan variance given in Rihure 4.1.3. `Pen

Centimeter Gaussian white noise was also introduced into the ohserva-

Lions representing aft unrealistiely optimistic level of random roceiver

noise*. The adjustment parnmeters :included the stations earth-fixed

Cartesian coordinates. Figure 4.5.2 gives the position errors for

station 1001 as a function of time. The error represents the magnitude

162



20

LU

cc	 12
0

it
Uj

08

O

0 04
0
Q

00

/1

z U	 4U	 60	 go	 100	 120	 140	 160
TIME (HR)

Figure 4.5.2. Effect of Residual Random Rubidium Clock Error on
Positioning Using Range ObsiRrvations (Station 1001)

of the difference between actual and estimated station coordinates after

each nine hour update. The observations were weighted usin g on1v

the white noise statistics. Based on a ten centimeter standard

error of observation the full set of range observations would predict an

uncertainty in station position of 0.11, 0.12, and 0.09 centimeters for

the u, v, and w coordinates. The final errors in the 
s
tation coordi-

nates were 1.3, 0.8, and 0.6 centimeters after 117 hours of observation.

Again, scaling the predicted standard errors by 3.0, the error intro-

duced into station coordinates by the sequences of correlated residual

rubidium clock error averages although not as rapidly as errors

introduced by white observation noise of an equivalent variance. In

this example the residual rubidium clock error even though of higher
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varLatice than the residual cesium clock noise produces a smaller por' l-

tionInj,,, error. The rate -it which the errors in station positioning

average will depend on the variance and correlation of the residual

noise process, the number of noise segments introduced, and the correla-

tions amoap, station position coordiniates and tile clock 
modeling 

Para-

meters Introduced into the adjustment, However, an 
in the previous

example, the offect of unmodeled residual rubidium clock error on the

determination of station coordinates is negligible.

To further refine the estimate of station position error

introduced by atomic clock or or sources, an adjustment of station

coordinates and linear clock error ,models was 
made in which random

eesim clock arror, residual rubidium clock error and Len canti-

meters of Gaussian white receiver noise were Introduced into the geo-

metric ranges. Adjustment weighting was based on the statistical,

modeling developed 
in 

Section 4.4 including, the fully correlated

weighting due to unmodeled atomic clock errors. The results of this

adjustment are given in Figure 4.5.3(a) through 4.5.3(c) for each

Cartesian coordinate of station 1001. The atomic clock errors intro-

duced into the range observations were simulated as previously described

for the cesium and rubidium clocks under consideration. Remembering tile

results of the previous two examples where the resulting standard errors

of station positioning based only on Gaussian white noise were extremely

small, it can be seen that the standard error in station position com-

ponents due to correlated atomic clock error sources ranges from 8 to 11

centimeters after one day of observation and from 4 to 5 centimeters after
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five days. Tile magnitude of this error will be of importance in the

determination of baseline components discussed 
in 

Section 4.5.2.

To obtain an estimate of the effect of the ephemeris error

described in Section 4.1.2 orbit error was introduced into ritation

positioning simulations using equation (4-2-10). The nominal level of

ephemeris error utilized throughout this study is given it Table 4.2.2

and the assumptions regarding its distribution are discussed in Section

4.21 -1. Adjustment results for the Cartesian coordinates of Station 1001

are given in Figure 4.5.4 where the absolute value of the coordinate

errors are given. Parameters in tile adjustment included only station

coordinates, ephemeris error modeling being momentarily ignored.

Ten centimeters of Gaussian white noise were again applied to the obser-

vations and formed the basis for the adjustment weighting. The results

indicate that the level of orbit error addressed in this analysis may

introduce errors into station position of greater than one meter in each

component even after five days of continuous observation. Modeling of

the ephemeris error tends to reduce this error. These results are simi-

lar to those obtained for Station 1002. The errors introduced into

positioning by each error source are dominated by the effect of errors

in the satellite ephemerides. This error will be the limiting factor in

the overall accuracy to which geodetic station positions may be obtained

using GPS ranging.

To define an upper bound on the effect of unmodeled tropospheric

refraction error on station positioning a five percent error was assumed

in the predicted tropospheric refraction correction based on the
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Hopfield model discussed in Sanction 4,1.3. This error was taken with a

constant sign. Observations below ten degrees elevation angle were

excluded. The results of a positioning simulation for Station 1001 are

given in Figure 4.5.5 where the adjustment included only the Cartesian

coordinates of the ste,tion. Ten centimeter Gaussian white noise was

Included as before. Refraction scaling parameters discussed in Section

4.1.3 were not included in the adjustment. The results demonstrate that

a constant percentage model error in tropospheric refraction of five

percent can introduce errors in station position varying between 8 and

12 centimeters, If the actual modeling error had taken the form of a

constant percentage for each observation but with a random sign varia-

tion for each tracking interval, the error in station positioning would

be considerably less since the sign of the station position errors from

each interval, of tracking would have variations resulting in better
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averaging. Subtracting, the mean of each component of station position

error from the results in Figure 4.5.5 gives an estiAiatv. of 4 to 6

centimeters of variation at I day and 1-2 at 5 days which could be

expected in such a case. Again the magnitude of this error, even con-

sidering a worst case as in this example, is small in comparison to the

effect of ephemeris error.

Finally, the effect of a realistic level of receiver white noise

is assessed In Figure 4.5.6 in which the standard error of the Cartesian

station coordinates are given as a function of time. After twenty-four

hours of continuous observation the standard error of the solution for

each coordinate is approximately 2 centimeters and reduces exponentially

to approximately 1 centimeter after five days of observation. A com-

parison of Figures 4.5.6 and 4.5.3 reveals that, in the absence of
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nytak-matic ort-ora such an nateilict. , poraLion and troponpheric- refrat-

titan, Improvement 
in 

the receiver range meanurement noinc, will not

improve the quality of station positioning aince the effect of randon,

atomic clock error will dominate.

Table 4.5.1 suminarizes the approximate levelo of error Intro—

duped into natation positioning from the error sourceii dlocuoaed above

1111011 the satellite tracking interval 
is 

three hours.

For Stations 1001 and 1002 complete, simulations of dynamic

noia positioning were made using; 	 observations from three hour

tracking intervaU. The error sources introduced into the observations

consisted of ephemeris error, satellite rubidium clock error, receiver

cesium clock error, tropospheric refraction error, and one meter of

Gaussian, receiver white noise in accordance with Table 4.21 . 2. Va. , Jus

independent sequences of random atomic clock error were utilized 
in 

the

analysis of station positioning for both stations. Figure 4.5.7 gives

the standard errors and actual position errors for Station 1001 for one

case. The,' 	 of the adjustment consisted of the full set

described above weighted according, to the level of error introduced into

the observations. This set included station coordinates, ephemeris

parameters for each three hour interval, a linear error model for the

receiver clock over every nine-hour interval, a linear error model for

each satellite clock icr every three-hour tracking interval, and a

tropospheric refraction scaling parameter every three hours. The least

squares adjustment a1govAthm incorporated the fully correlated adjust-

anent weighting based on random atomic, clock error and the Gaussian white

receiver noise. Initially the station's position was in error by 100
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RANGE OBSERVATIONS USING A THREE-HOUR TRACKING INTERVAL

APPROXIMATE COORDINATE
ERROR SOURCE	 ERROR (Cm)

	

1 DAY	 5 DAYS

TROPOSPHERIC REFRACTION (t5%)	 8.12	 4.6*

EPHEMERIS	 150-200	 80.120

RESIDUAL SATELLITE RUBIDIUM CLOCK ERROR	 6	 2

RANDOM RECEIVER CESIUM CLOCK ERROR	 8	 4

RECEIVER WHITE NOISE (1m)	 1.5.2.0	 7-,9

*ASSUMING AN AVERAGING DUE TO SIGN VARIATIONS
I
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niners In 'latitude. An examination of the solution with all. cvror

sources included indicates that each component of station pos'4tion can

be determined with an accuracy of from 1.5 to 2.3 maters after one day

of observation and from 0.8 to 1.2 meters after five clays.

The station positioning analysis based on ,
I
	 tracking

intorval was not immediately extended to include the other stations in

Table 6.2.1. Instead consideration was given to improving the current

results.

6.5.1.2 Range Solutions Based on One-flour
Tracking Intervals

Taking into ;account the results obtained in Section 4.2.2 for

the opti.mial selection of satellites for point positioning, improvement

.,in the geometric $Lrength of the solution could be obtained by decreasing

the tracking interval and sampling; the satellite. constellation geon ►etry

morn rapidly. Thus a second scenario was investigated consisting of

tracking each selected satellite for one hour and estimating station

position every four hours. For a :fixed interval of site occupation

this approach introduces additional modeling parameters but allows

a batter sampling of satellite-station geometry. Using this approach

ephemeris parameters are included for each hour of observation along

with, a linear satellite clock error model. A linear receiver clock

error model is introduced every four hours. Since the clock modeling

intervals are reduced the linear models are a better approximation to

the random noise processes and the residual error statistics are

reduced. however the inclusion of additi.onnl modeling parameters will

have the opposite effect of weakening the least squares normal equa-

tions.
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To determine if tits improvement in the prior station positioning;

results was achievable a series of solutions were made for Stations 1001

and 1002 adopting; this new approach. These positioning simulations were

based on one hour tracking intervals wit'; . i r.>tal site occupation

ranging from two to ;rive days and were &0< ;cted to measure the effect: of

random and systematic errors on positioning; based on this tracking

scenario. Table 4.5.2 gives estimates of the effects of these error

sources in a form comparable with Table 4.5.1. The magnitude of the

errors introduced are again Laken from 'fable 4.2.2.

TATTLE 4.5.2. ).ri,, CT OF ERROR SOURCES ON POSITIONING DERIVED FROM RANCE
OBSERVATIONS USING A ONE-IIOUR TRACKING INTERVAL

APPROXIMATE COORDINATE
ERROR SOURCE
	

ERROR (cm)

1 DAY	 5 DAYS

TROPOSPHERIC REFRACTION (t5'0	 8 . 12	 4.6"

EPHEMERIS
	

50 . 80	 25.40

RESIDUAL SATELLITE RUBIDIUM CLOCK ERROrt 	 4	 1

RANDOM RECEIVER CESIUM CLOCK ERROR 	 5	 2

RECEIVER WHITE NOISE (lm)	 1.5.2.0	 .7-,9

"ASSUMING AN AVERAGING DUE TO SIGN VARIATIONS

An examination of Tables 4.5.1 and 4.5.2 reveals that this

change in the observation and modeling procedure reduces the effect of

two primary error sources, ephemeris error and random atomic clock

error. The of-Zect on positioning due to residual tropospheric refrac-

tion and receiver white noise remain virtually the same. These latter

effects will be discussed first.
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Simulations of station positioning were made 
in which Gaussian

white noise. with a standard error of one meter was introduced into the

geometrical ranges to CPS satellites selected using; 	 criterion which

produce.,, the smallest trace of the station coordinate covariance

developed sequentially. The adjustment results for Station 1001 are

given 
in 

Figure 4.5.8 where the standard error and 
magnitude 

of the

station position error are given for each component. The results are

similar to those given in Figure 4.5.6 for the three-hour tracking

interval demonstrating that the effect of receiver instrumental noise

on positioning averages equivalently for each observation;

The results indicate that the error in each component of position due to

receiver noise is approximately 1.5 to 2.0 centimeters after one day and

0.7 to 0.9 centimeters after five days of continuous observation.

For tropospheric refraction the results based on a five percent

bias in the predicted refraction corrections show station position com-

ponent errors ranging from 5 to 20 centimeters, With the sign of the

modeling, error taken as constant the error in the station coordinates

appears as a bias in the range of values just given with variations

generally on the order of five centimeters. Thus 
the 

overall effect of

residual tropospheric refraction error remains at a level similar to

that from the prior tracking approach. However with the introduction of

refraction bias parameters this error is substantially reduced. Figure

4.5.9 gives the results of an adjustment with range observations subject

to a systematic tropospheric refraction error of five percent and ran-

dom instrumental noise with a one meter standard error. In addition to

the Cartesian station coordinates refraction scaling parameters, as
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given in equation (4.1.57), were included, one for each hour of

tracking. The errors in positioning due to refraction were reduced to

a level of approximately 4 to 6 centimeters after one day and 2 to 4

centimeters after five days of observation. Thus refraction errors

will not play a critical role in the determination of earth-fixed

coordinates from CPS range observations.

The adoption of a one hour satellite tracking interval with

linear modeling of random clock error over shorter time intervals

decreases the effective error in station positioning as mentioned

earlier. After a linear approximation of random cesium clock error over

a four hour interval the unmodeled correla t ed residual errors remaining

have standard errors of approximately 9 centimeters compared to the 12

to 16 centimeter standard error after an eight hour linear approxima-

tion. Similarly residual rubidium clock noise over a one hour interval

has a standard error of approximately 12 centimeters compared to approx-

imately 30 centimeters for a three hour fit interval. Thus the expected

magnitude of the unmodeled clock error will decrease with this alternate

tracking approach. However the number of model parameters required in

the adjustment will increase tending to weaken the normal equations for

station position. Figure 4.5.10 gives an example of the errors in

station position when random cesium clock error and instrumental

receiver noise with a standard error of one meter are present in the

observations. The adjustment parameters included station position and

a linear receiver clock model for each four-hour interval. The adjust-

ment weighting was developed using the statistics of the two random

error sources. Taking into account the results given in Figure 4.5.8,
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Figure 4.5.10 indicates that random cesium cloak errors, consistent with

the stability specifications adopted for the receiver oscillator, intro-

duce approximately 5 centimeters of error in each components of station

position after one day of observation and 2 centimeters after five days.

The random rubidium clock error modeled as a linear function of

time over one-hour intervals was also considered. This error source

introduces errors of approximately 4 and 1. centimeters after one and

five days of continuous observation respectively. W1th both atomic

clock random error sources and random instrumental noise included in the

adjustment-, using; the complete statistical weighting, the standard

errors of station position were reduced to approximately 60 percent of

the error present in the three-hour tracking procedure.

With the selection of a satellite occurring each hour the

effects of ephemeris error, whose distribution is discussed in Section

4.2.1, averages to a groater extent than in the three-hour tracking

scheme. Figure 4.5.11 gives an example of the errors in positioning

expected from range observations subject to one meter random instrumen-

tai error when ephemeris errors are present. Adjustment parameters

include station position and six orbital. elements for each one hour

interval. A priori weighting consistent with the amplitude of

ephemeris error introduced was included for the orbital elements. The

expected error in position due to the level, of ephemeris error outlined

in Table 4.2.2 is given in Table 4.5.2 to be 50 to 80 centimeters after

one day and 25 to 40 centimeters after five days of observation.

Finally in Figure 4.5.12 results are given for Station 1001 for

a complete simulation of station positioning in which all error sources

,a

199



0

tool

CL 110 J

cc

--4 WNVAnf) finnOn

POSITION ERROR1" — , ---

10	 40	 cc	 No	 too	 120	 140	 160
TIME tHn)

000 +
0

(a)

wCOMPONIA11'
loo

COMPONENT

1.5 I

Uj

Ui

	0 060	
STANPARD ERROR
POSITION Enpon

0 00
20	 40	 60	 Qo	 100	 110	 140	 160

TIME MR)

4 00
w-COMPONENT

20
Uj

't 7 40

q 160

o
cc

00
POSITION won

STANDAW ERROR

	

00	 11 - 1 -1

20	 40	 60	 go	 100	 12o	 140	 too
TIME MAI

Figure 4.5.11. Position Error of Station 1001 Due to Ephemeris Error

(Range Observations/One-Hour Tracking interval)

200



al

400
uCOMPONENT

at0

a

140 

STANDARD ERROR

	

V g ^'	 °' ^" POSITION MDR

0	 to	 40	 If	 to	 100	 Ito	 uo	 ISO
TIME t14RJ

too
v=COMPONENT

o 20

z 240

W

110
STA NDARD ERROR

0 so

POSITION ERROR
000

0	 X20	 40	 40	 60	 100	 110	 140	 100
TIME (14111

.

2 00	 w,COMPONENT

140	 r

N 120
a
ww

DID	 ^,^ POSITION ERROR

0 40

STANOARD ERROR

0	 20	 40	 50	 00	 too	 Ito	 too	 100

TIME Mn)

Figure 4.5.12. Range Positioning Results for Station 1001 for
Complete Simulat!,on (One-Hour Tracking Interval)

2111.



from 'Table 4.2.2 wart! included, All modeling parameters were included

in the adjustment and the full weight matrix based on all unmodeled ran-

dom error sources was utilized. These results indicate that the

expected error in the components of station position range from 70 to

140 centimeters after one day of observation and from 35 to 60 centi-

meters after five days. A comparison of Figures 4.5.7 and 4,5.12 gives

the improvement obtained using the shorter tracking interval. The

improvements in the accuracy of the recovered citation coordinates for

Station 1001 were approximately 125, 90, and 30 centimeters for the u,

V, and w coordinates respectively after one day of observation and 65,

55, a.nd 20 centimeters respectively after five days of continuous obser-

vat=ion. Similar gains in accuracy were achieved for Station 1002.

Since the adoption of the shorter tracking interval produced a

significant increase in the accuracy of the recovered station position,

simulations of dynamic point positioning were made for all stations in

Table 4.2.1. These simulations incorporated all error sources from

Table 4.2.2, the full set of modeling parameters with a priori weights

consistent with the level, of error introduced, acid the weighting pro-

cedure developed in Section 4.4.3 for single station tracking. Table

4.5.4 presents the uncertainties in the geodetic coordinates for all

stations under investigation obtained from dynamic point positioning

using range observations. Table 4,5.3 is provided as a key for tables

presenting simulation results. For the adopted levels of systematic

and random errors utilized these results indicate that the geodetic

coordinates may be recovered to the 100 to 150 centimeter level, or

better after one day of continuous CPS range observations. After five
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days the accuracy of the recovered coordinates is between 10 to 70

centimeters. The dominant error source In these results Is 
the 

SAW-

lito ephemeris,

Some variations in the results ate evident. For Instance, the

solutions for the polar Stations 1009 and 1.010 have as Jargor standard

error for latitude and a smaller uncertainty I" longitude and height

than the results obtained in the mid-latitude station group solutions.

This difference can be explained by examining the change in

s;ation-satellite geometry. For high latitude stations the maximum

olovatloa angle is considerabl y loss. Up to as latitude of 63 degrees;

satellite crossings of the zenith are possible. However for higher

latitudes the maximum elevation angle decreases to approximately 54.5

degrees meaning that a larger percentage of the observations will 
be 

at

lower elevation angles. As noted is Section 4.2.2 incr000lng the num-

ber of lower elevation observations Mareasos the strength of the holghL

solution in the presence of timing errors. With lower elevation angle

observations the strength of the latitude and longitude components will

depend ova the distribution of observing azimuths. The oqoitorlal sta-

tions show a larger uncertainty in height and a lower uncertainty in

latitude and longitude, 4gain due to the distribution of observing elo-

vations and azimuths. The increased frequency of higher elevation obser-

vations is rKlooted in the increased height uncertainty. Vigure 4.5,13

gives the positioning results for Station 1011.

For these adjustment solutions the as posteriori variance of unit

weight was computed from equation (4.3.32). The square root of this

quantity, UO , for the solutions given in Table 4.5.4 ranged from 0.879
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to 0.()14. Fov a least squares adjustment in which the mathematical,

modal, for the observation equation is exact and the second order sta-

tisties of the rac dom processes Lire modeled correctly in the weighting,

the theoretical value of the a posteriori variiinee is unity. Deviation

from unity is primarily due to error in the above .nssump ti.ons . The

range adJustment results given in Table 4.5.4 are not scaled by this

quantity.

Some specific reasons for tite range adjustment a posteriori

variance not being unity are the :following. rirst, the Markov process

transfer :functions given ill 	 4.4.7 and 4.4.8 berth assign more

power to certain frequencies than the specified transfer ,fcnictions given

In the same figures. For the satellite rubidium oscillator this addi-

tional power is at frequencies whose wavelength is greater than 100

seconds. The actual clock noise sequences simulated using Lho Wlditch

(1975] algorithm do not contain the same power tit those frequencies.

Thus the second order range statistics will predict observation uncer-

taiitties in excess of their value based on the exact use of the speci-

find transfer function. This tends to decrease the. a posteriori

variance. Secondly, the errors introduced into the ephemeris using, the

equations of Section 4.1.2 are periodic in mean anomaly but modeled by

a constant amplitude correction at the midpoint of each tracking inter-

val. This modeling difference affects the a posteriori variance

since the Level of error introduced into the observations was smaller

than the a priori orbital element uncertainty. And finally with a small

number of degrees of .freedom for each tracking interval white and cor-

related noise sequences will t(mid to be fit better than expected causing
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1

a decrease in the a posteriori variance. Tho interpretation of the

results should take these factors into consideration.

Finally 'fable 4.5.5 gives the decrease in the standard error of

geodetic coordinates obtained in two previous examples when the variance

of the instrumental white noise is decreased and the tropospheric

refraction is compensated completely. The first case shows that- no Sig-

nificant increase in the accuracy of the adjusted station coordinates

can be expected by decreasing this instrumental random error component.

Decreasing the standard error of this component front 100 to 60 centi-

meters produces a decrease of only 1.1 centimeters or Less cis opposed

to an expected decrease of 40 percent based on range measurements sub-

ject to white measurement noise only. In this case However, with the

inclusion of the fully correlated statistics for unmodel.ed atomic clock

terror, the resulting decrease is marginal.

In the second case assuming that tropospheric refraction offects

can be compensated the refraction scaling parameters are excluded from

the adjustment. The decrease in the standard error of Ghc geodetic

coordinates ranges from 1.1 to 3.0 centimeters after one day of obser-

vation and from 0.8 to 1.6 centimeters after five days. `,t'he largest

decrease is in the height uncertainty; although, the net effect on the

determination of earth-fixed coordinates is minor.

4.5.1.3 Integrated Doppler Solutions

Solutions based on integrated Doppler or range difference obser-

vations were examined subsequently. Range differences over five-minute

intervals were formed by aggregating independent one minute integrated

Doppler observations with an instrumental measurement uncertainty of
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three centimeters. The parameters of the adjustment were equivalent

to the range solution set with the exception of the clock models. For

integrated Doppler observations the linear clock error models were each

replaced with a single parameter representing time drift or frequency

bias. Ephemeris elements, tropospheric refraction corrections, and the

geodetic station coordinates were retained.

An initial solution was made for Station 1001 using; range dif-

ference observations over three-hour tracking intervals. Observations

were simulated using equation (4.2.9) and ephemeris error was intro-

duced into the adjustment using an equation analogous to equation

(4.2.10). Error sources were taken from Table 4.2.2. Adjustment

weighting included both the instrumental white noise statistics and the

random clock error statistics developed in Section 4.4.21 . The receiver

clock was modeled over a nine-hour interval as in the range solutions

leased on the same interval of tracking. Table 4.5.6 gives the results

for this adjustment. These results indicate that after one day of

observation the geodetic coordinate errors can be expected to range from

125 to 215 centimeters and reduce to from 60 to 100 centimeters after

five days.

For this station a simulation based on a ora--hour tracking

interval was next tried to determine if better results could be obtained

as in the range case with a receiver clock model adopted every four

hours. The results from this solution are given at the beginning; of

Table 4.5.7. A comparison of the three and one-hour tracking interval

results shows that significant improvement is obtained with the shorter

tracking interval. This latter tracking procedure allows a better
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representation of random clock error w.1,th the same model, permit[; bettor

aamplin,g, of satellite geometry, and producou as more rapid averar,111P, of

the efforts due to systematic and random error sources. The result Is

*in uncertainty in station position coordinates in the range of 100 to

1.50 centimeters after one day 
and 

45 to 65 centimeters after five days

of observatlon.

Sing e this shorter tracking interval yielded such improvement In

the results, station positioning adjustments were made for most of the

stations in Table 4.2.1. Those results are given in Table 4.5.7. Again

the height uncertainties for the polar Stations 1.009 and 1010 are signi-

ficantly less than for all other stations since, the higher occurrence

of lower elevation observations allows a better separation of heightD

and timing errors. However for these stations the latitude and longi-

tude solutions are weaker. The results for the mid-latitude stations

show less variation than the range solution. results. In general the

results indicate that range, difference observations yield position com-

ponent accuracies of from 85 to 200 centimeters after one day of obser-

vation and from 40 to 80 centimeters after five days of continuous

tracking. Variations in the results with location are to be expected

with the weakest solution for latitude and longitude occurring toward

the poles. Figure 4.5.14 gives the positioning results for Station

1013.

The a posteriori variance of unit weight was computed using

equation (4.3.32) for each adjustment of Table 4,5.7. The square root

of this quantity v_"ried from 0.967 to 0.998 indicating more consistency

in the adjustment modeling and weighting than in the range observation

simulations.
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Table 4.5.8 ouniarizet) the effects of various error nourcen on

positioning batied 
on 

integrated Doppler observations uoing a one-hour

tracking interval, Again the ophemerio error dominates the ef fecto of

all other error sources. Because of the geometric weakness of the inte-

grated Doppler obanrvations the effect produced by three centimeter

innLrumeatal white noise in much larger than that due to a one meter

standard error 
In 

range ►

TABIX 4.5.8. EFFECT OF ERROR SOURCE3 ON 1 1081TTONTMr, I)IM1111,I)
FROM DOPPLER OBSERVATIONS USING A ONL-11OUR

TRACKING INTERVAL

ERROR SOUR 09

TROPOSPHERIC REFRACTION (6%)

EPHEME-RI$

RESIDUAL RANDOM RUSIDIUM
CLOCK ERROR

RANDOM RECEIVER CESIUM
CLOCK ERROR

RECEIVER WHITE NOISE

APPROXIMATE
COORDINATE

ERROR (01n)

1 bAY	 6 DAYS

	

20	 10*

60-150	 30-70

	

5	 1	 2

	

7	

3

	

16-18	 6-8

O ASSUMING AN AVERAGING DUE TO SIGN VARIATIONS. TROPOSPHERIC
REFRACTION SCALING PARAMETERS WOULD REDUCE THIS ERROR TO
APPROXIMATELY 6 CENTIMETERS,

And finally Table 4.5-9 gives this 	 in the geodetic

coordinate uncertainties with modifications to the assumed error levels

introduced into the adjustment for Station 1007. Assuming that tropo-

spheric refraction can be accounted for completely either through

measurement or modeling, and that the scaling parameters are deleted from
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tilt! set of, adjuntmon parameters, the resulting decrease in position

uneortainty io negligible an shown 
in 

the table. Alfjo a decreane in the

inotrumental noise level from three centimeters to 0.2 conLimetero, pro-

duees only a minimal reduction in the coordinate uncertainty. Minor

docroaaen are realized in these canes because the ephemeris error

totally dominates these error Bources. Thus for absolute poBltioning,

additional refinements 
in 

the refraction prediction or improvements ill

	

the noise level, 	 the receiverwill not provide any real improvement

unlesb the ephemeris error is greatly roduced. As P. final example the

love] of ephemeris error adopted in Table 4.2. 2 was halfea and an e;'.pwctVd

a significant level of improvement in position uncertainty was achiov(ld.

Tha ttljcr^rtjjntv ill the resul ts improved by approximately 45 percent.

	

J	 0 6

A comment concerning continuous count integrated Doppler ia in

order, In the above analysis one-minute integrated Doppler counts,

assumed statistically independent, were aggregated to form five minute

range differences. The instrumental noise thus increased by r5. For a

continuous count integrated Doppler system this is not true. The five

minute Doppler counts in that case would still be subject to approxi-

mately the same white noise level as one minute observations. The

results presented here consider one-minute observation noise levels of

from 0.2 to 3 centimeters or 0.45 to 6.7 centimeters for five minute

aggregated range differences. For continuous count integrated Doppler

this latter Interval would be approximately 0.2 to 3 centimeters, a

more optimistic but partially overlapping interval. From the results in

Tables 4.5.7 and 4.5.9 the accuracy of continuous count: Doppler utilized

as independent range differences can be established.
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4.5.2 Determination of Baseline Components

In this section results are presented for the determination of

baseline components and chord length from simultaneous range and inte-

grated Doppler observations from two stations. The least squares normal

equations now include the earth-fixed coordinates of each tracking sta-

tion. After each sequential solution the resulting; station coordinate

covariance matrix is linearly transformed into coordinate differences

and chord length using equations (3.1.22) and (3.1.25) or analogous

equations when the coordinates are expressed is geodetic latitude,

longitude, and height. Satellites are selected using the criterion dis-

cussed in Chapter 3 and the simulations described in this section

include Table 4.2.2 error sources.

4.5.2.1 Range Solutions

As in Section 4.5.1 initial results were based on the three-hour

tracking interval. Simultaneous range observations were simulated

for five days for Station 1001 and 1002. These stations lie on the same

meridian separated by approximat-.1y 100 kilometers as shown in Figure

4.2.1. Simultaneous observations were excluded from the adjustment if

the elevation angle from either station was below ten degrees.

The effect of individual error sources on baseline components

was investigated for these stations by introducing; each into the

adjustment. For this 100 kilometer north-south baseline the results are

given in Table 4.5.10. A comparison of these results with Table 4.5.1

demonstrates that the sensitivity of the baseline components to these

error sources is quite different than for the determination of geodetic

coordinates from range. Since the baseline distance is small relative
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TABLE, 4.5. 10. j,',FFh(.^r OF hmtOR 83 OI3IyCUS ON BASELINE COMIONYIIN`19
DERIVE)) FROM RANCE, 011SI,IWA IONS 11S6G' A
TIIRI,I1,41OUR TRACKING 1Ni`2,RVAL (100 km IIM:+I,LLNP,

ERROR SOURCES

TROPOSPHERIC REFRACTION (5%)

EPHEMERIS

RESIDUAL RANDOM SATELLITE
RUBIDIUM CLOCK ERROR

RANDOM RECEIVER CESIUM
CLOCK ERROR

RECEIVER WHITE NOISE (1 m)

APPROXIMATE
COMPONENT
ERROR (cm)

1 DAY	 5 DAYS

	

6-8	 2-3

	

1 -3	 0.5-1.5

	

0,2	 1	 0.1

	

12	 6

	

2-3	 1-1.5

N the diStauce to tho Sateuites the effects of errors in tho sat.ellito

eph01110riS and clock project almost identicalluy into the coordinates of

oach station. The transformation into coordinate differences romoves

the majority of the effect. Thus although satellite position terrors

can conLribuLc 150 to 200 centimeters of u ncertainty in station position

after one day of observation, this same error has only an effect of from

1, to 3 centimeters on the coordinate differences. This fact: precludes n

requirement for to precise ephemeris in this application. Figure 4.5.13

demonstrates the error in the Cartesian baseline coinponents due to

ephemeris error. After five days this error can be expected to range

from 0.5 to 1.5 centimeters. The effect of the satellite clock error

is Likewise. minor.
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The effect of tropospheric rofractioa error will also be

rocluced if the signaturo of the error Is almost equivaloate at both

s.t&S. Q they cases considered here a ehillmon five percent error was

lntro(hi'ed. vor star separated by up to it row U""drod kilometers tilt'

difference in tropospheric refraction will he primarily a fuactJoa of

elevation angles difference and Lho difference in weather conditions.

Assuming the difference is a function of the farmer, a constant lac*rcoa-

tago error will produce: apprt7ximnol.y the same? orror at each site and

the Affect on baseline components will be small. In actual applica-

tions where a more complicated prediction of tropospheric refraction

exists the baseline component errors may ;i.11 rOaSC to a value greater

than t tat given In Table 4.5,10..
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The dominant error source in this application is the instability

of the tracking receiver clock. For the cesium oscillator considered in

this study the error introduced into baseline components can be expected

to range from 12 to 6 centimeters after one and five days of observatlon

ra*pectively. Figure 1+.5.1,6 Presents the Cartesian baseline component

errors as a function of time. These errors tend to average with time

but at a rate which depends on the stability of the clock. For the

dynamic determination of baseline components a signLfic",it decrease in

this error can only be achieved by increasing the stability of the

receiver oscillator if the tracking interval is held fixed.

0	 20	 40	 60	 80	 100	 120	 140	 160

TIME (HR)

Figure 4.5.16. Effect of Random Cesium Clock Error on Baseline
Components derived from Range Observations
(Three-flour Tracking Interval)
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Vor as complete simulation of relative positioning five days of

range observations were adjusted sequentially. The parameters of the

adjustment included two pairs of station coordinates, ephemeris parn-

mo(oro, a linear satellite cluck model every three hours and a linear

model for each tracking station clock every nine hours. Two tropo-

aphoric, refraction sealing parameters ware introduced for every throe

hours of tracking, The adjustment weighting teas based on all random

errors added to the observations. The weight matrix used every nine

hours had the form of equation (43 ,41). Errors wore introduced into

the range observations according to Table 4.20 with the Instrumental

white nolso uncertainty oaken as one motor. The result of the adjust —

Mont wa g s Cartesian baseline coordinate uncertainties of 23, '.?l, and 18

centimeters after one day of observation and 10, 11, and 8 centimeters

afLor five days.

The simulation for Stations 1001 and 1002 was repeated using; as

ono—hour tracking interval. The uneortaintion in the Cartesian base-

line components after one day of observation were 28, 15, and 12 centi-

meters. After five days of continuous observation the resulting

standard errors were 12, 7, and 6 centimeters for the Au, Av, Aw compo-

nents. A comparison of the trace of the covariance matrix with that

from tho previous three-hour interval Simulation shows that the shorter

tracking interval produces marginally bettor results. This is con-

si.stent with the marginal increase in geometric strength for range

observations demonstrated in Chapter 3.

For the one-hour tracking procedure the effects of error sources

on baseline components are given in Table 4.5.11 for the 100

}t
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kiiomeulr baseline. The major difference between Tab1er, 4.5.11 and

4.' 10 ie the decrease in the effect of random receiver clock noise.

TABLE. 4.5,11, I1 ECT OF ERROR SOURCES ON BASELINE COMPONENTS I)MRIVI11,
FROR RANGE OBSERVATIONS USING A ON1:-I!OUR TRACKING
IN7.'ERMT. (100 km BASELINE)

ERROR SOURCE
APPROXIMATE
COMPONENT

ERROR (cm)

1 DAY 5 DAYS

TROPOSPHERIC REFRACTION (M 6-8 2-3

EPHEMERIS 1-3 0.5-1.5

RESIDUAL RANDOM SATELLITE
RUBIDIUM CLOCK ERROR 0.2 0.1

RANDOM RECEIVER CLOCK
ERROR 8 3

RECEIVER WHITE NOISE (1 m) 2-3 1.0-1.5

Using the one-hour tracking scenario simulations were performed

to assess the accuracy to which baseline components and chord lengths

might be determined using simultaneous GPS range observations from two

sites. The complete parameter set and weighting based on all random

error sources were included in the adjustment. The resulting uncer-

tainties in the baseline parameters are given in Table 4.3.12. The

uncertainty in the chord length d is also expressed in parts per mil-

lion (ppm). For baselines less than 300 kilometers in length these

results indicate that the uncertainty in the latitude component of the

baseline ranges from between 10.1 and 12.7 centimeters after one day of

observation and from 4.4 to 5.8 centimeters after five days. The longi-

tude component uncertainties are slightly weaker ranging from 1.0.6 to

ri
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a

17.4 centimeters .after one clay and from 4.3 to 7.5 centimeters after

five days of simultaneous observation. The height difference between

the stations has the largest uncertaiutydue to the correlation of height-

error with receiver timing error and refraction. For baselines under :100

kilometers the height difference uncertainty ranges from 25.2 to 27.7

centimeters for one day of observation and from 12.0 to 15.0 centi-

meters after five days. For these baselines the uncertainty in chord

length ranges from 9.9 to 16.0 centimeters (0.5 to 1.8 ppm) after

one day and from 4.3 to 6.9 centimeters (0.2 to 0.8 ppm) after five

days. The chord length uncertainty increases with baseline distance

as seen in the results for baselines 1007-1008 and 1015-1016. How-

ever the relative error in parts per million decreases. The increase

in the uncertainty is due to an increasing projection of the ephemeris

error onto the baseline components. figure 4.5.17 gives the baseline

component errors and uncertainties for baseline 1011-1012. The

chord length between these stations is approximately 100 kilometers.

The chord uncertainty as a function of time is given In

Figure 4.5.17(d).

Two final examples are presented in Table 4.5.13 which show how

the uncertainty in the results given in Table 4.5.12 are subject to

change with variations in the simulation. Decreasing the instrumental

white noise to 60 centimeters decreases the uncertainties of the base-

line components from 1.5 to 2.4 centimeters after one day of observa-

tion and from 0.6 to 1.2 centimeters after five days for the 80

kilometer baseline 1001-1014. The decrease in the uncertainty of the
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Vigure 4.5.17. Baseline Parameter Error for Complete Simulation
Using Range Observations from Stations 1011 And 1012
(One-Hour Tracking Interval)
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Figure 4.5.17 (continued)
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chord length ranges from 0,5 ppm to 0.1 ppm for the interval of nite

occupation in this case. Finally if tropospheric refraction error can

be measured or predicted with high accuracy then t ►ie deletion of the

tropospheric refraction scaling parameters will producer a significant

decrease in the standard error of the baseline parameters since the

removal of these parameters will strengthen the normal equations. The

results for the 200 kilometer baseline 1003--1004 are given in Table

4.5.13 demonstrating that the measurement of troposl;' , oric refraction

with a water vapor radiometer may be required to ootaain the best pos-

sible results using a dynamic approach.

4.5.2.2 Integrated Doppler Solutions

Simultaneous integrated Doppler observations from a pair of

stations were analyzed to determine the accuracy to which baseline

parameters can be determined. Adopting a one-hour tracking interval

the effect of the systematic and random error sources given in Table

4.2.2 on the vector components of the baseline were evaluated for Sta-

tions 1001 and 1002. These results are given in Table 4.5.14. As with

the use of range observations the stability of the tracking receiver

clock will contribute significantly to the error in this positioning

problem while satellite ephemeris and clock errors have no significance

for such short baselines. As mentioned previously a five percent

unmodeled error in tropospheric refraction having constant: sign can

introduce errors of up to 50 centimeters in position. However for short

baselines a large portion of this error is in common at both sites and

the resulting error in the coordinate differences ranges from 4 to 8
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TABLE 4. .14. EFFLOT OF ERROR SOURCES ON BASELINE COMPONENTS5
DERIVED FROM DOPPLER OBSERVATIONS USING A ONE-11OUR
TRACKING INTERVAT, (100 km BASELINE)

APPROXIMATE COMPONENT

ERROR SOURCE ERROR (cm)

I DAY	 5 DAYS

TROPOSPHERIC REFRACTION 4.8	 2.3

EPHEMERIS Is	 .1

RESIDUAL. SATELLITE RUBIDIUM CLOCK ERROR 12	 .05

RANDOM RECEIVER CLOCK ERROR 10	 4

RECEIVER WHITE NOISE (3 cm) 20.25	 8.10

centimeters after one day to 2 to 3 centimeters after five days of

observation. In actual applications the signature of this error may

not be equivalent at each site and the resulting baseline component

errors may be different. The receiver white noise plays the most

important role. Because 
of 

the geometric weakness of range difference

observations a 3 centimeter standard error for receiver noise will

restrict baseline component uncertainties to be more than 20 to 25

centimeters after one day of observation and from 8 to 10 centimeters

after five days. Furthermore it will be shown below that reducing the

receiver noise level will have only limited success in reducing the

baseline component uncertainties.

For the case just considered a complete simulation was made to

determine the uncertainty in the baseline components and chord using

i
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fivt, days of continuous observation, The results are presented in

Table 4.5.15. In terms  of the geodetic coordinate differencef; the

uncertainties are 27. 71, 41A 0 and 45.5 centimeters aftc-r one, day and

13.0, 17.1 0 and 18.2 centimeters after five days for the latitude,

Jonp,itude, and height differences. The uncertainty in the chord 
war 

2.8

ppm and 1.3 ppm after one and five days respectively. Results for tho

same baneline were then obtained using a three hour-satellite tracking

interval. These uncertainties are given 
in 

Table 4.5.16. Comparing the

26 hour results with those obtained using 27 hours of observation frop,

three-Inur tracking intervals demonstrates that each tracking procedure

e,ives comparable results. After five days of observation it appears

that using a longer tracking interval hai.., some advantage for deter-

mining the chord.

Since the three-hour tracking procedure did not appear to pro-

duce a significant overall advantage results for other baselines were

determined using the one-hour tracking interval and are also presented

in Table 4.5.15. These results indicate for baselines less than 500

kilometers that the latitude difference uncertainty ranges from approx-

imately 30 centimeters after one day to 13.5 centimeters after five

days and is the best determine component of the baseline as 
in 

the case

of range observation. This is due to the fact that the majority of the

observations are from north or south going pass geometries as shown in

Figures 4.2-4(a) and (b). The uncertainty of the longitude component

of the baselines ranges from 37.3 -.-, 44.8 centimeters after one day

and from 14.5 to 19.1 centimeters after five days. Height difference

uncertainty ranges from 35.1 to 44.8 centimeters after one day and from
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15.8 to 19.1 centimeters after five days. The uncertainty in the chord

it; significantly smaller for north-south baselines for the same reason

as the latitude component. This is also true i	 the range observation

examples although the difference as a function of orientation is less

pronounced after five days of observation. Finally, the uncertainty

increases with .station separation although the ratio of the uncertainty

In the chord to its ;Length decreases with the longer baselines given

here. The increase in uncertainty is again due to the increased effect

of ephemeris error. figure 4.5.18 gives the results obtained for base-

line 1015-101,5. As is typical with the results from the other baselines

considered the decrease in parameter variance appears as an exponential

decay.

Finally, in "Cable 4.5.17 various cases are considered in which

modifications are trade to the error sources. Elimination of tropo-

spheric refraction produces a decrease in the baseline component uncer-

tainties ranging from 1.0 to 7.3 centimeters after one day of

observation to 0.7 to 2.7 centimeters after 5 days. The height uncer-

tainty is decreased to the greatest extent. The chord uncertainty

decreases by 0.2 ppm of ter one day of observation and by 0.1 ppm after an

additional four days of observation. Decreasing the ephemeris error

by 50 percent produces only minor variations in the results as expected.

And finally the last two cases of Table 4.5.17 show that reducing the

random receiver noise to l centimeter produces a significant increase In

accuracy but improvement beyond that level gives only limited success

since the effect of random receiver clock error begins to dominate the

resulting parameter uncertainties.
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5. A PRE'LIMINARY EVALUATION OF SATELLITE

INTERFEMOMTRY FOR BASELINE DETEMINATION

5.1 Introduction

In the preceding chapter the accuracy of baseline determinations

from range and Doppler observations was analyzed considering the effects

of various error sources. It was found that the range results were pre-

dominantly influenced by tropospheric refraction modeling error and ran-

dom receiver clock error while Doppler results were influenced most by

the same and by random receiver noise. Tropospheric refraction errors

may be reduced by the use of a water vapor radiometer [DlacDoran, 1979]

and Doppler receiver noise levels may actually be as low asonecenti-

meter [Stanford Telecommunications, Inc., 1978], hence the baseline

uncertainties obtained from range and Doppler may be enhanced as demon-

strated in Tables 4.5.13 and 4.5.15. However the resulting baseline

uncertainties would still be effected by random correlated clock errors

and, in the case of Doppler, also by the weaker geometric strength of

the observations themselves. Accuracies on the order of I ppm may be

achieved using these methods if the period of site occupation is at

least 2 days for range and 5 days for Doppler observation.

Since neither of these two observational approaches will sup-

port a rapid first-order determination of baselines, this chapter is

included to address the utilization of intetferometric phase measurements
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for this application. Although the interferometric proposal: discussed

in Chapter 2 are currently under development, enough information is

available to support a general estimate of the performance of an inter-

ferometric approach. The technique examined in this chapter is based on

tho double differencing of interferometric phase from two satellites

made sim,altaneously at two sites. This approach has the advantage of

eliminating most of the clock errors which required polynomial modeling,

in the range and Doppler approaches. The analysis presented here is of

a preliminary nature intended to provide a general estimate of the

accuracy of baseline determination using interferrometry, A more

detailed analysis of the proposed interferometric procedures of Chapter

2 should be performed as the specifics of these tecliniques are refined.

5.2 Double Differencing of Interferometric Phase

The approach which is introduced in this section assumes that

interferometric phase observations are bawd on the reconstructed con-

tinuous wave GPS carrier frequencies. The following observational model

is adopted for the phase measurement with station i observing satellite

3:

(t) _ ai21T CRi^(t) - mi^(t)ai^(t) - cdt^(t) +c6t^ (t)

- (6Rij (t)+Yij (t)] .

In this equation 
Xii 

is the wavelength of the GPS carrier frequency,

Ri j is the geometric distance between station i and satellite J, m i j is

the integer number of full wavelengths comprising R ij , BRij is the
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ttopospheria refraction error modeled to within a percent a, and y

represents uncorrelated measurement error. The quantities cSti and

cats represent systematic and correlated random time or phase errors,

converted into units of length, of the geodetic receiver and satellite

atomic clocks respectively arising from the accumulation of fractional

frequency error. The wavelength 
Xi3 

is also a function of time due to

the Doppler shift caused by the relative motion of the satellite with

respect to the receiver. Bence,

a

(t)	 _.._..	 (5.2.2)
^^	 1 - p/c

where 
X  

is the carrier frequency and P is the component of relative

velocity along the topocentric range vector.

If satellite j is simultaneously observed at station Q than

the difference in phase measured at the two sites is

AO  (t) - 0i3 (t) - O K J (t) .	 (5.2.3)

Ignoring for the moment the Doppler shift in the carrier frequency and

assuming the same level of refraction modeling error at both sites,

equation (5.2.3) may be written as

AO^ (t) _	 Ri3 (t) - RQ3 (t) - [nli9 (t) - mQ (t)] 
aj

(5.2.4)

c[6ti (t) - 6t A, (t)] --^[6Rij(t) -dRkj (t)] - [Y:Lj(t)- Ykj (t)]}.

Notice that the error in the satellite clock does not appear in

equation (5.2.4) due to the differencing.

f
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If in addition a second satellite k is ;simultaneously observed

at both stations then the double difference is defined as

AO,
:Llc 

(t) - AO (t) - A 
k
(t)

^ 	 (5.2.5)

M 0
11

(t) - Oki (t) - Q ik(t) + Okk(t)

At,ain Ignoring the Doppler shift and assuming; that the frequencies X 

and X It are equal and that 0 is constant for all observations, equation

(5.2.5) may be written as

AOJtc(t) = a" ^Rij(t) - Rtj (t) ° Rik(t) +RQk(t) +nj ^, (t)N J

[6R
jj

 (t) .- 6Rkj (t) - 6Rik (t) + 6RQk(t)	 YiXJk^

where

njk ' -mi j + mk J + Mils - "Ak	
(5.2.7)

and

'yiQJ k - Yia - 'yQj - yik + yQk	 (5.2.8)

in equation (5.2.6) no atomic clock errors appear, thus, the double dif

ferencing approach appears to eliminate the timing errors which required

modeling previously. The integer term nJk(t) represents the difference

between a pair of "27r ambiguities" which exist in each single dif-

ferencing of phase according to equation (5.2.4). This ambiguity repre-

sents the integer number of full wavelengths comprising the difference

in the distances between the stations and the satellite.

If the Doppler shift in frequency is included, then the double

difference_ equation (5.2.6) would be replaced by the substitution of the
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appropriate equations (5.2.1) into equation (S. 2.5) and a complete can.-

collation of clock error could not be expected. In the preliminary

analysis presentee in this chapter the carrier frequency X 
j 
M will be

assumed known and equation (5.2.6) will be adopted as the observation

equation. Introduction of the Doppler shift will some. cause additional

uncertainty in the results depending on the a priori errors 
in 

station

position and satellite position and velocity.

An additional assumption implied in equation (5.2.6) in that

simultaneous observations of phase are to be differenced. The recogni-

tion of simultaneous events depends on accurate time tagging of the

observations or knowledge of the relative time error between station

clocks. The first of these is impossible to achieve and the Latter

requires either portable clock comparisons or the adoption of additional

parameters in the estimation algorithm. if phase differences are formed

from observations at two sites having a time of observation difference

of At seconds, then the error introduced into the double difference is

given approximately by

21TAtX [(LRLk _ ?Lt	 Nk
6AO	 at	

at
SAO. it	

i

	
at	 at	

(5.2.9)

C
(96
 

ta aft 
k	

^^---a
a8R	 6

^-- at
	 t	 at

This equation is obtained from a first order Taylor series expansion of

equation (5-2.6) assuming that the observations selected from station A

for diEferencing are At seconds away from those from station i. An

examination of equation (5.2.9) reveals that the time synchronization

242



error consists of 
a 

geometric tern due to the position change of each

satellite relative to station k, a term which is a function of satel-

14to clock frequency stability and a term clue to the variation in tropo-

nphoria refraction over At. An evaluation of this equation for a

synchronization error of 200 nanoseconds given a bound on thin error of

0.05 centimeters. Synchronization to much better 
than 

this level could

be achieved by time tagging observations with the satellite time infor-

mation encoded in the transmitted GPS signals.

Adjustment of baseline parameters using double differenced

interferometric phase observations requires the differentiation of

equation (5.2.6) with respect to the earth-fixed coordinates of the

observing stations. the integer n J k and the constant a, at a minimum.

Satellite position also enters into equation (5.2.6) and represents an

additional set of parameters which striccly should be included. 
In 

the

results given below corrections to the satellite ephemerides are not

incorporated but the affect of error in satellite position is dis-

cussed. The partial derivatives used to 
form 

the design matrix for the

least squares adjustment are the following

DAO Jk(t)-	
27T - 

R ij (
	

u k (t) - u i

DU 1
	

71	 t)	 Rik(t) 1	
(5,2.10)

U 4. V, w

DAOk
	

2E u A - u 
I 
(t)	 UQ - UIC(t)

J 
Du 	 Xi [ Raj(t) 	

Rkk(t)

u4v, w
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DAOI k t 27r
3njk

k(t)	 2Z
W + 6" pk(t)	 0 - 12 . 13)6R 

ii 
(t) - $R ki (t) - 61lik

The integer 'jk for an observed satellite pair is a futation of

time, changing at each observation time. if the receiver how,.,4vtr main-

tains a count of accumulated phase change over the tracking interval)

then the rate of change of n 
jtt 

is known and only a single integer

unknown needs to be Incorporated for each interval of tracking. An

adjustment based on equations (5.2.10) through (5.2.13) will not pro-

duce integer solutions for the n 
jk' 

Since no constraints are known

which will produce an integer result directly, this initial adjustment

will provide a set of estimates and variances for the njk . Front these

quantities various test sets of integers may be formed. The number of

such eats will depend on the estimates of the n jk and on the magnitude

of theta corresponding variances. For each test set a second least

squsies adjustment would be required utilizing these integers. This

second adjustment would include a set of absolute constraints fixing

the n	 From these adjustments the weighted sum of squares of residuals

VTI'V nay be compared to determine which test set of integers produces a

minimum. The covariance matrix of the station coordinates from this

solution may be transformed using equations (3.1.24) or (3.1.25) into

baseline component and chord length uncertainties.
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5.3 Effeet of Error Souteca

The error nourcen influencing oatellite Intcrferometry mva!;ure-

riento were mentioted to Chapter 2. For the double differencing approach

the error sources will be the Name except that it appears that most

error due to frequency inotability will be removed. The error rwurcer,

eonnidered 
in 

the reoulta procanted here are the satelli l.;c ephemorideo,

tropospheric refraction, and the random error associated with the

measurement of phase. The magnitudes of the ephemeris and tropospheric

refraction errors are equivalent to those used in the range and Doppler

positioning studies 
as 

outlined in Table 4.2.2. The precision of a

single phase measurement Is assumed to be 3 centimeters which 
was 

the

nominal preeiaion adopted for integrated Doppler observatol ons in Chapter

4. Counselman (1979] estimates the random phase error of the Miniature,

Interferometer Terminals to be less than I centimeter. Table 5.3.1

gives estimates of the effects these error sources have on basaline com-

ponents and chord length for sites separated by 100 kilometers. These

results are based on simulations using a total of six hours of observa-

tion, tracking individual satellites for a fixed one-hour interval.

TABLE 5.3.1. EFFECT OF ERROR SOURCES ON BASELINE PARAME-TERS DERIVED
FROM SIX HOURS 

Or 
DOUBLE, DIFF1,;RENCED INTERFEa01%TRIC

PHASE USING A ONE-HOUR TRACKING INTERVAL (100 km
BASELINES)

COMPONENT	 ERROR	 CHORD ERROR
ERROR SOURCE	 (CM)	 (CITI)

TROPOSPHERIC REFRACTION (5%) 	 2-4	 I-A

EPHEMERIS
	

1.5	 2•J

RECEIVER WHITE NOISE (3 cm)	 1.4
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5.4 Baseline Determination Results

Double differenced interferometric phase observations were simu-

lated every five minutes for the 'baselines previously considered in

Chapter 4. These observations were developed using equation (5.2.6).

Three initial adjustments were performed using observations from sta-

tions 1001 and 1002 simulated using a one s- . half, one, and two hour

satellite tracking interval. Satellite position- error and a five per-

cent error in tropoapheric refraction modeling were introduced into the

adjustment. Parameters of the adjustment included ,he latitude, longi-

tude, and height of each station, the integer njk , and the constant 1 for

each tracking interval. The uncertainty of the latitude, longitude, and

Height components of the baseline and of the chord length obtained from

these initial adjustments are given in Table 5.4.1 after six hours of

observation. As the fixed interval for observing a pair of satellites

is increased from one-half to two hours, there is a marked decrease in

the parameter uncertainties except for the height component. However,

W th additional observations this trend is apparent for height also.

After ten hours of observation the height component uncertainties are

7.8, 4.6, and 3.2 centimeters for the three intervals utilized. This

trend is due to the decrease in the total number of parameters required

in the adjustment as the tracking interval is lengthened resulting in a.

general strengthening of the normal equations.
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TABLE 5.4.1 . VARIATION IN BASELINE PAIWII TER UNCERTAINTY WITH SATELLITE
TRACKING INTERVAL (BASELINE 1001-1002, SIX HOUR RESULTS,
INITIAL ADJUSTMENT)

TRACKING INTERVAL	 QA(,	 C;4X	 Go	 ad

0.5 hr	 9.3 Cm	 1212	 11,4	 5.6

1	 :,13	 8.1	 7.5	 311

2	 215	 4.6	 910	 1.8

For the solution based on a one--hour observing interval Table

5.4.2 gives the actual and estimated values for the integers n,jlt and the

uncertainty of their solution. It is typical in the shorter tracking

interval cases for the uncertainty of the estimated njlt to exceed 0.5.

When this occurs, the number of Lest sets of inte8ers required in sub--

sequont adjustments may be large. For instance in Table 5.4.2 the

solution for 
n,jlt 

for the fourth hour of observation was -15.2. With

the standard error of this solution 0.71 any of the following integer

values, -13, -14, -15, -16, -17, could be expected as the correct solu-

tion for this interval.. If all solutions lying within a 95 percent; con-

fidence interval are considered, the number of possible unique sets of

integers to be used in subsequent adjustments may be extremely large.

:FABLE 5.4.2. RESULTS OF ADJUSTMENT FOR INTEGERS njk BASED ON INTER-
FEROMETRIC PHASE MEASUREMENTS AT STATIONS 1001 AND 1002
USING ONE-HOUR TRACKING INTF RVAT,

INTEGER ESTIMATE UNCERTAINTY
TRACKING INTERVAL	 njk AM onik

1 7 712 .16

Z -6 --518 .15

3 1 015 .16

4 -16 -15,2 .71

5 -13 -1310 .24
6 •-11 -10.7 54
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since initial adjustments using observations from two-hour

tracking intervals produced the smallest uncertainty In both baseline

components and more importantly in the Integers njkl solutions were made

for all baselines considered in Chapter 4 using observation schedules

ba,sed on two-hour tracking intervals. Ephemeris, t,opospheric refrac-

tion, and instrumental. errors were added to the observations. The

satellite pairs were selected for tracking to optimize the trace of the

baseline parameter covariance, matrix given by either equation (3.1.25)

when the chord was estimated or by 
in equation analogous to equation

(3-2.3) when latitude, longitude, and height components were estimated.

After 
an initial adjustment the same observational data were utilized in

a subsequent adjustment in which the correct integer values n 
jk 

were

included and fixed by absolute constraints. In actual practice many

such solutions may be required. The results of the second adjustment

are given in Table 5.4.3. The results after six hours of observation

indicate that the uncertainty of the baseline components generally

rangasfrombetween 1.0 and 4.0 centimeters for baselines of 100 kilo-

maters. These uncertainties increase with baseline length. For shorter

baselines the height component has the largest uncertainty. The accu-

racy of the chord length exceeds 0.1 ppin in all cases considered with

the relative accuracy improving with increasing station separation.

Although these results do not reflect the uncertainty due to

ephemeris error, they include the uncertainty due to a five percent

error in tropospheric refraction and a measurement uncertainty of 3 cen-

timetera. The ephemeris error will increase the uncertainties of the

estimated parameter ej as demonstrated by the error magnitudes given in
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Table 5.3.1. However even with such increases the double differencing

approach appears to be adequate. 	 providing rapid first-order

doterminatiou of baselines.
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6. SUMMARY AND UXOTIMMAT IONS

6.1 Precision Comparison

Some general conclusions were drawn in Chapter 3 from an exami-

nation of the results. For the observation types considered it was

evident that ranging measurements provided the best geometric strength of

solution. The two other derived observation types, correlated range

difference and interf erometry, were geometrically weaker although the

results obtained from these latter procedures can be greatly improved

upon by increasing the observational precision. Correlated range dif-

ference observations had best geometric strength when observed satellites

were tracked over longer time intervals. With this type of tracking

procedure both the baseline component and chord length uncertainties

were minimized. For range and interferometric observations shorter

satellite tracking intervals produced the least uncertainty In the base-

line parameters. Lengthening the tracking interval for these observa-

tion types increased the resulting parameter uncertainties. However the

rate of increase was smaller than the variation produced in the Doppler

results by decreasing the satellite tracking interval. And finally the

interferometry approach became geometrically weaker as the baseline

length increased to become a more significant percentage of the distance

to the satellite; although,the relative error in parts per million,

decreased for the baselines considered.
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The analysis presented in Chapter 3 considered the relative geo-

metric strength of three observation types, two derived from basic

ranging. The results were based on the assumptions that satellite posi-

tions in space were known and that the basic ranging measurements were

subject to uacorrelated stationary random noise.

6.2 Dynamic Point Positioning

The range observation results presented in Chapter 4 indicate

that such observations from GPS satellites can provide geodetic coordi-

nates to an accuracy of approximately 85 to 125 centimeters using;

twenty--four hours of continuous observation. Those results were based

on the use of a one-hour tracking interval, selecting; satellites which

provide the best geometric strength for the solution. If a longer site

occupation period is utilized, then the uncertainty in the geodetic

coordinates can be reduced further to approximately 35 to 65 centimeters

after five days of observation. Since the majority of satellite passes

are north-south, the estimated latitude has a smaller standard error

than longitude and height except for stations located toward the poles.

For these latter stations height uncertainty tends to be smaller since

a higher frequency of lower elevation observations provide a better

separation of height and timing errors. if a Longer tracking interval

is utilized, larger uncertainties in estimated position are to be

expected since the effects	 sy^^tematic satellite position error will

not average as rapidly, The dominant error source limiting the accuracy

of geodetic coordinates is this error in satellite position. Thus

improvement in the receiver noise level and in measurement or modeling

J
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of tropospheric refraction will yield only minor increases In accurim't.

Therefore, the geodetic utilization of CPS range observations in as

dvilamic poinL positioning approach will require satellite ephemerides

to be estimated as accurately as possible.

Integrated Doppler observations based on independent counts can

ho oxpected to yield geodetic coordinate uncertainties ranging from 9^

to 150 contimoLers after twenty-four hours of observation. The unver-

taintles will diminish to 45 to 65 cnntlmaters after an additional four

days of observation. These resul , , I)ased on a one-hour tracking

InLorval with in expected receivej^ noise level of 3 centimeters. An

increase in the tracking interval to three hours produces a substantial

increase in the geodetic coordinate uncertainties. Thus, as with

ranging, the best procedure is to track satellites over short intervals

to obtain stronger geometric strength of solution. Increasing the pre-

cision of tho Doppler receiver or the accuracy of tropospheric refrac-

tion prediction will produce only a minor change in the results. Again

the uncertainty introduced into station position by ephemeris error

dominates the effects of all other error sources. Reduction of the

ephemeris error by fifty percent produces a decrease in position uncer-

tainty oZ approximately 45 percent. Therefore precise ephemeris compu-

tation will be required for accurate geodetic positioning using CPS

Doppler observations.

The major conclusion which can be stated regarding dynamic point

positioning using range and Doppler observations from a Global Posi-

tioning System of navigation satellites is that the accuracy of esti-

mated geodetic coordinates will be comparable with the results
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obtainable with 'Transit Doppler observations. No major increase in

accuracy can be anticipated. Thus replacement of the `.transit System

with a Global Positioning System will not be detrimental to the gcode-

tic community since with proper electronic receivers similar levell y of

performance can be expected. The CPS system does offer a 4istine.t

advantage. This system provides continuous observation thereby

decreasing the interval, of time required to obtain comparable results

with the Transit System enabling satellite surveying to became a more

efficient operation. Table 6.2.1 summarizes the uffect of systematic

and random error sources on dynamic point positioning.

TADLE 6.2.1. EFFECT OF SYSTEMATIC AND RANDOM ERROR SOURCES ON DYNA11IC
P0114T POSITIONING USING ONE-11OUR SATELLITE TRACKING
INTERVALS

o;PPROXIMATE COORDINATE ERROR (cm)

ERROR SOURCE

TROPOSPHERIC REFRACTION

EPHEMERIS

RESIDUAL SATELLITE RUBIDIUM
CLOCK ERROR

RECEIVER CESIUM CLOCK ERROR

RECEIVER WHITE NOISE
(RANGE Im, DOPPLER 3cm)

RANGE

1 DAY	 5 DAYS

10	 5

50 . 80	 25.40

4	 1

5	 2

2	 1

DOPPLER

1 DAY	 5 DAY&

10	 5

60 . 150	 30.70

5	 2

7	 3

18	 8

6.3 Baseline Determination

Simultaneous range observations from two stations were utilized

to determine baseline components and chord length. Solutions based on

a one-hour tracking interval,selectinh satellites which provide the best

geometry, indicated after one day of observation that the lati-

tude and longitude components of the baseline have uncertainties

254



F)

of from 10 to 17 centimeters for baselines under 300 kilometers. The

latitude component was determined with greater accuracy because of the

frequency of north and south going satellite passes, For, bascliner,

under 300 kilometers the uncertainty of the height component ranged from 25

to 28 centimeters. After five days of observation uncertainties in the

latitude and longitude components were reduced to approximately 4 to 7

centimeters and the height component uncertainty to 12 to 15 centi-

meters. The uncertainty of these components increased with baseline

distance reflecting an increasing projection of orbit uncertainty into

the estimates. For shorter baselines the uncertainty in chord length

ranged from 10 to 16 centimeters after one day of observation and from

4 to 7 centimeters after five days. The uncertainty was less for 	 i I

north-south baselines and increased with station separation. However

for the baselines considered here the relative uncertainty or ratio of

the uncertainty in the chord to its length decreased with increased

baseline distance. The accuracy of 100 kilometer baselines was approxi-

mately 1 to 1.5 parts per million after one day of observation. An

increase in the length of the satellite tracking interval slightly

degraded these results.

The dominant error sources which will effect the accuracy of

baseline determination using range observations are the stability of the

receiver clock and error in refraction prediction. Increasing the

modeling accuracy of tropospheric refraction will significantly

increase the accuracy of the baseline parameters. Reducing the receiver

noise level from 1 meter to 60 centimeters will produce a marginal.

increase in accuracy.
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The stability of the receiver clock can be improved by using; an

atomic oscillator with better stability properties, However the o ,,,Lil h -

lator model chosen for use in this study was typical of cesium oscilla-

tors having good stability; thus, it is anticipated that the baseline

paramn.ter uncertainties attributed to random receiver clock error in

this study are typical of those expected for an operational survey sys-

tem.

With Doppler observations from one-hour satellite traccing

intervals the uncertainties in the baseline components ranged from 27 to

50 centimeters after one day and from 13 to 19 cen"meters after five

days of continuous observation. The chord Length uncertainty ranged

from 28 to 44 centimeters after one day and from 13 to 19 centimeters

after five days. The latitude component of the baseline was determined

With the least uncertainty and the chord lengths of north--south

baselines were determined significantly better. '.these results are for

baselines under 200 kilometers and are based on a 3 centimeter receiver

white noise standard error. Increasing the tracking interval to three

hours produced some increase in the accuracy of the chord but the

results appeared mixed for the baseline component uncertainties.

The accuracy of the baseline parameters obtained by the geo-

metrically weaker Doppler observations are improved significantly by

decreasing the receiver noise level to 1 centimeter. below that level

the clock error statistics dominate and further increased precision will

yield only marginal improvement. Enhanced modeling or measurement of

tropospheric refraetion would improve the Doppler results but not as

significantly as for ranging.

256



Assuming an instrumental noise level of L centimeter,uncer-

Laintica in the baseline components would be reduced to approximately ct

to 14 centimeters after five daycs of observation. The uncertainty in

the chord would also be approximately 9 to lei centimeters after five

days for baselines under 200 kilometers. The errors limiting, the

accuracy of baseline determination using, GAPS Doppler observations are

receiver noise and the stability of the receiver oscillator.

Simultaneous interferometric phase observations from two Dites,

twice differenced to eliminate timing errors, were examined as an alter-

native procedure for the determination of baseline components. The use

of continuous wave phase measurements requires the introduction, of inte-

ger unknowns into the adjustment related to the ambiguity in reennni_Ying

the exact cycle on which phase measurements were made at the two sites.

As a consequence initial and secondary adjustments of the baseline para -

meters are required.

Results obtained using a two-hour tracking interval with a phase:

measurement uncertainty of 3 centimeters revealed that baseline compo-

nants may be recovered with an uncertainty of from 1.0 to 4.0 centi-

meters after six hours if sites are separated by up to a few hundred

kilometers. The uncertainty in the recovered height difference between

observing sites was Larger than the uncertainties in the Latitude and

Long;i.cude differences for baselines under a few hundred kilometers. The

accuracy f the chord length exceeded 0 . L ^m in allcase consideredy 	^	 pl 	 s c nsi s.ed and.

improved with station separation. These results ircluded uncertainty

due to a five percent error in tropospheric refraction. Probable

ephemeris error will increase the uncertainty of the baseline components
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no indicated in Table, 6.3.1; however, even with such increases taio

approach appears to be adequate for rapid first-order determination of

baselines under 200 kilometers. Table 6.3.1 summarizes the effect of

various systematic and random error sources on baseline component deter-

mination,

6,4 Recommendationo

The results presented. in Chapter G demonstrated that GPS range and

integrated Doppler observations will provide sufficient accuracy for

estimation of geodetic coordinates. These observations taken simul.-

t:anvously at two sites can be utilized to determine baseline parameters

LO better than 15 centimeters after five days of o servati.on. A

limiting; factor for both observational approaches is the Ptability of

the receiver oscillator. For certain gcodynamic applications such as

earthquake prediction accuracies of 10 centimeters or batter may be

required within a short time interval. GPS range and Doppler observa-

tions might be capable of providing such accuracies in the future but

the time interval required to obtain such results will preclude this

application.

Satellite intcrferometry techniques can be developed which cir-

cumvent the requirements for high stability frequency standards, This

lead to the examination of the double differencing of interferometric

phase. Thus one limiting factor for the range and Doppler approaches is

theoretically not a critical limitation for interferometry.

There are several interferometric ,approaches which have been

proposed using GP;q satellites as radio sources. These proposals

ti
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have been described in this study and the error sources associated with

satellite interferometry have been mentioned. It is recommended that a

detailed error analysis of these interferometry proposals be made to

determine their effectiveness for determining baseline components. Tile

specific details of each need to be examined so that a fair comparl.son

is realized, Further considerat!.on should ^)e given to the long-term

cost effectiveness of these propotaals including the range and Doppler

instrumentation utilized in dynamic point positioning.
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Q

z.Q =	
u14

k =1
(A.1.1)

APPENDIX A

LEAST SQUA -S POLYNOMIAL APPROXIMATION

OIL' RANDOM WALK SEGMENTS

A.1 General Polynomial A22roximation

Let {ukI be a discrete stationary zero-mean stochastic process

and define {zn Ito be its running sum with

The quantity z  is one element in the discrete random walk sequence

{zn1. By stationary it is meant that the random process {uk } is one

whose statistical properties are invariant in time. Further, assume

that over selected time intervals the random walk {znI appears to be

dominated by systematic components enabling {zn } to be modeled by an mth

degree polynomial Pm (t). Tha difference between z  and Pm(tQ) will be

called the residual r 

r  = Z  - Pm(td	 Q = 1,2,...,N	 (A.1.2)

where the polynomial model is defined 'by

M

P
m	 ^
(t) = E a.	

o
(t - t ) 3	(A.1.3)

j=o
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The constant t  in equation (A.1.3) is arbitrary. The coefficients of

the approximating polynomial can be determined by a least squares fit of

Pm(t) to the random walk elements z  sampled within a selected time

interval. The least squares solution for this approximation is

[Uotila, 1967]

where

a (ATA) -1A z

aT 	[ao ,a,, ... ,am]

=zU
z = [ z l , z 21 .... zN]

The design matrix A is given by

( t l - to ) .......... (ti - t0)m^

A = 1 (t2-Lo).....^....(t, -t )m

1 (t;N - to)..........(tN- tU)m

The covariance for the polynomial coefficients a depends on the choice

of t0 . In terms of the underlying process {uk1, it ii given by the

following equations

El la] = (A
T -

1IATEE[z]  = 0
(A.1.6)

E[aaT ] = (ATA) -I ATE[zzT]A(ATA)-1

where the covariance E[zzT] is giver,. by

	

-T [RT	 A.E[zzr a . tR S]E[uu ]	 T	 ( 1.7)
S
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and

-T
u . [u ,u

2 
,a—fu III .

The matrices R and S are given below.

Notice that the fitting procedure, equation (A.1.4), is non-

weighted least squares. The problom considered here is one of approxi-

mation, not linear estimation, since the a  are based on samples from

(z 11 1 not subject to an observation or sampling error. Also the proce-

dure is independent of how the z  are selt:cted within the time interval.

Using equations (A.1.2), (A.1.3), and (A.1.4), the residual vec-

tor r can be written as

r z - A (A
T
 A)rlATz

_ [I- A(ATA)-lAT] z	 (,x.1.8)

Gz .

The residuals represent the discrepancy between the samples of the ran-

dom walk and the approximating polynomial and may be interpreted as

"noise" with respect to Pm(t). The statistics of these residuals are

obtained from the statistics of the random walk by the linear transfor-

mation

E[rrT] = GF[zzT ]GT	(A.1.9)

This equation is derived using equation (A.1.8). For the

residuals

E[ r] = E[Gz] = GE[z] = 0 	 (A.1.10)

since, using equation (M ,l), each z  has zero mean.
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Thus,

H(ir ] a N[Gzz G ] = GH[zz ]G .	 '^t.a .11)

Therefore given the statistics of 
{uit} 

and an mth degree polynomial

model PM (t) to approximate {zn} over a given interval of time, the

statistics of the residuals to that model may be developed.

Theorem TA.I.: The covariance [rrT ] is (i) independent of the

epoch of {ukI provided this underlying process is stationary,and is

(ii) invariant provided the {zn } are sampled in an identical fashion in

each of two intervals with comparable polynomial models being adopted.

The proof is as follows:

z 
	 {zl,z2,...,zN}

-T
zII _ 

zN+l'zN+2'...,z2N}

be two identically sampled sequences of the random wally 
{zn}. 

Since

zN+l = z  + uN+l

(A.1.12)

z 2
	 z  + uN+l + ... + u2N

where

N
zN=1tE1uI

equation (A.1.12) can be written using

Let

and
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a

zx = Sux

as

z	
Rux + SuTx
	 (A.1.13)

where It is an N x N matrix of all ones and S is an N x N

lower-triangular matrix of ones. Equation (A.1.13) can be w Atten as

zxT ° [R S] ul
xx	 .

By a linear transformation, taking uT	(ux,uII) ,

E(zTxZxT] 
= [R S]1<(uuT] 

[RT]x

S

RR[uxuIIRT + SL"[ uxxux]RT

+ RE(u uZT ]ST
 + SR[uTTuTT]S

From equation (A.1.9)

E[r11rTT] 
a 

Gh[Zx1Z11IGT

GRh [ uzu ] I.GT + GSh [uu^ ] RTGT

-m
+ GRR[uTn - STGx + GSE[ur.TuZx]STGT .

(A.1.14)

(A11.15)

(A.1.16)

however
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a

OR	 (I — A(ATA) -1AT IR	 [I C]R

N
-- E C 1k

k=1
(A.1.17)

N

k 
E 
l 

CNk

Since the coeffic.tents C Ak , £ ;= 1,2,...,N, are based on the Least

squares appro4imation of Pm(t) to the sampled { zn1, it is true that

(see l.enuna below)

N
E 

C 9 = 1
	 (A.1.18)

k=l

for every A. Therefore

OR = 0	 (A.1.19)

and equation (A.1.16) reduces to

E[rIIrTI] = GSE[u uTI]STGT	 (A.1.20)II

Using the stationarity ass

E[zlzT]

equation (A.1.20) becomes

E[rIIrIII

umption on {uk) and the result that

SE[ui TI ST 	 (A.1.21)

GE[z	 I GT = E[rl TI	 (A.1.22)

,I

since the matrix G in either case is identical. Thus the quantity

SE[u,IIuTI ]ST is the only partial sum of the z II statistics which is
266
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mapped by G into the statistics of r11 4 The additional terms in equa-

tion (A.1.16) involving the R matrix are mapped into zero by G.

Lemma A.l: Vor least squares polynomial approximation

E
Cij = l and 

9 
Gij - 0	 (A.1.23)

where

GPI - C

C = A(ATA) - 1AT .

The proof is as follows:

The coefficients of the approximating polynomial.

m
Pm(t) = E aZ (t- t0)Q

k=0

are determined through a least squares procedure.

Thus

a = (A
T -1

-1 ATz

and

r - z - Aa = z - A(ATA)-I AT-
z

=z - Cz=Gz

Consider the matrix product ATG

ATG AT(I - C) AT [I - A(ATA)-1AT)
(A.1.24)

=A
T ^AT

=0 .

)i
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Since by definition the first row of AT consists only of ones because

the approximating function is a polynomial, it follows from equation

(A.1. 24) that

E G 	 row, j = column)

i

for all J. Since G is symmetric

EGij	0

3

for all i. From equation (A.1.23)

i C
ij
	
Gij

Therefore,

ECij =1.i
The above theorem also holds for random walks in which the

underlying process is continuous. For instance if equation (A.1.1) is

replaced by the continuous random walk

r

,a

^5

t 
z  = z(tN) 	 f u(t)dt ,	 (A. 1. 25)

t0

then using equation (A.1.25), equation (A.1.13) can be expressed as
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rI

t 	 tN+l

f u(t)dt 	 T	 u(t)dt
t0 	tN

III a
	 ^

t 	 t2N
t u(t)dt	 !	 u(t)dt

t0 	t 

Q + T .

The residuals based on the nth degree polynomial fit are

rII a (I C) III

(I .- C) (Q+T)

(I - C)Q + (I - C)T .

(A.1.2(1)

(A.1.27)

Since Q is a vector of equal constants and since equation (A.1.18) holds

as before, it is obvious that

(I- C)Q - 0	 (A.1.28)

a.id therefore

(I- C)T
(A. 1.29)

CT .

The covariance for the second set of residuals is

r[rIIrIII _ GH[TTT]GT	(A.1.30)

since

E[T] = 0 .	 (A.1.31)

rII ^
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Pl

Since (uk) Is assumed stationary with autocorrelation function

Ru(t-t'), the .following integral equation is valid

tN+,T tN+l	 tN+J t  tN+1 t 
I	 !	 Ru (t - t') dtd t" - I	 f	 R u ( t* ^ t*")dt*dt*'

t 
	

t 
	 0	 0 

(A.1.32)
^^ tx

f	 f RU (t .. t*r)d t*dt*'
0 0

where

t*=t - tN

N

Applying equation (A.1.32) to each element of the

R[TTT ], it is seen that

B[TTT] G tgz TII 

and thus equation (A.1,30) becomes

Nqrxxrxx I ' 
GE, ( xzTIGT

[xxiT .

Therefore the theorem is valid in the continuous

A.2 Correlation Between Residuals from Approxim^
t Successive Random Walk Segments

Consider two elements of the random walk
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N+i.

zN+i 
0 

ltE 
u Lt
	 (A.2.1)

and
N
F u	 (A.,)

^N It=l k

From the assumption that {u it is a zero-mean process

r[zN+iI - N[zNI - Q . 	 (A.2.3)

The correlation between these elements is given by

r[zN+1 zN) - 1.;[zN 
z 
N 
I + 

KUN+l z N ) + ,
	 + N[uN,Pi z N I

Cr2N 
+ 

E[uN+l z a 
+ ..• + E["N+ zN^

The correlations between z  and the elements uN+j depend on the correla-

tions among the elements of the underlying process (u k}.

Now consider the following question. If samples or a segment of

{zn} are to be nvialed by a polynomial of degree m, what correlations

exist between the residuals from su:cessively fitted segments? Consider

for example the random quantities z(tn) where

n
z(t ) = E u(t)	 n-

n	
k^l	

k

Suppose the distribution of the z  is as follows:
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(segment 1)
Z( 

t 
PI)

z 
(t^+l)

(Segment 2)

z (t')

Let t' and t' represent, without loss of generality, the midpoint of

each segment. If a polynomial is chosen to model the z n over each seg-

ment as

M	
'^j

PMW	 E al (L- t	 (Segment 1)
j =0

M

QM ( 0	 E b (t - e-) j	 (Segment 2)
j M 0

can it then be assumed that, r I and r 
11 are uncorrelated? To answer this

question perform a least squares fit of P m (t)  and Q M (t) simultaneously

to the {z n I segments and then linearly transform the statistics of (z n)

to obtain the residual statistics and compare the correlation coefficients

between the two gro , ips of residuals with those within each group. Ltie

and

equation for this transformation is

	

- -T	 - -T

	

E[r I r I	 E(r I r 
T
III	

i
I 	 I

T
I I

r
Tj	 L[r rT	 T	 7T

	

Ir. [ ^ 11 
z 
I	

, 

1,.1
j	 U	 j

(A. 2. 5)
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where

9G [I- M&) -Y] 	 (A. 6)

A 0

A	 (x!.2.7)

L.()	 A,)

A comparison of the correlation coefficients

tz--
H r

i
r I	

1., 11 )Pr i r 
1 TT. RTFj	

. (

Tof the off-diagonal blocks, E[- r-	 or E[F FT with those of the

diagonal blocks, L[; rT and Etr r 1, can be a basis for deciding if

the sets of residuals may be assumed to be independent of not.

and
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